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Thesis Abstract 

Cadmium (Cd) is one of the most hazardous contaminants in the environment and 

it is often associated with zinc (Zn) in polluted soils, a nutrient that can also cause 

toxicity at high concentrations. Among soil remediation techniques, 

phytoremediation – the use of plants to immobilise and/or extract contaminants 

from soils - is a promising technique, considered to be less harmful to the 

environment. This thesis studies Cd and Zn fungi- and phytotoxicity, and the 

biotechnological potential of different organisms (ecto- and arbuscular 

mycorrhizal fungi, trees and yeast) in environmental remediation. The 

experiments conducted in this project aimed to investigate the potential of poplar 

trees (Populus trichocarpa) in Cd and Zn phytoremediation, and the use of 

mycorrhizal symbiosis (Rhizophagus irregularis) to enhance metal extraction and 

sequestration in the host plant. Another aim was to understand some of the 

physiological and molecular processes by which poplar trees withstand Cd and Zn 

toxicity, and to provide additional knowledge on the metal uptake process in 

mycorrhizal poplars. Transgenic yeast carrying a poplar gene (PtMT2b) was also 

studied for its potential in Cd bioremediation from contaminated solutions. 

Results showed that P. trichocarpa is highly tolerant to Cd stress, and has a 

considerable accumulation capacity of Cd and Zn; under both Cd and Zn exposure, 

poplar shoots reached hyperaccumulator levels. Mycorrhizal symbiosis increased 

Cd sequestration in roots, and Zn accumulation in leaves, supporting their use for 

Cd phytostabilisation and Zn phytoextraction. Gene expression assessment 

indicated mainly the involvement of PtHMA4 and PtZIP1 in Cd and Zn transport. 

Expression of PtMT2b was associated with mycorrhizal colonisation and its role in 

Cd tolerance was demonstrated in transgenic yeast assays. A mutated version of 

the MT2b gene (PtMT2b ‘Y’) promoted high Cd tolerance and accumulation in 

transgenic yeast showing promising results for bioremediation of Cd-

contaminated wastewater. This thesis offers new opportunities for this possibly 

sustainable soil remediation technique; the knowledge gathered in this work may 

serve as basis for the genetic engineering of poplars or other organisms for heavy 

metal remediation or further research in refining and enhancing this technique. 
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General introduction and literature review 

 
 

  
 

Left: Famous picture of a Japanese woman suffering from the Itai-itai 

disease caused by Cd poisoning.  

 

Right: Heavy metal contamination in Tar Creek (mostly Zn and Pb) in the 

Tri-State Mining District in (USA). 

 
Sources:  
[http://pollutionpictures.blogspot.com/2010/07/itai-itai-disease-cadmium-poisoning.html] 
[https://serc.carleton.edu/NAGTWorkshops/health10/index.html] 
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Chapter 1: General introduction and literature review 

1.1 Heavy metals in soils 

The group of elements known as heavy metals (HMs) can be one of the 

most problematic and persistent environmental contaminants. These metals may 

be defined as the elements having density greater than 5 g cm−3 (Adriano, 2001) 

or a density five times greater than that of water (Naja and Volesky, 2009). Under 

such criteria, 53 out of the 90 naturally occurring elements are classed as HMs 

(Kaur and Garg 2017). Despite such definition not being an accurate 

characterisation of all the elements included in this group (Pourret, 2018), the 

term ‘heavy metal’ is still widely used and is as generalist as any other terms such 

as ‘potentially toxic elements’, ‘toxic metals’, ‘trace elements’, etc.  

Heavy metals form the main group of inorganic contaminants and occur 

naturally in soils at low concentrations, due to pedogenetic processes through 

time (Alloway, 2013). However, anthropogenic inputs often lead to high 

concentrations in the environment, exceeding those considered as background 

concentrations (Mirsal, 2010). Sources of HMs in the environment can be natural 

(such as mineral weathering), via agricultural inputs, industrial processes and 

domestic effluents (Nagajyoti et al. 2010). However, the primary sources of metal 

pollution are related to mining and smelting, electroplating, burning of fossil fuels, 

fertilisers, pesticides, sewage, atmospheric deposition, batteries and sludge 

application (Garbisu and Alkorta, 2001; Gadd, 2010; Chibuike and Obiora, 2014).  

More than 20% of China’s arable land is polluted by HMs (Ministry of 

Environmental Protection of China 2013 in: He et al. 2015), and a total area of at 

least 2.88 x 106 ha of destroyed land has been generated due to mining activities 

(Ali et al. 2013). As for Europe, there are at least 160,000 sites known to be 

potentially polluted (Montpetit and Lachapelle 2017), and HMs are considered to 

be one of the main soil contaminants along with mineral oil (Jones et al. 2012). But 

unlike the organic contaminants, most metals will not suffer chemical or microbial 

degradation and will persist in the environment for a long time after their 

introduction (Wuana and Okieimen, 2011) posing a risk to living organisms (Long 

et al. 1995). For instance, the half-life of cadmium in soils is estimated to be from 

13 to 1,100 years (Kabata-Pendias and Pendias, 2001). It is estimated that at least 
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6% of all European agricultural lands need eventual remediation due to HM 

contents above guidelines for food safety (Toth et al. 2016). 

At the correct concentrations, several metals are essential to life and 

ecosystems. Nonetheless, chronic low exposures or excessive concentrations of 

these metals can be poisonous or lead to severe environmental and health effects 

in living organisms (Ho and El-Khairy, 2009). High concentrations of micronutrients 

such as Cu, Zn, Mn, Ni and Fe along with non-essential metals (e. g. Pb, Ag and Cd) 

in the environment are of great ecotoxicological concern, especially when 

essential elements are substituted by non-essential ones, causing toxicity 

symptoms or death (Naja and Volesky, 2009).  

Soil contamination by HMs can lead to vegetation degradation, reduction 

of soil quality and affects, and consequently, the functioning of a whole ecosystem 

(Wong, 2003). When the metal enters the food chain, it can lead to 

biomagnification, meaning that a low concentration can increase and become 

even more toxic through different trophic levels (Janssen et al. 1993). For instance, 

high Cd amounts were found in the colostrum of mothers (54.5 µg L-1) living in a 

small town in Brazil, which suggests that this region may be contaminated 

(Nascimento et al. 2005). 

HMs are transitional elements, therefore several ions of different valence 

states are quite common for the same metal (Srivastava et al. 2012). However, 

most HMs usually form cations (e. g. Cu2+, Zn2+, Cd2+, Pb2+), which can be extremely 

hazardous, because once these toxic metals are present in the environment, they 

eventually become part of biotic and abiotic components of an ecosystem, 

interacting with each other and posing a risk to living organisms (Galloway et al. 

1982). For instance, such cations can bind to proteins, inactivating enzymes as well 

as DNA replication processes (Srivastava et al. 2012). 

 

1.2 Heavy metals in plants 

Soil contamination by HMs is a critical environmental concern due to their 

potential adverse ecological and health effects. Such phytotoxic elements are of 

widespread occurrence, and their acute and chronic effects on plants grown on 
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such soils are often reported in the literature (Yadav, 2010 – and references 

therein) since plants are the major accumulators of inorganic nutrients, including 

metals, on which a high proportion of living organisms depend. Several elements 

are also essential nutrients, however high concentrations are often toxic (Ross and 

Kaye 1994). The physiological range for essential metals between deficiency and 

toxicity is extremely narrow, from which homeostatic control and adjustments are 

a necessity for dealing with nutrient/metal availability (Clemens, 2006).  

Usually the root system is the primary form of contact between plants and 

the metal ions in soil solution, whereby toxic metal ions (such as HMs) enter plant 

cells by the same uptake processes that move essential micronutrient metal ions. 

According to Nieboer and Richardson (1980), class A metals (e.g. K, Ca, Mg) 

preferentially bind with oxygen-rich ligands, such as carboxylic groups, class B 

metals (e.g. Hg, Pb, Pt, Au) bind mostly with sulphur- and nitrogen-rich ligands (e.g. 

amino acids), and borderline metals (e.g. Cd, Cu, Zn) display intermediate 

preferences, with the heavier metals tending towards class B characteristics. HMs 

can also be absorbed directly into foliar tissues due to deposition of metal particles 

on leaf surfaces (Nagajyoti et al. 2010), increasing the risk of biomagnification 

through the food chain. 

Therefore, in order to survive, plants evolved and developed efficient and 

specific mechanisms to tolerate HM uptake from soils (Zenk 1996). Plants have a 

complex system of uptake/efflux, transport/chelation and sequestration for 

maintaining metal homeostasis (Viehweger et al. 2014). There are several 

intracellular strategies by which plants tolerate or avoid HM uptake, such as 

stimulating efflux pumping of metals from cytosol, chelation of metals by organic 

acids or metallothioneins (Kotrba et al. 2009) and compartmentalization into the 

vacuole (Hall, 2002). At an extracellular level, mycorrhizal symbiosis 

(Schützendübel and Polle 2002) and exudation of organic compounds like 

phytochelatins (Schat et al. 2002) can increase plant metal tolerance.  

Despite these tolerance mechanisms, phytotoxicity due to HM uptake is 

quite common. Some non-essential HMs have very similar geochemical 

characteristics to essential elements (macro or micronutrients) such as the case 

with arsenic (As) and P (Wenzel 2013) or Cd and Zn (Chaney 2010); because of this 
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similarity to essential elements, these metals can accumulate to potentially highly 

toxic concentrations in plant cells (Clemens, 2006). HMs can trigger similar toxicity 

responses due to other environmental stresses, such as with Cu and drought 

stress, Zn and cold stress or Cd mimicking pathogen contact effects (Viehweger et 

al. 2014). Phytotoxicity generally results in chlorosis, weak plant growth, yield 

depression, and may even be accompanied by reduced nutrient uptake, disorders 

in plant metabolism and, in leguminous plants, a reduced ability to fix molecular 

nitrogen (Guala et al. 2010). In higher plants, HM uptake and toxicity will depend 

on several factors, including plant species and ecotypes, rhizosphere microbiota, 

transport from surface into the root, translocation capacity from roots to shoots, 

soil chemical and physical characteristics, metal species, mobility and 

bioavailability of the element, and environment conditions (Ross and Kaye 1994; 

Patra et al. 2004). 

 

1.3 Cadmium and zinc in soils and plants 

1.3.1 Cadmium 

Cadmium (Cd) is an element that lacks a known biological function. It is 

considered to be one of the most harmful metals in the environment, because it 

can affect humans and other organisms at relatively low concentrations and is 

highly mobile in soils (Lei et al. 2010). Without human interference, Cd content in 

soils varies considerably according to the parent material, which bear different 

amounts of this element (Bradl 2005; Khan et al. 2017), but soil background 

concentrations are usually around 0.5 mg kg-1 Cd (Kabata-Pendias and Pendias 

2001). Cadmium is part of several primary minerals, mainly ZnO, ZnS (sphalerite), 

CdS (wurtzite/greenockite) and secondary minerals such as ZnCO3, due to its 

affinity to Zn and S (Smolders and Mertens 2013; Kaur and Garg 2017). Cadmium 

compounds are also known to be isotypic to other cation compounds, such as with 

Zn2+, Co2+, Fe2+, Mg2+ and Ca2+ (Kabata-Pendias and Pendias 2001). 

Cd occurs mostly in the form of Cd2+ and is usually concentrated in the 

topsoil, with its availability increased under lower soil pH (Kirkham 2006; Lux et al. 

2011). Cadmium accumulates in soil upper horizons mostly due to their higher 

organic matter contents and nutrient cycling processes, atmospheric deposition 
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and application soil amendments and fertilisers (Alloway 2013). In a fertiliser 

factory in the south of Brazil, atmospheric emissions are believed to be responsible 

for increasing Cd contents in nearby soils from 0.5 to 3.26 mg kg-1 over the years 

(Mirlean and Roisenberg 2006).  

Other anthropogenic sources of Cd include the combustion of fossil fuels, 

metallurgical activities, wastes from the cement industry, industrial and municipal 

wastes, mining, smelting and metal ore processing, which are responsible for a 

wide range of 5.6-38 x 106 kg of Cd released into the environment every year 

(Science Communication Unit 2013; He et al. 2015; Khan et al. 2017). Although 

mean Cd concentration in European topsoil is of 0.2 mg kg-1, areas with high Cd 

can be found in Italy, Slovenia, Croatia and France, with the outlier of 14.1 mg kg-

1 Cd reported in Greece (terra rossa) (Figure 1.1); as for stream sediments, even 

higher amounts of Cd can be found, mostly in Britain, Belgium, Czech Republic, 

northern and central Germany, and south-western Poland, of up to 43 mg kg-1 Cd 

(Salminen et al. 2005). In general, minimally polluted soils can contain up to 7 mg 

kg-1 Cd, while those near smelters can have concentrations as high as 578 mg kg-1 

(He et al. 2015). Some soils around mining areas in China were reported to contain 

nearly 80 mg kg-1 Cd, with an average of 11 mg kg-1 Cd (n=72) (Li et al. 2014). 

In agricultural soils specifically, Cd sources are mainly the application of 

sewage sludge and phosphate fertilisers (Alloway 2013). Some commercial 

phosphate fertilisers can have Cd contents from 0.67 up to 43 mg kg-1 (Bizarro et 

al. 2008) and increasing Cd concentrations in plants due to the use of such 

fertilisers have been reported (Nicholson et al. 1994; Gonçalves et al. 2008; Freitas 

et al. 2009; Gao et al. 2011). Cadmium deposition rates were estimated to be 

around 1,900 mg ha-1 every year in England and Wales, mainly via atmospheric 

deposition and inorganic fertilisers (Nicholson et al. 2003). Cadmium in 

agricultural soils in the UK ranges from less than 0.2 to 40.9 mg kg-1 (Chaney 2010). 

Increasing Cd concentrations in agricultural soils is especially worrisome, 

since one of the main routes by which humans are exposed to Cd is by ingesting 

plants grown in areas with high contents of this metal (ATSDR 2017), with 

exposure through vegetable consumption accounting to around 80% of total Cd 

intake in humans (Khan et al. 2017). In animals it can accumulate in the liver, 
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kidneys and reproductive organs (Kirkham 2006); with Cd contents reaching high 

levels in animal meat consumed as food, such as the 0.45 and 1 mg kg-1 Cd in pork 

kidney, in the UK and Denmark, respectively (Pan et al. 2010). In humans, long-

term exposure to Cd may lead to renal disfunction, lung diseases, but mainly this 

element is most associated with bone disorders, such as demineralisation of the 

bone causing osteomalacia (Mirsal 2010; ATSDR 2017). Cadmium is also associated 

to mutagenic effects, acting as a carcinogenic agent (Templeton and Liu 2010). 

In plants, Cd phytotoxicity can cause chlorosis, stunting, lipid peroxidation, 

necrosis, enzyme inactivation, decrease chlorophyll production, and induce 

oxidative stress (Pal et al. 2006; Gallego et al. 2012). Seed germination and 

seedling growth are also greatly affected by Cd (Chibuike and Obiora 2014; De 

Oliveira et al. 2016). At the cell level, Cd can alter chloroplast structure, degrade 

the mitochondria, inhibit mitosis and cause chromosomal aberrations (Das et al. 

1997; Gallego et al. 2012). Cadmium also competes with other elements for the 

same membrane transporters, thus inhibiting the uptake of other elements such 

as K, Fe, Mg and Ca (Rivetta et al. 1997; Shah et al. 2010). Some metalloproteins 

can have its native metal substituted by Cd, which can alter its functionality, such 

as the substitution of Mg in RuBisCo, Mn in oxygen complexes from the 

photosystem II and Ca in calmodulin (Viehweger et al. 2014). Normally in the 

environment, Cd concentrations in land plants are not high enough to induce 

toxicity, ranging from 0.1 to 2.4 mg kg-1 Cd (Nagajyoti et al. 2010). 
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Figure 1.1 European map of Cd concentrations in topsoil in mg kg-1, extracted from 

Salminen et al. (2005). 
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1.3.2 Zinc 

Unlike Cd, Zinc (Zn) is an essential element and nutrient for living 

organisms, known for several biological functions, especially as an integral part of 

several enzymes, including the RNA polymerase (Nagajyoti et al. 2010), therefore 

controlling also cell differentiation  and proliferation. In soils, Zn concentrations 

worldwide are on average 64 mg kg-1 (Noulas et al. 2018) but depending on the 

parent material, environmental conditions and history of human activities, this 

mean concentration will shift. For instance, 97 mg kg-1 is on average the Zn 

concentration in soils from England and Wales (Alloway 2008), while the overall 

Zn concentration in soils range from 8 to 100 mg kg-1 (Nagajyoti et al. 2010). 

 Zinc is often associated with Cd in soils (Mulligan et al. 2001; Khan et al. 

2017) and, although is not as toxic as Cd, high concentrations of Zn can cause 

several ecotoxicological effects, mainly to plants, soil dwelling organisms and 

microorganisms. Data suggest that Zn in soil systems can be more toxic to soil 

organisms than Pb (Ross and Kaye 1994) and can also decrease bacterial diversity 

in contaminated lands (Moffett et al. 2003). Zn toxic effects are mainly limited to 

the lower trophic levels, with the phytotoxicity itself acting as a barrier for the 

biomagnification of this elements in the food chain, therefore Zn chronic poisoning 

of wild life and humans via the food chain is rare (Mertens and Smolders 2013). 

Zinc deposition in the environment is believed to be on average 227 mg ha-

1 per year in Europe, with similar rates for England and Wales (Nicholson et al. 

2003). Sources of Zn in soils due to human activities include: atmospheric 

deposition as a result of emissions from coal burning, waste incineration and 

industrial processes, municipal and industrial wastes, urban runoff, mine activities 

and drainage, erosion of Zn-containing soil particles, application of fertilisers, 

agrochemicals, sewage sludge and livestock manures directly into soils (Alloway 

2008, Yadav 2010; Mertens and Smolders 2013; Noulas et al. 2018). In central 

Britain, Zn enrichment of stream sediments have been associated with agriculture 

pollution through manure spreading (Salminen et al. 2005). Agricultural soils 

receive constant Zn additions, according to Nicholson et al. (2003), with the annual 

input of Zn into agricultural lands in England and Wales (in 2000) on average 5000 
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tons, from which around 49% were from atmospheric deposition, 37% from 

livestock manures, 7% from sewage sludge and 5% from inorganic fertilisers. 

In Europe, Zn concentrations in topsoil can range from a very deficient 

amount of 3 mg kg-1, especially in northern countries, to around 2,900 mg kg-1 in 

contaminated areas, such as in north-eastern Italy, Sardinia and Calabria (Figure 

1.2), while some stream sediments can contain over 10,000 mg kg-1 Zn (Salminen 

et al. 2005). Assessments of 72 mining areas in China revealed Zn contamination 

in soils with an average around 1,200 mg kg-1 and a maximum of nearly 24,000 mg 

kg-1 (Li et al. 2014; data extracted from figures); while reports on soils from a 

mining region in India showed a Zn concentration of 5,982 mg kg-1 (on average) 

with the presence of elevated Cd (24 mg kg-1), in which a positive correlation  (r = 

0.86) was found between the two elements (Anju and Banerjee 2011).  

In plants, Zn contents generally range from 30 to 100 mg kg-1 of dry matter 

(Noulas et al. 2018) with 300-400 mg kg-1 of Zn in leaves being the common 

threshold for metabolic perturbations or phytotoxicity (Marschner et al. 1995; 

Kaur and Garg 2017). However, critical levels lower than 200 mg kg-1 Zn have been 

reported in some crops, such as maize, bush beans and cabbage (Mertens and 

Smolders 2013). Similar to Cd, Zn toxicity effects in plants include growth 

inhibition, leaf chlorosis and necrosis, oxidative stress and impairment of 

photosynthesis (Todeschini et al. 2011). Zn toxicity can also decrease seed 

germination, plant biomass, chlorophyll and carotenoid contents and the 

efficiency of photosynthetic energy conversion (Chibuike and Obiora 2014). 
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Figure 1.2 European map of Zn concentrations in topsoil in mg kg-1, extracted from 

Salminen et al. (2005). 
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1.4 Cd and Zn uptake and transport in plants 

1.4.1 Transport proteins 

HMs can be taken up by plant root cells mainly by direct interception or 

diffusion in the soil solution gradient, depending on their bioavailability and 

solubility (Shah et al. 2010). After translocation to the apoplast, plants have a 

series of transporters involved in metal uptake and homeostasis, which regulates 

metal movement into the symplast and further loading into vascular tissues 

(Palmer and Guerinot 2009; Luo et al. 2016). However the high cation exchange 

capacity (CEC) from cell walls can strongly limit metal movement in the apoplast 

(Shah et al. 2010). Metal transporters in plants are diversified and this variation is 

responsible for the high and low affinity systems necessary to withstand stress 

conditions or different metal availability in soils, providing enough specificity to 

meet different cellular requirements within the plant (Guerra et al. 2011). 

Transport of metals into the symplast can be carried out by members of 

numerous transporter families. The main transporter families for HMs are: the 

heavy metal (Cpx-type) ATPases and the cation diffusion facilitator (CDF) family 

proteins, which are associated with metal efflux; along with the zinc-iron (ZIP) 

family proteins and the natural resistance-associated macrophage protein 

(Nramp) family proteins, which are associated with metal uptake and HM 

tolerance (Williams et al. 2000; Sheoran et al. 2011; Colangelo and Guerinot 2006; 

Yang et al. 2005).  

The divalent metal ZIP transporters are the most likely to mediate Zn 

transport in plants and can be found also in bacteria, fungi and humans (Dhankhar 

et al. 2012), they are named after the Zn-regulated transporters (ZRT) and Fe-

regulated transporters, due to their sequence similarities (Zhang et al. 2017). 

Members of the ZIP family are able to transport not only Zn and Fe, but also several 

other cations into the cytosol (Pottier et al. 2015; Iori et al. 2016). Because Cd and 

Zn are very similar, it is generally believed that Cd2+ uptake by plants happens by 

a carrier for Zn2+, or even other divalent cations, such as Cu2+ or Fe2+, or by Ca2+ 

and Mg2+ channels (Guerra et al. 2011; Clemens 2006), but especially through ZIP 

transporters (Lux et al. 2011; Sheoran et al. 2011; Zhang et al. 2017). While ZIP 

appears to be mainly responsible for Zn and Cd influx into the cytoplasm, their 
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efflux into the apoplast are mostly related to another set of proteins, known as 

heavy metal ATPases (Claus et al. 2013). 

The P1B-type ATPases, or heavy metal ATPases (HMAs), have an important 

role in metal transport in plants and are usually present in the plasma membrane, 

acting as pump for HM efflux from the cytosol, removing toxic elements from the 

cytoplasm (Sheoran et al. 2011) or when in the tonoplast membrane it is involved 

in compartmentalising HMs into the vacuole (Yang et al. 2005). In prokaryotic 

organisms, several P1B-type ATPases have a specificity for non-essential elements 

such as Pb2+) and Cd2+, and are also involved in metal efflux (Cobbett et al. 2003). 

In plants, HMA4 can selectively absorb and transport essential metals as well as 

HMs, especially Zn2+ and Cd2+ (Hussain et al. 2004; Adams et al. 2011; Gallego et 

al. 2012). HMA4 is highly expressed in the root pericycle and is involved in xylem 

loading of Zn and Cd (Verret et al. 2004; Hanikenne et al. 2008) playing an 

important role in the long distance transport in plants (Luo et al. 2016; Sarwar et 

al. 2017). In the hyperaccumulator Arabidopsis halleri, AhHMA4 is also involved in 

Zn/Cd tolerance by maintaining low concentrations of Zn2+ and Cd2+ in the 

cytoplasm (Courbot et al. 2007), and tandem duplication of the HMA4 gene was 

found in the Cd/Zn hyperaccumulator Noccaea caerulescens (Ó Lochlainn et al. 

2011). 

Another protein that can mediate Zn2+ and Cd2+ transport in plants is the 

Cation Diffusion Facilitator (CDF) family, which are also known as MTP (Metal 

Tolerance Proteins), and have been associated with metal transport into the 

vacuoles and other subcellular compartments (Williams et al. 2000; Yang et al. 

2005; Clemens 2006; Ricachenevsky et al. 2013). MTPs are Metal2+/H+ (or K+) 

antiporters and generally mediate the efflux of metal cations from the cytoplasm, 

similar to the heavy metal ATPases (Migeon et al. 2010), hence their correlation 

with HM tolerance. MTP1, MTP2 and MTP3 are very similar among higher plants, 

for instance, the PtMTP1 gene in the woody species Populus trichocarpa is closely 

related to AtMTP1 from A. thaliana (by phylogenetic analyses), with both involved 

in Zn transport and tolerance by facilitating Zn compartmentalisation into the 

vacuole (Migeon et al. 2010). The MTP1 gene specifically is believed to create a 

sink for metals in plant shoots and is known to be highly expressed in Zn 
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hyperaccumulator species (Gustin et al. 2009; Viehweger et al. 2014). For example, 

higher expression of MTP1 was also found in shoots of the Cd/Zn 

hyperaccumulator N. caerulescens than in the closely related non-accumulating 

species Thlaspi arvense (Hammond et al. 2006). 

The Nramp gene family are also capable of transporting Cd2+ into plant cells 

(Clemens 2006). Nramps are an integral part of cell membranes of different 

organisms and in Arabidosis the Nramp3 transporter specifically, is known to be 

localised in the vacuolar membrane (Thomine et al. 2003). Plant Nramps are 

expressed throughout all plant tissues and transport several different divalent 

metal cations, such as Zn2+, Mn2+ and Fe2+ (Palmer and Guerinot 2009; Migeon et 

al. 2010). Even though Cd is not an essential element, its transport in plant cells is 

effectively carried out by members of the Nramp family: disruption of AtNramp3 

can increase Cd tolerance, while its overexpression can lead to Cd toxicity in plants 

(Thomine et al. 2000). Expression patterns of Nramps in poplar trees, which are 

generally tolerant to metals, showed a high correlation between these genes and 

heavy-metal ATPases, while Nramp1 in particular was strongly correlated to the 

accumulation of Cd and Zn, although this protein seems to have a selectivity in 

favour to the latter (Pottier et al. 2015). Similarly, Nramp1 can also be an 

important pathway of Cd uptake in Arabidopsis roots (Migeon et al. 2010). 

 

1.4.2 Phytochelatins and metallothioneins 

Most metal ions in plants require constant chelation after being taken up 

by the cell. Chelators bind these ions and contribute to metal detoxification by 

buffering metal concentrations in the cytosol (Clemens 2001). Two of the main 

characterised chelators in plant cells are the phytochelatins (PCs) and 

metallothioneins (MTs) (Clemens 2006). PCs are a class of non-protein structures 

with increasing repetitions of Gly-Cys terminated by Gly, having the general 

formula of (γ-Glu-Cys)-n-Gly, and are present in a great variety of plant species, as 

well as some microorganisms (Garg and Kaur 2013), with a pivotal role in HM 

detoxification (Kotrba et al. 2009). 

PC synthesis and formation of PC-metals complexes are directly related to 

metal stress in plants and are rapidly induced in cells exposed to a range of HM 
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ions, such as Cd2+, Cu2+, Zn2+ and Pb2+ (Cobbett and Goldsbrough 2002; Yadav 

2010; Guerra et al. 2011; Sheoran et al. 2011). For Cd, it is known that deficiency 

in PC production results in low Cd accumulation (Clemens 2006). PCs are 

synthesised non-translationally from reduced glutathione (GHS), a reaction 

catalysed by the enzyme PC synthase, and one of the genes known for encoding 

this enzyme is the phytochelatin synthetase PCS (Clemens 2001; Yadav 2010; 

Adams et al. 2011). 

PC-metal complexes are possibly redistributed within the plant via 

apoplast and symplast pathways, initiated by ATP-binding cassette transporters 

(Kotrba et al. 2009). After being transported to the target tissue, metals are 

redistributed to sub cellular compartments, where the vacuole is considered to be 

the main storage compartment for detoxification of HMs (Guerra et al. 2011). The 

most important mechanism for Cd detoxification in plants is the PC pathway, 

which involves metal chelation and transport to the vacuole via MTP and CDF 

proteins (Williams et al. 2000; Yang et al. 2005; Clemens 2006). The role of PCs in 

HM tolerance has been demonstrated in several plant species for both Cd and Zn 

(Adams et al. 2011- and references therein). 

MTs are proteins with low-molecular weight and rich in cysteine (usually 9-

16 Cys residues), which bind metals in metal-thiolate clusters (Cobbett and 

Goldsbrough 2002; Sheoran et al. 2011). In contrast to PCs, which are 

enzymatically synthesised, MTs are gene encoded. In plants MTs are considered 

to be responsible for the homeostasis of essential HMs and the transcription of 

their genes is controlled by signals from germination to senescence stages (Kotrba 

et al. 2009). MTs are divided into four subfamilies, from which the Type 2 MTs are 

considered to be the main group involved in binding Zn and Cd (Hassinen et al. 

2011). In humans, around 15% of Zn in cells are bound to MTs (Kimura and Tambe 

2016), in other animals, MTs protect against Cd toxicity, while in plants MTs are 

more associated with copper tolerance and homeostasis (Cobbett and 

Goldsbrough 2002). However, some plant MT genes can confer Cd tolerance when 

expressed in transformed yeasts (Kohler et al. 2004; Clemens 2006).  

MT expression in plants is not only associated with HM tolerance (Hassinen 

et al. 2011), but also the metal hyperaccumulation phenotype, which may be 
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related to a high expression of MT genes, as shown in N. caerulescens by 

Hammond et al. (2006). Plants overexpressing MTs thus, tolerate and accumulate 

more Cd (Yadav 2010). The expression of some MT genes in plants is usually 

influenced by the exposure to Cd and Zn in soil (Hassinen et al. 2011; Konlechner 

et al. 2013), however other factors around the rhizosphere, such as mycorrhizal 

symbiosis, can up-regulate their expression in plants (Cicatelli et al. 2012; Pallara 

et al. 2013). Moreover, MTs have also been associated with other roles, such as 

an antioxidant function and reactive oxygen species (ROS) scavenging and 

membrane repair (Hall 2002; Wong et al. 2004; Hassinen et al. 2011). 

  

1.5 Phytoremediation 

As HMs in soils are well known to be potentially toxic to biota in general, 

remediation measures must be taken. Although it is very difficult to remove HMs 

bound to the soil matrix (Thakur et al. 2016), several environmental remediation 

methods involving physical, chemical, or biological treatments have been 

developed for reclamation of metal contaminated soils in the past (Mulligan et al. 

2001), and their main goal is to create a final solution that is protective of human 

health and the environment (Wuana and Okieimen 2011). However, treatments 

like soil washing; acid extraction or electrokinetic remediation can be costly and 

may irreversibly affect soil properties, destroy biodiversity and even render the 

soil useless for plant growth (Padmavanthiamma and Li 2007; Meier et al. 2012). 

Phytoremediation (or plant-facilitated bioremediation), is a term coined in 

the 1980s and can be generally defined as the use of plants and their associated 

microorganisms for environmental cleanup or reclamation (Pilon-Smits 2005; 

Willey 2007), mostly by removing, destroying or sequestering hazardous 

contaminants (Prasad 2003). It is an in situ technique that can be useful for several 

contaminants, is solar driven, eco-friendly and cost effective, making it an 

alternative to the conventional methods (Guerra et al. 2011; Ali et al. 2013). 

Phytoremediation can preserve the soil structure and protect it from water and 

wind erosion, therefore reducing the spread of pollutants in the environment. 

Using plants for remediation can also preserve the soil microbiota and root 

exudates concentrate microorganisms around the rhizosphere, which may also 
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participate in the remediation process (Pulford and Watson 2003; Kotrba et al. 

2009). Sites subjected to phytoremediation can be aesthetically pleasing, 

compared to alternatives such as industrial soil washing, and consequently have 

higher community acceptance than other remediation methods, increasing the 

likelihood of the successful deployment of this technology. 

Among the phytoremediation techniques, phytostabilisation is one of the 

most important for HMs (Prasad 2003). In phytostabilisation, metal ions can 

become less available in soil due to absorption, complexation, reduction or 

precipitation within the roots or the rhizosphere (Ali et al. 2013; Thakur et al. 

2016), in which the plant will restrict the transfer of metals to its shoots (Qasim et 

al. 2016). It does not remove the contaminant from soil, but reduces its inherent 

hazard to biota (Arthur et al. 2005). By immobilising HMs in soils, plants can reduce 

their bioavailability and mobility in the environment, therefore preventing their 

migration to the groundwater or their entry into the food chain (Erakhrumen 

2007). For Cd in particular, this technique is more desirable due to the risk this 

element poses when accumulated in edible plant parts, such as leaves, fruits and 

seeds. 

Phytoextraction is another technique considered to be more efficient for 

inorganic contaminants in several substrates, such as contaminated soils, 

sediments and water (Marmiroli et al. 2006). This technique is based on metal 

removal from soil by plant root uptake and translocation to aboveground parts, 

where it is accumulated over time. It involves the continuous cropping of plants 

until the heavy-metal contaminated soil reaches acceptable levels (Sheoran et al. 

2011). It is recommended that the biomass produced (with high levels of the 

contaminant) should be then incinerated or fermented to reduce its volume 

(Robinson et al. 2009), which can be properly discarded or even used as a 

biosorbent to remove other contaminants (Arthur et al. 2005). In phytoextraction, 

plant species with hyperaccumulation capacity are often used. Hyperaccumulators 

can tolerate and build up high concentrations of metals in comparison to other 

plants (Gratão et al. 2005) and generally grow naturally in areas with high metal 

concentrations (Kramer and Chardonnens 2001). These plants can also 
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accumulate high concentrations of metals that have no known biological functions 

such as Cd, Hg, Au and Cr (Sheoran et al. 2011). 

Phytoextraction efficiency is determined by two key factors: 

bioconcentration factor and biomass production (Sheoran et al. 2011). Although 

with time hyperaccumulator plants may eventually decontaminate soils, these 

species are often of endemic occurrence, slow growth, low root penetration and 

low biomass production, which may compromise the efficiency of this technique 

(Bhargava et al. 2012), such as the Zn hyperaccumulator N. caerulescens (Ebbs and 

Kochian 1997). Therefore, it is necessary to search for species and alternatives that 

enable phytoextraction such as: 1) a plant species capable of producing high 

biomass, 2) accumulating considerable amounts of metals in aboveground parts, 

3) tolerating high levels of the contaminant, 4) rapid growth rates and 5) deep or 

profuse root systems (Ebbs and Kochian 1997; Sheoran et al. 2011). 

 

1.5.1 Trees in phytoremediation  

Non-hyperaccumulator plants can be an alternative if they can tolerate 

metal stress and have higher biomass production, especially if soil conditions are 

manipulated to increase metal bioavailability and uptake (Pulford and Watson 

2003). Woody plants, such as trees can offer a good solution in terms of 

phytostabilisation and recovery of degraded environments (French et al. 2006). 

The use of tree species is an emerging phytoremediation technology and can be 

sometimes referred to as “Dendroremediation” (Komives and Gullnar 2006). 

Although generally the metal concentrations in trees do not reach extreme levels, 

sometimes their greater biomass production may provide a higher metal 

extraction rate from soils in comparison to herbaceous hyperaccumulators (Luo et 

al. 2016). In the tropical tree species Averrhoa carambola (star fruit), leaf Cd 

concentrations can indeed reach hyperaccumulator levels of 100 mg kg-1 in dry 

weight (Li et al. 2010), but that is not a common feature.  

In comparison to agricultural species, trees can have some advantages for 

HM remediation, such as deep root systems and site stabilisation, a characteristic 

that can also be effective to reduce leaching into groundwater (Dos Santos and 

Wenzel 2007). Control of erosion, litter and vegetation cover and overall addition 
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of organic matter into soils are also other general advantages of employing trees 

in soil remediation schemes (Pulford and Watson 2003; Brunner et al. 2008). Trees 

are also long-lived organisms, which means they could take up contaminants from 

the environment and store them for a long time (Dominguez et al. 2008), some of 

which can form mycorrhizal symbiosis with ectomycorrhizal fungi (ECM), capable 

of accumulating even more metals into its cell walls and fungal vacuoles (Brunner 

et al. 2008). The most important aspect of trees to make them suitable for 

phytoremediation is their large biomass production, above and below ground, as 

well as their high transpiration rates, making them key plants for remediation, 

with poplar trees having enough advantages to be considered as the first choice 

for this purpose (Pulford and Watson 2003; Komives and Gullner 2006). 

Notwithstanding their great potential, limited information is available on the 

physiological and molecular mechanisms of HMs uptake, transport and 

sequestration in trees (Konlechner et al. 2013; Luo et al. 2016). 

