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Abstract

The adsorption of (R,R) tartaric acid (TA) on clean and oxidised Ni{100}, (S)-

alanine and MAA on Ni{100} and the co-adsorption of (S)-alanine and water

on Ni{110} was investigated, under UHV conditions, to obtain fundamental in-

sights into the enantioselective sites of the chirally modified nickel catalyst, which

causes the asymmetric hydrogenation of β-ketoesters. The TA/Ni{100} and (S)-

alanine/Ni{100} system was also investigated under ambient pressure conditions.

The characterisation of these adsorbed complexes was performed using XPS,

NEXAFS, TPD, LEED and DFT.

The temperature of the crystal, the dosing rate of the TA molecule and its

surface coverage influence the chemical state and adsorption geometry of TA on

Ni{100} (µ4/TA2- or µ2/µ3/HTA-) with the latter being favoured, also, at ele-

vated pressures of H2 and H2O. Deposition of TA on oxidised Ni{100}, causes

the formation of tartrate species which fully decompose on the nickel surface at

T>650 K (200 degrees higher than on clean Ni{100}).
(S)-alanine chemisorbs on Ni{100} and Ni{110}, in its anionic and neutral

form with coexistence of zwitterionic species which might not be a part of the

chemisorbed layer, since these zwitterionic species are dominating the multilayer

regime. The presence of PH2= 6.3 mbar destabilises thermally the alanine molecule

on Ni{100} and cause the formation of neutral and (perhaps zwitterionic species)

of alanine. The presence of multilayer water does not influence the decomposi-

tion temperature of alanine on Ni{110} (Tdecomposition≈400-420 K) but causes the

formation of zwitterionic species.

Finally DFT, XPS and NEXAFS results suggest that MAA adsorbs on Ni{100}
in a tilted bidentate enolate geometry. The full decomposition of MAA on Ni{100}
occurs at ∼ 350 K.

The contribution of these studies into the understanding of the mechanism of

the chiral modification of the nickel catalyst is thoroughly discussed in the thesis.
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Chapter 1

Introduction

1.1 Enantioselective heterogeneous catalysis

Enantioselectivity is defined as the capability of generating a surplus of one enan-

tiomer of a chiral molecule in a chemical reaction. Enantioselectivity is a key

aspect in the field of life sciences, since some particular properties, which differ

between the enantiomers, influence their biological activity and response. Such

compounds are used as flavours and fragrances in addition to their use in the

pharmaceutical and agrochemical industry [1–5].

In homogeneous catalysis, the reactants and the catalysts are in the same

phase, in contrast with heterogeneous processes where the reactant and the cata-

lysts are in different phase. Homogeneous catalysts present high selectivities and

activities and they are dominating the area of industrial enantioselective cataly-

sis. These catalysts are typically metal complexes with chiral ligands and their

reactive sites are better explained and defined compared to the corresponding

heterogeneous catalysts, increasing the ability to control the enantioselectivity.

Nevertheless, there is a great interest in the area of enantioselective heterogeneous

catalysis, since heterogeneous catalysts can be easily separated and recycled, can

reduce the presence of metal traces in the product, can be easily controlled during

their use making the overall process cheaper and greener with respect to the ho-

mogeneous one. Sometimes, heterogeneous catalysts, present higher selectivities

that the corresponding homogeneous. [2, 6, 7]. Ideally, the designing and devel-

opment of an heterogeneous catalyst must combine the selectivity and activity of

homogeneous and the described advantages of the heterogeneous catalysts [6].

There are many approaches for designing an enantioselective heterogeneous

catalyst. A single crystal can produce intrinsically chiral surfaces if it is cut to

expose high Miller indices planes. If at these high Miller indices, the step lengths
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Chapter 1. Introduction

on either side of the kink site are uneven, then the kink sites can be considered

chiral [8]. Another approach is the transfer (or as it is called “immobilisation”)

of a chiral homogeneous catalyst in pore materials/solid surfaces/polymers [4,

9, 10]. Finally, an enantioselective heterogeneous catalyst could be generated by

attaching the active site (metal) to a chiral support, or attaching a chiral auxiliary

to a metal (chiral modification). In the latter approach the chiral modification

takes place either before or during the catalysed reaction [4] and the understanding

of this process is the focus of this PhD thesis.

1.2 Chiral modification of metals for enantiose-

lective heterogeneous catalysis

Two of the most important reactions in the area of enantioselective heterogeneous

catalysis are the hydrogenation of α-ketoesters using platinum group metals as

catalysts (Fig. 1.1) and the hydrogenation of β-ketoesters (such as methyl ace-

toacetate) using nickel as a catalyst (Fig. 1.3). Typical chiral modifiers used in the

hydrogenation of α-ketoesters (Fig. 1.1) are cinchonidine, cinchonine, (R) and (R)

and (S)-1-(1-napthyl)ethylamine ((R) and (S)-NEA) (Fig. 1.1-1.2). Cinchonidine

and (R)-NEA as chiral modifiers generate R-product in excess whereas cinchonine

and (S)-NEA will generate (S)-product in excess. The nickel catalyst (Fig. 1.3-

1.4) is chirally modified using either α-hydroxyacids (such as (R,R) tartaric acid)

or α-amino acids (such as aspartic acid, glutamic acid and alanine). The current

project is focusing on the latter reaction. (S)-hydroxy or (R)-amino acids as mod-

ifiers will produce (S)-product in excess, whereas (R)-hydroxy and (S)-amino acid

modifiers will generate (R)-products in excess (Fig. 1.3)[2, 11–15].

2



Chapter 1. Introduction

Figure 1.1: The enantioselective hydrogenation of α-ketoesters [2, 14].

Figure 1.2: Typical modifiers used in the enantioselective hydrogenation of α-
ketoesters [2, 14].
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Chapter 1. Introduction

Figure 1.3: The enantioselective hydrogenation of β-ketoesters [2, 14].

Figure 1.4: Typical modifiers used in the enantioselective hydrogenation of β-
ketoesters [2, 14].
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Chapter 1. Introduction

1.3 The hydrogenation of β-ketoesters using chi-

rally modified nickel catalysts

1.3.1 The catalytic reaction

The asymmetric hydrogenation of β-ketoesters using chiral modifiers has been

studied extensively. Much of the characterisation of this reaction in terms of

enantiomeric excess, kinetics, modifier, solvent and temperature dependence is re-

ported in Ref. [12, 16–18]. Here we report more recent (dated between 1997-2014)

catalytic results of the asymmetric hydrogenation of β-ketoesters [19–31], in which

tartaric acid was used as a chiral modifier. Hydroxy–dicarboxylic acids such as

tartaric acid (TA) have been proven to be the the most effective modifiers for hy-

drogenation of MAA (methyl acetoacetate) to MHB (methyl-3-hydroxybutyrate)

[18]. Work of Osawa et al. (2011) [19], showed that 3 µm powder nickel catalysts

modified with (R,R) tartaric acid preserve high durability and enantioselectiv-

ity for the hydrogenation of methyl acetoacetate for almost 3 months under dry

conditions, providing high applicability for industrial use.

Effect of the nature of the reactant

Osawa et al. (2014) [20] compared the asymmetric hydrogenation of different

acetoacetate esters using (R,R)-tartaric acid and NaBr in the modification solution

and nickel powder as a catalyst. The use of ethyl esters as reactants increase

the enantiomeric excess (ee) with respect to the use of methyl acetoacetate as a

reactant. The use of ethyl ester as a reactant generated products with up to 94%

ee. On the other hand, the increase in the molecular mass of the ester group in the

different acetoacetate esters decrease its conversion percentage. The addition of

an aromatic group, instead of an alkyl group, did not influence the conversion of

the reactant (100% conversion), however it decreased the ee value of the product

[20].

Effect of sodium bromide (NaBr) and in situ modification

Sodium bromide is often used in the reaction mixture, to enhance the selec-

tivity, since according to Ref.[18, 32], it adsorbs on some non-selective centers

and therefore increases the enantioselectivity of the system. Osawa et al. (2001)

[21] investigated the hydrogenation of methylacetoacetate (MAA) by in situ mod-

ification of fine Ni powder and reduced Ni catalyst. The in situ modification

was performed by adding directly (R,R) tartaric acid and NaBr to the reaction

mixture. Ref.[21] achieved 89% optical yield after the in situ modification of the

reduced nickel catalyst. The addition of a small amount of NaBr in the reaction

5



Chapter 1. Introduction

mixture enhances the enantioselectivity and the reaction rate, whereas it decreases

the hydrogenation rate when the NaBr is used in the conventional modification

procedure [21]. NaBr added to the reaction medium during in situ modification

plays the subsequent roles: Na+ enhances the enantioselectivity and the reac-

tion rate, whereas Br- enhances the enantioselectivity and decreases the reaction

rate[21]. Osawa et al. (2002)[22] used in situ modification to compare the dura-

bility of three kind of chirally modified nickel catalysts: Raney nickel catalyst,

reduced Ni from Ni oxide and reduced Ni powder. Reduced Ni from Ni oxide and

reduced Ni powder showed more optimised behaviour in terms of durability and

enantioselectivity ability compared to Raney nickel. The desorption of tartaric

acid during the hydrogenation reaction is responsible for the lower durability of

the nickel catalysts using the conventional modification procedure [22]. Chen et

al. (2007)[23] prepared chirally modified Raney nickel catalysts using only tar-

taric acid during the modification procedure, while the NaBr was added directly

to the reaction medium. The catalysts modified with this procedure present lower

presence of alumina on the Raney nickel, while at the same time showed greater

total surface area and higher acid corrosion on the surface in comparison with

conventional modified Raney nickel catalyst prepared by adding both tartaric

acid and NaBr in the modification solution. The highest optical yield and hydro-

genation rate was achieved when methanol was used as a solvent using the new

modification procedure. The maximum enantioselectivity (85% optical yield) was

attained under less extreme conditions (Hydrogen pressure=0.6 MPa, T=333 K,

and t=60 minutes), while the reaction rate was even more improved [23]. Finally

this improved Raney catalyst presents high durability, maintaining 60% optical

yield even after 11 runs, if 15mg of NaBr was added in every cycle [23]. Kukula et

al. (2001) [25] found that the presence of NaBr in the modifying solution during

the chiral modification of Raney nickel using (R,R)-tartaric acid causes decrease

in the leaching of the catalyst. Similar results were obtained from Keane (1997)

[24] upon co-modification of Ni/SiO2 catalyst with NaBr and (R,R) tartaric acid.

The author of Ref.[24] found that the presence of NaBr in the modifying solution

causes decrease in the amount of leached Ni and the amount of adsorbed TA on

the nickel surface.

Effect of modification procedure

Kukula et al. (2001) [25] explored different modification variables during the

chiral modification of Raney nickel using (R,R)-tartaric acid. Increase in the

modification temperature, concentration of tartaric acid and modification times,

causes increase in the amount of adsorbed tartaric acid on the nickel surface [25].

Increasing the temperature during modification of TA on Raney nickel and the

6



Chapter 1. Introduction

time, increases the optical yield . In addition, Ref.[25] suggested that the opti-

mum pH for the chiral modification is 5 that the enantioselectivity as a function

of TA concentration goes through a maximum. At pH=5, a minimum amount of

the catalyst is transferred to the modifying solution. Keane (1997) [24] explored

different modification variables during the modification of Ni/SiO2 catalyst with

(R,R) tartaric acid. The amount of adsorbed TA on the nickel catalyst increases

and leaching of the nickel catalyst decreases in the following order of modifier sol-

vents: water, methanol, ethanol, 1-butanol [24]. In addition, according to Ref.[24]

the use of alcoholic solvents as modification medium increases the activity and

the enantioselectivity of the catalyst [24]. The results of Keane (1997) [24] using

Ni/SiO2 as a catalyst suggested that the enantioselectivity of the catalyst as a

function of modification temperature and tartaric acid concentration goes through

a maximum. As in the case of Raney nickel [25], increase in the modification tem-

perature, concentration of tartaric acid and modification time, causes increase in

amount of the adsorbed tartaric acid on the nickel surface [24]. Modification of

Ni/SiO2 catalyst with tartaric acid, does not only improve the enantioselectivity

of the catalyst, but increases the hydrogenation rate of the MAA reactant [24].

Effect of reaction variables

Kukula et al. (2002)[26], investigated the influence of temperature, pressure,

solvent type and concentration of the substrate on the enantioselectivity of Raney

nickel catalyst modified with (R,R)-tartaric acid [26]. Increase in the hydro-

gen pressure, increases the enantioselectivity of the catalyst, whereas decrease

in methyl acetoacetate concentration influences negatively the enantioselectivity.

The reaction solvent influences both the hydrogenation reaction rate and the enan-

tioselectivity. Based on the authors results[26], the optimum conditions for attain-

ing the highest enantioselectivity are: high hydrogen pressures (10MPa), T=60oC

and THF or no solvent as a reaction medium. Keane (1997) [24] investigated the

influence of reaction temperature and reaction medium on the enantioselectivity

of the Ni/SiO2 modified with (R,R) tartaric acid. According to the results of

Ref.[24] and under the reported modification conditions the enantioselectivity as

a function of temperature, goes through a maximum between 340-350 K. The use

of alcoholic solvents as reaction medium, caused the highest hydrogenation rate of

MAA reactant. The hydrogenation rate was increased and the enantioselectivity

was decreased with increasing polarity of the alcohol solvent [24].

