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Abstract. Extreme flooding impacts millions of people that
live within the Amazon floodplain. Global hydrological mod-
els (GHMs) are frequently used to assess and inform the
management of flood risk, but knowledge on the skill of
available models is required to inform their use and develop-
ment. This paper presents an intercomparison of eight differ-
ent GHMs freely available from collaborators of the Global
Flood Partnership (GFP) for simulating floods in the Ama-
zon basin. To gain insight into the strengths and shortcom-
ings of each model, we assess their ability to reproduce daily
and annual peak river flows against gauged observations at
75 hydrological stations over a 19-year period (1997–2015).
As well as highlighting regional variability in the accuracy of
simulated streamflow, these results indicate that (a) the me-
teorological input is the dominant control on the accuracy of
both daily and annual maximum river flows, and (b) ground-
water and routing calibration of Lisflood based on daily river
flows has no impact on the ability to simulate flood peaks
for the chosen river basin. These findings have important rel-
evance for applications of large-scale hydrological models,
including analysis of the impact of climate variability, assess-
ment of the influence of long-term changes such as land-use

and anthropogenic climate change, the assessment of flood
likelihood, and for flood forecasting systems.

1 Introduction

Flooding is notably the most common and damaging nat-
ural hazard affecting millions of people worldwide every
year, producing economic losses exceeding billions of dol-
lars (Hirabayashi et al., 2013). Flood risk associated with a
particular location can be highly variable depending on levels
of exposure, resilience and preparedness (Alfieri et al., 2018),
in addition to the increased uncertainty surrounding trends
of hydrological extremes in a warming climate (Arnell and
Gosling, 2016). For the Amazon basin, flood risk is consid-
ered to have increased, with a greater frequency of extreme
flood events (e.g. in 2009, 2012, and 2014; Marengo and Es-
pinoza, 2016) coinciding with a hypothesized intensification
of the hydrological cycle since the 1980s (Gloor et al., 2013).
Floods in Amazonian communities are known to have large
socioeconomic consequences impacting ecosystems, health,
and transport links, and are particularly damaging to agri-
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cultural and fishery practices (Schöngart and Junk, 2007;
Marengo et al., 2012, 2013; Correa et al., 2017). Single flood
events (e.g. 2012 in the Amazonian city of Iquitos, Peru) have
impacted the lives of over 73 000 people (IFRC, 2013), with
average annual damages estimated at USD 1.4 billion over a
4-year period (2008–2011) in the Brazilian Rio Branco basin
alone (Mundial Grupo Banco, 2014).

1.1 Global hydrological models and applications

In its simplest form, a hydrological model can be consid-
ered a representation of a real-world hydrological system
used to better understand various water and environmental
processes, predict system behaviour, and provide consistent
impact assessment (Devia et al., 2015). They work by simu-
lating the hydrological response to meteorological variations
incorporating run-off generation and river routing processes
(Sutanudjaja et al., 2018). As such, global hydrological mod-
els (GHMs) have been used in a wide range of applications,
including short- to extended-range flood forecasting (Alfieri
et al., 2013; Emerton et al., 2018), climate assessment (Hat-
termann et al., 2017), hazard and risk-mapping (Ward et al.,
2015), drought prediction (van Huijevoort et al., 2014), and
water resource assessment (e.g. water availability models;
Meigh et al., 1999; Sood and Smakhtin, 2015).

Depending on the application and the needs of decision
makers, different properties of the hydrograph simulated by
hydrological models are important. For example, an accurate
representation of peak river flows and their likelihood is key
for decision-makers who wish to understand the area at risk
of flooding. In contrast, estimates of daily streamflow may be
more beneficial for the assessment of water resources such as
irrigation requirements.

1.2 GHM development

The availability of GHMs has grown in recent years thanks
to increased efforts in addressing water-related issues in de-
veloping countries (De Groeve et al., 2015; Ward et al., 2015;
Trigg et al., 2016), the development of flood forecasting sys-
tems (Aliferi et al., 2013; Werner et al., 2013; Emerton et al.,
2018), improvements within precipitation datasets (Mitter-
maier et al., 2013; Novak et al., 2014; Forbes et al., 2015),
the emergence of new global satellite and remote sensing
datasets, and advancements in numerical modelling tech-
niques (Yamazaki et al., 2014a; Sampson et al., 2015; An-
dreadis et al., 2017; Balsamo et al., 2018). For an overview
of available GHMs, see Bierkens et al. (2015), who have pro-
vided the details of 22 large-scale hydrological models, with
those used for operational flood forecasting being summa-
rized in Emerton et al. (2016).

1.3 Land surface models vs. hydrological models

GHMs have differing spatial and temporal resolutions, pa-
rameter estimation approaches, number of parameters, cal-
ibration methods, input–output variables, and overall struc-
tures (Sood and Smakhtin, 2015). Their set-ups can generally
be divided into two categories: land surface models (LSMs)
and hydrological models (Gudmundsson et al., 2012). The
majority of LSMs and hydrological models share the same
conceptualization of the water balance (Haddeland et al.,
2011) but differ in their objective. LSMs evolve from cou-
pled land–atmosphere models with the purpose of solving
the surface energy balance equations to provide the neces-
sary lower boundary conditions to the atmosphere (Wood et
al., 2011). In contrast, hydrological models tend to focus less
on the partitioning of radiation and more on hydrological re-
sources and understanding the lateral movement and trans-
port of water along the land surface.

In terms of differences in model performance, the Gud-
mundsson et al. (2012) intercomparison study of six LSMs
and five GHMs (i.e. hydrological models) concluded that the
main differences were due to the snow scheme implemented
with snow water equivalent values and mean runoff fractions
lower in LSMs. No significant differences between LSMs
and hydrological models were found for runoff and evap-
otranspiration globally, but rather the differences between
the models themselves created large sources of uncertainty,
highlighting the importance of analysing a range of differ-
ent GHMs rather than a group consisting of a specific model
type. For the purposes of this study, we categorize both LSM
and hydrological models as GHMs.

1.4 Motivation

For GHMs to be considered effective, end users need to know
their accuracy and reliability (Ward et al., 2015). Thus, the
evaluation of these models against observed data is an im-
portant procedure in efforts to reduce flood risk. Currently,
no intercomparison analysis of GHMs has been conducted
specifically for the Amazon basin, with previous studies fo-
cusing solely on the performance of individual models for the
Amazon (e.g. Yamazaki et al., 2012; Paiva et al., 2013; Hoch
et al., 2017a, b) or as part of a global study (e.g. Gudmunds-
son et al., 2012; Alfieri et al., 2013; Hirpa et al., 2018), which
lack an in-depth focus on skill within the Amazon basin.

Finally, many of the GHMs (or their components) anal-
ysed in this study are used for specific applications, for in-
stance, in water resources management (PCRaster Global
Water Balance; PCR-GLOBWB), flash flood forecasting
(Ensemble Framework for Flash Flood Forecasting; EF5),
and extended-range flood forecasting (Global Flood Aware-
ness System; GloFAS). Investigating the performance of hy-
drological simulations therefore can provide valuable in-
formation to researchers and model developers with which
to better understand some of the strengths and weaknesses
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which exist within the model set-ups and help to distinguish
how different parts of the hydrological chain can cause par-
ticularly “good” or “bad” model performance, thus having
implications for their different applications.

1.5 Objectives

In this study, the main objective is to assess the ability of
different GHMs freely available from collaborators within
the Global Flood Partnership (GFP), identifying which ap-
proaches are most suitable in different areas of the Amazon
basin for simulating flood peaks. To pursue this objective, the
analysis is designed to answer the following research ques-
tions.

1. How well do GHMs represent the annual hydrological
regime in terms of the Kling–Gupta efficiency (KGE)
and its individual components?

2. Which model set-up best represents annual maximum
river flows?

3. Which hydrological routing model allows the best rep-
resentation of daily and peak river flows?

4. Which precipitation dataset allows the best representa-
tion of daily and peak river flows?

5. How do results differ when using a LSM as opposed to
a hydrological model?

6. By how much does calibration of groundwater and rout-
ing model parameters improve performance?

2 Data and methodology

The experimental design involves comparing the output of
daily and annual maximum discharge estimates produced by
different GHMs forced using atmospheric reanalysis or satel-
lite precipitation datasets against observations of streamflow.
The common validation period is 1997–2015, with results
also analysed for the shorter period of 2004–2015 to account
for the shorter record length of one simulation.

