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Abstract
Atmospheric turbulence is a major aviation hazard, costing the aviation in-
dustry millions of dollars each year through aircraft damage and injuries to
passengers and crew. In this thesis we compare reanalysis data to climate
model simulations to understand how well climate models predict the loca-
tion of Clear-Air Turbulence (CAT). We then model how climate change will
impact CAT on a global scale, in all four seasons and at multiple flight levels.
This provides ample motivation for the second half of the thesis which aims
to improve aviation turbulence forecasting by testing a multi-model ensemble
forecast by combing the Met Office Global and Regional Ensemble Prediction
System (MOGREPS-G) and the European Centre for Medium Range Weather
Forecasting (ECMWF) Ensemble. The main results found are that climate mod-
els are able to skilfully predict the location of CAT, with the main uncertainty
of the location of CAT coming from which turbulence index is the best and
not from the use of a climate model. We also found CAT will increase globally
in the future with climate change, for multiple aviation-relevant turbulence
strength categories, at multiple flight levels and in all seasons. For ensemble
forecasting we started with a single-diagnostic equally weighted multi-model
ensemble and found it is at least as skilful as the single-model ensembles. This
lack of significant improvement in the forecast skill could be because when in-
creasing the forecast spread, we capture more turbulence events but also more
false alarms. The relative economic value of the forecast is improved for the
multi-model ensemble, particularly at low cost/loss ratios. Through combin-
ing two ensembles we gain consistency, gain more operational resilience and
create one authoritative forecast whilst maintaining skill and increasing value.
Extending this work further, it is found that these results apply more generally
for multiple turbulence diagnostics, as the multi-model ensemble was more
skilful than either of the single-model ensembles. When combining the pre-
dictors, the multi-diagnostic multi-model ensemble was more skilful than the
two single-model ensembles. It was also found that an optimised 12-member
ECMWF and MOGREPS-G multi-diagnostic ensemble was more skilful than
the 51-member multi-diagnostic ensemble. What this therefore indicates is
that a smaller ensemble spread for the individual diagnostics within a multi-
diagnostic ensemble is important for optimising operational forecasts in the
future, which could reduce computational costs for turbulence forecasting.
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Chapter 1

Introduction

1.1 Turbulence and its Impact on Aviation

Atmospheric turbulence is a major aviation hazard, causing damage to air-
crafts and injury to passengers and crew. Turbulence is part of the chaotic
atmosphere, and the chaotic nature poses a great challenge in understanding
and forecasting turbulence. Aviation turbulence is incompletely understood
and difficult to forecast, making it a significant hazard. The USA National
Transportation Safety Board (NTSB) records the average number of air-carrier
related injuries as 58 per year (FAA, 2017b). However Sharman et al. (2006)
suggest this number is an underestimate, as not all injuries are reported. They
state that in the period 1980–2008 there were 234 turbulence related accidents,
resulting in 298 serious injuries and three fatalities on United States operated
air carriers. 184 of the serious injuries involved flight attendants and 114 in-
volved passengers (FAA, 2017b). These turbulence injuries will come at a
cost to the airlines in two ways: (i) through compensation being paid, which
amounts to over $10 million per year, and (ii) through lost working days by
injured cabin crew, which is equivalent to over 7,000 days per year (Sharman
& Lane, 2016). Although most of the flight is spent at the cruise phase (around
33,000–39,000 feet), this is also the most vulnerable part of the flight as passen-
gers and crew are unbuckled, making any encounter of turbulence more likely
to result in injury. As a result, most incidents occur above 10,000 feet (Sharman
et al., 2006).

Kauffmann (2002) analysed the impact turbulence has on the aviation in-
dustry in detail. He presents figures from the USA Federal Aviation Adminis-
tration (FAA), who state there were 342 reports of turbulence affecting flights
on major air carriers over the period 1981–1997, with three fatalities, 80 serious
injuries and 769 minor injuries. These figures are similar to those of Sharman
et al. (2006) and, again, may underestimate the real statistics of turbulence
injuries. These values could also be higher in the future, as climate change
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is likely to increase the frequency of Clear-Air Turbulence (CAT) around the
world, particularly in the mid-latitudes (Williams & Joshi, 2013; Williams, 2017).
The cost of turbulence to the aviation industry is significant and comes from
many sources, one of which is preventing aircraft from flying on the opti-
mum route. This cost is as much as $16 million a year, as it is estimated that
5% of flights are forced to fly non-optimal routes (Search Technology, 2000).
More importantly, it is also suggested that 15% of the diversions could have
been avoided with improved turbulence detection. One form of turbulence
detection could be using LIght Detection And Ranging (LIDAR) technology
on the front of an aircraft as an in-flight avoidance mechanism. The current
RAdio Detection And Ranging (RADAR) technology used by aircraft is un-
able to detect turbulence unless hydrometeors are present, whereas for CAT
they are absent. However, LIDAR technology is able to sense CAT using non-
hydrometeor particles. This technology could warn pilots of turbulence ahead,
enabling them to divert or put on the seatbelt sign so passengers and crew are
aware of the approaching danger. However currently, Kauffmann (2002) cal-
culates that LIDAR technology costs more to install than the saving would be,
and therefore rolling it out is not worth the investment. Satellites can be used
to avoid some types of turbulence, particularly turbulence associated with con-
vection (Mecikalski et al., 2007; Francis & Batstone, 2013). There is also the po-
tential for the new generation of satellites (e.g. GOES-16) with higher spatial
and temporal resolutions to improve the avoidance of turbulence. This im-
provement could come from better identification of deep convection and the
ability to resolve gravity waves that would otherwise be invisible to the older
generation GOES satellites (Wimmers et al., 2018; Nunez, 2018).

Forecasting turbulence is another possibility to mitigate injuries and dam-
age to the aircraft by allowing pilots and flight planners to avoid regions con-
taining turbulence. Turbulent eddies in the atmosphere occur on scales rang-
ing from the planetary scale down to millimeters, but only eddies of approx-
imately 100 m in size impact aviation (Sharman et al., 2006). This is a scale
that is not explicitly simulated in forecasts except for a few detailed case stud-
ies (e.g. Lane et al., 2012), because the numerical models have resolutions too
coarse to resolve the individual eddies. Therefore, turbulence diagnostics are
used. These diagnostics generally work on the principle that the energy as-
sociated with turbulence on aviation-affecting scales cascades down from the
larger scales that can be explicitly resolved by numerical models.

The different kinds of turbulence that impact aviation are outlined in Fig-
ure 2.1. Vertical wind shear instabilities, mountain waves and convection are
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the three main sources that we consider in this thesis. Turbulence in and near
clouds can also cause injuries to passengers and crew, but can easily be de-
tected visually by pilots using on-board RADAR. Boundary-layer turbulence
is not considered in this thesis, because it influences only a small portion of the
flight after take-off and before landing.

1.2 Aims of this Thesis

The main aim of this thesis is to improve aviation turbulence forecasting by
testing a method currently used in other areas of meteorology. This method
is multi-model ensemble forecasting and is currently used in hurricane fore-
casting. We know that aviation turbulence has a large impact on the aviation
industry, as discussed in Section 1.1, however climate model simulations are
predicting an increase in turbulence frequency over the North Atlantic in the
future due to strengthening vertical wind shear in the jet stream (Williams &
Joshi, 2013; Williams, 2017). This expected increase provides ample motivation
to develop improved turbulence forecasting. However, there is currently no lit-
erature assessing how well climate models predict CAT globally and therefore
no way of knowing how well climate models predict the location of CAT. To
address this, we compare reanalysis data to climate model simulations to un-
derstand how well climate models predict the location of CAT and its response
to changes in greenhouse gas emissions. Then using this understanding we
can extend the work conducted by Williams & Joshi (2013); Williams (2017) to
model how climate change will impact CAT on a global scale, in all four sea-
sons and at multiple flight levels. Using these results as further motivation, in
the second half of this thesis we combine the Met Office Global and Regional
Ensemble Prediction System (MOGREPS) ensemble, with the European Centre
for Medium Range Weather Forecasting (ECMWF) Ensemble Prediction Sys-
tem (EPS) to see if a multi-model ensemble can improve the forecast skill, value
and reliability of the forecasts.

1.3 Thesis Structure

The thesis will be structured as follows: Chapter 2 will present the current lit-
erature on aviation turbulence including the dynamics of turbulence, climate
change impacts and how it is currently forecast for aviation. Then Chapter 3
will study if climate models can successfully diagnose clear-air turbulence and
its response to climate change. Chapter 4 will show how climate change will
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impact CAT globally in all four seasons and at multiple flight levels. Chap-
ter 5 will show if the multi-model ensemble method can provide more skill,
value and reliability of the forecast than a single model ensemble approach for
a single turbulence diagnostic. Chapter 6 will introduce multiple turbulence
diagnostics forecasting shear turbulence, Mountain Wave Turbulence (MWT)
and Convectively Induced Turbulence (CIT), to show the full capability of a
multi-diagnostic multi-model ensemble forecast of aviation turbulence. Fi-
nally Chapter 7 will present the conclusions of the thesis and discuss areas
where more research is needed.
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Chapter 2

Literature Review

This Chapter is based on the paper ’Aviation Turbulence: Dynamics, Forecast-
ing, and Response to Climate Change’ published by Storer et al. (2018) in Pure
and Applied Geophysics.

2.1 Turbulence sources

2.1.1 Clear-Air Turbulence

Clear-Air Turbulence (CAT) is defined as high-altitude aircraft bumpiness in
regions devoid of significant cloudiness and away from thunderstorm activity
(Chambers, 1955). Far from mountains, CAT is generally accepted to result
from shear instabilities. Wind shear is therefore a major source of CAT and
is one of the best understood sources. Figure 2.1 indicates this type of turbu-
lence and its association with the jet stream. To understand why shear causes
turbulence, we must define the Richardson number (Ri):

Ri =
N2

(∂U/∂z)2 =
(g/θ)(∂θ/∂z)
(∂U/∂z)2 , (2.1)

where N2 is the Brunt–Väisälä frequency squared, U is horizontal wind speed,
z is altitude, g is gravitational acceleration and θ is potential temperature. The
Richardson number is a nondimensional number with the numerator repre-
senting the stratification and the denominator representing the vertical wind
shear. It follows from theoretical considerations that instability occurs when
Ri<0.25, so instability is favoured by large vertical wind shear (denominator)
and weak stratification (numerator). In computational calculations using grid-
ded data, numerical models rarely reach Ri=0.25 due to the coarse resolutions
and therefore thresholds of turbulence are model specific. To overcome this,
Williams (2017) chose thresholds based on the distribution of turbulence in the
atmosphere. For example, he assumes severe turbulence is found in 0.01% of
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the atmosphere, and therefore he takes the top 0.01% (99.9-100%) of the proba-
bility distribution to be severe turbulence. Therefore each threshold is specific
to each model and resolution.

FIGURE 2.1: Plot of the main sources of turbulence that impact
aviation: shear turbulence caused by high wind shear, break-
ing gravity waves induced by intense convection and breaking

mountain waves. From Marlton (2016).

It is possible for turbulence to be produced when the environmental Richard-
son number is much larger than the theoretical critical value, if a local effect
reduces the Richardson number locally. For example, gravity waves can cause
CAT by reducing the Richardson number locally in an environment that would
not normally produce turbulence, initiating the Kelvin–Helmholtz shear insta-
bility and leading ultimately to overturning and breaking billows. The various
sources of gravity waves are discussed by Williams et al. (2003, 2005, 2008). In
particular, gravity waves can be produced by convection (as discussed in Sec-
tion 2.1.2) and spontaneous loss of geostrophic balance as the flow evolves, as
described by the Lighthill–Ford theory (Lighthill, 1952; Ford, 1994; Knox et al.,
2008; McCann et al., 2012). There is a direct connection in certain circumstances
that links deformation to the generation of inertia–gravity waves (Knox et al.,
2008). In some cases, this could explain the success of deformation-based CAT
diagnostics such as Ellrod & Knapp (1992) TI1 and TI2 (Knox, 1997).
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It is also possible for the environmental Richardson number to be reduced
on a much larger scale, in regions of the atmosphere with particularly strong
wind shear such as the jet streams. Strong vertical wind shears around the jet
stream increase the denominator in Equation 2.1, which therefore decreases the
Richardson number until it reaches a critical value and turbulence is produced.
Therefore, understanding the behaviour of the jet stream will help researchers
and forecasters understand how CAT may change. This is one of the reasons
for the success in forecasting turbulence of CAT diagnostics containing vertical
wind shear (e.g. Colson–Panofsky index (Colson & Panofsky, 1965), Ellrod TI1,
TI2 (Ellrod & Knapp, 1992)).

Kim et al. (2016) studied the impact that the North Atlantic Oscillation
(NAO) has on aviation turbulence. The NAO is a measure of the relative
strength of the Icelandic low and the Azores high. The positive NAO phase
implies a stronger than normal Icelandic low and Azores high, so there is a
strong pressure difference between the two. In the negative NAO phase, the
opposite is true and the pressure difference is weaker. In the positive NAO
phase, we see a stronger jet stream and a more northerly path, whereas the neg-
ative NAO phase is associated with a weaker jet stream and a more southerly
path. This change to the jet stream therefore has an impact on turbulence
for trans-Atlantic flights. Kim et al. (2016) used wind-optimal routes to find
the fastest possible flight path between London (LHR) and New York (JFK).
The study found that eastbound flights fly more frequently through regions
of CAT than westbound flights, and therefore experience more turbulence in
both the positive NAO phase and the negative NAO phase. The reason for this
is that eastbound flights utilise the jet stream more to benefit from strong tail-
winds, so the wind-optimal routes would fly in stronger vertical shear regions
more for eastbound flights than westbound flights. Westbound wind-optimal
routes avoid the strong headwinds of the jet stream, and would also avoid the
stronger vertical shear associated with the jet stream and therefore encounter
less turbulence.

According to Kim et al. (2016), in the positive NAO phase, westbound
flights experience more moderate-or-greater (MoG) CAT than in the negative
NAO phase, because some of the westbound flights detour northward to be
on the cyclonic shear side of the northerly shifted jet stream, which is more
susceptible to MoG turbulence. In contrast, eastbound flights in the negative
NOA phase fly through the cyclonic shear side of the southerly shifted jet.
Therefore, the study suggests that westbound flights are more prone to MoG
CAT in the positive NAO phase, whereas eastbound flights are more prone to
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MoG CAT in the negative NAO phase. This information is important for flight
planners, as for example in a positive NAO phase, an eastbound flight would
fly on the anticyclonic shear side of the jet stream, still using the tailwind to re-
duce flight time. However, a westbound flight that would normally fly north
to avoid the strong headwinds, could fly south and avoid the cyclonic shear
side of the jet stream, reducing flight time but also the chances of strong turbu-
lence. Information such as this can be used to avoid the strongest turbulence,
while still attempting to reduce flight times and therefore fuel consumption.

Another example of jet stream behaviour was studied by Trier et al. (2012),
who discuss how moist convection influences the upper-level jet stream. This
topic has been studied by Trier & Sharman (2009) for warm Mesoscale Con-
vective Systems (MCSs). Latent heat release perturbs an anticyclone, and this
mechanism accounts for nearly all of the magnitude of the upper-level jet
stream. This is a similar mechanism found in a cold weather outbreak, so
a midlatitude cyclone (like the MCS) enhances the downstream anticyclone.
Trier et al. (2012) suggests that, although not as dominant as MCSs, midlati-
tude cyclones account for 30–50% of the strength of the southerly jet stream.
Without the moist convection and the perturbation of the anticyclone, the wind
shear and therefore resultant CAT would not be as strong. This is different to
Convectively Induced Turbulence (CIT) because it is the indirect effect of con-
vection on the jet stream and the increased shear that causes turbulence. CIT
however is associated with strong convection in the mid-latitude cyclone with
cloud tops below the flight level and they generate gravity waves. This mech-
anism is discussed further in Section 2.1.2.

2.1.2 Convective Turbulence

Understanding the relationship between buoyancy and shear is very impor-
tant in understanding where and why turbulence forms. Lane et al. (2012)
explore our current understanding of near-cloud turbulence or Convectively
Induced Turbulence (CIT). They explain that the FAA regulations at the time
were not sufficient for avoiding severe turbulence. For example, guideline 5
states: “Do avoid by at least 20 miles (laterally) any thunderstorm identified
as severe or giving an intense radar echo, especially under the anvil of a large
cumulonimbus”. Guideline 6 states: “Do clear the top of a known or suspected
severe thunderstorm by at least 1000 ft altitude for each 10 knots of wind speed
at the cloud top”.
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A possible source of CIT is unstable upper tropospheric thunderstorm out-
flow, similar to that described in Trier & Sharman (2009). Those authors pro-
posed a mechanism for turbulence formation after completing simulations us-
ing a convection-permitting model. Their proposed mechanism is the forma-
tion of strong vertical wind shear in the outflow regions of Mesoscale Convec-
tive Systems (MCS), which we know reduces Ri and leads to Kelvin–Helmholtz
instability, which is a well known source of turbulence. In the simulations
they also found that strong vertical wind shear created regions of strong static
instability. This was caused by differentially advecting equivalent potential
temperature gradients, which were influenced by the adiabatic cooling in the
convective updrafts.

The static instabilities described above are different from the traditional CIT
mechanisms that generally result from high-frequency gravity wave breaking
(Lane et al., 2003; Lane & Sharman, 2008) or from reductions in Ri as a re-
sult of propagating gravity waves (Sharman et al., 2012). Propagating gravity
waves induced by convection are indicated as a source of turbulence in Figure
2.1. Lane et al. (2003) studied the traditional mechanisms forming turbulence
above deep convection, and found that gravity waves formed when the over-
shooting top returns back down. As these waves propagate up, the changes in
vertical wind shear and buoyancy with height can change the wavelength of
gravity waves as well as the tilt. The phase speed remains the same above the
jet stream as within the jet stream based on linear theory, and the decreasing
speed above the jet stream could reach the critical level (Lane et al., 2012). This
is found when U(z)− c = 0, where U(z) is vertical wind shear and c = ω/k,
with ω being the wave frequency and k being the horizontal wave number. So
the gravity wave can break if wave frequency is low, or wind shear is high.

Since wind shear is an important part of the gravity wave breaking, the jet
stream plays an important role. The smaller the jet width, the larger the hori-
zontal wind shear, and therefore the closer to the cloud top the gravity wave
breaking would be. Lane et al. (2012) also showed turbulence can be found in
cirrus bands (banding caused by thermal instabilities), and also ducted gravity
waves that propagate far from the updraft, reducing the Richardson number
and causing turbulence much farther away than the 20 miles outlined in the
guidelines. The new guidelines from FAA (2017a) no longer reference the ac-
ceptable height above the thunderstorm pilots can fly. Guideline 2 now states:
“Don’t attempt to fly under a thunderstorm even if you can see through to the
other side. Turbulence and wind shear under the storm could be hazardous”.
Guideline 3 states “Don’t attempt to fly under the anvil of a thunderstorm.
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There is a potential for severe and extreme clear-air turbulence”. Guideline 14
states “Do avoid by at least 20 miles any thunderstorm identified as severe or
giving an intense radar echo. This is especially true under the anvil of a large
cumulonimbus”.

2.1.3 Mountain Wave Turbulence

Mountain Wave Turbulence (MWT) is similar to Convectively Induced Turbu-
lence, as gravity waves produced by the terrain (instead of convection) propa-
gate and break when a critical vertical wind shear value is reached (Nastrom &
Fritts, 1992; Wurtele et al., 1996). This is also indicated in Figure 2.1 and shows
its similarity to CIT. Clark & Peltier (1977) conducted a numerical simulation
of a stably stratified fluid over an isolated obstacle. They found that there is a
critical aspect ratio of the topography, above which an internal gravity wave
is formed. They also discussed the amplification of the nonlinear mountain
wave between the critical level and the ground by ‘overreflection’. This results
in an increase in wave drag and results in a strengthening of the downslope
wind. Epifanio & Qian (2008) however, used a high-resolution ensemble to
study turbulence produced by breaking mountain waves and found their re-
sults were consistent with previous work by Fritts et al. (1994, 1996), suggest-
ing shear is an important factor in the breaking of gravity waves. Fritts et al.
(1996) ran simulations to understand the turbulence mechanism in mountain
waves, and found that the dominant source of instability, and therefore tur-
bulence, was the wind shear. This came from the mean wind field, and the
differential vertical advection of the mean shear by the wave field. Similar to
convective turbulence, the vertical wind shear and its interaction with prop-
agating gravity waves is an important mechanism in turbulence production.
This understanding will help forecasters in the future.

Shutts & Gadian (1999) also produced numerical simulations to understand
how Mountain waves respond to wind backing with height. In the study
they describe a process where the flow over mountains can feed a background
spectrum of quasi-inertia gravity waves, which can be thought of as ’unre-
alised mountain wave drag’. When the vertical wavelengths of the inertia-
gravity waves are small enough, they will eventually break and form turbu-
lence Shutts (1998).