Effect of the nature of the nickel catalyst

Osawa et al. (2000)[27] prepared nickel catalysts with different support, using

nickel acetylacetonate as a precursor, and studied the support influence on the

enantioselectivity of the catalyst after chiral modification with tartaric acid. The

7



Chapter 1. Introduction

catalyst with sumico rundum (α-alumina) or zeolite (pentasil powder) as support,

generated products with 87% optical yield. The modified supported nickel cata-

lyst prepared with this method (nickel acetylacetonate as a precursor) generated

higher optical yield products compared to the supported catalysts prepared with

usual method (in a nickel ion solution) [27]. Work of Jo et al. (2004) [28], showed

that nickel catalysts supported on aluminum oxide present higher enantioselectiv-

ities compared to the silica supported catalysts. The reaction was studied after

modification of the surface with (R,R) tartaric acid and NaBr [28]. Osawa et

al. (2004) [29] compared the enantioselectivity of nickel catalysts, prepared from

nickel hydroxide and nickel carbonate on the hydrogenation of methyl acetoac-

etatate. The modification was in situ and took place using (R,R) tartaric acid

and NaBr. The catalysts were prepared by calcination of the precursors to nickel

oxides and subsequent reduction to nickel. The results suggested that the cal-

cination temperature influences significantly the enantioselectivity of the nickel

catalyst, while at the same time there was not a clear link between the crystal-

lite size and the enantio-differentiating ability of the catalyst [29]. The authors

proposed that the highest enantioselectivities will be presented in a nickel surface

with the minimum lattice defects [29]. Work on the asymmetric hydrogenation

of MAA using (R,R)-tartaric acid as a chiral modifier on nickel catalysts sup-

ported on graphite or activated carbon [30] found a direct correlation between

the calcination and reduction temperature of the catalyst and its crystallite size

and by extension the performance of the catalyst. The combustion of the carbon

during calcination is responsible for the increase in the nickel loading and the

crystallite size of the catalyst. The increase in the crystallite size causes the en-

hancement in the enantioselectivity of the catalyst but it also causes reduction in

the catalytic activity. The higher crystallite size of the graphite supported nickel

catalyst, compared to the one supported on activated carbon was the reason that

the former presented greater performance (up to 91% enantiomeric excess) [30].

Lopez et al (2012) [31] produced Ni supported particles of approximately 20 nm

size using hydrotalcite-like compounds (HLCs) as precursors, modified with tar-

taric acid. These chirally modified catalysts show enantioselectivity towards the

hydrogenation of MAA. On the other hand, reduction in the particle size to 10nm

did not show any enantioselectivity at all. Two series of HLCs were used based

on the combination of cations: HLCs containing Ni/Mg/Al and HLCs contain-

ing Ni/Zn/Al using either urea hydrolysis or coprecipitation method as synthesis

method for the HLCs. For catalyst with the same combination of cations, only

the catalysts generated using the urea hydrolysis showed any enantioselectivity.

In addition the Ni/Mg/Al series presented the higher catalyst activity, while the

8
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Ni/Zn/Al series presented the higher enantioselectivity. Furthermore, according

to the results the pH and the concentration of tartaric acid does not affect the

enantioselectivity of the aforementioned catalysts, suggesting that in these cata-

lysts, preparation method and the nature of the support is the controlling factor

of the enantioselectivity [31].

1.3.2 Surface chemistry of tartaric acid and methyl ace-

toacetate (MAA) on nickel single crystals

Tartaric acid can exist in three different forms, according to the protonation or

not of its two carboxyl groups: neutral biacid form, monotartrate form (one de-

protonated carboxyl group) and bitartrate form (both carboxyl groups are depro-

tonated) [33]. The adsorption of tartaric acid on Ni{110} [33–35] and on Ni{111}
[36–39], and its co-adsorption with MAA on on Ni{111} [37, 38] was explored

in previous studies to obtain fundamental insights into the mechanism of chiral

modification of nickel catalyst.

Ni{110}
The adsorption of (R,R) tartaric acid on Ni{110} was studied using a combina-

tion of experimental techniques (RAIRS and STM), and theoretical calculations

(DFT)[33–35]. The chemical state of the TA molecule on the Ni{110} [33] changes

as a function of temperature and coverage. According to Ref.[33], tartaric acid

is present, in the multilayer, in its biacid form regardless from the adsorption

temperature. At 90-120 K, tartaric acid is in its biacid form at all coverages.

Adsorption at higher temperatures (170-270 K) causes chemisorption of tartaric

acid through the one deprotonated carboxyl group. At these temperatures, tar-

taric acid is presented in its monotartrate form. The other protonated carboxyl

group is directed outside the surface plane, presenting also hydrogen bonding

interactions. Above room temperature, tartaric acid exists in two forms up to

the saturation coverage: at lower coverages it is found in its bitartrate form and

at higher coverages tartaric acid is converted to its monotartrate form[33]. In

the bitartrate form [34], tartaric acid is bound to 4 nickel atoms, with the oxygen

atoms of the two corresponded carboxylate groups positioned above the Ni atoms,

in a short bridge site. Based on DFT calculations, this geometrical orientation of

the molecule, causes relaxation and reconstruction of the nickel surface, resulting

in chiral footprint on the surface. Calculations propose that one chiral footprint

is preferred energetically over the other suggesting that at room temperature the

same mirror motif will be expected to dominate the surface by 90% ensuring the

creation of an enantiospecific system [34]. Studies of the electronic structure of
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the (R,R) tartaric acid on Ni{110} system [35], showed that bitartrate tartaric

acid in the gas phase presents an intrinsic chirality not only in terms of atomic

arrangement but also in its electronic structure, due to the uneven charge dis-

tribution between the four oxygen atoms of the two carboxylate groups which is

transferred to the Ni-O bonds and by extension to all the nickel surface through

the bonds between the nickel atoms [35].

Ni{111}
Jones et al. (2002)[36], explored the adsorption of (R,R)-tartaric acid on the

Ni{111} surface using RAIRS, STM and TPD techniques. The authors found

that tartaric acid can adsorb on the Ni{111} surface either in its monotartrate

or bitartrate form. The former structure is more stable at 300 K, where the lat-

ter is favoured at 350 K. In the bitartrate structure, the individual carboxylate

groups of tartaric acid can interact with the nickel surface either in a monoden-

tate or bidentate geometry. Co-adsorption with carbon monoxide (CO), causes

reduction in the population of tartaric acid on the surface, shifting the desorp-

tion/decomposition of the tartaric to lower temperatures, compared to higher

coverages of tartaric acid, where the CO is displaced from the surface [36].

Co-adsorption of (R,R)-tartaric acid and MAA on Ni{111} produced two or-

dered arrays with 0.113 ML (one tartrate and one MAA molecules per unit cell)

and 0.167 ML (one tartrate and two MAA molecule per unit cell) local coverage

[37], stabilised via hydrogen bonding between the modifier and the β-ketoester

reactant. According to Ref.[37], in the low coverage structure, the hydrogenation

will be enantiospecific and generate the R-product in excess whereas the high cov-

erage structure will produce a racemic mixture of products [37]. High coverages

of pre-adsorbed tartaric acid forbid the interaction of the MAA molecule on the

Ni{111} surface [37].

Jones et al. (2007)[38], using RAIRS spectroscopy, examined the effect of dif-

ferent modification temperatures and pH on the interaction of MAA with Ni{111}
which was pre-modified with (R,R) tartaric acid. Modification of Ni{111} with

a solution of (R,R)-tartaric acid [38] show evidence of generation of nickel tar-

trate species on the Ni{111} surface at low modifying pH and nickel and sodium

tartrate species at higher pH. The formation of these salt species points to a

widespread etching of the nickel crystal. The etching of the surface is believed

to cause the chiral modification of the surface, since it creates step-kink sites. A

large quantity of the adsorbed species is removed from the surface, after washing

it with water [38]. The remaining coverage is important for the chiral modifica-

tion of the surface, since as it was shown in previous studies [37], high coverages

of modifiers forbid the interaction of MAA with the nickel surface, while absence
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Figure 1.5: The two possible tautomers of the methyloacetoacetate [37].

of modifiers generates product without optical activity [38]. Since this quantity

depends on the pH and modification temperature, the pH of the tartaric acid so-

lution controls the enantioselectivity of the surface by controlling the coverage of

the modifier [38]. Modification of Ni{111} with (R,R)-tartaric acid from solution

at 350 K (which according to Ref.[37, 38] is the optimum modification tempera-

ture for attaining the highest enantioselectivity using TA as modifier) following

washing of the catalyst, caused generation of HTA- species on the nickel surface

[38]. Subsequent immersion of the crystal in a MAA solution caused enhancement

of the diketone/enol ratio of MAA substrate (Fig. 1.5) with respect to the mod-

ification at 300 K [38]. According to Ref.[38] the origin of the enantioselectivity

of this system might be due to the formation of hydrogen bonds between the

diketone and the HTA- species, in orientation that will preferably generate the

R-enantiomer as a product during the hydrogenation reaction. Sodium bromide,

on the other hand does not affect the RAIRS spectra of tartaric acid at 350 K

modification temperature, whereas at 300 K, it enhances the diketo-enol form,

thus increasing the enantioselectivity [38]. RAIRS data, obtained upon adsorbing

(R,R) tartaric acid on oxidised Ni{111} as well as the decomposition tempera-

ture of the molecule on the NiO/Ni{111} substrate, suggest also the formation of

species similar to nickel tartrate [39].

1.3.3 Surface chemistry of amino acids and methyl ace-

toacetate (MAA) on Ni{111} and polycrystalline

nickel

Amino acids are carboxylic acids with an amino group on the other end of the

chain. Depending on the their protonation state, they exist in three different

forms: neutral, anionic (deprotonated carboxyl group) and zwitterionic form (de-

protonated carboxyl group and protonated amino group). In the solid state, amino

acids are usually in their zwitterionic form [40]. Previous studies, exploring the

adsorption of amino acids with and without MAA on nickel crystals, are limited
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only to the Ni{111} facet [40–47] and the polycrystalline nickel [48].

(S)-aspartic acid

(S)-aspartic acid, at low coverages, forms oligosuccinimide clusters when it

is adsorbed on the proximity of surface defects of the Ni{111}. Based on STM

images, MAA at these coverages, is bound close to the modified area from the

oligosuccinimide clusters, in step sites [41]. According to Ref.[41] the enantioselec-

tivity of this particular system (aspartic acid) might be derived from the creation

of these clusters from aspartic acid molecules, thus creating a docking position

for MAA [41]. According to RAIRS results [41] at higher coverages, there is no

indication of the construction of supramolecular assemblies, with the aspartic acid

being in either in zwitterionic or anionic form. These coverages forbid the inter-

action of MAA on the nickel surface [41]. The pH of (S)-aspartic acid defines

the protonation state of the molecule and in extension the tautomeric state of

the co-adsorbed MAA on polycrystalline Ni [48] and on the Ni{111} surface [42].

Increase in the pH increases the deprotonation of the amino acid [42, 48]. At

low pH, MAA is found in its diketo form since it can form hydrogen bonds as

a proton acceptor with the protonated aspartic acid, while at higher pH, MAA

is found in its enol form, acting as hydrogen bond donor in the hydrogen bond

with the deprotonated aspartic acid [42, 48]. At optimum modification conditions

(in terms of enantioselectivity) and upon washing the catalyst, the aspartic acid

is untraceable spectroscopically in both polycrystalline nickel [48] and Ni{111}
surface [42].

(S)-glutamic acid

RAIRS and STM studies of (S)-glutamic acid on Ni{111} [43] suggest when the

amino acid adsorbs on the nickel surface at 300 K in its zwitterionic form at low

coverages, whereas at higher coverages (at 300 K) it converts to its anionic form.

Adsorption at 350 K leads to the formation of anionic glutamic acid, which also

causes corrosion of the steps of the surface [43]. According to Ref.[43] the presence

of NH3
+ at 300 K adsorption temperature favours the interaction with the β-

ketoester reactant via hydrogen bonding, which might favour the formation of the

R-enantiomer product while the corrosion at 350 K might favour the production

of the S-enantiomer [43]. Work by Jones et al. (2006) [40] on the co-adsorption

of (S)-glutamic and MAA on Ni{111}, show that adsorption of MAA on Ni{111}
pre-adsorbed with glutamic acid at 300 K, causes interaction between these two

molecules through the NH3
+ group of the amino acid and most probably the

ketone group of the MAA which is in its diketo form, in parallel geometry which

favours the generation of the R-product. After co-adsorption of glutamic acid

with MAA at 350 K, MAA is found in its enol form and most probably with its
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plane perpendicular to the surface [40]. The authors of Ref.[40] suggested that

this form will produce a racemic mixture of the product. The catalytic reaction

at 350 K produces the S-enantiomer in excess, therefore, some other interaction

with the modifier must be taking place [16, 40]. The co-adsorption of the amino

acid in solution with MAA, studied by Jones et al. (2007) [44] confirmed the

aforementioned results. The results suggested that the increase in the modification

temperatures decreases the keto:enol ratio of MAA, whereas decrease in the pH

(and by extension increase in the protonation of the amino acid) increases the keto-

enol ratio, linking the structure of the MAA on the nickel surface pre-modified

with glutamic acid with the enatioselectivity of the reaction: under modification

conditions which favour the formation of the R-product, MAA is mainly in its

diketo form, while enol MAA is found under conditions that generate the S-

product in excess [44]. At 300 K and low pH, glutamic acid is predominantly in its

cationic/zwitterionic form, while the increase in the pH extents the degree of the

deprotonation of the amino acid [44]. At higher temperatures (350 K), the authors

found substantiation of the production of nickel glutamate and mixture of nickel

and sodium glutamate at low and high pH, respectively [44]. The dependence of

the coverage of pre-adsorbed glutamic acid on the interaction of the amino acid

with MAA on Ni{111} surface, was studied by Trant et al. (2011) [45]. Prior to the

dosing of the MAA molecule, the Ni{111} surface modified with glutamic acid was

exposed to 10 L of H2 gas. The presence of the chiral modifier at low coverages

boosts further the corrosion of step edges caused by the adsorption of MAA,

thus producing, possibly leading to the generation of chiral facets on the nickel

surface. Intermediate coverages of pre-adsorbed glutamic acid, lead to the creation

of 2-D supramolecular domains. According to Ref. [45] the enantioselectivity of

this system originates from the two possible pro-(R) or pro-(S) configuration of

the MAA, which form hydrogen bonds with the glutamic acid molecule. Higher

coverages of pre-adsorbed glutamic acid do not allow the interaction of MAA with

the nickel surface [45].