2.1 Observations

Observed daily discharge data are used to evaluate each of
the model runs. The network of hydrometric gauges is con-
trolled and maintained by the national institutions responsi-
ble for hydrological monitoring in countries situated within
the Amazon basin. These include the Agência Nacional de
Águas (Water National Office – ANA, Brazil), Servicio Na-
cional de Meteorología e Hidrología (National Meteorology
and Hydrology Service – SENAMHI, Peru and Bolivia),
Instituto Nacional Meteorologia e Hidrologia (Institute to
Meteorology and Hydrology, INAMHI, Ecuador), and the

Instituto de Hidrología, Meteorología y Estudios Ambien-
tales (Institute of Hydrology, Meteorology and Environmen-
tal Studies – IDEAM, Colombia).

Daily water level values are collected by the respective
institutions and are sourced through the ORE-HYBAM ob-
servational service (http://www.ore-hybam.org/, last access:
1 December 2018), in collaboration with the Institute of Re-
search for Development (IRD) or directly from the national
services. A time series of daily river flow for each station is
obtained using stage and rating curve measurements which
were determined using an acoustic Doppler current pro-
filer (ADCP) conducted by the ORE-HYBAM observatory
and SENAMHI (Espinoza et al., 2014). In total 75 hydrolog-
ical stations throughout the Amazon basin are selected, with
an average record length of 17 years within the main valida-
tion period (1997–2015). The locations of stations and their
characteristics are displayed in Fig. 1a and Table S1 in the
Supplement respectively. Stations selected have a minimum
of 5 consecutive years’ worth of data during the main valida-
tion period. The threshold was set to 5 to prevent the elimi-
nation of stations in data-scarce areas such as Peru, Bolivia,
and Colombia.

2.2 Routing models and meteorological datasets

Eight GHMs composed of different meteorological datasets,
hydrological models/LSMs, and river routing models are
used to each simulate river discharge across the Amazon
basin. Four meteorological products (ERA-Interim Land re-
analysis, ERA-5 re-analysis, European Centre for Medium-
range Weather Forecasts (ECMWF) 20-year control refore-
casts (hereafter defined as reforecasts), and the real-time
TRMM TMPA 3B42 v.7), three hydrological models/LSMs
(PCR-GLOBWB, the Hydrology-Tiled ECMWF Scheme for
Surface Exchanges over Land; H-TESSEL, EF5), and three
river routing models (Catchment-based Macro-scale Flood-
plain model, CaMa-Flood; Lisflood; and the Coupled Rout-
ing and Excess Storage, CREST) are employed. While the
focus of this study is on GHMs made available by the GFP
community, other models are available within the Amazon
basin. Some examples include MGB-IPH (Paiva et al., 2013),
LPJmL (Lund–Potsdam–Jena managed Land; Bondeau et
al., 2007), WaterGAP (water – global analysis and progno-
sis; Döll et al., 2003), and MAC-PDM.09 (the Macro-scale-
Probability-Distributed Moisture model.09; Gosling and Ar-
nell, 2011).

As a result of using freely available datasets from collab-
orators within the GFP, simulations are composed of a com-
bination of routing models and meteorological datasets and
do not all use the same precipitation input or hydrological
set-up. However, the available combinations allow enough
insight into the model components to draw conclusions for
the objectives stated. For example, to analyse the perfor-
mance of precipitation inputs, ERA-Interim Land, ERA-5,
and the reforecasts are forced through the calibrated version

www.hydrol-earth-syst-sci.net/23/3057/2019/ Hydrol. Earth Syst. Sci., 23, 3057–3080, 2019
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Figure 1. (a) Locations of the 75 hydrological gauges and the river network of the Amazon basin. Numbers represent stations which are
referred to throughout the main text in italics. For station information, see Table S1. (b) Locations of existing and under-construction dams
as of 2017 (see Latrubesse et al., 2017). (c) Geological map of the Amazon (Schenk et al., 1999). (d) Elevation map of the basin from the
digital elevation model (DEM), GTOPO30, at a horizontal resolution of approximately 1 km (US Geological Survey, 1996).

of Lisflood, whereby the routing and LSM remain consis-
tent. To evaluate the differences between using the Lisflood
and CaMa-Flood routing models, two simulations which use
ERA-Interim Land precipitation and the H-TESSEL LSM
are compared. To identify the differences between employ-
ing a hydrological model (PCR-GLOBWB) or LSM (H-
TESSEL), two set-ups which use the ERA-Interim Land
precipitation reanalysis and the CaMa-Flood river routing
model are directly compared. Finally, to see how much bene-
fit model calibration within Lisflood provides, ERA-Interim
Land and ERA-5 are forced through the calibrated and un-
calibrated Lisflood model versions. The CREST EF5 run is
the sole simulation to have a unique hydrological model and
meteorological input, and although it is more challenging to
analyse the performance of specific components of the model

set-up against other simulations, it was included in the anal-
ysis for completeness.

An alternative approach would be to implement a full
intercomparison experiment and run a new set of simula-
tions which included all combinations of precipitation in-
put, GHM, and routing scheme. However, this is a very
large undertaking, and the time and computational expense
to achieve this are prohibitive. Instead, by using freely avail-
able datasets with different hydrological set-ups, our method
allows a first analysis providing enough evidence of dataset
reliability and accuracy in order to determine the utility of
the differing approaches for climate studies and to forecast
applications. Moreover, by using iterative runs of similar
model set-ups (i.e. changing a specific part of the hydrologi-
cal model chain), it allows us to make conclusive statements

Hydrol. Earth Syst. Sci., 23, 3057–3080, 2019 www.hydrol-earth-syst-sci.net/23/3057/2019/
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regarding the differences in skill. Finally, short descriptions
of each model and atmospheric product are outlined below,
with a summary of each simulation provided in Table 1.

2.2.1 Precipitation datasets

ERA-Interim Land is a global reanalysis of land surface
parameters produced by the ECMWF with a T255 spec-
tral resolution (∼ 80 km or ∼ 0.75◦; Balsamo et al., 2015).
ERA-Interim Land was produced using the latest version
of the land surface H-TESSEL model using atmospheric
forcing from ERA-Interim (Dee et al., 2011), with precip-
itation adjustments based on the Global Precipitation Cli-
mate Project (GPCP) v2.1. Precipitation improvements were
achieved by Balsamo et al. (2010) using a scale-selective
rescaling procedure in which ERA-Interim 3-hourly precipi-
tation was corrected to match the monthly accumulation pro-
vided by the GPCP at grid point scale (Huffman et al., 2009).
All simulations which use ERA-Interim Land are run of-
fline to force the associated rainfall–runoff models (see Ta-
ble 1). For a detailed description of the ERA-Interim Land
and ERA-Interim datasets, see Balsamo et al. (2015) and Dee
et al. (2011) respectively. Dataset available at http://apps.
ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/ (last
access: 1 July 2018).

ERA-5 is the latest reanalysis product of the ECMWF
producing consistent estimates of atmospheric, land, and
ocean variables at a horizontal resolution of ∼ 31 km, while
the vertical atmosphere is discretized into 137 levels to
0.01 hPa (ECMWF, 2018). ERA-5 is based on the Inte-
grated Forecasting System (IFS) Cycle 41r2 which was
used operationally at the ECMWF in 2016. Early analysis
has shown that ERA-5 has an improved representation of
precipitation (particularly over land in the deep tropics),
evaporation, and soil moisture compared to its predecessor
ERA-Interim Land (ECMWF, 2017). ERA-5 is currently
being produced in three “streams” and will eventually cover
the period 1950 to near real time (∼ 3 d) with its completion
due in 2019 (Emerton et al., 2018). Dataset available at
https://software.ecmwf.int/wiki/display/CKB/How+to+
download+ERA5+data+via+the+ECMWF+Web+API (last
access: 1 July 2018).