 

1.5.2 The relevance of Poplars 

The genus Populus (poplars, cottonwoods and aspens) from the Salicaceae 

family is considered to be a model tree in forest genetics and biotechnology 

studies and can be used to assess important plant processes for woody species, 

much like tomato or Arabidopsis are used for herbaceous plants (Guerra et al. 

2011), especially after P. trichocarpa had its genome sequenced (Tuskan et al. 

2006). Populus is a genus of deciduous trees, wind-pollinated and diploid (2n = 38), 

with diffuse-porous and lightweight wood capable reaching 40 m in height in less 

than 20 years, with production rates from 17 to 30 ton/ha yearly of dry biomass 

when growing under intensive culture of 6-8 year rotations (Bradshaw et al. 2000; 

Marmiroli et al. 2011). 

Poplars are known to have considerable potential for remediation of 

contaminated soils, because of their greater biomass, deep root systems 

(Bhargava et al. 2012), and also for being fast-growing, with high water-use 

(Robinson et al. 2009). Populus species can also rapidly invade disturbed sites, 

reproduce asexually – by sprouting from the root collar of cut trees or broken 

branches (Sebastiani et al. 2004; Hamberg et al. 2011) and are not a source of food 
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for farm animals, therefore reducing the risk of HMs entering the human food 

chain (Shim et al. 2013). 

Although their metal accumulation potential is not extremely high, 

especially in comparison to the Cd hyperaccumulator N. caerulescens, Marmiroli 

et al. (2011) calculated that in soils with similar levels of Cd contamination (7-8 kg 

Cd ha-1), poplars could extract more Cd per hectare (250 g Cd ha-1), than N. 

caerulescens (125 g Cd ha-1), mostly due to their greater biomass production. 

Moreover, some poplar varieties have already presented high accumulation of 

HMs, especially Cd and Zn (Guerra et al. 2011; Bissonnette et al. 2010; Dominguez 

et al. 2008; Dos Santos and Wenzel 2007; Robinson et al. 2005; Robinson et al. 

2000). However, there is a wide variation in the ability of different Populus species 

and clones to accumulate and allocate metals in aboveground parts (Pietrini et al. 

2010).  

From the Populus genus, Populus alba sp. (white poplar) is a species of 

great interest for phytoremediation of HM contaminated soils, with different 

studies, either in vitro or soil, indicating its potential for the technique 

(Ciadamidaro et al. 2014; Di Lonardo et al. 2011; Franchin et al. 2007). 

Nonetheless, P. trichocarpa had its genome sequenced and is also able to extract 

high amounts of HMs from soils (De Oliveira and Tibbett 2018), which makes it a 

good candidate for molecular studies under HM stress. 

According to Bradshaw et al. (2000), Populus is regarded as a model system 

due to the following characteristics:  

(1) Abundant genetic variation in natural populations;  

(2) Ease of sexual propagation (wind pollinated);  

(3) Fast and noticeable physiological responses to environmental variables;  

(4) Large database of physiological traits;  

(5) Well-characterized molecular physiology and a small genome size (550 

million bp);  

(6) Ease for cloning individual tree genotypes (vegetative propagation);  

(7) Closely related to other model angiosperms;  

(8) Easy transformation and regeneration to create transgenic plants; and  

(9) Potential for commercial application.  
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The ability to form mycorrhizal symbiosis is another advantage of Populus 

species compared to hyperaccumulator plants, which are mostly from the 

Brassicaceae family and generally considered to be non-mycorrhizal (Leyval et al. 

1997). Even though recent studies have shown that a few non-Brassicaceae 

hyperaccumulators can indeed form arbuscular mycorrhizal symbiosis (Vogel-

Mikus et al. 2005; Vogel-Mikus et al. 2006), the colonisation rates are very low 

(Alford et al. 2010).  

Populus sp. is one of the few tree genera known to form tripartite 

symbioses (a three-organism symbiotic association), in combination with both 

arbuscular and ectomycorrhizal fungi (Ma et al. 2008; Bissonnette et al. 2010; 

Marmiroli et al. 2011), or in some cases with ectendomycorrhizal fungi (Yu et al. 

2001; Siemens and Zwiazek 2008), or even Pseudomonas species (Labbe et al. 

2014). Fillion et al. (2011), studying phytoremediation strategies in woody species, 

have demonstrated high colonisation rates of the arbuscular mycorrhizal fungus 

(AMF) Rhizophagus irregularis in poplars and willows, which resulted in better 

phosphorus nutrition and biomass increase compared to controls. 

A diverse community of ectomycorrhizal (ECM) fungi was also found in 

poplars growing in metal contaminated soil, 54 species of which 43 were from 

Basidiomycota phylum (Krpata et al. 2008). Nevertheless, there is a need for more 

studies involving poplars and ectomycorrhizal fungi in phytoremediation because 

it is known that woody pioneers species rely greatly on this type of mycorrhizal 

symbiosis, which can be very important for the primary establishment of these 

trees in contaminated soil (Colpaert 2008). As for AMF symbiosis, in P. alba 

exposed to 950 mg kg-1 Zn, AMF colonisation in roots was similar to 

uncontaminated controls (Lingua et al. 2012), while in another poplar clone 

growing in Cd-contaminated soil, Ciadamidaro et al. (2017) reported a 40% 

increase in plant biomass due to AMF inoculation. 
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1.5.3 Mycorrhizal fungi in phytoremediation 

Other means to improve phytoremediation are by improving plant 

tolerance to HM toxicity using soil microorganisms, such as plant growth-

promoting bacteria (Khan 2006) or mycorrhizal fungi (Vamerali et al. 2010; 

Saraswat and Rai 2011). Similar to the term Dendroremediation, mycorrhizal-

enhanced phytoremediation processes can sometimes be referred to as 

Mycorrhizoremediation (Garg and Chandel 2010). 

Almost all land plants depend on symbiotic mycorrhizal fungi: an integral 

and functioning part of plant roots, in which the fungi involved provide a direct 

link between soil and roots (Leyval et al. 1997; Coninx et al. 2017). The main types 

are Endomycorrhizas, when the fungus colonises the interior of host plant root 

cells (mostly arbuscular mycorrhizal fungi – AMF, but also ericoid mycorrhizas); 

and Ectomycorrhizas (ECM), in which the fungus is located outside plant root cells 

(Smith and Read 2008; Gadd 2010). The establishment of mycorrhizal symbiosis 

usually allows plants to enhance the uptake of low mobility nutrients, such as 

phosphate, some nitrogen compounds and metals (Gonzalez-Guerrero et al. 

2009). Both AM and ECM symbiosis have a crucial role in alleviating metal stress 

and facilitating the re-forestation of HM-contaminated areas, mostly by 

influencing HM availability in the rhizosphere and providing the host plant with 

water and nutrients in a poor environment (Gherghel and Krause 2012). 

Generally, mycorrhization may improve phytoextraction of HMs by at least 

four mechanisms: (1) promoting plant growth and biomass production; (2) 

increasing plant tolerance to metal toxicity; (3) increasing soil exploration via 

extraradical hyphae; and (4) enhancing the bioavailability of elements in the 

rhizosphere by fungal exudation (Smith and Read 2008; Gonzalez-Guerrero et al. 

2009; Gadd 2010; Vamerali et al. 2010; Sheoran et al. 2011). However, the ability 

of the fungus in surviving in metal-contaminated soils is a prerequisite for its use 

in phytoremediation (Coninx et al. 2017). 

Some of the mechanisms by which mycorrhizal fungi tolerate metal toxicity 

are by binding toxic cations into their negatively-charged cell walls (containing 

chitin and melanin or glomalin in AMF), which is believed to account for 

approximately 50% of the metal ions absorbed (Saraswat and Rai 2011). Chelation 
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is the first defence mechanism as soon as HMs enter the cytosol, while 

sequestration into vacuoles or other organelles, scavenging of ROS and pumping 

metals out of the cytosol are followed in order to prevent cytotoxicity (Luo et al. 

2014; Coninx et al. 2017). The way by which mycorrhizal fungi will manage HMs 

will depend on several factors, such as the particular species, metal, 

concentration, plant host etc. (Audet and Charest 2007). For instance, in some 

ectomycorrhizal fungi, Cd is mainly sequestered in the vacuoles, while Zn is 

expelled from the cytosol via transporters (Bellion et al. 2006). A good 

representation summarising the mechanisms for HM tolerance in mycorrhizal 

symbiosis was developed by Gohre and Paszowski (2006) (Figure 1.3), depicting 

extracellular metal chelation, cell wall binding, chelation in cytosol, metal efflux 

and vacuole sequestration, for example. 

Alleviation of Zn and Cd toxicity in plants by arbuscular mycorrhizal fungi 

has been reported in the literature (Gaur and Adholeya 2004). Garg and Aggarwal 

(2012) verified higher tolerance and significant increase of Cd accumulation in 

roots and shoots of pigeon pea (30% and 16%, respectively) after inoculation with 

the AMF Funneliformis (Glomus) mossae, while Andrade et al. (2008) observed 

similar results in sunflowers associated with Rhizophagus irregularis. Some studies 

have already reported that plants in association with ectomycorrhizal fungi, 

especially Pinus trees, can resist high concentrations of metals such as Cd, Pb and 

Zn in soil (Jentschke and Godbold 2000). Inoculation with ectomycorrhizal Paxillus 

involutus in willows also resulted in improvements in Zn tolerance and 

phytoextraction from soils (Baum et al. 2006). However, no genetic mechanisms 

were investigated in these studies. 
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Figure 1.3 Heavy metal detoxification mechanisms of plants and fungi in AMF symbioses. 
1 - Chelating agents are secreted, bindings metals in the soil (e.g. organic acids from the 
plant, glomalin from the fungus). 2 - Binding of HM to cell wall in plants and fungi. 3 - The 
plasma membrane as a living, selective barrier in plants and fungi. 4 - Specific and 
nonspecific metal transporters and pores in the plasma membrane of plants and fungi 
(active and passive import). 5 - Chelates in the cytosol, e.g., metallothioneins (plants and 
fungi), organic acids and metal-specific chaperons (shown for plants, assumed for AM 
fungi). 6 - Export via specific or nonspecific active or passive transport from plant/fungal 
cells. 7 - Sequestration of HM in the vacuole of plant/fungal cells. 8 - Transport of HM in 
fungal hyphae. 9 - In arbuscules, metal export from the fungus and import into plant cells 
via active or passive transport (Gohre and Paszowski 2006). 
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Plant uptake is not always increased by mycorrhizal fungi inoculation 

(Bissonnette et al. 2010; Chibuike and Obiora 2014). Some ectomycorrhizal fungi, 

for example, bind HMs into cell-wall components, or store high amounts of these 

elements in their cytosol as a way of protecting themselves and their plant hosts 

from metal toxicity (Guerra et al. 2011), which is certainly not favourable for 

phytoextraction, but it is for phytostabilisation. AMF has been also considered a 

‘buffer’ in protecting plants against HM toxicity, by binding metals into their fungal 

structures, such as vesicles (Gonzalez-Guerrero et al. 2009; Nayuki et al. 2014), or 

by producing glomalin (a secreted glycoprotein) which is recalcitrant in soils and 

can sequester HMs (Bellion et al. 2006; Khan 2006; Gadd 2010; Jia et al. 2016). 

Overall, AMF symbiosis may improve either phytoextraction or phytostabilisation 

(Figure 1.4) – or even have no significant effect at all – all will depend on fungal 

species, plant host, environmental conditions and the HM in question (Garg and 

Chandel 2010; Coninx et al. 2017). Table 1.1 is a compilation of several of studies 

on the mycorrhizal effect in plants mostly intended for Cd and Zn 

phytoremediation.  

Considering 59 observations reported in the literature for mycorrhizal 

plants under Cd exposure (Table 1.1), most cases describe an increase in Cd 

accumulation in roots - 42% of cases – with some instances of lower Cd 

accumulation (26%); as for shoots, 41% observed Cd decrease, against 32% of 

higher Cd accumulation. Thus, in general, most studies verified that 

mycorrhization decreased Cd in shoots, but increased in roots, the main sink of Cd 

accumulation. However, depending on the fungal species, this proportion can be 

entirely different. For example, most studies involving R. irregularis report higher 

Cd in both roots (55% of cases) and shoots (45% of cases), while in the experiments 

with F. mossae, reduction in Cd accumulation is generally observed in both roots 

and shoots (Table 1.1). 

In studies with mycorrhizal plants and Zn (n = 51), reports are more 

consistent in terms of accumulation and distribution (Table 1.1). On average, 25% 

of all cases report an increase in Zn accumulation, in either roots or shoots, 25% 

report a decrease, and generally, half of the studies did not detect any differences 

in Zn uptake in comparison to non-mycorrhizal treatments. In studies with F. 
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mossae, only 6% of cases verified an increase in shoot accumulation, while in 

experiments with R. irregularis, 24% of cases reported an increase in Zn 

concentrations in shoots, suggesting that this arbuscular mycorrhizal species 

might be more suitable in phytoremediation, for either Cd or Zn. 

 

 

 

Figure 1.4 – Mechanisms by which arbuscular mycorrhizal fungi can influence or 

contribute to the phytoremediation of heavy metals in soils. 

 

Moreover, there are not many studies concerning metal toxicity in 

mycorrhizal fungi, especially compared to the information available on plants and 

plant communities, which poses a bigger challenge in finding metal-tolerant fungi 

species (Colpaert 2008). Information about the several molecular and genomic 

responses in AM fungi in effectively mediating metal stress, especially Cd and Zn, 

is limited (Kaur and Garg 2017). Therefore, in order to be applied as a 

phytoremediation enhancing technique, it is necessary to initially understand the 

effects of HMs in mycorrhizal fungi and mycorrhizal plants, as well as the 

mechanisms by which these fungi promote HM uptake, tolerance, translocation 

and/or distribution in host plants. 
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 1.5.4 Mycorrhizal fungi and plant gene expression 

Gene expression for HM transporters and MTs in plants can be regulated 

by environmental conditions, metal concentration in soil, pathogen infection and 

symbiotic interactions (Kohler et al. 2004), such as with mycorrhizal fungi. Some 

studies have suggested that AMF can down-regulate gene expression for Zn 

transporters to promote an optimum concentration of this element within the 

plant (Burleigh and Bechman 2002). In tomatoes (Lycopersicum esculentum), 

Ouziad et al. (2005) observed that inoculation with R. irregularis distinctly reduced 

the level of Lemt2 transcripts (coding for MTs) when plants were grown in high Cd 

concentrations, and also reduced the transcripts of LeNramp1 (for metal 

transporter) in a soil with high contents of Zn. Similarly, Dabrowska et al. (2014) 

observed increasing expression of the MT gene BnMT2 in the leaves of Brassica 

napus L. after inoculation with AM spores. In P. alba under Cu and Zn stress, 

inoculation with AMF lead to an overall induction of several heavy-metal related 

genes, such as the MTs PaMT1, PaMT2 and PaMT3 (Cicatelli et al. 2010) or other 

genes involved in RNA processing and amino acid metabolism regardless of HM 

stress (Cicatelli et al. 2014). 

It is important to highlight that most of these genes encoding HM 

transporters, MTs or phytochelatins, were mainly characterized for herbaceous 

plants or species belonging to the genus Arabidopsis (Yang et al. 2005; Dhankhar 

et al. 2012), whilst the characterization for poplars is still very scarce, despite the 

release of the P. trichocarpa genome (Guerra et al. 2011). Assessing the effects of 

mycorrhizal fungi on the patterns of gene expression in host plants is also relevant 

for elucidating the extent of the mycorrhizal influence, since these fungi are known 

for promoting systemic effects on their symbionts gene expression and 

transcriptional responses (Liu et al. 2007). 
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Table 1.1 Compilation of several studies on the effect of mycorrhizal symbiosis (arbuscular and 

ectomycorrhizal fungi) on Cd and Zn accumulation in different host plants. Increase in uptake due 

to symbiosis is symbolised by a (+) sign and decrease by (-), while no significant effects are 

represented by (=). Unclear or absent data are symbolised by “x”. 

Host plant Mycorrhizal fungus 
Col. rate  

Effect in metal 
accumulation 

Main 

tissue 1 Ref. 

 (%) Shoots Roots S or R 

Allium cepa Funneliformis mossae 0-12 Zn(=) x x 1 

Bidens pilosa Glomus macrocarpum 52-65 Zn(+) Zn(=) S = R 2 

Brassica 

chinensis 

F. mossae 30 Cd(+) Cd(+) R 3 

Rhizophagus irregularis 30 Cd(+) Cd(+) R 3 

G. versiforme 25 Cd(+) Cd(+) R 3 

Cajanus cajan 

F. mossae x Cd(+) Cd(+) R 4 

F. mossae x Cd(-) Zn(-) Cd(-) Zn(-) R 5 

F. mossae 76-88 Cd(-) Cd(-) R 6 

F. mossae 65 Cd(-) Cd(-) R 7 

Chrysopogon 

zizanioides 

Gigaspora margarita 1-12 Zn(+) Zn(-) S = R 8 

R. clarus 22-35 Zn(=) Zn(=) R 8 

Dentiscutata heterogama 1-2 Zn(=) Zn(-) R 8 

Daucus carota R. irregularis 74-84 x Zn(-) x 9 

Helianthus 

annuus 

R. irregularis 31 Cd(+) Cd(+) R 10 

R. irregularis 38-41 Cd(+) Zn(=) Cd(=) Zn(=) R 11 

F. mossae 40-43 Cd(-) Zn(-) Cd(=) Zn(=) R 11 

Helichrysum 

italicum 
Septoglomus viscosum x Cd(+) Zn(=) Cd(-) Zn(-) R 12 

Hordeum 

vulgare 
R. irregularis 38.1 Zn(=) x x 13 

Ipomoea 

aquatica 

G. caledonium +  

G. versiforme 
x Cd(-) Cd(-) S = R 14 

Mixed (AMF) 2 x Cd(+) Cd(+) R 15 

Lonicera 

japonica 

R. irregularis 89-96 Cd(-) Cd(+) R 16 

G. versiforme 91-96 Cd(-) Cd(-) R 16 

Medicago sativa 
F. mossae 33-37 Zn(=) Zn(+) R 17 

R. irregularis 30-50 Cd(-) Cd(+) R 18 

Nicotiana 

tabacum 

R. irregularis 15-35 Cd(+) Cd(+) S 19 

R. irregularis 95 Cd(-) Cd(-) S 20 

R. irregularis (BEG75) 30-60 Cd(-) Cd(=) S 21 

R. irregularis (PH5) 10-30 Cd(-) Cd(=) S 21 

F. mossae < 10 Cd(-) Cd(-) S 21 
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Table 1.1 Cont. 

Host plant Mycorrhizal fungus 
Col. rate  

Metal accumulation 
effect 

Main 
tissue Ref. 

 (%) Shoots Roots S or R 

Oryza sativa 

G. versiforme 50-60 Cd(-) Zn(-) Cd(+) Zn(=) R 22 

F. mossae 30-50 Cd(=) Zn(=) Cd(+) Zn(=) R 22 

G. diaphanum 30-70 Cd(-) Zn(-) Cd(+) Zn(=) R 22 

Passiflora 

foetida 
G. macrocarpum 65-73 Zn(+) Zn(+) R 2 

Phragmites 

australis 

R. irregularis 13-16 Cd(+) Zn(+) x x 23 

F. mossae 15-17 Cd(+) Zn(+) x x 23 

R. irregularis x Cd (+) Cd(+) x 24 

R. irregularis x Cd (-) Cd(+) R 25 

Pinus sylvestris 
Suillus bovinus x Zn (+) Zn(=) R 26 

Suillus bovinus x Zn(=) x x 27 

Pisum sativum F. mossae 64-79 Cd(-) Cd(-) R 6 

Plantago 

lanceolata 
R. irregularis 90-99 Cd(=) Zn(=) Cd(+) Zn(+) R 28 

Populus × 

generosa 
R. irregularis 34-59 Cd(=) Zn(=) Cd(=) Zn(=) S 29 

Populus alba 

F. mossae 11-35 Cd(=) Zn(=) x x 30 

R. irregularis 13-31 Zn(=) Zn(=) S 31 

F. mossae 5-17 Zn(=) Zn(+) S 31 

R. irregularis 11 Zn(=) Zn(=) S 32 

F. mossae 5 Zn(-) Zn(=) S 32 

R. irregularis 20 Zn(+) Zn(=) S 33 

Populus 

canadensis 

Hebeloma crustuliniforme x Cd(=) Cd(=) S 34 

Paxillus involutus x Cd(+) Cd(=) S 34 

Pisolithus tinctorius x Cd(+) Cd(=) S 34 

Populus 

deltoides 
R. irregularis 45-50 Cd(+) Cd(+) R 35 

Populus nigra 

R. irregularis 40 Zn(=) Zn(=) S 32 

F. mossae 28 Zn(=) Zn(=) S 32 

R. irregularis 55-93 Cd(=) Zn(=) x x 36 

H. mesophaeum 2-12 Cd(=) Zn(=) x x 36 

S. lycopersicum 
Mixed (AMF) 55 Zn (-) Zn(-) R 37 

R. irregularis 68 Cd (+) Cd(=) R 38 

Salix × 

dasyclados 
Paxillus involutus 21-29 Cd(=) Zn(=) Cd(-) Zn(=) S 39 

Salix alba H. mesophaeum 45-61 Cd(-) Zn(=) x x 36 

Salix viminalis 

R. irregularis 0-6 Cd(=) Zn(=) Cd(=) Zn(=) S 29 

H. crustuliniforme x Cd(-) Cd(=) S 34 

P. involutus x Cd(=) Cd(=) S 34 

P. tinctorius x Cd(=) Cd(-) S 34 

Sesbania 

cannabina 
F. mossae 37-47 Zn(=) Zn(=) R 17 

S. rostrata F. mossae 64-68 Zn(-) Zn(-) R 17 
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Table 1.1 Cont. 

Host plant Mycorrhizal fungus 
Col. rate  

Metal accumulation 
effect 

Main 
tissue Ref. 

 (%) Shoots Roots S or R 

Solanum 

melongena 
Mixed (AMF) x Cd(=) Cd(=) R 40 

Solanum nigrum 

F. mossae 67-72 Cd(+) Cd(+) S 41 

R. irregularis 3-5 Zn(+) Zn(=) R 42 

G. claroideum 2 Zn(+) Z (=) R 42 

Solanum 

photeinocarpu 
G. versiforme 77-94 Cd(+) Cd(+) R 43 

Sorghum bicolor 
R. irregularis 33-36 Zn(+) Zn(+) R 44 

G. spurcum 33-36 Zn(+) Zn(+) R 44 

Thlaspi praecox Glomus sp. 20-87 Cd(-) Zn(=) Cd(-) Zn(-) S 45 

Trifolium 

pratense 
F. mossae 50-59 Zn(=) Zn(+) R 46 

Trifolium repens Mixed (AMF) 33-50 Zn(-) Zn(-) R 47 

Trifolium 

subterraneum 

F. mossae 0-12.1 Cd(=) Zn(=) Cd(+) Zn(=) R 48 

Mixed (AMF) 2.4-6.4 Cd(=) Zn(=) Cd(+) Zn(+) R 48 

Triticum 

aestivum 
R. irregularis 41-47 Zn(-) Zn(-) x 49 

Vicia faba F. mossae 58 Cd(=) Zn(=) Cd(=) Zn(+) R 50 

Zea mays 

F. mossae 40-50 Cd(-) Cd(=) R 51 

R. irregularis 40-45 Cd(+) Cd(+) R 51 

F. mossae 28 Zn(=) Zn(+) R 1 

F. mossae 21-28 Cd(-) Zn(-) Cd(-) Zn(-) S 52 

R. irregularis 70 Cd(=) Cd(=) R 53 

F. mossae 40 Cd(-) Cd(-) R 53 

G. constrictum 35 Cd(-) Cd(+) R 53 

Caroideoglomus etunicatum 20-24 Cd(-) Cd(=) R 54 
1 Main tissue: plant tissue - roots (R) or shoots (S) - with the highest accumulation of Cd or Zn (mg 
kg-1; or µg plant-1). 2 Native microbiota from collected soil or a mix of inoculum containing different 
AMF spores, hyphae and/or root fragments. 
 
References (Ref.): Gildon and Tinker 1983 [1] Tseng et al. 2009 [2] Wu et al. 2016 [3] Garg and 
Aggarwal 2012 [4] Garg and Kaur 2013 [5] Garg et al. 2015 [6] Garg and Chandel 2012 [7] Meyer et 
al. 2017 [8] Audet and Charest 2009 [9] Andrade et al. 2008 [10] Hassan et al. 2013 [11] Brunetti et 
al. 2018 [12] Watts-Williams and Cavagnaro 2018 [13] Hu et al 2013 [14] Bhaduri and Fulekar 2012 
[15] Jiang et al 2016b [16] Lin et al. 2007 [17] Wang et al. 2012 [18] Wang et al. 2013 [19] Janouskova 
et al. 2005 [20] Janouskova et al. 2007 [21] Zhang et al. 2005 [22] Zheng et al. 2015 [23] Wang et al. 
2017 [24] Huang et al. 2017 [25] Adriaensen et al. 2003 [26] Adriaensen et al. 2006 [27] Orlowska et 
al. 2012 [28] Bissonnette et al. 2010 [29] Baldantoni et al. 2011 [30] Cicatelli et al. 2010 [31] Lingua 
et al 2008 [32] Lingua et al. 2012 [33] Sell et al 2005 [34] Chen et al. 2016 [35] Mrnk et al. 2012 [36] 
Watts-Williams et al 2013 [37] Kumar et al. 2015 [38] Baum et al. 2006 [39] Chaturvedi et al. 2018 
[40] Jiang et al. 2016 [41] Marques et al. 2008 [42] Tan et al. 2015 [43] Toler et al. 2005 [44] Vogel-
Mikus et al. 2005 [45] Chen et al. 2003 [46] Zhu et al. 2001 [47] Tonin et al. 2001 [48] Khan et al. 
2014 [49] Zhang et al. 2006 [50] Aghababaei et al. 2014 [51] Weissenhorn et al. 1995 [52] Liu et al. 
2014 [53] Chang et al. 2018 [54]. 
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1.6  Hypotheses, objectives and thesis structure 

Considering the literature reviewed above, there is a clear need for more 

detailed knowledge on (1) the genetic basis for HM accumulation in poplar trees, 

(2) gene expression of poplar metal transporters, as well as (3) the influence of 

mycorrhizal fungi on gene regulation of host plants under HM stress. Such 

information can be critical for genetic improvement and use of biotechnology to 

design transgenic plants and microorganisms that can be efficiently applied in 

phytoremediation and bioremediation processes. 

 

Overall aim: 

 To understand the physiological basis underpinning the potential of poplar 

trees to be used in Cd and Zn phytoremediation, and to investigate the use of 

mycorrhizal symbiosis as a method of manipulating metal 

extraction/sequestration; while presenting additional fundamental knowledge on 

metal uptake dynamics in mycorrhizal poplars and some of the underlying 

molecular mechanisms. 

 

General hypotheses: 

 The hypotheses that set off the entire sequence of experiments in this 

thesis was that poplar trees would respond differently to Cd and Zn stress under 

mycorrhizal symbiosis, and that the fungal partner could alter metal uptake 

dynamics and distribution in the host plant. 

 

Objectives:  

• To screen for ectomycorrhizal fungi species tolerant to Cd and Zn in vitro. 

• To determine Cd/Zn toxicity thresholds in Populus trichocarpa (Torr. & A. 

Gray), and their accumulation capacity in shoots (phytoextraction) and 

roots (phytostabilisation). 

• To evaluate the influence of arbuscular mycorrhizal fungus Rhizophagus 

irregularis [(Blaszk., Wubet, Renker & Buscot) C. Walker & A. Schüßler] in 

increasing metal tolerance and/or accumulation in poplars. 
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• To assess the influence of mycorrhizal symbiosis in the expression of poplar 

genes encoding HM-related proteins stress (e.g. metal transporters, 

phytochelatins or metallothioneins) under Cd and Zn stress. 

• To investigate the bioremediation potential of transgenic yeast carrying a 

metallothionein gene from P. trichocarpa. 

 

 

Figure 1.5 Left: Photograph of a P. trichocarpa tree at Kew Gardens, London.  

Source: https://davisla.wordpress.com/; Right: Poplar roots colonised by R. irregularis 

 

This thesis is divided into 6 chapters, a brief summary of each chapter is 

provided below, and a flowchart illustrating the different stages of this project is 

presented in Figure 1.6. 
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Figure 1.6 Flowchart with all the stages (tests and experiments) in this thesis, and 

the respective chapters in which they are presented. 

 

Chapter 2 

Cd and Zn interactions and toxicity in ectomycorrhizal basidiomycetes in axenic 

culture;  

This chapter aimed to evaluate the response of different ectomycorrhizal 

(ECM) species in vitro to Cd and Zn toxicity. The use of different methods for 

determining toxicity thresholds in ECM are also explored. 

Hypotheses were: i) ECM fungi species respond differently to Cd and Zn 

toxicity; ii) Zn can alleviate Cd toxic effects due to competition in uptake; iii) Cd 

and Zn toxicity thresholds differ and are probably higher in solid (agar) media in 

comparison to liquid media.  

This experiment would serve as basis for selecting tolerant species to 

inoculate poplar trees under HM stress, however, no evidence of mycorrhizal 

symbiosis was found (data not shown) after several attempts, and therefore the 

other chapters do not include any ECM work. Chapter 2 has been published at 

PeerJ (2018): https://doi.org/10.7717/peerj.4478 
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Chapter 3 

Tolerance, toxicity and transport of Cd and Zn in Populus trichocarpa.  

The main objectives of this chapter were to investigate the behaviour of 

the particular poplar clone chosen for this project (Populus trichocarpa Trichobel) 

under a range of Cd and Zn concentrations. Dry biomass, shoot height, leaf 

transpiration and Cd/Zn accumulation and distribution were some of the 

parameters assessed.  

Hypotheses were: i) P. trichocarpa is tolerant to high Cd/Zn 

concentrations; ii) metal translocation patterns can vary depending on their 

concentrations; iii) Zn addition can prevent Cd uptake and toxicity in poplars; and 

iv) the expression of PtHMA4 gene is involved in Cd and Zn transport from roots 

to shoots.  

The toxicity thresholds found in this experiment were used for the 

subsequent experiments. Chapter 3 has been published by Environmental and 

Experimental Botany (2018): https://doi.org/10.1016/j.envexpbot.2018.07.011. 

This paper also includes one of the results described in Chapter 4 (i.e. expression 

of the PtHMA4 gene), due to its relevance in discussing the Cd and Zn translocation 

patterns found in poplar. 

 

Chapter 4  

The influence of mycorrhizal symbiosis in Populus trichocarpa under Cd and Zn 

stress: transcript analyses and phytoremediation potential.  

Chapter 4 has the core experiment of this thesis in which poplar trees in 

symbiosis with the arbuscular mycorrhizal fungus Rhizophagus irregularis were 

assessed under high Cd and Zn concentrations. Besides morphological parameters 

and metal accumulation patterns, the expression of seven heavy-metal related 

genes were determined in poplars roots and leaves with and without symbiosis. 

Selected genes were: PtMTP1, PtHMA4, PtNramp3, PtZIP1, PtPCS1, PtMT2a and 

PtMT2b. Due to the high correlation found between root colonisation and MT2b 

expression in poplar roots – especially under Cd exposure - this gene was 

transformed into yeasts to investigate its involvement in Cd tolerance. 



35 

 

Chapter 1: General introduction and literature review 

Hypotheses were: i) mycorrhizal symbiosis enhances Cd/Zn uptake and 

influences their distribution in poplars; ii) poplar genes for metal uptake are down-

regulated under metal exposure, while genes associated with metal chelation are 

up-regulated; iii) genes involved in heavy metal transport and chelation are 

affected by metal exposure as well as by mycorrhizal symbiosis (in roots and 

leaves); and iv) metallothionein gene PtMT2b is involved in heavy metal tolerance 

and should increase Cd tolerance in transgenic yeast carrying this gene. 

 

Chapter 5  

Bioremediation potential of Cd by transgenic yeasts expressing a 

metallothionein gene from Populus trichocarpa.  

After verifying that metallothionein gene MT2b confers tolerance to Cd, 

two versions of this gene were compared by growing transformed S. cerevisiae 

under different Cd doses. One strain contained the original gene sequence, while 

the other had a single nucleotide substitution, leading to a slightly different 

protein, with its third amino acid, cysteine, being replaced by a tyrosine (C3Y). 

Promising results from the mutated MT2b sequence, lead to subsequent assays 

with this particular transgenic strain (PtMT2b ‘Y’).  

Hypotheses were: i) PtMT2b increases yeast tolerance to Cd; ii) the 

mutated gene PtMT2b ‘Y’ is not as efficient in conferring Cd tolerance in yeast due 

to the lack of one cysteine in the peptide sequence; iii) transformed yeasts can 

effectively bioremediate Cd from aqueous solutions (by surface biosorption or 

intracellular accumulation); and iv) Mutant yeast strains have higher growth under 

nutrient deficiency (Fe, Mn and Zn) if carrying PtMT2b ‘Y’. 

 

Chapter 6  

General discussion.  

Main findings are discussed in the wider context of practical phytoremediation 

as well as the potential of P. trichocarpa for other biotechnological applications, 

such as their use for bioenergy production, metal recovery, carbon sequestration 

and genetic engineering. Methodological limitations of this thesis are also 

discussed. Further research that could be carried out by using the data derived 
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from this work are suggested. Concluding remarks covering the overall thesis 

complete this chapter. 
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Abstract 

Metal contamination in soils affects both above and belowground 

communities, including soil microorganisms. Ectomycorrhizal (ECM) fungi are an 

important component in belowground community and tolerant strains have great 

potential in enhancing plant-based remediation techniques. 

We assessed cadmium and zinc toxicity in five ECM species in liquid media 

(Hebeloma subsaponaceum; H. cylindrosporum; H. crustuliniforme; Scleroderma sp.; 

Austroboletus occidentalis) and investigated the potential of Zn to alleviate Cd 

toxicity. Due to highly divergent results reported in the literature, liquid and solid 

media were compared experimentally for the first time in terms of differential 

toxicity thresholds in Cd and Zn interactions. A wide range of Cd and Zn 

concentrations were applied to ectomycorrhizal fungi in axenic cultures (in mg L-1): 0; 

1; 3; 9; 27; 81; 243 for the Cd treatments, and 0; 1; 30; 90; 270; 810; 2430 for Zn. 

Combined Zn and Cd treatments were also applied to H. subsaponaceum and 

Scleroderma sp. Dry weight was recorded after 30 days, and in case of solid medium 

treatments, radial growth was also measured.  

All species were adversely affected by high levels of Cd and Zn, and A. 

occidentalis was the most sensitive, with considerable biomass decrease at 1 mg L-1 

Cd, while Scleroderma sp. and H. subsaponaceum were the most tolerant, which are 

species commonly found in highly contaminated sites. Cd was generally 10 times 

more toxic than Zn, which may explain why Zn had little impact in alleviating Cd 

effects. In some cases, Cd and Zn interactions led to a synergistic toxicity, depending 

on the concentrations applied and type of media used. Increased tolerance patterns 

were detected in fungi grown in solid medium and may be the cause of divergent 

toxicity thresholds found in the literature. Furthermore, solid medium allows 

measuring radial growth/mycelial density as endpoints which are informative and in 

this case appeared be related to the high tolerance indices found in H. 

subsaponaceum. 
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2.1 Introduction 

Cadmium (Cd) is one of the most hazardous metals in the environment, 

ranked seventh in toxicity by the Agency for Toxic Substance and Disease Registry 

(ATSDR 2017). It lacks any known biological function, it can be toxic to living 

organisms at relatively low concentrations (Alloway 2013) and has a high mobility in 

soils (Lei et al. 2010). Cd can be frequently found in zinc (Zn) bearing minerals 

(Alloway 2013) and due to their similar geochemical characteristics they are often 

associated in soils (Kabata-Pendias and Pendias 2001). Although Zn is a micronutrient, 

high concentrations in the environment can be extremely harmful to biota. Data 

suggest that Zn can be more toxic to soil organisms than Pb (Ross and Kaye 1994) and 

decrease bacterial diversity in contaminated lands (Moffett et al. 2003). 

In metal contaminated soils, symbiotic fungi such as ectomycorrhizal fungi 

(ECM) may improve plant fitness and metal tolerance, such as by promoting better 

growth or nutrition, preventing metal uptake and protecting against other abiotic and 

biotic stresses (Krznaric et al. 2009; Rodriguez and Redman 2008; Zheng et al. 2009), 

being crucial for plant survival in such environments (Saraswat and Rai 2011). Almost 

all land plants depend on symbiotic mycorrhizal fungi (Leyval et al. 1997), with woody 

pioneers species relying mostly on phenotypic plasticity and ectomycorrhizal 

assossiations to withstand metal-polluted soils (Colpaert 2008; Krpata et al. 2008). 