Wolff & Sharman (2008) show that MoG MWT is typically found where
topographic heights are above 1.5 km. They also analysed the low-level wind
direction when mountain-wave turbulence is produced, and concluded that
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the wind direction must be within 30◦ of the perpendicular to the mountain
range orientation. For North America this makes the Rocky Mountains a prime
location for MoG MWT, as the mountain range is oriented North–South and
frequently experiences westerly low-level flow with mountain heights above
1.5 km. Greenland is also an area with high mountain ranges with the potential
to cause turbulence for trans-Atlantic flights.

2.2 Climatology and Response to Climate Change

Jaeger & Sprenger (2007) used reanalysis data to understand upper tropo-
spheric clear-air turbulence in the Northern Hemisphere, because of its role
in stratosphere–troposphere exchange (Shapiro, 1976, 1978, 1980). The authors
create a climatology of the Ellrod & Knapp (1992) Turbulence Index 1 (Ell-
rod TI1), Brunt–Väisälä frequency squared (N2), Richardson number (Ri), and
potential vorticity (PV). Hoskins et al. (1985) state that PV is able to deduce
diagnostically all other dynamical fields. It is used as a good indicator for
the dynamical processes behind synoptic and air-mass concepts such as cut-
off cyclones and blocking anticyclones as well as processes such as Rossby
wave propagation, baroclinic instability and many more. Negative potential
vorticity is however a turbulence predictor as it is also related to isentropic
inertial instability. Therefore it is Jaeger & Sprenger (2007) found that Ellrod
TI1 is largest north of the jet stream, and Kelvin–Helmholtz instability indi-
cated by Ri is near the jet streams, which is what we would expect with larger
wind shear in that region. Symmetric instability is most frequent south of the
jets, and is particularly associated with anticyclonic jets. Hydrostatic insta-
bility is only slightly dependent on the jet position, and is most common over
land where convection and gravity wave activity are most prevalent (mountain
wave and deep convection gravity waves). The study also showed that win-
ter (December, January and February) has the highest turbulence frequency,
which follows the understanding that the jet stream is stronger in winter. The
study also found long-term trends in the frequency of diagnosed turbulence
over the reanalysis period. Figure 2.2 shows that over the reanalysis period
there is an increasing trend of turbulence in the Northern Hemisphere. They
were also able to relate inter-annual variability to the North Atlantic Oscilla-
tion (NAO) and Pacific/North American flow, which we know from Section
2.1.1 influences CAT.

We know the climate system is changing due to anthropogenic (human)
forcing, and these changes may have an impact on turbulence in the future.
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FIGURE 2.2: (left) Ellrod TI, Richardson number (Ri), Brunt–
Väisälä frequency squared (N2) and Potential Vorticity (PV) (from
top to bottom) frequency time series (grey lines) and nonlinear
trend estimates from seasonal trend decomposition procedure
based on loess (STL) analysis (bold black line) for the north At-
lantic sector from 90◦W–10◦E and 30–70◦N in the tropopause re-
gion (%). (right) Mean seasonal cycle component of the turbu-
lence indicators from STL decomposition (∆%). All panels are
for the time period 1958 to 2001. Note the different scales. From

Jaeger & Sprenger (2007)

Collins et al. (2013) showed that the changes in temperature are not uniform
around the world. Importantly for turbulence, the upper troposphere and
lower stratosphere respond differently to anthropogenic forcing. The tropi-
cal upper troposphere is predicted to warm faster than the tropical surface,
due to an increase in latent heat release. Latent heat is released during convec-
tion, and in a warmer climate the atmosphere can hold more moisture. As a
result more convection and subsequent latent heat release will warm the tropo-
sphere. The lower stratosphere, however, will cool with the increasing green-
house gases (Fels et al., 1980). This cooling is related to changes in infrared
radiation.

The upper tropospheric and lower stratospheric changes discussed above
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FIGURE 2.3: Modelled zonal-mean annual-mean ensemble-mean
future temperature changes for climate change scenario RCP2.5
(left), RCP4.5 (middle), and RCP8.5 (right). Hatching indicates
the regions where the ensemble-mean change is less than one
standard deviation of internal variability. Stippling indicates re-
gions where the ensemble-mean change is greater than two stan-
dard deviations of internal variability and where at least 90% of
the models agree on the sign of the change. From Collins et al.

(2013).

lead to an increase in the equator-to-pole temperature gradient at flight cruis-
ing levels, as shown in Figure 2.3. Particularly in the RCP8.5 simulation (right),
where greenhouse gas emissions are highest, we see the warming in the tropics
and the cooling at the poles, increasing the equator-to-pole temperature gra-
dient. This increase in meridional temperature gradient will induce a thermal
wind response, resulting in an increase in vertical wind shear and therefore
turbulence in the mid-latitudes. These changes to the jet stream are shown
in Figure 2.4, which is taken from Delcambre et al. (2013). The changes to
the jet stream are predominant in the midlatitudes and at airline cruise alti-
tudes, making their impact the largest in the busiest flight regions around the
world. In addition to modifying turbulence, the increased wind speeds are also
expected to modify flight times (Williams, 2016). Another impact of anthro-
pogenic forcing is the twentieth-century release of chlorofluorocarbons (CFCs)
which destroy atmospheric ozone (O3). The loss of ozone reduces the lower
stratospheric temperature, further increasing the equator-to-pole temperature
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gradient. This effect enhances the predicted change arising from carbon diox-
ide.

Some studies have reported that climate change will act to increase CAT
in the future, according to climate model simulations (Williams & Joshi, 2013;
Williams, 2017). The first study to look at this (Williams & Joshi, 2013) focused
on North Atlantic moderate-or-greater turbulence and showed that it would
increase in frequency with climate change by an estimated 40–170%. Williams
(2017) then furthered the study to see how climate change might influence tur-
bulence in five strength categories from light to severe, finding that all would
increase in frequency with climate change. Aircraft manufacturers and fore-
casters need to be prepared to prevent an increase in damage to aircraft and
injuries to passengers and crew.

Currently there is a gap in the literature looking at the response of Convec-
tively Induced Turbulence and Mountain Wave Turbulence to climate change.
However, we know that deep convection can produce turbulence, and there-
fore it is plausible that CIT would increase if convection were increased. Price
& Rind (1994) showed an increase of 5–6% of global lightning activity with ev-
ery 1◦C of global warming. Lightning activity has been used to characterise
turbulence events (Gill & Stirling, 2013; Meneguz et al., 2016), and therefore if
we see an increase in lightning, we would expect to see an increase in convec-
tion and possibly an increase in CIT as a result. Price & Rind (1994) show that
lightning activity and convection will increase particularly around the tropics.
This trend of increasing lightning with climate change is supported by Reeve
& Toumi (1999) who show an increase in lightning activity of 40% for every 1 K
of average land wet-bulb temperature. It could be possible to study the change
in CIT to climate change. Convective precipitation accumulation was used by
Gill & Stirling (2013) as a convective indicator for turbulence forecasts, there-
fore assessing the changes of this quantity in climate models could indicate
how climate change might impact CIT.

2.3 Forecasting

Currently the World Area Forecast Centres (WAFCs) in London (Met Office)
and Washington (NOAA) produce operational turbulence forecasts for avi-
ation. This includes a forecaster produced T+24 hours significant weather
(SIGWX) chart four times a day (0000, 0600, 1200, 1800 UTC) which displays
multiple aviation hazards including icing, CAT as well as the location of con-
vection. The WAFCs also produce a gridded turbulence forecast four times a
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FIGURE 2.4: Modelled zonal-mean annual-mean ensemble-mean
future zonal wind changes. The zonal-mean is taken over the
Pacific (left) and Atlantic (right). The upper row shows a control
period contoured every 10 m s−1 and the lower row shows the
future change contoured every 0.25 m s−1. From Delcambre et al.

(2013).
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day with a horizontal resolution of 1.25◦ at six pressure levels with a lead time
T+6 to T+36 hours (ICAO, 2016).

2.3.1 Clear-Air Turbulence Forecasting

Using diagnostics to forecast clear-air turbulence allows pilots and flight plan-
ners to avoid turbulent regions. Fahey (1993) showed strategic planning can
lead to not only a reduction in injuries, but also costs. The use of diagnostics
is also the only way to operationally forecast turbulence, as the turbulent ed-
dies that affect aviation are smaller than the resolution of global atmospheric
models. Turbulence predictors that have a deformation term are particularly
good at forecasting CAT. Knox et al. (2008) tried to understand the previous
work that linked deformation to Kelvin–Helmholtz instabilities. This included
frontogenesis that could initiate Kelvin–Helmholtz instabilities, or mesoscale
waves that would then break down and form turbulence (Mancuso & Endlich,
1966). They found that neither could fully explain the relationship between de-
formation and turbulence, so instead found a link between deformation and
inertia–gravity wave generation via the Lighthill–Ford theory. In certain at-
mospheric environments close to shear instability (low Richardson number),
gravity waves emitted by imbalance destabilize the atmosphere, locally reduc-
ing Ri to below the critical value of 0.25 and leading to Kelvin–Helmholtz in-
stabilities, generating waves which break down and form turbulence (Miles &
Howard, 1964; Dutton & Panofsky, 1970). This explains the success of empiri-
cal diagnostics such as the Ellrod TI1:

TI1 =
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, (2.2)

where u is the horizontal wind velocity in the East-West direction, v is the hor-
izontal wind velocity in the North-South direction, x is distance in the East-
West direction, y is distance in the North-South direction and z is distance in
the vertical. Ellrod TI1 found in equation (2.2) is one of the best shear turbu-
lence forecast diagnostics, and has been found to forecast up to 75% of all CAT
cases (Ellrod & Knapp, 1992). This is why a deterministic Ellrod TI1 forecast is
routinely used by the WAFCs.

McCann et al. (2012) furthered the work by Knox et al. (2008) to try and
improve the forecast based on spontaneous imbalance. They made an algo-
rithm that could be used operationally by improving the forecast below FL200
(which was a problem with the current diagnostics). The apparent high bias



2.3. Forecasting 17

in turbulent kinetic energy dissipation above the tropopause is reduced by in-
cluding the turbulent kinetic energy production from the environment and the
locally produced turbulent kinetic energy. McCann et al. (2012) also converted
the turbulent kinetic energy into an Eddy Dissipation Rate (EDR), which is
now a standard measure of turbulence in the atmosphere as it does not de-
pend on aircraft size (WMO, 2003).

There are many turbulence diagnostics, each with its own strengths and
weaknesses. All forecast CAT and are unable to forecast convective turbulence
or mountain wave turbulence. Since each individual diagnostic is unable to
forecast every CAT event, Sharman et al. (2006) generated the Graphical Turbu-
lence Guidance (GTG) system for forecasting turbulence. They selected mul-
tiple turbulence diagnostics and then used PIlot REPortS (PIREPS) to under-
stand the diagnostics’ performances. A weighting system can then be added
depending on the skill of each diagnostic to produce the best overall forecast
possible. The study showed that this was an improvement over the single tur-
bulence diagnostic, and is therefore worth doing. Over the years this forecast
has been improved, and more recently mountain wave turbulence predictors
have been added to the GTG system. At the moment CIT is not forecast by
the GTG system, but it has been shown it would be a useful addition (Gill &
Stirling, 2013).

2.3.2 Convective Turbulence Forecasting

Convection is one of the main sources of turbulence. Convective turbulence
is not yet forecasted using numerical models operationally, but instead fore-
casters manually put the location of convection on the significant weather
(SIGWX) charts used by pilots and flight planners. Gill & Stirling (2013) showed
that using a convective diagnostic from numerical weather prediction output
can forecast many convective turbulence events. Therefore, combining the
shear turbulence predictors and the convective predictors (similar to GTG), of-
fers the promise to greatly improve the forecast skill. The convective indicators
used in the study included convective precipitation rate, convective precipita-
tion accumulation and Convective Available Potential Energy (CAPE). Gill &
Stirling (2013) concluded that it is possible to improve turbulence forecasts by
not only combining different predictors for the same turbulence source (e.g.
Ellrod TI1, Brown index, etc.) but also combining predictors for different tur-
bulence sources as well (e.g. clear-air turbulence and convective turbulence).
They suggest more work is needed in this area, but there is the potential to
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greatly increase the forecast skill by adding in these extra turbulence diagnos-
tics and forecasting a greater proportion of turbulence events.

2.3.3 Mountain Wave Turbulence Forecasting

An algorithm for forecasting mountain wave turbulence was described by
Turner (1999). Mountain waves are a special case of gravity waves and they
are smaller than the numerical resolution of the models, so therefore the wave
stress has to be parameterised. To do this, the surface winds and stability are
used to work out a wind stress, and then the wind stress is used to work out
the vertical profile. The wind stress is computed for every grid point, tak-
ing into account the abruptness of orography (as that is the location of the
mountains). The surface stress is passed upwards from the surface (unless a
hydraulic jump, critical level or saturation stress is diagnosed), and therefore
less stress is transfered to the next level. Above the maximum point that grav-
ity wave stress can be sustained, the waves break and thus turbulence forms.
The models can use the wave stress at each model level to calculate the lo-
cation and height at which the gravity wave stress is too high, indicating the
turbulence location in the model. For mountain wave formation, the higher
the gravity wave propagates, the more likely it is to break. This is because
the maximum gravity wave stress the atmosphere can hold decreases with in-
creased wind shear and lower air density. Mountain wave turbulence is found
to be associated most strongly with the mid-latitude westerlies and mountains
perpendicular to the flow.

The new GTG3 system includes mountain wave turbulence diagnostics
alongside the typical CAT diagnostics (Sharman & Pearson, 2017). These au-
thors have also used a different approach to forecasting MWT and use a com-
bination of low-level wind combined with CAT diagnostics. The authors pro-
duced 14 new MWT diagnostics, which showed an increased forecast skill in
MWT prone areas, supporting their use in the new GTG3 system.

2.3.4 Ensemble Forecasting

One of the main problems with the turbulence forecasting methods outlined
in Sections 2.3.1, 2.3.2, and 2.3.3 is that they do not convey uncertainty. To re-
solve this issue, Gill & Buchanan (2014) and Buchanan (2016) trialled the use
of ensemble forecasting for aviation turbulence. An ensemble is a collection
of forecast runs, each of which is considered to be equally likely. By using
an ensemble, the uncertainty in the forecast can be found. In these studies,
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the Met Office Global and Regional Ensemble Prediction System (MOGREPS)
was used, which was made operational in 2008 (Bowler et al., 2008). Multi-
ple turbulence predictors were considered, including the Dutton (1980) index,
the Ellrod & Knapp (1992) indices, the Brown (1973) index, the Lunnon index
(Roach & Dixon, 1970), the Richardson number and two convective predictors.
Using the Derived Equivalent Vertical Gust (DEVG) as a truth in the verifica-
tion, the studies found that by using the ensemble forecast they increased the
forecast skill for most of the turbulence diagnostics.

The studies by Gill & Buchanan (2014) and Buchanan (2016) then combined
the predictors in a manner similar to Sharman et al. (2006), by using an itera-
tive scheme to maximise the forecast skill. Again, the studies showed that the
ensemble forecast was more skilful than a single model deterministic forecast.
A probabilistic forecast would also be more useful for pilots and flight plan-
ners, as understanding the uncertainty of the forecast can help them to make
the best decision possible to maintain safety of passengers and crew, while still
flying the optimum routes and reducing flight times and fuel consumption.
Further work is needed in ensemble forecasting before it can be used oper-
ationally, such as studying whether multi-model ensembles can improve the
forecast. Also more research is needed to include a mountain wave turbulence
predictor alongside the convective and shear turbulence predictors. However,
it is clear that ensembles can be beneficial and should eventually be used op-
erationally.

2.3.5 Multi-model Ensemble Forecasting

Multi-model ensemble forecasting is a technique where two or more ensem-
ble models are combined to create either a standard equally weighted multi-
model super ensemble, or an optimised weighted multi-model ensemble. The
weighted multi-model ensemble uses the performance of each individual en-
semble and tries to optimise the forecast to maximise the skill. Park et al. (2008)
showed that when combining multiple ensembles, some of the results didn’t
see a large improvement when one of the models already had a well tuned
spread (which was the European Centre for Medium-Range Weather Forecasts
(ECMWF) Ensemble Prediction System (EPS) in this example). However, each
model has its own strengths and weaknesses, and so it is possible to benefit
from combining ensembles. For example, the ECMWF EPS does not have a
large spread in the tropics, and therefore combining multiple ensembles could
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improve the forecast skill here. Buizza & Palmer (1998) also showed that in-
creasing model resolution and not just ensemble size can increase forecast skill.
However it is also not just forecast skill that can be improved by increasing en-
semble size. Richardson (2001) suggests the relative economic value of a fore-
cast can be greatly improved by increasing the number of ensemble members
even if the skill doesn’t improve greatly. By creating a multi-model ensemble,
it is a way of adding ensemble members without the computation for the fore-
cast centre, and even if forecast skill is not greatly increased, the forecast value
might increase.

Atger (1999) studied the skill of the EPS, and found a poor person’s ensem-
ble (ensemble of single deterministic output from multiple-models) was more
skilful than either of the ECMWF EPS or the National Centers for Environmen-
tal Prediction (NCEP) EPS up to T+144 hrs. This is important to note because it
suggests that combining models is more important than simply increasing the
number of ensemble members in an EPS. They discuss the reasons for the im-
proved skill and suggest it is likely because the resolution of the poor person’s
ensemble is higher than either the ECMWF or NCEP EPS, however the use
of multiple centres and not just one EPS does show some benefit. Ziehmann
(2000) also showed that a multi-model approach performs better in most as-
pects over a single model ensemble. Other areas of meteorology such as The
International Grand Global Ensemble (TIGGE) project (Swinbank et al., 2016)
have already looked at combining ensembles from different centres around the
world. A particular research area using multi-model ensembles operationally
is tropical cyclone forecasting (Krishnamurti et al., 2000; Vitart, 2006; Titley &
Stretton, 2016).

2.3.6 Forecast Verification

Turbulence forecast verification is difficult because objective verification datasets
are limited. Some previous studies resolved this issue by using PIlot REPorts
(PIREPs) (Tebaldi et al., 2002; Kim & Chun, 2011) to identify regions of turbu-
lence based on a semi-quantitative scale from light to extreme, but these can be
unreliable (Schwartz, 1996; Kane et al., 1998; Sharman et al., 2014). PIREPs are
subjective, in the sense that a more experienced pilot may catagorise an event
as moderate, but an inexperienced pilot may record it as severe. Also PIREPs
are aircraft dependent, so a smaller aircraft will experience stronger turbulence
than a larger aircraft in the same volume of air. PIREPs also have poor spatial
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reliability as they tend to be located in turbulence, so null turbulence events
are rarely recorded (Kane et al., 1998).

To avoid the above problems, there are two main aircraft-independent mea-
sures, which are the Eddy Dissipation Rate (EDR) and the Derived Equivalent
Vertical Gust (DEVG). These measures are calculated by using high-resolution
automated aircraft data. The EDR is calculated following Haverdings & Chan
(2010) using:
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where σw is the running mean of the vertical wind shear over a 10 second time
window, Va is the true airspeed, and ω1 and ω2 are cut-off frequencies set at
0.1 and 2 Hz respectively. The DEVG (Tenenbaum, 1991; Gill, 2014, 2016; Kim
et al., 2017) is calculated following Truscott (2000) using:

DEVG =
Am|∆n|

V
, (2.4)

where |∆n| is the peak modulus value of the deviation of the aircraft acceler-
ation from 1g in units of g, m is the total mass of the aircraft (metric tonnes),
V is the calibrated airspeed at the time of the observation (knots), and A is an
aircraft-specific parameter that varies with flight conditions and can be calcu-
lated using:
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and:
A = c1 +

c2

c3 + H(k f t)
, (2.6)

where H is the altitude (thousands of feet), m is the reference mass of the air-
craft (metric tonnes), and parameters c1 to c5 depend on the aircraft’s flight
profile as outlined by Truscott (2000).