ECMWF reforecasts are a collection of historical forecasts
from start dates at the same day of the year going back for a
specific number of years to provide a consistent model clima-
tology from which to compare forecasts (ECMWF, 2016).
In this study we use the control member of the reforecasts
which are created based on a retrospective run of the most
recent version of the ECMWF’s IFS to provide surface and
subsurface runoff as input to the Lisflood routing model at
a resolution of 0.1◦. The reforecast run is computed using
a lighter configuration (11 ensemble members, run twice a
week on Mondays and Thursdays) to reduce computational
time. The purpose of running the ECMWF forecasts through
the Lisflood routing model is to generate a long-term (20-

year) dataset which is consistent with operational GloFAS
forecasts enabling the suitability of the dataset for use in the
calibration of the Lisflood model parameters (Hirpa et al.,
2018). These data cover the period June 1995 to June 2015
and due to frequent model updates of the IFS are based on
multiple model cycles: Cycle 41r1 (July through to March)
and Cycle 41r2 (March through to June). The control refore-
casts from Mondays and Thursdays are used subsequently
to fill the whole weeks by taking the first 3 and 4 d forecast
periods respectively throughout the 20 years.

TRMM TMPA 3B42 RT v7 is a global merged multi-
satellite precipitation product generated at the National Aero-
nautics and Space Administration (NASA). TMPA is com-
puted for two products: a near-real-time version (TMPA
3B42RT v7) and a post-real-time gauged adjusted research
version (TMPA 3B42 v7), both of which run at resolu-
tion of 3-hourly× 0.25◦× 0.25◦ (Huffman et al., 2007). The
TMPA 3B42 RT gridded dataset used in this study covers
the global latitude belt from 60◦ N to 60◦ S. For further in-
formation, see Huffman et al. (2007). Dataset available at
https://pmm.nasa.gov/data-access/downloads/trmm (last ac-
cess: 4 March 2018).

2.2.2 Hydrological and land surface models

H-TESSEL provides the land surface component of the
ECMWF IFS (van den Hurk et al., 2000; van den Hurk and
Viterbo, 2003; Balsamo et al., 2009). H-TESSEL simulates
the land surface response to atmospheric conditions estimat-
ing water and energy fluxes (heat, moisture, and momen-
tum) on the land surface (Zsoter et al., 2019). H-TESSEL
is predominately used within the operational set-up of short-
to seasonal-range weather forecasts coupled with the atmo-
sphere, but it can also be used in an “offline mode” to
calculate the land surface response to atmospheric forcing,
whereby input data (e.g. near-surface meteorological condi-
tions) are provided on a 3-hourly time step (Pappenberger et
al., 2012). In this study, H-TESSEL receives boundary con-
ditions from the atmospheric input provided by either the
ERA-5 reanalysis, ERA-Interim Land reanalysis, or the re-
forecasts providing total runoff for the CaMa-Flood routing
model, and the surface and sub-surface water fluxes for Lis-
flood. Runs forced using the ERA-Interim Land reanalysis
are run in the offline mode. For a detailed description of H-
TESSEL, see Balsamo et al. (2009).

PCR-GLOBWB is a global hydrological and water re-
source model developed at the Department of Physical Ge-
ography, Utrecht University, Netherlands (Sutanudjaja et al.,
2018). For each grid cell and time step, PCR-GLOBWB
simulates moisture storage in two vertically stacked up-
per soil layers, as well as the water exchange among the
soil, the atmosphere, and the underlying groundwater reser-
voir. Besides, water demands for irrigation, livestock, in-
dustry, and households can be integrated within the model.
Run-off is routed along a local drainage direction (LDD)
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network using the kinematic routing wave equation. PCR-
GLOBWB was applied at a resolution of 30 arcmin (∼ 55 km
× 55 km at the Equator) with meteorological forcing pro-
vided from the ERA-Interim Land reanalysis dataset be-
tween 1997 and 2015. For further information on PCR-
GLOBWB, see van Beek and Bierkens (2008), van Beek et
al. (2011), and Sutanudjaja et al. (2018).

EF5 is an open-source software package developed at the
University of Oklahoma (OU) that consists of multiple hy-
drological model cores producing outputs of streamflow, wa-
ter depth, and soil moisture (Clark et al., 2016). Since 2016,
EF5 has been used operationally for local forecasts across
the US National Weather Service (NWS) for flash flooding
purposes (Gourely et al., 2017). EF5 incorporates CREST,
which is a distributed hydrological model created by OU and
NASA (Wang et al., 2011). Within CREST, runoff genera-
tion, evapotranspiration, infiltration, and surface and subsur-
face routing are computed at each grid cell within the model
domain, with surface and subsurface water routed using a
kinematic wave assumption. Four excess storage reservoirs
characterize the vertical profile within a cell representing in-
terception by the vegetation canopy and subsurface water
storage in the three soil layers (Meng et al., 2013). In ad-
dition, the representation of sub-grid cell routing and soil
moisture variability is made through the use of two linear
reservoirs for overland and subsurface runoff individually
(Wang et al., 2011). Locations of major streams, flow direc-
tion maps, and flow accumulation are all derived from the
HydroSHEDS (Hydrological Data and Maps Based on Shut-
tle Elevation Derivatives at Multiple Scales) dataset (Lenhner
et al., 2008).

In this study, an un-calibrated version of EF5 was run us-
ing CREST version 2.0 (Xue et al., 2013; Zhang et al., 2015)
for 13 years (2003–2015), with a 1-year spin-up at a spa-
tial resolution of 0.05◦× 0.05◦. Parameters are estimated a
priori from soil and geomorphological variables, with me-
teorological forcing provided by the TMPA 3B42 RT prod-
uct for precipitation and monthly averaged potential evapo-
transpiration (PET) from the Food and Agriculture Organi-
sation (FAO). For full details on the system set-up, see Clark
et al. (2016).

2.2.3 Routing models

Lisflood is a global spatially distributed, grid-based hydro-
logical and channel routing model commonly used for the
simulation of large-scale river basins (van Der Knijff et al.,
2010). It is currently used as an operational rainfall–runoff
model within the European Flood Awareness System (EFAS)
for streamflow forecasts over Europe (Smith et al., 2016).
Unlike EFAS, which uses the full Lisflood set-up, GloFAS
and the simulations included in this study use only the rout-
ing component of the Lisflood set-up, with surface and sub-
surface input fluxes (e.g. vertical water, water/snow storage)
provided by the H-TESSEL module of the IFS at a resolu-

tion of 0.1◦. Surface runoff is routed through Lisflood using
a four-point implicit finite-difference solution of the kine-
matic equations. Sub-surface storage and transport are routed
to the nearest downstream channel pixel within one time step
through two linear reservoirs (Alfieri et al., 2013). The wa-
ter in each channel pixel is finally routed through the river
network taken from the HydroSHEDS project (Lenhner et
al., 2008) using the same kinematic wave equations as for
the overland flow. Subsurface flow from the upper and lower
groundwater zones is routed into the nearest downstream
channel as a scaled sum of the total outflow from both the
upper and lower groundwater zones.

Lisflood also represents lakes and reservoirs as simulated
points on the river network (Zajac et al., 2017). The outflows
of lakes and reservoirs are based on (a) upstream inflow,
(b) precipitation over the lake or reservoir, (c) evaporation
from the lake or reservoir, (d) the lakes’ initial level, (e) lake
outlet characteristics, and (f) reservoir-specific characteris-
tics. For further details on the parameterization of lakes and
reservoirs within Lisflood, see Appendix A within Zajac et
al. (2017). In the Amazon, represented lakes are predomi-
nately located along the main stem, with very few reservoirs
throughout the basin. For exact lake and reservoir locations
within the global Lisflood model, see Zajac et al. (2017).

In this study, two set-ups of Lisflood are used (Lisflood_uc
and Lisflood_c). Lisflood_c represents the calibrated set-up
of the Lisflood routing and groundwater parameters (see
Hirpa et al., 2018), while Lisflood_uc represents the uncal-
ibrated model run. Parameters were calibrated with the re-
forecasts initialized with the ERA-Interim land reanalysis
from 1995 to 2015 as forcing against observed discharge
data at 1278 gauging stations worldwide. All but one sta-
tion (40; see Fig. 1a and Table S1) used in this study were
included within the calibration. An evolutionary optimiza-
tion algorithm was used to perform the calibration, with the
KGE used as the objective function. The calibration was car-
ried out for parameters controlling the time constants in the
upper and lower zones, percolation rate, groundwater loss,
channel Manning’s coefficient, the lake outflow width, the
balance between normal and flood storage of a reservoir, and
the multiplier used to adjust the magnitude of the normal out-
flow from a reservoir. The results were validated by Hirpa et
al. (2018) using the KGE (Gupta et al., 2009) over the pe-
riod 1995–2015. In calibration (validation) KGE skill scores
were greater than 0.08 compared to the default Lisflood sim-
ulation for 67 % (60 %) of stations globally. For a detailed
description of the calibration of the Lisflood parameters and
the range of values used for each parameter, see Hirpa et
al. (2018). Further details of the Lisflood model are described
in van Der Knijff et al. (2010).