However, the extent of the ameliorating effects of the symbiosis is difficult to 

demonstrate and depends on the fungal species, plant genotype (Krznaric et al. 2009) 

and the differential toxicity of metals (Fomina et al. 2005). 

Several studies focus on assessing metal toxicity in different ECM fungi in vitro 

in order to identify tolerant species and strains (Blaudez et al. 2000b; Fomina et al. 

2005). However, comparisons are difficult with a variety of methods employed, 

different fungal strains, and a range of metal concentrations and endpoints 

considered (e.g. radial growth or biomass production). The types of media used can 

also vary, as well as their physical states: liquid or solid agar (Tam, 1995; Colpaert et 

al. 2004; Zheng et al. 2009). This appears to be responsible for variation in 

bioavailability and therefore causes a distinct difference in the toxicity thresholds for 

Cd and Zn (Table 2.1). Interactions between metals are also responsible for variation 
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in toxicity responses, for instance, in some cases it has been observed that Zn is able 

to reduce Cd toxicity in certain ECM fungi, often attributed to the ionic competition 

for binding sites (Hartley et al. 1997b). 

 

Table 2.1. Toxicity thresholds for Cd and Zn in ectomycorrhizal fungi grown in either 

liquid or solid media. Toxic concentrations were considered as the minimum 

concentration reported to cause any adverse effects or as the only concentration value 

reported by the author(s). 

 Toxic concentrations (mg L-1) 

 Solid Liquid 

Zn   

mean 309 123 

median 292 22 

maximum 975 500 

Cd   

mean 12 2.2 

median 2.0 0.9 

maximum 50 10 

ECM species tested 17 12 

References consulted 11a 5b 

      a (Blaudez et al. 2000b; Brown and Wilkins 1985; Colpaert and Van Assche 1987; Colpaert and 

Van Assche 1992;  Colpaert et al. 2000; Colpaert et al. 2004; Colpaert et al. 2005; Denny and 

Wilkins 1987; Krznaric et al. 2009; Ray et al. 2005; Willenborg et al. 1990) b (Colpaert and Van 

Assche 1987; Courbot et al. 2004; Grazzioti et al. 2001; Hartley et al. 1997; Tam 1995). 

 

Given the ambiguities across published dataset, we aimed to elucidate our 

current understanding of metal toxicity by addressing specific issues such as: the 

possible Zn and Cd antagonistic/synergistic interactions in ectomycorrhizal fungi, the 

ability of Zn in alleviating Cd toxicity effects; and the different toxicity thresholds 

arising from using either liquid or solid media under the same range of 

concentrations. 
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2.2 Materials and Methods 

2.2.1 Assessing Cd and Zn toxicity 

Toxicity trials were performed in vitro using five ECM species originated from 

non-polluted environments: Hebeloma subsaponaceum (from a Boreal Forest, 

Norway); H. cylindrosporum (from under pine trees, France); H. crustuliniforme (from 

Sitka spruce, Brown Earth); Scleroderma sp. (woodlands, Western Australia) and 

Austroboletus occidentalis (Western Australia), a species recently found to be a non-

colonizing fungal partner (Kariman et al. 2014). These species were selected from our 

in-house collection due to their growth rates observed previously in agar medium. 

Methods were based on a previous study by Chen and Tibbett (2007). Four circular 

plugs (1 mm) were cut out from the edges of actively growing colonies (5 weeks old) 

and transferred to Petri dishes with 25 mL of Melin-Norkrans liquid medium (MMN). 

The medium composition was: 6.51 mM NH4NO3, 0.57 mM MgSO4·7H2O, 0.23 mM 

CaCl2, 0.015 mM ZnSO4, 0.3 mM Thiamine, 5.55 mM d-glucose, 2 mM KH2PO4, 0.035 

mM Ferric EDTA; pH was adjusted to 5.5. No Zn (ZnSO4) was added to the initial MMN 

medium used for the Zn treatments, as this metal was added later to make up the 

desired range of concentrations. 

Cd and Zn concentrations were added via CdCl2 and ZnSO4 solutions to the 

final medium, and the final concentrations were (in mg L-1): 0; 1; 3; 9; 27; 81; 243 for 

the Cd treatments, and 0; 1; 30; 90; 270; 810; 2430 for the Zn treatments. Such 

concentrations were selected based on similar toxicity experiments with mycorrhizal 

fungi found in the literature (Blaudez et al. 2000b; Colpaert and Van Assche 1992; 

Colpaert et al. 2004; Ray et al. 2005; Tam 1995; Willenborg et al. 1990). 

The fungal cultures were incubated in the dark at 20oC for 30 days, each 

treatment had four replicates. The mycelial mats were then removed from the 

medium, placed on small aluminum envelopes (weighed previously) and oven-dried 

overnight at 60oC. The dry weight (DW) was assessed gravimetrically. The Tolerance 

Index (TI %) was used to express the tolerance results (Fomina et al. 2005), calculated 

by the equation: 
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In which DW is the dry weight obtained from the fungal biomass.  

 

Statistical analysis was performed on the dry weight data using STATISTICA 

12®. To attain normal distribution (Shapiro-Wilk), box-cox transformation was 

applied. However, the data did not meet the assumption of homogeneity of variances 

(Levene’s test). Thus, analysis of variance was carried out using Welch’s test (Zar 

2010), followed by Dunnett’s test to determine the LOAEC values (Lowest Observed 

Adverse Effects Concentration), which also does not require equal variances (Quinn 

and Keough 2002). The Dunnett’s for Zn toxicity considered the treatment of 1 mg L-

1 Zn as the control. 

 

2.2.2 Cd and Zn interactions 

To verify the effect of Zn in preventing Cd toxicity in ECM fungi, a second 

experiment was carried out using the same methods described above, except no 

basal Zn was added to the basic MMN medium in all treatments, and was added later 

to make up the desired range of concentrations; growth period of 21 days. However, 

because H. cylindrosporum had lower or similar performance as H. subsaponaceum, 

the former was excluded from this experiment. In this case, ECM species were 

exposed to Cd and Zn together, with concentrations added in different combinations: 

0, 1 and 9 mg L-1 for Cd, and 0, 1, 9 and 30 mg L-1 for Zn. Therefore, this assay was 

comprised of 12 treatments (Cd × Zn: 0×0, 0×1, 0×9, 0×30, 1×0, 1×1,1×9, 1×30, 9×0, 

9×1, 9×9, 9×30 mg L-1). 

Relative dry weight was calculated with equation (1), and ANOVA followed by 

Tukey’s test were performed to verify significant differences among the Zn 

treatments (0; 1; 9 and 30 mg L-1). For attaining normality and homoscedasticity in 

two variables (1 mg L-1 Cd in H. crustuliniforme and 0 mg L-1 Cd in Scleroderma sp.), 

data were transformed by the equation: 1/x. 
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Due to the high Cd toxicity observed, this experiment was repeated 

subsequently with only Scleroderma sp. and Hebeloma subsaponaceum, but using 

another range of concentrations (0; 1; 9 mg L-1 Cd and 0; 30; 60; 120 mg L-1 Zn) and 

two types of MMN media, a solid medium containing 2% agar, and a liquid medium 

as described previously, with four replicates. Plates were incubated in the dark, at 20 

± 2oC for 30 days. By the end of the growth period, treatments with solid media were 

measured for radial growth (a mean between vertical and horizontal diameters, in 

centimeters). After which the agar was cut and removed from the plates and melted 

in a microwave in short 15 seconds burst for no more than one minute in total 

(Karaduman et al. 2012); the mycelium was removed and blotted dry with absorbent 

paper until it was free of all agar medium, the mycelium was then washed with 

deionized water, oven-dried overnight (60oC) and weighed. Liquid media treatments 

were handled as described previously. Statistical analyses were performed following 

the same steps as the previous experiments. Contour plots were achieved by linear 

interpolation (using SigmaPlot®) of the fungal Tolerance Indexes (TI%, but in this case 

considering 100% as the treatment with the highest biomass production: i.e. Cd x Zn 

(0 x 30 mg L-1 in liquid cultures and Cd x Zn (1 x 30 mg L-1) in solid cultures); using 12 

Zn × Cd co-ordinates, based on publications by Hartley et al. (1997b) and Krznaric et 

al. (2010). 

 

2.3 Results 

All species assessed were negatively affected by either Cd or Zn, depending 

on the concentration, although lower Zn concentrations had a positive effect on all 

strains (Figure 2.1). Biomass decreased in all species exposed to Cd, and a critical 

effect was observed in A. occidentalis, H. cylindrosporum and H. crustuliniforme in 

concentration as low as 1 mg L-1, highlighting Cd pronounced toxicity. There was no 

visible growth at highest Cd and Zn concentrations, thus the dry weight detected in 

these cases, i.e. < 2 mg (Figure 2.1) were considered as being from the four circular 

agar plugs (1 mm) initially used for inoculation. Reduced biomass due to Cd and Zn 

toxicity was a common consequence observed in ECM fungi, regardless of the 

species. Cadmium, for being an element with no known biological function, is 
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considerably more toxic than Zn and its toxic effects began at concentrations at least 

30 times lower than the concentrations necessary for Zn to display toxicity (Figure 

2.1). Nonetheless, Zn toxicity was observed in lower concentrations than expected, 

three species had LOAEC values of 90 mg L-1 (H. crustuliniforme and H. 

subsaponaceum) or lower (A. occidentalis) (Figure 2.1). From the LOAEC values 

determined, the most sensitive species to metal toxicity considering both Cd and Zn, 

were A. occidentalis and H. cylindrosporum, while Scleroderma sp. and H. 

subsaponaceum were the most tolerant.  
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Figure 2.1 Dry weight of five ECM species (Austroboletus occidentalis, Hebeloma cylindrosporum, H. crustuliniforme, H. subsaponaceum, Scleroderma sp.) after 30 days 

under a range of Cd or Zn concentrations in liquid media (n = 4; standard error bars). Asterisks represent the first concentration from which fungal growth starts to be 

adversely affected, LOAEC, determined by Dunnett’s test (p < 0.05). LOAEC for Cd and Zn (in mg L-1) were, respectively, 1 and 30 in A. occidentalis; 1 and 270 in H. 

cylindrosporum; 1 and 90 in H. crustuliniforme; 3 and 90 in H. subsaponaceum; 9 and 270 in Scleroderma sp. 



66 

 

Chapter 2: Cd and Zn interactions and toxicity in ectomycorrhizal basidiomycetes in axenic 

culture 

 

Almost all species had higher growth under low concentrations of Zn, except 

for H. crustuliniforme, which was the only species not to show any growth 

improvement even at the lowest Zn treatment, of 1 mg L-1 (Figure 2.2B), a 

concentration long considered to be beneficial and typically part of the basic 

formulation of fungal growth media (Marx and Bryan 1975; Pridham and Gottlieb 

1948; Tibbett et al. 1999).  

 

 

Figure 2.2 Metal tolerance indices (TI%) for five ECM species under increasing 

concentrations of Cd (0; 1; 3; 9; 27; 81; 243 mg L-1) or Zn (0; 1; 30; 90; 270; 810; 2430 mg 

L-1) in liquid media. X axes are in logarithmic scale. TI% = DW treated/DW control × 100. 
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In the second experiment, in which the ECM fungi were exposed to mixed 

concentrations of Cd and Zn, it was observed that Zn addition had little effect on the 

dry weight of all species, regardless of the Cd concentration, except for Scleroderma 

sp. and H. subsaponaceum: the only species in which Zn addition promoted biomass 

increase at both non-contaminated media (Cd: 0 mg L-1) and highest Cd 

concentration, of 9 mg L-1 (Figure 2.3). 

Because both A. occidentalis and H. crustuliniforme had poor biomass 

production and suffered highly from Cd and Zn toxicity (data not shown); Based on 

previous results (Figure 2.1), their responses were entirely predictable. 

 

 

Figure 2.3 Effects of Zn concentrations on dry weights (mean, n = 4; standard error bars) 

of Hebeloma subsaponaceum and Scleroderma sp. under two Cd concentrations (0 and 9 

mg L-1). Data for other species were not significantly different and therefore are not shown. 

Different letters represent significant differences by Tukey test (p<0.05). 
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In a concluding experiment H. subsaponaceum and Scleroderma sp. were 

exposed to Cd along with higher Zn concentrations, in both solid and liquid media. 

Dry weight and radial growth (in solid media only) were evaluated (Table 2.2). In 

general, Zn addition did not alleviate Cd toxicity effects in both species, however 

there were a few exceptions: at 1 mg L-1 Cd, the addition of Zn (30 mg L-1) promoted 

a dry weight increase in Scleroderma sp. (from 2.7 to 10.5 mg) in liquid media. 

However, this effect was not significant in solid media (Table 2.2). In H. 

subsaponaceum, 30 mg L-1 of Zn was beneficial at the highest Cd concentration (9 mg 

L-1), in solid media, but the same was not observed in liquid media. 

In a few instances, toxicity was even more acute in the presence of both Cd 

and Zn, such as the dry weight decrease in Scleroderma sp. at 120 mg L-1 Zn, but only 

in the presence of Cd, suggesting a synergistic toxicity. Similar effect was also 

observed in the radial growth of H. subsaponaceum (Table 2.2), in which there was a 

decrease in the radial growth at 120 mg L-1 Zn in H. subsaponaceum for all Cd 

treatments, however, the dry weight was not affected in these cases. As for 

Scleroderma sp., radial growth was not negatively affected despite either Cd or Zn 

additions. 

Contour plots were created using the Tolerance Index of the dry weight of 

Scleroderma sp. and H. subsaponaceum in order to visualize the different responses 

between the cultures grown in solid and liquid media (Figure 2.4). Scleroderma sp. 

was very sensitive to increasing Cd and Zn concentrations, but around 30 mg L-1 Zn it 

exhibited distinct tolerance (≥ 70%), even in the presence of 1 mg L-1 Cd and in both 

types of media. Despite this increment in the tolerance index caused by Zn, it is clear 

that higher Zn concentrations were extremely toxic to this species at higher Cd doses 

(Figure 2.4C). Tolerance indices were in general considerably higher in solid media, 

for instance, in H. subsaponaceum tolerance index was mostly over 50% in solid 

media, while in liquid media it was mainly around 40% or lower (Figure 2.4A and B). 
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Table 2.2. Fungal dry weight (mg) and radial growth (cm) of Hebeloma subsaponaceum and Scleroderma sp. grown in liquid and solid media 

containing different Cd and Zn concentrations (mean ± SE).  

 
 H. subsaponaceum Scleroderma sp. 

 Zn  

(mg L-1) 
------------------------------------------- Cd (mg L-1) --------------------------------------------- 

  0 1 9 0 1 9 

Liquid media 

dry weight (mg) 

0 11.0 ± 0.1 10.4 ± 1.1 2.7 ± 0.3 4.4 ± 1.6 2.7 ± 0.8 1.6 ± 0.1 

30   21.1 ± 3.9 a 12.0 ± 0.3 2.8 ± 0.2    9.8 ± 0.6 a    10.5 ± 0.3 a 1.3 ± 0.1 

60 11.5 ± 0.2 12.9 ± 0.3 3.4 ± 0.3 6.0 ± 0.4 2.0 ± 0.3 1.3 ± 0.1 

120 9.2 ± 1.1 9.1 ± 1.2 2.6 ± 0.2 1.6 ± 0.2 1.5 ± 0.1   1.1 ± 0.1 b 

Solid media 

dry weight 

(mg) 

0 10.8 ± 0.6 10.2 ± 0.8 4.5 ± 0.4 17.0 ± 2.7 16.9 ± 1.3 14.8 ± 1.3 

30 9.2 ± 0.6 10.7 ± 1.0    5.6 ± 0.1 a 18.5 ± 1.6 19.8 ± 2.9 12.2 ± 1.5 

60 9.1 ± 0.1 8.2 ± 0.2 5.5 ± 0.1 19.4 ± 1.7 14.4 ± 0.4 12.8 ± 1.0 

120 8.2 ± 0.5 7.9 ± 0.5 4.1 ± 0.3 17.3 ± 1.0    11.7 ± 0.8 b    7.9 ± 2.5 b 

Solid media 

radial growth  

(cm) 

0 3.1 ± 0.1 2.6 ± 0.0 1.3 ± 0.1 6.0 ± 0.1 5.9 ± 0.2 4.3 ± 0.1 

30 2.8 ± 0.2 2.5 ± 0.0 1.2 ± 0.0 6.1 ± 0.2 6.5 ± 0.2 5.0 ± 0.2 

60 2.7 ± 0.1   2.4 ± 0.1 b 1.2 ± 0.0 6.5 ± 0.1 6.4 ± 0.2   5.9 ± 0.2 a 

120    2.4 ± 0.1 b   2.3 ± 0.0 b   1.0. ± 0.0 b   6.8 ± 0.2 a 6.3 ± 0.1 4.3 ± 0.4 

a - Mean values higher than the control (Zn: 0 mg L-1) in each Cd treatment;  

b - Mean values lower than the control; all by Dunnett’s test (p<0.05). 
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Figure 2.4 Contour plots: Tolerance indices (TI%) for H. subsaponaceum and Scleroderma 

sp. exposed to Cd and Zn in vitro in two types of Modified Melin-Norkrans media, liquid 

(left) and solid (right). TI% = DW treated/DW control × 100. The reference value (100%) 

was considered as the treatment which produced the most biomass (dry weight). Contour 

plots produced by linear interpolation. High TI% (orange and red) are associated with lower 

toxicity, while low TI% (purple and blue) with higher toxicity. 

 

2.4 Discussion 

Reports show that there is a great variation in Cd tolerance among ECM fungal 

species but generally Cd causes toxicity at around 1 mg L-1 in vitro (Colpaert and Van 

Assche 1992; Tam 1995; Ray et al. 2005). Our data is in keeping with this general 

tenet, which applies to a number of different genera, such as Laccaria, Scleroderma, 
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Suillus, Pisolithus, Cenococcum, Thelephora and Paxillus (Colpaert and Van Assche 

1992; Tam 1995; Colpaert et al. 2000;  Ray et al. 2005; Krznaric et al. 2009; ). 

Nonetheless, in some cases Cd effects are only evident at higher concentrations, such 

as 50 mg L-1 verified in Amanita muscaria growing in solid MMN media (Willenborg 

et al. 1990), although this species is commonly known to have a high Cd tolerance 

(Colpaert and Van Assche 1992; Colpaert 2008). Here the highest LOAEC values for 

Cd were observed for H. subsaponaceum (3 mg L-1) and Scleroderma sp. (9 mg L-1) 

(Figure 2.1), both basidiomycetes frequently found on highly polluted soils in the 

environment (Colpaert 2008). 

The low LOAEC value for H. crustuliniforme might be interpreted as a high 

sensitivity to Cd, however the Tolerance Index (TI %) clearly showed that this species 

had the most gradual decline in biomass of all Cd treated fungi, indicating less 

sensitivity to elevated Cd concentrations (Figure 2.2). For instance, at 9 mg L-1 Cd or 

more, H. crustuliniforme was the only species with a TI equal or higher than 20%. This 

fact emphasizes the importance of using more than one index for interpretations of 

toxicity data. 

Unlike Cd, the range of Zn toxic concentrations is highly variable (generally 

from 10 to 500 mg L-1) depending on the species, strains, or even the type of growth 

media (Colpaert and Van Assche 1987; Tam 1995). Blaudez et al. (2000b) verified Zn 

toxicity on Suillus luteus in solid MMN media at a concentration of 25 mg L-1, while 

for the same species Colpaert et al. (2000) found toxicity only at 300 mg L-1, but using 

a different growth media (solid Fries).  In an experiment with ECM fungi in vitro, Cd2+ 

and Zn2+ were also considered the most toxic metals compared to Pb2+ and Sb3- 

(Hartley et al. 1997b). Nonetheless, Hoiland (1995), who also tested metal toxicity in 

Basidiomycota, found Cd to be very toxic, but Zn only moderately toxic. Most of the 

species in the current study presented considerable growth at 1 mg L-1 Zn, however 

H. crustuliniforme had an unexpected reduction on the tolerance index, suggesting 

that its growth may have been influenced by other factors, such as the media itself. 

MMN medium usually offers effective results for ECM fungi tests, however some 

species display different responses to growth media depending on aspects such as 

nutrient composition or pH (Islam and Ohga 2013) . For example, Willenborg et al. 
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(1990) also found poor development of H. crustuliniforme in MMN media, which was 

almost half the growth reached by the same strain in malt extract media. 

High metal concentrations exert several toxic effects in fungi and may affect 

almost all aspects of their metabolism and differentiation, with the cellular 

membrane being the initial point of action of toxicity if there is a direct contact 

between the metal and the cellular components (Gadd 1993). Other common effects 

are the inhibition of enzymes, disruption of membranes, and growth inhibition (Gadd 

et al. 2012). Exposure to Cd2+ resulted in the collapse of mitochondrial membranes in 

yeasts (Wang et al. 2017). 

Several mechanisms of tolerance may act on alleviating metal stresses in 

fungi, such as increasing metal efflux; reduction of uptake, metal chelation and 

intracellular sequestration. Ramesh et al. (2009) identified two metallothionein 

genes in H. cylindrosporum capable of restoring the growth of transformed yeasts 

under Cd toxicity. Cell wall adsorption was also an important contribution in 

conferring tolerance, especially in the case of Cd (Galli et al. 1994; Frey et al. 2000; 

Bellion et al. 2006;). Sequestration into cytosolic vesicles has been shown to be a 

possible mechanism for Zn tolerance in H. cylindrosporum under sub-toxic 

concentrations (27 mg L-1 ZnCl2), representing the main pool of free Zn ions in this 

species (Blaudez and Chalot 2011). 

Yet, when exposed to solutions containing high concentrations of metals, 

such as in this experiment, binding sites in cell walls can be quickly saturated and 

become an inefficient strategy in preventing toxicity (Colpaert et al. 2011). A study in 

Lentiluna edodes showed high accumulation of Cd in mycelia after only 24h of 

exposure in liquid medium (Zhao et al. 2015). Therefore, the physical state of the 

growth media may have also been responsible for the high Cd sensitivity found in 

these ECM fungi. Willenborg et al. (1990), for instance, verified Cd toxicity in H. 

crustuliniforme only at 50 mg L-1, but using solid MMN media, while in our study, with 

liquid MMN solutions, this species suffered toxicity at 1 mg L-1 (Figure 2.1). 

When Cd and Zn were added together, the concentrations of 30 and 9 mg L-1 

Zn resulted in biomass increase in H. subsaponaceum and Scleroderma sp., 

respectively, exposed to the highest Cd concentration (9 mg L-1). However the 
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Tolerance Index (a percentage of the control biomass) was lower or the same for all 

Zn treatments in both species (around 80% less, compared to the control – Table 

S2.1). This means that although some Zn concentrations promoted fungal growth, 

they were not able to effectively alleviate Cd toxicity, which suggests that these 

metals are not sharing the same uptake pathways entirely and/or not competing for 

the same bonding sites in fungal tissues. However, Cd and Zn toxicity varies 

depending on the tolerance capacity of different species and strains (Colpaert and 

Van Assche 1992). Thus, another explanation for the lack of a pronounced Zn 

ameliorating effect is that all strains used in this assay were highly sensitive to both 

metals added to the media, considering they were all originated from non-

contaminated land. 

Despite causing negative effects in certain concentrations, Zn can also be 

beneficial by acting antagonistically against Cd toxicity in some ECM fungi. Krznaric 

et al. (2010) reported that tolerance to Cd increased significantly due to Zn additions 

(80-325 mg L-1) in a S. luteus strain isolated from contaminated soil. Similar 

ameliorating effects were observed in other ECM fungi isolates from non-polluted 

areas by Hartley et al. (1997b), however a synergistic toxic effect between Cd and Zn 

was also described by the authors in S. granulatus, showing that the interactions 

between these metals in ectomycorrhizal fungi may occur differently inter or intra-

specifically. Even ECM strains originally from polluted areas, which are regarded as 

more tolerant to toxicity, can suffer from combined effects of Cd and Zn toxicity 

(Krznaric et al. 2010). 

Zn addition led to a few ameliorating effects in both species, mostly at 

concentrations up to 30 mg L-1, however, most treatments were either unaffected by 

Zn, or caused toxicity in conjunction with Cd, especially at 120 mg L-1. It is believed 

that Zn tolerance mechanisms may increase Cd tolerance when both metals are in 

excess (Krznaric et al. 2010); thus, if Zn tolerance is not a present trait in the 

ectomycorrhizal species, it is most likely that the two metals will cause synergistic 

toxicity instead of alleviating adverse effects. Such results support the affirmation 

that the toxic effects from multiple metals cannot be predicted from their individual 

toxicity, as the interactions between them influence their relative toxicity to ECM 
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fungi (Hartley et al. 1997b). Moreover, tolerance and detoxification of Zn and Cd can 

happen via different mechanisms. In Pisolithus tinctorius, Zn tolerance was conferred 

by binding the metal to extrahyphal slime (Tam 1995), while for Cd, vacuole 

compartmentation and cell wall binding were considered the main metal-

detoxification mechanisms in Paxillus involutus (Blaudez et al. 2000a). Further 

investigations are still necessary to elucidate the mechanisms responsible for a 

possible antagonistic effect. 

The fact that radial growth decreased in H. subsaponaceum when exposed to 

high Zn concentrations, but its dry weight did not differ, indicates an increase in 

mycelial density, which is regarded as an important mechanism to withstand metal 

toxicity (Hartley et al. 1997a). Such mechanism was not observed in Scleroderma sp. 

growing in solid medium, wherein radial growth was unaffected or sometimes 

increased in response to toxic concentrations. Although this is just one of several 

mechanisms governing Cd and Zn tolerance in ECM fungi, it is believed that higher 

density under metal stress is likely to be a significant trait in polluted soils, also 

affecting the degree of exposure of the plant symbiont (Colpaert et al. 2000). 

Furthermore, it highlights the importance of using both endpoints (dry weight and 

radial growth) when screening ECM fungi for metal tolerance. 

As suggested earlier, the physical state of growth media can provide different 

results in terms of toxicity assessment. An advantage of using liquid media, is that it 

allows a more accurate regulation of the metal concentrations to which the 

organisms are exposed and is does not depend on growth form (Hartley et al. 1997a). 

However, screenings on solid media allow the assessment of both biomass and radial 

growth, which can provide more information regarding tolerance aspects, such as the 

increase in mycelial density observed here in H. subsaponaceum (Table 2.2). In 

addition, solid media are more likely to reflect mycelial growth in soils, for instance, 

basidiomycetes do not completely differentiate in liquid substrates, and this may 

affect their tolerance to metal toxicity (Hartley et al. 1997a). Agar media may offer 

lower metal bioavailability when compared to liquid media, as it is possible that 

complexation of metals within agar substrate occurs, masking mycelial response to 

toxicity (Colpaert et al. 2000), however it is also useful to avoid acute toxicity due the 
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exposure of highly available metals, as found in liquid media. This experiment clearly 

demonstrated that the patterns in Cd and Zn sensitivity changed between liquid and 

solid media and both H. subsaponaceum and Scleroderma sp. presented higher 

tolerance indices in agar (Figure 2.4). Similar effects were also reported by (Colpaert 

et al. 2000). The high availability of Cd2+ in liquid media may have been responsible 

for a rapid saturation of the binding sites in hyphal cell walls, which can be happen 

within minutes in these cases (Colpaert et al. 2011), leading to an acute Cd toxic 

effect. 

Despite all the implications, the decision of choosing either liquid or solid 

media is not often addressed in metal toxicity assessments for ECM fungi in the 

literature. Out of 16 articles on Cd and/or Zn toxicity in ECM fungi in the past three 

decades, only five used liquid growth media, for which the Cd and Zn concentrations 

considered toxic were, in average, 2.2 mg L-1 and 123 mg L-1 (Colpaert and Van Assche 

1987; Courbot et al. 2004; Grazzioti et al. 2001; Hartley et al. 1997; Tam 1995), while 

for the ones that utilized solid media, toxic concentrations were notably higher: in 

average 12 mg L-1 for Cd and 309 mg L-1 for Zn (Table 2.1). 

 

2.5 Conclusions 

In the present study, all five ECM species (A. occidentalis, H. cylindrosporum, 

H. subsaponaceum, H. crustuliniforme and Scleroderma sp.) tested exhibited high 

metal sensitivity in vitro conditions (liquid media), and Cd was at least 10 times more 

toxic than Zn, which by itself may explain why Zn had no alleviating effects in Cd 

toxicity. H. subsaponaceum and Scleroderma sp. were more tolerant to elevated Cd 

when grown in solid media compared to liquid, although in both cases higher Zn 

concentrations were detrimental to these species (synergism) with only a few signs 

of alleviating Cd toxicity (antagonism). Further research on the mechanisms 

underlying Zn and Cd antagonistic or synergistic interactions is needed. Additionally, 

Cd and Zn interactions were also affected by the type of media used, leading to 

different tolerance patterns, which may help explain the hitherto baffling range of 

previously recorded results. 
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A great advantage of using solid media in metal toxicity assays is that it allows 

the measurement of biomass as well as radial growth and, therefore, the mycelia 

density, which in this case appears to be a mechanism behind the higher tolerance 

indices found for H. subsaponaceum in contrast to Scleroderma sp. Overall, 

mycorrhizal symbiosis with these species could possibly lead to a better fitness of a 

host plant exposed to Cd or Zn in contaminated soil, and could be interesting 

candidates for further investigations. 
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2.7 Supplementary Information 

 

Table S2.1 -  Average tolerance index (%) based on the dry weight (DW) of four ectomycorrhizal fungi grown in liquid media containing 

different combinations of Cd and Zn doses (n = 4). 

 Austroboletus occidentalis Hebeloma crustuliniforme Hebeloma subsaponaceum Scleroderma sp. 

Zn  

(mg L-1) 
-------------------------------------------------- Cd (mg L-1) --------------------------------------------------------- 

 0 1 9 0 1 9 0 1 9 0 1 9 

0 100 20 16 100 91 84 100 27 9 100 85 19 

1 90 14 16 104 84 82 129 28 10 94 89 20 

9 74 16 14 95 86 84 131 20 11 155 89 23 

30 62 18 16 63 77 69 136 36 13 139 99 22 

TI(%) = (DW-treated / DW-control) x 100 
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Abstract 

Metal inputs to terrestrial ecosystems are of great concern due to their 

toxicity to biota, especially for elements with no biological function such as 

cadmium. Fast-growing trees such as poplars may have potential in 

phytoremediation schemes. 

We assessed accumulation, metal partitioning, gene expression (Pt-HMA4) 

and overall tolerance to, and interaction between, cadmium (Cd) and zinc (Zn) in 

Populus trichocarpa ‘Trichobel’. We predicted that Zn would have an antagonistic 

effect in Cd accumulation and anticipated some level of tolerance to these metals. 

Poplars were grown in sandy substrate under different metal applications, ranging 

from 1 to 243 mg kg-1 Cd; or 30 to 7,290 mg kg-1 Zn; and also two combined 

treatments: 27 mg kg-1 Cd with 90 or 270 mg kg-1 Zn. Growth parameters and metal 

contents in shoots and roots were determined. Transcriptional levels of the Pt-

HMA4 gene were assessed in roots and leaves.  

P. trichocarpa showed a surprisingly high tolerance to Cd, with root 

biomass being affected only at the highest doses applied. Metals accumulated 

mainly in roots (up to 6,537 mg kg-1 Cd and 21,500 mg kg-1 Zn), root-to-shoot 

translocation peaked at the 9 mg kg-1 dose for Cd (53%) and 90 mg kg-1 for Zn 

(40%). At high Cd/Zn applications, expression of Pt-HMA4 in roots decreased 

significantly. Contrary to the initial presumption, Zn addition increased Cd uptake, 

reaching hyperaccumulator-like concentrations in shoots (≥ 100 mg kg-1 Cd). 

Differential root-to-shoot partitioning has a major role in Cd tolerance in 

P. trichocarpa; partly by down-regulating the Pt-HMA4 gene in roots. Zn addition 

promoted high Cd uptake without any detriment to plant growth. P. trichocarpa 

was tolerant to extreme Cd concentrations, offering a great potential to be used 

in phytoremediation techniques for stabilization/extraction of Cd from soils 

contaminated by both Cd and Zn. 
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3.1 Introduction 

 Cadmium (Cd) is one of the most hazardous metals in the environment, 

ranked seventh in toxicity by the Agency for Toxic Substance and Disease Registry 

(ATSDR 2017). It lacks any known biological function, being toxic to humans and 

other organisms at relatively low concentrations (Alloway 2013) and has a high 

mobility in soils (Lei et al. 2010). Cd is frequently found in zinc (Zn) bearing minerals 

(Alloway 2013) and, due to their similar geochemical characteristics Zn is often 

associated with Cd in soils (Kabata-Pendias and Pendias 2001). Although not as 

toxic, high concentrations of Zn can be extremely harmful to biota. Plant exposure 

to Cd often leads to phytotoxicity depending on the concentration, plant 

genotype, soil characteristics and exposure time  (Das et al. 1997; Benavides et al. 

2005) mainly due to the fact that Cd has a chemical similarity to other essential 

elements, such as Ca, Fe and particularly Zn (Clemens 2006; Verbruggen et al. 

2009). Growth impairment, biomass decrease, foliar necrosis and chlorosis are 

typical effects from Cd toxicity in plants (He et al. 2017; Tran and Popova 2013; Pál 

et al. 2006). Similar to Cd, Zn toxicity effects in plants include growth inhibition, 

leaf chlorosis and necrosis, oxidative stress, inhibition of protein functions and 

impairment of photosynthesis (Todeschini et al. 2011; Hasan et al. 2017). Cd2+ and 

Zn2+ are long known for being competing ions in the soil matrix due to their 

chemical similarities and same uptake pathways in plants (Clemens 2006; Kirkham 

2006) in which Zn is often responsible for decreasing Cd uptake and even 

considered as a soil amendment to reduce Cd concentration in edible crops such 

as wheat and pigeon pea (Green et al. 2003; Garg and Kaur 2013). However, it has 

been reported recently for rice that Zn does not always impact Cd accumulation 

(Green et al. 2017). 

Phytoremediation is the use of plants and their associated microorganisms 

for environmental decontamination (Pilon-Smits 2005), from which 

phytoextraction is considered to be useful for inorganic contaminants (Marmiroli 

et al. 2006). It is an in situ technique that preserves soil structure and microbial 

activity, offering protection against erosion (Pulford and Watson 2003; Guerra et 

al. 2011). Poplars (Populus sp.) are trees widely considered for phytoextraction of 

several metals, such as Cd, Zn, Pb and Cu (Castiglione et al. 2009; Zacchini et al. 
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2009; Guerra et al. 2011; Dai et al. 2013; Luo et al. 2016), mainly due to their 

biomass production, deep root systems (Bhargava et al. 2012), tolerance to high 

metal concentrations and fast growth (Robinson et al. 2009). Populus species can 

also rapidly invade disturbed sites, reproduce asexually (Sebastiani et al. 2004; 

Hamberg et al. 2011) and are not a source of food for farm animals, reducing the 

risk of heavy metals entering the human food chain (Shim et al. 2013). 

Metal tolerance and partitioning in plants are important features to be 

considered in phyoextraction (Luo et al. 2016), in which root-to-shoot 

translocation of Cd is regarded as a major factor in determining its toxicity 

thresholds in poplar (Durand et al. 2011). Several transmembrane proteins are 

involved in cation efflux from the cytoplasm, from which HMA4 (Heavy Metal 

ATPase 4), a common metal transporter from the P-type ATPase family, is known 

to play a role in the xylem-loading of metals (Hanikenne et al. 2008; Luo et al. 

2016), affecting transport and accumulation in poplar (Adams et al. 2011). The 

HMA4 gene is considered to be key in Zn and Cd hyperaccumulation and also 

tolerance, which was previously verified in Arabidopsis thaliana (Mills et al. 2005), 

Noccaea caerulescens (Ó Lochlainn et al. 2011) and transgenic Nicotiana tabacum 

plants (Grispen et al. 2011). 

Populus trichocarpa (black cottonwood) is considered a model tree species 

(Bradshaw et al. 2000), with its genome already fully sequenced (Tuskan et al. 