Unlike PIREPs, DEVG is aircraft independent and therefore all observa-
tions from multiple aircraft can be combined to create a consistent observa-
tional database. Also unlike PIREPs, DEVG reports all results, including null
reports. Because it is automated, the entire flight is recorded and therefore the
only limit in coverage is the location the aircraft fly. So if every commercial air-
craft had this capability, then all turbulence events could be recorded and fore-
cast verification improved. There are limitations to using the DEVG data set,
as aircraft manoeuvres and active control techniques can enhance or dampen
vertical accelerations of aircraft, leading to over- or under-representation of
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the vertical gusts (WMO, 2003). However, despite these limitations, using an
aircraft-independent measure (such as EDR or DEVG) is preferable to pilot
reports (PIREPs).
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Chapter 3

Reanalysis

This chapter is based on our paper ’Can climate models successfully diag-
nose clear-air turbulence and its response to climate change?’ submitted to
the Quarterly Journal of the Royal Meteorological Society. Climate models have
been used to predict how climate change will impact Clear Air Turbulence
(CAT) over the North Atlantic (Section 2.2), however no study has assessed
how well climate models can predict the location of CAT and its response to
changes in the climate system. Therefore this chapter will compare a climate
model (HadGEM2-ES) to reanalysis data (ERA-Interim), which is a record of
the global atmospheric circulation (Dee et al., 2011), to understand how well
the climate model performs on a global scale. It could in principle be the case
that all climate models forecast CAT in a similar location, but that location
is wrong due to biases in the models. This chapter will answer the impor-
tant question of whether climate models can diagnose the location of CAT as
found in a reanalysis data set. Can the climate models predict the location of
the changes in CAT due to the response to climate change over the reanaly-
sis period? And finally, does the climate model correctly predict the global
percentage change in CAT with climate change over the reanalysis period?
Understanding how the climate model compares to the true atmosphere will
help us understand if the results found in previous studies are correct and if
the warnings of an increase in CAT with climate change are justified.

3.1 Methodology

The data used in this study is part of the historical climate simulation using
the Met Office Hadley Centre HadGEM2-ES model (Jones et al., 2011) which
is part of the fifth Coupled Model Intercomparison Project (CMIP5) ensemble
(Taylor et al., 2012). This data set is the only CMIP5 model for which six-hourly
output fields have been archived on a suitable set of upper tropospheric and
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lower stratospheric pressure levels. This data is then compared to the ERA-
Interim reanalysis data from the European Centre for Medium Range Weather
Forecasting (ECMWF) (Dee et al., 2011). We use 38 years of data for each of
the two data sets in this study. From the HadGEM2-ES model we use the
’historical’ data which is based on climate forcings from 1968-2005, and the
reanalysis data set is from 1979-2016. The time periods are not the same as
ERA-Interim does not start until 1979 and the historical data set finished in
2005. Therefore to have as large a data set as possible (which is 38 years from
the reanalysis data) the time periods are slightly offset.

We study two flight levels, one at 200 hPa (12 km / 39,000 ft. / FL390) and
250 hPa (10 km / 34,000 ft / FL340) using data captured every 6 hours. The
climate model has a horizontal grid of 1.25◦ in latitude and 1.875◦ in longitude,
giving 192× 144 grid boxes globally. The vertical resolution available to us is
limited with only two upper tropospheric levels (200 and 250 hPa) however
we need to calculate vertical derivatives. To do this we have to use 200 and
250 hPa which therefore means it is centred around 225 hPa rather than the
flight level we are studying. This is a much coarser resolution compared to
the reanalysis data, which has a horizontal grid 0.70◦ in latitude and 0.70◦ in
longitude, giving 512× 256 grid boxes globally. The vertical resolution is also
much higher for the reanalysis data as there is data at 300, 250, 200, 150 hPa
meaning vertical derivatives can be centred around each flight level. These
differences could impact the location of the predicted CAT. To understand how
horizontal and vertical resolution impacts the location of CAT, we have used
Iris (Met Office, 2013) to regrid the data through linear analysis to have the
same horizontal grid as the climate model before calculating the turbulence
diagnostics (1.25◦ in latitude and 1.875◦ in longitude with only two vertical
levels 200 and 250 hPa).

This study uses seven turbulence diagnostics used by Williams & Joshi
(2013) that are also part of the Graphical Turbulence Guidance (GTG) system
(Sharman & Pearson, 2017). This includes the negative Richardson number
(Ri), Colson–Panofsky index, frontogenesis function, Ellrod & Knapp (1992)
TI1, wind speed times directional shear, nonlinear balance equation and North
Carolina State University index 1. This study also follows on from Williams
(2017) by comparing five turbulence strength categories: light, light-to-moderate,
moderate, moderate-to-severe and severe. The thresholds are based on the
cube root of the eddy dissipation rate, which is proportional to the vertical
acceleration of an aircraft experiencing turbulence (MacCready Jr, 1964). The
thresholds used for each of the models will be different because the turbulence
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diagnostics are calculated using horizontal and vertical gradients. Therefore
the maximum value that is calculated using one model, which would be se-
vere turbulence, might not be equivalent to light turbulence in another model.
To compare consistently, we calculate the probability distribution of all seven
turbulence diagnostics for the first 20 years of each data set individually. The
top 0.1% (99.9–100%) of the probability distribution is taken to be severe turbu-
lence. The next 0.1% (99.8–99.9%) is moderate-to-severe, the next 0.2% (99.6–
99.8%) is moderate, the next 0.5% (99.1–99.6%) is light-to-moderate and the
next 2.1% (97–99.1%) is light turbulence. We calculate the thresholds based on
the first 20 years of data for each of the data sets. After this, when running
the analysis again for the full 38 years, any time a value exceeds one of these
thresholds it is classed as a turbulence event. It is then possible to compare
each turbulence diagnostic, climate model and turbulence strength category,
flight level and season to understand how well the climate model can repre-
sent CAT. It is also possible to separate the data set into two 19 year periods to
measure the climate change impact of CAT. We can see how changes in the re-
cent climate system have already impacted CAT by calculating the percentage
change between the first and second half of the data set.

3.2 Results

3.2.1 Global CAT Distribution

Understanding how the climate model compares to the real atmosphere is vital
in supporting previous studies (e.g. Williams & Joshi, 2013; Williams, 2017). To
do this we have compared 7 turbulence diagnostics currently used in the GTG
system (Sharman & Pearson, 2017) between the climate model HadGEM2-ES
and reanalysis data from ERA-Interim. An example plot of the global spa-
tial distribution in Northern Hemisphere winter (December January February,
DJF) at 200 hPa is shown in Figure 3.1. The left column shows the historical
data from the HadGEM2-ES climate model, the right column is the reanalysis
data from ERA-Interim, and the middle column shows the reanalysis data but
regridded to have the same spatial resolution as the historical data from the
climate model before computing the CAT diagnostics. This allows us to not
only compare how well the climate model correctly diagnoses the location of
CAT, but also how the resolution of the data set impacts the location of CAT
as well. Looking at Figure 3.1 we first observe that some of the diagnostics are
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more confined to the tropics and others are distributed more around the mid-
latitudes. For example, the negative Richardson number, which is a measure
of buoyancy and vertical wind shear, is predominantly found in the tropics,
where buoyancy is lower than in the mid-latitudes. This suggests some re-
gions have light turbulence about 20% of the time. As stated in section 3.1, the
thresholds are based on a percentile and therefore the global average of occur-
rence will be 2.1%. For Ri and Colson–Panofsky, most of the results occur in
the tropics and therefore there are very few events in the mid-high latitudes.
Compared to the Ellrod TI1, this is predominantly found in the mid-latitudes
and circumnavigates the Earth near the jet stream. This is what we would ex-
pect since TI1 is deformation × vertical wind shear, which will be strongest
around the high wind speeds of the jet stream.

When comparing the historical data set from the climate model to the two
reanalysis data sets, the spatial distribution is more similar to the reanalysis
data regridded onto the climate grid than it is to the reanalysis on its native
grid. This is an important result because it shows that the resolution of the
model used will have an impact on spatial distribution and therefore the lo-
cation of turbulence forecast. The impact of resolution on the forecast would
need to be investigated fully using a verification method to understand if a
higher resolution gives a more skilful turbulence forecast. However, what we
can see from Figure 3.1 is that the resolution has an impact on the spatial dis-
tribution and as a result, the same resolution is a better match to the climate
model as would be expected.

This study has looked at the global spatial distribution of CAT throughout
the year, and Figure 3.2 is a plot of the spatial distribution of the seven turbu-
lence diagnostics across the three models in the Northern Hemisphere summer
(June July August, JJA) at 200 hPa. The results are similar to Figure 3.1 but as
would be expected for a different season, they are not the same. One partic-
ular difference to note is the increase in Ellrod & Knapp (1992) TI1 over the
Southern Ocean. Although this is not a busy airspace it does see an increase
in turbulence as the jet stream is typically stronger in the winter and JJA is the
Southern Hemisphere winter. Some of the other diagnostics also see a shift,
for example around the tropics the Colson–Panofsky index and frontogenesis
function have shifted north. This shift is possibly due to the changes in the
Hadley cell (which is a pair of thermally direct circulations, either side of the
equator and move north or south depending on the season (Dima & Wallace,
2003)), as it moves north in the Northern Hemisphere summer. The results
again show that the climate model is diagnosing the location of the turbulence
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FIGURE 3.1: Plot comparing the spatial distribution of the prob-
ability of encountering clear-air turbulence for the seven turbu-
lence diagnostics in December, January and February (DJF) at
200 hPa for light turbulence using the HadGEM2-ES historical
data set reanalysis data with the resolution of the climate model

and the reanalysis data with its original resolution.
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FIGURE 3.2: Plot comparing the spatial distribution of the prob-
ability of encountering clear-air turbulence for the seven turbu-
lence diagnostics in June, July and August (JJA) at 200 hPa for
light turbulence using the HadGEM2-ES historical data set, re-
analysis data with the resolution of the climate model and the

reanalysis data with its original resolution.
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very well, supporting our use of it in other studies.

3.2.2 Global CAT Comparison

We want to quantify whether the main differences in Figure 3.1 and 3.2 are
along the rows or down the columns, and therefore identify whether the main
source of uncertainty is the use of data sets or the use of seven diagnostics.
To quantify how similar the models are for each turbulence index and how
similar each index is within the models we have calculated the standard de-
viation (which is a measure of how similar the data sets are, the lower the
number, the more similar the models). Table 3.1 shows the standard devia-
tion across each model for each index (left to right in Figure 3.1) and we have
included the cosine latitude factor to down-weight high-latitude grid boxes
with smaller areas. We have calculated this for each season and each turbu-
lence strength category but Table 3.1 only shows the four seasons for 200 hPa
at the 97% threshold (light turbulence). The lower three rows in Table 3.1 are
the standard deviation across each turbulence diagnostic for each model (top
to bottom in Figure 3.1). The results show that the standard deviation across
the models is typically much lower than the standard deviation between in-
dices in all seasons. This is what we expected to see looking at Figures 3.1 and
3.2, as the models agree quite well in the location of turbulence and each tur-
bulence index forecasts turbulence in very different locations as discussed in
section 3.2.1. It is clear from Table 3.1 that there is a lower standard deviation
in the Northern Hemisphere spring and autumn and the nonlinear balance has
the best agreement between models with Colson–Panofsky having the worst
agreement between models.

To summarise the results in Table 3.1, we compare the standard deviation
between each season and turbulence strength category. We do this by calcu-
lating the ratio between the standard deviation across models and across di-
agnostics within each model. To do this we average the standard deviation in
the table for the upper seven rows of the table (across models for each diag-
nostic, left to right in Figure 3.1 and 3.2) and the lower three rows of the table
(across diagnostics for each model, top to bottom in Figure 3.1 and 3.2). Then
we calculate the ratio between these two averages and the results are shown
in Table 3.2. The higher the ratio, the lower the standard deviation is across
models for each diagnostic (left to right in Figure 3.1 and 3.2) than across di-
agnostics for each model (top to bottom in Figure 3.1 and 3.2). The top line for
light turbulence is the ratio calculated from the results in Table 3.1 and shows
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Turbulence index DJF MAM JJA SON
Richardson 0.68 0.61 0.69 0.50

Colson–Panofsky 1.00 0.96 1.06 0.87
Frontogenesis 0.75 0.62 0.78 0.63

Ellrod TI1 0.41 0.36 0.48 0.33
Wind*Directional shear 0.38 0.30 0.40 0.32

Nonlinear balance 0.22 0.20 0.27 0.24
NCSU1 0.53 0.48 0.50 0.44

Historical 1.46 1.23 1.44 1.22
Reanalysis climate grid 1.46 1.37 1.63 1.36

Reanalysis 1.75 1.62 1.84 1.56

TABLE 3.1: Table of the global standard deviation of the proba-
bilities in Figures 3.1 and 3.2 in units of % at 200 hPa in Decem-
ber January February (DJF), March April May (MAM), June July
August (JJA), September October November (SON) for light tur-
bulence across three data sets (HadGEM2-ES historical data set,
reanalysis data with the resolution of the climate model and re-
analysis data with its original resolution) for each of the seven
turbulence diagnostics (left to right in Figure 3.1 and 3.2) and
across the seven turbulence diagnostics for each of the three data

sets (top to bottom in Figure 3.1 and 3.2).

the standard deviation across diagnostics for each model is nearly three times
larger than across the models for each diagnostic. This is an important result
as it suggests that the main uncertainty in our results comes from deciding
which turbulence diagnostic is best to use rather than the model we have se-
lected. Table 3.2 shows the results for both 200 and 250 hPa, and shows that
our findings are consistent across multiple flight levels, all turbulence strength
categories and throughout all seasons. What we do see in Table 3.2 is the ratio
is much higher for the lower turbulence strength categories. Even for the high-
est turbulence strength category it is nearly twice the standard deviation and
therefore still agrees with our conclusion that the greatest uncertainty in tur-
bulence location comes from selecting which turbulence diagnostic to choose
and not the climate model. This helps support the use of a climate model in cli-
mate change studies that have tried to predict the changes in CAT with climate
change (e.g. Williams & Joshi, 2013; Williams, 2017).
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Strength Category DJF MAM JJA SON
200 hPa 250 hPa 200 hPa 250 hPa 200 hPa 250 hPa 200 hPa 250 hPa

Light 2.76 2.58 2.80 2.65 2.77 2.40 2.90 2.46
Light-to-moderate 2.36 2.32 2.35 2.27 2.51 2.29 2.56 2.26

Moderate 2.10 2.13 2.14 2.08 2.31 2.16 2.38 2.10
Moderate-to-severe 1.94 2.01 2.00 1.97 2.15 2.06 2.22 2.00

Severe 1.81 1.86 1.88 1.80 1.89 1.87 2.09 1.86

TABLE 3.2: Table of the ratio between the global-mean standard
deviation across the three data sets for each turbulence diagnostic
(left to right in Figure 3.1 and 3.2) and across each turbulence
diagnostic for each data set (top to bottom in Figure 3.1 and 3.2)
at 200 and 250 hPa for December January February (DJF), March
April May (MAM), June July August (JJA), September October

November (SON) and five turbulence strength categories.

3.2.3 Global CAT Change Distribution

To understand how CAT has changed with the changing climate, we divide
the 38 years into two 19 year periods (e.g. 1979-1997 and 1998-2016 for the
reanalysis data set) so we can measure the number of turbulence ’hits’ in each
time period and then find the percentage change between the two. Williams
& Joshi (2013); Williams (2017) both showed there is an increase in CAT with
climate change over the North Atlantic and here we will see if a climate model
can predict the changes in CAT that is observed in reanalysis data. We would
not expect to see a large increase here due to the small gap between study
periods, and the climate system has had less greenhouse gas emissions and a
shorter time to equilibrate than both Williams & Joshi (2013); Williams (2017).
However we might expect to see some impact of climate change on CAT as
we have seen the impact of climate change in other areas of meteorology e.g.
temperature change and sea ice loss.

The results for the Northern Hemisphere winter (DJF) global percent change
at 200 hPa for light turbulence is shown in Figure 3.3. The layout of the figure
is the same as Figure 3.1 with the historical data from the climate model in the
left column, the reanalysis data on its native grid in the right column, and the
reanalysis data regridded onto the climate model grid in the middle column.
It is clear in Figure 3.3 that the climate change response is less dependent on
resolution than the spatial distribution (Figures 3.1 and 3.2) as the two reanaly-
sis data sets are almost identical. Also the percentage change for the reanalysis
data set is larger than the climate model (discussed in section 3.2.5). Differ-
ences along the rows compared to differences down the columns are evidently
larger than in Figures 3.1 and 3.2. One of the main regions that show a surpris-
ing result is that in the North Atlantic the increases are not as large as in other
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FIGURE 3.3: Plot comparing the percentage change in the prob-
ability of encountering CAT between the first and second half of
the data set for the seven turbulence diagnostics in December,
January and February (DJF) at 200 hPa for light turbulence us-
ing the HadGEM2-ES historical data set, reanalysis data with the
resolution of the climate model and the reanalysis data with its

original resolution.
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FIGURE 3.4: Plot comparing the percentage change in the prob-
ability of encountering CAT between the first and second half of
the data set for the seven turbulence diagnostics in June, July and
August (JJA) at 200 hPa for light turbulence using the HadGEM2-
ES historical data set, reanalysis data with the resolution of the
climate model and the reanalysis data with its original resolution.
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areas, given that both Williams & Joshi (2013); Williams (2017) showed large
increases in CAT over the North Atlantic.

Figure 3.4 is a plot of the Northern Hemisphere summer (JJA) at 200 hPa for
light turbulence and it shows a similar distribution as DJF. There is however a
slight increase in the Southern Hemisphere which, as in Figure 3.2, is what we
would expect as typically the jet stream (which is a dominant cause of CAT) is
strongest in the winter, which is JJA for the Southern Hemisphere. Therefore
the predicted change in the upper tropospheric jet stream with climate change
(Delcambre et al., 2013) would be strongest in the winter, and therefore a larger
increase in the winter for both Hemispheres is expected. In both seasons the
tropics see a large increase with some increases in the mid latitudes as well.
This increase in the tropics is particularly interesting for the Ellrod & Knapp
(1992) TI1 as there are few events in the tropics (as shown in Figure 3.1 and 3.2).
Therefore this increase is probably an increase of only a few events, but because
the initial values are so low, any increase will lead to a large percentage change.
It is also clear in the figures that the climate model is not able to predict the
changes in the tropics, where CAT is less relevant compared to CIT, however
the mid-high latitudes has good agreement for most indices.

3.2.4 Global CAT Change Comparison

We can compare the spatial distribution of the response to climate change as
we did for the spatial distribution in Section 3.2.2. The results for the stan-
dard deviation across the models for each diagnostic and across all diagnostics
for each model with light turbulence (97%-99.1%) for all seasons at 200 hPa
are found in Table 3.3. The results show more variability in which season
has the highest standard deviation. For the spatial distribution it was found
that DJF and JJA had a higher standard deviation for all models and indices.
However for the climate change distribution, we do not find the same con-
sistency, and for some indices it is March April May (MAM) and September
October November (SON) that had the higher standard deviation while others
still have it as DJF and JJA.

The differences along the rows is larger than in Figures 3.1 and 3.2. Ta-
ble 3.4 shows the ratio between the average standard deviation across models
for each diagnostic (left to right in Figures 3.3 and 3.4), and the average stan-
dard deviation across diagnostics for each model (top to bottom in Figures 3.3
and 3.4) at both 200 and 250 hPa. When comparing to Table 3.2, the ratio is a lot
lower. Therefore the uncertainty in the model we used is slightly higher. This
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Turbulence index DJF MAM JJA SON
Richardson 20.92 20.63 23.33 26.49

Colson–Panofsky 32.12 43.91 38.47 46.82
Frontogenesis 23.19 27.59 30.00 30.16

Ellrod TI1 25.10 30.16 29.75 32.46
Wind*Directional shear 27.29 21.88 27.34 22.65

Nonlinear balance 23.61 27.17 32.57 29.20
NCSU1 15.38 14.49 16.63 15.07

Historical 29.05 25.90 30.88 28.85
Reanalysis climate grid 37.10 43.90 44.39 44.52

Reanalysis 43.12 54.77 56.25 59.56

TABLE 3.3: Table of the global standard deviation of the cli-
mate change signal shown in Figures 3.3 and 3.4 in units of % at
200 hPa in December January February (DJF), March April May
(MAM), June July August (JJA), September October November
(SON) for light turbulence across three data sets (HadGEM2-ES
historical data set, reanalysis data with the resolution of the cli-
mate model and reanalysis data with its original resolution) for
each of the seven turbulence diagnostics (left to right in Figure 3.3
and 3.4) and across the seven turbulence diagnostics for each of

the three data sets (top to bottom in Figure 3.3 and 3.4).

is likely caused by the poor performance of the climate model in the tropics.
The mid-high latitudes performs quite well for most diagnostics, which is why
the uncertainty in which model is used is still lower than which index is used.
What we do find however is the greater the turbulence severity, the better the
model performs. This was the opposite to the spatial distribution as we found
the more severe the turbulence, the lower the ratio. We also see that the upper
flight level (200 hPa) has the greatest ratio which suggests the model performs
better at the higher altitudes than the lower altitudes.

