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1. Introduction

Consider the gcd-sum function

G(n) :=

n∑
k=1

(k, n) =
∑
d|n

dϕ(n/d) (n ∈ N),

1
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where ϕ(n) is Euler’s totient function. The function G(n) is multiplicative and the

asymptotic formula∑
n≤x

G(n) =
x2

2ζ(2)

(
log x+ 2γ − 1

2
− ζ ′(2)

ζ(2)

)
+O(x1+θ+ε), (1.1)

holds for every ε > 0, where γ is Euler’s constant, and θ is the exponent appearing

in Dirichlet’s divisor problem. See the survey paper [8] by the third author.

The function

G(−1)(n) :=

n∑
k=1

1

(k, n)
=
∑
d|n

ϕ(n/d)

d
(n ∈ N),

is also multiplicative. Bordellès [1, Th. 5.1] deduced that∑
n≤x

G(−1)(n) =
ζ(3)

2ζ(2)
x2 +O

(
x(log x)2/3(log log x)4/3

)
. (1.2)

The error term of estimate (1.2) comes from the classical result of Walfisz [9,

Satz 1, p. 144],

R(x) :=
∑
n≤x

ϕ(n)− 1

2ζ(2)
x2 = O

(
x(log x)2/3(log log x)4/3

)
. (1.3)

We remark that recently (1.3) was improved by Liu [4] into

R(x) = O
(
x(log x)2/3(log log x)1/3

)
, (1.4)

therefore, this serves as the remainder of (1.2). Also see the preprint by Suzuki [7].

The lcm-sum function

L(n) :=

n∑
k=1

[k, n] =
n

2

1 +
∑
d|n

dϕ(d)

 (n ∈ N).

was investigated by Bordellès [1], Ikeda and Matsuoka [3], and others. The function

L(n) is not multiplicative and one has, see [1, Th. 6.3],∑
n≤x

L(n) =
ζ(3)

8ζ(2)
x4 +O

(
x3(log x)2/3(log log x)4/3

)
. (1.5)

By using (1.4), the exponent of the log log x factor in the error of (1.5) can be

improved into 1/3.

Now let

L(−1)(n) :=

n∑
k=1

1

[k, n]
(n ∈ N).

Bordellès [1, Th. 7.1] proved that∑
n≤x

L(−1)(n) =
1

π2
(log x)3 +A(log x)2 +O(log x), (1.6)
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with an explicitly given constant A.

By the general identity∑
m,n≤x

ψ(m,n) = 2
∑
n≤x

n∑
m=1

ψ(m,n)−
∑
n≤x

ψ(n, n),

valid for any function ψ : N2 → C , which is symmetric in the variables, (1.1), (1.2),

(1.5) and (1.6), together with the remark on (1.4) lead to the asymptotic formulas∑
m,n≤x

(m,n) =
x2

ζ(2)

(
log x+ 2γ − 1

2
− ζ(2)

2
− ζ ′(2)

ζ(2)

)
+O

(
x1+θ+ε

)
, (1.7)

∑
m,n≤x

1

(m,n)
=
ζ(3)

ζ(2)
x2 +O

(
x(log x)2/3(log log x)1/3

)
, (1.8)

∑
m,n≤x

[m,n] =
ζ(3)

4ζ(2)
x4 +O

(
x3(log x)2/3(log log x)1/3

)
, (1.9)

and ∑
m,n≤x

1

[m,n]
=

2

π2
(log x)3 +A1(log x)2 +O(log x), (1.10)

respectively, where A1 = 2A.

It is easy to generalize (1.7) and (1.8) for sums with k variables by using the

general identity ∑
n1,...,nk≤x

f((n1, . . . , nk)) =
∑
d≤x

(µ ∗ f)(d)bx/dck,

where f is an arbitrary arithmetic function, µ is the Möbius function and ∗ stands

for the Dirichlet convolution of arithmetic functions. For example, we have the next

result: For any k ≥ 3,∑
n1,...,nk≤x

1

(n1, . . . , nk)
=
ζ(k + 1)

ζ(k)
xk +O

(
xk−1

)
.