(S)-alanine

The adsorption of (S)-alanine on Ni{111} was studied by Nicklin et al. (2015)

using XPS and NEXAFS [46]. On Ni{111}, alanine chemisorbs in both zwit-

terionic and anionic form supporting a bidentate and tridentate geometry, re-

spectively with the latter species being in majority on the nickel surface. The

molecule decomposes on Ni{111} at temperatures between 300 K and 450 K,

following multistep processes [46]. Exposing the saturated (S)-alanine layer on

Ni{111} (0.25 ML) to elevated pressures of H2, causes protonation of the amino

group of (S)-alanine and reorientation to bidentate geometry, which under the
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presence of elevated pressures of H2, is the majority species on the nickel surface

[47].

1.3.4 Possible models

There are several models that could explain the enantioselective behaviour of

nickel catalysts following their chiral modification:

One to one interaction/The active chiral site model

The one to one model (or active chiral site model [14]) suggests 1:1 to in-

teraction between the modifier and the reactant, in configuration ,that during

hydrogenation, will generate enantiopure product in excess. This kind of mecha-

nism is at work in the enantioselective hydrogenation of α-ketoesters using chirally

modified Pt (Fig. 1.1) as a catalyst [15, 49]. In the Pt/α-ketoesters system the

modifiers are large enough, to stabilise a pro-chiral configuration of the reactant in

1:1 interaction (Fig. 1.1-1.2) [45]. In the Ni/β-ketoesters system the molecular size

of the modifiers and the β-ketoester reactant are similar (Fig. 1.3-1.4). However,

RAIRS data of Jones et al. (2006) [40] obtained upon adsorbing (S)-glutamic on

Ni{111} at 300 K (this temperature favours the formation of the R-product dur-

ing the catalytic reaction, using (S)-glutamic as a modifier [16]), and subsequent

exposing the overlayer to MAA, showed evidence of 1:1 interaction of the amino

acid with the diketo form of MAA mainly through the NH3
+ group of the amino

acid and most probably the ketone group of the MAA, in a parallel geometry that

will favour the generation of the R-product [40].

Chiral surfaces defects/adsorbed induced chiral restructuring

Metal surfaces can be chiral, if the step lengths on either side of the kink site

are uneven [8]. These kind of chiral surfaces are present on polycrystalline metal

catalysts or supported metal catalysts as defects, in an equal amount between

the two chiral surfaces [40, 45, 50]. Previous studies [51, 52] have shown that

two enantiomers of a chiral molecule present different adsorption energetics when

they are adsorbed on a chiral surface [51], whereas a chiral surface itself is more

reactive towards one enantiomer of a chiral molecule with respect to the other [52].

In addition, interaction of pure R and S propylene oxide on chiral Cu surfaces

(Cu{643}) [53], show that the desorption of the enantiopure molecule depends on

the chirality of the Cu{643} surface. This kind of different adsorption behaviour,

should be expected also for the two pro-chiral configurations of the β-ketoester

reactant on a chiral nickel substrate during the hydrogenation reaction [45]. In

the case of the Pt/α-ketoesters system (Fig. 1.1) evidence was found that the

highest enantioselective sites for this reaction using Pt/graphite and Pt/silica as
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a catalyst, are at or close to the step edges [54]. It is possible that a chiral

modifier will interact with one of the two chiral surfaces leaving the other one

for interacting with the β-ketoester reactant in a configuration which will lead to

asymmetric hydrogenation [50, 52].

XPS [48] and RAIRS [42] studies of modified polycrystalline nickel and Ni{111},
respectively, with (S)-aspartic acid (upon washing the catalyst) showed that at

optimum (in terms of enantioselectivity) conditions, the aspartic acid is untrace-

able spectroscopically. These studies [42, 48] provided evidence that asymmetric

hydrogenation could occur at low or even in the absence of a chiral modifier, dur-

ing the reaction. Previous studies have shown that chirality can be bestowed on

an achiral metal surface via the adsorption of a chiral molecule [34, 35, 55–58].

Adsorption of L-lysine [55] and S-alanine [56–58] on Cu{100} caused the gener-

ation of {3 1 17} chiral facets. Adsorption of (R,R)-tartaric acid on Ni{110} in

its bitartrate form [34], caused relaxation and reconstruction of the nickel surface,

resulting in chiral footprint on the surface. Calculations propose that one chiral

footprint is preferred energetically over the other suggesting that at room tem-

perature the same mirror motif will be expected to dominate the surface by 90%

ensuring the creation of an enantiospecific system [34]. Studies of the electronic

structure of the (R,R) tartaric acid on Ni{110} system [35], showed that bitartrate

tartaric acid in the gas phase presents an intrinsic chirality not only in terms of

atomic arrangement but also in its electronic structure, due to the uneven charge

distribution between the four oxygen atoms of the two carboxylate groups which

is transferred to the Ni-O bonds and by extension to all the nickel surface through

the bonds between the nickel atoms [35].

Chiral metal arrangements could be generated through etching of the crystal.

Modification of Ni{111} with a solution of (R,R)- tartaric acid [38] show evidence

of generation of nickel tartrate species on the Ni{111} surface at low modifying

pH and nickel and sodium tartrate species at higher pH. The formation of these

salt species points to a widespread etching of the nickel crystal. RAIRS data,

obtained upon adsorbing (R,R) tartaric acid on oxidised Ni{111} as well as the

decomposition temperature of R,R-tartaric acid on the NiO/Ni{111} substrate,

suggest also the formation of species similar to nickel tartrate [39]. In addition,

based on XPS results of modified Raney nickel catalyst with (R,R) tartaric acid

[32], the stoichiometry of nickel, carbon and oxygen on the surface layer resembles

the stoichiometry of nickel (II) tartrate complex. The high solubility of the nickel

tartrate species in aqueous solution in combination with the strong electrostatic

interaction between the charged tartrate species and the Ni2+ substrate, could as-

sist the etching of the nickel catalyst during modification [39], and generate chiral
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surfaces/arrangements similar to those shown in Ref.[8]. The work of McFadden

et al. (1996) [8], suggested, that a single crystal can produce intrinsically chiral

surfaces if it is cut to expose high Miller indices planes. If at these high Miller

indices, the step lengths on either side of the kink site are uneven, then the kink

sites can be considered chiral [8]. Evidence of production of nickel glutamate and

mixture of nickel and sodium glutamate was also found by Jones et al. (2007)

[44], following modification of Ni{111} with (S)-glutamic acid from solution at

350 K, at low and high pH, respectively.

The enantioselectivity of a catalyst could be improved if any chiral recognition

at the step sites is amplified into the terraces sites of the catalyst. This kind of

amplification was observed upon adsorbing enantiopure propylene oxide on chiral

Cu{643} surface from Horvath et al. (2001) [53]. Ref.[53] suggested enantiospeci-

ficity in the desorption of enantiopure propylene oxide adsorbed on the terraces

of the chiral Cu{643} surface, suggesting transfer of the chiral environment of

the steps to the molecules adsorbed on the terrace via the adjacent molecules

adsorbed on the step edge of the Cu{643} surface.

Supramolecular assemblies/Ordered structures

Adsorption of (R,R) tartaric acid in its bitatrtate form causes generation of

arrays of ordered layers and 2D supramolecular assemblies of tartaric acid on the

on the Cu{110} surface, which break the symmetry of the crystal [59–61]. This

structure is formed through intermolecular hydrogen bonds [59]. The induced

chirality is mirrored upon adsorbing the other enantiomer ((S,S)-tartaric acid)

[61] on the Cu{110} surface. According to Ref.[61], the MAA could be accommo-

dated within this 2D structure. If these kind of structures are formed during chiral

modification of nickel catalysts, they could act as a “chiral template” for the /β-

ketoester reactant, stabilising a pro-chiral configuration of the reactant. Similar

structures were observed upon adsorbing alanine on Cu{110} [62, 63]. Adsorption

of (S)-alanine on Cu{110} causes the formation of chiral clusters of six or eight

molecules (generated via intermolecular hydrogen bonding), interspersed with chi-

ral channels of metals which assemble into a chiral array without creation of its

mirror domain on the surface [62, 63]. This induced chirality is mirrored upon

adsorption of R-alanine on the copper surface, which also generates similar chiral

assemblies [62]. Mahapatra et al (2014) [64] have found evidence of formation

of both zwitterionic and anionic alanine on Pd{111} surface, with the isolated

anionic form of the molecule, based on DFT calculations, being significantly more

stable. The molecule was found to construct dimers or tetramers on Pd{111},
which could potentially behave as chiral templates [64].

Adsorption of (R,R) tartaric acid Ni{111} caused also the formation of ordered
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layers [36] however to a lesser extent in comparison with the Cu{110} surface. Co-

adsorption of (R,R)-tartaric acid and MAA on Ni{111} , studied by Jones and

Baddeley (2002) [37], produced two ordered arrays with 0.113 ML (one tartrate

and one MAA molecules per unit cell) and 0.167 ML (one tartrate and two MAA

molecule per unit cell) local coverage, stabilised via hydrogen bonding between

the modifier and the β-ketoester reactant. In addition, according to Ref.[37], the

presence of MAA on the Ni{111} surface, pre-adsorbed with tartaric acid, caused

the coordination of the surrounded tartaric acid molecules, into a well-defined ar-

rangement. Ref.[37], suggested that in the low coverage structure, the hydrogena-

tion will be enantiospecific and generate the R-product in excess whereas the high

coverage structure will produce a racemic mixture of products [37]. Adsorption of

MAA onto intermediate coverages of pre-adsorbed (S)-glutamic acid on Ni{111},
performed by Trant et al. 2010 [45], lead to the creation of 2-D supramolecular

domains [45]. Prior to the dosing of the MAA molecule, the Ni{111} surface mod-

ified with glutamic acid was exposed to 10 L of H2 gas [45]. According to Ref.[45]

the enantioselectivity of this system originates from the two possible pro-(R) or

pro-(S) configuration of the MAA, which form hydrogen bonds with the glutamic

acid molecule.

1.4 The pressure and complexity gap

The catalytic activity and selectivity of a surface is influenced by its composition,

electronic properties and atomic structure. As it is described in section 1.3, several

surface science techniques have been employed to determine not only the surfaces

at atomic level, but also explain this particular catalytic system. These surface

techniques, in most of the cases, are carried out in ultra high vacuum condition

(UHV) using single crystals as model surfaces. Ultra high vacuum refers to pres-

sures below 10-9 mbar, and it is used to maintain a well defined condition of the

surface and have a quantitative function of the electron based techniques [65–68].

Electrons emitted from a sample, are subject to elastic and inelastic collisions with

other molecules, which causes decrease in their detected signal. The mean free

path of electrons, the average distance that a particle travels between collisions,

is inversely proportional to the pressure of the chamber [66, 68]. According to

Ref.[66], the mean free path of electron at PN2≈1000 mbar is 70 nm whereas at

PN2≈1 × 10-10 mbar the mean free path is over 500 km!

The aforementioned conditions are not realistic, since most of the reactions

take place in ambient pressure conditions, using more complex surfaces such as
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nanoparticles. These two disparities are called, pressure and complexity gap,

respectively [65].

1.5 Aim of the project

This project is part of a bigger project in our group which is aiming to pro-

vide insights into the enantioselective sites of the chirally modified nickel catalyst

which lead to the asymmetric hydrogenation of β-ketoesters. This is done by

adsorbing typical modifiers and reactants on nickel single crystals of low Miller

indices ({111}, {110}, {100}) under ultra high vacuum conditions and study their

thermal stability, chemical state, bond coordination and molecular orientation on

the nickel surface, using surface science techniques such as X-ray photoelectron

spectroscopy (XPS), near edge X-ray absorption fine structure (NEXAFS) spec-

troscopy, temperature programmed desorption (TPD) and low energy electron

diffraction (LEED). Previous studies [46, 69–72] have shown that the combina-

tion of XPS and NEXAFS is a very powerful tool for characterising the adsorption

complex in terms of chemical state and molecular orientation. The use of single

crystals of low Miller indices is important since these terminations are found in

the nanoparticles of fcc metals [73]. Izumi (1983) [16] showed that the enantiose-

lective behaviour on Raney nickel depends on how the reactant MAA adsorbs on

the Ni surface and how it interacts with the modifier rather than on the transition

state of the hydrogenation reaction. Hence, by understanding the behaviour of the

surface and the modifiers during chiral modification of the nickel surface and the

effect of that on the adsorption geometry of β-ketoesters reactants (such as MAA)

on the nickel surface, is key step to understand and optimize the enantioselectivity

of the chirally modified nickel catalysts.