3.2.5 Climate Change

We can see from Sections 3.2.3 and 3.2.4 that there has been an increase in CAT
during the reanalysis period. The change is based on the percentage difference
between the first 19 (e.g. 1979-1997 for the reanalysis data set) years and the
second 19 years (e.g. 1998-2016 for the reanalysis data set) of the 38 year data
set. Table 3.5 shows the annual global percentage change at all turbulence
strength categories and at both 200 and 250 hPa for the historical data from
the climate model (left), the reanalysis data on its native grid (right) and the
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Strength Category DJF MAM JJA SON
200 hPa 250 hPa 200 hPa 250 hPa 200 hPa 250 hPa 200 hPa 250 hPa

Light 1.52 1.42 1.56 1.42 1.55 1.47 1.53 1.41
Light-to-moderate 1.53 1.49 1.59 1.49 1.55 1.51 1.56 1.49

Moderate 1.58 1.51 1.63 1.52 1.58 1.53 1.64 1.52
Moderate-to-severe 1.59 1.52 1.64 1.54 1.63 1.54 1.65 1.54

Severe 1.60 1.62 1.57 1.61 1.61 1.63 1.61 1.64

TABLE 3.4: Table of the ratio between the global-mean standard
deviation of percentage change in turbulence across the three
data sets for each turbulence diagnostic, and across each turbu-
lence diagnostic for each data set at 200 and 250 hPa for Decem-
ber January February (DJF), March April May (MAM), June July
August (JJA), September October November (SON) and five tur-

bulence strength categories.

reanalysis data on the climate model grid (middle). Here we see the climate
model underpredicts the percentage increase in CAT, with the reanalysis data
showing more than five times larger percentage increase. This is an interesting
result and suggests that the climate model is sluggish in its climate change
response, but also as seen in Figures 3.3 and 3.4, the response to climate change
that has already occurred is on a much more global scale than predicted by
the climate model. The reanalysis data suggests the increase has occurred all
around the world and particularly around the tropics. This could therefore
indicate that any global estimates found in Chapter 4 for the CAT response to
climate change could be underestimates and therefore the ability to forecast
turbulence will become even more important than first thought.

Strength Category Climate model Reanalysis climate grid Reanalysis
200 hPa 250 hPa 200 hPa 250 hPa 200 hPa 250 hPa

Light 8.4% 7.4% 29.3% 22.9% 27.7% 21.8%
Light-to-moderate 8.6% 7.7% 36.2% 29.1% 37.1% 24.4%

Moderate 7.5% 6.3% 41.2% 30.6% 41.2% 25.6%
Moderate-to-severe 6.5% 5.6% 38.9% 27.9% 40.2% 25.8%

Severe 7.2% 6.3% 42.5% 27.4% 45.8% 29.6%

TABLE 3.5: Table of the annual global percentage change in tur-
bulence for 200 & 250 hPa and five turbulence strength categories
using the HadGEM2-ES historical data set, reanalysis data with
the resolution of the climate model and the reanalysis data with

its original resolution.

The results in Table 3.5 suggest CAT at 200 hPa will increase more than at
250 hPa which could become a problem if the next generation of aircraft pre-
fer to fly at higher altitudes due to the improved fuel efficiency. The results
also show that severe turbulence has increased more than light turbulence
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over the reanalysis period. This study does not include the changes to Con-
vectively Induced Turbulence (CIT) which may also be set to increase, as cli-
mate change increases deep convection, particularly around the tropics (Price
& Rind, 1994; Reeve & Toumi, 1999). This again suggests that the previous
studies by Williams & Joshi (2013); Williams (2017) are underestimates and
CAT could become much more of an aviation hazard than it already is.

3.3 Summary and Discussion

Clear-Air Turbulence (CAT) is a major aviation hazard and recent research has
suggested the frequency of CAT will increase in the future as the climate sys-
tem changes (Williams & Joshi, 2013; Williams, 2017). One major question
posed after these studies is: ’Can climate models accurately predict the lo-
cation of CAT?’ This is a very important question as if the climate models are
not able to predict the location of CAT, then the results would be in doubt.
This study aimed at answering this question by comparing the climate model
HadGEM2-ES and its historical emissions scenario, to reanalysis data from
ERA-Interim on its full grid and with the same data but on the same grid as
the climate model.

The initial results were promising with the climate model showing very
similar spatial distribution of turbulence, therefore the answer to the question:
’Can the climate model predict the location of CAT as found in a reanalysis
data set (ERA Interim)?’ is yes. Climate models can predict the location of
CAT with the main uncertainty in the location of CAT coming from which tur-
bulence diagnostic is the best, and not from which climate model was used.
The climate model was a better fit for the reanalysis data on the climate grid
than the full resolution, which suggests resolution does have an impact on
forecasted CAT and therefore further study is needed to understand how res-
olution of the forecast models might impact the forecasts of CAT.

This study also compared how the models predict the impact of climate
change. What was interesting is the climate model is more sluggish in its re-
sponse to climate change and the results from the reanalysis data suggested
that the response of CAT to climate change is on a much more global scale, than
predicted in the climate model. Therefore the answer to the question: ’Can the
climate models predict the location of the changes in CAT due to the response
to climate change over the reanalysis period?’ is yes for the most part, but there
are some large underestimates in the tropics. These results show that the global
response of CAT to climate change in Chapter 4 could be an underestimate.
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So the answer to a slightly different question: ’Does the climate model cor-
rectly predict the global percentage change in CAT with climate change over
the reanalysis period?’ is no in this study, as there is a large underestimate of
the global response. However, we have only considered two 19 year periods
and not taken into account inter-annual and decadal variability. For example
the Atlantic Multi-decadal Oscillation (AMO), El Niño Southern Oscillation
(ENSO) and North Atlantic Oscillation (NAO) that could all impact the occur-
rence of aviation turbulence. This is an important area of study in the future
because our results suggest that there might be more urgency to prepare in the
future for more turbulence around the world and make sure that systems are
in place to maintain a high level of safety in the aviation industry. Therefore
it is important to understand how these annual and inter-annual variabilities
impact our results and therefore how climate change is impacting CAT.

This study has answered some important questions, however a few still
remain. We must understand how the model resolution impacts the loca-
tion of CAT and therefore how forecasts might change in the future with in-
creasing model resolution. Also with an increase in turbulence due to climate
change, better turbulence forecast techniques must be implemented as well as
the airframe manufacturers making sure the aircraft are capable of withstand-
ing more frequent turbulence events. Other studies of how aviation turbulence
as a whole, including changes in convection, could be impacted by climate
change is vital to create a better picture for stakeholders on what needs to hap-
pen now to prepare for the future.
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Chapter 4

Global Response to Climate Change

This chapter is based on our paper ’Global Response to Clear-Air Turbulence to
Climate Change’ published by Storer et al. (2017) in Geophysical Research Letters.
We have seen in Section 2.2 that climate change will have an impact on Clear-
Air Turbulence (CAT) in the future over the North Atlantic. We have also seen
in Chapter 3 that over the last 38 years there has been a global increase in CAT
as shown in the reanalysis data set ERA-Interim. However what has not been
studied is the future global increase in diagnosed CAT with climate change at
multiple flight levels, in all seasons and all turbulence strength categories.

4.1 Methodology

We use climate simulations that were performed with the Met Office Hadley
Centre HadGEM2-ES model (Jones et al., 2011), which forms part of the fifth
Coupled Model Intercomparison Project (CMIP5) ensemble (Taylor et al., 2012)
and is the same model used in Chapter 3. This is again because it is the
only CMIP5 model for which six-hourly output fields have been archived on
a suitable set of upper tropospheric and lower stratospheric pressure levels.
The six-hourly snapshots resolve the diurnal cycle and are therefore expected
to provide a better representation of wind shear than the daily-mean CMIP3
fields used by Williams & Joshi (2013) and Williams (2017). The multiple pres-
sure levels make it possible to calculate the vertical wind shear using second-
order centred finite differences at both 200 hPa and 250 hPa, which correspond
to typical cruising altitudes of approximately 12 km (39,000 ft or FL390) and
10 km (34,000 ft or FL340) respectively. The atmospheric model has a horizon-
tal grid spacing of 1.25◦ in latitude and 1.875◦ in longitude, giving 192× 144
grid boxes globally. The model used by the previous studies Williams & Joshi
(2013) and Williams (2017) was the GFDL-CM2.1 model which formed part of
the CMIP3 ensemble. The model had a coarser resolution of 2.0◦ by 2.5◦ with
24 vertical levels and daily average data, rather than the 6 hourly snapshot



40 Chapter 4. Global Response to Climate Change

found in the HadGEM2-ES model used in this study (Delworth et al., 2006;
Gnanadesikan et al., 2006).

Two HadGEM2-ES simulations are analysed to calculate how climate change
could impact CAT in the upper troposphere and lower stratosphere in future.
Specifically, a pre-industrial control simulation (picontrol) is compared with
a climate change simulation using the Intergovernmental Panel on Climate
Change (IPCC) Representative Concentration Pathway 8.5 (RCP8.5) (Flato et
al., 2013). The picontrol run is a base state that uses constant pre-industrial
greenhouse gas concentrations to simulate the global climate before the in-
dustrial revolution. The RCP8.5 run assumes a net radiate forcing increase of
8.5 W m−2 by 2100 (Van Vuuren et al., 2011), which implies greenhouse-gas
concentrations equivalent to around 1,370 ppmv of CO2. We analyse 30 years
of data for the future period 2050–2080 from RCP8.5 compared to 30 years of
historic data from picontrol.

The present study focuses on CAT generated by wind shear and loss of bal-
ance, disregarding mountain waves and remote convection. For consistency,
we calculate the same basket of CAT diagnostics as Williams & Joshi (2013)
and Williams (2017), except that we exclude the potential vorticity diagnos-
tic because it was found to give unrealistic results. They were unrealistic be-
cause the turbulence locations were confined to the summer hemisphere pole
region which is not consistent with our understanding of the location of CAT.
We define a threshold for each turbulence strength category and each CAT
diagnostic in HadGEM2-ES, following Williams (2017) and Chapter 3. The
thresholds are appropriate for a large, commercial airliner. The calibration is
based on the cube root of the eddy dissipation rate, which is proportional to
the vertical acceleration of an aircraft experiencing turbulence (MacCready Jr,
1964), and it is implemented as follows. First, the probability distribution is
calculated for each of the 20 CAT diagnostics, using six-hourly global fields
from the 30-year picontrol run of HadGEM2-ES in all seasons on a given pres-
sure level. Then, the top 0.1% (99.9–100%) of the probability distribution for
each diagnostic is taken to represent severe turbulence, the next 0.1% (99.8–
99.9%) is moderate-to-severe turbulence, the next 0.2% (99.6–99.8%) is mod-
erate turbulence, the next 0.5% (99.1–99.6%) is light-to-moderate turbulence,
and the next 2.1% (97–91.1%) is light turbulence. The percentiles are derived
from an assumed log-normal probability distribution that is fitted to observa-
tions. It follows from these percentiles that 0.1% of the global atmosphere at
aircraft cruising altitudes contains severe-or-greater turbulence, 0.4% contains
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Moderate-or-Greater (MoG) turbulence and 3.0% contains light-or-greater tur-
bulence. Extreme turbulence is neglected because of its rarity. To calculate
regions of CAT, every time an index exceeds one of the above threshold val-
ues, it is classed as a turbulence event.

4.2 Results

4.2.1 Climate Model Comparison

As an initial check on the similarity between turbulence increases in different
climate models, Figure 4.1 shows a scatterplot of the percentage change in the
prevalence of MoG CAT in the North Atlantic in winter, as calculated from the
CMIP3 GFDL-CM2.1 model used by Williams & Joshi (2013) and the CMIP5
HadGEM2-ES model used in the present study. To ensure a fair comparison,
the six-hourly wind and temperature fields from HadGEM2-ES are first time-
averaged to match the daily mean fields from GFDL-CM2.1, before calculat-
ing the CAT diagnostics. There is a clear correlation between changes in MoG
CAT in the two models, as indicated by the correlation coefficient of 0.72. Most
of the indices (17 out of 20) appear in the upper-right quadrant of the Carte-
sian plane, indicating increases in both models, although there is some scatter
around the line of best fit.

Figure 4.1 shows that the CAT increases in HadGEM2-ES are on average
30% smaller than in GFDL-CM2.1, possibly because of the different anthro-
pogenic forcing used in the climate change simulations. Specifically, the GFDL-
CM2.1 climate change simulation was allowed to equilibrate after the CO2

loading had been instantaneously doubled. In contrast, the HadGEM2-ES cli-
mate change simulation was a transient RCP8.5 run in which the radiative forc-
ing was gradually increased, and so the atmospheric circulation is not expected
to be in equilibrium with the contemporary radiative forcing. Therefore, the
comparison is not strictly like-for-like. Nevertheless, the comparison shows
for the first time that the projected increase in trans-Atlantic turbulence is ro-
bust, because it occurs across multiple climate models and to first order it does
not depend on the parameterized physics, model resolution, or greenhouse-
gas scenario. When the comparison is repeated after first down-scaling the
HadGEM2-ES wind and temperature fields to GFDL-CM2.1 resolution, before
re-computing the MoG thresholds and re-calculating the turbulence increases,
the scatterplot is essentially unchanged.
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We also showed in Chapter 3 that the climate model we used in this study
(HadGEM2-ES) is a good representation of the location of turbulence. We also
showed that in the historical period, HadGEM2-ES underestimated the change
in turbulence with the changing climate and therefore this model might under-
estimate the projected change in turbulence with climate change.

4.2.2 Global Response to Climate Change

Global geographic maps of the percentage change in the prevalence of mod-
erate turbulence in the HadGEM2-ES simulations at 200 hPa in December,
January, and February (DJF) are shown in Figure 4.2 for each of the 20 CAT
indices. The percentage change refers to the period 2050–2080 compared to
pre-industrial times. The indices are ranked in descending order according
to the global-mean percentage change. (All geographic averages in this study
include the cosine (latitude) scaling factor, to down-weight the smaller high-
latitude grid boxes compared to the larger low-latitude ones.) Previous find-
ings about CAT increasing in the North Atlantic evidently apply to other parts
of the planet too. In the tropical regions (30◦S–30◦N), the percentage changes
are generally smaller and there is less agreement between the diagnostics.
Outside the tropics, in the middle- and high-latitude regions, the percentage
changes are generally larger and there is more agreement between the diag-
nostics.

To assess which features are robust amongst the different diagnostics, the
20 estimates of the percentage changes in CAT shown in Figure 4.2 for DJF
are averaged and shown in the upper panel of Figure 4.3. The remaining
three panels in Figure 4.3 show the corresponding averages for March, April,
and May (MAM), June, July, and August (JJA), and September, October, and
November (SON). The averages being taken here are equally weighted, under
the assumption that each of the 20 estimates is equally plausible. The per-
centage changes generally display relatively little seasonality, with the bulk
spatial patterns occurring in all four seasons, although there does appear to
be a moderate seasonal amplitude modulation locally in some regions. These
bulk changes include large increases of several hundred per cent in the midlat-
itudes in both hemispheres. In the Southern Hemisphere, these increases peak
at around 45–75◦S and are fairly zonally symmetric. In the Northern Hemi-
sphere, the increases peak at around 45–75◦N but they display more zonal
variability, which appears to be associated with the presence of land masses.
The bulk features also include small and statistically insignificant decreases
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FIGURE 4.1: Scatterplot comparing the HadGEM2-ES simula-
tions from the present study with the GFDL-CM2.1 simulations
from Williams & Joshi (2013). The plot shows the percentage
change in the prevalence of MoG turbulence for 20 CAT diag-
nostics calculated at 200 hPa over the north Atlantic (50–75◦N
and 10–60◦W) in winter (December, January, and February; DJF).
In this figure only, to ensure the fairest possible comparison, the
HadGEM2-ES MoG thresholds are calculated from the control
run in exactly the same way that the GFDL-CM2.1 thresholds
were calculated by Williams & Joshi (2013), i.e. using the 99th
percentiles of CAT diagnosed from daily mean fields in the above
geographic box and on the above pressure level in winter. The
blue line (y = x) indicates parity and the red line (y = 0.73x) is a

least-squares fit constrained to pass through the origin.



44 Chapter 4. Global Response to Climate Change

FIGURE 4.2: Maps of the percentage change in the amount of
moderate CAT from pre-industrial times (picontrol) to the period
2050–2080 (RCP8.5). The maps are calculated for all 20 CAT di-
agnostics at 200 hPa in December, January, and February (DJF)
using the HadGEM2-ES climate model. The maps are ordered
(from left to right and top to bottom) from the largest to small-
est global-mean percentage change. Bold titles indicate the seven
GTG2 upper-level diagnostics that are used operationally (Shar-
man et al., 2006). Stippling indicates regions where the percent-
age change is not statistically significant at the 90% level accord-

ing to the two-tailed binomial test.
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FIGURE 4.3: Maps of the average percentage change in the
amount of moderate CAT from pre-industrial times (picontrol)
to the period 2050–2080 (RCP8.5) at 200 hPa in each season. The
average is taken over all 20 CAT diagnostics, which are equally
weighted. The upper panel for December, January, and February
is the average of the 20 panels in Figure 4.2. Stippling indicates
regions where the average percentage change is not significantly
different from zero at the 90% level according to the one-sample,

two-tailed t-test.
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Strength DJF MAM JJA SON
Category 200 hPa 250 hPa 200 hPa 250 hPa 200 hPa 250 hPa 200 hPa 250 hPa

Light +40.8 +23.5 +54.1 +32.5 +53.2 +32.4 +47.5 +27.0
Light-to-moderate +36.8 +23.3 +54.8 +32.2 +52.7 +31.6 +47.4 +25.2

Moderate +31.7 +20.5 +47.7 +30.8 +43.9 +29.3 +40.9 +24.5
Moderate-to-severe +28.9 +18.2 +43.5 +28.9 +36.7 +26.4 +35.4 +22.5

Severe +36.0 +21.3 +53.0 +35.1 +44.8 +31.1 +43.9 +26.9

TABLE 4.1: Global-mean percentage changes in the amount of
CAT from pre-industrial times (picontrol) to the period 2050–2080
(RCP8.5). The changes are calculated for five turbulence strength
categories, at two pressure altitudes, and in four seasons. The
changes are averaged over 20 CAT diagnostics. DJF is Decem-
ber, January, and February; MAM is March, April, and May; JJA
is June, July, and August; and SON is September, October, and

November.

of several tens of per cent in parts of the tropics (where convection is a more
important source of turbulence and CAT is less relevant). The global-mean
percentage changes in moderate CAT at 200 hPa are dominated by the tropics
and are +31.7% (DJF), +47.7% (MAM), +43.9% (JJA), and +40.9% (SON).

The global-mean percentage changes for all five turbulence strength cat-
egories (light, light-to-moderate, moderate, moderate-to-severe, and severe)
and both pressure levels (200 hPa and 250 hPa) in all four seasons (DJF, MAM,
JJA, and SON) are tabulated in Table 4.1. In all 40 cases the change is positive,
indicating that CAT is intensifying across a range of strengths and altitudes
and that it is intensifying throughout the year. The global-mean percentage
changes are generally larger at 200 hPa than 250 hPa, largest for turbulence in
the light strength category and largest in MAM.

4.2.3 Regional Response to Climate Change

The global averages discussed in Section 4.2.2 mask large regional variations,
Table 4.2 tabulates the annual-mean percentage changes averaged within eight
geographic regions, for all five turbulence strength categories and both pres-
sure levels. The results indicate that the busiest international airspace around
the middle and high latitudes (North Atlantic, North America, North Pacific,
Europe and Asia) experience larger increases in CAT than the global average,
with the volume of severe CAT approximately doubling at 200 hPa over North
America (+115.5%), the North Pacific (+99.5%) and Europe (+166.7%). The
less congested skies around the tropics (Africa, South America and Australia)
generally experience smaller increases. Whereas globally it is light turbulence
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that experiences the largest relative increase, locally it can be severe turbu-
lence (e.g. Europe). For each strength category and geographic region, the
percentage change is larger at 200 hPa than 250 hPa. To provide some con-
text to aid with the interpretation of the magnitudes of these changes, in the
North Atlantic (50–75◦N, 10–60◦W) at 200 hPa we find that (i) in winter, severe
CAT by 2050–2080 will be as common as moderate CAT in the control period
and (ii) for a range of turbulence strengths from light to moderate-to-severe,
summertime CAT by 2050–2080 will be as common as wintertime CAT in the
control period.