However, it is more difficult to derive asymptotic formulas for similar sums

involving the lcm [n1, . . . , nk]. As corollaries of more general results concerning a

large class of functions f , the first and third authors [2, Cor 1] proved that for any

k ≥ 3 and any real number r > −1,∑
n1,...,nk≤x

[n1, . . . , nk]r = Ar,kx
k(r+1) +O

(
xk(r+1)− 1

2 min(r+1,1)+ε
)

(1.11)

and ∑
n1,...,nk≤x

(
[n1, . . . , nk]

n1 · · ·nk

)r
= Ar,kx

k +O
(
xk−

1
2 min(r+1,1)+ε

)
,
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where Ak,r are explicitly given constants. Here, (1.11) is the k dimensional gener-

alization of (1.9). Furthermore, [2, Cor 2] shows that for any k ≥ 3 and any real

number r > 0,∑
n1,...,nk≤x

(
[n1, . . . , nk]

(n1, . . . , nk)

)r
= Br,kx

k(r+1) +O
(
xk(r+1)− 1

2+ε
)
,

with explicitly given constants Bk,r. The proofs use the fact that (n1, . . . , nk) and

[n1, . . . , nk] are multiplicative functions of k variables and the associated multiple

Dirichlet series factor over the primes into Euler products. The proofs given in [2]

cannot be applied in the case r = −1.

It is the goal of the present paper to investigate the order of magnitude of the

sums

Sk(x) :=
∑

n1,...,nk≤x

1

[n1, . . . , nk]
, (1.12)

Tk(x) :=
∑

n1,...,nk≤x

(n1, . . . , nk)

[n1, . . . , nk]
, (1.13)

Uk(x) :=
∑

n1,...,nk≤x
(n1,...,nk)=1

1

[n1, . . . , nk]
, (1.14)

Vk(x) :=
∑

n1,...,nk≤x

n1 · · ·nk
[n1, . . . , nk]

, (1.15)

where k ≥ 2 is fixed, by using elementary arguments. Theorem 2.1, concerning

the sum S2(x), refines formulas (1.6) and (1.10) of Bordellès [1]. Theorems 2.3 and

3.1 give the exact order of magnitude of the sums Sk(x) and Uk(x), respectively,

for k ≥ 3. Theorem 4.1 concerns the sums Vk(x), while Theorem 5.2 provides an

asymptotic formula with remainder term for Tk(x), for any fixed k ≥ 2. Some

conjectures and open problems are formulated as well.

2. The sums Sk(x)

First consider the sums Sk(x) defined by (1.12). In the case k = 2 we use Dirichlet’s

hyperbola method to prove the next result, which improves formulas (1.6) and

(1.10).

Theorem 2.1.∑
n≤x

L(−1)(n) =
1

π2
(log x)3 +A(log x)2 +B log x+ C +O

(
x−1/2(log x)2

)
, (2.1)

that is,∑
m,n≤x

1

[m,n]
=

2

π2
(log x)3 +A1(log x)2 +B1 log x+ C1 +O

(
x−1/2(log x)2

)
,
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where the constants A,B,C can be explicitly computed, and A1 = 2A, B1 = 2B−1,

C1 = C − γ.

Proof. We have

L(−1)(n) =

n∑
k=1

(k, n)

kn
=

1

n

∑
d|n

d

n∑
k=1

(k,n)=d

1

k
=

1

n

∑
d|n

n/d∑
t=1

(t,n/d)=1

1

t
=

1

n

∑
d|n

h(d), (2.2)

where

h(n) :=

n∑
m=1

(m,n)=1

1

m
=

n∑
m=1

1

m

∑
d|(m,n)

µ(d) =
∑
d|n

µ(d)

d

n/d∑
j=1

1

j

=
∑
d|n

µ(d)

d

(
log

n

d
+ γ +O

(
d

n

))
=
∑
d|n

µ(d)

d
log

n

d
+ γ

ϕ(n)

n
+O

(
2ω(n)

n

)
.

Hence,

H(x) :=
∑
n≤x

h(n) =
∑
d≤x

µ(d)

d

∑
m≤x/d

logm+ γ
∑
n≤x

ϕ(n)

n
+O

∑
n≤x

2ω(n)

n

 .