The main focus of this PhD will be the {100} termination, which its study

for this reaction, is lacking from literature. Preliminary studies of our group

have shown that amino acids present high thermal stability on Ni{100} facet,

with respect to the other nickel single crystals of low Miller indices (Ni{110},
Ni{111}). Four systems are investigated in this PhD thesis:

1. Interaction of (R,R)-tartaric acid on clean and oxidised Ni{100} under UHV

and ambient pressure (AP) conditions (elevated H2 and H2O pressures).

2. Interaction of (S)-alanine on clean Ni{100} under UHV and elevated hydro-

gen pressures.

3. Co-adsorption of (S)-alanine and water on Ni{110}.
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4. Adsorption of methyl acetoacetate (MAA) on Ni{100}.

The interaction of the molecules under the presence of elevated pressures is

performed using ambient pressure (XPS), so we could bridge the pressure gap,

which is also lacking from literature at least for this reaction, and approach more

realistic reaction condition. The elevated H2 pressures are used to mimic the

reactions conditions and H2O is one of the typical modifying solvents [17, 24]. The

interaction of molecules on oxidised surfaces, also approaches the enantioselective

catalysis conditions, since the modification occurs from aqueous solution and the

catalyst itself is exposed to air before the modification [39].
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Experimental techniques

2.1 X-ray Sources

The conventional laboratory UV and X-ray sources consist of gas discharge lamps

and X-ray anode sources, respectively. The most common gas discharge lamps

include the He I and He II lamps. The aforementioned sources produce monochro-

matic radiation of 21.2 and 40.8 eV respectively [74]. In anodes, the X-rays are

generated by electron-induced electron excitation in the anode, with subsequent

emission of fluorescence radiation [73, 75]. Common anodes in the low photon

energy region are the Mg Kα1,2 and Al Kα1,2, which produce 1253.6 eV and

1486.7/1486.3 eV monochromatic radiation, respectively [74], with natural line

widths of 0.6 eV and 0.8 eV, respectively [74]. The use of crystal monochro-

mators allows to reduce the line width to approximately 0.2-0.3 eV [74]. X-ray

anodes exist in the high photon energy region, as well with Cr Kβ1,3 and Cu Kβ1,3

generating monochromatic radiation of 5496.7 eV and 8905.3 eV, respectively [74].

Synchrotron radiation is generated when charged relativistic particles (such as

electrons), in vacuum conditions, are compelled to pass onto a curved trajectory.

An electron beam is created from a linear accelerator, which is further accelerated

in a small synchrotron called a booster. Bunches of electrons are inserted into

the main storage ring, where they reach about 2 GeV or higher energy. Bend-

ing magnets, placed in the storage ring are keeping the electrons in a circular

orbit, causing the emission of radiation, since in bending magnets the electrons

are subject to acceleration. The radiation is directed to the beamline, and a

monochromator permits the selection of the desired photon energy for the X-ray

based techniques [74–77]. Third generation synchrotron radiation is generated

by insertion devices such as wigglers and undulators, which are arrays of small

bending magnets, placed in the linear sections of the ring [74–77]. The insertion

20



Chapter 2. Experimental techniques

Table 2.1: Specifications of the SuperESCA beamline (Elettra synchrotron, Tri-
este, Italy), HE-SGM beamline (BESSY II synchrotron, Berlin, Germany) and
D1011 beamline (MAX-Lab synchrotron, Lund, Sweden) along with specifications
of the lab source NAP-XPS facility in the University of Manchester.

SuperESCA
beamline [79]

HE-SGM
beamline [80]

D1011
beamline [81]

Lab source
(University of
Manchester)

[82]

Source
Lineal

planar undulator
Bending magnet Bending magnet Al Kα anode

Energy range
(hν) 90-1800 eV 100-750 eV 40-1500 eV 1486.7 eV

Photon flux
∼ 1012

photons/s
at hν=400 eV α

5 × 1011

photons/(s × 100 mA)

∼ 1010-1012

photons/(s × 100 mA)
at hν=400 eV

and at hν=650 eV β

No information

Beamline resolution
(E/∆E)

∼ 10000 at hν=400 eV
∼ 5000 at hν=650 eV

500-2500
∼ 2700 at hν=400 eV γ

∼ 2600 at hν=650 eV
∼ 2600 at hν=900 eV

∆E≈0.5 eV δ

αMeasured during the top-up mode of the Elettra storage ring (2 GeV with 300 mA ring
current) [79].
β Depends on the slit width. The photon flux as a function of photon energy, was measured
at 6 different slit widths: 6 µm, 16 µm, 44 µm, 92 µm, 190 µm [81].
γ The values shown are at slit width of 16 µm. The beamline resolution (E/∆E) as a function
of photon energy, was measured at 6 different slit widths: 6 µm, 16 µm, 44 µm, 92 µm,
190 µm [81].
δ Refers to ∆E value (including also the electron analyser resolution) [82].

devices, generate spectra with narrow lines of high intensity [74]. Synchrotron

radiation offers many advantages compared to conventional laboratory X-sources

such as [78]:

• Choice of photon energy from a continuous spectrum and broad energy

range.

• High intensity and brightness.

• Variable polarisation.

• Small photon spots.

• Time resolution.

Specifications (such as energy range, source and photon flux, and beamline

resolution) of of the three synchrotron beamlines (SuperESCA, HE-SGM and

D1011) and the lab source facility (NAP-XPS in the University of Manchester)

that were used for experiments leading to this thesis, are shown in Tab. 2.1
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2.2 X-ray photoelectron spectroscopy (XPS)

2.2.1 The XPS process

X-ray photoelectron spectroscopy (known as XPS) is based on the photoelectric

effect. The XPS process is shown in Fig. 2.1. The irradiation of a sample with

X-rays, causes the emission of photoelectrons from a core level with kinetic energy

related to the binding energy of the electron, according to Eq. 2.1 [66, 78, 83, 84]:

Eb = hν − φ− Ekin (2.1)

Where Eb and Ekin are the photoelectron’s binding and kinetic energy, respec-

tively, hν is the energy of incident photon and φ the work function of the sample,

which is the energy separation between the Ef and the vacuum level (Ev). The

binding energy in solids is referred with respect to the Fermi level, and is equal to

the difference between the final and initial state of the atom. Photoemission will

only occur if the photon energy is higher than the sum of the Eb of the electron

and the φ of the sample [66, 67, 78, 83, 84].

An XPS peak will only be generated if the electrons reach the analyser. XPS

is, generally, a surface sensitive technique, since the escape depth of electrons is

only a few Å [66, 83]. Electrons emitted from a sample, are subject to elastic and

inelastic collisions with other molecules, which causes decrease in their detected

signal [66, 68]. The attenuation of the XPS peak due to inelastic collisions, can be

calculated using the Beer-Lambert law which relates the attenuation of an XPS

signal with the inelastic mean free path (IMFP) of electrons through a material

(λ) [67, 84]:

I = I0e
−d
λ (2.2)

Where I0 and I is the intensity before and after the electron has travelled a

distance d through the material. The IMFP is a measure of the distance that a

particle (such as an electron) travels on average before it loses energy [84]. The

IMFP depends on the kinetic energy of the electron [66]. By varying the energy

of the incident photon, we can tune the surface sensitivity of the XPS technique.

This fact highlights the importance of the use of synchrotron radiation as an X-ray

source.

The XPS technique is a useful technique to identify the elements in a sample.

Deep core electrons are not involved in chemical bonding, and therefore their en-

ergy is characteristic of the atom which they derive from. However small shifts
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Figure 2.1: The XPS process in a solid [83].

can be observed, depending on the bonding environment of the atom. For ex-

ample, a high oxidation state of an atom, causes shift to higher binding energies.

Also, atoms binding to high electronegative substituents, present also higher bind-

ing energies. Chemical shifts are also observed between surface and bulk atoms

[66, 78, 83].

These chemical shifts are often seen as initial state effects. According to the

Koopmans’ theorem, the binding energy of an electron is equal to the negative

energy of its original orbital (Eb(k)=-εk) if the spectator electrons do not rearrange

upon photoemission. However, electrons are not frozen and therefore the binding

is equal to the difference between the final (photoemission and creation of a core

hole) and initial state of the atom (before photoemission). When an electron

is ejected from an atom, electrons from the atom and the neighbouring atoms

(in solids) relax to screen the hole created by the ejected electron, reducing the

final state energy and by extension the binding energy of the photoelectron. In

conductors, the size of relaxation is higher than in insulators, since in the former
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the valence electrons can move from one atom to a neighbour atom [66]. In states

with orbital angular momentum greater than zero (l>0) photoemision will cause

doublet splitting of the state, originated by spin-orbit coupling (j=l±1/2) and

generation of two XPS peaks [66]. Multiplet splitting of a state could be caused

by spin-spin interactions of the unpaired electron of the ionised orbital with any

unpaired electrons in the outer shells [66].

Final state effects are the shake up and shake off events. In the shake up event

the photoelectron, interacts with a valence electron, exciting the latter to an unoc-

cupied state. The photoelectron loses some of its energy, thus a peak is observed

at the high binding energy region. In the shake off event the photoelectron causes

excitation of the valence electron to the vacuum. For the shake off event, as op-

posed to the shake up, the generated peak is not very distinct [66]. Vibrational

transitions from the initial to final state (following the Franck-Condon principle)

can cause the generation of vibrational side bands which typically contribute to

the (often asymmetrical) broadening of the XPS peak, since these transitions are

usually less than 1 eV [83, 85, 86].

Figure 2.2 shows XP-spectra after dosing H2O onto Ni{110} at 180 K up to

saturation. The XP-spectra, shows 2 peaks around 533.2 eV and 531.3 eV which

correspond to the oxygen atom of the H2O and -OH species, respectively. This

assignment of the XPS peaks cannot be explained with the electrostatic model,

presented in previous paragraphs, since the atom with the highest oxidation state,

the oxygen of the OH species, presents the lowest binding energy. These chemical

shifts can be explained with the equivalent core or (Z+1)-approximation [83, 85,

87]. In the (Z+1) approximation, the generation of a core hole via photoemission

can be approximated by the addition of a proton in the nucleus [83, 85, 87].

This means that the core ionised atom is replaced by an atom which has (Z+1)

nuclear charge and is lacking an electron in the valence orbitals [83]. In the case

of core-ionised H2O and -OH, the oxygen atom is replaced with a F atom with 6

e- in the outer shells (H2F6 and -HF6, respectively)[85]. The H-F bond in these

molecules is increased with respect to the natural H-F7 bond, which destabilises

the molecule and increases the final state (and by extension the binding energy

of the O 1s electron). Since the H2F6 contains two H-F, the core electron of the

oxygen atom in H2O molecule will have the larger binding energy with respect to

the core electron of the oxygen atom in the OH species [85].

The intensity of an XPS peak depends on several factors such as concentration

of the atoms in the material, the photoemission cross section, the IMFP of the pho-

toelectron, the angle of incidence and instrumental factors (X-ray source/beamline

and detector). However photolectrons of similar binding have similar IMFP while
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Figure 2.2: XP-spectra in the O 1s region (hν=650 eV) after dosing H2O onto
Ni{110} at 180 K up to saturation. The solid black thick lines are the raw data
and the solid coloured curves are the individual peaks obtained upon fitting.

at the same time they present also similar reponse to the instrumental factors.

In addition, the photoionisation cross section of core levels is independent of the

chemical environment, therefore an XPS peak can provide useful quantitative in-

formation especially if the peak arises from photoelectrons of the same core level

[66, 84]. The presence of an inhomogeneous sample (especially throughout the

sampling depth) as well as photoelectron diffraction effects can cause variations

in the intensity of the XPS peak [66, 84]. The latter is caused by the elastic

scattering of the photolectrons from the surrounding atoms and is observed for

photoelectrons of kinetic energy of few hundred eV. Since the wavelength of the

photoelectron is similar to the interatomic distance, the photoelectron diffraction

can alter the intensities of the XPS peaks. The photoelectron diffraction effects

on the intensity of the XPS signal, could be minimised by probing high kinetic

energy electrons [75, 85, 88].

The use of high flux photon sources can significantly alter the XP-signal of an

adsorbed molecule causing either reduction of its multilayer signal or decomposi-

tion of the molecule (beam damage, Fig. 2.3). This effect can be minimised by

either recording or observing the change of the XP-signal after each sweep and/or

moving the sample under the beam, between recordings of XP-spectra.
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Figure 2.3: Example of beam damage in XP-spectra after several sweeps. The
spectra were obtained in the C 1s region (hν=400 eV) upon dosing methyl ace-
toacetate (MAA) onto Ni{100} at Tsample=180 K up to ΘMAA=0.23 ML.