Strength North Atlantic North America North Pacific Europe
Category 200 hPa 250 hPa 200 hPa 250 hPa 200 hPa 250 hPa 200 hPa 250 hPa

Light +75.0 +47.8 +109.5 +71.0 +122.4 +82.8 +91.4 +60.3
Light-to-moderate +124.1 +81.1 +115.4 +57.9 +111.1 +55.3 +132.6 +76.4

Moderate +144.7 +75.2 +103.0 +51.0 +97.5 +43.8 +130.3 +61.9
Moderate-to-severe +151.9 +72.2 +96.4 +48.2 +80.0 +38.7 +146.8 +67.8

Severe +185.8 +90.1 +115.5 +60.6 +99.5 +44.2 +166.7 +94.0
Strength South America Africa Asia Australia
Category 200 hPa 250 hPa 200 hPa 250 hPa 200 hPa 250 hPa 200 hPa 250 hPa

Light +17.6 +13.2 +23.4 +20.0 +102.4 +64.9 +18.3 +10.1
Light-to-moderate +25.4 +17.4 +25.8 +24.1 +93.5 +49.2 +23.9 +14.0

Moderate +34.2 +22.8 +33.7 +26.6 +80.5 +49.1 +30.9 +19.8
Moderate-to-severe +43.7 +24.4 +36.8 +27.7 +61.2 +49.5 +38.3 +26.2

Severe +62.3 +32.2 +51.0 +40.6 +66.3 +57.0 +54.9 +37.6

TABLE 4.2: Annual-mean percentage changes in the amount of
CAT from pre-industrial times (picontrol) to the period 2050–
2080 (RCP8.5). The changes are calculated for five turbulence
strength categories, at two pressure altitudes, and within eight
geographic regions. The changes are averaged over 20 CAT di-
agnostics. The geographic regions are: North Atlantic (50–75◦N,
10–60◦W), North America (25–75◦N, 123–63◦W), North Pacific
(50–75◦N, 145◦E–123◦W), Europe (35–75◦N, 10◦W–30◦E), South
America (55◦S–10◦N, 80–35◦W), Africa (35◦S–35◦N, 15◦W–50◦E),

Asia (10–75◦N, 45–140◦E), and Australia (46–12◦S, 113–177◦E).

4.2.4 Summary and Conclusions

Using climate model simulations, this study has found large relative increases
in the atmospheric volume containing significant CAT by the period 2050–
2080 under the RCP8.5 greenhouse-gas forcing scenario. The increases occur
throughout the global atmosphere but are most pronounced in the midlati-
tudes in both hemispheres. The increases occur in multiple aviation-relevant
turbulence strength categories, at multiple flight levels and in all seasons. We
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conclude that the intensification of CAT that has been calculated by previous
studies, which considered only MoG CAT on trans-Atlantic flights in winter at
altitudes of around 39,000 feet, apply more generally. We also conclude that
the changes already experienced in the last 38 years, which are discussed in
Chapter 3, will continue into the future and our results might be underesti-
mated if the response of CAT in the HadGEM2-ES simulations is slower than
the real atmosphere.

Our findings may have implications for aviation operations in the com-
ing decades. Many of the aircraft that will be flying in the second half of the
present century are currently in the design phase. It would therefore seem
sensible for the airframe manufacturers to prepare for a more turbulent atmo-
sphere, even at this early stage. Future aeronautical advances, such as remote
sensing of clear-air turbulence using onboard LIght Detection And Ranging
(LIDAR) technology, might be able to mitigate the operational effects of the
worsening atmospheric turbulence (Vrancken et al., 2016). Our results also re-
inforce the increasingly urgent need to improve the skill of operational CAT
forecasts. Despite containing useful information and demonstrably improv-
ing the safety and comfort of air travel, these forecasts continue to include a
substantial fraction of false positives and missed events.

Future research should extend our results by quantifying the remaining
uncertainties. Although the present study has captured uncertainties arising
from gaps in our knowledge of turbulence generation, by computing 20 dif-
ferent CAT diagnostics, two key sources of uncertainty remain unquantified.
First, future emissions of greenhouse gases depend on socioeconomic and po-
litical factors. The corresponding uncertainty in CAT should be quantified by
using other forcing scenarios in addition to the RCP8.5 scenario used herein.
Second, the jet streams in the upper troposphere and lower stratosphere in
different climate models may respond differently to a given radiative forcing
anomaly. The corresponding uncertainty in CAT should be quantified by using
other climate models in addition to the CMIP5 model used herein, such as the
next generation of CMIP6 models that will have substantially higher spatial
resolutions.

Future studies could also use a more recent historical period as the baseline,
instead of the pre-industrial control period similar to Section 3. Turbulence re-
ports from commercial aircraft could be used for climate model verification
purposes. The grid resolution of numerical weather prediction models could
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be systematically degraded to match climate models to assess how the turbu-
lence diagnostics depend on resolution. Whereas the present study has inves-
tigated the climate response of clear-air turbulence, which is prevalent in the
mid-latitudes, future studies should investigate the climate response of con-
vective turbulence which is more prevalent in the tropics. Finally, the response
of clear-air turbulence to natural climate variability, such as the North Atlantic
Oscillation (Kim et al., 2016), also deserves further study.
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Chapter 5

Multi-Model Ensemble

This chapter is based on our paper ’Multi-Model Ensemble Predictions of Avi-
ation Turbulence’ which is accepted for publication in Meteorological Applica-
tions. As discussed in Chapters 3 and 4, climate change is going to increase the
occurrence of Clear-Air Turbulence (CAT) in the future. Also the percentage
changes shown in Chapter 4 could be underestimates as the climate model is
more sluggish in its climate change response than reanalysis data (Chapter 3).
Therefore improving turbulence forecasting is vital to help maintain high avi-
ation safety standards. This chapter will introduce a multi-model ensemble for
atmospheric turbulence, creating a probabilistic forecast.

Having a probabilistic forecast can help the pilots, flight planners and Air
Traffic Controllers (ATC) manage their responses accordingly. An example of
this would be if one out of ten ensemble members predict turbulence (i.e. there
is a 10% probability of turbulence), in which case pilots might continue their
route because the chances are still small. However if all 10 members predict
that the threshold will be exceeded, then a pilot may divert around that region
(expensive), change flight level (less expensive) or put the seat belt sign on
(free) to avoid injury to passengers and crew. Choosing the appropriate action
could reduce injuries and save costs. For example, if the turbulence is expected
to be light or moderate or there is a low probability of the turbulence, then
putting the seat belt sign on is a cost-free response but can impact passenger
comfort. If the turbulence predicted is severe or there is a high probability,
then the pilot might choose to change the flight level, which might cost money
in terms of fuel usage but this cost would be less than a full diversion. If the
turbulence predicted is on multiple flight levels, then a full diversion might be
appropriate, which would be more expensive by increasing flight time and fuel
usage, but this would be less expensive than damaging the aircraft or injuring
passengers and crew.

The more ensemble members that are used, the larger the ensemble spread
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and the understanding of the certainty of the forecast is improved. This ap-
proach therefore provides more information to pilots and flight planners about
where turbulence is likely to be and therefore which regions they should avoid.
However, increasing the forecast spread could capture more turbulence events,
but could also increase the number of false alarms, and this trade-off is one that
needs to be managed to maximise forecast skill. This study further expands
on the use of an ensemble forecast, and follows other areas of meteorology
such as The International Grand Global Ensemble (TIGGE) project (Swinbank
et al., 2016) which looks at combining ensembles from different centres around
the world. A particular research area using multi-model ensembles is tropical
cyclone forecasting (Krishnamurti et al., 2000; Vitart, 2006; Titley & Stretton,
2016). All of these studies show that using multi-model ensembles improves
the overall skill of the forecasts and therefore show a useful application that
we will investigate for turbulence in this study.

By using at least two ensembles, not only is the spread broadened by in-
creasing the number of forecasts but also a different numerical model is used,
assimilating a differing set of observations that will have different strengths
and weaknesses. These strengths and weaknesses can come from how the en-
sembles are perturbed. An example is the European Centre for Medium-Range
Weather Forecasts (ECMWF) Ensemble Prediction System (EPS), which starts
each model run with the same initial conditions but adds dynamically defined
perturbations to create the model spread (Molteni et al., 1996). In contrast, the
Met Office Global and Regional Ensemble Prediction System (MOGREPS-G)
uses different initial conditions and model perturbations to provide the en-
semble spread (Bowler et al., 2008). The initial conditions are perturbed us-
ing the ensemble transform Kalman filter (Bishop et al., 2001) and the model
perturbations are driven by two stochastic physics schemes; the random pa-
rameter scheme and the stochastic convective vorticity scheme. Bowler et al.
(2008) showed as an example that the screen temperature Brier Skill Score
(BSS) was higher for ECMWF-EPS compared to MOGREPS-G, but that for
wind speed the MOGREPS-G ensemble was more skilful than the ECMWF-
EPS. This shows each ensemble has its own strengths and weaknesses that we
hope will increase the forecast skill. This study is the first time multi-model
ensemble forecasting has been applied to turbulence. Both WAFCs plan to use
a multi-model ensemble in the near future and therefore this study lays the
foundations to make this possible.



5.1. Observations 53

5.1 Observations

In order to verify the forecasts we need to find a ’truth’ data set and is the same
method described in Section 2.3.6. Previous work used PIlot REPortS (PIREPS)
(Tebaldi et al., 2002; Kim & Chun, 2011), but these can be unreliable (Schwartz,
1996; Kane et al., 1998; Sharman et al., 2014). PIREPS are subjective and are
also aircraft dependent, so a smaller aircraft will experience more severe tur-
bulence than a larger aircraft in the same volume of turbulent air. PIREPS also
have poor spatial reliability as they tend to be located in turbulence, so null
turbulence events are rarely recorded as there is no specified frequency (Kane
et al., 1998). The location and time of PIREPS may also not be correct as they
are manually reported after the event and for more severe events where action
is required this may be some time later. To avoid these problems, this study
will use aircraft data recorded on a fleet of Boeing 747 and 777 aircraft. This
data has been used in other meteorological studies (Tenenbaum, 1991; Gill,
2014). High-resolution automated aircraft data, available at 4 second intervals,
giving over 76, 000, 000 data points to calculate an aircraft-independent turbu-
lence measure known as the Derived Equivalent Vertical Gust (DEVG) which
is defined as:

DEVG =
Am|∆n|

V
, (5.1)

where |∆n| is the peak modulus value of the deviation of the aircraft acceler-
ation from 1g in units of g, m is the total mass of the aircraft (metric tonnes),
V is the calibrated airspeed at the time of the observation (knots), and A is an
aircraft-specific parameter that varies with flight conditions and can be calcu-
lated using:

A = A + c4(A− c5)
(m

m
− 1
)

(5.2)

and:
A = c1 +

c2

c3 + H(k f t)
, (5.3)

where H is the altitude (thousands of feet), m is the reference mass of the air-
craft (metric tonnes), and parameters c1 to c5 depend on the aircraft’s flight
profile as outlined by Truscott (2000).

DEVG is one of the World Meteorological Organization (WMO) recom-
mended turbulence indicators and has a typical uncertainty of around 3-4%
(WMO, 2003). DEVG is aircraft independent so values from all aircraft can be
combined to create an observational database. Table 5.1 compares DEVG to
Eddy Dissipation Rate (EDR) which is another aircraft independent measure
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Turbulence Severity DEVG (m s−1) EDR (m2/3 s−1)
None DEVG ≤ 2 EDR ≤ 0.07
Light 2 ≤ DEVG ≤ 4.5 0.07 ≤ EDR ≤ 0.27

Moderate 4.5 ≤ DEVG ≤ 9 0.27 ≤ EDR ≤ 0.61
Severe 9 ≤ DEVG 0.61 ≤ EDR

TABLE 5.1: Turbulence severity for values of Derived Equiva-
lent Vertical Gust (DEVG) (Truscott, 2000) and Eddy Dissipation
Rate (EDR) (Sharman et al., 2014). For severe turbulence to be ob-
served the DEVG value must be greater than or equal to 9 m s−1

and therefore 9 ≤ DEVG.

that can both be used in turbulence verification as discussed in Section 2.3.6.
There are limitations to using this data set, because aircraft manoeuvers and ac-
tive control techniques can enhance or dampen vertical accelerations of aircraft
leading to over- or under-representation of the vertical gusts (WMO, 2003).
One of the other main issues with this data set is the typical spatial coverage.
Figure 5.1 is a plot of aircraft data for May 2016 and shows the spatial cov-
erage of our observations. It has very good coverage over the North Atlantic
and Europe, but poorer coverage over Asia and the Pacific. Despite the uneven
spatial coverage, this data set is still the best available source of truth data for
verification which is why we have chosen to use it here. The Ellrod & Knapp
(1992) Turbulence index 1 (Ellrod TI1) turbulence predictor used in this study
only forecasts shear induced turbulence and is not able to predict convective
turbulence. This study will therefore use a satellite-based convective product
to filter out convective turbulence events (Francis & Batstone, 2013). By only
looking at the non-convective events we should have a better representation
of the forecast skill by removing events that we know will be missed by the
turbulence diagnostic.

5.2 Forecast Data

This project uses an entire year of global ensemble data between May 2016
and April 2017 from two forecast centres: MOGREPS-G (Bowler et al., 2008)
and the ECMWF EPS (Molteni et al., 1996). The forecast data is available with
3-hourly intervals and at the time of this study the MOGREPS-G ensemble had
12 members with forecasts every 6 hours, with 33 km resolution and 70 vertical
levels, 10 of which are between 150 and 350 hPa. The ECMWF forecast had 51
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FIGURE 5.1: Plot of the spatial coverage of flight data from the
fleet of Boeing 747 and 777 aircraft in May 2016.

ensemble members with 18 km resolution and 91 vertical levels, 14 of which
are between 150 and 350 hPa. To use the ECMWF EPS system operationally
we would have to extend the forecast range by approximately 12 hours due
to a delay in accessing the forecast data. This is important to note because it
means the results of the ECMWF EPS will be theoretical and in practice the
skill would be reduced as we have to use longer lead times. This is shown by
the WAFC verification website demonstrating how the forecast skill is reduced
with forecast lead time (Met Office, 2018). We have not used the longer lead
times in this study but understanding the impact this will have on the forecast
skill would be an interesting area of further study. For both ensembles, this
study only had access to the 0000 UTC model run between 01 May 2016 and
07 August 2016, which means for that period we forecast only half of the day.
Between 07 August 2016 and 30 April 2017 we had both the 0000 UTC and
1200 UTC model run. The forecast lead time used throughout is T+24, T+27,
T+30, T+33 hours.

This chapter focuses on non-convective turbulence, and uses the Ellrod TI1
predictor which is defined as:

TI1 = DEF × VWS =
[(

∂u
∂x −

∂v
∂y

)2
+
(

∂v
∂x + ∂u

∂y

)2
]1/2

×
[(

∂u
∂z

)2
+
(

∂v
∂z

)2
]1/2

(5.4)
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where u is the horizontal wind velocity in the East-West direction, v is the hor-
izontal wind velocity in the North-South direction, x is distance in the East-
West direction, y is distance in the North-South direction and z is distance in
the vertical. This is the same index used in previous studies including Chap-
ters 3 and 4 and is the turbulence diagnostic currently used by the WAFCs. The
Ellrod TI1 combines deformation and vertical wind-shear as shown in Equa-
tion 5.4 and is a well-established shear turbulence diagnostic. Previous re-
search has shown it predicts up to 75% of CAT events (Ellrod & Knapp, 1992),
although it is typically only useful in the mid-to-high latitudes. Also the Ell-
rod TI1 was not developed to predict Convectively Induced Turbulence (CIT)
or Mountain Wave Turbulence (MWT), which are both prominent turbulence
sources.

To create a probability forecast, we use the ensemble data from both WAFCs
and set thresholds based on literature. Exact numbers can’t be used however
as the data sets are not identical (e.g. different resolutions) and some are cal-
ibrated (e.g. ICAO, 2012) giving different turbulence thresholds. The turbu-
lence threshold used in this project for the Ellrod TI1 is 3 × 10−7 s−2 which
is equivalent to Moderate-or-Greater (MoG) turbulence (Gill, 2014). How-
ever we also calculate additional thresholds that range from light-or-greater
to severe-or-greater turbulence. Using multiple thresholds to predict differ-
ent turbulence strength categories is similar to the approach used by Williams
(2017) and Chapters 3 and 4. Ellrod & Knapp (1992) also discuss the use of
higher thresholds for moderate and severe turbulence with the actual values
used being model specific. We use these additional thresholds to optimise the
turbulence forecast as a lower threshold will capture more MoG turbulence
events, but also more false alarms, and a higher threshold will forecast fewer
MoG events but also fewer false alarms. The additional thresholds we used
are 8× 10−8 s−2, 1× 10−7 s−2, 5× 10−7 s−2, 8× 10−7 s−2, 1.1× 10−6 s−2, and
2× 10−6 s−2. Above these thresholds, it is classed as an area of the atmosphere
containing turbulence. The different thresholds could be used for different
corresponding turbulence severities. By combining the forecasts for all the en-
semble members we can calculate the probability of a grid point containing
MoG turbulence. The more ensemble members that predict the occurrence
of turbulence, the higher the probability forecast will be. It is then possible
to combine both the ensemble forecasts to create a multi-model ensemble in
two ways. The first is a standard equally weighted multi-model super ensem-
ble, and the other is a weighted multi-model ensemble. This study uses the
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simple equally weighted multi-model super ensemble. To create the multi-
model ensemble we first create a probability field of turbulence for both the
single-model ensembles based on exceeding a threshold of 3× 10−7 s−2. Then
we average the two probability fields together, creating an equally weighter
multi-model ensemble. This therefore means that although the ECMWF-EPS
ensemble has more ensemble members, it does not have any more weight in
the multi-model ensemble.

5.3 Verification Method

The verification method used in this study is outlined by Gill (2014, 2016). This
study processes aircraft observations into 10-minute segments, which equates
to approximately 100 km of flight. By analysing the DEVG values in each
segment, when the maximum value exceeds a given threshold it is classed as a
turbulence event. The aircraft data is constrained to ±1.5 hours of the forecast
time to ensure the aircraft observations reflect the forecast. Therefore only the
10 minute segment (observation) within the 3 hour time window is used for
verification as beyond this the observations are not valid for the turbulence
forecast. We then compare the turbulence observations to the forecast and a
2×2 contingency table can be set up as shown in Table 5.2. One of the best
ways to visualise these results is to use a Relative Operating Characteristic
(ROC) plot (Jolliffe & Stephenson, 2012; Gill, 2016), which plots the hit rate
against the false alarm rate which are defined as:

Hit Rate =
A

A + C
(5.5)

False alarm rate =
B

B + D
(5.6)

where A is a hit, B is a false alarm, C is a miss and D is a correct rejection.
To create the ROC curve, thresholds are applied to the probabilities which
then create binary yes/no forecasts with corresponding 2×2 contingency ta-
bles yielding the hit rate and false alarm rate which are then plotted together.
This produces a curve where the larger the Area Under the Curve (AUC), the
more skilful the forecast is at discriminating between events and non-events.

The reliability of the forecasts can be assessed visually by using a reliabil-
ity diagram (Jolliffe & Stephenson, 2012; Gill, 2016), where each probability is
binned and the frequency of the event is calculated. The forecast probability
should equal the observed frequency. For example, if the probability is 30%
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Turbulence observed Turbulence not observed
Turbulence forecast A (Hit) B (False Alarm)

Turbulence not forecast C (Miss) D (Correct Rejection)

TABLE 5.2: A 2 × 2 contingency table showing the possible re-
sults of a turbulence forecast or event. The four possible out-

comes include a Hit, Miss, False Alarm and Correct Rejection.

then turbulence in that region should be observed 30% of the time. A per-
fect forecast would result in a straight line, however in practice this is not the
case and forecast probabilities tend to over-forecast the turbulence (below the
line), or under-forecast turbulence (above the line). Understanding these bi-
ases allow us to implement a linear calibration which should bring the forecast
probability more in-line with the observed frequency. Calibrating the forecast
will not compromise the forecast skill, since ROC area discriminatory skill and
reliability are independent (Gill, 2016).

A more practical analysis of the results for stakeholders would be to assess
the relative economic value (V) of the forecast which is defined as:

V =
min(α, o)− Fα(1− o) + Ho(1− α)− o

min(α, o)− oα
(5.7)

where α = Cost/Loss, o is the fraction of occasions where the event occurred,
F is the false alarm rate, H is the hit rate (Richardson, 2000; Jolliffe & Stephen-
son, 2012). This assigns a cost and loss for the elements in a contingency table
(Table 5.3) where different outcomes depend on whether action was taken and
if the event occurred or not. For a given model, the hit rate (H), false alarm
rate (F) and fraction of occasions the event occurred o can be calculated us-
ing a 2×2 contingency table, and therefore varying the cost/ loss ratio gives a
different value which can be plotted. The more skilful the model, the higher
the maximum value will be (but the actual value will depend on the cost/ loss
ratio of the user). If the value is higher for all cost/ loss ratios then that model
will be the most useful for any consumer (as the cost/ loss ratio may vary
depending on the consumer) and this is known as sufficiency (Ehrendorfer &
Murphy, 1988). Gill & Buchanan (2014); Buchanan (2016) showed that proba-
bilistic turbulence forecasts have greater value than deterministic forecasts, so
this project will aim to show that by combining ensembles that we can further
increase the value.
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Turbulence observed Turbulence not observed
Turbulence forecast Hit False Alarm

Action taken Cost Cost
Turbulence not forecast Miss Correct Rejection

No action taken Loss

TABLE 5.3: A 2 × 2 contingency table assigning a cost to the pos-
sible results of a turbulence forecast or event. The four possible
outcomes include a Hit (with a subsequent cost), Miss (with a
subsequent cost), False Alarm (with a subsequent cost) and Cor-

rect Rejection (with no cost as no action was taken).