2006). However, little is known about heavy metal accumulation, toxicity and 

translocation in P. trichocarpa, most studies being mainly focused on other species 

from the Populus genus. The objectives of this work were to investigate (1) the 

effects of different concentrations of Cd and Zn on P. trichocarpa, (2) the 

accumulation and distribution of Cd and Zn within the plant and their effects on 

the expression of the metal transporter Pt-HMA4, and (3) the interactive effects 

between Cd and Zn in terms of phytotoxicity and metal distribution. We predicted 

that Zn could reduce Cd uptake, consequently alleviating toxicity effects and that 

tolerance is associated with different metal translocation patterns, influenced by 

the expression of Pt-HMA4. 
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3.2 Materials and Methods 

3.2.1 Plant material and pre-growth 

Cuttings of Populus trichocarpa ‘Trichobel’ were obtained from AF Hill & Son, 

Redditch, UK and were kept refrigerated at 4oC until the experiment. Cuttings 

were trimmed (15 cm, two nodes) and rooted in sand for four weeks, and fertilised 

three times with 10 mL of a modified Long Ashton’s solution (macronutrients: 

(NH4)2SO4 (4 mM), K2SO4 (2 mM), CaCl2·2H2O (3 mM), MgSO4 ·7H2O (1.5 mM), 

NaNO3(8 mM), FeEDTA (0.1 mM); micronutrients: H3BO3 (2.86 mg L–1), 

MnCl2·4H2O (1.81 mg L–1), CuSO4·5H2O (0.08 mg L–1), NaMoO4·2H2O (0.025 mg L–

1), ZnSO4·7H2O (0.22 mg L–1)), according to Kariman et al., (2014) and 1 mL of a 

solution with KH2PO4 (1 mM). This clone is an intraspecific hybrid of Populus 

trichocarpa Torrey & A. Gray ex Hook (Burgess et al. 2005). 

All rooted cuttings were transplanted to plastic pots (without holes in the 

bottom) filled with 1 kg of substrate: 50 g vermiculite, 50 g peat moss and 900 g 

of sand (pH 6.9); one cutting per pot. Water holding capacity was maintained at 

70% (300 mL of distilled water). The experiment was carried out in the glasshouse 

of the University of Reading, between December 2015 and February 2016. The 

temperature average recorded in the glasshouse during this period was 24.5oC (± 

2.4), and artificial light was provided (18h/day).  

 

3.2.2 Treatments and Experimental Design 

 The experiment was designed in randomized blocks, cuttings with similar 

sizes were assigned to one of the flour blocks. After one week, the final fertilisation 

was applied and all cuttings had their expanded leaves counted and stems 

measured from the node sprouting to the apex; a sample from the substrate was 

also taken for further analysis. All pots were spiked with either Cd or Zn solutions 

on the following day. Cd was added via CdCl2 stock solutions to make up six 

different concentrations in the pot substrate: 1, 3, 9, 27, 81 and 243 mg kg-1 Cd; 

Zn was added via ZnSO4 stock solutions, making up six different concentrations in 

the substrate: 30, 90, 270, 810, 2430 and 7290 mg kg-1 Zn. Two further treatments 

included both Cd and Zn: 27 mg kg-1 Cd + 90 mg kg-1 Zn (Cd27 + Zn90); and 27 mg 

kg-1 Cd + 270 mg kg-1 Zn (Cd27 + Zn270). Control had water only instead of the metal 
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solutions, and all pots contained only one poplar cutting. Metals were added in a 

single dose and each treatment had four replicates arranged in blocks. 

 Two weeks before harvest, all plants had leaves analysed for stomatal 

conductance (gs, in mol m-2 s-1) and transpiration rate (mmol m-2 s-1) using a 

portable infrared gas analyser (LCi Portable Photosynthesis System, BioScientific 

Ltd.). Plants were assessed in the glasshouse near solar noon, under constant 

lighting. The two youngest expanded leaves of each plant were measured, except 

for the two highest Zn treatments (2430 and 7290 mg kg-1), which had too many 

dead leaves for analysis. 

 

3.2.3 Harvest and Phytotoxicity assessment 

After exposure to the toxic metals for five weeks, all plants had their living 

expanded leaves counted and stems measured (before and after exposure to 

metals). Visual toxicity symptoms recorded using the method described by 

Kariman et al., (2016), in which leaf areas with symptoms such as discoloration, 

chlorosis or necrosis were ranked into 6 classes (0 to 5), in which 0 represents no 

toxicity symptoms, 1 is up to 20% of symptomatic leaf tissue area (SLTA), 2 from 

20 to 40%, 3 from 40 to 60%, 4 from 60 to 80% and 5 for symptomatic area greater 

than 80%. Two mature leaves were assessed for each plant, and the final scoring 

was the average between those leaves.  

Plants were then harvested and separated into roots, stems and leaves (initial 

cuttings were not included in any analyses). Roots were washed thoroughly with 

tap water and immersed in a 0.05 mM CaCl2 solution for 30 minutes to remove 

any surface adhering metals (Marmiroli et al. 2013), roots were rinsed with 

deionized water and scanned using the software WinRhizo®, to determine the root 

length, diameter, root tips, surface area and volume. All plant parts were dried 

separately in an oven at 70oC for seven days, then dry weight (DW) was 

determined. Soil was air dried, sieved (2 mm) and soil pH was determined in a 

water-soil suspension (2.5:1) shook for 15 min at 120 rpm (Rowell 1994). 
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3.2.4 Acid Digestion and Metal Determination 

Dried samples were ground and 50 mg of plant material was digested for 8 

hours in 5 mL of 70% HNO3 (≥69% TraceSELECT® for trace analysis) in closed glass 

vessels in heating blocks at 110oC (Huang et al. 2004). All digestions were 

performed in duplicates, and for quality control, a blank and a plant certified 

reference material (IAEA-359 cabbage leaves) were included. Digested extracts 

were then diluted in a solution of 2% HNO3 + 5 ppb Rh, and filtered. The 

concentrations of Cd and Zn were determined by inductively coupled plasma mass 

spectrometry (Thermo Scientific™ iCAP™ Q ICP-MS), using rhodium as an internal 

standard. 

 

3.2.5 Bioconcentration Factor, Translocation Factor and Tolerance Index  

The bioconcentration factor (BCF), the translocation factor (Tf), and tolerance 

index (TI) are used as indices to assess the plant’s capacity to accumulate, 

translocate (from roots to shoots) and tolerate heavy metals (Rafati et al. 2011). 

BCF is the ratio between the metal concentrations within the plant tissue and in 

the soil or substrate; Tf is the ratio between the metal concentrations in leaves 

and roots; and TI is the ratio between a parameter assess in heavy metal treated 

plants and the control (Saraswat and Rai 2009; Zacchini et al. 2009; Rafati et al. 

2011); see equations below, in which [M]: metal concentration; T: treated plants; 

C: control plants. 
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3.2.6 PtHMA4 expression in roots and leaves 

Poplar cuttings (15 cm) were grown inside a growth chamber (23oC 16h/8h 

day/night) in a mixture of TerraGreen clay and sand (1:5, w/w), one cutting per 

pot (photosynthetic photon flux, 100 µmol m-2 s-1). All plants were fertilised weekly 

for the first three weeks with 10 mL of a modified Long Ashton’s solution, as 

described previously. Water holding capacity was always maintained at 70% with 

distilled water. After five weeks, pots were spiked daily with either 27 mg kg -1 Cd 

(via CdCl2 solution) or 100 mg kg-1 Zn (via ZnSO4) for three days amounting to total 

doses of 81 mg kg-1 Cd for the Cd treatment and 300 mg kg-1 Zn for the Zn 

treatment; Controls received deionized water instead of Cd or Zn solutions. All 

treatments had three replicates. 

Plants were harvested eight weeks after contamination. The 9th leaf of each 

plant (counting from the base of the stem) was sampled and immediately frozen 

in liquid nitrogen for RNA extraction. Roots were washed with tap water and 

random sections (2 cm from root tips) were sampled and frozen.  

Total RNA was extracted from approximately 100 g of fresh weight material 

(leaves or roots) macerated in liquid nitrogen via TissueLyser II (Qiagen®). 

Extraction was performed by the CTAB method (Jaakola et al. 2001) and RNA 

pellets were purified with the RNeasy Plant Mini kit (Qiagen, UK), including a 

DNAse treatment (Qiagen, UK) for 20 min. cDNA synthesis was carried out using 

the SensiFAST cDNA synthesis kit (BIOLINE, UK) following the manufacturer’s 

instructions. 

Specific primers were designed for Pt-HMA4, accession: XM_006381101, (F: 

5’ ACCAACGTTCTTATGCTTATTGC 3’ / R: 5’ CACTGGCCTTGTGGCTT 3’) and Ubiquitin 

(UBQ), accession: XM_006373777 (F: 5’ AGATGGCAGAACTTTGGCTGA 3’ / R: 5’ 

CGCCAAAGCCATCAAAGAAC 3’) with the Primer-BLAST tool (Ye et al. 2012). 

Nucleotide BLAST showed 71% between Pt-HMA4 and Arabidopsis thaliana 

ATPase, At-HMA4 (accession: NM_127468). 

The qPCR reactions were performed in duplicates for each sample using 

PowerUp™ SYBRGreen™ (Applied Biosystems, UK) with the following the 

parameters: 1 cycle of 2 min at 50oC followed by 2 min at 95oC (DNA polymerase 

activation), then 40 cycles of 95oC for 3 seconds (denaturation) and 60oC for 30 



91 

 

Chapter 3: Tolerance, toxicity and transport of Cd and Zn in Populus trichocarpa 

 

seconds (annealing/extension). Primer specificity was verified by electrophoresis 

and confirmed by melt curve analyses. The qPCR run, data collection and analyses 

were performed using StepOne™ Real-Time PCR System (Applied Biosystems). 

Results were analysed by the standard curve method, and gene expression was 

normalised using UBQ as the house keeping gene. 

 

3.2.7 Statistical Analyses 

Statistical analyses were performed for all parameters assessed using R 

software. Metal treatments were considered as categorical factors and therefore 

ANOVA was performed for each parameter assessed (p < 0.05). When significant 

differences were detected, a Tukey test (p < 0.05) was carried out to discriminate 

differences between treatments. Pearson correlation was also performed. Data 

was transformed when necessary (determined by Shapiro-Wilk normality test and 

Levene’s test, p < 0.05) to attain normal distribution and homoscedasticity, in 

order to meet ANOVA and Pearson correlation assumptions (Zar 2010). 

Transformation was carried out mainly by two equations: log(x) or x2; root dry 

weight data from Zn treatments were transformed by √�  after a BoxCox plot. Data 

that could not be transformed to attain normality (i.e. a few root morphology 

parameters), Kruskal-Wallis followed by a Dunn’s test (p < 0.05) were performed. 

A non-parametric correlation test (Spearman) was done for 14 different variables 

to verify possible monotonic relationships and only significant rs values (p < 0.05) 

were reported. 

 

3.3 Results 

3.3.1 Growth, biomass production and transpiration rate 

Both Cd and Zn caused toxicity in P. trichocarpa plants after only five weeks 

of exposure, and the visual effects are evident in shoots and roots (Figure 3.1 and 

3.2), especially in Zn treatments.  

P. trichocarpa exhibited a considerable tolerance to Cd toxicity, and negative 

effects were significantly different from control only at the extreme concentration 

of 243 mg kg-1, except for leaf biomass, which was also affected at 81 mg kg-1 Cd. 

Nonetheless, the total biomass produced (leaves + stems + roots) was similar in all 
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Cd treatments except for the highest dose of 243 mg kg-1 Cd (Table 3.1). Zn toxic 

effects were detected at the lowest dose applied, of 30 mg kg-1, which reduced 

leaf and shoot biomass (Table 3.1), although root biomass was unaffected in this 

treatment. Zn concentrations from 30 to 270 mg kg-1 caused comparable toxicity 

in P. trichocarpa, as seen in the total plant biomass produced, but further toxicity 

was observed at higher concentrations. 

 

 

Figure 3.1 - Phytotoxic effects of Cd and Zn in Populus trichocarpa at different soil 

concentrations, after five weeks of exposure. 
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Figure 3.2 - Root scans of Populus trichocarpa exposed to different Cd and Zn 

concentrations during five weeks. Images were used for length, area, volume and diameter 

analyses. 
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Foliar symptoms of phytotoxicity were more evident in Cd treatments than in 

Zn treatments, when compared to control at lower concentrations, 30 to 270 mg 

kg-1 Zn (Figure 3.3). All treatments displayed marginal necrosis in the leaves 

assessed (older leaves), including the control, but chlorosis and discoloration were 

present only in Cd-treated plants. Although necrosis and chlorosis were both 

Table 3.1 Dry biomass production, resulting pH and translocation index (TI) of P. 

trichocarpa exposed to different Cd or Zn concentrations during five weeks. 

Metal 
(mg kg-1) 

Dry biomass (g) Final pH TI (%) 

 
Leaves Stems Roots  Leaves Roots 

Cadmium       

Control 1.9 ± 0.1 a  0.9 ± 0.1 a 0.4 ± 0.1 a 6.3  a 100 100 

1 1.9 ± 0.1 a 0.9 ± 0.1 a 0.4 ± 0.1 a 6.2 ab 107 102 

3 1.7 ± 0.1 ab 0.7 ± 0.1 a 0.4 ± 0.1 a 6.2 ab 96 93 

9 1.5 ± 0.1 ab 0.6 ± 0.1 a 0.3 ± 0.0 a 6.2 ab 78 79 

27 1.7 ± 0.1 ab 0.8 ± 0.1 a 0.4 ± 0.0 a 6.1 ab 94 92 

81 1.4 ± 0.1 b 0.6 ± 0.1 a 0.3 ± 0.0 a 6.2 ab 75 74 

243 0.5 ± 0.1 c 0.2 ± 0.0 b 0.1 ± 0.0 b 6.0  b 9 28 

Zinc   

Control 2.0 ± 0.0 a 0.9 ± 0.0 a 0.5 ± 0.0 a 6.3 a 100 100 

30 1.6 ± 0.1 b 0.7 ± 0.1 b 0.4 ± 0.1 a 6.3 a 83 80 

90 1.5 ± 0.0 b 0.6 ± 0.0 b 0.4 ± 0.0 a 6.3 a 86 76 

270 1.4 ± 0.1 b 0.6 ± 0.0 b 0.3 ± 0.0 a 6.0 b 62 68 

810 0.9 ± 0.1 c 0.3 ± 0.0 b 0.1 ± 0.0 b 5.4 c 22 47 

2430 0.9 ± 0.1 c 0.2 ± 0.0 b 0.1 ± 0.0 b 5.1 d 11 47 

7290 0.9 ± 0.1 c 0.2 ± 0.0 b 0.1 ± 0.0 b 4.8 d 12 46 

Values are the mean ± SE (Cd treatments and pH, n = 4; Zn treatments; n = 3) 

Significant differences among treatments (for each metal) are represented by different 

letters. 

Initial pH: 6.9; 

Cd treatments and pH values: Tukey test: p < 0.05;  

Zn treatments: Dunn test, p < 0.05.   

Standard errors for the Final pH were ≤ 0.1 for all treatments.   
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considered for the toxicity scoring, chlorosis symptoms were predominantly in Cd 

treatments. At the highest Zn concentrations (2430 and 7290 mg kg-1) all leaves 

were scored as a 5, due to extensive foliar necrosis (Figure 3.1). 

 

 

Figure 3.3 - Toxicity ranks of P. trichocarpa exposed to different Cd and Zn concentrations. 

Symptomatic leaf tissue area (SLTA) was assessed visually and scored from 0 to 5 (each score 

represent 20% of leaf area). Significant differences are represented by different letters by Tukey 

test (p < 0.05) in Cd treatments and Dunn’s test (p < 0.05) in Zn treatments. 

 

 Root scanning allowed the determination of root total length, area, volume 

and diameter for P. trichocarpa grown in different Cd and Zn concentrations. 

Results for root morphology parameters, leaf transpiration and stomatal 

conductance can be found in Table S3.1. Roots under Cd treatments displayed a 

similar response as the other parameters assessed, with evident toxicity effects 

only at the highest concentration of 243 mg kg-1. In the case of Zn, length, area 

and volume reduction of roots was caused mainly at 810 mg kg-1 or higher 

concentrations. As for the analyses of stomatal conductance (gs) and transpiration 

rate (E), there were no significant differences among Zn treatments (Control – 810 

mg kg-1) or among Cd treatments, except for the highest concentration of 243 mg 

kg-1, in which there was a reduction in the transpiration rate (E) in comparison to 

the control, from 2.65 to 0.48 mmol m-2 s-1, and in stomatal conductance (gs), from 

0.084 to 0.008 mol m-2 s-1 (Tukey test, p = 0.0009 and p = 0.0004, respectively).  
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3.3.2 Cadmium and zinc uptake, accumulation and translocation 

Cd uptake in poplar roots increased almost exponentially and was at least 10 

times the concentration applied in some treatments (1 to 9 mg kg-1 Cd) (Figure 3.4; 

Table S3.4). In leaves, an increasing uptake is observed only until the 

concentration of 9 mg kg-1 Cd, after which there is a plateau and Cd concentration 

is maintained around 50 mg kg-1 (Figure 3.4). However, in the treatment with 243 

mg kg-1, Cd accumulation surpasses the plateau concentration by more than 10 

times (from an average of 45 to 681 mg kg-1). The bioconcentration factor (BCF) 

shows a decrease in Cd accumulation in roots as concentrations in substrate 

increases (Table 3.2), except at the highest concentration which had a BCF of 47.6 

in poplar roots (tissue concentration of 6,537 mg kg-1 Cd), suggesting a loss of 

regulation in Cd uptake and excessive metal accumulation (Figure 3.4). Overall the 

concentration of 9 mg kg-1 Cd appears to be the threshold in Cd translocation from 

roots to shoots (Tf = 53%, the highest in this study), after which the ratio between 

root and leaf concentration was reduced almost by half (Tf = 27% at 27 mg kg-1 

Cd). At the applied dose of 81 mg kg-1 Cd, root biomass was not affected despite 

tissue concentrations reaching nearly 500 mg kg-1 Cd (Table 3.1 and Figure 3.4). 

Unlike with Cd, Zn content in roots did not differ significantly at lower soil 

concentrations (≤ 90 mg kg-1), increasing only after 270 mg kg-1 Zn (Figure 3.4). Zn 

content in leaves was a direct result of the concentration applied, although only a 

slight increase was observed between treatments of 810 and 2430 mg kg-1 Zn. 

Zn accumulation in roots varied across all treatments, and the highest BCF 

was found at 30 mg kg-1, and lowest at 7290 mg kg-1 (Table 3.2). Considering the 

tolerance indexes, 90 mg kg-1 Zn was the threshold for toxicity in both poplar roots 

and shoots (Table 3.1). Interestingly, this treatment showed a translocation factor 

of 40%, nearly the same factor found at the Cd threshold concentration of 9 mg 

kg-1. 
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Figure 3.4 - Cd and Zn 
concentrations (mg kg-1) in 
leaves, stems and roots of P. 

trichocarpa grown for five 
weeks in sandy substrate at 
different Cd or Zn doses. Error 
bars indicate standard error 
of the mean (n = 4).  
Different letters correspond 
to significant differences 
between doses applied (Cd: 
Tukey test, p < 0.05; Zn: 
Dunn’s test, p < 0.05). To 
better visualise the complete 
data, x axis was set in log scale 
and breaks were added to 
both axes.  
Dotted lines between plotted 
data indicate the position of 
axis breaks. All values are 
presented in Tables S3.4 and 
S3.5. 
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Table 3.2 Total metal uptake, translocation factor (Tf: roots-to-leaves) and 

bioconcentration factor (BCF) in Populus trichocarpa ‘Trichobel’ grown for five 

weeks under different Cd and Zn doses. 

Cd 
(mg kg-1) 

Cd uptake 
(μg plant-1) 

Tf  
BCF 

Leaf Root 

Control 3.2 ± 0.3 21 ± 6 --- --- 

1 14.8 ± 3.1 20 ± 3 2.6 14.4 

3 31.0 ± 5.2 18 ± 3 2.1 11.7 

9 119 ± 11 53 ± 24 4.8 11.7 

27 167 ± 22 27 ± 6 1.6 6.0 

81 267 ± 52 11 ± 1 0.7 6.0 

243 629 ± 157 6 ± 1 2.8 47.6 

------------------------------------------------------------------------------ 

Zn 
(mg kg-1) 

Zn uptake 
(mg plant-1) 

Tf  
BCF 

Leaf Root 

Control 0.3 ± 0.01 33 ± 6 --- --- 

30 0.5 ± 0.1 21 ± 2 3.1 14.8 

90 0.9 ± 0.1 41 ± 6 2.6 6.5 

270 2.0 ± 0.2 26 ± 12 2.4 9.3 

810 2.5 ± 0.5 33 ± 10 1.9 6.9 

2,430 3.5 ± 1.1 21 ± 1 0.9 4.2 

7,290 17.9 ± 2.2 59 ± 26 1.7 2.9 

Values are the mean ± SE (Cd treatments, n = 4; Zn treatments; n = 3) 
Tf = (leaf concentration / root concentration) × 100.  
BCF = plant tissue concentration / dosage added. 

 

Cd concentration in leaves and roots had an inverse relationship with all other 

variables. Stomatal conductance (gs) and transpiration rates (E) had a lower 

correlation to almost all other parameters assessed (especially root parameters), 

however both variables were highly correlated (rs > 0.70) to the number of leaves 

(NL) and shoot growth (SG) (Table S3.2). Overall Zn treatments had a similar 

correlation among all the parameters assessed to Cd treatments with almost no 

correlations between E and gs and other variables (Table S3.3). 
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3.3.3 Expression of PtHMA4 under Cd and Zn stress 

Specific amplification of Pt-HMA4 (POPTR_0006s07650g) was obtained from 

the designed primers (product length: 130 bp). In the control, Pt-HMA4 expression 

was five times higher in roots than in leaves (t-test, p = 0.043), but this variation 

between tissues were not observed in contaminated treatments. Exposure to 

either Cd or Zn down-regulated Pt-HMA4 expression in roots by 2.9-fold and 2.6-

fold respectively (Figure 3.5). No differences in transcript levels were found in 

leaves. Ubiquitin (UBQ) was used for normalisation of HMA4 results due to their 

homogeneous expression across treatments (Control, Cd and Zn): ANOVA, p = 

0.768 (leaves) and p = 0.781 (roots). 

 

 

Figure 3.5 Transcript levels of the PtHMA4 gene in roots and leaves of P. trichocarpa after 

growing for eight weeks under Cd (81 mg kg-1) or Zn (300 mg kg-1) stress, and without any metal 

addition (Control). The mRNA levels were quantified by real-time qPCR and normalised in 

relation to Ubiquitin (UBQ) expression; which had similar expression across treatments: 

ANOVA, p = 0.768 (leaves) and p = 0.781 (roots);. Different letters represent significant 

differences among treatments (error bars: standard error), determined by Tukey test after 

ANOVA (p = 0.0167). There were no differences among treatments in leaf tissues. 
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3.3.4 Cd and Zn interactions and uptake 

Biomass production in treatments with combined metal applications did not 

significantly change from the control nor their corresponding single metal 

treatments: 27 mg kg-1 Cd; or 90 and 270 mg kg-1 Zn. For instance, the Tolerance 

Index (TI) for total biomass was 100% for 27 + 90 mg kg-1 Cd Zn, and 83% for 27 + 

270 mg kg-1 Cd Zn; percentages are related to the non-contaminated control. The 

same results were observed for root morphology, leaf transpiration and stomatal 

conductance (data not shown). Despite exhibiting the same tolerance patterns, Zn 

addition increased Cd uptake, for instance, leaf concentration was of 123 mg kg-1 

in Cd27 + Zn90, almost three times higher than the concentration found when Cd 

was added singly (Cd27), of 42 mg kg-1 (Figure 3.6). Stems and roots also presented 

higher Cd contents after Zn addition, regardless of Zn concentration. Zn uptake 

was not affected in the presence of Cd: leaf, stem and root concentrations were 

not different from when Zn was added separately (Zn90 and Zn270) (Figure 3.6). 
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Figure 3.6 Concentrations of Cd 

(A) and Zn (B) in leaves, stems 

and roots of Populus trichocarpa 

exposed to different metal 

combinations: 27 mg kg-1 Cd, 90 

or 270 mg kg-1 Zn. Different 

letters correspond to significant 

differences among treatments 

for the same plant tissue, Tukey 

test, p < 0.05 (A) and Dunn’s test, 

p < 0.05 (B). 

 

3.4 Discussion 

3.4.1 Cadmium accumulation, distribution and toxicity 

 Exposure to Cd often leads to oxidative stress and phytotoxicity (Benavides 

et al. 2005) as a result of Cd replacing other essential elements (e.g. Ca, Fe, Mg 

and Zn) in enzymes, which usually lose their function (Clemens 2006; Verbruggen 

et al. 2009; Kupper and Andresen 2016). Growth impairment is a typical effect of 
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Cd toxicity (Pal et al. 2006), biomass decrease in roots and shoots are commonly 

reported (Tran and Popova 2013), as well as foliar chlorosis and necrosis (Das et 

al. 1997); although usually shoots are more sensitive to Cd toxicity than roots 

(Table 3.3). In the current experiment, despite P. trichocarpa showing symptoms 

of toxicity in leaves under Cd exposure, particularly at soil concentrations higher 

than 27 mg kg-1 Cd, loss of biomass was not evident in most of the treatments.  

Only at the highest concentration did all roots, stems and leaves present obvious 

toxic effects, indicating a remarkable tolerance to Cd in comparison to other 

published studies which often report Cd toxicity ranging from 2.2 to 50 mg kg-1 (L-

1) Cd (Table 3.3). According to Audet and Charest (2008), plants from the 

Brassicaceae family, known for their high tolerance to metals, tend to maintain a 

constant biomass allocation to roots despite exposure to higher metal 

concentrations in soils, similar to that observed for poplars exposed to Cd in the 

present study, suggesting that in both cases metal partitioning plays a larger role 

in tolerance than does biomass plasticity.  

Tolerance index (TI) is a good measure to compare different studies 

regarding metal toxicity. In this work, the tolerance index ranged from 107 to 75% 

in leaves across all Cd treatments, excluding the highest Cd concentration, which 

displayed a conspicuous toxicity. These values are within the bounds reported for 

poplars exposed to Cd concentrations lower than 30 mg kg-1: TI of 90 to 78% in P 

x canescens (Dai et al. 2013)  and 91% in P. nigra (Gaudet et al. 2011). The most 

important mechanism for Cd tolerance in plants is the metal chelation and 

compartmentalization into the vacuoles (Sharma et al. 2016), especially via the 

phytochelatin (PC) pathway (Clemens 2006). Expression of genes encoding 

metallothioneins (metal chelation) and heat shock proteins (proper protein 

folding) due to Cd exposure were also associated with stress tolerance 

mechanisms in poplars (Hassinen et al. 2009; Hasan et al. 2017). 

 Cadmium accumulated mainly in the roots, as it is reported in most studies 

on poplars (Dos Santos Utmazian et al. 2007; Zacchini et al. 2009; Di Lonardo et al. 

2011) or other plant species (Obata and Umebayashi 1997; Green and Tibbett 

2008; Lux et al. 2011); while stems and leaves had generally the same 
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concentrations. Despite much higher Cd accumulation, the roots of P. trichocarpa 

were as tolerant as its aboveground parts for most treatments (TI of 102-74%). 

Cd concentration generally increases in leaves as a result of increasing soil 

or nutrient solution concentrations (Di Lonardo et al. 2011; Dai et al. 2013; Jun and 

Ling 2012). Interestingly, Cd contents in both leaves and stems did not significantly 

change among the treatments of 9, 27 and 81 mg kg-1 Cd, despite a significant 

increase in root concentration in the latter, exhibiting a plateau pattern in shoot 

accumulation. A similar pattern has been previously observed in P. leucoides (Jun 

and Ling 2012) and other plant species, such as barley (Green et al. 2006) and 

radish (Hamon et al. 1999), however this is generally uncommon in Populus 

species. This plateau concentration in shoots may be the main mechanism behind 

the tolerance observed even at high Cd doses. Root-to-leaf translocation 

decreased drastically from the treatments of 9 to 81 mg kg-1 Cd, which suggests 

two different strategies for this plant to cope with metal toxicity depending of the 

substrate concentration: one associated with hyperaccumulating plants (high 

translocation) and the other with woody plants (low translocation) at low and high 

Cd doses, respectively. 

At 9 mg kg-1 the high translocation of Cd to aboveground parts (Tf: 53%) is 

considered to be a common mechanism of hyperaccumulators, in which the metal 

is detoxified by chelation, vacuole storage and rapidly translocation to shoots via 

the xylem (Tran and Popova 2013). However, at 81 kg kg-1, there is a much higher 

Cd uptake in roots, which is a reflection of the non-specific mechanisms by which 

Cd enters the plant system (Lux et al. 2011), thus in order to avoid toxicity in the 

photosynthetic apparatus, there is a limited transport of Cd to the shoots (Tf: 

11%). Restricting root-to-shoot translocation is a strategy typical of woody species 

that may contribute to metal tolerance (Arduini et al. 1996) since the first 

important barrier against Cd toxicity is the immobilization in cell walls in roots 

(Sanita di Toppi and Gabbrielli 1999). Lower translocation of Cd to shoots can be 

due to different mechanisms, such as down-regulation of transporter proteins (i. 

e. heavy metal ATPases and ABC transporters) responsible for Cd loading in the 

xylem or increasing production of metal chelators (Lux et al. 2011). Lignification of 

cortical cells, sclerenchyma walls and vascular tissues can also be triggered by Cd 
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(Luković et al. 2012; Kupper and Andresen 2016; Tylova et al. 2017), which may 

contribute to the thickening of the Casparian bands in the root apex (Schreiber et 

al. 1999; White 2001) where high influx of Cd2+ occurs (He et al. 2011). 

 

Table 3.3 Reports of Cd and Zn toxicity in poplar trees. For comparison, all units for the metal 

concentrations were converted to mg kg-1 for soils or other solid substrates, or mg L-1, in the case 

of experiments using nutrient solution (‘nutr. sol.’) in hydroponic systems. The ‘Phytotoxicity’ 

column corresponds to the plant parameters most affected by metal toxicity. The “lowest observed 

adverse effect concentration” (LOAEC) shows the lowest Cd or Zn concentration to significantly 

cause toxicity (in some cases data was extracted from figures). The letter ‘x’ corresponds to cases 

in which no toxicity was detected. 

Populus 

species 

Growth 
substrate 

Metal 
concentration 

Phytotoxicity LOAEC Ref. 

P. alba 

soil 3.53 Cd x x 1 

nutr. sol. 
0 – 130 Zn; 
0 – 30 Cd 

root biomass 65 Zn 2 

soil 950 Zn + 1,300 Cu overall biomass 
950 Zn;  

1,300 Cu 
3 

soil 950 Zn + 1,300 Cu x x 4 

soil 300 Zn overall biomass 300 Zn 5 

nutr. sol. 32 – 260 Zn root length 130 Zn 6 

nutr. sol. 32 – 260 Zn foliar symptoms 130 Zn 7 

soil 0 – 160 Cd x x 8 

soil 300 Zn overall biomass 300 Zn 9 

P. canescens 

 

sand + peat 
moss 

300 Zn x x 10 

sand + peat 
moss 

50 Cd shoot biomass 50 Cd 10 

soil 360 Cd overall biomass 360 Cd 11 

soil 265 Zn x x 11 

soil 360 Cd 
stem height, 

photosynthesis 
360 Cd 12 

soil 0 – 2500 Zn lethal 500 Zn 13 

nutr. sol. 5.6 Cd chlorophyll 5.6 Cd 14 

nutr. sol. 1.12 – 7.8 Cd overall biomass 7.8 Cd 15 

P. deltoides  
soil 8.14 Cd photosynthesis 8.14 Cd 16 

soil + waste 10,300 Zn; 5.5 Cd x x 17 



105 

 

Chapter 3: Tolerance, toxicity and transport of Cd and Zn in Populus trichocarpa 

 

 

Table 3.3 Cont. 

Populus 

species 

Growth 
substrate 

Metal 
concentration 

Phytotoxicity LOAEC Ref. 

P. 

euramericana 

soil 8.14 Cd photosynthesis 8.14 Cd 16 

inert clay 0 – 650 Zn overall biomass 327 Zn 18 

inert clay 0 – 650 Zn overall biomass 327 Zn 19 

vermiculite 65 and 650 Zn 
biomass, leaf 

area 
65 Zn 20 

nutr. sol. 0, 0.1 and 11 Cd* root biomass 0.1 Cd 21 

soil + waste 10,300 Zn; 5.5 Cd x x 17 

P. nigra 

soil 1,760 Zn; 32.7 Cd x x 22 

soil 300 Zn 
shoot height, 
root biomass 

300 Zn 5 

nutr. sol. 5.6 Cd leaf biomass 5.6 Cd 23 

nutr. sol. 5.6 Cd overall biomass 5.6 Cd 24 

nutr. sol. 5.6 Cd 
root length,  

leaf area 
5.6 Cd 25 

P. pyramidalis soil 0 – 100 Cd leaf biomass 25 Cd 26 

P. tremula 

soil 1,760 Zn; 32.7 Cd x x 22 

nutr. sol. 2.24 Cd overall biomass 2.24 Cd 27 

nutr. sol. 2.24 Cd shoot growth 2.24 Cd 28 

soil 3,000 Zn x x 29 

P. trichocarpa 

nutr. sol. 5.6 Cd x x 25 

sand + 
vermic. 

0 – 243 Cd leaf biomass 81 Cd 
current 
study 

sand + 
vermic. 

0 – 7,290 Zn 
leaf, stem 
biomass 

30 Zn 
current 
study 

Populus sp.  soil 
60 – 486 Zn; 
0.05 – 1.6 Cd 

x x 30 

References (Ref.) [1] Ciadamidaro et al. 2014; [2] Di Lonardo et al. 2011; [3] Cicatelli et al. 2010; [4] 
Cicatelli et al. 2012; [5] Lingua et al. 2008; [6] Castiglione et al. 2007; [7] Franchin et al. 2007; [8] 
Rafati et al. 2011; [9] Todeschini et al. 2011; [10] Durand et al. 2011; [11] Durand et al. 2010a; [12] 
Durand et al. 2010b; [13] Langer et al. 2009; [14] He et al. 2011; [15] Dai et al. 2013; [16] Pajevic et 
al. 2009; [17] Sebastiani et al. 2004; [18] Di Baccio et al. 2005; [19] Di Baccio et al. 2009; [20] Di 
Baccio et al. 2010; [21] Lukovic et al. 2012; [22] Dos Santos Utmazian and Wenzel 2007; [23] Gaudet 
et al. 2011; [24] Iori et al. 2016; [25] Zacchini et al. 2009; [26] Hu et al. 2014; [27] Kieffer et al. 2009; 
[28] Sergeant et al. 2014; [29] Brunner et al. 2008; [30] Laureysens et al. 2004. * - Cd solutions re-
applied weekly for a total of six weeks. 
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3.4.2 Zn accumulation, distribution and toxicity 

Phytotoxic effects of Zn in plants is characterised by growth inhibition, leaf 

chlorosis and necrosis, oxidative stress, impairment of photosynthesis, 

degradation of mitochondria and chloroplasts (Todeschini et al. 2011) and, in 

general, Zn concentration in leaves above 300 mg kg-1 induces visible toxicity 

symptoms (Marschner 1995). Although there were no differences from control in 

terms of foliar symptoms at lower Zn doses applied (≤ 270 mg kg-1 Zn), P. 

trichocarpa had significantly less leaf and stem biomasses even at the lowest dose 

of 30 mg kg-1, considered to be a sub-lethal concentration (< 65 mg kg-1) (Romeo 

et al. 2014). It should be noted that in our experiment the metal solutions were 

applied in a single pulse, in which a rapid uptake could have occurred in these 

plants immediately after contamination and may have impaired plant growth due 

to salinity or osmotic stress (Polle et al. 2013). Recent studies have classified 

poplars as being sensitive to moderately sensitive to salinity stress (Mirck and 

Zalesny 2015). Moreover, high cation additions (≥ 270 mg kg-1 Zn; or 243 mg kg-1 

Cd) significantly decreased the substrate pH, especially at extreme Zn 

concentrations (2430 and 7290 mg kg-1), thus it is evident that this acidification 

could have led to an acute toxicity by enhancing Zn2+ availability in the rhizosphere 

(Alloway 2008). 

Zn toxicity varies considerably among poplar species, but generally a 

decrease in biomass starts at soil concentrations of 300 mg kg-1 Zn (Table 3.3). Di 

Lonardo et al., (2011) found no effects from 130 mg L-1 on shoot biomass of three 

different P. alba varieties in vitro, although root biomass in one case decreased by 

85% at only 65 mg L-1. In our study, the shoots of P. trichocarpa were more 

sensitive to Zn than the roots, which only presented biomass loss at higher 

concentrations (≥ 810 mg kg-1 Zn). Root tolerance is an important feature in plants 

exposed to toxic metals, for it implies preservation of cell membranes selectivity 

properties, the initial step in uptake and xylem loading (Zacchini et al. 2009). Roots 

accumulated more Zn than the leaves, which is in accordance to some studies in 

poplars (Dos Santos Utmazian and Wenzel 2007; Romeo et al. 2014), although 

other poplar species have demonstrated significantly higher Zn contents in leaves 
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(Lingua et al. 2008; Castiglione et al. 2009; Cicatelli et al. 2010; Todeschini et al. 