By using the known estimates∑
n≤x

log n = x log x− x+O(log x),

∑
n≤x

ϕ(n)

n
=

6

π2
x+O(log x),

∑
n≤x

2ω(n)

n
= O((log x)2),

we deduce that

H(x) = (x log x− x)
∑
d≤x

µ(d)

d2
− x

∑
d≤x

µ(d) log d

d2
+

6

π2
γx+O((log x)2)

=
6

π2
(x log x+ cx) +O((log x)2), (2.3)

with a certain constant c. Let 1(n) = 1 (n ∈ N), and let ∗ denote the Dirichlet

convolution. By Dirichlet’s hyperbola method,∑
n≤x

(1 ∗ h)(n) =
∑
n≤
√
x

(H(x/n) + h(n)bx/nc)− b
√
xcH(

√
x)

=
∑
n≤
√
x

H(x/n) + x
∑
n≤
√
x

h(n)

n
−
√
xH(
√
x) +O(H(

√
x)).
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By partial summation,

x
∑
n≤
√
x

h(n)

n
=
√
xH(
√
x) + x

∫ √x
1

H(t)

t2
dt,

and using (2.3) we deduce

∑
n≤x

(1 ∗ h)(n) =
6

π2

∑
n≤
√
x

(x
n

log
(x
n

)
+ c

(x
n

))
+

6x

π2

∫ √x
1

(
log t

t
+ c

)
dt

t
+O

(√
x(log x)2

)
= x

(
3

π2
(log x)2 + a log x+ b

)
+O(

√
x(log x)2),

for some constants a, b, which can be explicitly calculated.

Here (1 ∗ h)(n) = nL(−1)(n), according to (2.2), and we obtain (2.1) by partial

summation.

It is more difficult to handle the sums Sk(x) in the case k ≥ 3. We will apply the

following general result proved by the second and third authors [5], using elementary

arguments.

Theorem 2.2. ([5]) Let k be a positive integer and let f : N→ C be a multiplicative

function satisfying the following properties:

(i) f(p) = k for every prime p,

(ii) f(pν) = νO(1) for every prime p and every integer ν ≥ 2, where the constant

implied by the O symbol is uniform in p.

Then ∑
n≤x

f(n)

n
=

1

k!
Cf (log x)k +Df (log x)k−1 +O

(
(log x)k−2

)
,

where Cf and Df are constants,

Cf =
∏
p

(
1− 1

p

)k( ∞∑
ν=0

f(pν)

pν

)
.

We have the following result.

Theorem 2.3. Let k ≥ 3 be a fixed integer. Then

Sk(x) � (log x)2
k−1 as x→∞.

Proof. Since [n1, . . . , nk] ≤ n1 · · ·nk ≤ xk, we can write

Sk(x) =
∑
n≤xk

1

n

∑
n1,...,nk≤x
[n1,...,nk]=n

1 (2.4)
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Let

ak(n) :=
∑

n1,...,nk∈N
[n1,...,nk]=n

1.

Now if n ≤ x, then the inner sum in (2.4) is just ak(n) (since n ≤ x forces

n1, . . . , nk ≤ x), while in any case it is at most ak(n). Thus∑
n≤x

ak(n)

n
≤ Sk(x) ≤

∑
n≤xk

ak(n)

n
. (2.5)

To see the properties of the function ak(n) write∑
d|n

ak(d) =
∑
d|n

∑
[n1,...,nk]=d

1 =
∑

[n1,...,nk]|n

1 =
∑

n1|n,...,nk|n

1 = τ(n)k.

Therefore, by Möbius inversion, we have ak = µ ∗ τk. This shows that ak(n) is

multiplicative and its values at the prime powers pν are given by ak(pν) = (ν +

1)k − νk (ν ≥ 1). In particular, ak(p) = 2k − 1.

Applying Theorem 2.2 for the function f(n) = ak(n), with 2k − 1 instead of k,

we get that ∑
n≤x

ak(n)

n
∼ αk(log x)2

k−1 as x→∞, (2.6)

for some constant αk. Now, from (2.5) and (2.6) the result follows.

Remark 2.4. It is natural to expect that Sk(x) ∼ ck(log x)2
k−1 as x→∞, with a

certain constant ck. In fact, in view of Theorem 2.1, the plausible conjecture is that

Sk(x) = P2k−1(log x) +O(x−r), (2.7)

where P2k−1(t) is a polynomial in t of degree 2k−1 and r is a positive real number.

We pose as an open problem to find the constants ck and to prove (2.7).

3. The sums Uk(x)

Next consider the sums Uk(x) defined by (1.14). In the case k = 2,

U2(x) ∼ 6

π2
(log x)2 as x→∞,

and it is not difficult to deduce a more precise asymptotic formula.

We have the following general result.