CaMa-Flood is a global distributed river routing model
which is forced by runoff input from a LSM or hydrolog-
ical model to simulate water storage where further hydro-
logical variables (i.e. river flow, water level, and inundated
area) can be derived along a prescribed river network. Hor-
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izontal water transport along the river network is calculated
using the local inertia equations (Yamazaki et al., 2011). The
backwater effect (i.e. upstream water levels which affect flow
velocity downstream; see Meade et al., 1991) is represented
by estimating flow velocity based on water slope (Yamazaki
et al., 2011). Moreover, floodplain inundation is represented
within CaMa-Flood as a subgrid-scale process by discretiz-
ing the river basin into unit catchments which consist of sub-
grid river and floodplain topography parameters (Yamazaki
et al., 2014b). These parameters describe the relationship be-
tween the total water storage in each grid point and water
stage and are automatically generated using the Flexible Lo-
cation of Waterways (FLOW) method with the generation of
the river map created by upscaling the HydroSHEDS flow
direction map (Lehner et al., 2008). For further information
about the CaMa-Flood model, see the aforementioned refer-
ences. In this study, daily river discharge was obtained us-
ing CaMa-Flood version 3.6.1 at a spatial resolution of 0.25◦

(∼ 25 km grid size) for both runs. Manning’s river and flood-
plain roughness coefficients were set at 0.03 and 0.10 s m−1/3

uniformly for both CaMa-Flood simulations.

2.3 Verification metrics

2.3.1 Spearman’s ranked correlation

The non-parametric Spearman ρ is used to measure the
strength and direction of the monotonic relationship between
the ranks of the observed and simulated annual maximum
values. The non-parametric Spearman ρ was preferred to
Pearson’s statistic as non-parametric measures are less sen-
sitive to outliers in the data and are widely considered a
more robust measure of the correlation between observed and
predicted values (Legates and McCabe, 1999). Correlation
scores for ρ range from − to 1, with 1 being a perfect corre-
lation. We consider scores which have a value of 0.6 or more
to be skilful. Similar scores (between 0.5 and 0.7) are consid-
ered to represent a good level of agreement between observed
and simulated values in similar studies (see Yamazaki et al.,
2012; Alfieri et al., 2013).

2.3.2 KGE

The KGE (Gupta et al., 2009) measures the goodness-of-fit
between estimates of simulated discharge and gauged ob-
servations and is a modified version of the dimensionless
Nash–Sutcliffe efficiency (NSE; Nash and Sutcliffe, 1970).
The metric decomposes the NSE into three independent hy-
drograph components – linear correlation (r), bias ratio (β),
and relative variability between the observed and simulated
streamflow (α) – by re-weighting the relative importance
of each (Revilla-Romero et al., 2015). KGE values range
from −∞ to 1, with values closer to 1 indicating better
model performance. To provide further context to the com-
puted KGE scores, we use the breakdown of KGE values

into four benchmark categories as according to (Kling et al.,
2012). These are classified as follows:

– “Good” (KGE > 0.75),

– “Intermediate” (0.75>KGE > 0.5),

– “Poor” (0.5>KGE> 0),

– “Very poor” (KGE 6 0).

Although originally for the modified version of the KGE,
these categories provide an informative benchmark by which
to evaluate results. A similar study (Thiemig et al., 2013) as-
sessing the performance of satellite-based precipitation prod-
ucts for hydrological evaluation also adopted the same ap-
proach.

When analysing the results, each component of the KGE
is also considered independently, enabling model errors to
be directly related to either the variability (KGE_α), bias
ratio (KGE_β), or correlation (KGE_r; Guse et al., 2017).
KGE_α values greater than 1 indicate that variability in the
simulated time series is higher than that observed. Values
less than 1 show the opposite effect. KGE_β values greater
than 1 indicate a positive bias whereby predictions overes-
timate flows relative to the observed data, while values less
than 1 represent an underestimation.

To evaluate the relative improvement of using one model
set-up relative to another (e.g. using the calibrated Lisflood
routing model as opposed to the uncalibrated model version),
metrics are calculated as skill scores:

KGESS =
KGEa−KGEdef

1−KGEdef
, (1)

where KGESS signifies the KGE skill score, KGEa is the
KGE score for the improved run or simulation of inter-
est (e.g. Lisflood_c), and KGEdef is the KGE score for
the “default” or comparative run (e.g. Lisflood_uc). Positive
KGESS indicates improved skill, whilst a negative score rep-
resents a decrease in skill. For each case, KGE scores are cal-
culated against observed river flow data. The correlation skill
score is calculated similarly. All metrics are computed in the
R environment using the “verification” (Gilleland, 2015) and
“hydroGOF” (Zambrano-Bigiarini, 2017) R packages.

3 Results and discussion

To allow for easier interpretation, the results and discus-
sion are separated into six sections which match the research
questions presented in Sect. 1.5, in addition to an outline
of potential future work. Due to similar results between the
two validation periods (1997–2015 and 2004–2015), only re-
sults for 1997–2015 are shown. For 2004–2015 results, see
Figs. S1 and S2 in the Supplement. Results and discussions
for individual stations are commonly referred to by the sta-
tion numbers in italics and are presented in Fig. 1a and Ta-
ble S1.
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Figure 2. Full Kling–Gupta efficiency (KGE) scores at the 75 hydrological gauging stations for all simulations. For the periods 1997–2015
and 2004–2015 for the Coupled Routing and Excess Storage, Ensemble Framework for Flash Flood Forecasting (CREST EF5) run (g).
Values greater than 0.75 are considered to indicate good performance (i.e. dark blue circles). To allow for easier model comparisons, plots
are arranged by the different precipitation datasets (rows) and routing models (columns), with the exception of CREST EF5 (g). For example,
the final column consists of model runs using the calibrated Lisflood routing model.

3.1 How well is the annual hydrological regime
represented?

The annual hydrological regime on average is well repre-
sented by all models (Fig. 2), with the rationale for poorer
performance at specific gauges dependent on either the tem-
poral correlation, bias ratio, or variability ratio components
of the KGE (Figs. 3–5). An average of 50 % of stations note
scores above 0.5 for the KGE metric across all eight simu-
lated runs, with a maximum value of 0.92 observed at the
Santa Rosa gauging site (48, Fig. 1a) for the ERA-5 Lis-
flood_c simulation (Fig. 2f). The two CaMa-Flood set-ups
using the PCR-GLOBWB hydrological model and the H-
TESSEL LSM show the lowest skill, with 19 and 18 stations
noting scores greater than 0.5 respectively. By contrast, the
best performance is from the calibrated Lisflood set-ups, with
median scores across stations of 0.56, 0.63, and 0.64 for runs
forced with ERA-Interim Land, the reforecasts, and ERA-
5 respectively. Such results are unsurprising given that the
KGE was used as the objective function in the calibration
algorithm of the Lisflood routing model.

In terms of spatial distribution, the poorest performance is
consistent for the majority of simulations at the Arapari (55),
Boca Do Inferno (56), and Base Alalau (61) gauging sta-
tions located north of Manaus, at the Fazenda Cajupiranga
gauge (64) in the northernmost Branco catchment, and at
the Fontanilhas (35) and Indeco (49) stations in the south-
eastern Brazilian Amazon (Fig. 2). In the south-eastern Ama-
zon, particularly in the Madeira and Tapajos sub-basins, the
number of existing or under-construction dams is at its high-
est (Fig. 1b). Damming of rivers is known to have impacts
on different aspects of the flow regime, with possible alter-
ations in the timing, magnitude, and frequency of low and
high flows (Magilligan and Nislow, 2005). Indeed, the fre-
quency and duration of low- and high-flow pulses at stations
downstream of dams have been shown to be particularly af-
fected by the construction of cumulative dams (Timpe and
Kaplan, 2017). Thus, discrepancies between observed and
modelled data shown in Fig. 2 could be due to alterations
to key features of the flow regime.