5.4 Results

5.4.1 Case Studies

Throughout this analysis we focus on shear turbulence, however MWT and
CIT will be present in the observational truth data. To identify the source of
turbulence, this study plots the aircraft data over a plot of orography, convec-
tion and shear turbulence. The orography plot uses a surface map that indi-
cates terrain height and therefore mountain ranges. The orography map shows
the height of the terrain and any event that occurs near high terrain could be
caused by MWT, whereas the CIT plot uses a satellite product that indicates
areas of deep convection (Francis & Batstone, 2013). The satellite product iden-
tifies regions of overshooting tops which indicate the regions of the strongest
updraft, above the smooth anvil of a typical thunderstorm. To identify these
regions they use two methods: the first method is the water vapour-infrared
window brightness temperature difference method (Schmetz et al., 1997). The
second is the infrared window texture method (Bedka et al., 2010). By using
the infrared channel, it can be used in both the day and night which is impor-
tant for aviation. We did not have full global coverage for the satellite product,
and therefore only CIT events within that spatial coverage could be removed.
For the shear turbulence we plot both the MOGREPS-G and ECMWF ensemble
probability fields showing if shear turbulence is a likely cause and which en-
semble products predicted turbulence. The plots have aircraft data ±1.5 hours
which will help identify the likely source of turbulence.

Figure 5.2 is a plot of a shear turbulence case study that was forecast by
both the MOGREPS-G and ECMWF-EPS ensembles. The plot clearly shows
the MoG turbulence event over the north Atlantic so MWT is not a factor, and
the satellite product shows there is no deep convection in the area, although
there is some convection much further south. This shows the turbulence event
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FIGURE 5.2: Plot of a moderate-or-greater turbulence event over
the possible sources of turbulence: top left: orography, shear tur-
bulence (bottom left: MOGREPS-G and bottom right: ECMWF
EPS probability forecast), and top right: convection from satel-
lite data (colour shading indicates deep convection). Both the
MOGREPS-G and ECMWF-EPS ensembles forecast the shear tur-
bulence event. The circles indicate turbulence observations with
grey indicating no turbulence, orange indicating light turbulence
and red indicating moderate or greater turbulence. The convec-

tive classification can be found in Francis & Batstone (2013).
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FIGURE 5.3: Plot of a moderate-or-greater turbulence event over
the possible sources of turbulence: top left: orography, shear tur-
bulence (bottom left: MOGREPS-G and bottom right: ECMWF
EPS probability forecast), and top right: convection from satel-
lite data (colour shading indicates deep convection). Only the
MOGREPS-G ensemble forecast the shear turbulence event. The
circles indicate turbulence observations with grey indicating no
turbulence, orange indicating light turbulence and red indicating
moderate or greater turbulence. The convective classification can

be found in Francis & Batstone (2013).
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FIGURE 5.4: Plot of a moderate-or-greater turbulence event over
the possible sources of turbulence: top left: orography, shear tur-
bulence (bottom left: MOGREPS-G and bottom right: ECMWF
EPS probability forecast), and top right: convection from satel-
lite data (colour shading indicates deep convection). Only the
ECMWF-EPS ensemble forecasts the shear turbulence event. The
circles indicate turbulence observations with grey indicating no
turbulence, orange indicating light turbulence and red indicating
moderate or greater turbulence. The convective classification can

be found in Francis & Batstone (2013).
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was well forecasted by both the ensemble products. There is also a light turbu-
lence event further south, which is not forecasted by either ensemble. This is to
be expected as the threshold used for this figure is typical for MoG turbulence,
and therefore not expected for this event. There is some convection just to the
south, however it is too far away to cause this light turbulence event.

Looking at Figure 5.3 there is no CIT in the area, however this could be
MWT as this event is over some smaller mountains, or shear turbulence as it
is forecast by the MOGREPS-G ensemble. This is a case that shows the benefit
of using the multi-model ensemble approach. If we had only the ECMWF-
EPS ensemble then we would not have been able to forecast this event and as
a result people could be injured. But since we have both the ensembles, we
managed to forecast the event and therefore preventative action could have
taken place, increasing passenger and crew comfort and safety.

Figure 5.4 shows another example where the multi-model ensemble ap-
proach is better, as the MOGREPS-G ensemble does not forecast the turbu-
lence event but the ECMWF-EPS ensemble does. This case study is interesting
however because the turbulence event is over the Rocky Mountains, so this
could be MWT. It is probably a combination of shear and MWT and again
shows the multi-model ensemble approach was a benefit, as if we only had the
MOGREPS-G ensemble we would not been able to forecast this event. This
case also reinforces the need to have a MWT diagnostic, as the severe tur-
bulence observations spread further than the forecast indicated. Figure 5.4
also shows some of the problems with turbulence forecasting, as we see what
could be a false alarm event over Canada. Both the ECMWF and MOGREPS-G
ensemble predict turbulence, however there is no turbulence observed. This
shows the benefit of using a probabilistic forecast because different end users
can select the probability threshold of when they would take action. For exam-
ple if the probability forecast for turbulence is 20%, then there is a 1 in 5 chance
of turbulence being observed. However if the end user sets their threshold for
taking preventative action at 10%, then this event would be classed as a false
alarm because it was forecasted (as it was above the 10% threshold) and the
event did not occur. If the threshold they used for taking preventative action
was 30% however, this would be a correct rejection as turbulence would not be
forecast as the threshold was not exceeded and turbulence did not occur. This
helps to illustrate the trade-off between hits and false alarms and the ability
the probability framework gives to its users to fine tune their response to op-
timise the forecast. So for this example, a higher threshold would result in a
correct rejection but might also miss the MoG turbulence event over the Rocky
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Mountains.
After plotting all of the 424 MoG turbulence events, we identified 98 cases

that are likely to be CIT which Ellrod TI1 cannot forecast. To address this issue
the CIT events from the rest of our study are removed in order to give the
fairest possible test for the multi-model ensemble forecasts. We decided to
keep all other MoG turbulence events in the study because we have no strong
evidence that they are not shear related. An example is MWT, although we
can identify these events occur over mountains, we are not able to prove wind
shear is not a contributing factor. Using the satellite convection product we
are more confident of the CIT events and therefore we have more confidence
in removing them. If we were unsure in any way that it is not a CIT event,
they were kept in the study. What this does highlight though is this study
must be extended in the future to include a convective diagnostic and a MWT
diagnostic because combined they count for a third of the events in this study.

5.4.2 Multi-Model Ensemble Trial

After removing the events that we have categorised as CIT only, we analysed
the performance of the multi-model ensemble and the single-model ensem-
bles. Figure 5.5 is a ROC plot showing the skill score for both the single-model
ensembles and the combined multi-model ensemble. Typically the area under
the curve is a good measure of discriminatory skill. However, in this study
the MOGREPS-G ensemble has a shorter line than the both the ECMWF and
multi-model ensemble. This is because a 12 member ensemble can’t forecast
the same lower probabilities as a larger ensemble. The 12 member ensemble
can only predict probabilities as small as 1/12, whereas the ECMWF 51 mem-
ber ensemble can forecast probabilities as low as 1/51. Therefore a simple
AUC number could be biased towards the ECMWF forecast and multi-model
ensemble forecasts as the longer line could (and does in this example) give
them a larger AUC. Therefore it is better to focus on how steep the line is and
therefore on low false alarm rates that are more useful for the aviation indus-
try, although the best method of measuring statistical significance is to use the
AUC.

Low false alarm rates are more important for this study because airline
companies may have a limit on acceptable hit rates and false alarm rates, and
therefore the lower false alarm rates are the ones they would focus on. Fig-
ure 5.5 shows that the ECMWF, MOGREPS-G and simple combined ensemble
have almost the same skill. This is surprising because by combining the two
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FIGURE 5.5: ROC plot of the global turbulence with the
98 convective turbulence cases removed showing the fore-
cast skill of the MOGREPS-G (dot-dash) AUC=0.6881, ECMWF
(dot) AUC=0.772 and combined multi-model ensemble (dash)
AUC=0.7842. The data used has a forecast lead time between +24

hours and +33 hours between May 2016 and April 2017.

ensembles, the forecast spread has increased and therefore we capture more
turbulence events, but consequently more false alarms. Because of this trade
off we do not see a significant increase in skill. The AUC for the two sin-
gle model ensembles are: ECMWF – 0.7712 and MOGREPS-G – 0.6881. The
multi-model ensemble has an AUC of 0.7842 with the 95% confidence interval
lower bound being 0.7538 and the 95% confidence interval upper bound being
0.8102. This therefore shows at the 95% confidence interval the multi-model
ensemble is only significantly better than the MOGREPS-G ensemble, but not
the ECMWF ensemble, and this is because the MOGREPS-G line is shorter.
To understand the benefit of using a multi-model ensemble, Table 5.4 shows
the number of MoG turbulence events where both models agree, and if they
disagree, which model forecasted the turbulence event. Out of the 326 MoG
turbulence events, 243 of them the models are in agreement so they either both
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forecast the event or both do not forecast the event. That leaves 83 out of 326
MoG turbulence when the models do not agree. What we find however is this
number is not split evenly and ECMWF forecasts 73 times when MOGREPS-G
does not, and there are only 10 occasions where MOGREPS-G forecasts turbu-
lence and ECMWF does not. This means there are 10 occasions where having
both ensembles gives the ability to produce a non-zero forecast which a single
ECMWF ensemble cannot. This could be part of the reason why we do not
see the large improvement of forecast skill when combining ensembles. Most
of the events are already forecast by one of the models, and therefore we only
have a limited benefit to adding the second ensemble. This is similar to the
conclusion Park et al. (2008) drew, as there is only a limited benefit to a multi-
model ensemble when one ensemble is already well tuned. However, having
a multi-model ensemble can improve the estimate of confidence in the forecast
when both models forecast turbulence as well as capturing more turbulence
events than a single model ensemble.

Models in agreement Models not in agreement
ECMWF MOGREPS

forecasts turbulence forecasts turbulence
243 73 10

TABLE 5.4: Categorising moderate or greater turbulence events
between cases where both ECMWF and MOGREPS models are in
agreement (both do/do not forecast turbulence), and where the
models are not in agreement (one model does forecast turbulence
and the other does not). When the models are not in agreement,
the results are put into a sub category stating which ensemble did

forecast the turbulence event.

The relative economic value of the forecast is shown in Figure 5.6 and the
multi-model ensemble has greater value than the single model ensembles but
only for low cost/loss ratios. This is important because depending on the
relative importance of minimising misses and maximising hits for an airline
company, defines the cost/loss ratio we focus on. We also know the cost of
action is likely to be a great deal less than the cost of loss due to injuries or
aircraft damage. Therefore the lower cost/loss ratios are likely to be more im-
portant for the airline companies, and therefore this study focuses on those
here. So the multi-model ensemble is as skilful as the single model ensem-
bles, but would be more useful for decision-making in an operational envi-
ronment. This figure also shows the maximum value for all the thresholds
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FIGURE 5.6: Value plot with a log scale x-axis of the global turbu-
lence with the 98 convective turbulence cases removed showing
the forecast skill of the MOGREPS-G (dot-dash), ECMWF (dot),
combined multi-model ensemble (dash) and the maximum value
using every threshold of the combined multi-model ensemble
(solid). The data used has a forecast lead time between +24 hours

and +33 hours between May 2016 and April 2017.

of the combined multi-model ensemble. As identified previously, the proba-
bility fields for many thresholds have been calculated, so this curve takes the
highest value threshold for each cost/loss ratio. Figure 5.7 shows how this is
done as it plots the relative economic value for each of the five thresholds for
the MOGREPS-G ensemble, and then plots the maximum value (bold line) at
each cost/ loss ratio. This indicates that different users might need a different
threshold depending on what cost/loss ratio they operate at. For Figure 5.6
the bold line showing the maximum value for each cost/loss ratio is above the
others, and as in Figure 5.7 there is more value in some of the other thresholds,
therefore an optimised multi-model ensemble would provide more value and
is worth pursuing in future studies. It is important to point out again that the
ECMWF EPS value is theoretical and operationally would be lower since the
availability of the data forces the use of a longer lead time. When comparing
the single model ensembles to the previous study by Gill & Buchanan (2014)
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we see the improvement in the relative economic value, showing a significant
model improvement over the last few years. This improvement could be be-
cause the Met Office introduced the ENDGame (Even Newer Dynamics for
General atmospheric modelling of the environment) dynamical core (Walters
et al., 2014). This has provided a better forecast and in particular has resulted in
a ‘reduction of the slow bias in tropospheric windspeeds (Walters et al., 2014).’
It is important to note that a direct comparison is not possible because each
study looks at two different years, but this study shows a large improvement
in MOGREPS-G value compared to the Gill & Buchanan (2014).

FIGURE 5.7: Value plot with a log scale x-axis showing the
MOGREPS-G relative economic value for threshold 1 (dot),
threshold 2 (short dash), threshold 3 (long dash), threshold 4 (dot
dash), threshold 5 (dot dot dash) and the maximum value at each
cost loss ratio (solid). The data used has a forecast lead time be-
tween +24 hours and +33 hours between May 2016 and April

2017.

Also plotted is a reliability plot shown in Figure 5.8. This figure shows
that the MOGREPS-G, ECMWF-EPS and combined multi-model ensembles
under-forecast the lower probabilities, but over-forecast the higher probabil-
ities. This is shown by each ensemble being above the line of a perfect forecast
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for the lower probabilities, but below the line for higher forecast probabili-
ties. It is important to note that these plots have been calibrated because the
forecast percentage from the ensembles is much higher than the observed fre-
quency. This linear calibration is the forecast probability multiplied by a con-
stant, which for this study is 1/17, bringing it more in-line with the observed
frequency. Although a direct comparison can’t be made, the forecast percent-
ages and observed frequency in this example has increased and the reliability
has improved over the last few years compared to Gill & Buchanan (2014).
This indicates the turbulence forecast models have improved over the last few
years and the multi-model ensemble is at least as reliable as the individual
ensembles.

FIGURE 5.8: Reliability diagram of the MOGREPS-G (dot-dash),
ECMWF (dot) and combined multi-model ensemble (dash). The
data used has a forecast lead time between +24 hours and +33

hours between May 2016 and April 2017.
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FIGURE 5.9: ROC plot of the global turbulence showing the fore-
cast skill of the MOGREPS-G (dot-dash) and ECMWF 12 member
ensemble (dot). The data used has a forecast lead time between

+24 hours and +33 hours between May 2016 and April 2017.

5.4.3 Reduced Size Multi-Model Ensemble

So far it has been shown that combining two ensembles improves the forecast,
but it is also important to understand how the individual ensembles compare
to each other. To do this we must first reduce the ensemble size of the ECMWF
forecast to make it a fair comparison. This is because a larger ensemble should
give a larger forecast spread, and therefore improve the forecast result, and
the ECMWF EPS has 51 members compared to the MOGREPS-G 12 members.
To reduce the ensemble size we choose the first 12 members of the ECMWF
ensemble. Each of the perturbed members is constructed to be equally likely,
and each consecutive member has a ‘pair-wise anti-symmetric perturbation’
(Owens & Hewson, 2018). Therefore choosing consecutive members is a bias-
free method for creating a sub sample. This is also how Buizza & Palmer (1998)
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studied the impact of ensemble size on ensemble skill. They took pairs of per-
turbed members, so that each ensemble has pairs of members with the same
positive and negative perturbation. Figure 5.9 is the ROC plot with the same
ensemble size and can see that both models have almost the same forecast
skill. When looking at Figure 5.10 we see that the ECMWF-EPS ensemble is
more valuable. This would be useful when trying to combine the two ensem-
bles using a weighted scheme to get the best forecast skill. As the ECMWF-EPS
forecast is more valuable, a larger weight could be applied when creating the
multi-model ensemble. But again in an operational system the ECMWF-EPS
skill would be reduced as the longer lead time needed due to the time delay
of the forecast would reduce the skill. So before an optimised weighted multi-
model ensemble can be created, the ECMWF ensembles performance with the
time delay would have to be analysed. This would then need to be extended to
include all turbulence predictors to find the best multi-model ensemble fore-
cast.

FIGURE 5.10: Value plot with a log scale x-axis of the global
turbulence showing the forecast value of the MOGREPS-G (dot-
dash) and ECMWF 12 member ensemble (dot). The data used has
a forecast lead time between +24 hours and +33 hours between

May 2016 and April 2017.
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5.5 Conclusions and Further Work

This chapter has investigated the use of ensemble forecasts for aviation turbu-
lence. By combining two ensembles to create a simple multi-model ensemble,
we aimed to show improved forecast value and skill which could then be im-
plemented operationally. To verify the forecasts, aircraft observations from a
fleet of Boeing 747 and 777 aircraft were used and created a contingency table
of results. From this the results were analysed to show the multi-model en-
semble system is as skilful as a single model ensemble, which follows on from
the work of Gill & Buchanan (2014); Buchanan (2016).

The results found indicate the forecast skill for the simple equally weighted
multi-model ensemble is at least as skilful as the single model ensembles. This
lack of significant improvement in the forecast skill was not expected, but this
could be because when increasing the forecast spread we capture more turbu-
lence events but also more false alarms. We would have to optimise this trade
off to maximise the forecast skill, but in this study we are unable to show a sig-
nificant improvement. However the value of the forecast is improved for the
multi-model ensemble particularly at low cost/loss ratios, which are more im-
portant for operational use. Therefore to see an improvement in value at low
cost/loss ratios shows it is worth implementing this multi-model approach as
it would be more valuable in an operational setting. Our results also showed
that the multi-model ensemble is as reliable as the single model ensembles,
and therefore overall the multi-model ensemble is an improvement to the sin-
gle model ensembles. Through combining two ensembles we gain consistency,
gives more operational resilience and create one authoritative forecast whilst
maintaining skill and increasing value, which would be particularly important
in operational use in the future by the WAFCs.

Throughout the analysis, it is also found that the Ellrod & Knapp (1992) TI1
predictor is good at forecasting shear turbulence particularly. However not all
the shear-induced turbulence events are forecast, and therefore one or more
shear turbulence diagnostic would be beneficial similar to Kim et al. (2015). It
would also be a good next step to include the Ellrod3 turbulence diagnostic
from Sharman & Pearson (2017), as they showed its improved performance
over other turbulence diagnostics and could be an easy step to improving the
forecast skill. Also the MOGREPS-G ensemble is designed to be time lagged
to create a 24 member ensemble, and this should also be investigated in fur-
ther work (Met Office, 2017). An alternative method for creating a probabilistic
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forecast would be a multi-diagnostic approach, rather than the traditional en-
semble members approach. Kim et al. (2018) showed that a multi-diagnostic
approach using two numerical models (NOAA’s Global Forecast System and
Met Office’s Unified Model) for creating a probability forecast had a far greater
statistical performance than the current WAFC forecast and any single CAT
diagnostic. This is another example of how probabilistic forecasting can im-
prove forecast skill, but uses a different method to create it. It is also vital to
add convective and mountain wave turbulence predictors in any further stud-
ies. This would then take into account Convectively Induced Turbulence (CIT)
and Mountain Wave Turbulence (MWT) that are also leading causes of avia-
tion turbulence and account for many injuries to passengers and crew. Also
CIT and MWT predictors could benefit more than the Ellrod & Knapp (1992)
TI1 forecast, from the multi-model ensemble technique, making a multi-model
ensemble superior to a single-model ensemble.
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Chapter 6

Multi-Diagnostic Multi-Model
Ensemble

In Chapter 5 the idea of using a multi-model ensemble for aviation turbulence
forecasting was introduced. However, because only one turbulence diagnostic
is used not all the turbulence events are forecasted . The first trial only used the
Ellrod & Knapp (1992) Turbulence Index 1 (Ellrod TI1) which can only forecast
shear turbulence and not Mountain Wave Turbulence (MWT) or Convectively
Induced Turbulence (CIT). Therefore this chapter combines multiple turbu-
lence diagnostics and multiple ensemble forecasts to create a multi-diagnostic
multi-model ensemble.