Theorem 3.1. Let k ≥ 3 be a fixed integer. Then

Uk(x) � (log x)2
k−2 as x→∞.
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Proof. Similar to the proof of Theorem 2.3. We have

Uk(x) =
∑

n1,...,nk≤x
(n1,...,nk)=1

1

[n1, . . . , nk]
=
∑
n≤xk

1

n

∑
n1,...,nk≤x
[n1,...,nk]=n
(n1,...,nk)=1

1. (3.1)

Let

bk(n) =
∑

n1,...,nk∈N
[n1,...,nk]=n
(n1,...,nk)=1

1.

Now if n ≤ x, then the inner sum in (3.1) is exactly bk(n), while in any case it

is at most bk(n). Thus ∑
n≤x

bk(n)

n
≤ Uk(x) ≤

∑
n≤xk

bk(n)

n
. (3.2)

Write ∑
d|n

bk(d) =
∑
d|n

∑
[n1,...,nk]=d
(n1,...,nk)=1

1 =
∑

[n1,...,nk]|n
(n1,...,nk)=1

1

=
∑

n1|n,...,nk|n

∑
δ|(n1,...,nk)

µ(δ) =
∑

δa1b1=n,...,δakbk=n

µ(δ)

=
∑
δt=n

µ(δ)
∑
a1b1=t

1 · · ·
∑

akbk=t

1 =
∑
δt=n

µ(δ)τ(t)k.

Therefore, by Möbius inversion bk = µ ∗ µ ∗ τk. This shows that bk(n) is

multiplicative and its values at the prime powers pν are given by bk(pν) =

(ν + 1)k − 2νk + (ν − 1)k (ν ≥ 1). In particular, bk(p) = 2k − 2.

Applying now Theorem 2.2 for the function f(n) = bk(n), with 2k − 2 instead

of k, we deduce that∑
n≤x

bk(n)

n
∼ α′k(log x)2

k−2 as x→∞ (3.3)

for some constant α′k. Now, from (3.2) and (3.3) we have Uk(x) � (log x)2
k−2.

Remark 3.2. We conjecture that Uk(x) ∼ dk(log x)2
k−2 as x→∞, with a certain

constant dk. The sums Sk(x) and Uk(x) are strongly related. Namely, by grouping

the terms according to the values (n1, . . . , nk) = d one obtains

Sk(x) =
∑
d≤x

1

d
Uk(x/d), (3.4)
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and conversely,

Uk(x) =
∑
d≤x

µ(d)

d
Sk(x/d). (3.5)

If Uk(x) ∼ dk(log x)2
k−2 holds, then by (3.4) it follows that Sk(x) ∼

dk
2k−1 (log x)2

k−1. Conversely, assume that the asymptotic formula (2.7) is true, where

ck is the leading coefficient of the polynomial P2k−1(t). Then (3.5), together with

the well known results∑
n≤x

µ(n)

n
= O((log x)−1),

∞∑
n=1

µ(n) log n

n
= −1,

and Shapiro’s estimates [6, Th. 4.1]∑
n≤x

µ(n)

n

(
log
(x
n

))m
= m(log x)m−1 +

m−2∑
i=1

c
(m)
j (log x)j +O(1),

valid for any integer m ≥ 2, where c
(m)
i are constants, imply that

Uk(x) = (2k − 1)ck(log x)2
k−2 + b2k−3(log x)2

k−3 + · · ·+ b1 log x+O(1),

with some constants bi.

4. The sums Vk(x)

The sums Vk(x) defined by (1.15) are sums of integers. In the case k = 2 we have,

according to (1.7),

V2(x) =
∑

m,n≤x

(m,n) ∼ 6

π2
x2 log x. (4.1)

Theorem 4.1. Let k ≥ 3 be a fixed integer. Then

xk � Vk(x)� xk(log x)2
k−2 as x→∞.

Proof. The lower bound is trivial by n1 · · ·nk ≥ [n1, . . . , nk]. Also, by group-

ing the terms according to the values (n1, . . . , nk) = d, and by denoting M =

max(m1, . . . ,mk) we have

Vk(x) =
∑

dm1,...,dmk≤x
(m1,...,mk)=1

dm1 · · · dmk

[dm1, . . . , dmk]
=

∑
m1,...,mk≤x
(m1,...,mk)=1

m1 · · ·mk

[m1, . . . ,mk]

∑
d≤x/M

dk−1

� xk
∑

m1,...,mk≤x
(m1,...,mk)=1

m1 · · ·mk

[m1, . . . ,mk]Mk
≤ xk

∑
m1,...,mk≤x
(m1,...,mk)=1

1

[m1, . . . ,mk]
= xkUk(x),

and the upper bound follows from Theorem 3.1.
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Remark 4.2. We conjecture that Vk(x) ∼ λkx
k(log x)2

k−k−1 as x → ∞, with a

certain constant λk, in accordance with (4.1) for the case k = 2. We pose as another

open problem to prove this and to find the constants λk.