The highest scoring stations (KGE score> 0.75) are pre-
dominately found in the south-western Brazilian Amazon
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where the network of tributaries remains relatively unaf-
fected by damming and where slopes are gentle (Fig. 1b
and d). However, high skills at stations (32, 33, and 43) along
the Madeira River for most simulations (Fig. 2) highlight
that the impacts of hydroelectric dams need to be consid-
ered on an individual basis, with two of the largest dams
(> 3000 MW) situated along the river (see Fig. 1b).

Figures 3–5 show the breakdown of the KGE scores for
each hydrological component to evaluate differences in per-
formance with respect to the correlation (i.e. timing), flow
variability (α), and bias ratio (β). An average of 79 % of
stations note correlation coefficients exceeding 0.6 across all
runs, with those using the Lisflood routing model performing
similarly in both spatial distribution and magnitude (Fig. 3).
In contrast, 51 % and 47 % of stations achieve values ex-
ceeding 0.6 for CaMa-Flood H-TESSEL and CaMa-Flood
PCR-GLOBWB respectively, with the hydrological model,
PCR-GLOBWB, noting better performance at stations along
the main stem. The increased performances of Lisflood rela-
tive to simulations incorporating CaMa-Flood are likely due
to the increased spatial resolution of the routing component
(see Table 1). This is supported by results for CREST EF5,
with 76 % of stations noting values above 0.6 and the model
occupying a finer spatial resolution than that of CaMa-Flood
(Fig. 3g).

The variance of modelled river flow is on average higher
than the observed time series in all of the simulations, with
the exception of the ERA-Interim Land PCR-GLOBWB
CaMa-Flood simulation. For this run, 85 % of stations ob-
serve values of less than one, with stations situated in the Pe-
ruvian Amazon (2–5) the notable exception (Fig. 4b). In con-
trast, 79 % of stations for the CaMa-Flood set-up using the H-
TESSEL LSM note values greater than one (Fig. 4a). All runs
tend to underestimate river flows relative to the observed time
series, with the majority of stations observing a beta value of
less than one (Fig. 5). In the calibrated Lisflood simulation
forced with the reforecasts, almost half of all the stations ob-
serve scores between 0.9 and 1.1 (i.e. grey circles), with a
median of 0.99 (Table 2). These results are not replicated in
the other two calibrated runs when using either ERA-Interim
Land or ERA-5 as the precipitation input (Fig. 5d and f). For
both of these runs a decrease is found in the number of sta-
tions achieving scores between 0.9 and 1.1 relative to the as-
sociated uncalibrated Lisflood set-ups (Fig. 5c and e). This
is also highlighted by a decrease in the median scores of the
two respective runs (Table 2), meaning that a greater water
deficit exists in the calibrated set-ups.

Stations in the south-eastern Amazon, particularly in the
upper reaches of the Teles Pires River (37, 38, and 49), tend
to underestimate river flow for most simulations (Fig. 5). In
this region of the basin precipitation is controlled by frontal
systems in the South Atlantic Convergence Zone (SACZ),
which is prevalent during austral summer (Ronchail et al.,
2002; Espinoza et al., 2009). In addition, rainfall variability
in the Amazon is strongest in the south-east, with a distinct

dry season (Paiva et al., 2012; Espinoza et al., 2009). Further
analysis could be useful in evaluating seasonal patterns of
model performance to establish whether climatological fea-
tures such as the SACZ are accurately represented within the
precipitation datasets. Other factors impacting performance
in the south-east could be associated with the geology and
topography (Fig. 1c and d). Stations in this area of the basin
are located within the Brazilian Shields, composed predom-
inately of Precambrian rock, and are characterized by gen-
tle slopes and low erosion rates (Filizola and Guyot, 2009).
Paiva et al. (2012) demonstrated the importance of accu-
rate initial conditions of groundwater state variables in the
Tapajos and Xingu river basins, particularly for low flows.
In comparison, the majority of the central parts of the basin
are characterized by tertiary rocks, flat terrain, large flood-
plains, and high sediment yields. In these regions (e.g. in the
south-western Brazilian Amazon), KGE scores are generally
higher (Fig. 2), with surface water variables (e.g. water lev-
els, surface runoff, and floodplain storage) considered more
important in hydrological prediction uncertainties (Paiva et
al., 2012).

The KGE allows us to make explicit interpretations of the
hydrological performance of each model owing to decom-
position into correlation, bias, and variability terms (Kling
et al., 2012). The results indicate that the required develop-
ments to improve the representation of daily river flows are
specific to each individual model and to the area of inter-
est. For instance, for the ERA-Interim Land PCR-GLOBWB
run, daily correlation scores (Fig. 3b) showed the model suf-
fers in reproducing the temporal dynamics of flow (as mea-
sured by r) in northern catchments. Calibration of parame-
ters which control the timing of the flood wave (e.g. river
flow velocity) may improve performance, whereas model set-
ups incorporating the uncalibrated Lisflood routing model
generally had lower KGE values in the east of the basin
corresponding to an overestimation of river flow variabil-
ity (Fig. 4c and e). For these runs, performance slightly im-
proved upon the calibration of the groundwater and routing
parameters relating to timing, flow variability, and ground-
water loss (Fig. 4d and f).

3.2 Which model set-up best represents annual
maximum river flows?

Both the calibrated and uncalibrated versions of Lisflood
simulations forced with the ERA-5 reanalysis are the best-
performing runs, with median scores of 0.53 and 0.54 for the
uncalibrated and calibrated simulations respectively (Fig. 7
and Table 2). However, a large deterioration in skill is evi-
dent for all simulations for Spearman’s ranked coefficients
between observed and predicted annual maximum river flows
(Fig. 6), with only 21 % of stations on average observing
scores exceeding 0.6 across all simulations. Here, it is im-
portant to note that due to the length of some station time
series the number of overlapping data points can be small,
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Figure 3. Correlation component (Pearson’s) of the KGE at the 75 hydrological gauging stations for all simulations. For the periods 1997–
2015 and 2004–2015 for the Coupled Routing and Excess Storage, Ensemble Framework for Flash Flood Forecasting (CREST EF5) run (g).
Values greater than 0.6 are considered skilful (i.e. blue circles).

Table 2. Median scores for the 75 hydrological gauging stations for all metrics.

Model runs Spearman KGE r Beta Alpha
annual max (Pearson’s)
correlations

ERA-Interim Land H-TESSEL CaMa-Flood 0.24 0.30 0.61 0.92 1.33
ERA-Interim Land PCR-GLOBWB CaMa-Flood 0.23 0.18 0.59 0.98 0.64
ERA-Interim Land H-TESSEL Lisflood_uc 0.40 0.51 0.80 0.99 1.25
ERA-Interim Land H-TESSEL Lisflood_c 0.42 0.56 0.80 0.86 1.15
ERA-5 H-TESSEL Lisflood_uc 0.53 0.63 0.85 0.97 1.26
ERA-5 H-TESSEL Lisflood_c 0.54 0.64 0.86 0.87 1.06
TRMM CREST EF5 0.24 0.46 0.71 0.80 1.08
Reforecasts H-TESSEL Lisflood_c 0.32 0.63 0.83 0.96 1.06
Median across models 0.35 0.50 0.78 0.91 1.11

and therefore the spatial distribution of model performance
should be interpreted with caution. To provide a certain
level of confidence between results, stations whose time se-
ries equals or exceeds 15 years are denoted using a circle,
whereas those between 10–14 and 5–9 are represented using
a square and triangle respectively.