2.2.2 Experimental set-up

The experimental set-up of a typical XPS instrument is shown in Fig. 2.4. An

X-ray radiation with particular energy hν and polarisation vector ~E strikes the

sample at an angle θ with respect to the surface normal, generating electrons with

particular kinetic energy. The electron analyser consists of two electrically isolated

concentric hemispheres with a potential difference between them. The generation

of XP-spectra (number of electrons vs kinetic/binding energy) is achieved by ap-

plying a retarding (negative) voltage to the electrons, before entering the analyser,

using a negative electrode (retard plate). The applied retarding voltage is related

to the actual kinetic energy of the electron, since the analyser allows only elec-

trons with a certain energy (pass energy) to reach the detector. Electrons with

kinetic energy less than the pass energy will be attracted by the positive potential

of the inner hemisphere, whereas electrons with kinetic energy higher than the

pass energy, will hit the outer hemisphere. [78, 84].

Ambient pressure XPS (AP-XPS), in pressure range of 1-10 mbar, can be

performed by introducing 1 mm diameter or less entrance apertures between the

sample (ambient pressure) and the electrostatic lens system (in UHV conditions),

while differentially pumping within the analyser (Fig. 2.5) [74]. The short distance

between the sample and the differentially pumped system allows improvement in

the attenuation of the XPS signal from the molecules in the gas phase. In the
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Figure 2.4: The XPS instrumentation [78, 84].

differentially pump system, the electron beam is focused through the use of an

electron lens system [89].

Figure 2.5: The AP-XPS instrumentation [74].

The instrumental resolution (beamline and analyser), as a function of pho-

ton energy, for each experiment of this study, was determined by measuring the

∆binding energy at the 12% and 88% of the intensity of the spectra of the Fermi edge

and subtracting by 4kBT, where kB is the Boltzmann constant (∼ 1.38× 10-23 m2kg

s-2K-1) and T is the temperature of the sample. In the cases where the exact tem-

perature of the sample was not stable, during the acquisition of the spectra of

the Fermi edge, because of the cooling of the sample, we have used as a temper-

ature, the average between the annealing temperature (before the acquisition of

the spectra) and the room temperature (300 K) [83].
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2.2.3 XPS Data Analysis

Inelastically scattered electrons contribute to the formation of background in the

high binding energy region. Initially all the XP-spectra are normalised with re-

spect to the low binding region with simultaneously correcting of the offset of

the binding energy axis. In this study the correction of the binding energy axis

was performed either by using spectra of the Fermi edge, recorded every time the

monochromator was moved (synchrotron experiments), or by using the position

of the Ni 2p peak (BE=852.7 eV) at the experiments conducted using Al Kα an-

ode (hν=1486.7 eV) as an X-ray source (NAP-XPS facility in the University of

Manchester). The second step is the subtraction of the background in order to

quantify the XPS data, from the area of the peaks. The subtracted background

could be linear or Shirley. In Shirley background, the step of the background is

directly related to the integral of the peak, as is shown in Fig. 2.6 [67, 90].

The final step of XPS data analysis is the fitting of the curves in order to

determine the position and the intensity of the peaks that consist the XPS spec-

trum. The instrumental resolution produces a Gaussian lineshape (Eq. 2.3), while

the core hole lifetime effect generates a Lorentzian lineshape (Eq. 2.4) [91]:

IG = He
−(E−P )2

2W2/c2 (2.3)

IL = H(
(W/2)2

(E − P )2 + (W/2)2
) (2.4)

Where H is the maximum value of the function, E is the energy (indepen-

dent variable), P is the peak position, W is the the full width at half maximum

Figure 2.6: Shirley background subtraction. The data were recorded in the C 1s
region (hν=400 eV) upon dosing methyl acetoacetate (MAA) onto Ni{100} at
Tsample=180 K up to ΘMAA=0.23 ML.
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(FWHM) and c is a constant (c=2
√
ln4)[91].

Figure 2.7: Example of peak fitting in XPS. The data were recorded in the N 1s
region (hν=510 eV) upon dosing (S)-alanine onto Ni{110} at Tsample=200 K for
30 minutes (ΘAla=80% saturation). The black dots are the raw data and the solid
black thick lines are the fitted curves. The solid coloured curves are the individual
peaks obtained upon fitting.

Table 2.2: Fit parameters of the XP-spectra in Fig. 2.7.

Parameters Values
Offset 0.03135

Peak 1 intensity 1.6107
Peak 1 position 399.8
Peak 1 FWHM 0.95803
Peak 1 mixture 0.14

Peak 1 asymmetry 0.68406
Peak 2 intensity 0.10388
Peak 2 position 401.7
Peak 2 FWHM 1.6074
Peak 2 mixture 0.08

Peak 2 asymmetry 0.01

The overall line profile which was used for fitting the spectra in the current
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study is a pseudo Voigt function as shown Eq. 2.5 [92, 93]:

IG,L = H[exp[
−c2

2
(1−m)

(E − P )2

W 2
][

W 2

4m(E − P )2 +W 2
]] (2.5)

Where m is the Lorentzian fraction in the pseudo-Voigt function. An exam-

ple of peak fitting of a spectra is shown in Fig. 2.7. An asymmetry parameter

(Eq. 2.6), as, is introduced in order to account for the high binding energy region

of the peak, where 0 accounts for a symmetric peak [85].

IG,L,as = IG,L ∗ [IG,L + (1− IG,L)e
as(E−P )

w ] (2.6)

Typical values of asymmetry, in this study, were 0.01-1, whereas the m (the

Lorenzian fraction) was set according to the lifetime width of the core hole of each

atom [94]. Finally, an offset parameter is introduced, in case the intensity of the

low binding energy of the XPS profile is not zero [67]. Example of peak fitting

of XP-spectra with the corresponding fit parameters are shown in Fig. 2.7 and

Tab. 2.2, respectively.

2.2.4 Temperature programmed-X-ray photoelectron spec-

troscopy (TP-XPS)

During a TP-XPS experiment, the sample is heated at a constant rate while

simultaneously obtaining XP-spectra. Normally, the sample is moved under the

beam to minimise any potential beam damage. The spectra are combined to a

2D image, in which the x axis is the binding energy and y axis is the temperature

(Fig. 2.8a). Change in the intensity of the XPS signal is depicted using a colour

scale. This technique, in combination with TPD, allows the full determination

of any changes that occur in the chemical nature of the surface and its adsorbed

species as a function of the temperature, providing insights into the decomposition

pathways of the adsorbed molecule.
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(a) (b)

Figure 2.8: (a+b) TP-XP-spectra in the (a) N 1s region, obtained upon dosing
(S)-alanine onto Ni{100} at Tsample=250 K up to the multilayer regime. Heating
rate: 8 K min-1, hν=510 eV. (b) Intensity profiles (in 0.5 eV wide bands) as a
function of temperature, obtained from the TP-XP-spectra in 4.4b for the the
nitrogen peaks at 397.2 eV, 398.1 eV, 399.5 eV and 402.0 eV.

2.3 Near edge X-ray absorption fine structure

(NEXAFS) spectroscopy

2.3.1 The NEXAFS-Process

Near edge X-ray absorption Fine Structure (NEXAFS) spectroscopy is a technique

which allows the study and determination of the electronic structure and the

orientation of adsorbed molecules on the surface. The NEXAFS process is shown

in Fig. 2.9a. When monochromatic X-ray radiation is applied to the sample, an

electron from a core level is ejected either into an unoccupied molecular orbital

or into vacuum, creating a core hole [77, 91].

A NEXAFS spectrum can be obtained either by measuring the fluorescence or

electron yield. The core hole, created as a result of the photoabsorption process,

is filled from an electron from higher orbitals causing the emission of fluorescence

radiation (Fig. 2.9b) or the emission of an Auger electron (Fig. 2.9c), in order to

conserve the energy of the system. Both these processes are a direct measure of

the presence of a core hole, created as a result of the photoabsorption process,
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Figure 2.9: Schematic diagram of (a) the NEXAFS process (b) the fluorescence
process and (c) the Auger process [77, 91].

therefore can be used as a measure of the X-ray absorption cross section [77, 91].

The kinetic energy of an emitted Auger electron is independent of the photon

energy and is described in Eq. 2.7:

Ek = E1 − E2 − E3 (2.7)

Where E1 is the energy level of the core hole, E2 the energy of the level from

which the core hole is filled and E3 is the energy level of the Auger electron. The

nomenclature of an Auger process depends on these levels. For example a KLL

Auger process refers to a process in which the core hole was created in the K-

shell, filled up from an electron from the L-shell and finally generating the Auger

electron from the L-shell as well [67]. The Auger process is the predominant one

in low mass atoms such as carbon, nitrogen and oxygen [77]. .

An example of a NEXAFS spectum (absorption probability or absorption cross

section as a function of photon energy) of a diatomic molecule AB along with the

origin of the peaks is shown in Fig. 2.10. The excitation of the electron occurs

from the 1 s core level (K-edge). In this example, the lowest unoccupied molecular

orbital has π*symmetry, producing a sharp π* resonance. The transition of 1 s

electron to π* orbitals, only occurs in the presence of π* bonds in the probed

molecules. The π* orbital is followed by the Rydberg states. Above the ionisation

potential, the orbitals of the AB molecule have σ* symmetry. The σ* resonances

have broader shape, due to vibrational effects and due to their interaction with

continuum which increases the decay probability of the electron and as a result the

core lifetime. The absorption step in the spectra is originated from the excitation
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Figure 2.10: NEXAFS K-edge spectra of a diatomic molecule AB showing the the
origin of the NEXAFS peaks [77, 91, 95].

of the electron to continuum states [77, 91, 95].

NEXAFS spectra can reveal information on the electronic structure of ad-

sorbed species. Since the absorption is due to the excitation of core electrons,

the technique can provide details on the elemental composition of a surface. The

probing of the unoccupied molecular orbitals can give also information on the na-

ture of chemical species of the adsorbed molecule [77, 91, 95]. NEXAFS can also

provide information on the molecular orientation of adsorbed species. According

to Eq. 2.8 (related to the Fermi’s golden rule), there is a strong link between the

intensity of a resonance in a NEXAFS spectrum (I) and the direction of the final

state orbital ~O (π* or σ* orbital)[77, 96]:

I ∝ |~e < Ψf |~p|Ψ1s > |2 ∝ |~e ~O|2 ∝ cos2δ (2.8)

Where ~e is the unit electric field vector, Ψ1s and Ψf initial and final state,

respectively, ~p the dipole transition operator and δ the angle between the electric

field vector and the direction of the final state orbital. Based on this equation,

the intensity of a resonance is maximum when the electric vector is parallel to

the direction of the final state orbital and in minimum when the electric vector is

perpendicular to the direction of the orbital [77]. Information on the molecular

orientation of adsorbed species, using NEXAFS, can be obtained by changing
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Figure 2.11: (a)The polar (θ) and (b)the azimuthal angle (φ) of the electric field
vector with respect to the surface plane.

(a)

(b)

Figure 2.12: (a) Relationship of the angle of incidence γ (angle between the electric
field vector and the surface normal), the angle α (angle between the direction of
the final state orbital of the adsorbed molecule and the surface normal) and the
angle δ (the angle between the electric field vector and the direction of the final
state orbital). (b) Schematic view of the tilt angle α, which is the angle between
the C––O/COO- groups of the alanine molecule with respect to the Ni{110} surface
plane (equivalent with the angle between the direction of the final state orbital of
the C––O/COO- groups and the surface normal as shown in Fig. 2.12a), for the
two possible adsorption orientations. The blue circles are carbon atoms, the red
circles are oxygen atoms, the green circles are nitrogen atoms and grey circles are
nickel atoms.
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either the (out of plane) polar or (in plane) azimuthal angle of the electric field

vector of the X-ray beam with respect to the surface (angle dependent NEXAFS)

as shown in Fig. 2.11. In this study angle dependent NEXAFS were acquired

by changing the out of plane angle of incidence θ/γ. Angle θ refers to the angle

between the electric field vector and the surface plane (Fig. 2.11) whereas angle

γ refers to the angle between the electric field vector and the surface normal

(Fig. 2.12a). This allowed us to determine the tilt angle α of chemical groups

of adsorbed molecules, with respect to the surface as shown in Fig. 2.12, for the

case of C––O/COO- groups of the alanine molecule with respect to the Ni{110}
surface plane. As mentioned above the intensity of a resonance depends on the

angle δ (the angle between the electric field vector and the direction of the final

state orbital), which depends on both α and γ angles (Fig. 2.12).

2.3.2 Experimental set-up

For this work, the NEXAFS spectra were obtained by using electron yield as

detection mode. Electron yield offers higher surface sensitivity with respect to

the use of fluorescence radiation [77]. The electron yield can be measured in three

ways: total electron yield (TEY), and partial electron yield (PEY) and Auger

electron yield (AEY). The TEY is the easiest set-up in terms of experimental

configuration. It detects the signal of all the photoelectrons and Auger electrons

by just using an electron channeltron multiplier. This detection mode is more

bulk sensitive. The PEY detects a part of the emitted electrons by applying a

retarding voltage before the detector. The detector suppresses the low kinetic

energy electrons coming from the bulk, however it can still detect photoelectrons

and inelastic scattered electrons as long as their kinetic energy exceeds the cut-off

energies due to bias voltage. Typical cut off energies for C, N, and O are ∼ 180-

230 eV, ∼ 290-340 eV, ∼ 430-480 eV, respectively. The AEY detects only Auger

electrons of a specific transition [77, 91, 95]. In this work the Auger electrons were

detected using a hemispherical analyser.