6.1 Methodology

The method used for this multi-diagnostic multi-model ensemble is the same
as Chapter 5. The same observational data as Section 5.1 is used which is the
Derived Equivalent Vertical Gust (DEVG) (Equation 5.1) which is an aircraft
independent measure and is taken from a fleet of Boeing 747 and 777 aircraft.
This trial also uses a full year of ensemble data between September 2016 and
August 2017 from the Met Office Global and Regional Ensemble Prediction
System (MOGREPS-G) and the European Centre for Medium Range Weather
Forecasting (ECMWF) Ensemble Prediction System. The MOGREPS-G ensem-
ble has 12 members and the ECMWF has 51 members, and the data used in this
project is output to a horizontal resolution of 1◦ and 26 vertical levels (although
only six are useful for aviation), rather than their native grid (which was used
in Chapter 5). This is a slightly higher resolution than the World Area Fore-
cast Centres gridded forecast of 1.25◦ and 7 vertical levels (ICAO, 2016). We
have output data from 00 UTC for T+24, T+27, T+30, T+33 hours. This could
impact the results as we will only be focusing half the day, limiting the num-
ber of flights and diurnal variations that might exist in the atmosphere. We
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start by creating a probabilistic forecast for a simple equal weighting multi-
diagnostic single-model ensemble for both the MOGREPS-G and ECMWF en-
sembles, as well as an optimised multi-diagnostic single-model ensemble. The
optimisation works by first prescribing a set of initial weightings for each di-
agnostic and each threshold, and then running an iterative scheme to change
the weightings to optimise the Relative Operating Characteristic (ROC) plot
by maximising the Area Under the Curve (AUC). This optimisation method
was also used by Gill & Buchanan (2014). It is important to note that this is a
trial and error method (for the initial weightings) and therefore the AUC we
have will not be the best the models can achieve. A multi-diagnostic multi-
model ensemble will also be created with an equal weighting for all diagnos-
tics, thresholds and ensembles, as well as an optimised ensemble combining
all thresholds, diagnostics and ensembles to maximise the AUC.

The turbulence diagnostics used in this trial are taken from the Graphical
Turbulence Guidance system 3 (GTG3) (Sharman & Pearson, 2017) as we use
the Ellrod TI1, the Brown index (Brown, 1973), a mountain wave turbulence
predictor (MWT12 from Sharman & Pearson (2017)) the Richardson number
(Ri) and convective precipitation accumulation. The Ellrod TI1 turbulence di-
agnostic is the same used in Chapters 3, 4 and 5 and is defined as:
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(6.1)

where u is the horizontal wind velocity in the East-West direction, v is the
horizontal wind velocity in the North-South direction, x is distance in the East-
West direction, y is distance in the North-South direction and z is distance in
the vertical. The Brown index was used as part of Chapter 4 and Gill (2014)
and is useful because it includes absolute vorticity, vertical wind shear and
deformation and is defined as:
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(6.2)

where u is the horizontal wind velocity in the East-West direction, v is the
horizontal wind velocity in the North-South direction, x is distance in the East-
West direction, y is distance in the North-South direction and f is the coriolis
frequency. The MWT predictor used in the project was MWT12 from Sharman
& Pearson (2017) and was one that performed best in their trial over the United
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States and is defined as:

MWT = ds × |TEMPG| (6.3)

where ds is a near surface diagnostic (low-level wind speed perpendicu-
lar to the ridgeline) and TEMPG is the horizontal temperature gradient. The
Richardson number was used as part of Chapter 3 and 4 and is defined as:

Ri =
N2

(∂U/∂z)2 =
(g/θ)(∂θ/∂z)
(∂U/∂z)2 , (6.4)

where N2 is the Brunt–Väisälä frequency squared, U is horizontal wind
speed, z is altitude, g is gravitational acceleration, and θ is potential temper-
ature. For the convective precipitation accumulation we combined both the
convective rain accumulation and convective snow accumulation to create one
convective precipitation diagnostic. The convective data was on a higher reso-
lution grid, so we used Iris (Met Office, 2013) to linearly regrid the data so that
it had the same horizontal resolution as the other turbulence diagnostics.

Diagnostic Units Ensemble Thr1 Thr2 Thr3 Thr4 Thr5
Ellrod T1 s−2 MOGREPS-G 3 5 8 11 20
×10−7 s−2 ECMWF 3 5 8 11 20
Brown s−1 MOGREPS-G 12 15 20 25 30
×10−5 s−1 ECMWF 12 15 20 25 30
MWT K s−1 MOGREPS-G 1 5 10 15 20
×10−1 K s−1 ECMWF 1 5 10 15 20

Richardson MOGREPS-G 5 10 20 50 100
×10−2 ECMWF 5 10 20 50 100

Convection kg m−2 MOGREPS-G 1000 5000 10000 15000 20000
×10−2 m ECMWF 1 5 10 15 20

TABLE 6.1: Table showing the five turbulence thresholds used for
each of the turbulence diagnostics in this study

To create a probabilistic turbulence forecast, thresholds are set for each of
the turbulence diagnostics and any time an ensemble member exceeds that
threshold, it is classed as a turbulence forecast. The higher the number of en-
semble members exceeding the threshold, the higher the probability of tur-
bulence. The thresholds used for each diagnostic and ensemble are shown in
Table 6.1 and are chosen so they divide the distribution of forecasted values
into approximately even groups. The initial thresholds were selected based on
the highest values of the turbulence diagnostic on 01/05/2016 (the first day
of the trial), and then the ensemble forecast was created. Depending on if the



78 Chapter 6. Multi-Diagnostic Multi-Model Ensemble

threshold was too high or too low it was then adjusted and the analysis run
again until we had five suitable thresholds. We can see that the thresholds
chosen are the same for both forecast centres, except for convective precipita-
tion accumulation. This is because the thresholds needed for MOGREPS-G are
much higher than for ECMWF because the units are different. The MOGREPS-
G ensemble has units of ’kg m−2’ whereas ECMWF has units of ’m’. The two
units are related however, because 1 kg m−2 is equivalent to 1 mm of precipi-
tation (which is the same as 0.001 m). This therefore means the thresholds are
actually the same but the units are slightly different.

The verification method is also the same as Section 5.3. We use the obser-
vational aircraft data ±1.5 hours of the forecast time to see if the probability
forecast can forecast the moderate-or-greater turbulence events. From these
results we plot a ROC plot which shows forecast skill by plotting the hit rate
(Equation 5.5) against the false alarm rate (Equation 5.6) (Jolliffe & Stephenson,
2012; Gill, 2016). The more skilful the forecast, the higher the AUC will be, and
this will show a forecast that has found a good balance between forecasting as
many hits as possible while minimising the number of false alarms. As dis-
cussed in Chapter 5, the forecast skill shown by a ROC plot is not the only
way to show how useful a forecast is. The relative economic value (Richard-
son, 2000; Jolliffe & Stephenson, 2012) shows how valuable the forecast is for a
given cost/loss ratio which will be user specific. If the forecast is more valuable
for all cost loss ratios, known as sufficiency (Ehrendorfer & Murphy, 1988), any
user would benefit from this model. Forecast reliability is also a way of un-
derstanding how well a forecast model performs (Jolliffe & Stephenson, 2012;
Gill, 2016). By plotting the forecasted probability and the actual observed fre-
quency, we can understand if we are over- or under-forecasting the turbulence
events.

6.2 Single-Diagnostic Ensemble

To create a multi-diagnostic multi-model ensemble we must first create the
probabilistic forecast for each of the turbulence diagnostics, before combining
them. To do this we followed the same method as shown in Chapter 5 by cre-
ating a single-diagnostic single-model ensemble but this time for each of the
five turbulence diagnostics. The probability forecast was created for both the
MOGREPS-G ensemble and the ECMWF 51 member ensemble. Figure 6.1 is
an example ROC plot of the Ellrod TI1 turbulence diagnostic for the ECMWF
51 member ensemble and MOGREPS-G ensemble using the first and therefore
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lowest turbulence threshold. A direct comparison cannot be made with Fig-
ure 5.5 because the data periods are not identical and this trial has a coarser
horizontal resolution (and as seen is Chapter 3 resolution has an impact on
the location of turbulence forecasted). What we see is that both the ECMWF
and MOGREPS-G have a less steep line than in Figure 5.5, which suggests that
this trial has less skill than the previous trial. This is likely to be caused by
the resolution of the forecast being much coarser in this trial and also the con-
vective events have not been removed, so the Ellrod TI1 predictor will be less
skilful. However, the similarities are the MOGREPS-G ensemble is slightly be-
low the ECMWF line particularly at the higher false alarm rates. This would
lead to a higher AUC for ECMWF than MOGREPS-G for the single-diagnostic
single-model ensemble. The issue of the line being shorter for the MOGREPS-
G ensemble is not of so much importance in this study and therefore a more
direct comparison of AUC can be made.

We also created a combined equal weighted single-diagnostic multi-model
ensemble. The AUC for each of the turbulence diagnostics and all five thresh-
olds for the MOGREPS-G, ECMWF and the multi-model ensembles are shown
in Table 6.2. As indicated in Figure 6.1 the ECMWF ensemble has a higher
AUC for most of the diagnostics and thresholds. However, the MOGREPS-G
is more skilful for some diagnostics, such as MWT. It is also interesting that
the highest two thresholds for MWT have no skill, as the threshold is too high
to capture any turbulence events. This is not a surprise because the MWT pre-
dictor will only be forecasting events over and around mountains. Therefore
the number of events that could be forecasted are much lower than the other
turbulence diagnostics that forecast, for example, around the jet stream. The
multi-model ensemble is more skilful than either the ECMWF or MOGREPS-G
ensemble for each predictor. This follows on from Chapter 5 and shows that
having a multi-model ensemble is more skilful than a single model ensemble.
However as in Chapter 5, we can’t show it at the 95% confidence interval. Both
the upper and lower confidence interval bounds for the multi-model ensemble
are shown in Table 6.2 and there are only six occasions where the multi-model
ensemble is significantly more skilful than MOGREPS-G, only one occasion for
ECMWF and there are no occasions when it is significantly higher than both.

To illustrate this, we have taken the two thresholds with the highest AUC
for each of the diagnostics (which is threshold 1 and 2 for all diagnostics) and
plotted them in Figure 6.2. The Triangle icon is MOGREPS-G, the Diamond
is ECMWF and the Circle is the combined multi-model ensemble. The 95%
confidence interval for the multi-model ensemble are also included. We see
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Ellrod TI1
Thr1 Thr2 Thr3 Thr4 Thr5

ECMWF 51 0.7197 0.7032 0.6486 0.5978 0.5162
MOGREPS-G 12 0.7111 0.6905 0.6272 0.5854 0.5162

Multi-model 95% lower CI 0.7013 0.6973 0.6378 0.5923 0.5126
Multi-model 0.7244 0.7197 0.6601 0.6104 0.5210

Multi-model 95% upper CI 0.7477 0.7425 0.6837 0.6298 0.5306
Brown Index

Thr1 Thr2 Thr3 Thr4 Thr5

ECMWF 51 0.6189 0.5781 0.5311 0.5170 0.5035
MOGREPS-G 12 0.5912 0.5595 0.5276 0.5125 0.5056

Multi-model 95% lower CI 0.6026 0.5643 0.5199 0.5103 0.5013
Multi-model 0.6244 0.5858 0.5328 0.5186 0.5054

Multi-model 95% upper CI 0.6476 0.6065 0.5454 0.5280 0.5105
MWT

Thr1 Thr2 Thr3 Thr4 Thr5

ECMWF 51 0.5293 0.5038 0.5000 0.5000 0.5000
MOGREPS-G 12 0.5298 0.5055 0.5020 0.5000 0.5000

Multi-model 95% lower CI 0.5182 0.5015 0.4999 0.5000 0.5000
Multi-model 0.5302 0.5064 0.5019 0.5000 0.5000

Multi-model 95% upper CI 0.5438 0.5121 0.5051 0.5000 0.5000
Richardson Number

Thr1 Thr2 Thr3 Thr4 Thr5

ECMWF 51 0.7694 0.7703 0.6833 0.5210 0.5040
MOGREPS-G 12 0.7694 0.7703 0.6730 0.5231 0.5040

Multi-model 95% lower CI 0.7596 0.7650 0.6813 0.5219 0.5009
Multi-model 0.7773 0.7864 0.7036 0.5326 0.5040

Multi-model 95% upper CI 0.7951 0.8060 0.7255 0.5445 0.5086
Convective precip accumulation

Thr1 Thr2 Thr3 Thr4 Thr5

ECMWF 51 0.7142 0.7216 0.6994 0.6812 0.6480
MOGREPS-G 12 0.7126 0.7059 0.6855 0.6720 0.6611

Multi-model 95% lower CI 0.6968 0.6987 0.6833 0.6686 0.6534
Multi-model 0.7195 0.7222 0.7076 0.6924 0.6767

Multi-model 95% upper CI 0.7439 0.7461 0.7303 0.7154 0.6997

TABLE 6.2: Table showing the Area Under the ROC Curve (AUC)
for five thresholds for each of the five turbulence diagnostics
for the ECMWF 51-member ensemble, MOGREPS-G ensemble,
combined multi-model ensemble 95% lower confidence interval,
combined multi-model ensemble and combined multi-model en-
semble 95% upper confidence interval. The data used has a
forecast lead time between T+24 hours and T+33 hours between

September 2016 and August 2017.
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FIGURE 6.1: ROC plot of the global turbulence for threshold 1 of
the Ellrod TI1 diagnostic for the MOGREPS-G ensemble (dash)
and ECMWF 51-member ensemble (dot). The data used has a
forecast lead time between T+24 hours and T+33 hours between

September 2016 and August 2017.

that for the most part the ECMWF is more skilful than MOGREPS-G and there
are only three occasions where the multi-model ensemble is significantly more
skilful than either of the single model ensembles. Figure 6.2 also shows how
well each of the different diagnostics perform, with the Richardson number
producing the highest AUC and Ellrod TI1 and convective precipitation ac-
cumulation just behind. The Brown index and MWT however perform worse
with much lower AUC, however including them may still have some benefit in
a multi-diagnostic ensemble as they may be forecasting more extreme events
that the other predictors could be missing. This is especially true of the MWT
predictor as none of the the other predictors are targeting MWT and therefore
without it, these events will be missed.
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FIGURE 6.2: Plot showing the Area Under the ROC Curve (AUC)
for the 2 thresholds with the highest AUC for 5 turbulence di-
agnostics from the MOGREPS-G ensemble (triangle), ECMWF
51-member ensemble (diamond) and combined multi-model en-
semble (circle). The combined single-diagnostic multi-model en-
semble has error bars showing the 95% confidence interval. For
reference the combined equal weighted multi-diagnostic single-
model ensemble and multi-diagnostic multi-model ensemble
have also been included. The data used has a forecast lead time
between T+24 hours and T+33 hours between September 2016

and August 2017.

6.3 Multi-Diagnostic Ensemble

The multi-diagnostic multi-model ensemble can be created in two ways, first
by combining all thresholds, diagnostics and ensembles equally to create a
simple super ensemble. The second is to combine them by optimising the
diagnostics, thresholds and models used. In this study we create both the
simple and optimised multi-diagnostic ensemble for the MOGREPS-G and
ECMWF ensemble as well as a multi-diagnostic multi-model ensemble. The
thresholds used in the multi-diagnostic multi-model ensemble are shown in
Table 6.3. Some of the diagnostics have more weight (for example Richardson
number and convective precipitation accumulation) and for some diagnostics,
one model has a higher weight than the other (for example MOGREPS-G has
more weight for the Brown index than ECMWF). The ROC plot for the opti-
mised ensembles are shown in Figure 6.3. The first thing to note is it has a
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FIGURE 6.3: ROC plot of the global turbulence for a multi-
diagnostic MOGREPS-G ensemble (dash), multi-diagnostic
ECMWF 51-member ensemble (dot) and combined multi-
diagnostic multi-model ensemble (solid). Five turbulence thresh-
olds for each turbulence diagnostic are optimally combined to
maximise the area under the ROC curve and uses a forecast lead
time between T+24 hours and T+33 hours between September

2016 and August 2017.
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much higher AUC than the single diagnostic ensembles shown in Figure 6.1.
This shows that using multiple thresholds and diagnostics we can increase the
forecast skill. It is also interesting that the MOGREPS-G ensemble has a higher
skill than the ECMWF ensemble and at very low false alarm rates, MOGREPS-
G is more skilful than the multi-model ensemble. This is a very interesting
result and one that was not expected. In Section 6.2 we found that ECMWF
has a consistently higher AUC for almost every diagnostic, yet when combin-
ing diagnostics we see that the MOGREPS-G ensemble is more skilful.

Diagnostic Ensemble Thr1 Thr2 Thr3 Thr4 Thr5
Ellrod T1 MOGREPS-G 0.1 0.1 0.1 0.4 0.1

ECMWF 0.0 0.1 0.1 1.3 0.1
Brown MOGREPS-G 0.0 0.1 0.1 0.0 0.9

ECMWF 0.0 0.0 0.0 0.0 0.0
MWT MOGREPS-G 0.1 0.0 0.0 0.0 0.0

ECMWF 0.3 0.0 0.0 0.0 0.0
Richardson MOGREPS-G 0.1 0.2 0.2 0.9 0.1

ECMWF 0.1 0.1 0.1 0.3 0.1
Convection MOGREPS-G 0.2 0.1 0.1 0.1 0.2

ECMWF 0.0 0.1 0.2 0.1 0.1

TABLE 6.3: Table showing the weightings used of the MOGREPS-
G and ECMWF 51 member ensemble to create the optimised

multi-diagnostic multi-model ensemble.

For a single-diagnostic ensemble to be skilful, the forecast spread needs to
be large enough to capture as many turbulence events as possible (hits) but
also avoid too many false alarms. The ECMWF ensemble achieves this more
successfully than the MOGREPS-G ensemble, which is why it has a higher
AUC for almost all the diagnostics. However, if each of the diagnostics fore-
casts a turbulence event slightly differently, when combining ensembles, the
area of forecasted turbulence will be increased. This can lead to more hits but
there could also be more false alarms. The larger the ensemble spread of the
individual diagnostics, the greater the ensemble spread of the multi-diagnostic
ensemble. It appears in this case that although the spread for ECMWF works
well for the individual diagnostics, when combining them, the number of false
alarms starts to outweigh the number of hits and the resultant forecast skill is
reduced. The MOGREPS-G ensemble however, has less forecast spread for the
individual diagnostics, but then when combining them, the forecast spread
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increases just the right amount and the forecast skill is then higher than the
ECMWF ensemble.

Combined equal Combined optimised
ECMWF 51 0.8498 0.8555

MOGREPS-G 12 0.8564 0.8630
Multi-model 95% lower CI 0.8442 0.8530

Multi-model 0.8590 0.8679
Multi-model 95% upper CI 0.8745 0.8829

TABLE 6.4: Table showing the Area Under the ROC Curve (AUC)
for the combined equal weighting multi-diagnostic ensemble and
combined optimised multi-diagnostic ensemble for the ECMWF
51-member ensemble, MOGREPS-G ensemble, combined multi-
model ensemble 95% lower confidence interval, combined multi-
model ensemble and combined multi-model ensemble 95% up-
per confidence interval. The data used has a forecast lead time
between T+24 hours and T+33 hours between September 2016

and August 2017.

Table 6.4 shows the AUC for the combined equal and combined optimised
single-model and multi-model ensembles. The multi-model ensemble also has
the 95% upper and lower confidence intervals and again we see that it is not
significantly better than either of the two single-model ensembles. Figure 6.4
shows the results in Table 6.4 as a bar chart and we can clearly see that for both
the combined equal and combined optimised ensemble, MOGREPS-G is more
skilful. The optimised ensemble is also more skilful than the combined equal
ensemble and shows the benefit of taking time to optimise the thresholds and
diagnostics used.

Figure 6.5 is a value plot of the optimised multi-diagnostic ensemble for
MOGREPS-G, ECMWF and multi-model ensemble. We see that it is the MOGREPS-
G ensemble that has more value for all cost/loss ratios than the ECMWF en-
semble which is the opposite to what was found in Figure 5.6 from Chap-
ter 5. This follows on from the ROC plots where MOGREPS-G outperformed
the ECMWF ensemble and again suggests that when combining the diagnos-
tics, ECMWF has too large a forecast spread and therefore the balance be-
tween hits and false alarms is not quite optimised. What we also see is that
the combined multi-model ensemble is not more valuable for all cost/loss ra-
tios. This suggests that for some consumers it might be more beneficial to just
have the MOGREPS-G ensemble and not include the ECMWF ensemble at all.
However, the multi-model ensemble would add operational resilience and the
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FIGURE 6.4: Bar chart showing the Area Under the ROC
Curve (AUC) for the multi-diagnostic ECMWF 51-member en-
semble (dark blue), multi-diagnostic MOGREPS-G ensemble (or-
ange), combined multi-diagnostic multi-model ensemble 95%
lower confidence interval (light grey), combined multi-diagnostic
multi-model ensemble (green) and combined multi-diagnostic
multi-model ensemble 95% upper confidence interval (dark
grey). For the bar chart on the left, the five turbulence thresh-
olds for each turbulence diagnostic are combined equally and on
the right the five turbulence thresholds for each turbulence di-
agnostic are optimally combined to maximise the area under the
ROC curve. The data used has a forecast lead time between T+24
hours and T+33 hours between September 2016 and August 2017.

multi-model ensemble is almost as valuable as the MOGREPS-G ensemble and
would therefore be the more ideal option.