The highest scores are generally located towards the east-
ern side of the basin and along the main Amazon River where

the terrain is predominately flat, and rivers drain extensive
floodplains. These are constrained to runs using the Lisflood
routing model with either ERA-Interim Land or ERA-5 as
forcing (Fig. 6c–f). Interestingly, the calibrated Lisflood set-
up forced using the reforecasts does not replicate good per-
formance in these regions (Fig. 6h), indicating that the error
between simulated and observed peak river flows could be as-
sociated with the precipitation input. When observing daily
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Figure 4. Alpha (i.e. variability ratio) component of the KGE at the 75 hydrological gauging stations for all the simulations. For the
periods 1997–2015 and 2004–2015 for the Coupled Routing and Excess Storage, Ensemble Framework for Flash Flood Forecasting
(CREST EF5) run (g). Blue circles indicate that the variability in the simulated time series is higher than that of the observed one, while red
circles show the opposite effect. Values closer to one indicate better model performance (i.e. grey circles).

mean precipitation totals over the validation period (1997–
2015), the reforecasts observe lower precipitation totals over
central to northern areas of the basin relative to both of the
climate reanalysis datasets (Fig. 8). However, when compar-
ing the results of the ERA-Interim Land H-TESSEL CaMa-
Flood and ERA-Interim Land H-TESSEL Lisflood_uc set-
ups, correlations are much lower in the CaMa-Flood simula-
tion, suggesting that both precipitation and routing processes
are equally important (Fig. 6a and c).

Low agreement between peaks is consistent in the south-
east and north-west of the basin across all simulations
(Fig. 6). In the south-east, a lack of skill could again be asso-
ciated with the abundance of hydroelectric dams in the region
or with the poor representation of the SACZ rainfall regime.
Evaluating the ability to represent the timing and magnitude
of the annual flood wave has important implications for mod-
els predicting flood hazard and for practices providing early
warning information. These results identify that while the
representation of daily river flows improves upon model cal-
ibration of the Lisflood routing model (Sect. 3.1), the influ-
ence of routing calibration for simulating flood peaks has no
impact.

3.3 Which is the best-performing hydrological routing
model?

We assessed the performance of the CaMa-Flood and Lis-
flood_uc routing models by comparing the two runs which
are forced using the ERA-Interim Land reanalysis dataset.
On average the uncalibrated Lisflood run outperforms CaMa-
Flood for all metrics analysed (Fig. 7 and Table 2). Results
from the CREST EF5 model are also discussed but are not
directly comparable due to using differing meteorological in-
puts.

The median score of the correlation component of the
KGE (i.e. Pearson’s correlation coefficient) is found to in-
crease by 0.19 when using the un-calibrated Lisflood model
relative to CaMa-Flood, with 28 more stations achieving a
correlation score of 0.6 or higher (Fig. 3a and c). This num-
ber increases when considering correlation scores greater
than 0.8, with 38 and 7 stations reaching this value for Lis-
flood and CaMa-Flood respectively. The most notable in-
crease in skill is found in Peru along the Marañón and Napo
rivers (2 and 5), which note increases of 0.85 and 0.71 re-
spectively when using the Lisflood model. In comparison,
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Figure 5. Beta (i.e. bias ratio) component of the KGE at the 75 hydrological gauging stations for all the simulations. For the periods 1997–
2015 and 2004–2015 for the Coupled Routing and Excess Storage, Ensemble Framework for Flash Flood Forecasting (CREST EF5) run (g).
Blue circles indicate that the bias in the simulated time series is higher than that of the observed one, while red circles show the opposite
effect. Values closer to one indicate better model performance (i.e. grey circles).

the CREST EF5 simulation fits between the CaMa-Flood and
Lisflood runs with a median daily correlation score of 0.71
and notes 12 stations which have scores greater than 0.8
(Fig. 3g).

For the overall KGE metric, 24 % and 3 % of stations
have values exceeding 0.5 and 0.75 for CaMa-Flood. These
figures rise to 52 % and 11 % respectively in the uncali-
brated Lisflood run. Large differences are particularly no-
table at stations situated in the upper reaches of the Solimões
River (2–6) and within a cluster of stations situated towards
the Colombian Amazon in the north-west (Fig. 2c). Signifi-
cant differences are identified for peak flow correlations, with
only three stations (27, 17, and 22) achieving scores exceed-
ing 0.6 for the CaMa-Flood simulation compared to 22 us-
ing the uncalibrated Lisflood routing scheme (Fig. 6a and c).
In comparison, the CREST EF5 simulation has 11 stations
exceeding this threshold, with no distinguishable spatial pat-
tern (Fig. 6g). For this run, the time series of modelled data
is shorter (2004–2015), and so peak flow correlations should
be interpreted with caution.

Stations located in and around the main Amazon River ob-
serve better performance for representing flood peaks in the

Lisflood simulation (Fig. 6c), aligning with the locations of
lakes included within the Lisflood set-up (see Zajac et al.,
2017). This level of skill was not replicated in the CaMa-
Flood simulation, where the representation of lakes is not in-
cluded (Fig. 6a), suggesting the potential importance of lake
parameterization for accurate peak flow estimations. How-
ever, Zajac et al. (2017) demonstrated that although the in-
clusion of lakes in Lisflood was found to generally improve
the representation of extreme discharge for the 5- and 20-
year return periods on the global domain, the change in skill
upon the inclusion of lakes and reservoirs in the Amazon was
minimal for several metrics. Very few reservoirs are included
within Lisflood in the Amazon, and therefore the estimated
effects on simulated streamflow are restricted.

Zhao et al. (2017) concluded the importance in the choice
of different river routing schemes for simulating peak dis-
charge across the globe, while the Hoch et al. (2017b) com-
parison of two routing models found results to differ despite
having identical boundary conditions. It is therefore of in-
terest to evaluate not only the entire GHM set-up, but also
to assess the suitability of each model component of the hy-
drological chain in order to determine which routing model
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Figure 6. Spearman’s ranked correlation coefficients for observed against simulated annual maximum discharge values at the 75 hydrological
gauging stations for all simulations. For the periods 1997–2015 and 2004–2015 for the Coupled Routing and Excess Storage, Ensemble
Framework for Flash Flood Forecasting (CREST EF5) run (g). Values exceeding 0.6 are considered skilful (i.e. blue shapes). The number
of overlapping years of data between observations and simulations are denoted by different shapes. A triangle represents 5–9 years, a square
10–14 years, and a circle 15–19 years of overlapping data.

is most suitable for certain applications within the Amazon
basin. Results suggest that adjustments of certain parameters
such as Manning’s channel coefficient could potentially im-
prove the performance of the CaMa-Flood model, with the
default coefficient higher in the uncalibrated Lisflood set-up
(0.10 as opposed to 0.03; see Hirpa et al., 2018, for all default
parameter values).

3.4 Which is the best-performing precipitation dataset?

Three precipitation products (ERA-Interim Land, ERA-5,
and the reforecasts) are used to force the calibrated Lisflood
routing model, with the most recent ERA-5 reanalysis prod-
uct the best-performing dataset. Figure 8 displays mean daily
precipitation totals for each dataset over the main validation
period (1997–2015). The main differences can be seen in the
far west of the basin towards the Andes mountains, where
precipitation is higher in ERA-5 compared to ERA-Interim
Land, and in the north-west, where average daily precipita-
tion totals are smaller in the reforecasts. On the other hand,
values in the south-eastern corner of the basin are very sim-

ilar between the three datasets. When comparing observed
and simulated annual peak flows, median correlation scores
improve by 0.12 and 0.22 when using ERA-5 compared to
when using ERA-Interim Land and the reforecasts respec-
tively (Table 2); 28 stations reach the 0.6 threshold relative
to 22 and 9 stations for ERA-Interim Land and the refore-
casts respectively, with the range of coefficients smaller for
ERA-5 (Fig. 7a).

Figure 9e and f highlight the relative gain or loss in skill
when using ERA-5 compared to ERA-Interim Land. The
greatest improvements for each metric are observed within
the upstream reaches of the Solimões River, particularly for
stations located within the Peruvian Amazon (2, 4, and 5).
In the main western headwater to the Solimões River (the
Marañón River) at the San Regis gauging site (2) and at
Tamshiyacu (4) near to the city of Iquitos, annual maximum
correlation skill scores are 0.51 and 0.59 respectively. These
results highlight that poor performance found in upstream
reaches of the Solimões River (Fig. 6c and d) is likely due to
the representation of rainfall rather than routing performance.
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Figure 7. Boxplots showing the distribution of scores for the (a) Spearman annual maximum correlation, (b) KGE, (c) KGE Pearson’s
coefficient, (d) KGE beta, and (e) KGE alpha, for all simulations. For the period 1997–2015.

Figure 8. Mean daily precipitation totals throughout the Amazon basin. For (a) ERA-Interim Land, (b) ERA-5, and (c) the European Centre
for Medium-Range Weather Forecasts (ECMWF) 20-year reforecasts. For the period 1997–2015.