2.3.3 NEXAFS Data Analysis

In order to be able to analyse raw NEXAFS data of an adsorbate molecule on a

metal surface, two additional spectra should be obtained: the spectra of the clean

surface and I0, which is the intensity of the beam as a function of energy. Initially,

all the spectra should be normalised at low energies, just before the beginning of

the resonances. The spectra are normalised with respect to I0 and background

subtracted using the clean surface spectra. Finally for angle dependent NEXAFS
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with the same coverage of adsorbate, the spectra are normalised at high photon

energy, under the assumption that the step in the spectra depends only on the

coverage of the adsorbate.

The spectra are fitted using an equation which consists of a linear background,

a step function and several Gaussian functions depending on the number of reso-

nances (Eq. 2.9):

I(E) =B0 +BS(E − SP ) + SH [
1

π
arctan(

E − SP
0.2 ∗ SW

) +
1

2
]

+
∑
i

Gi,H exp[−4ln2
(E −Gi,P)2

G2
i,W

]
(2.9)

Where B0 is the offset at the point of the absorption step, BS is the slope of

the linear background, SP is the step position, SH is the step height, SW is the

width of the step, and Gi,H, Gi,P and Gi,W are the height, position and full width

at half maximum of an ith resonance. An example of peak fitting of NEXAFS

spectra with the corresponding fit parameters are shown in Fig. 2.13 and Tab. 2.3,

respectively.

Figure 2.13: Example of fitting NEXAFS spectra. The data were obtained in the
O K-edge region after dosing (S)-alanine onto Ni{110} at Tsample=200 K up to
multilayer regime (ΘAla=390% sat) and anneal the layer to 346 K. The data were
recorded at θ=35◦, where the θ is the angle between the electric field vector and
the surface plane. The dots represent the raw data and the solid thick lines the
fitted curves. The curves below the spectra show the individual Gaussian peaks,
the linear background and the the step function used during the fitting process.
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Table 2.3: Fit parameters of the NEXAFS spectra in Fig. 2.13.

Parameters Values
B0 0.184192
BS 0.0195004
SP 531.823 eV
SH 0.459025
SW 1.01122 eV

G1,H 2.41235
G1,P 530.593 eV
G1,W 1.80596 eV
G2,H 0.201137
G2,P 536.371 eV
G2,W 4.0917 eV
G3,H 0.556594
G3,P 541.267 eV
G3,W 10.3858 eV

2.4 Temperature programmed desorption (TPD)

Temperature programmed desorption (TPD) is a technique that among other

things can provide information on [66, 84]:

1. The nature of the adsorbates on a surface.

2. The relative coverage of the adsorbates on the surface.

3. The activation energy for desorption.

When a surface, exposed to an adsorbate in the gas phase, is heated the

adsorbed species can either desorb or decompose. The species that are removed

from the surface are measured by recording the partial pressure of chosen mass

fragments using a quadrupole mass spectrometer, thus generating different figures

of partial pressure as a function of temperature for different molecular masses

(Fig. 2.14). The peak in a TPD figure, represents the temperature where the

desorption rate is at its maximum .

The heating is introduced by applying linear temperature ramp according to

Eq. 2.10 [66, 84]:

T = T0 + β ∗ t (2.10)

Where T is the sample temperature, T0 is the initial temperature, β the heat-

ing rate (dT
dt

) and t is the time. The Polanyi-Wigner equation express the rate of
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Figure 2.14: Example of TPD data for mass 44. The data were obtained after
dosing (S)-alanine onto Ni{110} at Tsample=200 K at three different dosing times.
Heating rate 1 K s-1.

desorption (dΘ
dt

) [66, 84]:

rdes = −dθ
dt

= A ∗ θn ∗ exp(
−Edes

RT
) (2.11)

Where A is the pre-exponential factor, Θ is the number of surface atoms, n

and Edes are the kinetic order and activation energy of the desorption process,

respectively, and T is the sample temperature. Now [66, 84]:

dθ

dt
=
dθ

dT
∗ dT
dt

(2.12)

Combination of Eq. 2.11 and Eq. 2.12 and substitution of dT
dt

with β, leads to

the following expression, W [66, 84]:

− dθ
dT

=
A

β
∗ θn ∗ exp(

−Edes

RT
) (2.13)

Differentiation of Eq. 2.13 with respect to temperature and equating to zero

(when the desorption rate is at maximum, d2θ
dT2 =0), leads to the following expres-

sion (Eq. 2.14) , which relates the Tp (the temperature of the desorption peak),

Θp (the coverage at Tp) and the activation energy for desorption Edes [66, 84]:

Edes

RTP
2

=
A

β
∗ n ∗ θp

n-1 ∗ exp(
−Edes

RTP

) (2.14)

First order desorption (n=1) leads to asymmetric peaks where the position of

the desorption peak (Tp) is independent of the initial surface coverage. Second

order desorption peaks are symmetric, and their position shifts to lower tempera-
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tures with increasing initial surface coverage (Eq. 2.14), whereas desorption peaks

of 0 ≤ n<1 order shift to higher temperatures with increasing initial surface cov-

erage. TPD peaks originating from multilayer desorption for different coverages,

do not saturate with increasing coverage and are typically zero order. Zero order

desorption peaks for different coverages have the same leading edge at the low

temperature region [66, 84].

2.5 Low energy electron diffraction (LEED)

The principle and schematic diagram of a LEED system is shown in Fig. 2.15.

An electron gun produces a monochromatic electron beam with energy Ebeam

between 30 and 500 eV. These electrons are back-scattered after interaction with

the sample, pass through four grids and reach the fluorescent screen, where the

kinetic energy of the electrons causes light emission. The screen is positive biased

to force the acceleration of the electrons towards it. An example of LEED pattern

is shown in Fig. 2.16 [66, 84].

Figure 2.15: Schematic diagram of the LEED system [84].

The G2 and G3 grids act as electron energy filter by applying a retarding

negative potential in them (-Ebeam+∆V, ∆V is in the magnitude of 0 to 10V),

in order to allow only the elastic scattered electrons to travel towards the screen.

The inner and outer grid (G1 and G4 respectively) are grounded in order to

permit the electrons to pass through a “field free” region. Incident electrons with

energy between 20 and 500 eV can travel only 3 or 4 atomic layers below the

surface, hence LEED is a surface sensitive technique. The penetration depth of

the electrons influences only the intensity of the spots and not the position [66, 84].
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The spot position of the diffracted beams allows to reveal information on

the periodicity of the surface and to detect and identify superstructures after

adsorption of a gas on the surface. The relationship between the real space and

reciprocal vectors of the two dimensional (2D) unit cell are shown in Eq. 2.15-2.16

[66, 84]:

|~a1| =
2π

|~a∗1| ∗ cosθ1

; |~a2| =
2π

|~a∗2| ∗ cosθ2

(2.15)

~a1 · ~a∗2 = ~a2 · ~a∗1 = 0 (2.16)

Where ~a1 and ~a2 are the real space lattice vectors of the 2D unit cell, ~a∗1 and

~a∗2 are the lattice vectors of the corresponding reciprocal unit cell and θ1 and θ2

are the 6 ~a1-~a∗1 and 6 ~a2- ~a∗2 angles respectively. Eq. 2.15 suggests that small and

large distances in real space become large and small, respectively, in the reciprocal

space whereas Eq. 2.16 suggests, that the ~a1 and ~a2 vectors are perpendicular to

the direction of the ~a∗2 and ~a∗1 vectors, respectively. The superstructures can be

described either by Matrix or Wood notation. The overlayer structure in Wood

notation is expressed in the form of:

(
|~b1|
|~a1|
× |

~b2|
|~a2|

)Rθ◦ − A (2.17)

Where |~a1| and |~a2| are the magnitudes of the lattice vectors of the unit cell

of the substrate, |~b1| and |~b2| are the magnitudes of the lattice vectors of the unit

cell of the overlayer and θ is the angle between the substrate and the overlayer

Figure 2.16: (a)1×1 LEED pattern of Ni{100}. (b) c(2 × 2) or (
√

2 ×
√

2)R45◦

LEED pattern of an oxygen overlayer, generated upon step annealing the TAsat/
NiO/Ni{100} layer to 750 K. The LEED patterns were recorded at Ebeam=90 eV.
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meshes. If θ=0 the angle is omitted from the expression. A is the chemical symbol

of the surface species and is omitted when expressing a clean substrate. The letter

p or c are used to indicate whether the overlayer lattice a is primitive or centred

unit cell (absence of symbol means a primitive unit cell). For example the oxygen

superstructure on Ni{100}, shown in the LEED pattern in Fig. 2.16b can be either

expressed simply as c(2 × 2) or p (
√

2 ×
√

2)R45◦ [66, 84].

LEED can also provide information on the surface geometry such as bond

lengths and angles, by analysing the change in the spot intensity with the beam

energy [66, 84].
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Interaction of (R,R)-tartaric acid

(TA) on clean and oxidised

Ni{100} under UHV and ambient

pressure (AP) conditions

Abstract

Enantioselectivity is a key aspect in the field of heterogeneous catalysis, since

it can provide products with valuable biological activity. Hydroxy–dicarboxylic

acids such as tartaric acid are the most effective chiral modifiers in the enantios-

elective hydrogenation of β-ketoesters. The present study explores the chemical

state, thermal stability and molecular orientation of (R,R)-tartaric acid (TA) on

clean and oxidised Ni{100} using X-ray photoelectron spectroscopy (XPS), an-

gle resolved near edge X-ray absorption fine structure (NEXAFS) spectroscopy

and low energy electron diffraction (LEED). In addition the chemical state of the

molecule was also investigated under elevated pressures of H2 (up to 6.4 mbar)

and H2O (up to 10 mbar) using ambient pressure (AP)-XPS. This study provides

evidence for the influence of the temperature of the crystal, the dosing rate of the

TA molecule and its surface coverage on the formation of TA2- and HTA- species

on the nickel surface. The formation of bitartrate phase of the TA molecule

(TA2-) which supports an µ4 adsorption geometry is favoured as we increase the

temperature of the crystal away from room temperature. Cooling the crystal

towards room temperature while having high coverages of TA molecule, causes

the formation of HTA- species (which support an µ2/µ3 adsorption geometry).

High deposition rates (deposition time ≤ 24 min/saturated layer) at T<400 K as
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well as the presence of elevated pressures of H2 and H2O also cause the forma-

tion of HTA- species. Under UHV conditions, TA fully decomposes on Ni{100} at

T>440 K. Its thermal stability is further enhanced under the presence of hydrogen

(PH2= 6.4 mbar). Deposition of TA onto oxidised Ni{100}, causes the formation

of tartrate species whose thermal stability resembles the thermal behaviour of the

nickel (II) tartrate complex. Depending on the chemical state, adsorption con-

figuration of the TA molecule, and the substrate (Ni{100} or NiO/Ni{100}), the

C––O/COO- groups of the TA molecule are tilted by ∼ 42-69◦ with respect to

the surface plane of the nickel substrate. The contribution of this study into the

understanding of the mechanism of the chiral modification of the nickel catalyst

is discussed at the end of the chapter.

3.1 Introduction

The pharmaceutical and agrochemical industry has increasing interest in the syn-

thesis of pure enantiopure chemical products since the chirality of a molecule

affects the biological activity and response. Moreover, many of these compounds

are also used as flavours and fragrances [1–5]. In the area of heterogeneous catal-

ysis enantioselectivity is achieved in several ways, such as attaching a metal to a

chiral support or adsorbing a chiral auxiliary to the metal [4]. The chiral modifi-

cation of the metal can occur either before or during the reaction [4]. The merit

of using heterogeneous catalysts in comparison with homogeneous is the fact that

these catalysts can be easily separated and recycled, can reduce the presence of

metal traces in the product and they can be easily controlled during their use [2, 6].

One great example of a enantioselective catalysed reaction is the hydrogenation of

β-ketoesters (such as methyl acetoacetate MAA) using nickel as a catalyst. The

reaction generates optically active products, if the catalyst is modified with chiral

molecules. These molecules can be either α-hydroxyacids (such as tartaric acid) or

α-amino acids (such as alanine) [2, 11, 12, 16]. The interaction of tartaric acid on

different single crystals was investigated using various surface science techniques,

in order to obtain insights into the mechanism of chiral modification and the

active sites of the enantioselective reaction. Hydroxy–dicarboxylic acids such as

tartaric acid (TA) have been proven to be the the most effective modifiers for hy-

drogenation of MAA (methyl acetoacetate) to MHB (methyl-3-hydroxybutyrate)

[18]. Tartaric acid can exist in three different forms, according to the protona-

tion or not of its two carboxyl groups: neutral biacid form, monotartrate form

(one deprotonated carboxyl group) and bitartrate form (both carboxyl groups are
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deprotonated) [33].