5. The sums Tk(x)

Finally, we investigate the sums Tk(x) defined by (1.13) and establish an asymptotic

formula with remainder term for it. We give a short direct proof in the case k = 2.

Then for any fixed k ≥ 2 we use multiple Dirichlet series to get the result.

Let

F (n) :=
n∑
k=1

(k, n)

[k, n]
(n ∈ N). (5.1)

Theorem 5.1. ∑
n≤x

F (n) = 2x+O
(
(log x)2

)
, (5.2)

that is, ∑
m,n≤x

(m,n)

[m,n]
= 3x+O

(
(log x)2

)
.

Proof. Let φ2(n) =
∑
d|n d

2µ(n/d) be the Jordan function of order 2. We have

F (n) =

n∑
k=1

(k, n)2

kn
=

1

n

n∑
k=1

1

k

∑
d|(k,n)

φ2(d) =
1

n

∑
d|n

φ2(d)

n∑
k=1
d|k

1

k

=
1

n

∑
d|n

φ2(d)

d

n/d∑
j=1

1

j
=

1

n

∑
d|n

φ2(d)

d
Hn/d,

where Hm =
∑m
j=1 1/j is the harmonic sum. Therefore, using that∑

n≤x

φ2(n)

n2
=

x

ζ(3)
+O(1),

we deduce ∑
n≤x

F (n) =
∑
dm≤x

φ2(d)

d2m
Hm =

∑
m≤x

Hm

m

∑
d≤x/m

φ2(d)

d2

=
∑
m≤x

Hm

m

(
x

ζ(3)m
+O(1)

)
=

x

ζ(3)

∑
m≤x

Hm

m2
+O

∑
m≤x

Hm

m


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=
x

ζ(3)

∞∑
m=1

Hm

m2
+O(x

∑
m>x

Hm

m2
) +O

∑
m≤x

Hm

m



=
x

ζ(3)
· 2ζ(3) +O

(
x
∑
m>x

logm

m2

)
+O

∑
m≤x

logm

m

 = 2x+O((log x)2),

by using that
∞∑
n=1

Hn

n2
= 2ζ(3), (5.3)

which is Euler’s result.

Theorem 5.2. If k ≥ 2, then

Tk(x) = βkx+O
(

(log x)2
k−2
)
,

where

βk :=

∞∑
n1,...,nk=1
(n1,...,nk)=1

1

[n1, . . . , nk] max(n1, . . . , nk)
=

1

ζ(2)

∞∑
n1,...,nk=1

1

[n1, . . . , nk] max(n1, . . . , nk)
.

Proof. By grouping the terms according to (n1, . . . , nk) = d, where nj = dmj

(1 ≤ j ≤ k), (m1, . . . ,mk) = 1, we have

Tk(x) =
∑

dm1,...,dmk≤x
(m1,...,mk)=1

d

[dm1, . . . , dmk]
=

∑
dm1,...,dmk≤x
(m1,...,mk)=1

1

[m1, . . . ,mk]

=
∑

m1,...,mk≤x
(m1,...,mk)=1

1

[m1, . . . ,mk]

∑
d≤x/M

1 =
∑

m1,...,mk≤x
(m1,...,mk)=1

bx/Mc
[m1, . . . ,mk]

,

where M = max(m1, . . . ,mk). Let

h(n1, . . . , nk) :=

{
1

[n1,...,nk]
, if (n1, . . . , nk) = 1,

0, otherwise.

Hence,

Tk(x) = x
∑

n1,...,nk≤x

h(n1, . . . , nk)

max(n1, . . . , nk)
+O

 ∑
n1,...,nk≤x

h(n1, . . . , nk)

 (5.4)

and we estimate the right-hand sums in turn. Here h(n1, . . . , nk) is a symmetric and

multiplicative function of k variables and for prime powers pν1 , . . . , pνk (ν1, . . . , νk ≥
0) one has

h(pν1 , . . . , pνk) =

{
1

pmax(ν1,...,νk) , if min(ν1, . . . , νk) = 0,

0, otherwise.
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Consider its Dirichlet series

H(s1, . . . , sk) :=

∞∑
n1,...,nk=1

h(n1, . . . , nk)

ns11 · · ·n
sk
k

=
∏
p

∞∑
ν1,...,νk=0

min(ν1,...,νk)=0

1

pmax(ν1,...,νk)+ν1s1+···+νksk
.