In the other main tributary to the Solimões River, the
Ucayali River, simulated annual peak flows show little agree-
ment with observed data, with a decrease in skill identi-
fied when using ERA-5 as opposed to ERA-Interim Land
(Fig. 9e). Despite the lack of agreement between observed
and modelled data in the Ucayali River, the higher correla-
tion scores identified downstream at Tamshiyacu suggest that
better representation of high-water periods at the start of the
Solimões River is likely modulated by the larger Marañón
River. Therefore, the ability to represent flood hazard in com-
munities near to the city of Iquitos is more dependent on how
well we can predict river flow in the Marañón River.

All three runs perform well for the KGE metric, with
little difference in results spatially (Fig. 2d, f, h). The re-
forecast simulation used within the Lisflood calibration is

found to be superior, with 75 % of stations achieving scores
which exceed 0.5 relative to 71 % and 59 % for ERA-5 and
ERA-Interim Land respectively. Increased skill in the Peru-
vian Amazon is again the most noteworthy (Fig. 9f), with
KGE skill scores of 0.67 for the Requena (3) (Ucayali River)
and San Regis (2) (Marañón River) stations and 0.71 for
Tamshiyacu (4) (Solimões River) when using ERA-5 rela-
tive to ERA-Interim Land. This increase in KGE skill can be
attributed to an improvement in the variability and bias ra-
tios found between the simulated and observed time series.
Daily correlation scores for the three stations (2–4) are near
identical to the variance and bias ratios underestimated for
ERA-Interim Land while being much closer to the observed
data for ERA-5 (Figs. 4d, f and 5d, f).
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Figure 9. Relative improvement in skill at each gauging station for Spearman annual maximum correlations and KGE values (i.e. skill
scores). (a–d) show relative gain or loss in skill when using the calibrated Lisflood run (Lisflood_c) relative to the uncalibrated model run
(Lisflood_uc), using precipitation forcing from both ERA-Interim Land and ERA-5. (e) and (f) show the relative gain or loss in skill when
using ERA-5 as opposed to ERA-Interim Land. (g) and (h) show the relative gain or loss in skill when using the land surface model (LSM),
the Hydrology-Tiled ECMWF Scheme for Surface Exchanges over Land (H-TESSEL), compared to the hydrological model, PCRaster
Global Water Balance (PCR-GLOBWB). All scores are calculated using the skill scores in Eq. (1). Red circles indicate a decrease in skill,
whereas blue circles represent an increase.

The Tamshiyacu gauging station (4) is used to measure
flood hazard in the city of Iquitos at the start of the Solimões
River (Espinoza et al., 2013) and is therefore of particu-
lar interest. At this important location, scatterplots of ob-
served against simulated river discharge (Fig. 10) show that
the negative bias observed when using ERA-Interim Land
is corrected for when using ERA-5, with the magnitude of
the 90th percentile of river flows almost identical to that of
the observed dataset. Improvement is likely associated with
the increased resolution of the ERA-5 reanalysis, which ob-
serves higher daily mean precipitation totals in regions to-
wards the Andes in the far north-west of the basin (Fig. 8b).
Waters found at Tamshiyacu are of Andean origin, meaning
that the representation of rainfall in the Andes Mountains
is fundamental to accurately predicting streamflow. ERA-5
runs at a horizontal resolution of ∼ 31 km and includes an
additional 73 vertical levels to 0.01 hPa compared to ERA-

Interim Land, meaning the representation of the troposphere
is enhanced (ECMWF, 2017).

The success of GHMs in producing adequate estimates of
river flow is underpinned by uncertainties within the me-
teorological input (Butts et al., 2004; Beven, 2012; Sood
and Smakhtin, 2015). These results have particular impor-
tance for flood forecasting applications and research con-
cerning extreme floods, with the higher-resolution ERA-5
dataset providing closer agreement between observed and
simulated annual maximum river flows, particularly for the
Peruvian Amazon. With the time series of observed data of-
ten beginning in the 1980s in the Amazon, ERA-5 could pro-
vide a useful tool for analysing historical flows and estab-
lishing links to climate variability. Upon completion, ERA-5
will date back to 1950 (Zsoter et al., 2019), meaning loca-
tions in which model skill is considered high could benefit
from up to 30 years’ worth of additional data for use in cli-
mate studies, thus allowing for more robust analysis. In fu-

Hydrol. Earth Syst. Sci., 23, 3057–3080, 2019 www.hydrol-earth-syst-sci.net/23/3057/2019/



J. Towner et al.: Assessing the performance of global hydrological models for capturing peak river flows 3073

Figure 10. Scatterplots of observed against simulated river flow at the Tamshiyacu gauging site, Peru (4). For (a) ERA-Interim Land,
(b) ERA-5, and (c) the European Centre for Medium-Range Weather Forecasts (ECMWF), 20-year reforecasts forced through the calibrated
Lisflood routing model. Dashed black lines indicate the observed and simulated 90th percentile of river flow. For the period 1997–2015.

ture work, it could be of interest to compare the performance
of ERA-5 against a wider range of precipitation datasets,
such as the Multi-Source Weighted-Ensemble Precipitation
(MSWEP) product that carefully integrates gauge, satellite,
and reanalysis-based estimates. The Beck et al. (2017b) eval-
uation of 22 precipitation datasets previously demonstrated
the advantages of using merged products for hydrological
modelling purposes.

3.5 How do results differ between using a LSM and a
hydrological model?

The H-TESSEL LSM and the PCR-GLOBWB hydrological
model are directly compared whereby the precipitation forc-
ing (ERA-Interim Land) and river routing scheme (CaMa-
Flood) are consistent. Overall, it appears that the choice be-
tween using a LSM or a hydrological model in the Amazon
basin is dependent not only on the specific region of interest,
but also on the application and needs of the user. Previous
studies (Zhang et al., 2016; Beck et al., 2017a) have found
that LSMs, on average, perform better in rainfall-dominant
regions, whereas hydrological models tend to achieve bet-
ter results in snow-dominated regions owing to the use of
complex energy balance equations introducing additional un-
certainties. For the Amazon basin, Spearman’s rank correla-
tion coefficients between simulated and observed peak river
flow are closely matched, with medians of 0.24 and 0.23
for H-TESSEL and PCR-GLOBWB respectively (Table 2).
However, the number of stations with Spearman’s maxi-
mum correlation scores exceeding 0.6 is slightly higher in
PCR-GLOBWB at seven compared to three with H-TESSEL
(Fig. 6a and b).

To illustrate the gain or loss in skill when using H-
TESSEL relative to PCR-GLOBWB, Spearman’s annual
maximum correlation and KGE skill scores were calculated
for each station (Fig. 9g and h). Overall, 68 % of the stations
show improved skill for peak river flow correlations when
using the LSM, though the gain in skill is minimal (median
correlation skill score= 0.06). This percentage drops to 37 %
and 22 % for improvements in skill which exceed 0.1 and 0.2
respectively (Fig. 9g). By contrast, over half of the stations

see improvements in the KGE skill score for the hydrologi-
cal model, PCR-GLOBWB, and 23 % of the stations observe
KGE skill score increases which exceed 0.25 (Fig. 9h).

A large loss in performance for the KGE is observed when
using H-TESSEL for stations in the Peruvian Amazon at the
confluence point to the Solimões River (Fig. 9h). Model per-
formance in this region can largely be attributed to the failure
of the H-TESSEL CaMa-Flood run to accurately represent
the variance of flow and the temporal correlation component
of the KGE, with the variability of modelled flow far higher
than in the observed data (Fig. 4a). Northern regions in the
Branco basin and stations situated towards the Colombian
Amazon show the opposite effect with higher KGE coeffi-
cients found for the H-TESSEL CaMa-Flood run (Fig. 2a),
indicating that model suitability is regionally specific.