2011).  

Although Zn doses applied were 10 times higher than Cd, Zn translocation 

response (based on Tf values) was somewhat analogous to the patterns seen in 

Cd-treated poplars. This suggests that P. trichocarpa adopts similar strategies for 

dealing with Cd and Zn toxicity by decreasing metal translocation after a certain 

concentration threshold, in this case at 270 mg kg-1 Zn. Reducing Zn translocation 

as a protective effect was also seen in P. alba (Romeo et al. 2014) and P. nigra (Dos 

Santos Utmazian and Wenzel 2007). 

 

3.4.3 PtHMA4 is down-regulated in roots under Cd and Zn stress 

The significant decrease in root-to-shoot translocation of Cd and Zn observed 

at the doses applied of 81 mg kg-1 Cd and 270 mg kg-1 Zn, led us to investigate if 

the ATPase HMA4, which plays a pivotal role in metal detoxification and long 

distance transport in plants (Luo et al. 2016; Sarwar et al. 2017). Pt-HMA4 was 

expressed highly in roots, similar to what has been observed for other members 

of the HMA family in poplar, specifically around xylem vessels (Migeon et al. 2010). 

In A. halleri, exposure to Zn clearly showed an abundance of HMA4 transcripts in 

the root xylem adjacent to the pericycle layer, which emphasises HMA4 

involvement in xylem loading and justifies its high expression in root tissues 

(Hanikenne et al. 2008). 

Both Cd and Zn amendments resulted in down-regulation of Pt-HMA4 in 

poplar roots, which places this gene in the same subgroup of HMAs transporting 

Zn/Cd/Co/Pb as found in A. thaliana (At-HMA1-4) and Oryza sativa (Os-HMA1-3) 

(Takahashi et al. 2012). Transport proteins such as HMA, can contribute to Cd 

efflux to the apoplast, sequestration into the vacuoles and directly affect Cd 

uptake and localisation (Iori et al. 2016; Hasan et al. 2017). Similarly, at high 

concentrations of Zn, P. nigra down-regulated Pt-HMA4 expression in just 48 

hours (Adams et al. 2011), but in the present study we showed that after eight 

weeks of exposure to Cd or Zn the  expression of Pt-HMA4 was still much lower 

than uncontaminated control. Small variations in the expression of HMA4 in A. 

thaliana were demonstrated to have large effects in the Zn gradient in roots (Claus 
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et al. 2013). Thus we can hypothesize that the down-regulation of Pt-HMA4 

expression under Cd and Zn stress (Figure 3.5) is one of the mechanisms by which 

P. trichocarpa maintains the metal partitioning pattern observed previously, in 

which a drastic decrease in translocation occurs as metal concentration reaches 

its toxicity threshold. 

 

3.4.4 Cd and Zn interactions in poplar 

Decrease in Cd uptake in plants due to elevated Zn supply has been 

commonly shown and is often associated with competitive interactions during 

root uptake, in which Cd is believed to enter the plant via transport processes 

inherent to Zn (Marschner 1995; Hart et al. 2002; Garg and Kaur 2013). The 

opposite can also be observed, for instance in wheat, a decrease in Zn 

translocation was attributed to competition with high Cd concentrations in soil 

(Green et al. 2010). We predicted similar outcomes, in which Zn would be 

preferentially taken up by the roots, therefore reducing Cd accumulation in the 

plant. However Zn had the opposite effect in P. trichocarpa under our 

experimental conditions and caused an overall increase in Cd uptake and 

accumulation (Figure 3.6). 

A pH decline in the substrate due to high cationic concentration (Zn2+) may 

have played an important part in increasing Cd uptake, which is known for the 

inverse relationship with soil pH (Chuan et al. 1996; Smolders and Mertens 2013). 

But substrate pH was unaffected by the addition of 90 mg kg-1 Zn compared to 

when Cd was added singly (pH of 6.1 in both cases), yet it still lead to a significant 

increase in Cd concentrations in all plant parts: for instance Cd concentration in 

leaves increased from 42 mg kg-1 under single metal treatment (Figure 3.4) to 123 

mg kg-1 under the combined treatment (Figure 3.6). Similar effect was observed in 

Nocceae caerulescens, in which combined treatments of Zn (500 µM) and Cd (200 

µM) in hydroponic cultures resulted in increasing Cd2+ influx into root tissues and 

higher accumulation in shoots (Papoyan et al. 2007), and this response has been 

associated with hyperaccumulator phenotypes (Lasat et al. 1998; Papoyan and 

Kochian 2004). Moreover, the hyperaccumulator Brassica juncea had an increase 

in Cd uptake after Zn addition, leading also to a higher tolerance in comparison to 
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plants exposed to Cd and Zn separately (Kutrowska et al. 2017). In field conditions, 

positive correlation between Zn and Cd accumulation in shoots was also reported 

in Cacao trees (Arévalo-Gardini et al. 2017). Such response might be related to an 

up-regulation of genes encoding some metal transporters in roots triggered by the 

exposure to Zn2+, through which Cd2+ could have been actively transported. For 

instance, in Salix caprea the combined treatment of Cd and Zn induced the 

expression of transporters ZIP6 and HMA1 (Konlechner et al. 2013). Another 

reason for higher Cd uptake can be attributed to the direct competition between 

Zn and Cd for the soil adsorption sites (Lu and Xu 2009), for these elements have 

similar atomic characteristics and are both affected by electrostatic interactions 

(Moreira and Alleoni 2010). Considering that the concentrations of Zn added were 

at least three times higher than Cd, it is likely that Zn caused a displacement of Cd 

into the solution, increasing its availability for plant uptake. 

Metal accumulation in P. trichocarpa varied depending on external metal 

contents and also the plant’s own regulatory system, which in some cases 

presented responses analogous to hyperaccumulator plants. Foliar concentration 

of 123 mg kg-1 Cd is not high compared to well established Cd-hyperaccumulators 

such as N. caerulescens, that can accumulate more than 3000 mg kg-1 DW 

(Papoyan et al. 2007). However, Cd is naturally in plants at levels lower than 1 mg 

kg-1 (Reeves 2006) and, according to Baker et al. (2000) and He et al. (2017), 

concentrations higher than 100 mg kg-1 Cd are exceptional and can be the 

threshold for recognizing a hyperaccumulator of Cd (0.01% of dry weight). 

Zn addition lead to higher Cd accumulation in leaves and stems, but this did 

not result in higher toxicity, suggesting that Zn also had a protective effect. 

According to Cherif et al. (2011), Zn addition can restore and enhance the 

functional activities of antioxidant enzymes such as superoxide dismutase, 

catalase and glutathione reductase that are suppressed by Cd toxicity. 

Concentration around 65 mg L-1 Zn improved the photoprotective and antioxidant 

responses (α-Tocopherol and reduced glutathione) in two poplar clones in 

hydroponics (Fernandez-Martinez et al. 2014). Overall, Zn can protect cells from 

damaging reactions caused by reactive oxygen species (ROS) and compete with Cd 

for binding sites in enzymes (-SH groups) and membrane proteins (Cakmak 2000; 
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Cherif et al. 2011).  

 

3.5 Conclusions  

Cadmium and zinc toxicity affected growth and metal allocation in Populus 

trichocarpa ‘Trichobel’, in which Cd transport appears to be strongly regulated to 

some extent (≤ 81 mg kg-1). Although shoot concentrations were not as high as 

found in extreme hyperaccumulator plants, this variety of poplar has an 

exceptional tolerance to Cd, especially considering that phytotoxicity was mainly 

found in high and drastic Cd concentrations (≥ 27 mg kg-1), in which root integrity 

was barely affected. At lower Cd concentrations, P. trichocarpa displayed similar 

tolerance mechanisms and translocation patterns found in plants with 

hyperaccumulator phenotypes; in which metal partitioning appears to play a 

major role in Cd tolerance. Decrease in translocation at high metal concentrations 

was achieved partly by down-regulating the expression of Pt-HMA4 in roots. Zn 

promoted Cd uptake and shoot accumulation without compromising plant 

growth. Such results suggest that P. trichocarpa has the potential to survive, 

stabilise and extract Cd from soils in areas contaminated with both Cd and Zn and 

be a valid candidate for phytoremediation, especially in a short rotation coppice 

system. However, it is still necessary to better comprehend the interactions 

between Cd, Zn and other toxic metals in this species, as well as consider its 

interactions with surrounding soil microbiota (e. g. mycorrhizal symbiosis). 
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3.7 Supplementary Information 

 

 

 

 

 

Table S3.1 Root morphologic parameters, leaf transpiration (E) and stomatal conductance (gs) of 

Populus trichocarpa exposed to different Cd and Zn concentrations for five weeks. 

Metal Length 
Projected 

area 
Average 
diameter 

Root 
volume 

E gs 

Cd (mg kg-1) -- cm -- --  cm2 -- -- mm -- -- cm3 -- mmol m-2 s-1 mol m-2 s-1 

Control 1963 a 100.8 a 0.52 a 4.08 a 2.65 a 0.08 a 

1 2228 a 108.0 a 0.49 a 4.15 a 2.81 a 0.08 a 

3 2080 a 100.1 a 0.48 a 3.83 a 2.60 a 0.08 a 

9 1980 a 95.3 a 0.49 a 3.65 ab 2.67 a 0.08 a 

27 2028 a 101.4 a 0.50 a 4.02 a 2.50 a 0.07 a 

81 2002 a 86.8 a 0.43 ab 2.97 ab 2.40 a 0.06 a 

243 233 b 9.3 b 0.37 b 0.37 b 0.48 b 0.01 b 

Zn (mg kg-1)    

Control 2106 a 100.8 a 0.52 a 4.43 a 2.89 a 0.08 a 

30 2046 a 92.9 a 0.49 ab 3.87 a 2.81 a 0.08 a 

90 1966 a 93.5 a 0.49 ab 3.81 a 2.76 a 0.08 a 

270 1833 ab 63.4 ab 0.47 abc 2.88 ab 2.47 a 0.06 a 

810 763 bc 22.6 bc 0.35 cd 0.85 bc 1.94 a 0.05 a 

2430 333 c 13.1 c 0.41 bcd 0.40 c x x 

7290 363 c 10.5 c 0.33 d 0.34 c x x 

Significant differences among treatments (for each metal) are represented by different letters.  
Cd treatments: Tukey test: p < 0.05, n = 4;  
Zn treatments: Dunn test, p < 0.05, n = 3.  
x’s represent dead leaves and measurements were not recorded. 
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Table S3.2 Spearman correlation (rs) matrix between 14 different variables from Populus trichocarpa grown 
under different Cd concentrations. Variables were considered monotonic correlated for p < 0.05. 

Variables 
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Cd applied 1              

Cd leaf 0.94 1             

Cd root 0.98 0.93 1            

Cd stem 0.96 0.98 0.96 1           

DW leaf -0.72 -0.73 -0.68 -0.71 1          

DW root -0.60 -0.68 -0.58 -0.65 0.83 1         

DW stem -0.64 -0.69 -0.61 -0.67 0.82 0.76 1        

n. of leaves -0.61 -0.52 -0.58 -0.51 0.60 ns 0.45 1       

Shoot growth -0.71 -0.63 -0.68 -0.64 0.76 0.51 0.67 0.88 1      

Root diam. -0.54 -0.53 -0.53 -0.51 0.66 0.73 0.52 0.46 0.57 1     

E -0.48 ns -0.47 -0.40 0.61 ns 0.46 0.77 0.84 0.47 1    

gs -0.61 -0.47 -0.61 -0.51 0.50 ns 0.41 0.73 0.76 0.41 0.81 1   

symptoms 0.77 0.66 0.76 0.72 -0.39 ns -0.48 -0.50 -0.46 ns ns -0.52 1  

pH ns -0.43 ns -0.39 0.40 0.53 ns ns ns ns ns ns ns 1 

Cd applied: Cd solutions applied in the substrate (0; 1; 3; 9; 27; 81; 243 mg kg-1); Cd leaf, stem, root: Cd concentration in plant tissues; 
DW: dry weight; n. of leaves: number of expanded leaves at harvest; Shoot growth: difference (in cm) of shoot height before and after 
Cd treatment; Root diam.: mean root diameter; E: leaf transpiration; gs: stomatal conductance; symptoms: toxicity symptoms in leaves 
at harvest; pH: substrate pH after harvest. 
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Table S3.3 Spearman correlation (rs) matrix between 14 different variables from Populus trichocarpa grown 
under different Zn concentrations. Variables were considered monotonic correlated for p < 0.05. 

Variables 
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Zn applied 1              

Zn leaf 0.97 1             

Zn root 0.97 0.94 1            

Zn stem 0.98 0.98 0.96 1           

DW leaf -0.91 -0.87 -0.89 -0.89 1          

DW root -0.89 -0.89 -0.92 -0.90 0.87 1         

DW stem -0.88 -0.82 -0.86 -0.84 0.91 0.82 1        

n. of leaves -0.89 -0.84 -0.86 -0.87 0.83 0.77 0.83 1       

Shoot growth -0.95 -0.90 -0.95 -0.92 0.89 0.83 0.89 0.91 1      

Root diam. -0.84 -0.86 -0.81 -0.84 0.81 0.83 0.68 0.74 0.77 1     

E ns ns ns ns ns ns ns 0.60 ns ns 1    

gs ns ns ns ns ns ns ns 0.53 ns ns 0.91 1   

symptoms 0.83 0.81 0.85 0.82 -0.78 -0.85 -0.86 -0.83 -0.81 -0.69 ns ns 1  

pH -0.91 -0.90 -0.89 -0.92 0.84 0.88 0.77 0.82 0.87 0.81 ns ns -0.76 1 

Zn applied: Zn solutions applied in the substrate (0; 30; 90; 270; 810; 2430; 7290 mg kg-1); Zn leaf, stem, root: Zn concentration in plant 
tissues; DW: dry weight; n. of leaves: number of expanded leaves at harvest; Shoot growth: difference (in cm) of shoot height before 
and after Zn treatment; Root diam.: mean root diameter; E: leaf transpiration; gs: stomatal conductance; symptoms: toxicity symptoms 
in leaves at harvest; pH: substrate pH after harvest. 
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Table S3.4 Cadmium concentration, total uptake, translocation factor 

(Tf: roots-to-leaves) and bioconcentration factor (BCF) in Populus 

trichocarpa ‘Trichobel’ grown for five weeks under different Cd 

doses. 

Cd 
(mg kg-1) 

Cd concentration 
(mg kg-1) 

Cd uptake  
(μg plant-1) 

 Leaves Stems Roots  

Control 0.5 ± 0.1  aA 1.4 ± 0.3  aA 2.5 ± 0.4  aB 3.2 ± 0.3  

1 2.6 ± 0.1  bA 3.4 ± 0.4  bB 14.4 ± 2.7  bC 14.8 ± 3.1 

3 6.2 ± 0.3  cA 8.30 ± 0.8  cA 35.1 ± 4.4  cB 31.0 ± 5.2 

9 42.9 ± 4.4  dA 41.1 ± 7.1  dA 105 ± 18  dA 119 ± 11 

27 42.0 ± 4.3  dA 42.6 ± 7.3  dA 163 ± 29  dB 167 ± 22 

81 53.9 ± 2.0  dA 67.4 ± 9.7  dA 487 ± 64  eB 267 ± 52 

243 681 ± 31  eA  434 ± 98  eA 6,537 ± 816 fB 629 ± 157 

Different lowercase letters denote significant difference between treatments 
by Tukey test (p<0.05); Different uppercase letters denote significant 
differences between plant organs in the same treatment by Tukey test (p < 
0.01).  
Tf = (leaf concentration / root concentration) × 100.  
BCF = (plant concentration / soil concentration). 
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Table S3.5. Zinc concentration, total uptake, translocation factor (Tf: 

roots-to-leaves) and bioconcentration factor (BCF) in Populus 

trichocarpa ‘Trichobel’ grown for five weeks under different Zn doses. 

Zn 
(mg kg-1) 

Zn concentration 
(g kg-1) 

Zn uptake  
(mg plant-1) 

 Leaves Stems Roots  

Control 0.09 ± 0.01 aB 0.04 ± 0.01 aA 0.2 ± 0.01 aC 0.3 ± 0.01 

30 0.1 ± 0.01 aA 0.3 ± 0.1 bAB 0.4 ± 0.1 aC 0.5 ± 0.1 

90 0.2 ± 0.02 bA 0.5 ± 0.01 bB 0.6 ± 0.1 aB 0.9 ± 0.1 

270 0.7 ± 0.1 cA 0.8 ± 0.1 bcA 2.5 ± 0.9 bA 2.0 ± 0.2 

810 1.5 ± 0.1 cdA 1.9 ± 0.2 cdAB 5.6 ± 1.3 bcB 2.5 ± 0.5 

2,430 2.2 ± 0.4 dA 4.8 ± 1.1 dA 10.1 ± 1.5 cdB 3.5 ± 1.1 

7,290 12.8 ± 3.5 eA 24.3 ± 4.2 eA 21.5 ± 5.3 dA 17.9 ± 2.2 

Different lowercase letters denote significant difference between 
treatments by Dunn test (p < 0.05);  
Different uppercase letters denote significant differences between plant 
organs in the same treatment by Dunn test (p < 0.01).  
Tf = (leaf concentration / root concentration) × 100. 
BCF = (plant concentration / soil concentration). 
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Abstract 

Metal inputs in terrestrial ecosystems are highly concerning due their toxicity 

to biota. Among soil remediation techniques, phytoremediation is considered to be 

less harmful to the environment. Alternatives to enhance phytoremediation efficiency 

are the use of tree species with metal-accumulating capacity and mycorrhizal 

symbiosis associations as a way of increasing plant growth and tolerance. 

We investigated some of the mechanisms by which mycorrhizal fungi can 

promote tolerance in poplars under Cd and Zn stress. Populus trichocarpa cuttings 

were grown for seven weeks in a clay:sand substrate contaminated by Cd (81 mg kg-1) 

or Zn (300 mg kg-1) with or without inoculation by arbuscular mycorrhizal fungus 

Rhizophagus irregularis. Growth, transpiration, metal accumulation (leaves, stems and 

roots) and root colonisation were assessed. The expression of genes involved in metal 

transport (PtHMA4, PtMTP1, PtZIP1 and PtNramp3) and chelation (PtMT2a, PtMt2b 

and PCS1) were quantified by qPCR in roots and leaves. PtMT2b function was verified 

by heterologous expression in yeast under different Cd doses. 

P. trichocarpa was highly tolerant to both Cd and Zn, and growth was not 

different from non-contaminated Control. Mycorrhizal symbiosis increased Zn 

concentrations by 32 and 37% in leaves (1,200 mg kg-1 Zn) and roots (1,100 mg kg-1 Zn), 

respectively. Overall, Cd uptake was not affected by mycorrhization, however shoots 

of mycorrhizal plants accumulated 41% less Cd when compared to non-mycorrhizal 

treatments, indicating a strong restriction in translocation. Exposure to either high Zn 

or Cd down-regulated PtHMA4 in roots, and up-regulated PtZIP1 in leaves, suggesting 

that these genes are involved in both Zn and Cd transport. PtMT2b was highly up-

regulated in mycorrhizal roots regardless of Cd addition, which may be linked to the 

restriction of Cd transport in all inoculated plants. Yeasts expressing PtMT2b were very 

tolerant to high Cd (50 µM) in comparison to non-transformed strains. Inoculation of P. 

trichocarpa with R. irregularis can promote Zn phytoextraction and Cd 

phytostabilisation. Differential gene expression patterns under symbiosis appear to be 

one of the mechanisms in the uptake/translocation dynamics observed. This work 

highlights the importance of AM symbiosis in phytoremediation studies, and offers 

candidate genes for future investigations and biotechnological applications. 
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4.1. Introduction  

 Soil contamination by heavy metals (HMs) is an increasing threat to 

environmental safety and human health (Ali et al. 2013). Cadmium (Cd) is an extremely 

toxic metal even at low concentrations (Alloway 2013) and has high mobility in soils, 

which can lead to groundwater contamination (Lei et al. 2010). Cd is geochemically 

similar to zinc (Zn) and is often found in Zn bearing minerals (Alloway 2013); therefore, 

Zn ores can be responsible for releasing both Cd and Zn into the environment (He et al. 

2015) and despite being an essential element, high concentrations of Zn in soils can be 

harmful to plants and other organisms in the food chain (Nagajyoti et al. 2010; Ali et al. 

2013). 

 Phytoremediation is the use of plants and associated microbiota for 

environmental decontamination (Pilon-Smits 2005) and it is considered to be less 

problematic than the physical and chemical remediation processes due to its low 

environmental impact and overall costs (Gomes et al. 2016). Phytoextraction (uptake 

and translocation of metals to aboveground parts) and phytostabilisation 

(immobilisation of contaminants in roots reducing their mobility and availability in 

soils) are the most common processes for remediation of inorganic contaminants such 

as HMs (Ali et al. 2013). Trees from the Populus genus (poplars) are increasingly being 

considered for remediation of several metals, such as Cd, Zn and Cu (Zacchini et al. 

2009; Guerra et al. 2011; Dai et al. 2013; Luo et al. 2016; Redovnikovic et al. 2017), due 

to their high biomass production, deep root systems (Bhargava et al. 2012), tolerance 

to elevated metal concentrations (De Oliveira and Tibbett 2018) and rapid growth 

(Robinson et al. 2009). Populus species can promptly invade disturbed sites, reproduce 

asexually and are not a source of food for farm animals, reducing the risk of heavy 

metals entering the food chain (Sebastiani et al. 2004; Hamberg et al. 2011; Shim et al. 

2013). Symbiotic fungi such as arbuscular mycorrhizal fungi (AMF) are known to 

improve plant tolerance to biotic and abiotic stresses such as heavy metal toxicity 

(Miransari 2010) and are considered the most important type of mycorrhiza for 

phytoremediation (Coninx et al. 2017). However, the mechanisms by which they 

confer tolerance to HMs have not been clarified (Cicatelli et al. 2014). Inoculation of 

poplar trees with AMF can significantly increase their biomass production 

(Ciadamidaro et al. 2017), enhance Cd accumulation (Chen et al. 2016) and 



129 

 

Chapter 4: The influence of mycorrhizal symbiosis in Populus trichocarpa under Cd and Zn stress: 

transcript analyses and phytoremediation potential 

phytostabilisation of HMs such as Cu and Zn (Cicatelli et al. 2014). Nonetheless, metal 

uptake in plants under AMF symbiosis varies greatly depending on species, cultivars 

and symbiont partners, factors that certainly affect their overall phytoremediation 

potential (Bissonnette et al. 2010; Sun et al. 2018). 

Plants have a series of transporters involved in metal uptake and homeostasis 

that regulates metal movement into the symplast and subsequent loading into 

vascular tissues (Palmer and Guerinot 2009). Gene families encoding metal 

transporters in plants are very diverse and this variation is responsible for the high and 

low affinity systems necessary to withstand different metal availability in soils (Guerra 

et al. 2011). Transport of metals into the symplast can be carried out by members of 

numerous transporter families, such as the heavy metal (Cpx-type) ATPases, the cation 

diffusion facilitators (CDF), the zinc-iron proteins (ZIP) and the natural resistance-

associated macrophage proteins (NRAMP) (Yang et al. 2005; Colangelo and Guerinot 

2006; Sheoran et al. 2011). Since Cd and Zn are very similar, it is generally believed 

that Cd2+ uptake by plants happens by a carrier for Zn2+, or even other divalent cations, 

such as Cu2+ or Fe2+, or by Ca2+ and Mg2+ transporters/channels (Clemens 2006; Guerra 

et al. 2011).  

Most metal ions in plants require constant chelation after being taken up by the 

cell. Chelators bind these ions and contribute to metal detoxification by buffering 

metal concentrations in the cytosol (Clemens 2001). One of the main groups of 

characterised chelators in plant cells are the metallothioneins (MTs) (Clemens 2006). 

These low-molecular weight proteins are rich in cysteine, which bind metals in metal-

thiolate clusters (Cobbett and Goldsbrough 2002), and they are considered to be 

responsible for the homeostasis of essential heavy metals (Kotrba et al. 2009). In order 

to understand heavy metal sequestration, Kohler et al. (2004) characterized six MT 

genes (PtdMTs) in the hybrid P. trichocarpa x deltoides and verified through 

heterologous expression of PtdMT cDNAs in Cd-sensitive yeasts, that these genes 

could confer Cd tolerance. However, data about MT production in poplars are still very 

limited (Guerra et al. 2011). Expression of genes that encode HM transporters and MTs 

in plants can be regulated by environmental conditions, metal concentration in soil, 

pathogen infection and symbiotic interactions (Kohler et al. 2004), such as with 

mycorrhizal fungi (Hildebrandt et al. 2007). Some studies have suggested that AMF can 
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down-regulate gene expression for Zn transporters to promote an optimum 

concentration of this element within the plant (Burleigh and Bechman 2002). In P. alba 

clones inoculated with AMF, higher uptake and tolerance to Cu and Zn were linked to 

up-regulation of MT genes (Cicatelli et al. 2010; Pallara et al. 2013).  

The genome of P. trichocarpa has been completely sequenced (Tuskan et al. 

2006) and offers great opportunities for identifying candidate genes for heavy metal 

uptake in the presence or the absence of AM fungi (Göhre and Paszkowski 2006). 

Assessing the effects of mycorrhizal fungi on the patterns of gene expression in host 

plants is also relevant for elucidating the extent of the mycorrhizal influence, since 

these fungi are known for promoting systemic effects on their symbiont’s gene 

expression and transcriptional responses (Liu et al. 2007). Therefore, the objectives of 

this work were to investigate the influence of mycorrhizal symbiosis (Rhizophagus 

irregularis) in P. trichocarpa under Cd and Zn stress. Initial hypotheses were that: i) 

mycorrhizal symbiosis enhances Cd/Zn uptake and increases plant tolerance to 

toxicity; ii) poplar genes for metal uptake are down-regulated under metal exposure, 

while genes associated with metal chelation are up-regulated; and iii) depending on 

the mycorrhizal effect in metal partitioning, symbiosis could influence the expression 

of transporter and chelation genes.  

 

4.2. Materials and Methods 

4.2.1 Growth substrate preparation, plant material and AMF inoculation. 

 Growth substrate was made up from a mixture of TerraGreen® clay (American 

Granules Plain, OIL-DRI, UK) and sand (1:5 w/w) (Sibelco, UK) and autoclaved twice 

(121oC for 15 min). Plastic pots (1 kg, 13 cm diameter) were prepared with 900 g of the 

substrate and 100 g of the mycorrhizal inoculum. Rhizophagus irregularis inoculum 

was obtained the University of Reading mycorrhizal collection, which is cultured using 

Plantago (Plantago lanceolata L.) as the host plant. In order to spread the inoculum 

evenly around the pot, a previously disinfected plastic pipe (9 cm diameter) was placed 

in the centre of the pot and filled with sandy substrate; the mycorrhizal inoculum was 

added around the pipe, which was then removed. Non-mycorrhizal treatments 

received 100 g of autoclaved inoculum. The substrate surface in all pots was covered 
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with a thin layer (0.5 cm) of plastic pellets, to avoid possible cross contamination 

among treatments. 

Poplar cuttings (Populus trichocarpa cv Trichobel) were obtained from AF Hill & 

Son, Redditch, UK and were kept refrigerated at 4oC until the experiment. One cutting 

(15 cm, two nodes) was planted in the centre of each pot to grow for five weeks in a 

growth chamber (23oC; light per day, 16 h; photosynthetic photon flux, 100 µmol m-2 s-

1 - Philips MCFE 40W/840) and all plants were fertilised weekly for the first three 

weeks with 10 mL of a modified Long Ashton’s solution (macronutrients: (NH4)2SO4 (4 

mM), K2SO4 (2 mM), CaCl2·2H2O (3 mM), MgSO4 ·7H2O (1.5 mM), NaNO3(8 mM), 

FeEDTA (0.1 mM); micronutrients: H3BO3 (2.86 mg L–1), MnCl2·4H2O (1.81 mg L–1), 

CuSO4·5H2O (0.08 mg L–1), NaMoO4·2H2O (0.025 mg L–1), ZnSO4·7H2O (0.22 mg L–1)), 

according to Kariman et al. (2014). Water holding capacity was maintained at 70% (300 

mL of distilled water). 

 

4.2.2 Contamination and experimental design 

 After five weeks of growth, pots were divided randomly into six different 

treatments: (1) Non-mycorrhizal control (Control NM); (2) mycorrhizal control (Control 

+ M); (3) non-mycorrhizal under Cd contamination (Cd NM); (4) mycorrhizal under Cd 

contamination (Cd + M); (5) non-mycorrhizal under Zn contamination (Zn NM); and (6) 

mycorrhizal under Zn contamination (Zn + M). For the Cd treatments, pots were spiked 

with a stock solution of CdCl2 to reach a final concentration of 81 mg kg-1 Cd; to avoid 

osmotic stress the application was split into three consecutive days (27 mg Cd/day). 

For the Zn treatments, a stock solution of ZnSO4 was used to reach a final 

concentration of 300 mg kg-1 Zn; application was also split into three consecutive days 

(100 mg Zn/day). Each treatment had six replicates and they were set up in a 

completely randomised design. Both mycorrhizal and non-mycorrhizal controls 

received deionised water instead of metal solutions. 

 

 4.2.3 Transpiration rate, harvest and pH 

After exposure to the toxic metals for four weeks, the two youngest expanded 

leaves from each plant (including control treatments) were assessed for stomatal 

conductance (gs, in mol m-2 s-1) and transpiration rate (mmol m-2 s-1) using a portable 
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infrared gas analyser (LCi Portable Photosynthesis System). This assessment took place 

in the growth chamber room under constant lighting. 

Eight weeks after contamination, plants were harvested and split into leaves, 

stems and roots (original cutting was discarded). The 9th leaf of each plant (counting 

from the bottom of the stem) was sampled and immediately frozen in liquid nitrogen 

for RNA extraction. Roots were washed thoroughly with tap water and random 

sections of 2 cm from the root tips were sampled both for determination of 

mycorrhizal colonisation and for gene expression analyses, the latter were 

immediately frozen in liquid nitrogen. The remaining roots were immersed in a 0.05 M 

CaCl2 solution for 30 minutes to remove any surface adhering metals (Marmiroli et al. 

2013).  

All plant parts were dried separately in an oven at 70oC for seven days before dry 

weight (DW) was determined. Soil was air dried, sieved (2 mm) and soil pH was 

determined in a water-soil suspension (2.5:1) shaken for 15 min at 120 rpm (Rowell 

1994). 

 

4.2.4 Mycorrhizal colonisation 

Poplar root sub-samples were cleared in KOH solution (10% w/v) at room 

temperature for 10 days, and then stained in a 5% (v/v) black ink vinegar solution 

(Vierheilig et al. 1998) for 1 hour before being washed and transferred to a solution of 

lactoglycerol (Walker 2005). Colonisation scoring was done by the line intercept 

method, in which the presence of either hyphae, arbuscule or vesicle  was considered 

as evidence of mycorrhizae (Giovanetti and Mosse 1980). 

 

4.2.5 Acid digestion and determination of metal content 

Leaf, stem and root samples were ground and 50 mg of material was digested for 

8 hours in 5 mL of 70% HNO3 (≥69% TraceSELECT® for trace analysis) in closed glass 

vessels on heating blocks at 110oC (Huang et al. 2004). Every digestion run was 

performed in duplicate, and a blank and a plant certified reference material (IAEA-359 

cabbage leaves) were included for quality control. Extracts were then diluted in a 

solution of 2% HNO3 + 5 ppb Rh, and filtered. Cd and Zn concentrations were 
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determined by inductively coupled plasma mass spectrometry (Thermo Scientific™ 

iCAP™ Q ICP-MS), using rhodium as an internal standard. 

The translocation factor (Tf) is an index used to assess the plant’s capacity to 

translocate heavy metals from roots to aboveground parts (Rafati et al. 2011), and is 

the ratio between the metal concentrations in shoots (stems + leaves) and roots 

(Saraswat and Rai 2009; Zacchini et al. 2009); In this case, shoot concentration (mg kg-

1) was calculated based on the total amount of Cd accumulated in both leaves and 

stems (mg) in relation to the total shoot dry biomass (leaves + stems) as represented 

by the equations below: 

 

�ℎ���	�����	 = 	
���	�	������	 + ���	�	�����	

�ℎ���	������
	× 1000			�1		 

 

�� = 	
�ℎ���	�����	

����	�����	
	× 100			�2		 

  

 4.2.6 RNA extraction and cDNA synthesis 

 Total RNA was extracted from approximately 100 g of fresh weight material 

(leaves or roots) macerated in liquid nitrogen via TissueLyser II (Qiagen®). Extraction 

was performed by a modified version of the CTAB method (Jaakola et al. 2001): 

macerated samples were incubated with CTAB buffer (hexadecyltrimethylammonium 

bromide) for 25 min at 65oC (instead of 10 min), LiCl addition was 1/3 of total extract 

volume (instead of 1/4) and after overnight precipitation at 4oC, extract was 

centrifuged for 60 min (instead of 20 min). After centrifugation, the supernatant was 

discarded and RNA pellets were purified with the RNeasy Plant Mini kit (Qiagen, UK), 

including a DNAse treatment (Qiagen, UK) for 20 min. Three replicates of each 

experimental treatment with the highest RNA concentration and quality were selected 

for cDNA synthesis, using the SensiFAST cDNA synthesis kit (Bioline, UK) and following 

the manufacturer’s instructions. Both DNA and RNAs were quantified using a 

NanoDrop 2000 Spectrophotometer. 
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 4.2.7 Primer design and gene expression analyses by qPCR 

Specific primers for all the selected P. trichocarpa genes were designed with 

the Primer-BLAST tool (Ye et al. 2012) available at 

https://www.ncbi.nlm.nih.gov/tools/primer-blast/ (Table 4.1). In some cases, 

homologues from P. tremula x P. alba or P. trichocarpa x P. deltoides genes were used 

based on their identity to the P. trichocarpa genome (≥ 93% identity). Eight genes were 

selected, four associated with metal transport (MTP1, HMA4, ZIP1 and NRAMP3), 

three with metal chelation (MT2a, MT2b and PCS1) and one reference gene that 

encodes ubiquitin, with stable expression throughout the experimental treatments 

(UBQ). A schematic representation of the genes selected for qPCR can be found in 

Figure 4.1. 

 

 

Figure 4.1. Schematic representation of a plant cell with the heavy metal transporters and chelators 

assessed in P. trichocarpa roots and leaves via qPCR (gene expression). Solid arrows represent metal 

influx into cytosol, while dashed arrows represent metal efflux from the cytosol. 
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Table 4.1: Primer pairs (and general gene function) used for real-time q-PCR 

Gene Function Accession Primer sequence 

 Metal transport   

MTP1 

Metal tolerance protein 

Cation diffusion facilitator, 

cation efflux 

XM_002320198 

F: AATAGGCAAGGACAGATACGC 

R: GCTGAGGATTTTGTGCTTCCA 

HMA4 a Heavy metal ATPase XM_006381101 
F: ACCAACGTTCTTATGCTTATTGC 

R: CACTGGCCTTGTGGCTT 

ZIP1 
Zinc Iron transporter 

protein 
XM_006368992 

F: ATGGAGTCTTTCGCCACAGG 

R: CAAGACCTTACTGTTCTCCTCGT 

NRAMP3 

Natural resistance-

associated macrophage 

protein 

XM_006380608 

F: GATTTTGAGTAATGGGGTTTTGCCT 

R: AATCCCAAAAGCAGCCTCCAATTTC 

 Metal chelation   

MT2a b Metallothionein XM_002308120 
F: GAAACTGTGGGTGTGGCTCT 

R: TGAGGAGCTCATGTCAGGGT 

MT2b c Metallothionein XM_002314146 
F: AGCTCCAGTTAGGATGTTCTACG 

R: TGCGGCGACGTTTTCTCATT 

PCS1 d Phytochelatin synthase XM_002320590 
F: TGCACAACGAAGAGGGTTCAT 

R: GCAACACCAACCCAACTCTC 

 Reference gene   

UBQ Ubiquitin XM_006373777 
F: AGATGGCAGAACTTTGGCTGA 

R: CGCCAAAGCCATCAAAGAAC 

a - Homology to P. tremula x P. alba P-type heavy metal ATPase (HMA4) (99% nucleotide sequence 

identity); KM245948. b - Homology to P. trichocarpa x P. deltoides metallothionein 2a (MT2a) (93% 

nucleotide seq. identity); c – Homology to P. trichocarpa x P. deltoides metallothionein 2b (MT2b) 

(98% nucleotide seq. identity); d – P. trichocarpa Cadmium sensitive 1 family protein 

(POPTR_0014s18420g), based on the homology to Thlaspi caerulescens TcPCS1, as verified by 

Adams et al. 2011. 