Lorenzo et al. (1999) [59] and (2002) [60] have investigated the interaction

of (R,R)-tartaric acid on Cu{110} as a function of coverage, temperature and

time. Adsorption at room temperature causes generation of monotartrate species

of the molecule. Increase in temperature (T>400 K) at low coverages of tartaric

acid favours the formation of bitartrate species. Bitartate species are also formed

from monotartrate species, at lower temperatures (T=350 K) if the system is

allowed to relax [59, 60]. In the bitartrate phase, the molecule chemisorbs on

the surface via the two carboxylate groups. The C2-C3 bond is found parallel

with respect to the surface, with the two C-OH bonds be directed close to the

surface normal [59]. According to Ref.[59–61], the bitartrate phase is important

for enantioselective catalysis, since at this phase the molecule creates arrays of

ordered layers and 2D supramolecular assemblies on the Cu{110} surface, which

break the symmetry of the crystal. In addition, this phase is the only one that can

accommodate spatially the pro-chiral reactant (MAA) [60]. The induced chirality

is mirrored upon adsorbing the other enantiomer ((S,S)-tartaric acid) [61] on the

Cu{110} surface. The chirality of the molecule and its rigid bitartrate adsorption

geometry on the surface forbids the generation of any reflectional domains on the

surface. In addition the C2 space group of the chiral unit mesh of the molecule

(created by the supramolecular assembly of the adsorbed bitartrate units) which

matches with the C2 rotational symmetry of the surface, ensures the transfer of

a single, two dimensional, chirality to the whole range of the surface [59–61]. The

interaction of tartaric acid on Cu{110} was compared with the achiral succinic

acid. The molecular structure of succinic acid contains hydrogens attached to C2

and C3 carbon atom instead of hydroxyls [97, 98]. As in the case of tartaric acid,

succinic acid forms a trimer chain structure with chiral motif which produces a

2D molecular assembly, originating either from molecular distortion or/and local

chiral reconstruction. This implies that the generation of these structures are

determined by the molecule-metal bonding and not the molecular structure of the

adsorbate. The growth initiates by chiral nucleation points and not randomly.

This nucleation point governs the chirality. In the case of succinic acid however,

this chirality is expressed only locally, since its achiral nature will generate both

chiral nucleation points with equal probability producing a racemic conglomerate

on the surface [97, 98].

The adsorption of (R,R) tartaric acid on Ni{110} was studied using a combina-

tion of experimental techniques (RAIRS and STM), and theoretical calculations

(DFT)[33–35]. Similar to Cu{110}, the chemical state of the TA molecule on

the Ni{110} [33] changes as a function of temperature and coverage. According
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to Ref.[33], tartaric acid is present, in the multilayer, in its biacid form regard-

less from the adsorption temperature. At 90-120 K, tartaric acid is in its biacid

form at all coverages. Adsorption at higher temperatures (170-270 K) causes

chemisorption of tartaric acid through the one deprotonated carboxyl group. At

these temperatures, tartaric acid is presented in its monotartrate form. The other

protonated carboxyl group is directed outside the surface plane, presenting also

hydrogen bonding interactions. Above room temperature, tartaric acid exists in

two forms up to the saturation coverage: at lower coverages it is found in its

bitartrate form and at higher coverages tartaric acid is converted to its monotar-

trate form. The bitartrate phase does not present any ordered overlayers [33]. In

the bitartrate form [34], tartaric acid is bound to 4 nickel atoms, with the oxygen

atoms of the two corresponded carboxylate groups positioned above the Ni atoms,

in a short bridge site. Based on DFT calculations, this geometrical orientation of

the molecule, causes relaxation and reconstruction of the nickel surface, resulting

in chiral footprint on the surface. Calculations propose that one chiral footprint

is preferred energetically over the other suggesting that at room temperature the

same mirror motif will be expected to dominate the surface by 90% ensuring the

creation of an enantiospecific system [34]. Studies of the electronic structure of

the (R,R) tartaric acid on Ni{110} system [35], showed that bitartrate tartaric

acid in the gas phase presents an intrinsic chirality not only in terms of atomic

arrangement but also in its electronic structure, due to the uneven charge dis-

tribution between the four oxygen atoms of the two carboxylate groups which is

transferred to the Ni-O bonds and by extension to all the nickel surface through

the bonds between the nickel atoms [35]. Temperature-dependent behaviour on

the formation of either the monotartrate and bitartrate form was also observed

upon adsorbing (R,R) tartaric acid on Ni{111} [36]. The former structure is more

stable at 300 K, where the latter is favoured at 350 K. On this facet, tartaric acid

forms ordered layers however to a lesser extent in comparison with the Cu{110}
surface [36]. Co-adsorption of (R,R)-tartaric acid and MAA on Ni{111} produced

two ordered arrays with 0.113 ML (one tartrate and one MAA molecules per unit

cell) and 0.167 ML (one tartrate and two MAA molecule per unit cell) local cover-

age [37]. According to Ref.[37], in the low coverage structure, the hydrogenation

will be enantiospecific and generate the R-product in excess whereas the high cov-

erage structure will produce a racemic mixture of products [37]. Modification of

Ni{111} with a solution of (R,R)-tartaric acid [38] show evidence of generation of

nickel tartrate species on the Ni{111} surface at low modifying pH and nickel and

sodium tartrate species at higher pH. The formation of these salt species points to

a widespread etching of the nickel crystal. The etching of the surface is believed
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to cause the chiral modification of the surface, since it creates step-kink sites. A

large quantity of the adsorbed species is removed from the surface, after washing

it with water [38]. The remaining coverage is important for the chiral modification

of the surface, since as it was shown in previous studies [37], high coverages of

modifiers forbid the interaction of MAA with the nickel surface, while absence of

modifiers generates product without optical activity. Since this quantity depends

on the pH and modification temperature, the pH of the tartaric acid solution

controls the enantioselectivity of the surface by controlling the coverage of the

modifier [38]. Modification of Ni{111} with (R,R)-tartaric acid from solution at

350 K (which according to Ref.[37, 38] is the optimum modification temperature

for attaining the highest enantioselectivity using TA as modifier) following wash-

ing of the catalyst, caused generation of HTA- species on the nickel surface [38].

Subsequent immersion of the crystal in a MAA solution caused enhancement of

the diketone/enol ratio of MAA substrate with respect to the modification at

300 K [38]. According to Ref.[38] the origin of the enantioselectivity of this sys-

tem might be due to the formation of hydrogen bonds between the diketone and

the HTA- species, in orientation that will preferably generate the R-enantiomer

as a product during the hydrogenation reaction. Sodium bromide, on the other

hand does not affect the RAIRS spectra of tartaric acid at 350 K modification

temperature, whereas at 300 K, it enhances the diketo-enol form, thus increasing

the enantioselectivity [38].

In this chapter we will explore the chemical state, molecular orientation and

thermal stability of tartaric acid on clean and oxidised Ni{100} as a function of

coverage and temperature using XPS and angle-dependent NEXAFS. Interaction

of tartaric acid on oxidised Ni{111} [39], provided evidence of the formation of

species similar to nickel tartrate, which might assist the etching and the generation

of chiral surfaces. In addition, for approaching more realistic conditions, we have

studied the interaction of tartaric on Ni{100} under elevated pressures of H2 (up

to 6.4 mbar) and H2O (up to 10 mbar) using AP-XPS. The elevated H2 pressures

are used to mimic the reactions conditions and H2O is one of the typical modifying

solvents [24]. All the data were analysed by the author. The experimental data

were collected by the author, by Dr. Chanan Euaruksakul (University of Reading),

by Dr. Rachel Price (University of Reading), by Prof. Georg Held (University of

Reading) and by Alex Large (University of Reading). The overall contribution of

the author to this study is ∼ 80% of the total work.
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3.2 Experimental Methods

The experiments were performed in three different UHV chambers. The UHV

experiments were performed in the BESSY II synchrotron in Berlin (Germany)

and in the MAX-Lab synchrotron in Lund (Sweden) in the UHV endstations of

the HE-SGM and D1011 beamlines, respectively. The X-rays were linear polarized

with the ~E vector in the horizontal plane. The ambient pressure experiments took

place in the near-ambient pressure XPS (NAP-XPS) facility in the University of

Manchester using Al Kα anode (hν=1486.7 eV) as an X-ray source. The base

pressure of all three chambers was between 10-10 and 10-9 mbar. Sample cleaning

was achieved by cycles of sputtering or oxygen treatment at room temperature

with subsequent annealing, or by annealing and cooling in oxygen atmosphere

followed by annealing. Sample cleaning was confirmed by XPS and LEED.

The dosing and the sputtering occurred in preparation chambers. The XPS

and NEXAFS experiments were performed in an analysis chamber. The XPS

experiments were performed using a Scienta analyser in the HE-SGM and D1011

endstations and a SPECS system in the NAP-XPS facility in the University of

Manchester. During the NAP-XPS experiments the sample was mounted inside a

NAP-cell which was docked into the analyser. With this configuration the pressure

inside the analysis chamber did not change significantly during the exposure of the

crystal to high pressures. The temperature was measured using a thermocouple

fixed either on the sample (D1011 and NAP-XPS facility/elevated H2 pressures

experiments) or on the sample holder (HE-SGM and NAP-XPS facility/elevated

H2O pressures experiments) and heated resistively or via an e-beam heater. (R,R)-

tartaric acid (L-(+)-tartaric acid) was dosed from a home built evaporator which

was mounted on the chamber through a gate valve. The evaporator consisted of a

stainless steel crucible containing a glass tube filled with TA powder. Deposition

of the TA molecule was performed by resistively heating the crucibles to 400-

423 K and opening the gate valve to the chamber. The measurement of the

temperature was achieved by K-type thermocouples spot-welded on the crucibles.

This configuration led to deposition times of ∼ 60-150 min/saturated layer for

the clean substrate (Ni{100}) and ∼ 130-145 min/saturated layer for the oxidised

Ni{100}. Higher deposition rates of the molecule were achieved by moving the

evaporator closer to the sample using a small diameter tube which was mounted

in the base of the evaporator. This configuration was provided by the HE-SGM

beamline and led to deposition times of <23 min/saturated layer (referred in the

text as “high deposition rate”).
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The XP-spectra were obtained in the C 1s and O 1s region. In the synchrotron

experiments the spectra were obtained using hν=400 eV and hν=650 eV as pho-

ton energies, respectively, and 50 eV as pass energy. In order to calibrate the the

offset of the binding energy axis, we have also acquired spectra of the Fermi edge

every time the monochromator was moved. For some C 1s spectra (obtained in the

D1011 endstation), we have used the average value of the lowest and the largest

offset observed during the beamtime, for calibrating the binding energy axis, since

we did not have available spectra of the Fermi edge. In the ambient pressure ex-

periments the spectra were acquired using 30 eV as pass energy. The offset of the

binding energy was calibrated using the Ni 2p peak (BE=852.7 eV). For quanti-

tative analysis the spectra were normalised at the low binding region followed by

linear subtraction of the background. The instrumental resolution (beamline and

analyser) was ∼ 0.2-0.3 eV (hν=400 eV) and ∼ 0.6-0.7 eV (hν=650 eV) in the

HE-SGM beamline, ∼ 0.2-0.3 eV (hν=400 eV) and ∼ 0.4-0.5 eV (hν=650 eV) in

D1011 beamline and ∼ 0.4 eV in the NAP-XPS facility.

The NEXAFS spectra were obtained in the C K-edge and O K-edge region

using the partial electron yield mode by applying a retarding voltage in front of

the electron detector. The O K-edge spectra were obtained by applying 0.4 kV

(HE-SGM beamline) and 0.25 kV (D1011 beamline) as retarding voltage. The

NEXAFS in the C K-edge region in both beamlines, were acquired using 0.15 kV

as retarding voltage. For determining the molecular orientation of the tartaric acid

on Ni{100} we have obtained angle dependent NEXAFS. Three angle of incidence

were used in the HE-SGM beamline: θ=0◦ (normal incidence), θ=35◦ and θ=60◦,

and four angles in the D1011 beamline: θ=0◦ (normal incidence), θ=20◦, θ=40◦

and θ=60◦, where θ refers to the angle between the electric field vector and the

surface plane. Spectra of the clean surface were also obtained for the purpose

of background subtraction. Initially, all the spectra were normalised in the low

photon energy region. After background subtraction the spectra were normalised

with respect to the I0 spectra (transmission of the beamline as a function of

energy). The latter spectra were acquired either by measuring the partial electron

yield of a clean gold sample (HE-SGM beamline) or by measuring the drain current

of a gold mesh in the back chamber of the D1011 beamline. Finally the spectra

were also normalised with respect to the step height, at energies above all oxygen

and carbon absorption resonances.
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3.3 Results

3.3.1 Tartaric acid on clean Ni{100}/UHV

XPS Results

Figure 3.2 shows top-up XP-spectra of tartaric acid (TA) on Ni{100} in the C 1s

and O 1s region at two different dosing temperatures: 303-304 K (Fig. 3.2a-3.2b)

and 310-350 K (Fig. 3.2c-3.2d). The coverages were adjusted by varying the dosing

time. In both cases the signal of tartaric acid was saturated. The coverages shown

are based on the fitted XPS area of the saturated signal of tartaric acid in the

O 1s region. Carbon and oxygen impurities were present on the surface before

dosing. The XPS area (obtained upon fitting) of the oxygen impurities were

∼ 6% (Fig. 3.2b) and ∼ 2% (Fig. 3.2d) of the XPS area (obtained upon fitting)

of the corresponded saturated signal of TA in the O 1s spectrum in Fig. 3.2b and

Fig. 3.2d, respectively. The fitted XPS area of the carbon impurities were ∼ 40%

(Fig. 3.2a) and ∼ 14% (Fig. 3.2c) of the fitted XPS area of the corresponded

saturated signal of TA (excluding impurities) in the C 1s spectrum in Fig. 3.2a

and Fig. 3.2c.