By grouping the terms according to the values of r = max(ν1, . . . , νk) we deduce

H(s1, . . . , sk) =
∏
p

1

pr

∞∑
r=0

∞∑
ν1,...,νk=0

max(ν1,...,νk)=r
min(ν1,...,νk)=0

1

pν1s1+···+νksk
,

which converges absolutely for <sj > 0 (1 ≤ j ≤ k).

We shall need an estimate for Hk(ε, . . . , ε) for ε > 0 (small). We have

H(ε, . . . , ε) =
∏
p

1 +
1

p

k−1∑
j=1

(
k

j

)
1

pjε
+O

(
1

p2

) .

Therefore,

logH(ε, . . . , ε) =
∑
p

1

p

k−1∑
j=1

(
k

j

)
1

pjε
+O(1) =

k−1∑
j=1

(
k

j

)∑
p

1

p1+jε
+O(1).

But
∑
p p
−1−ε = log 1

ε +O(1) as ε→ 0. Thus,

H(ε, . . . , ε) = exp

k−1∑
j=1

(
k

j

)
log

1

ε
+O(1)

 � (1

ε

)2k−2

. (5.5)

Furthermore, for any ε > 0, we have∑
n1,...nk≤x

h(n1, . . . , nk) =
∑

n1,...nk≤x

h(n1, . . . , nk)

(n1 · · ·nk)ε/k
(n1 · · ·nk)ε/k

≤ xε
∑

n1,...nk≤x

h(n1, . . . , nk)

(n1 · · ·nk)ε/k
≤ xεH(ε/k, . . . , ε/k). (5.6)

Next, note that max(n1, . . . , nk) ≥ (n1 · · ·nk)1/k, so that∑
n1,...,nk≤x

h(n1, . . . , nk)

max(n1, . . . , nk)
≤

∑
n1,...,nk≤x

h(n1, . . . , nk)

(n1 · · ·nk)1/k
≤ H(ε/k, . . . , ε/k),

which converges. Hence,

βk =

∞∑
n1,...,nk=1

h(n1, . . . , nk)

max(n1, . . . , nk)

is finite and βk ≤ H(ε/k, . . . , ε/k). Also,

βk −
∑

n1,...,nk≤x

h(n1, . . . , nk)

max(n1, . . . , nk)
=

∑
n1,...,nk∈N
someni>x

h(n1, . . . , nk)

max(n1, . . . , nk)
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≤ k
∑

n1≥n2,...,nk
n1>x

h(n1, . . . , nk)

n1
≤ k

∑
n1≥n2,...,nk

n1>x

h(n1, . . . , nk)

n1−ε1 (n1n2 · · ·nk)ε/k

≤ k

x1−ε

∞∑
n1,...,nk=1

h(n1, . . . , nk)

(n1 · · ·nk)ε/k
= kxε−1H(ε/k, . . . , ε/k). (5.7)

Hence, (5.4) and the estimates (5.6), (5.7) give

Tk(x) = βkx+O (xεH(ε/k, . . . , ε/k)) .

Now we choose ε = 1/ log x and use the bound (5.5). The proof is complete.

Remark 5.3. For k = 2, Theorem 5.2 recovers Theorem 5.1. Note that

β2 =
1

ζ(3)

∞∑
m,n=1

1

mnmax(m,n)
=

2

ζ(3)

∞∑
m=1

1

m2

m∑
n=1

1

n
− 1 = 3,

by Euler’s result (5.3). Is it possible to evaluate the constants βk for any k ≥ 2?

The sums Tk(x) and Uk(x) are related by the formulas

Tk(x) =
∑
d≤x

Uk(x/d), Uk(x) =
∑
d≤x

µ(d)Tk(x/d).
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[2] T. Hilberdink and L. Tóth, On the average value of the least common multiple of k
positive integers, J. Number Theory 169 (2016), 327–341.

[3] S. Ikeda and K. Matsuoka, On the lcm-sum function, J. Integer Seq. 17 (2014), Article
14.1.7, 11 pp.

[4] H.-Q. Liu, On Euler’s function, Proc. Roy. Soc. Edinburgh Sect. A 146 (2016), 769–
775.
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