3.6 By how much does the calibration of groundwater
and routing parameters improve performance?

Calibration of hydrological models is known to be a useful
tool in providing more accurate estimates of river flow (Beck
et al., 2017a). However, due to a lack of data and the compu-
tational expense required in the calibration of GHMs, many
remain uncalibrated (Bierkens, 2015; Sood and Smakhtin,
2015). Both Gupta et al. (2009) and Mizukami et al. (2019)
demonstrate that square error-type metrics are unsuitable for
model calibration when the model in question requires ro-
bust performance for high river flows. Improvement of flow
variability estimates was documented in both studies when
switching the calibration metric from the NSE to the KGE
for both a simple rainfall–runoff model (similar to the HBV
model; Bergström, 1995) and for two more complex hydro-
logical models (Variable Infiltration Capacity and mesoscale
Hydrologic Model), suggesting similar results are likely to
be achieved for other hydrological models. To investigate the
potential benefits of routing model calibration, whereby the
KGE was used as the objective function, the time series of
river discharge for the calibrated Lisflood runs forced using
the ERA-Interim Land and ERA-5 reanalysis datasets were
compared against the associated default set-ups without rout-
ing calibration.
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Overall, hydrological performance improves upon model
parameter calibration, with positive KGE skill scores (i.e.
an increase in skill) at 61 % (59 %) of gauging stations for
simulations forced with ERA-Interim Land (ERA-5) (Fig. 9c
and d). The influence of calibration is stronger for the simula-
tion forced with ERA-5, with the number of stations achiev-
ing “intermediate” KGE scores (i.e. 0.75>KGE > 0.5) to-
talling 53 compared to 43 for ERA-Interim Land, an increase
of 9 and 12 stations relative to the associated uncalibrated
runs. When observing the spatial distribution of relative im-
provements, an east–west divide can be seen (Fig. 9c and d).
Generally, decreases in skill are concentrated to stations on
the western side of the basin, whereas stations located to the
east display improved hydrological representation.

Three stations (2–4) in the Peruvian Amazon show in-
creased KGE skill scores when using the calibrated ERA-5
run relative to the similar uncalibrated set-up (Fig. 9d). Con-
versely, a loss in skill is observed at each station for the cal-
ibrated run forced using ERA-Interim Land (Fig. 9c). These
results are likely associated with a larger negative runoff bias
within the ERA-Interim Land Lisflood_uc run relative to the
ERA-5 Lisflood_uc simulation for the three stations (Fig. 5c
and e). This is supported by Hirpa et al. (2018), who con-
cluded that stations which have a negative streamflow bias in
the default run (i.e. Lisflood_uc) also have a negative KGE
skill score in the calibrated simulation owing to the challenge
of correcting for a water deficit within the routing compo-
nent. Thus, for GHMs which tend to underestimate runoff,
adjustments of parameters within the LSM or hydrological
model (e.g. those responsible for the portioning of precipita-
tion into runoff) or through bias-correction measures within
the precipitation dataset may be advantageous in efforts to
accurately represent floods.

No significant differences between calibrated and uncali-
brated Lisflood annual maximum correlation scores are iden-
tified (Fig. 7a and Table 2). In total, the number of stations
exceeding the 0.6 threshold for peak flow correlations re-
mains the same for runs involving ERA-5 and decreases by
one for ERA-Interim Land, meaning that the routing model
calibration has very little impact on the ability to capture an-
nual peaks. This suggests that calibrated parameters control-
ling flow timing (e.g. Manning’s channel coefficient) are not
as important for simulating the magnitude of higher flows
in the Amazon basin and that bias correction of the precip-
itation or calibration of parameters associated with runoff
and evapotranspiration might be more useful. As previously
highlighted by Hirpa et al. (2018), the inclusion of an ob-
jective function that is explicitly based on flood peaks could
improve the ability of Lisflood to simulate floods. This is
supported by previous studies (Greuell et al., 2015; Beck et
al., 2017a; Mizukami et al., 2019) which have also identi-
fied that improved performance in calibrated models is pre-
dominately specific to metrics which are incorporated into
the objective function used within the calibration. For in-
stance, in Mizukami et al. (2019), they find that when using

an application-specific metric (annual peak flow bias; APFB)
for the calibration of two hydrological models, it produced
the best peak flow annual estimates compared to using the
NSE, KGE, and its components. However, despite this im-
provement, flood magnitudes were still underestimated for
all metrics used in calibration, and the use of the APFB as
the calibration metric resulted in poorer performance across
the individual KGE components upon evaluation.

3.7 Limitations and future work

While estimating the magnitude of peak river flows is funda-
mental, more evaluation is required in assessing the ability to
represent the timing of flood peaks. Modelled flood peaks
have been known to occur too early in large Amazonian
rivers (Alfieri et al., 2013; Hoch et al., 2017b), with accurate
flow timing of significant importance in the Amazon basin.
For example, the time displacements between peak flows
in coinciding tributaries are known to play a major role in
the dampening of the Amazon flood wave (Tomasella et al.,
2010) and in the synchronization of flood peaks, commonly
associated with exceptional flood events (e.g. Marengo et al.,
2012; Espinoza et al., 2013; Ovando et al., 2016). Additional
evaluation using metrics which focus specifically on the tim-
ing aspect, such as the delay index (Paiva et al., 2013), would
enable a more complete assessment of the hydrological mod-
elling regime.

A limitation of this type of study is due to the intercom-
parison being restricted to the macroscale (i.e. only a subset
of potential modelling configurations is considered). In fu-
ture work it would be useful to increase the granularity of the
modelling decision matrix to allow conclusions to be more
generalized across the modelling community. For instance,
when comparing the performance of the Lisflood and CaMa-
Flood routing models, the results are specific to the simula-
tions forced using the ERA-Interim Land reanalysis dataset.
Although useful in providing a general indication of routing
performance for each model when using a climate reanal-
ysis dataset, the conclusions are specific to that particular
comparison, with differing results possible when using an-
other precipitation input. Future work could investigate one
of the research questions stated in the objectives (Sect. 1.5) at
a finer resolution, for example by comparing several different
runs which use the Lisflood and CaMa-Flood routing models,
whereby a greater variety of precipitation inputs are consid-
ered (e.g. MSWEP, CHIRP V2.0, ERA-5, TRMM v.7). Such
analysis would allow more general conclusions and recom-
mendations to be made to the modelling community, who
are interested in those particular routing schemes. A similar
approach could be adopted for the assessment of other com-
ponents of the hydrological modelling chain.
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4 Conclusions

In this paper, eight different GHMs were employed in an in-
tercomparison analysis using two verification metrics to as-
sess model performance against gauged river discharge ob-
servations. The motivation for this work stemmed from the
need to evaluate the ability of GHMs to reproduce historical
floods in the Amazon basin for use in climate analysis and to
identify the strengths and weaknesses which exist along the
hydrological modelling chain in order to provide insight to
model developers. The implications of these results suggest
that the choice of precipitation dataset is the most influen-
tial component of the GHM set-up in terms of our ability to
recreate annual maximum river flows in the Amazon basin.
This is evident with average station correlations between ob-
served and simulated annual maximum river flows increas-
ing when using the new ERA-5 reanalysis dataset, with sig-
nificant improvements in locations of the Peruvian Ama-
zon. In this region, waters are sourced from Andean origins
where rainfall can often be poorly represented due to topo-
graphically complex terrains (Paiva et al., 2013). Thus, those
wishing to simulate higher flows in the upper reaches of the
Amazon may benefit from choosing a precipitation dataset
which has a high spatial resolution, whereby the upper atmo-
sphere is discretized at finer scales. Although an exact recom-
mended spatial resolution cannot be provided based on the
results of this study alone, previous works (e.g. Beck et al.,
2017b) support the need for a comparatively high-resolution
dataset in addition to other advantageous factors such as a
long temporal record and the inclusion of daily gauge cor-
rections.

Although parameter calibration of the Lisflood routing
model improved the representation of the whole hydrologi-
cal regime across the basin, the agreement between observed
and simulated peak discharge values saw no change upon cal-
ibration. This indicates that the benefit of calibration is con-
fined to the objective function used, in this case the KGE, and
highlights that further model calibration using an objective
function that fits the purpose of the application (e.g. RMSE
of flood peaks or APFB for flood forecasting systems) could
be worth considering. It is important to reiterate however that
thoughtful consideration is required if choosing application-
specific metrics, with the potential to degrade performance in
other aspects of the hydrological regime (e.g. bias and flow
variability ratios) a concern (Mizukami et al., 2019). The rel-
ative importance of good performance in the specific target
metric compared to better performance for a range of metrics
should be assessed on a model-by-model and circumstantial
basis, taking into account the needs of potential users.
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