Forecast reliability is shown in Figure 6.6 and a calibration constant has
been applied to the forecast probability. This constant is 1/150 for MOGREPS-
G, 1/90 for ECMWF and 1/200 for the multi-model ensemble. What we find is
there is a limit to how reliable the forecast can be. It appears that at a forecast
probability above 0.25%, the frequency increases far faster than the forecasted
probability. This is a problem with applying a linear calibration constant. For
example, the highest actual forecast probability for the multi-diagnostic multi-
model ensemble before calibration is 88%. However, the linear calibration
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FIGURE 6.5: Value plot with a log scale x-axis of the global
turbulence showing the forecast skill for a multi-diagnostic
MOGREPS-G ensemble (dash), multi-diagnostic ECMWF 51-
member ensemble (dot) and combined multi-diagnostic multi-
model ensemble (solid). Five turbulence thresholds for each tur-
bulence diagnostic are optimally combined to maximise the area
under the ROC curve and uses a forecast lead time between T+24
hours and T+33 hours between September 2016 and August 2017.

(1/200) brings it down to 0.44% which is much lower than the observed fre-
quency of 1.18%. The linear constant is suitable for most of the probability
thresholds, with only the highest two for each ensemble resulting in an under-
forecast. It could be possible to apply a non-linear constant, however for this
study we have kept it simple with the linear constant.

6.4 Reduced Size Multi-Diagnostic Ensemble

As in Chapter 5, it is important to understand how the two ensembles com-
pare to each other with the same ensemble size. The ECMWF ensemble has
51 members, so we reduce this by selecting the first 12 members and produce
a bias free sub sample to directly compare with the 12 member MOGREPS-G
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FIGURE 6.6: Reliability diagram for a multi-diagnostic
MOGREPS-G ensemble (dash), multi-diagnostic ECMWF 51-
member ensemble (dot) and combined multi-diagnostic multi-
model ensemble (solid). Five turbulence thresholds for each tur-
bulence diagnostic are optimally combined to maximise the Area
under the ROC Curve and uses a forecast lead time between T+24
hours and T+33 hours between September 2016 and August 2017.
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FIGURE 6.7: Plot showing the Area Under the ROC Curve (AUC)
for the 2 thresholds with the highest AUC for five turbulence
diagnostics from the MOGREPS-G ensemble (triangle), ECMWF
12-member ensemble (diamond) and combined multi-model en-
semble (circle). The combined multi-model ensemble has error
bars showing the 95% confidence interval. For reference the com-
bined equal weighted multi-diagnostic single-model ensemble
and multi-diagnostic multi-model ensemble have also been in-
cluded. The data used has a forecast lead time between T+24
hours and T+33 hours between September 2016 and August 2017.

ensemble. The AUC for the first two thresholds for each turbulence diagnos-
tic is shown in Figure 6.7. The circle is the multi-model ensemble with the
95% confidence intervals displayed, the MOGREPS-G ensemble (triangle) and
ECMWF 12-member ensemble (diamond) are also shown. As in Figure 6.2 the
multi-model ensemble is more skilful than both of the single model ensembles
and for the most part the ECMWF ensemble is slightly more skilful than the
MOGREPS-G ensemble. It is interesting to note that the 12 member ensemble
seems to be slightly less skilful than the 51 member ECMWF ensemble, which
is what we found in Chapter 5, but here we find it is consistent across all tur-
bulence diagnostics.

Figure 6.8 is a bar chart showing the combined multi-diagnostic ensem-
ble for the ECMWF 12-member ensemble, MOGREPS-G ensemble and com-
bine multi-model ensemble with its upper and lower 95% confidence interval.
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Diagnostic Ensemble Thr1 Thr2 Thr3 Thr4 Thr5
Ellrod T1 MOGREPS-G 0.1 0.1 0.1 0.8 0.2

ECMWF 0.0 0.1 0.1 0.5 0.1
Brown MOGREPS-G 0.0 0.0 0.2 0.0 0.0

ECMWF 0.0 0.0 0.0 0.0 0.0
MWT MOGREPS-G 0.1 0.0 0.0 0.0 0.0

ECMWF 0.4 0.0 0.0 0.0 0.0
Richardson MOGREPS-G 0.1 0.1 0.1 1.5 0.1

ECMWF 0.0 0.1 0.2 0.1 0.1
Convection MOGREPS-G 0.1 0.1 0.1 0.1 0.1

ECMWF 0.0 0.1 0.2 0.1 0.1

TABLE 6.5: Table showing the weightings used of the MOGREPS-
G and ECMWF 12 member ensemble to create the optimised

multi-diagnostic multi-model ensemble.

The weightings used in the optimised multi-diagnostic multi-model ensem-
ble are shown in Table 6.5. We find that the multi-model ensemble with the
12-member ECMWF ensemble is more skilful than the multi-model ensemble
that uses the 51-member ensemble (from Figure 6.4). This agrees with Sec-
tion 6.3 that a smaller ensemble spread for each individual diagnostic will give
an overall better performance when combined in a multi-diagnostic ensem-
ble. This is why the MOGREPS-G ensemble is more skilful than the ECMWF
ensemble.

To investigate this further, Figure 6.9 is a plot showing the AUC for the
ECMWF 12-member ensemble (circle) with its 95% confidence interval dis-
played, the ECMWF 51-member ensemble (diamond) and the MOGREPS-G
ensemble (triangle) for the individual diagnostics. As expected, the 51-member
ECMWF ensemble is more skilful than the 12 member ensemble and in some
cases is significantly better. The MOGREPS-G ensemble has a similar forecast
skill to the ECMWF 12-member ensemble and therefore the reduced number
of members results in a lower AUC for the individual diagnostics. However,
Figure 6.10 shows the equal combined multi-diagnostic ECMWF 51 member
ensemble is slightly more skilful than the 12 member ensemble, but when opti-
mised, the 12-member ensemble is much more skilful. It is also interesting that
the MOGREPS-G ensemble is more skilful than either of the ECMWF multi-
diagnostic ensembles.
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FIGURE 6.8: Bar chart showing the Area Under the ROC
Curve (AUC) for the multi-diagnostic ECMWF 12-member en-
semble (light blue), multi-diagnostic MOGREPS-G ensemble (or-
ange), combined multi-diagnostic multi-model ensemble 95%
lower confidence interval (light grey), combined multi-diagnostic
multi-model ensemble (green) and combined multi-diagnostic
multi-model ensemble 95% upper confidence interval (dark
grey). For the bar chart on the left, the five turbulence thresh-
olds for each turbulence diagnostic are combined equally. On the
right of the bar chart, the five turbulence thresholds for each tur-
bulence diagnostic are optimally combined to maximise the area
under the ROC curve. The data used has a forecast lead time be-
tween T+24 hours and T+33 hours between September 2016 and

August 2017.

6.5 Conclusions and Further Work

This study has expanded on the work in Chapter 5 by investigating the forecast
skill of a multi-diagnostic multi-model ensemble for aviation turbulence. As in
Chapter 5, we created probabilistic forecasts however this study created them
for five turbulence diagnostics (Ellrod TI1, Brown Index, mountain wave tur-
bulence, Richardson number and convective precipitation accumulation) and
two ensembles: the Met Office Global and Regional Ensemble (MOGREPS-G)
and the European Centre for Medium Range Weather Forecasting (ECMWF)
ensemble prediction system. By combining the ensemble predictors a multi-
diagnostic ensemble can be created. Then combining the two ensembles, a
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FIGURE 6.9: Plot showing the Area Under the ROC Curve (AUC)
for the 2 thresholds with the highest AUC for five turbulence di-
agnostics from the MOGREPS-G ensemble (triangle), ECMWF
51-member ensemble (diamond) and ECMWF 12-member en-
semble (circle). The ECMWF 12-member ensemble has error bars
showing the 95% confidence interval. For reference the com-
bined equal weighted multi-diagnostic single-model ensemble
have also been included. The data used has a forecast lead time
between T+24 hours and T+33 hours between September 2016

and August 2017.

multi-diagnostic multi-model ensemble can be created. The trial ran from
September 2016 to August 2017 and used the 00 UTC forecast run and fore-
tasted T+24, T+27, T+30 and T+33 hours. The forecast was verified against a
fleet of Boeing 747 and 777 aircraft.

The results in this study agreed with Chapter 5 that the ECMWF 51 mem-
ber ensemble was more skilful than the MOGREPS-G ensemble for the indi-
vidual diagnostics. The multi-model ensemble was also more skilful than ei-
ther of the single model ensembles (but not significantly for most examples).
When combining the predictors, the multi-diagnostic ensemble was more skil-
ful for the MOGREPS-G ensemble than the ECMWF ensemble for both the
equal combined and optimised ensemble. Again, the multi-diagnostic multi-
model ensemble was more skilful than the two single model ensembles. The
relative economic value of the multi-diagnostic ensemble was also plotted and
the MOGREPS-G ensemble was more valuable than the ECMWF ensemble,
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FIGURE 6.10: Bar chart showing the Area Under the ROC
Curve (AUC) for the multi-diagnostic 51-member ensemble (dark
blue), multi-diagnostic MOGREPS-G ensemble (orange), multi-
diagnostic ECMWF 12-member ensemble 95% lower confidence
interval (light grey), multi-diagnostic ECMWF 12-member en-
semble (light blue) and multi-diagnostic ECMWF 12-member en-
semble 95% upper confidence interval (dark grey). For the bar
chart on the left, the five turbulence thresholds for each turbu-
lence diagnostic are combined equally and on the right the five
turbulence thresholds for each turbulence diagnostic are opti-
mally combined to maximise the area under the ROC curve. The
data used has a forecast lead time between T+24 hours and T+33

hours between September 2016 and August 2017.

and in some cases was also more valuable than the multi-model ensemble. The
forecast reliability was also plotted and all ensembles have similar reliability,
however at 0.25% forecast probability the ensembles start under-forecasting
the events. To overcome this it could be possible to apply a nonlinear calibra-
tion, however we have kept a linear calibration in this study as it is suitable for
most of the forecast probabilities.

Since the MOGREPS-G ensemble was more skilful than the ECMWF en-
semble it was important to understand why, and therefore we created a 12
member ECMWF ensemble and ran the verification again. It was found that
the 12 member ensemble for the individual diagnostics was less skilful than
the 51 member ensemble (as in Chapter 5). When combined into the optimised



94 Chapter 6. Multi-Diagnostic Multi-Model Ensemble

multi-diagnostic ensemble, the 12 member ensemble was more skilful. This
therefore indicates a smaller ensemble spread for the individual diagnostics
within a multi-diagnostic ensemble is important for optimising operationally
in the future. Since the 12-member ECMWF ensemble provides a more skilful
forecast than the 51-member ensemble, it could reduce computation costs for
turbulence forecasting. Only 12 members would need to be calculated, saving
memory space and computational time. It is also worth exploring the impact
of ensemble size on a multi-diagnostic multi-model ensemble further to see
if there is an optimum number of ensemble members to maximise forecast
skill. Also the MOGREPS-G ensemble is designed to be time lagged to create
a 24-member ensemble (Met Office, 2017), therefore investigating how well a
24-member MOGREPS-G ensemble performs against the 12-member ensemble
would also be worth further study. Not only increasing the ensemble size, but
adding a third ensemble would also be worth investigating. The Global En-
semble Forecast System (GEFS) from the National Centers for Environmental
Prediction (NCEP) could provide more skill by adding its own strengths and
weaknesses, but would need verifying before being made operational.
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Chapter 7

Conclusions

Turbulence is a major hazard to aviation, causing injuries to passengers and
crew, costing the industry at least millions of dollars every year (Sharman &
Lane, 2016). Recent research suggests Clear-Air Turbulence (CAT) will in-
crease in the future with climate change (Williams & Joshi, 2013; Williams,
2017). These studies that investigate the impact of climate change on CAT
used climate models, however there was previously a gap in the literature in-
vestigating how well climate models predict the location of CAT or how well
they forecast the changes of CAT with climate change. The first part of this the-
sis attempted to answer this question by comparing the global distribution of
CAT from the climate models to the location of CAT in reanalysis data. The re-
analysis model used in this study was the ERA-Interim reanalysis data set and
the climate model was the HadGEM2-ES model with historical greenhouse gas
emissions. Both models have different horizontal resolutions and therefore the
ERA-Interim data set (which has a higher resolution) was regridded onto the
same grid as the climate model. The results showed that the climate model
can predict the location of CAT on a global scale, however the resolution does
impact the location. The spatial distribution from the climate model was more
similar to the reanalysis data on the same grid than the reanalysis data on its
native grid. This is important and further work is needed to fully understand
how the resolution impacts CAT forecasting. The main result from this study
was, there is more uncertainty in choosing which turbulence diagnostic to use
than which numerical model was used. This therefore suggests the climate
model can forecast the location of CAT.

We continued this study by also comparing the climate change response of
the reanalysis data and the climate model data. We split both data sets into
two 19 year periods and calculated the percentage change of CAT between
the two periods. The main result again indicated there is more uncertainty in
which turbulence diagnostic to use rather than which model was used. We also
found that the global response in the climate model was much weaker than the
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reanalysis data, suggesting that any estimates in a global climate change study
could be an underestimate.

The previous climate change research only focused on the North Atlantic,
therefore in Chapter 4 we investigate the response of CAT to climate change
for the entire world. The study used the same HadGEM2-ES model as in Chap-
ter 3, however the atmospheric forcing used was pre-industrial control (picon-
trol) and the Intergovernmental Panel on Climate Change (IPCC) Represen-
tative Concentration Pathway 8.5 (RCP8.5) (Flato et al., 2013). By comparing
two 30 year periods (one 30 year period from picontrol and 2050–2080 from
RCP8.5) we can see how the global climate system responds to climate change.
20 turbulence diagnostics were used and all showed an increase in CAT with
climate change. By averaging all turbulence diagnostics we showed that CAT
would increase in all seasons, at multiple flight levels and across all turbulence
strength categories (light to severe). The global average increase in CAT masks
some of the regional changes as the response is not uniform around the entire
world. Therefore regional increases are also found and in some cases turbu-
lence is set to more than double, with severe turbulence nearly tripling in the
North Atlantic. As discussed in Chapter 3, the HadGEM2-ES model under-
estimates the global response of CAT to climate change and as a result these
could also be underestimates. This therefore indicates a more urgent need to
improve turbulence forecasting.

Ensemble forecasting has been shown to increase forecast skill (Gill & Buchanan,
2014; Buchanan, 2016), we therefore build on this work by following other
areas of meteorology in multi-model ensemble forecasting, such as tropical
cyclone forecasting (Krishnamurti et al., 2000; Vitart, 2006; Titley & Stretton,
2016). Here we combine the Met Office Global and Regional Ensemble Pre-
diction System (MOGREPS-G) and the European Centre for Medium Range
Weather Forecasting (ECMWF) ensemble prediction system. As an initial test
the turbulence diagnostic Ellrod & Knapp (1992) Turbulence Index 1 (Ellrod
TI1) was used and found that the ECMWF ensemble was more skilful in pro-
ducing an ensemble forecast than the MOGREPS-G ensemble, however the
multi-model ensemble was more skilful than either of the two single-model
ensembles. Although the multi-model ensemble was more skilful, it was not
significant at the 95% confidence interval. It was found though, that the rela-
tive economic value of the forecast was higher for all cost/loss ratios, which
is known as sufficiency (Ehrendorfer & Murphy, 1988). This indicates that
for any given user, no mater how much importance they have on maximising
hits and minimising false alarms, the multi-model ensemble has greater value.
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In addition the multi-model ensemble was as reliable as the single model en-
semble. The multi-model ensemble also gives more operational resilience and
creating one authoritative forecast whilst maintaining skill and reliability and
increasing value, which would be particularly important in operational use in
the future by the WAFCs.

Ensemble forecasting is one method being developed for turbulence fore-
casting. The other is multi-diagnostic forecasting, such as the Graphical Turbu-
lence Guidance System (GTG) with the latest version GTG3 including MWT as
well as shear turbulence predictors (Sharman & Pearson, 2017). Both methods
have their own benefits to improving turbulence forecasting and therefore we
combine them to make a multi-diagnostic multi-model ensemble in Chapter 6.
We combine the Ellrod TI1, Brown index (Brown, 1973), mountain wave turbu-
lence predictor (MWT12 from Sharman & Pearson (2017)), Richardson number
and convective precipitation accumulation. Before combining them into one
ensemble, we first run them as single-diagnostic single-model ensembles and
a single-diagnostic multi-model ensemble similar to Chapter 5. The results
agree with Chapter 5 that the ECWMF is more skilful than MOGREPS-G and
a 12 member ECMWF ensemble is less skilful than the ECMWF 51 member
ensemble. We also found that the multi-model ensemble is more skilful than
the single model ensembles but not significantly at the 95% confidence inter-
val. We then combined the diagnostics equally for all thresholds as well as
optimising them by weighting each threshold and diagnostic to maximise the
Area Under the Curve (AUC) of a Relative Operating Characteristic (ROC)
plot. After doing this the MOGREPS-G ensemble was more skilful than the
ECMWF ensemble, and when optimised, the ECMWF 12 member ensemble
was more skilful than the ECMWF 51 member ensemble. This suggests that a
smaller spread for the individual diagnostics, when combined, gives a much
better spread and therefore forecast skill. It was also found that the multi-
diagnostic multi-model ensemble was more skilful than either of the single
model ensembles. However, the multi-diagnostic multi-model ensemble con-
taining the ECMWF 12 member ensemble was again more skilful than the one
containing the ECMWF 51 member ensemble. This is an important result be-
cause it suggests that it is better to have fewer ensemble members when creat-
ing a multi-diagnostic multi-model ensemble for turbulence forecasting. This
therefore reduces the number of members needed to be processed and stored,
saving computational time and money.
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During this project we have answered some important questions in avia-
tion turbulence research, such as discovering that CAT will increase with cli-
mate change globally in all seasons, flight levels and turbulence strength cat-
egories. We have also found that multi-model ensemble forecasting does im-
prove forecast skill, although not significantly, and a smaller ensemble spread
in a multi-diagnostic ensemble gives a better forecast skill. However we also
raised some questions that would need to be answered in further study. For
the reanalysis work, the impact of inter-annual and decadal variability such
as the Atlantic Multi-decadal Oscillation (AMO), El Niño Southern Oscillation
(ENSO) and North Atlantic Oscillation (NAO) requires further study. Also the
new reanalysis data set ERA5 is being produced, which would provide an up-
dated data set with a higher spatial resolution, and data at 3 hourly intervals
(Hersbach & Dee, 2016), which would be worth using to investigate how CAT
has changed in the climate system over the last 40 years.

The climate change work also needs to be extended to include other Rep-
resentative Concentration Pathways such as RCP6 and RCP4.5. Also the Cou-
pled Model Intercomparison Project 6 (CMIP6) will be available in a few years,
which could provide more climate models that we can run the climate change
analysis on, creating a more robust analysis and result. We also know that
CAT is changing with climate change, however we do not know how that in-
crease will come about. It is important to understand whether the number of
CAT events will increase in the future or whether the same number of turbu-
lence events will occur, but each event will increase in size. Both responses
would have different impacts on the industry. For example more turbulence
events could increase the number of diversions or actions being taken by pilots
and flight planners, but a larger turbulence area would subject the airframe to
longer periods of stress. Both would have impacts, and these would need to
be investigated.

The ensemble forecasting also has some interesting areas of further study,
the main one is investigating if there is an optimum number of ensemble mem-
bers to maximise forecast skill, because fewer ECMWF ensemble members
increased the forecast skill. Therefore, there could be an optimum number
of members that produce a suitable forecast skill that, when combined, max-
imises the number of hits while minimising the number of false alarms. It
would also be interesting to see if a time lagged MOGREPS-G ensemble (pro-
ducing a 24 member ensemble) would provide a higher forecast skill. A third
ensemble could also be added to create a three model multi-model ensemble,
which could increase the forecast skill further.
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Aviation turbulence is likely to be more important in the future, with a
changing climate and an ever-increasing demand for air travel. Hopefully this
project has answered some fundamental questions around aviation turbulence
and climate change and has laid the foundation to introduce a new way of
forecasting aviation turbulence.
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Turbulence Equations

Negative Richardson number
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Brown index
f = 2Ω sin(φ) (A.7)
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Wind speed times directional shear
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Flow deformation times vertical temperature gradient
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Negative absolute vorticity advection
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Version 1 of North Carolina State University index
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