 

The qPCR was performed in duplicate for each sample, in roots and leaves using 

PowerUp™ SYBRGreen™ (Applied Biosystems, UK). Parameters for the qPCR reactions 

were as follows: 1 cycle of 2 min at 50oC followed by 2 min at 95oC (DNA polymerase 
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activation), then 40 cycles of 95oC for 3 sec (denaturation) and 60oC for 30 seconds 

(annealing/extension). Primer specificity was verified by electrophoresis and confirmed 

by melt curve analyses. The qPCR run, data collection and analyses were performed 

using StepOne™ Real-Time PCR System (Applied Biosystems). Results were analysed by 

the standard curve method, and gene expression was normalised using UBQ as the 

house keeping gene. 

 

4.2.8 Expression of PtMT2b in Saccharomyces cerevisiae 

PtMT2b expression in roots was up-regulated and highly correlated to 

mycorrhizal colonisation, which appears to be involved in the restriction of Cd 

transport from roots to shoots (see Results section; Figures 4.4 and 4.5). Therefore, we 

hypothesised that this gene is highly effective in conferring Cd tolerance. This was 

tested by overexpressing PtMT2b in yeast under different Cd concentrations. 

The wild-type S. cerevisiae strain DY1457 (WT) was used for transformation. 

The cDNA synthesised previously was used as template to amplify the open reading 

frame (ORF) of PtMT2b using a primer set containing attB overhang (annealing 

temperature: 58oC), with sequences (5’ – 3’):   

F - GGGGACAAGTTTGTACAAAAAAGCAGGCTTCAT GTCTTGCTGTGGAGGAAA; 

R - GGGGACCACTTTGTACAAGAAAGCTGGGTCTCA TTTGCAGGAGCATGGAT. 

The gene was introduced into a Gateway® donor vector pDONR221 (containing 

the kanamycin resistance gene – Figure S4.1) using Gateway® BP Clonase® II enzyme 

mix. Chemically competent E. coli cells (TOP10) were transformed with the entry clone 

and grown overnight in LB agar + Kanamycin medium at 37oC. Plasmids were isolated 

from transformed E. coli and introduced into destination vector pDR195 (Figure S4.2) 

using the Gateway® LR Clonase® II enzyme mix. E. coli cells were transformed with the 

expression vector and grown in LB agar + Ampicillin, same parameters as before. WT 

yeast was transformed with the expression vector containing PtMT2b, and an empty 

vector (as control). The transformants were selected on synthetic complete (SC) drop-

out medium without uracil [1 g/L drop out medium Y1501 Sigma® + 6.7 g L-1 yeast 

nitrogen base Invitrogen™] + 2% dextrose (v/v). Plasmids were restricted (entry vector: 

SacI and SspI; expression vector: SacI and HindIII) and sequenced at every stage to 

confirm ORF integrity and direction.  
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Yeast cells were grown overnight at 30oC (250 rpm) in SC liquid media (5 mL). 

Cells were then pelleted by centrifugation, and re-suspended in 5 mL of sterile water. 

OD600 was recorded using SpectraMax i3x (Molecular Devices) microplate reader. 

Cultures were diluted in sterile water to reach OD600 of 0.1, and then used for serial 

dilutions (1:10 v/v). All dilutions of transformed yeast (‘PtMT2b’) and empty vector 

control yeast (‘WT’) were spotted (5 µL) in SC agar plates (2% bacteriological agar w/v) 

at 0; 10; 20; and 50 µM Cd (via CdCl2), then grown at 30oC for 72 hours in the dark 

(three replicates). 

 

4.2.9 Statistical analyses 

Statistical analyses were performed for all parameters assessed using R 

software. Dry weight (DW), leaf transpiration (E), and stomatal conductance (gs) were 

analysed by two-way ANOVA and further Tukey tests (p < 0.05). Colonisation 

percentage was compared among only the mycorrhizal treatments by One-Way 

ANOVA followed by Tukey test (p < 0.05) was used to determine the differences in 

colonisation percentage of mycorrhizal roots, and the differences in metal contents 

between leaves, stems and roots. The effects of both mycorrhizal symbiosis and metal 

additions (Cd or Zn) on plant metal concentrations (leaves, stems and roots, in mg kg-1) 

had an inverse Gaussian distribution and therefore were analysed using generalised 

linear models (GLM; p < 0.05), followed by Tukey contrast analyses. The overall 

extraction (in µg Cd or mg Zn per plant) in mycorrhizal and non-mycorrhizal poplars 

was compared by t-test (p < 0.05).  

Differences in gene expression were performed by ANOVA, followed by a Tukey 

test when significance was detected (p < 0.05). Gene expression comparisons were 

performed between Control treatments and Cd treatments, or between Control and Zn 

treatments. Two variables (MTP1-root and NRAMP3-root) were transformed to attain 

the ANOVA’s normality and homoscedasticity assumptions, by log(x). To compare gene 

expression between leaves and roots, a simple t-test was performed. A pair-wise 

Spearman correlation (p < 0.05) was also carried out among the gene expression in 

roots and leaves, as well as other parameters assessed such as metal concentrations 

and colonisation (untransformed data). 
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4.3 Results 

4.3.1 Biomass production, transpiration rate and mycorrhizal colonisation. 

Shoot biomass (dry weight) ranged from 5.6 to 7.0 g, while root biomass (dry 

weight) ranged from 0.4 to 0.5 g (Table 4.2), with no significant differences among 

treatments (ANOVA, p < 0.05). Although biomass was virtually the same in all 

treatments, two-way ANOVA detected an overall higher shoot biomass (~ 0.7 g) in 

mycorrhizal poplars than in non-inoculated plants regardless of metal additions (F 

value: 4.25; p = 0.048). Similarly, transpiration rates (E) were in general 15% higher in 

mycorrhizal poplars than in non-mycorrhizal (two-way ANOVA, F value: 13.1; p = 

0.001).  

Table 4.2.  Biomass (dry weight), transpiration rates (E) and root colonisation 

of Populus trichocarpa under Cd (81 mg kg-1) or Zn (300 mg kg-1) stress, with 

mycorrhizal inoculation (Rhizophagus irregularis; + M) or without (autoclaved 

inoculum). 

Treatment 
Biomass (g) E Colonisation 

Shoot Root mmol m-2 s-1 % 

Control 5.6 ± 1.9 0.5 ± 0.1 1.6 ± 0.2 - 

Control + M 6.4 ± 0.9 0.4 ± 0.0 2.0 ± 0.1 46 ± 8 ab 

Cd 6.1 ± 0.5 0.4 ± 0.1 1.7 ± 0.2 - 

Cd + M 6.6 ± 0.6 0.4 ± 0.1 2.1 ± 0.2 50 ± 6 a 

Zn 6.3 ± 0.3 0.5 ± 0.1 1.9 ± 0.3 - 

Zn + M 7.0 ± 0.9 0.5 ± 0.0 1.9 ± 0.2 36 ± 9 b 

Values are the means ± standard deviations, n = 6. 

Significant differences among colonisation percentages are represented by different 

letters, by ANOVA (p = 0.022) followed by Tukey test. 

No colonisation was detected in non-inoculated treatments. 

No colonisation was detected in non-inoculated poplar roots. In inoculated 

treatments, percentage of colonisation did not differ from the non-contaminated 

control, but plants exposed to Cd (81 mg kg-1) had significantly higher colonisation than 

plants under Zn treatment (300 mg kg-1). Overall there was no apparent visual toxicity 

symptoms in comparison to control plants, regardless of metal addition or mycorrhizal 

inoculation. 



139 

 

Chapter 4: The influence of mycorrhizal symbiosis in Populus trichocarpa under Cd and Zn stress: 

transcript analyses and phytoremediation potential 

4.3.2 Translocation and accumulation of Cd and Zn in mycorrhizal poplars 

Cd accumulation in poplar shoots (leaves and stems) was generally the same in 

both mycorrhizal and non-mycorrhizal plants when growing in non-contaminated soil 

(Control vs Control + M), except for roots, in which Cd concentration increased from ~ 

1.3 to ~ 2.6 mg kg-1 (Table 4.3), where root-to-shoot translocation (Tf) decreased 

sharply from 96% to 34% in mycorrhizal poplars. Under Cd exposure the opposite 

effect was observed; in this case, root concentrations were similar, but in shoots Cd 

accumulation decreased by at least 40% in mycorrhizal poplars, in which an interactive 

effect was also detected between metal addition and inoculation (leaves, p = 0.022; 

stems, p = 0.015). Under Cd treatment, root-to-shoot translocation was much lower 

than found in non-contaminated soil (Tf %, Table 4.3), where roots were the main sink 

for Cd storage. 

 

Table 4.3. Cd concentration (mg kg-1) and translocation factor (Tf: root-to-shoot) in 

Populus trichocarpa under Cd stress (81 mg kg-1) with (+ M) or without inoculation of 

Rhizophagus irregularis. 

Treatment 
---------------- Cd concentration ----------------- 

Tf (%) 

Leaf Stem Root 

Control 0.99 ± 0.3 aA 1.23 ± 0.3 aA 1.34 ± 0.3 aA 96 

Control + M 0.76 ± 0.2 aA 0.96 ± 0.1 aA 2.57 ± 0.7 bB 34 

Cd 8.47 ± 2.4 bA 48.0 ± 11 bAB 725 ± 240 cB 4 

Cd + M 5.02 ± 1.7 cA 26.2 ± 6.6 cAB 871 ± 248 cB 2 

Values are the means ± standard deviations, n = 6. 

Different lowercase letters represent significant differences between treatments 

(columns) by GLM, followed by Tukey contrasts (p < 0.05). 

Different uppercase letters represent significant differences between plant tissues 

within the same treatment (rows), by ANOVA and Tukey test (p < 0.05). 

Tf = (shoot concentration / root concentration) × 100.  

 

Unlike with Cd, AMF did not affect Zn accumulation, partitioning or 

translocation in poplars growing in the non-contaminated soil (Table 4.4), with roots 

accumulating at least three times more Zn than leaves in this case. In poplars growing 
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under 300 mg kg-1 Zn, concentrations were at least 10 times higher in roots and stems, 

and 50 times higher in leaves than in control treatments (Table 4.4). Zinc partitioning 

also shifted under contamination, where both leaves and roots acted equally as the 

main sinks for accumulation. However, the overall Zn concentrations were not 

increased by mycorrhizal symbiosis (Table 4.4), and no interactive effects were 

detected by GLM analyses (p > 0.2 for all plant tissues). 

 

Table 4.4. Zn concentration (mg kg-1) and translocation factor (Tf: root-to-shoot) in 

Populus trichocarpa under Zn stress (300 mg kg-1) with (+ M) or without inoculation of 

Rhizophagus irregularis.  

Treatment 
---------------- Zn concentration ----------------- 

Tf (%) 

Leaf Stem Root 

Control 21.0 ± 8.5 aA 40.0 ± 5.4 aAB 72.2 ± 41 aB 64 

Control + M 21.4 ± 10 aA 39.4 ± 8.5 aAB 84.3 ± 57 aB 63 

Zn   926 ± 225 bA 426 ± 68 bB 780 ± 102 bA 90 

Zn + M 1227 ± 214 bA  472 ± 142 bB 1071 ± 63 bA 79 

Values are the means ± standard deviations, n = 6. 

Different lowercase letters represent significant differences between treatments 

(columns) by GLM, followed by Tukey contrasts (p < 0.05). 

Different uppercase letters represent significant differences between plant tissues 

within the same treatment (rows), by ANOVA and Tukey test (p < 0.05). 

Tf = (shoot concentration / root concentration) × 100.  

 

Considering the total amount of metals extracted from the contaminated soil 

(µg per plant), Cd contents were similar between non- and mycorrhizal poplars, both 

with the following order: roots > stems > leaves (Figure 4.2A). Yet, inoculation with R. 

irregularis clearly affected Cd partitioning, which increased Cd percentage content in 

roots from 64 to 78%. Under Zn contaminated soil, mycorrhizal poplars extracted 

overall more Zn (in mg per plant) than their non-mycorrhizal counterparts, although 

metal allocation followed the same pattern of: leaves > stems > roots (Figure 4.2B), 

with only 8% of Zn being sequestered in roots for both cases. 
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Figure 4.2. Average total content (and standard error) and distribution of Cd and Zn in 

Populus trichocarpa plants under metal stress, with and without inoculation of Rhizophagus 

irregularis. A) under 81 mg kg-1 Cd, p = 0.95 (t-test); B) under 300 mg kg-1 Zn, p = 0.02 (t-test). 
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4.3.3 Effects of Cd and AMF on gene expression 

Gene expression varied greatly depending on the treatment applied (Cd or 

inoculation) and the tissue assessed (roots or leaves). The membrane metal 

transporter PtHMA4 was down-regulated in poplar roots subjected to Cd 

contamination, however in leaves, mycorrhizal symbiosis lead to a slightly lower 

expression regardless of metal addition (Figure 4.3A). PtMTP1 expression was not 

significantly different across treatments in both leaf and root tissues (Figure 4.3B), but 

its overall expression was two times higher in leaves than in roots (t-test, p < 0.001). 

Similar results were found for transporter PtNRAMP3 (Figure 4.3C), which had lower 

expression in root tissues (t-test, p < 0.001) and was overall unaffected by either metal 

or mycorrhizal treatments.  

Metallothionein gene PtMT2a was mostly expressed in leaves (t-test, p = 

0.0012), and was up-regulated due to Cd stress only in non-inoculated plants (Figure 

4.3E), where there was an interaction effect between mycorrhizal and metal 

treatments (p = 0.0031). The opposite was observed for PtMT2b, this gene was highly 

expressed in the root system (t-test, p < 0.001) and up-regulated considerably by AMF 

symbiosis, around four times higher than in non-inoculated plants (Figure 4.3F). PtPCS1 

expression was similar across all treatments (Figure 4.3D) and tissues assessed (t-test, 

p = 0.209). The expression of the zinc-Iron transporter PtZIP1 was twofold higher with 

Cd exposure, but was not affected by AMF (Figure 4.3G). 
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Figure 4.3. Relative gene expression of PtHMA4 (A), PtMTP1(B), PtNRAMP3 (C), PtPCS1 (D), 

PtMT2a (E), PtMT2b (F), and PtZIP1(G) in P. trichocarpa cv. Trichobel grown under 81 mg kg-1 

Cd for eight weeks, with or without mycorrhizal symbiosis (Rhizophagus irregularis). Values are 

means ± standard error (n = 3) of expression normalised by UBQ. Different letters represent 

significant differences by ANOVA, Tukey test (p < 0.05) for each plant tissue. n.s. = not 

significant. 
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4.3.4 Effects of Zn and AMF on gene expression 

In poplars exposed to excess Zn, gene expression patterns were similar to Cd 

treatments, in most cases. PtHMA4 was also down-regulated in roots due to Zn 

exposure (Figure 4.4A), which also had higher expression than in foliar tissues (t-test, p 

= 0.006), although no effects were found in leaves. PtMTP1 was not differentially 

expressed (Figure 4.4B) with higher expression observed in leaves than in roots (t-test, 

p < 0.001). PtNRAMP3 was mostly expressed in leaves (t-test, p < 0.001), but overall 

was not affected by either AMF or Zn treatments (Figure 4.4C).  

As with Cd, expression of the PtZIP1 transporter was only affected by metal 

treatment, however Zn exposure quadrupled its expression in poplar leaves (Figure 

4.4G) while only a twofold increase was observed under Cd (Figure 4.3G). In roots, 

PtMT2a expression was down-regulated under both high Zn and AMF symbiosis 

(Figure 4.4E), while in leaves up-regulation was caused by AMF alone; overall this gene 

was mostly expressed in leaves (t-test, p = 0014). The other metallothionein gene 

assessed, PtMT2b, was more highly expressed in roots than in leaves (t-test, p < 0.001), 

with up-regulation occurring in control treatments under AMF symbiosis, but only 

slightly higher after Zn addition (Figure 4.4F). Similar to Cd treatments, no changes 

were verified in PtPCS1 expression between treatments (Figure 4.4D) or tissues (t-test, 

p = 0.139). 

Expression levels of metal transporter genes were more correlated to metal 

treatments (Cd or Zn) than were genes involved in metal chelation (Table S4.1). 

Relationships among the genes assessed were mainly negative, with the only positive 

correlations observed between PtHMA4 and PtMTP1 in both roots and leaves (Figure 

4.5). PtMT2b expression in either leaves or roots had no correlations with the other 

genes; however, the level of PtMT2b transcripts in roots was highly correlated (rs = 

0.76) to the percentage of R. irregularis colonisation (Figure 4.5). 
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Figure 4.4. Relative gene expression of PtHMA4 (A), PtMTP1(B), PtNRAMP3 (C), PtPCS1 (D), 

PtMT2a (E), PtMT2b (F), and PtZIP1(G) in P. trichocarpa cv. Trichobel grown under 300 mg kg-1 

Zn for eight weeks, with or without mycorrhizal symbiosis (Rhizophagus irregularis). Values are 

means ± standard error (n = 3) of expression normalised by UBQ. Different letters represent 

significant differences by ANOVA + Tukey test (p < 0.05) for each plant tissue. n.s. = not 

significant. 
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Figure 4.5. Diagram representing significant correlations between the expression of different 

genes in roots and leaves of Populus trichocarpa under Cd and Zn stress, with or without 

mycorrhizal inoculation (Rhizophagus irregularis). Circles: genes associated with metal 

chelation; Rectangles: genes involved in metal transport; Squares: metal concentration (Cd or 

Zn) in leaves and roots. Line: positive correlation; Dotted line: negative correlation; AMF: 

percentage of mycorrhizal colonisation. Pair-wise Spearman; p < 0.05. 

 

 4.3.5 Functional expression of PtMT2b in yeast 

Yeasts carrying the metallothionein gene MT2b from P. trichocarpa were grown 

in Cd contaminated media. At lower concentrations of Cd, both WT and transformed 

yeast presented similar growth (Figure 4.6); however, at 20 µM Cd there was a clear 

distinction in growth between the strains. At the highest treatment applied (50 µM 

Cd), only the transformed strain was able to withstand the Cd toxicity and grew even 

at 1/1000 dilution, demonstrating the role of PtMT2b in increasing Cd tolerance. 
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Figure 4.6. Growth of Saccharomyces cerevisiae (DY1457) expressing the metallothionein gene 

PtMT2b under increasing Cd concentrations. The wild-type (WT) strain transformed with an 

empty vector was included as a control. Plates were grown in SC agar medium at 30oC for 72 

hours in the dark. 

 

4.4 Discussion 

 4.4.1 Mycorrhizal effects in Cd and Zn tolerance 

Populus trichocarpa cv. Trichobel showed a very high tolerance to Cd and Zn 

stress in which dry biomass was barely affected (Table 4.2). The distinct tolerance of 

this poplar clone has been demonstrated before under a range of Cd and Zn 

concentrations (De Oliveira and Tibbett 2018). Such attributes may be one of the 

reasons for the small change in biomass production found in mycorrhizal plants in 

comparison to non-inoculated treatments, contradicting our initial hypothesis.  

In other poplar clones (e.g. P. trichocarpa x P. maximowiczii), however, it has 

been shown by Ciadamidaro et al. (2017) that inoculation with R. irregularis can 

promote an overall increase in biomass of 40% in soils highly contaminated by Cd and 

Cu. Although it should be noted that their study was carried out over a four-year 

period, while in the present work plants were exposed to metals for only eight weeks, 
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which may have been not enough time to verify significant changes. AMF can usually 

increase plant tolerance to HMs, yet biomass increment can vary depending on plant 

hosts and ecotypes, fungal partners, metal concentration, soil type etc. (Hildebrandt et 

al. 2007; Gaurg and Bhandari 2014; Coninx et al. 2017). 

 All inoculated treatments presented on average 40% of root colonisation, 

including metal contaminated treatments (Table 4.2). This is not surprising considering 

AMF are commonly found in roots of plants growing in soils contaminated by heavy 

metals (Javaid 2011). In polluted soils with high concentrations of Zn, Bedini et al. 

(2010), by DNA sequencing, reported a high abundance of R. irregularis in roots of the 

dominant flora. In glasshouse conditions, inoculation of P. deltoides cuttings with R. 

irregularis in Cd-contaminated substrate resulted in root colonisation rates ranging 

from 30 to 50%, similar to what was found in the present work. In P. alba exposed to 

950 mg kg-1 Zn, R. irregularis colonisation was also similar to controls and at least 20% 

(Lingua et al. 2012). Abundant root colonisation by arbuscular mycorrhizal species can 

also be expected during poplar’s initial establishment, often decreasing as the plant 

ages due to displacement by ectomycorrhizal fungi species (Lodge and Wentworth 

1990). 

 

 4.4.2 Mycorrhizal symbiosis decreases Cd translocation to shoots in poplar 

Despite not showing any toxicity symptoms nor biomass reduction, P. 

trichocarpa exposed to Cd and to Zn accumulated considerable amounts of both 

metals in its tissues, mainly in roots for Cd (Tables 4.3 and 4.4). Roots are usually 

reported as the main sink for Cd in plants, for poplars (Zacchini et al. 2009; Di Lonardo 

et al. 2011; De Oliveira and Tibbett 2018), as well as other species (Obata and 

Umebayashi 1997; Lux et al. 2011).  

Mycorrhizal symbiosis decreased Cd concentration in leaves and stems by 

around 40%, but there was no effect on roots. A similar response was reported 

previously for some individuals of P. deltoides colonised by R. irregularis (Chen et al. 

2016), but in P. nigra, Cd concentrations were not affected by mycorrhization (Mrnka 

et al. 2012). Nonetheless, the question of whether R. irregularis enhances or decreases 

metal accumulation will vary depending on metal concentration and soil characteristics 

(Audet and Charest 2007), as well as their plant partners; for instance, in both tobacco 
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and the macrophyte Phragmites australis, symbiosis with R. irregularis was able to 

significantly increase Cd concentration in shoots (Janouskova et al. 2006; Huang et al. 

2018). 

 Cd overall extraction (in µg per plant) was similar for both non- and inoculated 

treatments (Figure 4.2A), however, mycorrhizal roots accumulated 78% of the total Cd 

(14% higher than the control), suggesting that R. irregularis can promote Cd 

phytostabilisation by limiting Cd transport to aboveground tissues. Mycorrhizal fungi 

have several defence mechanisms against heavy metal toxicity which may have 

contributed to Cd immobilisation in root tissues, mainly cell wall binding, chelation in 

cytoplasm and metal transport into intracellular compartments (Coninx et al. 2017), or 

spores (Gonzalez-Guerrero et al. 2008). In ectomycorrhizal fungi such as Paxillus 

involutus, binding of Cd to cell walls represent a major mechanism of fungal tolerance 

to toxicity effects (Bellion et al. 2006). Furthermore, R. irregularis forms vesicles: thick-

walled ovoid structures abundant in lipids that can act as storage units (Smith and 

Read 2008) and are also believed to be a sink for heavy metal storage within 

mycorrhizal roots (Göhre and Paszkowski 2006; Nayuki et al. 2014). Up-regulation of 

metallothionein gene PtMT2b in roots due to the symbiosis was probably involved in 

the higher sequestration of Cd and will be discussed later. 

 

 4.4.3 Mycorrhizal symbiosis increased overall Zn phytoextraction in poplars 

 Regardless of inoculation treatments, P. trichocarpa accumulated high contents 

of Zn under 300 mg kg-1 Zn (Table 4.4), and despite concentrations in leaves and roots 

being similar, the overall Zn accumulated (in mg per plant) had a very different 

distribution among tissues (Figure 4.2B), with at least 60% accumulated in leaves 

against only 8% in roots. It should be noted, however, that Zn concentrations in poplar 

tissues (in mg kg-1) were not significantly affected by mycorrhization (Table 4.4), only 

the total metal content (in mg per plant), which takes into account the overall plant 

biomass produced (Figure 4.2B). These findings confirm our initial hypothesis that AMF 

symbiosis increases Zn accumulation in P. trichocarpa and are in line with other reports 

on other Salicaceae species, such as poplars and willows (Laureysens et al. 2004; 

Lingua et al. 2008; Castiglione et al. 2009; Cicatelli et al. 2010; Todeschini et al. 2011). 
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Mycorrhizal symbiosis can lead to nutritional benefits in plants under Zn 

deficiency, as well as protective effects under toxic Zn concentrations - by restricting 

its uptake and translocation to aboveground parts (Watts-Williams et al. 2013). 

Although the role of AMF in increasing Zn uptake is well established, especially under 

Zn-deficient conditions, their effects in plants under high Zn concentrations vary (Smith 

and Read 2008; Ferrol et al. 2016). For instance, in Zn-contaminated soil, inoculation of 

two poplar hybrids resulted in higher Zn concentration in leaves of one clone, but not 

the other (Phanthavongsa et al. 2017). In P. alba under 950 mg kg-1 Zn, inoculation 

with Funneliformis mossae increased Zn accumulation in both roots (~200 mg kg-1) and 

leaves (~400 mg kg-1), while symbiosis with R. irregularis had no effects (Cicatelli et al. 

2010).  

In the present work, mycorrhizal poplars had a mean concentration of 1,227 

mg kg-1 Zn in leaves (Table 4.4), a concentration that despite being considered to be 

highly toxic for foliar tissues (> 300 mg kg-1 Zn) (Marschner 1995) did not impair plant 

growth. It has been suggested that for host plants with high accumulation capacity and 

HM translocation towards shoots, AMF would increase this phenomenon and enhance 

phytoextraction (Affholder et al. 2014), which appears to be the case in the present 

study, considering that the overall Zn content was higher in this case (6.5 mg per plant; 

Figure 4.2B). Moreover, the intrinsic potential of the host plant to withstand high HM 

concentrations in its photosynthetic apparatus is probably a major factor influencing 

this pattern. 

  

 4.4.4 Mycorrhizal symbiosis influence on gene expression under metal stress 

 Seven poplar genes involved in metal transport and chelation processes were 

assessed under AMF colonisation and Cd/Zn stress. 

PtHMA4: HMA4 transporters can selectively absorb and transport essential 

metals as well as heavy metals, especially Zn2+ and Cd2+ (Hussain et al. 2004). Both 

metals were responsible for a sharp down-regulation in PtHMA4 expression in poplar 

roots, regardless of mycorrhizal inoculation (Figures 4.3A and 4.4A). HMA4 is highly 

expressed in the root pericycle and is involved in xylem loading of Zn and Cd (Verret et 

al. 2004; Hanikenne et al. 2008; Migeon et al. 2010) playing an important role in long 

distance transport in plants (Luo et al. 2016; Sarwar et al. 2017). Thus, down-regulating 
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its expression can be one of the mechanisms by which P. trichocarpa avoids metal 

toxicity in aboveground tissues, and a similar response was verified in P. nigra exposed 

to high Zn (Adams et al. 2011), however this gene has many splice variants, which were 

not assessed in the present study (Li et al. 2015). Despite being highly tolerant to Cd 

and Zn, P. trichocarpa presented a response common to non-hyperaccumulator plants, 

shown by Hammond et al. (2006) studying both N. (Thlaspi) caerulescens and N. 

(Thlaspi) arvense. Higher expression of HMA4 in roots than leaves is also in accordance 

with other results in P. trichocarpa (Li et al. 2015), but in the present study, 

mycorrhizal symbiosis down-regulated PtHMA4 expression in leaves even further 

under Cd stress, possibly explaining the decrease in Cd concentration in mycorrhizal 

treatment (Table 4.3). 

PtMTP1: Proteins from this transporter family are known for being involved in 

metal efflux from the cytoplasm, either to extracellular or into organelles, such as 

vacuoles and the Golgi apparatus (Peiter et al. 2007; Ricachenevsky et al. 2013). Metal 

tolerance proteins such as MTP1 usually act on the transport of Zn, Cd, Fe and Mn and 

tend to have similar roles and localisation among different species (Blaudez et al. 2003; 

Kramer et al. 2005; Hammond et al. 2006; Ricachenevsky et al. 2013). However, 

contrary to our hypothesis that metal stress would down-regulate gene expression of 

HM transporter, PtMTP1 expression was not significantly different in P. trichocarpa 

regardless of Cd/Zn addition or AMF inoculation (Figures 4.3B and 4.4B). In P. 

deltoides, MTP1 expression was influenced by Zn, but not Cd (Blaudez et al. 2003). 

Peiter et al. (2007) verified that sensitive yeast transformed with PtMTP1 had no 

increase in tolerance to toxic Zn nor Cd, only responding to Mn stress, suggesting that 

this gene in P. trichocarpa is not as involved in Zn/Cd tolerance as in other poplar 

species. Also, it is important to consider that qPCR analyses was performed after 8 

weeks of metal exposure, at which time the transcript levels may have returned to 

their original baseline (control).  

PtNRAMP3: NRAMPs are membrane metal transporter proteins usually located 

in tonoplasts, from which NRAMP3 is involved in metal efflux from the vacuole into the 

cytoplasm as a nutrient remobilisation strategy (Sharma et al. 2016), although Cd 

sequestration into vacuoles by NRAMPs has also been suggested in poplars (Iori et al. 

2016). Nonetheless, there are not many studies of NRAMP3 in poplars, especially 
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under mycorrhizal symbiosis, but there is agreement that this gene is usually affected 

by metal exposure, either in P. trichocarpa itself (Le Thi 2015), or its homologues in A. 

thaliana and Nocceae (Thlaspi) caerulescens (Oomen et al. 2009). The fact that no 

treatments affected the expression of this gene in the present study (Figures 4.3C and 

4.4C) probably means that its transcriptional regulation happened early on during Cd 

and Zn exposure, since gene expression during Cd stress varies depending on time of 

exposure (Rome et al. 2016). 

 PtPCS1: Phytochelatins (PCs) are proteins involved in Cd and Zn chelation, 

complexation and sequestration in plant cells, with their synthesis catalysed by the 

enzyme phytochelatin synthase (PCS) (Cobbett and Goldsbrough 2002). Although a 

variation due to metal exposure was expected, PtPCS1 expression was not significantly 

different across treatments (Figures 4.3D and 4.4D). Similar results were observed in 

tomato plants inoculated with AMF, in which neither symbiosis nor HM exposure 

affected the expression of this gene (Ouziad et al. 2005). It has been demonstrated 

that Zn exposure quickly down-regulates (in 48 h) PtPCS1 expression in poplar stems 

(P. trichocarpa cv. Nisqually), however, Zn did not affect PtPCS1 expression in leaves 

and roots (Adams et al. 2011), which is also the case in the present work. In a poplar 

hybrid exposed to Cd, up-regulation of a PCS gene occurred after 12 hours, only to 

decrease to control levels after 240 hours (Lin et al. 2016). It seems that the 

correlation between PC production and PtPCS1 expression may not be as significant as 

it is with the expression glutathione reductase (GSH), another precursor of 

phytochelatins (Di Baccio et al. 2005). Measuring the actual content of PCs would have 

been useful in this case, since colonisation by AMF is able to enhance PC production in 

plants exposed to Cd (Garg and Chandel 2012). 

PtZIP1: Members of the ZIP family are able to transport several cations, such as 

Zn and Cd into the cytosol (Guerinot 2000 – in Rome 2016; Pottier et al. 2015; Iori et al. 

2016). Expression of PtZIP1 was around three times higher in leaves of poplars 

exposed to 300 mg kg-1 Zn than in non-polluted soil, due to the high influx of Zn to 

those tissues (Figure 4.4G). Cd also up-regulated PtZIP1 expression, but to a lesser 

extent, highlighting the role of this gene in Cd transport in poplars (Figure 4.3G). 

Moreover, in the present study, the level of ZIP1 transcripts was too low to be 

detected via qPCR (data not shown), similar results were seen also in the Salicaceae 
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family; for example, ZIP1 genes of Salix integra were expressed mainly in leaves (Shi et 

al. 2016). 

 4.4.5 AMF effects on metallothioneins: gene expression and functional 

expression of MT2b in yeast. 

Metallothioneins are small proteins rich in cysteine (Cys) residues capable of 

binding a range of transition metal ions, such as Zn and Cd, which are mainly bound by 

members of the MT2 subfamily (Hassinen et al. 2011). Thus, tolerance and 

homeostasis are considered to be their main functions (Cobbett and Goldsbrough 

2002).  

PtMT2a: Expression of MTs is generally responsive to heavy metal exposure 

(Chen et al. 2014), but in this study, only MT2a was affected by metals (Figures 4.3E 

and 4.4E, with higher expression in leaves of non-mycorrhizal poplars exposed to Cd, 

where foliar Cd concentration was at its highest compared to other treatments. MT2a 

expression in willow leaves (S. caprea) was also induced by Cd exposure (Konlechner et 

al. 2013), while in P. trichocarpa x deltoides both Cd and Zn affected its expression in 

leaf tissues, and a yeast complementation assay demonstrated PtdMT2a function in 

increasing Cd tolerance (Kohler et al. 2004).  

PtMT2b: This gene had very low expression in leaves when compared to roots 

(Figures 4.3F and 4.4F), similar to results found in Solanum lycopersicon by Ouziad et 

al. (2005), who only detected MT2b expression in the root system. Despite not being 

influenced much by Cd and Zn stress, MT2b expression in roots was significantly 

increased by AMF symbiosis, which helps explain the high percentage of Cd found in 

colonised roots (78% of total Cd). Up-regulation of MT2b solely by AMF symbiosis is in 

accordance with other studies involving R. irregularis inoculation of poplar trees 

(Cicatelli et al. 2010; Cicatelli et al. 2012; Pallara et al. 2013), highlighting AMF ability in 

protecting plants against stress by activating detoxifying defences in plants (Miransari 

2017). One of the reasons behind the up-regulation of MTs in mycorrhizal roots 

regardless of metal stress could be related to their secondary role of ROS (reactive 

oxygen species) scavenging (Wong et al. 2004; Ruttkay-Nedecky et al. 2013), which 

occurs through the same Cys residues responsible for metal binding (Hassinen et al. 

2011). During the establishment of the arbuscular mycorrhizal symbiosis, fungal 

hyphae trigger an intracellular burst of ROS in the host plant, and even accumulation 
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of H2O2 (Kapoor and Singh 2017), thus it is possible that MT2b up-regulation in roots is 

a result of the colonisation itself, and an indirect mechanism of alleviating heavy metal 

stress. This explanation is supported by results from Hrynkiewicz et al. (2012) and 

research reported in Haq et al. (2003). 

From all the Spearman correlations found involving the seven poplar genes 

assessed, the most interesting was the 76% correlation between PtMT2b in roots and 

the colonisation rates (%) from R. irregularis symbiosis (Figure 4.5). Therefore, 

immobilisation of Cd in roots is probably a combined effect from both fungal binding 

and MT up-regulation. This observation led us to investigate the function of PtMT2b in 

terms of Cd tolerance. Indeed, we demonstrate here that PtMT2b is able to 

successfully enhance Cd tolerance when expressed in S. cerevisiae to at least 50 µM 

Cd. To the best of our knowledge, the function of PtMT2b in Cd tolerance has not been 

previously tested in yeast, the closest being the work from Kohler et al. (2004), with a 

poplar hybrid, although most studies are still from herbaceous species (Zhou and 

Goldsbrough 1994; Guo et al. 2008; Zhang et al. 2014). Therefore, PtMT2b could also 

be a candidate gene for transgenic purposes, with plant or microorganisms to be used 

in remediation techniques. 

4.5 Conclusions 

 Inoculation of P. trichocarpa with the symbiontic fungus R. irregularis is able to 

increase Zn phytoextraction from soils, while for Cd, the decrease in root-to-shoot 

transport suggests that this association enhances Cd phytostabilisation, which is ideal 

in terms of remediation techniques, for it reduces the risk of Cd entering the food 

chain after accumulation in leaves. Overall, the results from this work advance the 

knowledge on the effects of arbuscular mycorrhizal symbiosis in poplars under Cd and 

Zn stress, not only in terms of tolerance and phytoremediation applications but also on 

the transcriptional level, contributing to unravel the mechanisms behind AMF 

symbiosis in woody species, and highlighting potential candidate genes for future 

investigations and biotechnological applications. 
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4.7 Supplementary Information 

Table S4.1: Pair-wise Spearman correlations (rs) between the expression of different genes (in 

roots and leaves) and several parameters assessed in Populus trichocarpa grown under Cd 

and Zn contamination, with and without AMF inoculation. Only significant correlations are 

shown (p < 0.05). 

Gene Covariables1 rs p-value 

Metal transport    

MTP1 root 

Cd leaf -0.65 0.022 

Cd root -0.59 0.044 

Zn leaf -0.70 0.011 

Zn stem -0.59 0.044 

Zn root -0.63 0.028 

pH 0.54 0.022 

MTP1 leaf -0.48 0.042 

HMA4 root 0.70 0.001 

NRAMP3 root -0.48 0.045 

MTP1 leaf 
HMA4 leaf 0.50 0.033 

MTP1 root -0.48 0.042 

HMA4 root 

Cd root -0.72 0.008 

Cd stem -0.64 0.024 

Zn leaf -0.80 0.002 

Zn root -0.77 0.003 

Zn stem -0.66 0.020 

pH 0.54 0.020 

MTP1 root 0.70 0.001 

ZIP1 leaf -0.57 0.013 

MT2a leaf -0.47 0.049 

HMA4 leaf 

Zn stem -0.58 0.048 

Colonisation -0.51 0.030 

MTP1 leaf 0.50 0.033 

NRAMP3 root MTP1 root -0.48 0.045 

NRAMP3 leaf MT2a root -0.48 0.046 

ZIP1 leaf 

Cd root 0.58 0.048 

Zn leaf 0.61 0.036 

Zn root 0.63 0.028 

Zn stem 0.71 0.009 

HMA4 root -0.57 0.013 

pH -0.63 0.005 
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Table S4.1: Cont. 

Gene Covariables1 rs p-value 

Metal chelation    

MT2a root 
NRAMP3 leaf -0.48 0.046 

MT2a leaf -0.61 0.008 

MT2a leaf 
HMA4 root -0.47 0.049  

MT2a root -0.61 0.008 

MT2b root colonisation 0.76 0.0003 

MT2b leaf biomass stem -0.56 0.016 

PCS1 root PCS1 leaf -0.50 0.034 

PCS1 leaf PCS1 root -0.50 0.034 

1 -  pH: substrate pH after plant growth; Cd/Zn leaf/root/stem: metal concentration (mg kg-1) in 

either roots, leaves or stems; colonisation: colonisation rate (%) of roots inoculated with R. 

irregularis; biomass stem : dry weight (in g) of stems after harvest.  
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Figure S4.1. Entry clone pDONR221 carrying PtMT2b and a gene responsible for Kanamycin 

resistance, used for transformation and cloning in E. coli competent cells. 

  

Figure S4.2. Expression vector pDR195GTW carrying PtMT2b and a gene responsible for uracyl 

production (URA) used for the transformation of yeast competent cells. On the right side, the 

confirmation electrophoresis after a restriction analyses using the enzymes SacI and HindIII 

(Expected fragment sizes: 962 and 5633 bp) 

 

Entry Clone PtMT2b/pDONR221
2778 bp

Kan(R)

PtMT2b

attL1

attL2

T7 primer

M13 reverse primer

M13 (-40) forward primer

M13 (-20) forward primer

T7 promoter

rrnB T2 transcription terminator

rrnB T1 transcription terminator

ApaLI (1546)

AvaI (2426)

SacI (2690)

SspI (610)

PtMt2B/pDR195GTW

6595 bp

URAAmpicillin

PtMT2B

attB1

attB2

lacZ a

PMA1 F Primer

PMA1 promoter

URA3 promoter

2micron2 origin

pBR322 origin

yADH2 terminator

HindIII (5545)

SacI (6507)
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Abstract 

Cadmium (Cd) is one of the most toxic metals in the environment and 

soils undergo constant inputs of Cd due to industrial activities, agricultural 

practices and waste disposal. Due to its high mobility in soils, Cd can also 

contaminate groundwater increasing its risk of entering the food chain. 

Biosorption by yeasts (living or not) seem to be a low-cost and effective method 

for removing Cd from contaminated aqueous solutions.  

Here we transformed wild-type Saccharomyces cerevisiae strains (WT) 

with two versions of a Populus trichocarpa gene (PtMT2b) coding for a 

metallothionein: one with the original sequence (PtMT2b ‘C’) and the other with 

a mutated sequence, with an amino acid substitution in the third position (Cys to 

Tyr – C3Y, named here: PtMT2b ‘Y’). WT and both transformed yeast strains were 

grown under Cd stress, in agar plates (0; 10; 20; 50 µM Cd) and in liquid media 

(0; 10; 20 µM Cd) for 72 h. Their growth was assessed visually and by 

spectrometry OD600, to determine difference in Cd tolerance. The potential of 

transformed yeasts (PtMT2b ‘Y’) in removing Cd from contaminated media (0; 

10; 30 µM Cd), and their intracellular accumulation were also verified by acid 

digestion and ICP-MS. This gene was also inserted into mutant yeast strains: 

fet3fet4, zrt1zrt2 and smf1, which were grown under Fe, Zn and Mn deficient 

media, respectively. 

Yeast strains had similar growth under 0 µM, but differed under 20 µM 

Cd, the order of tolerance was: WT < PtMT2b ‘C’ < PtMT2b ‘Y’, in which PtMT2b 

‘Y’ had a 37% higher growth than the strain carrying the original gene sequence 

(PtMT2b ‘C’). Transgenic yeasts (PtMT2b ‘Y’) extracted around 80% of the Cd in 

solution, and had higher intracellular Cd accumulation (around 30 µg g-1 cell dry 

weight) than WT yeasts (0.7 µg g-1). Mutant yeasts carrying PtMT2b ‘Y’ had a 

slightly higher growth in Mn and Fe deficient media than their non-transgenic 

counterparts, suggesting that this gene may be involved in chelating these 

metals as well. S. cerevisiae carrying the altered poplar gene (PtMT2b ‘Y’) offers 

great potential for bioremediation and biosorption of Cd from waste waters. 

Further studies should be carried in different conditions, and with a mixture of 

toxic metals, with its efficiency also being tested in bioreactor systems.  
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5.1 Introduction 

 Cadmium (Cd) is an element that lacks a known biological function. It is 

one of the most hazardous metals in the environment, because it can affect 

animals, plants and microorganisms at relatively low concentrations (Alloway 

2013). Several anthropogenic activities are responsible for Cd addition into the 

environment, such as: atmospheric deposition, industrial and municipal wastes, 

mining activities, smelting and metal ore processing, battery production, soil 

fertilisation and sewage sludge application (Mirlean and Roisenberg 2006; 

Smolders and Mertens 2013; He et al. 2015; Khan et al. 2017). Sewage sludge is 

an inevitable by-product from industrial or domestic wastewater processing, and 

is commonly used as an organic amendment in soils, however if wastewater is 

not pre-treated for metal removal, it can lead to high metal contents being 

added into agricultural soils and crops (Chen and Wang 2008; Jamali et al. 2009). 

Cd is also highly mobile in soils (Lei et al. 2010) with a potential risk of 

contaminating the groundwater. Estimated leaching of Cd from European soils is 

between 100 to 5,700 mg Cd ha-1 year-1 (Smolders and Mertens 2013). Cd is 

readily taken up by plant roots and poses a risk when entering the food chain, 

possibly causing biomagnification, in which a low Cd concentration can increase 

and become even more toxic through different trophic levels (Janssen et al. 

1993). 

A low-cost and effective method of removing heavy metals from 

wastewater or aqueous solutions is by using natural materials of biological origin 

(algae, fungi, bacteria, yeast) in a process known as biosorption (Goksungur et al. 

2005; Oliveira et al. 2012). This process has many advantages, such as low 

operating costs, decreased volume of the sludge generated and high efficiency in 

detoxifying very dilute effluents (Marques et al. 2000). The yeast Saccharomyces 

cerevisiae has been frequently studied as a biosorbent for several heavy metals, 

such as Pb, Cr, Zn, Cu and Cd (Oliveira et al. 2012; Vijayaraghavan and 

Balasubramanian 2015). Although biosorption is a term commonly used for non-

living biomaterials that bind and concentrate contaminants, this process occurs 

in both living and dead organisms (Amirnia et al. 2015). 
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Employing living microorganisms for metal biosorption has an advantage 

of simultaneously exploiting their inherent ability of absorbing and accumulating 

heavy metals intracellularly, a process known as bioaccumulation (Pankiewicz et 

al. 2015). Recently, a system of continuous growth of S. cerevisiae was 

demonstrated to be an efficient method of removing copper and lead ions from 

water (Amirnia et al. 2015). S. cerevisiae is a great candidate for bioremediation 

of metal-contaminated waters for several reasons: (1) reproduction by budding 

(asexual) or spore formation (sexual) (Wang and Chen 2009); (2) it is easy to 

cultivate and available from various food and beverage industries (Wang and 

Chen 2006); (3) it has high adsorbent capacity even in dead cells (Goksungur et 

al. 2005), (4) it can accumulate high intracellular amounts of heavy metals (Brady 

and Duncan 1994; Joutey et al. 2013), (5) it can flocculate easily in metal 

solutions and sediment, which facilitates the separation process after 

remediation (Machado et al. 2008, Soares 2011), and, finally, (6) S. cerevisiae is a 

model system in biology and can be easily manipulated genetically and 

morphologically to numerous purposes (Karathia et al. 2011; Farcasanu and Ruta 

2017). 

Genetically engineered microorganisms appear to be the next frontier in 

terms of bioremediation and biodegradation of contaminants, in which 

remediation pathways are enhanced by inserting foreign genes of specific 

interest (Joutey et al. 2013; Kulshreshtha 2013). Genes coding for phytochelatins 

(PCs) and metallothioneins (MT) are frequently the focus for engineering 

microorganisms for heavy metal remediation (Sriprang et al. 2003; Singh et al. 

2008; Ruiz et al. 2011).  

Metallothioneins are low-molecular weight proteins rich in Cys (usually 9-

16 Cys residues), which are able to bind metals in metal-thiolate clusters 

(Cobbett and Goldsbrough, 2002; Sheoran et al. 2011), such as Zn2+ and Cu2+ 

(Bulgarelli et al. 2016). Most MT genes belong to the sub-family MT2 of plants, 

which is known for biding divalent cations, such as Cd2+ (Cobbett and 

Goldsbrough 2002; Bulgarelli et al. 2016), or some nutrients like Fe2+, Zn2+ and 

Cu2+ (Jin et al. 2014) and were already demonstrated to increase Cd tolerance 

through heterologous expression in yeast (Kohler et al. 2004).  
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Similarly, we have recently demonstrated that the gene PtMT2b from 

tree species Populus trichocarpa cv ‘Trichobel’ was able to reduce Cd toxicity 

when expressed in S. cerevisiae (Chapter 4). This poplar clone is particularly 

tolerant to elevated Cd concentrations (De Oliveira and Tibbett 2018), whose 

high expression of MT2b in roots was shown to be correlated to enhanced Cd 

sequestration (Chapter 4). Moreover, those yeasts expressing poplar’s MT2b 

may effectively remove Cd from contaminated water by preventing the excretion 

of metals back to the medium through chelation (Ruta et al. 2017). 

Therefore, it was hypothesised that i) PtMT2b increases yeast tolerance 

to Cd; ii) a mutated version of the gene PtMT2b ‘Y’ (C3Y substitution) is not as 

efficient in conferring Cd tolerance in yeast due to the lack of one cysteine in the 

peptide sequence; and iii) if transformed yeasts are more tolerant to Cd, they 

can also effectively bioremediate Cd from aqueous solutions (by surface 

biosorption or intracellular accumulation).  

Considering the role of MTs in binding divalent cations, it was also 

hypothesised that this metallothionein could improve the growth of mutant S. 

cerevisiae strains in nutrient (Fe, Mn or Zn) depleted media, possibly by 

containing a larger internal metal store than the non-transformed yeast. 

 

5.2 Materials and Methods 

5.2.1 RNA extraction, cDNA synthesis and cloning 

DNA was extracted, from Populus trichocarpa cv. ‘Trichobel’ roots and 

leaves with DNeasy Plant Mini Kit (Qiagen, UK), following manufacturer’s 

instructions. Total RNA was extracted from approximately 100 g of fresh weight 

material (roots) macerated in liquid nitrogen via TissueLyser II (Qiagen®). 

Extraction was performed by a modified version of the CTAB method (Jaakola et 

al. 2001): macerated samples were incubated with CTAB buffer 

(hexadecyltrimethylammonium bromide) for 25 min at 65oC (instead of 10 min), 

LiCl addition was 1/3 of total extract volume (instead of 1/4) and after overnight 

precipitation at 4oC, extract was centrifuged for 60 min (instead of 20 min); After 

centrifugation, supernatant was discarded and RNA pellets were purified with 
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the RNeasy Plant Mini kit (Qiagen, UK), including a DNAse treatment (Qiagen, 

UK) for 20 min.  

The extracted RNA was converted into cDNA using the SensiFAST cDNA 

synthesis kit (Bioline, UK) following the manufacturer’s instructions. The full 

coding sequence was then amplified with a PtMT2b primer set containing attB 

overhang (annealing temperature: 58oC), with sequences (5’ – 3’):  

F - GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGTCTTGCTGTGGAGGAAA; 

R - GGGGACCACTTTGTACAAGAAAGCTGGGTCTCA TTTGCAGGAGCATGGAT. 

 

5.2.2 Amino acid substitution 

During the cloning process, two different PtMT2b sequences were 

obtained due to a probable mishap during DNA amplification (Figure 5.1). This 

was later confirmed by sequencing the MT2b gene directly from the genomic 

DNA extracted. One codon had a single nucleotide substitution, from the original 

‘TGC’ to ‘TAC’, which consequently changed the correspondent amino acid from 

a cysteine (C) to a tyrosine (Y) at the third position (C3Y). Considering that 

cysteine is responsible for the divalent cation binding ability in MTs, it was 

possible that the C3Y substitution would lead to a different Cd tolerance 

phenotype in yeast. Therefore, these two versions of the same gene were used 

in yeast transformation, the original (PtMT2b ‘C’) and the mutated (PtMT2b ‘Y’). 
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Figure 5.1: Substitution of one single nucleotide in Populus trichocarpa MT2b gene 

during amplification (from TGC to TAC), leading to the cysteine in the third position 

being replaced by a tyrosine (C3Y). 

 

5.2.3 Yeast transformation 

The wild-type S. cerevisiae strain DY1457 (WT) was used for 

transformations. The genes were introduced into a Gateway® donor vector 

pDONR221 (containing the kanamycin resistance gene – Figure S5.1; Sup. Files) 

using Gateway® BP Clonase® II enzyme mix. Chemically competent Escherichia 

coli cells (TOP10) were transformed with the entry clones and grown overnight in 

LB agar + Kanamycin medium at 37oC. Plasmids were isolated from transformed 

E. coli and introduced into destination vector pDR195 (Figure S5.2; Sup. Files) 

using the Gateway® LR Clonase® II enzyme mix. E. coli cells were transformed 

with the expression vectors and grown in LB agar + Ampicillin, same parameters 

as before. WT yeast was transformed with the expression vector containing 

PtMT2b ‘C’, PtMT2b ‘Y’ and an empty vector (pDR195) as control. The 

transformants were selected on synthetic complete (SC) drop-out medium 
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without uracil [1 g/L drop out medium Y1501 Sigma® + 6.7 g/L yeast nitrogen 

base Invitrogen™] + 2% dextrose (v/v). Plasmids were restricted (entry vector: 

SacI and SspI; expression vector: SacI and HindIII) and sequenced at every stage 

to confirm ORF integrity and direction. 

 

5.2.4 Heterologous expression of PtMT2b (C and Y) in yeast under Cd 

stress 

Yeast cells were grown overnight at 30oC (250 rpm) in SC liquid media (5 

mL; pH: 5.5). Cells were then pelleted by centrifugation, and re-suspended in 5 

mL of sterile water. Optical density at 600 nm of wavelength (OD600) was 

recorded using SpectraMax i3x (Molecular Devices) microplate reader. Cultures 

were diluted in sterile water to reach OD600 of 0.1, which were used for serial 

dilutions (1:10 v/v). All dilutions of transformed (PtMT2b ‘C’ and ‘Y’) and empty 

vector yeast (‘WT’) were spotted (5 µL) into SC agar plates at 0; 10; 20; and 50 

µM Cd (via CdCl2), then grown at 30oC for 72 hours in the dark (three replicates). 

In order to quantify yeast growth under Cd stress, all strains were grown in liquid 

SC media (initial OD600: 0.01), containing either 0; 10 or 20 µM Cd (three 

replicates) for 48 hours (30oC, 250 rpm; dark), after which the OD600 was 

recorded. The concentration of 50 µM Cd was not used in any liquid media 

assays due to high toxicity. 

 

5.2.5 Cd tolerance, accumulation and extraction potential of yeast 

containing PtMT2b ‘Y’. 

The PtMT2b ‘Y’ and WT (empty vector) yeasts were grown in 5mL of SC 

liquid media + 2% dextrose, containing 0; 10 and 30 µM Cd at 30oC in the dark 

with constant shaking (initial OD600: 0.01; four replicates). After 72 hours, OD600 

was recorded and cells were pelleted by centrifugation (10 min, 4000 rpm). All 

contaminated media were transferred to new tubes without disturbing the 

pellet, these were denominated Left Over (LO) and were later analysed by ICP-

MS to determine the remaining Cd concentration after yeast growth. Pelleted 

cells were re-suspended in 10 mL of EDTA (20 mM) and washed for 10 minutes 

(by inverting tubes) in order to remove adhering Cd ions from yeast surface 
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(Ullah et al. 2018). Cells were pelleted again and washed twice with 10 mL of 

deionised water. Yeasts were oven-dried at 80oC for 48 hours. Dried cells were 

digested in 5 mL of 69% nitric acid (TraceSELECT™ grade) in closed glass vessels 

for 8h at 110oC (in duplicates). Pure acid was used as blank and 0.05 g of 

reference material (IAEA-359 cabbage leaves) was digested in the same manner 

for quality control. Cd accumulation in cells and the remaining Cd in Left Over 

media were determined via ICP-MS (Thermo Scientific™ iCAP™ Q). Cd extraction 

potential was calculated by the following equation: 

 

�1�						��	��	
��	��	�%� = 100 −
��	�� × 100

���	���	��
 

 

In which “LO Cd” is the Cd concentration determined in the left over 

media solution after yeast growth (mg L-1); and “Initial Cd” the concentration of 

Cd added in the growth media before yeast inoculation, also determined via ICP-

MS (mg L-1). 

 

5.2.6 Cell Dry Weight vs OD600 

In order to estimate Cd concentration in terms of cell dry weight (CDW), 

transformed (PtMT2b ‘Y’) yeast was grown in conical flasks (three replicates), 

containing 60 mL of uncontaminated SC media, with OD600 starting at 0.01. Every 

3h an aliquot of 10 mL from each flask had its OD600 determined, cells were 

pelleted and washed with deionised water and dried in previously weighed glass 

vials at 80oC. After 72h, dry weight was recorded. The relationship between CDW 

and OD600 was determined by linear regression model (α = 0.05; 15 samples). 

 

5.2.7 PtMT2b ‘Y’ expression in mutant yeast under nutrient-deficient 

media 

In order to verify the specificity of this gene, transgenic mutant yeast 

were subjected to nutrient deficient conditions (Fe, Mn and Zn). If MT2b ‘Y’ 

proteins also bind these nutrients, these yeast strains would be able to grow 

under deficiency due to a higher nutrient storage capacity in their cells. Strains 
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used for transformation were the single mutant SMF1 (smf1), and the double 

mutants DEY1453 (fet3fet4) and ZHY3 (zrt1zrt2), as well as the corresponding 

parental wild type strain DY1457 (WT). DEY1453 is defective for low and high-

affinity Fe2+ uptake systems, while ZHY3 lack two Zn2+ transporters (ZRT1 and 

ZRT2); SMF1 strain lacks a high affinity Mn2+ uptake gene (SMF1) (Ullah et al. 

2018). All strains were transformed either with PtMT2b ‘Y’ or an empty vector 

(e.v.) as control. Mutant yeasts were also transformed with TcNramp5, a metal 

transporter gene from cocoa trees known to increase Cd2+ and Zn2+ uptake in 

yeast (Ullah et al. 2018), and were used as a positive control. Transformations 

were carried out as described previously.  

Primary cultures were stablished from a single colony, and grown in 10 

mL SC media supplemented with either 0.4% (v/v) Fe, 0.2% Mn or 0.4% Zn; for 

DEY1453, SMF1 and ZHY3 strains, respectively (30oC, 72h, 250 rpm, dark). Initial 

growth in a rich media was carried out to promote a nutrient stock in yeast cells 

before being transferred to deficient media. Cultures were serial diluted and 

spotted (5 µL) into SC + agar plates, with or without chelating agents to decrease 

nutrient availability: 10 µM BPS for creating iron deficient plates (- Fe); 12.5 mM 

EGTA for Mn deficiency (- Mn); and 100 µM EDTA for Zn deficiency (- Zn). 

 

5.2.8 Statistical analyses 

ANOVA and Tukey test was performed for all datasets that met ANOVA’s 

assumptions: (i) OD600 between WT, PtMT2b ‘C’ and PtMT2b ‘Y’ under 10 and 20 

µM Cd; (ii) OD600 between WT and PtMT2b ‘Y’ under 0, 10 and 30 µM Cd; (iii) Cd 

extraction from liquid media (%); and (iv) growth of SMF1 strains with and 

without MT2b under Mn deficiency (transformed by x2). After being unable to 

transform the Cd content (µg g-1) data to attain normality, the non-parametric 

Kruskal-Wallis test was employed. Linear regression analysis was used for 

obtaining the CDW (mg mL-1) and OD600 relationship, in which the Min/Max 

accuracy and MAPE (mean absolute percent error) were used for calculating the 

model accuracy. All statistical analyses were performed using R software. 
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5.3 Results 

5.3.1 Amino acid substitution in MT2b increased Cd tolerance in yeast 

 The spot assay clearly showed that the strains transformed with both 

versions of the PtMT2b gene were able to cope with higher Cd concentrations 

than the strain transformed with the empty vector only, especially at 50 µM, in 

which its growth was completely suppressed (Figure 5.2).  

In liquid media contaminated by Cd, yeast strains had similar growth 

under 0 µM, but differed under 10 and 20 µM Cd (ANOVA: p < 0.001). Under the 

highest Cd concentration the order of tolerance was WT < PtMT2b ‘C’ < PtMT2b 

‘Y’; determined after Tukey test (variation coefficient = 6.5%), in which the 

growth of yeasts carrying the tyrosine-replaced MT2b was around 37% higher 

than strain expressing the original gene sequence (PtMT2b ‘C’) (Table 5.1). 
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Figure 5.2 Heterologous 

expression of PtMT2b in 

S. cerevisiae growing 

under increasing Cd 

concentrations. WT: 

Wild type (DY1457) 

strain; MT2b ‘C’: wild 

type yeast transformed 

with the original 

PtMT2b; MT2b ‘Y’: 

transformed yeast 

expressing the modified 

PtMT2b gene, with 

cysteine to tyrosine 

replacement (C3Y). 
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Table 5.1 – Growth of transformed Saccharomyces cerevisiae strains 

under Cd stress, determined by OD600 after 48 hours (mean ± st. 

error). WT: wild type; e.v.: empty vector; PtMT2b ‘C’: gene with 

original sequence; and PtMT2b ‘Y’: gene with cysteine to tyrosine 

replacement (C3Y). 

Strain 
Cd concentration 

10 µM 20 µM 

WT + e.v. 0.20 ± 0.009  a 0.15 ± 0.009 a 

WT + PtMT2b ‘C’ 0.31 ± 0.005 b 0.25 ± 0.003 b 

WT + PtMT2b ‘Y’ 0.29 ± 0.005 b 0.35 ± 0.012 c 

Different letters correspond to significant differences among strains 

within columns (same Cd concentrations), as determined by Tukey 

test after ANOVA (p < 0.001). 

 

 

5.3.2 Mutated PtMT2b gene increased Cd accumulation and removal by 

yeast 

 Since yeast carrying the mutated gene sequence (PtMT2b ‘Y’) were more 

tolerant than the strains expressing the original gene, they were ultimately 

selected for Cd bioremediation trials. Results showed that WT strain (empty 

vector) was significantly affected by Cd toxicity, while growth of transformed 

strain was unaffected by Cd additions (Figure 5.3). 
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Figure 5.3 S. cerevisiae growth under three Cd concentrations, as determined 

by OD600 in liquid SC media after 72h. WT: Wild type (DY1457); MT2b ‘Y’: 

transformed yeast carrying mutated PtMT2b gene, with an amino acid 

substitution (C3Y). Different letters represent significant differences among 

treatments by Tukey test (ANOVA; p = 0.00085). 

  

 Transformed yeast accumulated high contents of Cd within cells, with 

concentrations at least 30 times higher than the strains carrying empty vectors 

only (Figure 5.4 A). In the WT yeast, internal Cd uptake was similar regardless of 

media concentration, but in transformed yeast accumulation significantly 

increased under the higher Cd dose (30 µM). In order to convert the OD600 values 

into CDW (cell dry weight) and express the results in µg of Cd per g CDW, the 

following equation was used:  

 

CDW (mg/ml) = 2.496 × OD600 + 0.0303 

 

This equation was obtained by a linear regression analysis between CDW 

(mg mL-1) and OD600 values of 15 samples at different growth stages (R2 = 0.974; 

p < 0.001); with 94.8% of Min/Max accuracy and 5.6% of MAPE (mean absolute 

percent error) (Figure S5.3). 
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In terms of Cd removal from the media (%), which includes internal Cd 

accumulation, cell wall binding and sorption processes; the transformed yeast 

removed around 84% and 77% of the total Cd concentration initially added (10 

µM and 30 µM, respectively) in a 72 h period, while in WT strain those values 

were on average under 30% (Figure 5.4 B). 

 

5.3.3 Mutated PtMT2b gene slightly increases yeast growth under Fe and 

Mn deficiency 

Spot assay of transformed mutant yeasts under deficient conditions 

showed that PtMT2b ‘Y’ could not recover the growth double mutant zrt1zrt2 

under Zn deficiency, but slightly promoted growth in SMF1 and fet3fet4 strains in 

Mn and Fe deficient plates, respectively (Figure 5.5). From those strains, PtMT2b 

‘Y’ effect appeared to be more pronounced only in SMF1 (Figure 5.5 B). For 

quantification purposes, this mutant strain was cultivated in liquid media under 

Mn deficiency, which then SMF1 + PtMT2b ‘Y’ had on average 71% higher growth 

(OD600: 0.90) than when carrying an empty vector (OD600: 0.52) (ANOVA; p = 

0.008). 
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Figure 5.4 Cd accumulation in S. cerevisiae strains after 72 hours of growth. WT: 

Wild type + empty vector (DY1457); MT2b ‘Y’: transformed yeast carrying 

mutated PtMT2b gene, with an amino acid substitution (C3Y). A) Amount of Cd in 

dried yeast cells (µg g-1) after EDTA washing and acid digestion. B) Percentage of 

Cd removal from liquid media after yeast growth (72 h). Different letters 

represent significant differences among treatments by Kruskal-Wallis and Dunn 

test (p = 0.004) in A); and by Tukey test (ANOVA; p < 0.001) in B). 
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Figure 5.5 Growth of mutant S. cerevisiae strains in nutrient sufficient (+ X) and 

nutrient deficient (- X) plates for 72 hours. Yeast strains were: fet3fet4, with double 

mutation for Fe uptake (A); SMF1, with single mutation for Mn uptake (B); and 

zrt1zrt2, with double mutation for Zn uptake (C). WT: wild type; e. v.: empty vector 

(DY1457); PtMT2b ‘Y’: poplar metallothionein with cysteine to tyrosine replacement 

(C3Y); and TcNramp5: cocoa tree metal transporter Nramp5. Dilution 1 = 0.1 OD600. 
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5.4 Discussion 

 5.4.1 Poplar’s mutated metallothionein and Cd tolerance 

As demonstrated previously, P. trichocarpa’s metallothionein MT2b is 

indeed able to increase Cd tolerance in transformed S. cerevisiae (Chapter 4). 

Besides chelating and inactivating metals in their toxic forms, such as Cd2+, MTs 

have a role in scavenging reactive oxygen species (ROS) from cells under stress 

(Wong et al. 2004; Ruttkay-Nedecky et al. 2013). Genes for ROS tolerance are 

highly expressed in WT S. cerevisiae exposed to Cd (Thorsen et al. 2009), 

therefore it is clear that the addition of PtMT2b would enhance Cd tolerance by 

producing even more ROS-scavenging proteins than a WT strain.  

Heterologous expression of other plant metallothionein genes in yeast 

have been assessed under heavy metal stress, with similar results, but mostly 

from herbaceous plant species (Zhou and Goldsbrough 1994; Guo et al. 2008; 

Zhang et al. 2014; Zhang et al. 2014b). For Cd, metallothioneins from sunflower, 

rice, Arabidopsis, Noccaea caerulescens, and even mycorrhizal fungi Rhizophagus 

irregularis and Hebeloma cylindrosporum were shown to complement Cd 

sensitivity in mutant yeast (Farcasanu and Ruta 2017). In the present study, the 

non-transgenic strain (WT + empty vector) had a decrease in biomass of around 

50% under 10 µM Cd in liquid media (Figure 5.3), which is in accordance with the 

results from Hosiner et al. (2014), who reported an EC50 (half maximal effective 

concentration) of 10 µM CdCl2 for S. cerevisiae. In the transgenic strain, however, 

growth was barely affected even at 30 µM Cd, confirming our initial hypothesis 

that PtMT2b increases Cd tolerance. 

 Metallothioneins are characterised by their high content of Cys residues - 

generally 10 to 17 in plants – which are able to bind divalent metal cations in 

their sulfhydryl (R–SH) group, thus forming thiolate bonds (Hassinen et al. 2011; 

Nguyen et al. 2017) and, in the case of the type II sub-family, their amino-

terminal portion has a highly conserved domain, starting with Cys-Cys 

arrangement (Bulgarelli et al. 2016). Because of this obvious role of the cysteine 

content in providing metal binding sites in these proteins, it was interesting to 

observe that PtMT2b ‘Y’, a gene encoding a MT with one fewer Cys residue 

(replaced by one tyrosine - Tyr), not only did not lose its function as we 
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hypothesised, but in fact enhanced Cd tolerance in transformed yeast. We could 

speculate two main reasons for this: 1) tyrosine’s aromatic ring; 2) the position in 

which the substitution took place (C3Y).  

Despite lacking the characteristic sulfhydryl group from Cys, Tyr has a 

phenolic aromatic ring, that can also effectively bind divalent cations such as Cd2+ 

in their aromatic structure forming tyrosine-metal complexes (Hu et al. 1995), 

from which different conformations have been proposed (Figure 5.6). In this 

sense, Vandenbossche et al. (2014) developed a synthetic material enriched with 

tyrosine molecules that was able to efficiently remove copper from 

contaminated waters. Another reason for increased Cd tolerance is also related 

to the aromatic group in Tyr, which can form a non-covalent bond with cationic 

metals, known as cation-π interactions. This interaction is essentially 

electrostatic, in which a cation is attracted to the negatively charged cloud of 

electrons from aromatic groups (π systems), and is considered one of the 

strongest noncovalent interactions (Ma and Dougherty 1997; Mahadevi and 

Sastry 2013). Although mostly reported for monovalent cations, cation-π can also 

happen with divalent metal ions, such as seen with Mg2+ (Stewart et al. 2013). 

 

 

Figure 5.6 - Different conformations of tyrosine-based peptides for metal chelation. 

M++ represents a divalent metal cation (Source: Vandenbossche et al. 2014) 

 

The position in which the substitution took place may possibly have 

influenced the results observed. Plant MTs have two short cystein-rich terminal 

domains linked by a long spacer, devoid of Cys, and of around 40 amino acids 

(Domenech et al. 2006). These Cys domains in opposite ends can interact with 
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each other and bind metals, forming a cluster, conferring the hairpin structure 

model typical of MT2 proteins (Hassinen et al. 2011). In the present work, 

PtMT2b ‘Y’ had only the third amino acid of the peptide chain (Cys) replaced by a 

Tyr (C3Y; Figure 5.1), which means that it is unlikely for it to have affected the 

overall protein folding, considering that this domain had another seven Cys 

residues to interact with the six Cys from the opposite domain. Moreover, the 

domain in which this substitution occurred may also explain why there was no 

loss of protein function. For instance, Cismowski et al. (1991) observed that yeast 

carrying a mutated MT gene (Cys to Tyr substitution) had a markedly lower 

resistance to Cd when it occurred in one domain (C50Y), but no effects when this 

mutation was present in another domain (C13Y). 

 

5.4.1 Bioaccumulation and removal of Cd by transgenic yeast 

Yeast can bioremediate metals from solutions by mainly two 

mechanisms, one is passive and requires no energy expenditure (e.g. cell wall 

binding and metal diffusion) and the other active, metabolism-dependent and 

being carried out only by living cells, involving compartmentalisation in 

subcellular organelles such as vacuole or mitochondria (Vijver et al. 2004; Wang 

and Chen 2009). Metal binding by metallothioneins is one of the most important 

strategies for metal accumulation (or toxicity avoidance) in living cells, a process 

seen in almost all eukaryotic organisms, such as animals, plants, yeast and 

ectomycorrhizal fungi (Vijver et al. 2004; Nguyen et al. 2017). Although in S. 

cerevisiae the induction of MT production seems to occur mainly through 

exposure to Cu (Wang and Chen 2006) or Ag (Hosiner et al. 2014). 

Linear regression resulted in a good prediction model for converting 

OD600 measurements into cell dry weight (CDW) and allowed converting Cd 

concentrations in yeast to µg of Cd per gram of biomass. It should be noted, 

however, that those predictions should be applied only under the experimental 

conditions of the present work (strain type, growth period, temperature etc.), as 

well as the equipment use for OD600 determination, since it can vary according to 

the device used (Ude et al. 2014).  
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Transgenic strains carrying the mutated PtMT2b gene were not only 

highly tolerant but also effectively accumulated more Cd (in µg g-1) than wild 

type yeast, with Cd contents at least 10 times higher, which supports our 

hypothesis that Cd tolerance can lead to enhanced Cd accumulation. Ruta et al. 

(2017) recently showed that S. cerevisiae transformed with NctMT2a and 

NcMT2b (from Noccaea caerulescens) had a 5-fold and a 4-fold increase in Cd 

accumulation, respectively, compared to the non-transformed strain. Yeast 

expressing SaMT2 from hyperaccumulator Sedum alfredii also had a 50% 

increase in Cd accumulation in relation to the control (Zhang et al. 2014b). 

However enhanced Cd accumulation is not always observed, such as the case of 

the S. cerevisiae strains transformed with a range of MTs from Arabidopsis 

thaliana (Guo et al. 2008). Bacteria may also display similar effects, such as the E. 

coli expressing a metallothionein from mice (mt-1), in which the gene promoted 

higher tolerance and accumulation of mercury from contaminated media (Ruiz et 

al. 2011), and the CeMT2b gene from tolerant weed species Colocasia esculenta, 

that doubled Cd accumulation in E. coli (Kim et al. 2011). 

Due to their biosorption characteristics, yeast cell walls can remove heavy 

metals from aqueous wastes even if the cells are no longer alive. Machado et al. 

(2008) verified that after applying dead S. cerevisiae biomass (12 mg mL-1) in 

nickel contaminated water, almost 80% of the Ni2+ in solution was removed after 

only 30 minutes. By using the OD600 to CDW (mg mL-1) conversion equation 

previously determined, we were able to estimate that despite removing around 

80% of Cd2+ from the growth media, this amount would represent a biosorption 

capacity of 1.5 mg g-1 of dried yeast. Even though this assay ran for only 72 hours 

and did not reach saturation, the result is quite low compared to other 

biosorbent materials, such as dried chestnut burr, which is able to remove 16.2 

mg of Cd per gram, pinecones (4.3 mg g-1) or the breakthrough biosorbent 

known as MMBB (a mix of tea wastes, mandarin peels and maple leaves), which 

can absorb 31.7 mg g-1 of Cd from solution (Kim et al. 2015; Abdolali et al. 2016). 

However, those are dead materials, and are not susceptible to metal toxicity 

effects. Living yeasts provide a constant source of biosorbent material, which is 

also able to actively accumulate metals within cells, removing metals 
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continuously through internal detoxification mechanisms (Wang and Chen, 

2006). In this sense, Amirnia et al. (2015) developed a continuous bioreactor-

biosorption system, which is efficient for simultaneous production of S. 

cerevisiae and removal of Cu2+ and Pb2+ from liquid waste without requiring 

much nutritional input for yeast growth. The authors also suggested that this 

process is facilitated by using flocculant strains that are easily able to decant and 

separate from the growth solution (Soares 2011), a feature that was observed in 

the WT strains in the present work. 

 

5.4.3 Transgenic yeast under nutrient deficiency 

 Considering the evidence that metals such as Zn and Cu can affect the 

expression of MT2b in white poplar (Cicatelli et al. 2010), and both Cd and Zn 

concentrations were verified to be highly correlated to MT2b expression in 

leaves of P. tremula x P. tremuloides (Hassinen et al. 2009), we hypothesised that 

the double mutant strain zrt1zrt2, lacking two Zn transporters, would have 

increased growth if carrying the PtMT2b gene. This was based on the concept 

that prior to yeast inoculation into the Zn-depleted media, during pre-growth 

stage, transgenic yeast would have built up a larger nutrient storage capacity 

within their cells by forming MT-Metal chelates, which could then be accessed 

under nutrient deficiency. The same was tested for Fe and Mn, using their 

respective mutant strains, for it is known that MTs are also able to bind these 

metals (Farcasanu and Ruta 2017), for example, yeast expressing plant gene 

PutMT2 under toxic metal concentrations had enhanced accumulation of Fe, 

Man Zn and Ag, usually promoting tolerance as well, expect for Mn, Cu and Ni 

(Zhang et al. 2014). 

 In our work, the spot assay showed that mutant strain zrt1zrt2 had no 

effects from PtMT2b ‘Y’ transformation under Zn deficiency, showing virtually no 

growth. One reason could be the double mutation did not allow enough Zn to 

penetrate the yeast cells during pre-growth. S. cerevisiae acquires Zn via mainly 

three transporters: Zrt1 (high affinity), Zrt2 (low affinity) and Fet4 (non-specific), 

therefore this mutation severely hinders Zn acquisition pathways (Zhao and Eide 

1996; Schothorst et al. 2017). The PtMT2b gene was also shown to have slightly 
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lower expression in poplars under high Zn concentrations (Chapter 4), so it is 

probably involved in Zn binding, however it is also possible that the amino acid 

substitution (C3Y) in this gene could have lead to an MT with lower Zn affinity, 

resulting in poor Zn storage.  

Transgenic yeasts were able to grow, to some extent, in Mn- and Fe- agar 

deficient media, confirming in part the initial hypothesis, although only by 

verifying metal contents intracellularly would allow a more empirical conclusion. 

In liquid media, transgenic SMF1 strains had a 71% increase in growth under Mn 

deficiency, suggesting that this gene is involved in Mn binding. The involvement 

of MTs in Mn homeostasis has not been thoroughly explored in plants thus far, 

and usually between them is not commonly observed (Chyan et al. 2005), except 

for a few studies with MTs from animals or plants (Kobayashi et al. 2007; Benatti 

et al. 2014). 

 

5.5 Conclusions 

Heterologous expression of the metallothionein gene (MT2b) from 

Populus trichocarpa is able to confer tolerance to S. cerevisiae under Cd 

concentrations up to 50 µM. Replacement of Cys by Tyr (C3Y) in the amino acid 

sequence did not affect protein function, and, in fact, increased yeast growth 

under Cd. The transgenic strains carrying the mutated gene were able to extract 

up to 80% of Cd from contaminated media solution, mostly due to continuous 

growth and constant metal biosorption. This specific strain offers great potential 

for bioremediation Cd from waters or effluents, and further studies should be 

carried out to assess its potential use in a mixture of cationic metals, such as Zn, 

Mn or Cu, as well as tested on different bioreactor systems. 
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5.7 Supplementary Files 

 

Figure S5.1. Entry clone pDONR221 carrying PtMT2b and a gene responsible for 

Kanamycin resistance, used for transformation and cloning in E. coli competent 

cells. 
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Chapter 5: Bioremediation potential of Cd by transgenic yeast expressing a metallothionein gene 

from Populus trichocarpa 

 

Figure S5.2. Expression vector pDR195GTW carrying PtMT2b and a gene responsible 

for uracyl production (URA) used for the transformation of yeast competent cells. 

 

 

Figure S5.3. Linear regression between OD600 values and yeast cell dry weight 

(CDW) (n = 15). Equation, R2 and MAPE (mean absolute percent error) presented 

were all significant (p < 0.05). 
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Chapter 6: General discussion 

The initial goal of this PhD project was to evaluate the potential of Populus 

trichocarpa for phytoremediation of soils contaminated by Cd and Zn. However, 

by following the results at each step (i.e. experimental assays and preliminary 

tests), along with the information inferred and drawn from the literature, more 

questions emerged, which guided new developments in my research hypotheses. 

 This chapter will cover the overall findings in this thesis and what they 

mean in terms of practical application, as well as some of the constraints and 

limitations encountered and the possibilities for future research arising from the 

data generated in this work. 

 

6.1 Fundamental scientific findings 

 Although this thesis adds to the practical knowledge necessary for 

investigating and enhancing the potential of poplar trees in Cd and Zn 

phytoremediation, it also provides some fundamental knowledge on metal 

ecotoxicity, plant uptake and their associated mechanisms. 

 Chapter 2 shows that Cd and Zn toxicity thresholds in ectomycorrhizal fungi 

(in vitro) are dependent on the type of media used, in which solid medium allows 

not only a more realistic threshold determination, but also provides the 

assessment of mycelial density as possible mechanism for Cd tolerance (Table 2.2). 

It was shown that Zn is not necessarily able to alleviate Cd toxicity under these 

conditions, sometimes causing a synergistic toxicity (Figure 2.4). 

 In chapter 3, I was able to show that the restriction of root-to-shoot 

translocation in poplars is a major mechanism for avoiding Cd and Zn toxicity 

(Table 3.2; Figure 3.4), and that it involves the down-regulation of PtHMA4 in roots 

(Figure 3.5). This chapter also confronts the common assumption that Zn 

amendment will decrease Cd uptake by plants, wherein I have demonstrated that, 

under those experimental conditions, the opposite occurs in P. trichocarpa. 

 In chapter 4, I demonstrated that Cd and Zn uptake and accumulation differ 

in mycorrhizal poplars as hypothesised, in which the former is mostly immobilised 

in roots and the latter is highly accumulated in terms of mg of Zn per plant. By 

assessing some gene expression responses to metals as well as mycorrhization, I 

could demonstrate that PtHMA4 and PtZIP1 are affected by both Cd and Zn, 
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although not to the same extent (Figures 4.3 and 4.4). I was also able to show that 

inoculation of poplars with R. irregularis up-regulated the expression of PtMT2b 

in roots (Figure 4.3F) and that this gene was highly correlated to the AM fungi 

colonisation rates and the sequestration of Cd in mycorrhizal roots (Figure 4.5). To 

the best of my knowledge, the function PtMT2b has not been tested in yeast until 

now, and here I could clearly demonstrate its involvement in enhancing Cd 

tolerance, therefore confirming our hypothesis (Figure 4.6). 

 In chapter 5, I showed that not only PtMT2b increases Cd tolerance in 

yeast, but also increases its intracellular accumulation (Figures 5.2 and 5.3). In this 

chapter, I also discovered, rather accidentally, that a substitution in the peptide 

sequence of PtMT2b (a tyrosine instead of a cysteine on the third position; C3Y) 

has an even greater effect in conferring Cd tolerance in yeast (Figure 5.4), despite 

this substitution leading to one fewer Cys in the protein, a crucial amino acid in 

metallothioneins. This was an unexpected result and, to the best of my knowledge, 

such occurrence has not been verified elsewhere in plant MTs. Finally, within this 

chapter I showed that a mutant yeast (SMF1) was able to grow slightly better in 

Mn-deficient medium when carrying the mutated poplar gene (PtMT2b ‘Y’), 

suggesting its involvement in Mn chelation (Figure 5.5). 

 

6.2 Is Populus trichocarpa useful for phytoremediation? 

Phytoremediation is a solar-driven, in situ, and natural technology that can 

clean up soils from heavy metals or other contaminants (Sas-Nowosielska 2011). 

In addition it has a lower installation and maintenance cost (almost 5% of other 

remediation technologies), without detrimental impacts to the topsoil (Ali et al. 

2013). For an effective Cd and Zn phytoremediation process, ideal plants need to 

have rapid growth, high biomass production, deep root systems, high tolerance to 

toxicity and metal accumulation capacity, and not be a direct source of food for 

humans or herbivores (Yadav et al. 2018). A plant that perfectly fulfils all these 

criteria is yet to be discovered (Mahar et al. 2016). Moreover, the ability to attract 

and develop relationships with mutualistic microorganisms is definitely desirable, 

for they can not only favour plant growth and the remediation process itself, but 

also increase metal availability along with microbial diversity in the rhizosphere, 
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thus promoting better conditions in contaminated soils for other species to 

flourish (Audet 2014).  

Populus trichocarpa is a plant species that possesses most of those 

characteristics. In the present work, I demonstrated that when exposed to 

elevated Cd and Zn simultaneously (Figure 3.6), which is often the case in 

contaminated soils, leaves and stems concentrations reached hyperaccumulator 

levels of Cd (> 100 mg kg-1 dry biomass), without apparent phytotoxicity, which is 

also a requirement for considering a plant as hyperaccumulator (Baker et al. 2000; 

Ali et al. 2013). It should be clear, however, that the fact high metal concentrations 

were found in shoots of a given plant does not necessarily mean that they are 

hyperaccumulators, especially if plants were not grown under natural conditions.  

Van der Ent et al. (2013) argue that experiments under artificial contamination 

(‘spiked’ soils), either in hydroponics or other substrates are not sufficient to 

define a species as a hyperaccumulator, and understandably so. For instance, 

environmental factors and soil properties will largely affect these accumulation 

values, mostly the soil pH, texture, organic matter content, microbiota 

composition and fertility status, which will all have a direct effect on metal 

availability for plant uptake. Likewise humidity and temperature can alter water 

balance and leaf transpiration process, with an obvious consequence to the 

accumulation potential of plants (Yadav et al. 2018).  

This variation can be exemplified by the contrasting Cd accumulation 

values found between the third and fourth chapters in this thesis. The experiment 

described in chapter 3 was carried out in glasshouse conditions and consequently 

plants were exposed to varying temperatures, from 22.1 to 26.9oC. In addition, all 

substrates were spiked by metal solutions in one single pulse. As for the following 

experiment, poplars were put into growth chambers with temperature control set 

to 23oC, while this time metal additions were applied gradually, over a three-day 

period. Results diverged as a consequence and, despite similar Cd concentrations 

in poplar roots and stems for both cases (Cd treatment of 81 mg kg-1), the leaves 

accumulated around five times more Cd (~ 45 mg kg-1) under glasshouse 

conditions (at higher temperatures) than when in growth chambers (~ 8.5 mg kg-

1). The effect of temperature in phytoextraction was studied in willows by Yu et al. 
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(2010), whose results showed higher and faster chromium accumulation with 

increasing temperatures. 

Nonetheless, the metal extraction capacity of P. trichocarpa stems are on 

average of at least 40 mg kg-1 for Cd and around 500 mg kg-1 for Zn, considering all 

experiments in this thesis. Those numbers allow the estimation of how much 

metal could be extracted from contaminated soils by poplar trunks (harvestable 

wood), not considering of course the obvious variation arising from extrapolating 

pot experiments into large scale field applications, longer timeframes and 

genotypic differences among poplar ecotypes. 

For this purpose, we can utilise the equation (eq. 4) suggested by 

Antoniadis et al. (2017), which allows the estimation of total metal uptake (kg 

metal ha-1 year-1) and the timescale (in years) necessary to remediate soils to 

below critical levels: 

�� =	∆���	
��	 ×
���

���
									(4) 

 

In which: Δ [M]soil (mg of metal per kg of soil) is the difference between the 

initial soil concentration of the contaminated soil and the final concentration 

desired after remediation. SWH is the soil weight in a hectare (kg soil ha-1), and 

equals: 107 × ρb × D. In which ρb is the dry bulk density of soil (g cm-3) and D is the 

depth of soil to be remediated (in meters); 107 is a conversion factor calculated by 

the authors, involving soil volume, weight and density (Antoniadis et al. 2017; see 

Supplementary Information). AMU is the annual metal uptake and equals: [M]plant 

× Y, in which [M]plant is the metal concentration in the plant (mg kg-1) and Y is the 

annual plant yield (as aboveground harvestable dry biomass). 

Considering the average yield of poplar trees to be around 10 to 30 t ha-1 

year-1 poplar (Dillen et al. 2013; Searle and Malins 2014; Verlinden et al. 2015) and 

the Cd accumulation potential of 40 mg kg-1 or 100 mg kg-1 (when exposed to Zn 

simultaneously); it could be estimated that, in order to decrease Cd 

concentrations of a contaminated soil from 7 mg kg-1 Cd (He et al. 2015), for 

instance, to 3 mg kg-1 – which is the limit according to the Council of the European 

Communities Directive, 86/278/EEC (CEC 1986) - it would take around 20 years if 
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Cd accumulation is of 40 mg kg-1, or eight years if accumulation is stable at 100 mg 

kg-1. This time scale could be further reduced considering that older poplar trees 

usually have a higher accumulation of Cd in barks (Zarubova et al. 2015). 

For Zn however, even if we consider the highest values obtained for Zn 

accumulation in stems in this thesis, on average 700 mg kg-1 Zn, it would require 

at least 771 years to decrease soil Zn concentrations from 2900 mg kg-1 Zn (average 

in contaminated European soils – Salminen et al. 2005) to 200 mg kg-1, which is a 

common target value for Zn concentration in affected soils (Alloway 2008).  

These figures are only estimations based on a single equation and does not 

account for several factors influencing yield production, metal extraction such as 

annual weather cycles, innate soil fertility and extreme climatic events. However, 

it does suggest that this particular poplar ecotype (i.e. ‘Trichobel’) is not very a 

promising candidate for Zn phytoextraction. Yet, for Cd, it seems to be a good 

alternative, especially if the technique is combined with other available methods, 

for example: biochar application, use of chelating agents to increase uptake, 

manipulation of soil pH as well as the association between the plant and the soil 

microbiota (Yadav et al. 2018). I have shown that mycorrhizal symbiosis with R. 

irregularis in fact decreases Cd extraction by immobilising the metal in poplar 

roots (phytostabilisation) (Figure 4.2A). However, this is useful if the goal is to 

immobilise the metal and prevent toxicity to other organisms, leaching and/or 

groundwater contamination (Ali et al. 2013; Montpetit and Lachapelle 2017). 

It must be stressed here, that such estimation is just an exercise, since it is 

based mostly on our results from pot experiments, but it seems that in the context 

presented, P. trichocarpa has indeed potential to be used in phytoremediation 

schemes, albeit not as effective yet, it has all the other requirements of an ideal 

plant for such purpose. Moreover, poplars in general have more traits and uses 

other than accumulating metals, which would make them even more attractive 

for soil remediation. 

 

6.2.1 Poplar as a bioenergy source 

In order to reduce the human dependency on non-renewable fossil fuels, 

decrease CO2 emissions to the atmosphere and cater to an increasing population, 
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bioenergy is gaining more interest worldwide. Bioenergy is the name given to 

energy derived from biomass, usually heat, electricity and transport fuels (Creutzig 

et al. 2015). The use of energy crops for bioenergy generation, such as biofuel, is 

considered a renewable and sustainable energy source with a closed carbon-cycle 

system that does not contribute to greenhouse effects (Pandey et al. 2016). 

Poplars are high-yielding perennial trees that have been commonly used 

for bioenergy, within a short-rotation coppice (SRC) system, and are useful for 

thermal energy, electricity and bioethanol production (Sannigrahi et al. 2010; 

Manzone et al. 2014; Sabatti et al. 2014). SRC is an old concept in which a tree is 

cut at the base in order to mimic a natural disturbance, which results in new shoots 

regenerating and sprouting from the stumps and, not only does this avoid the 

need for replanting, but can also lead to higher yields in the following growing 

seasons (Blake 1983; Sabatti et al. 2014; Verlinden et al. 2015). In addition, poplars 

grown in a sustainable SRC system for energy production may improve carbon 

sequestration as well as decrease greenhouse gas emissions and mitigate climate 

change, especially compared to energy derived from fossil fuels (Whitaker et al. 

2018). 

 

6.2.2 Phytoremediation wood as source of biomass 

A common obstacle regarding the use of land for bioenergy production is 

the concern that it may displace existing productive lands used for food crops 

(Whitaker et al. 2018). Thus the use of contaminated lands - which are often 

unsafe for food production and cannot sustain a rich biodiversity - to implement a 

bioenergy production system might be a solution (Pandey et al. 2016). In this 

sense, poplar species have another advantage in comparison to other energy 

crops, which is their ability to grow and remediate polluted soils, either with 

organic or inorganic contaminants (Gullner et al. 2001; Brentner et al. 2010; 

Guerra et al. 2011). Populus species can also rapidly invade disturbed sites, 

reproduce asexually and are not a source of food for farm animals, consequently 

reducing the risk of heavy metals entering the human food chain (Sebastiani et al. 

2004; Hamberg et al. 2011; Shim et al. 2013). In this thesis, I have demonstrated 

the potential of P. trichocarpa cv ‘Trichobel’ in growing under extreme Cd 
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concentrations (up to 81 mg kg-1), and to stabilise high amounts of Cd in roots, 

especially under mycorrhizal symbiosis, which makes this poplar variety a good 

candidate for further studies in terms of energy production (biomass) in 

contaminated environments under SRC systems 

Another concern for bioenergy production using woody species in SCR 

systems is that it may not be as profitable as other energy crops (Schweier and 

Becker 2013). A study from Manzone et al. (2014) concluded that a poplar 

plantation for bioenergy production in Italy was not able to achieve full 

sustainability without increasing the price of the biomass, or without economic 

support for the production. In this sense, combining bioenergy production with 

phytoremediation, could be an alternative to obtain financial incentive or subsidy 

from governments interested in land reclamation, bioenergy production and 

climate change mitigation. 

Using contaminated biomass for energy production also appears to be the 

best strategy for the common conundrum of how to deal with the plants after 

phytoremediation. According to Witters et al. (2012), willow biomass from 

phytoremediation sites could be used, for instance, in co-combustion with coal, 

for heating purposes to replace cokes in zinc smelters and to produce electricity 

via combustion. Resulting ashes will have high metal concentrations and will need 

to be landfilled afterwards, as it appears to be the case with Cd, Zn and Pb, which 

can highly accumulate in the filters used during the combustion of contaminated 

wood, requiring proper and safe disposal (Chalot et al. 2012). Nevertheless, there 

are prospects of using this remaining ash or contaminated filters for further 

processing and metal recovery before the disposal, in a process known as 

phytomining (Chalot et al. 2012; Ali et al. 2013; Yadav et al. 2018). The amount of 

metals recovered during combustion, gasification or pyrolysis will depend of 

several technical parameters, such as temperature, as well as the nature of the 

metal being targeted (Bert et al. 2017). Overall, it seems that without valorisation 

of the generated biomass, phytoremediation cannot be a sustainable process 

(Vigil et al. 2015). 
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6.3 Beyond the plant: mycorrhizal interaction 

Although great part of the literature surrounding phytoremediation rather 

phytocentric, that is, focusing mainly on the plant aspect of the process, we know 

nowadays that multi- and interdisciplinarity are key in studying this technique. As 

neatly put by Ali et al. (2013), phytoremediation requires background knowledge 

in soil chemistry and microbiology, plant biology, ecology and environmental 

engineering; to that I would add that ecotoxicology, agronomy, biotechnology and 

economics are also integral aspects of this process (Figure 6.1). 

In order to expand the knowledge slightly beyond this phytocentric view, I 

have included a fundamental relationship for most plant species: mycorrhizal 

symbiosis. This interspecies interaction is an important aspect in any 

phytoremediation study, since it can greatly affect the outcomes in terms of plant 

nutrition, metal tolerance, accumulation and/or extraction (Audet 2014).  

 

Figure 6.1 - Multi and interdisciplinary knowledge as integral aspects in 

phytoremediation. 
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6.3.1 Ectomycorrhizal symbiosis 

 Chapter 2 was the starting point in addressing the main question of using 

P. trichocarpa in Cd and Zn remediation. The main facts that lead us to include 

ECM fungi in this project were, in summary: (i) poplars can form symbiosis with 

both endo- and ectomycorrhizal fungi (Bissonnette et al. 2010; Marmiroli et al. 

2011); (ii) woody species are known to be colonised predominantly by ECM fungi 

(Smith and Read 2008), (iii) inoculation of trees with ECM fungi usually leads to 

higher tolerance to metal toxicity (Jentschke and Godbold 2000; Baum et al. 2006; 

Colpaert 2008); (iv) Basidiomycota fungi are commonly found in trees of 

contaminated area (Krpata et al. 2008; Colpaert et al. 2011) and have an important 

role in facilitating the re-forestation of HM-contaminated areas (Gherghel and 

Krause 2012); (v) metal tolerant ECM strains may promote higher tolerance in host 

plants (Krznaric et al. 2010); and (vi) metal-chelating agents (e.g. siderophores, 

organic acids) produced by ECM fungi may enhance metal availability and 

therefore enhance phytoremediation (Machuca 2011). 

This experiment assessed Cd and Zn tolerance in five ECM species, and 

eventually lead to the selection of two strains tolerant to Cd and Zn: Hebeloma 

subsaponaceum and Scleroderma sp. (Figure 2.1). This particular work also lead to 

other questions, such as if Zn is able to alleviate Cd toxicity in the selected species, 

and the more methodological question concerning the type of media  (liquid vs 

solid) generally used in toxicity assays in ECM fungi. Conclusions were that Zn and 

Cd cause a synergistic toxicity in mostly sensitive species (Figure 2.3), and that 

solid media leads to higher metal tolerance (i.e. different toxicity thresholds) and 

allows assessment of mycelial density (Table 2.2), which may be crucial in 

withstanding toxicity. 

 Unfortunately, after several attempts to inoculate P. trichocarpa (by 

different methods) with those selected strains, as well other strains freshly 

isolated from the field, no ECM colonisation was verified in plant roots. Therefore 

I decided to not follow through with ECM symbiosis, and work only with arbuscular 

mycorrhizal fungi (R. irregularis), which successfully colonised P. trichocarpa roots 

at high rates (Table 4.2). 
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6.3.2 Arbuscular mycorrhizal symbiosis 

Our results described in chapter 4 clearly showed that the symbiosis 

between P. trichocarpa and the arbuscular mycorrhizal fungus R. irregularis 

increased significantly the phytoextraction potential of the host plant exposed to 

Zn contamination (Figure 4.2B), while under Cd stress, symbiosis did not affect 

metal uptake, but altered its distribution within plant tissues, increasing poplars 

Cd phytostabilisation potential (Figure 4.2A). Therefore, inoculation of plantation 

of poplars in contaminated sites might be necessary, not only to modulate metal 

uptake and sequestration, but also to improve colonisation of poplar roots, since 

other microorganisms and symbionts may be lacking in contaminated sites 

(Phanthavongsa et al. 2017). 

Although results such as these are very important when screening plants 

and fungal partners for remediation application, understanding some of the 

mechanisms by which plant-symbiont interactions can consequently influence the 

phytoremediation process does not only increase the overall scientific knowledge 

in this field, but also offers new tools and alternative avenues for exploring or 

improving this technique. In this thesis I focused mainly on some poplar genes 

involved in heavy metal transport and chelation, and the effects of metals and/or 

symbiosis on their expression. 

 

6.4 Biotechnology in Phytoremediation 

6.4.1 Molecular mechanisms 

 Understanding the genetic mechanisms underlying metal acquisition, 

tolerance and accumulation in plants allows the application of molecular 

techniques, such as genetic engineering, to manipulate other organisms (e.g. 

plants, bacteria, yeasts) in order to enhance their tolerance, accumulation, 

sequestration and/or extraction of pollutants (Hassinen et al. 2007; Poonam et al. 

2014). For poplars specifically, deeper molecular information is important to 

identify the key mechanisms regarding their tolerance to heavy metals. This may 

assist in strategies for breeding and selecting different hybrids/varieties or 

genetically modify poplars themselves to be more effective in phytoremediation 

techniques (Sebastiani et al. 2014) and biomass yield. In addition, vascular plants 
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are not purely autonomous individuals and rely greatly on symbiotic 

microorganisms, which are able to induce systemic responses in the plants, 

increasing tolerance to both biotic and abiotic stresses (Vaishnav et al. 2014); and 

investigating molecular mechanisms in these processes are equally important. 

By quantifying the gene expression of some heavy-metal related genes in 

P. trichocarpa, I have mainly established that (i) PtHMA4 is probably involved in 

the xylem loading of both Cd and Zn (Figure 3.5), (ii) PtZIP1 is related involved in 

the influx of both Cd and Zn in poplar leaves (Figures 4.3G and 4.4G), and that (iii) 

PtMT2b is overexpressed under mycorrhizal symbiosis (Figure 4.3F) and possibly 

responsible for high Cd sequestration into poplar roots. Therefore, it is possible 

that poplars overexpressing those genes would lead to a genotype even more 

suitable for Cd and Zn remediation. P. trichocarpa overexpressing their own 

transporter genes (PtNramp3.1 and PtNramp3.2) were shown to accumulate 

twice as much Zn in their leaves compared to wild type poplars (Le Thi 2015), while 

a similar technique was applied to P. angustifolia to overexpress glutamyl cysteine 

synthetase and increase heavy metal accumulation (Fulekar et al. 2009). 

 

6.4.2 Transgenic Poplars 

Biotechnology has the potential to overcome phytoremediation limitations 

by allowing the direct gene transfer between organisms (Yang et al. 2005), and is 

believed to be a realistic possibility in combining important traits from a 

hyperaccumulator species into a high-biomass producing plant. Main approaches 

include: increasing the number of metal transporters and enhancing intracellular 

ligand production and metal sequestration in order to not disturb cellular 

processes (Kotrba et al. 2009). 

How many genes and proteins to turn a tree into a Nocceae caerulescens 

is still not known, but inserting/manipulating genes to increase root-to-shoot 

metal transport and chelation/sequestration seems to be a strategic approach 

(Chaney et al. 2010). The metal transporters PtHMA4 and PtZIP1 as well as the 

metallothionein PtMT2b highlighted in this thesis, are therefore classic examples 

of target genes for genetic manipulations (Kotrba et al. 2011).  
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Examples of transgenic poplar trees for possible phytoremediation 

applications include: P. tremula × P. alba overexpressing γ-glutamylcysteine 

synthetase (from E. coli), which promoted Cd tolerance and uptake (He et al. 

2015b); P. alba carrying the metallothionein MT2a1 (from Pisum sativum), that 

resulted in higher Cu and Zn tolerance (Balestrazzi et al. 2009; Turchi et al. 2012). 

And P. alba × P. tremula with vacuolar transporter YCF1 (from S. cerevisiae), 

enhancing Cd accumulation and tolerance (Shim et al. 2013). In the United States, 

transgenic poplars grown in sites contaminated by the organic compound 

trichloroethylene (TCE) have already displayed promising results in terms of 

pollutant removal (Legault et al. 2017). For more examples for heavy metal 

remediation, please refer to Song et al. (2007) and Fasani et al. (2017), or for cases 

involving organic pollutants, refer to Van Aken (2008). 

Despite recent advances in this field, there are several challenges to 

overcome before the effective application of transgenic poplars in 

phytoremediation and SCR schemes, mainly the lack of field trials, the need for 

risk assessments to prevent unwanted breeding and spread of transgenes among 

other poplar species, contingency plants to avoid these modified plants from 

becoming extremely invasive due to their better fitness and tolerance, as well as 

addressing possible societal concerns (Yadav et al. 2018). 

Moreover, instead of producing genetically engineered plants carrying 

genes from different or highly distant species (such as yeasts and mammals), the 

exchange of genes within the same genus (e.g. among Populus sp.) could facilitate 

the generation of a good phytoextractor phenotype and avoid some of the 

challenges described previously. For instance, by inserting the genes flagged in this 

thesis (i.e. PtHMA4, PtZIP1 or PtMT2b) into other poplar varieties that are already 

known to accumulate high amounts of metals, such as the Populus alba clone 

(AL35), frequently used for Cu and Zn phytoextraction from contaminated soils, 

(Cicatelli et al. 2010; Cicatelli et al. 2012; Pallara et al. 2013), may enhance Cd 

tolerance and accumulation as well. 
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6.4.3 Populus trichocarpa as source of transgenes 

 While poplar is often considered as a recipient of transgenes for 

phytoremediation enhancement, as a donor species that is barely the case. From 

70 studies involving transgenic plants with enhanced heavy metal tolerance and 

extraction potential, reported by Fasani et al. (2017), there was not a single work 

in which a Populus species was the source of the transgene, those mostly coming 

from E. coli (24%), Arabidopsis (21%), S. cerevisiae (7%) and Noccaea sp. (4%). It is 

a missed opportunity not considering poplar species as possible sources of genetic 

material for heavy metal remediation, especially when there are highly tolerant 

varieties available, such as the one studied in this thesis. In this sense, the high 

concentration of Cd sequestered in mycorrhizal roots instigated us to explore the 

function of the PtMT2b gene, which was highly up-regulated in this case.  

 Expressing PtMT2b in S. cerevisiae, both original and modified sequences, 

demonstrated that this poplar’s metallothionein effectively enhances Cd 

tolerance and is also able to increase its accumulation and removal from liquid 

solutions (Figures 5.2); as seen with the modified version of the gene, by an amino 

acid substitution (C3Y) in the protein sequence (Figure 5.4). Studies like the one 

described and discussed in Chapter 5 can open up new avenues for exploring 

heavy metal remediation which, in this case, involved using yeasts as living 

biosorption material for Cd bioremediation in contaminated waste water. The 

overall findings in this work are represented in Figure 6.2 

 

6.5 Research limitations 

Because this thesis was designed to answer hypotheses regarding genetic 

mechanisms and mycorrhizal symbiosis in poplar trees under Cd and Zn stress, I 

opted for eliminating as many variables as I could. Thus I used a fairly inert 

substrate (mostly sand and TerraGreen® clay), which had to be autoclaved in order 

for us to evaluate the effects of a single mycorrhizal species. In the end, this work 

was limited to potted plants, artificially spiked substrates, glasshouse conditions 

and growth chambers, which are commonly the central criticisms regarding 

phytoremediation studies (Robinson et al. 2009; Van der Ent et al. 2013). 
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Therefore, in terms of practical application, those results need further 

complementation. 

Several aspects were not studied in this thesis, due to time constraints or 

methodological complications, such as the unsuccessful ectomycorrhizal 

symbiosis formation, as discussed previously. Another experiment that ultimately 

failed, was supposed to address if the gene expression patterns differed from 

colonised roots to non-colonised roots for the same individual, the main 

hypothesis was that mycorrhizal symbiosis could alter gene expression patterns 

systemically, instead of a local effect in colonised roots. Plants died a few days 

after being transplanted to a double-pot system, which separated mycorrhizal 

from non-mycorrhizal roots, as well as contaminated from non-contaminated 

substrates. 

 

Figure 6.2 – Schematic overview of the main findings in this thesis. Mycorrhizal symbiosis 

increased Zn uptake and extraction, while increased Cd sequestration in roots. Metal 

exposure down-regulated the expression of HMA4 in roots, while up-regulated ZIP1 in 

leaves. R. irregularis increased PtMT2b transcripts in roots, which when inserted in yeasts, 

displayed great potential for Cd bioremediation from contaminated water. 
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6.6 Future research 

Considering all the findings from this thesis and the unexplored ideas 

arising from the data, knowledge gaps, as well as all the limitations from our 

methodological approach, there are several opportunities for future research. 

Poplar studies in the field or in pots using non-spiked contaminated soils 

(with varying soil properties) are very important in terms of practical remediation 

experiments, such as the ones reported by Cicatelli et al. (2014). This would allow 

a better prediction of the potential of P. trichocarpa to extract or stabilise Cd and 

Zn. The manipulation of soil pH, soil nutritional status and microbiota will also 

provide a better understanding of the process, since they greatly affect metal 

availability (Alloway 2008; Smolders and Mertens 2013). 

Glomalin production by arbuscular mycorrhizal fungi are also an important 

factor influencing metal uptake and availability to plant roots. Glomalins are 

glycoproteins with high retention capacity for heavy metals (Khan et al. 2014; 

Meyer et al. 2017). Thus it would be interesting to determine glomalin 

concentrations in mycorrhizal poplars under Cd and Zn stress and possible 

correlation to their stabilisation potential in soils. In addition, because mycorrhizal 

effects are very dependent on plant and fungal species, symbiosis with different 

AM and/or ECM partners might better elucidate and enhance the 

phytoremediation process. For instance, Funneliformis mossae is a species widely 

considered in soil remediation and was also able to colonise P. trichocarpa cv 

‘Trichobel’ roots in a previous test (data not shown). 

In chapter 4 I was not able to distinguish the Cd bound to plant cell walls, 

to the fraction bound to fungal walls, vesicles and hyphae of R. irregularis and 

although this is not an easy task, scanning electron microscopy (SEM) with X-ray 

detection can allow not only the visualisation of morphological effects of HMs in 

root tissues, but also detect metal concentrations and localisation within root (or 

mycorrhizal root) tissues (Marzilli et al. 2018). 

Other means of enhancing Cd and Zn phytoremediation potential of P. 

trichocarpa (other than mycorrhizal symbiosis) could also be added to this work, 

such as the root inoculation with synergistic bacteria (Cocozza et al. 2015); soil 

application of chelating agents such as EDTA (ethylenediaminetetraacetic acid), 



211 

 

Chapter 6: General discussion 

EDDS (ethylenediamine-N,N'-disuccinic acid) and NTA (nitrilotriacetic acid) (Guo et 

al. 2014; Khalid et al. 2017) or soil amendment using biochar (Beesley et al. 2010; 

Bian et al. 2014; Qiao et al. 2015); to name a few. 

 In summary, other main topics for future research arising directly from this 

thesis could include: 

• The potential of P. trichocarpa in extracting/stabilising other metals such as 

Pb, Cu and Ni within the same framework of this thesis. 

• The effects of multi-contaminated soils in P. trichocarpa uptake and 

tolerance. 

• The effects of dual symbiosis (ECM + AM) in modulating heavy metal uptake. 

• Effect and interactions between mycorrhizal poplars and other soil 

microorganisms as well as other organisms, such as earthworms, that can 

increase Cd availability (Aghababaei et al. 2014). 

• Phytoremediation potential of mycorrhizal P. trichocarpa in soils 

contaminated by organic pollutants. 

• Transcriptome analyses of mycorrhizal poplars under Cd and Zn stress, for the 

selection of a range of target genes for remediation. 

• Engineering of P. trichocarpa overexpressing heavy metal-related genes, such 

as the ones described in this thesis, or from other organisms, for enhancing 

Cd/Zn extraction and tolerance. 

• More studies with S. cerevisiae carrying poplar genes for Cd remediation (e.g. 

PtMT2b), such as in different experimental conditions or in conjunction with 

other genes that may increase Cd extraction (PtHMA4 or PtZIP1). 

• The use of the transgenic yeast strains developed in chapter 5, for different 

applications, such as in the cocoa bean fermentation process, potentially 

reducing their Cd contents. 

 

6.7 Concluding remarks 

Soil pollution is a prevalent problem that has only been increasing with 

industrialisation, population growth and continuing inputs of wastes into the 

environment. The widespread contamination of soils with heavy metals, which are 
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highly persistent and toxic represents one of the most severe environmental 

problems that can seriously affect environmental quality and human health 

(Khalid et al. 2017). Although still very challenging, a possible solution to mitigate 

this problem is the use of plants and their associated microbiota to remediate 

contaminated soils, in a process commonly known as phytoremediation (Mahar et 

al. 2016). It is therefore of major importance for soil scientists, plant biologists, 

plant breeders and biotechnologists to understand the mechanisms by which 

plant cope and handle heavy metals in soils (Gallego et al. 2012). 

My thesis offers some new opportunities for this non-costly, eco-friendly 

and possibly sustainable soil remediation. By evaluating some of the factors 

underlying Cd and Zn tolerance and accumulation in P. trichocarpa, a species with 

several traits crucial for an effective phytoremediation technique. The overall 

results are useful for better explaining the mechanisms by which mycorrhizal 

symbiosis can affect Cd and Zn uptake in woody plants and highlights the 

importance of mycorrhizal symbiosis in phytoremediation. The knowledge 

gathered and generated in this thesis may serve as basis for the genetic 

engineering of poplars or other organisms for heavy metal remediation, or further 

research in refining and enhancing this technique. 
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6.9 Supplementary Information 

Calculations concerning the conversion factor 107 for the time parameter 

tR in section 6.2 (source: Antoniadis et al. 2017): 

 

Step 1: Area in a hectare is 104 m2 ha-1. 

Step 2: Volume of soil in depth D (m) in the area of a hectare is 104 m2 x D m ha-1 

= 104 x D m3 ha-1. 

Step 3: Weight of this volume is: Weight = Density x Volume = Dry bulk density x 

Volume = ρb (g cm-3) x 104 x D (m3 ha-1) [1]. 

Step 4: The units of g cm-3 are converted to kg m-3 multiplying by a factor of 103 

(i.e., g = 10-3 kg, and cm3 = 10-6 m3; thus g cm-3 = 103 kg m-3) [2] 

Step 5: Combining [1] and [2] we have soil weight in a hectare in depth D: 103 x ρb 

x 104 x D = 107 x ρb x D. 

 

 

 

 

 

 