The O 1s spectrum in the submonolayer regime (79% sat) at 303-304 K

(Fig. 3.2b) can be fitted by three peaks at 531.6 eV, 532.9 eV and 534.8 eV.

The low binding energy peak is assigned to oxygen atoms of the carboxyl group

chemisorbed on the nickel surface (COO-/COOH, Fig. 3.1) [46, 69]. The peak at

532.9 eV is attributed to oxygen atoms dangling from the surface (either oxygen

atoms from hydroxyl groups, COH or oxygen atoms belonging to the protonated

carboxyl group, COOH/COOH). The high binding energy peak accounts for ap-

proximately 5-6% of the XPS signal area in both coverages (Fig. 3.2b). This peak

was also observed in the case of tartaric acid on Cu{531} [99] and it was assigned to

either oxygen atoms of the carboxyl groups with high degree of protonation or to a

satellite peak. The former effect could probably explain this feature, since work on

the interaction of tartaric acid on Cu{110}[59], on Ni{110} [33] and Ni{111}[36],

show that the molecule can form intermolecular hydrogen bonds between the non

chemisorbed moieties of the molecule (hydroxyls or carboxyl groups), where some-

times these molecules can even form dimers and supramolecular assemblies. The

ratio of the area of the low binding energy peak (corresponding to the chemisorbed

oxygen atoms of the carboxyl group of the TA molecule) and the sum of the areas

of the two high binding energy peaks, which correspond to the non chemisorbed

oxygen atoms of the TA molecule ( [COO-+COOH(ads)]
[COOH+COOH+COH(nonads)]

) is ∼ 1.8:1 (O 1s
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spectrum in Fig. 3.2b). With the error margin caused by photoelectron diffrac-

tion and attenuation effects, this would suggest, that in the submonolayer regime,

the oxygen atoms of the carboxyl groups of the tartaric acid molecule are depro-

tonated (TA2-) and chemisorbed on the nickel surface in a bitartrate/µ4 geometry

(Fig. 3.1). Increasing the coverage to saturation (O 1s spectrum in Fig. 3.2b),

causes decrease in the aforementioned ratio to 1.3:1. In the saturated layer, TA

accommodates a geometry closer to tridentate (3-point adsorption geometry or

µ3), where one of the oxygen of one of the carboxyl groups is protonated and

dangling from the surface (HTA-, Fig. 3.1). There is a possibility that at this cov-

erage we find coexistence of bitartrate (µ4) and monotartrate (µ2) phases, which

spectroscopically will be equivalent to a molecule, with µ3 adsorption geometry

(Fig. 3.1). In the monotartrate phase, TA chemisorbs on the nickel surface through

one of its deprotonated carboxyl groups whereas the other carboxyl group remains

protonated and dangling from the surface (Fig. 3.1). In any case, increasing the

Figure 3.1: The three possible chemical states of the chemisorbed (R,R)-tartaric
acid on Ni{100} surface with their corresponding adsorption geometries and the
expected XPS area ratio in the O 1s region, of the low binding energy peak
(corresponding to the chemisorbed oxygen atoms of the carboxyl group of the
TA molecule) and the sum of the areas of the two high binding energy peaks,
which correspond to the non chemisorbed oxygen atoms of the TA molecule
( [COO-+COOH(ads)]

[COOH+COOH+COH(nonads)]
). The black circles are carbon atoms, the red circles

are oxygen atoms, the grey circles are hydrogen atoms and green circles are nickel
atoms.
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(a) (b)

(c) (d)

Figure 3.2: Top-up XP-spectra of (R,R)-tartaric acid (TA) on Ni{100} in
(a+c) C 1s region (hν=400 eV) and (b+d) O 1s region (hν=650 eV). Top
panel, dosing conditions (D1011 beamline): Tsample≈303-304 K, Tevaporator≈403-
404 K,Pbase≈2 × 10-10-1 × 10-9 mbar, Pdosing≈5 × 10-9-1 × 10-8 mbar, De-
position time≈60-150 min/saturated layer. Bottom panel, dosing conditions
(HE-SGM beamline, higher deposition rate): Tsample≈310-350 K, Tevaporator≈402-
403 K,Pdosing≈1 × 10-8-7 × 10-8 mbar, Deposition time≈23 min/saturated layer.
The black thick dots are the raw spectra and the black thick lines are the fitted
curves. The solid coloured curves are the individual peaks.
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coverage of the TA molecule on the nickel surface, increases the HTA-:TA2- ratio

on the nickel surface. This is consistent with what was found in previous studies

on Cu{110} [59] on Ni{110} [33], on Ni{111} [36] and on Pd{111} [100], where

higher coverages trigger the formation of monotartrate species induced by the

molecular crowding of the surface [100]. The high binding energy peak shifts to-

wards lower binding energies (534.5 eV), suggesting weaker hydrogen bonding at

this conformation of the molecule. In the C 1s region (Fig. 3.2a), (saturated layer)

we can observe 4 peaks at 283.4 eV, 284.3 eV, 286.6 eV and 289.0 eV whereas in

the submonolayer regime (79% sat) we can observe another peak at 283.0 eV. It is

worth noting that the binding energy axis in the submonolayer regime (79% sat)

is highly inaccurate since we did not have available spectra of the Fermi edge.

Calibration of the binding energy axis was performed by using the average value

of the lowest and the largest offset observed during the beamtime. The three low

binding energy peaks are associated with decomposition products. The peak at

283.0 eV was previously assigned to carbidic/surface carbon [101, 102]. The peaks

at 283.4 eV and 284.3 eV were observed upon adsorbing alanine on Ni{111} [46].

The peak at 283.4 eV is related to either atomic carbon/nickel carbide [46, 103]

and/or allylic carbon [102] and the peak at 284.3 eV is associated with sp2(-C=C-

)/graphitic carbon [46, 103]. The peak at 286.6 eV is assigned to the carbon

attached to hydroxyl group (COH) and the high binding energy peak to the con-

voluted signal of COO-/COOH species. The ratio of the area of the low binding

energy peak in the C 1s region (286.6 eV) and area of the high binding energy peak

(289.0 eV) is close to 2.7:1 in the submonolayer regime, and decreases to 2.1:1 in

the saturated coverage. Based on the atomic stoichiometry of the molecule, we

should expect 1:1 area ratio between those peaks, however photoelectric diffrac-

tion and attenuation effects could influence the ratio of these peaks, especially in

the submonolayer regime, where the tartaric acid adsorbs in a bitartrate geometry

(µ4).

Dosing TA at 310-350 K and higher deposition rate, causes a decrease (with

respect to the spectra in Fig. 3.2a-3.2b) in the ratio of the area of the low bind-

ing energy peak and the sum of the areas of the two high binding energy peaks

( [COO-+COOH(ads)]
[COOH+COOH+COH(nonads)]

), O 1s spectra in Fig. 3.2d) especially close to the sat-

uration coverage (∼ 1.1:1 at 54% sat and ∼ 0.7:1 in the saturated layer). In the

saturated layer, TA is found predominantly in its HTA- form supporting an µ2

(monotartrate)/µ3 adsorption configuration (Fig. 3.1). We might also expect the

presence on the surface (in minority) of some bitartrate phases (Fig. 3.1). The

two low binding energy peaks (O 1s spectrum in Fig. 3.2d) are found at 531.7 eV

and 533.0 eV at 54% saturation coverage. The low binding energy peak shifts
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to 531.9 eV in the saturated layer. Similar feature is also observed in the C 1s

region (Fig. 3.2c), where the peak associated with COH is found at 286.6 eV

(54% sat) and shifts to 286.9 eV in the saturated layer, and the peak associated

with COO-/COOH is found at 288.7 eV at 54% coverage and at 288.9 eV in

the saturated layer. The area ratio of the aforementioned peaks ( [COH]
[COO-/COOH]

) is

∼ 1.8:1 at 54% sat and 1.3:1 at the saturation coverage. The latter ratio is very

close to the expected ratio based on the atomic stoichiometry of the molecule. It

is very likely that at this molecular configuration, the attenuation effects are less

significant, since one of the carboxyl groups is dangling from the surface. The

increased HTA-:TA2- ratio in the saturated layer in Fig. 3.2c-3.2d with respect

to the saturated layer in Fig. 3.2a-3.2b can be explained by the higher deposi-

tion rate of the molecule, rather than the dosing temperature. For example, on

Cu{110}, the generation of the bitartrate phase at 350 K [60] is only facile in

the early stages of adsorption (only in the presence of small island of molecules)

since it involves increase in the adsorption area. In addition this conversion is

time dependent [60]. The high deposition rate of TA causes the creation of larger

islands whose large adsorption area could not induce the formation of bitartate

species (even at coverages below saturation) as in the case of the O 1s spectrum

in Figure 3.2b (bottom panel). The high binding energy peak in the O 1s spectra

in Fig. 3.2d (which accounts ∼ 8-13% of the XPS signal) is found at 534.4 eV at

54% sat coverage and shifts to 534.2 eV in the saturated layer in line with the

O 1s spectra in Fig. 3.2b.

Figure 3.3 shows step annealed XP-spectra in the C 1s and O 1s region upon

dosing TA at 303-304 K (Deposition time≈75-90 min/saturated layer, Fig. 3.3a-

3.3b) and 298 K (Deposition time<10 min/saturated layer,Fig. 3.3c-3.3d). In the

former dosing conditions, the coverage of TA on Ni{100} is saturated, chemisorb-

ing on the nickel surface in an average of a µ3 adsorption geometry (O 1s spectrum

in Fig. 3.2a and C 1s spectrum in Fig. 3.2b). The latter conditions (Fig. 3.3c-

3.3d), triggered the formation of multilayers, so thick that they attenuate the

signal of the Fermi edge (results not shown). Figures 3.4a and 3.4b show the tem-

perature dependence on the area of the low binding energy peak (COO-/COOH)

and the sum of two high binding energy peaks (COOH/COOH/COH) in the O 1s

region obtained from the O 1s spectra in Fig. 3.3b and 3.3d, respectively. Fig-

ure 3.4c compares the temperature dependence on the area ratio of the aforemen-

tioned signals ( [COO-+COOH(ads)]
[COOH+COOH+COH(nonads)]

) between the areas shown in Fig. 3.4a

and Fig. 3.4b. Carbon and oxygen impurities were present on the surface be-

fore dosing. The XPS area (obtained upon fitting) of the oxygen impurities were

∼ 6% (Fig. 3.3b) and ∼ 11% (Fig. 3.3d) of the XPS area (obtained upon fitting)
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(a) (b)

(c) (d)

Figure 3.3: Step anneal XP-spectra of (R,R)-tartaric acid (TA) on Ni{100}
in (a+c) C 1s region (hν=400 eV) and (b+d) O 1s region (hν=650 eV). Top
panel, dosing conditions (D1011 beamline): Tsample≈303-304 K, Tevaporator≈403-
404 K, Pbase≈2 × 10-10-1 × 10-9 mbar, Pdosing≈5 × 10-9-1 × 10-8 mbar, De-
position time≈60-150 min/saturated layer. Bottom panel, dosing conditions
(HE-SGM beamline, higher arrival rate): Tsample≈298 K, Tevaporator≈423 K,
Pdosing≈4 × 10-8 mbar, Deposition time<10 min/saturated layer. The black thick
dots are the raw spectra and the black thick lines are the fitted curves. The solid
coloured curves are the individual peaks.
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of the corresponded saturated signal of TA in the O 1s spectrum in Fig. 3.2b and

Fig. 3.2d, respectively. The fitted XPS area of the carbon impurities were ∼ 40%

(Fig. 3.3a) and ∼ 1% (Fig. 3.3c) of the fitted XPS area of the corresponded sat-

urated signal of TA (excluding impurities) in the C 1s spectrum in Fig. 3.2a and

Fig. 3.2c, respectively.

Heating the saturated layer (Fig. 3.3a-3.3b) to 353 K and 396 K caused increase

in the area ratio ( [COO-+COOH(ads)]
[COOH+COOH+COH(nonads)]

) in the O 1s spectra in Fig. 3.3a from

1.3:1 to 1.7:1 and 2.2:1, respectively (Fig. 3.4a and Fig. 3.4c). The XPS total

area in O 1s and C 1s region does not change, significantly (96% and 94% of

the saturated signal, respectively). This effect suggests, that heating the sample

at this temperature causes deprotonation of the HTA- species converting their

configuration to a bitartrate (µ4, (Fig. 3.1)). According to previous work [59, 60],

the conversion of the monotartrate phase to the bitartrate has a significant kinetic

barrier, which in our study is probably overcome by the annealing. In addition,

heating to 396 K causes a shift of the high binding energy peak in the O 1s region

from 534.5 eV to 534.8 eV. This effect was also observed, reversibly by changing

from the submonolayer to saturated regime in the O 1s spectra in Fig. 3.2b, and

implies stronger hydrogen bonds when the molecule chemisorbs in its bitartrate

(µ4) conformation with respect HTA- chemical state of the molecule.

Heating the multilayer to 377 K causes desorption of most of the multilayer

features. (Fig. 3.3c-3.3d). In the C 1s region (Fig. 3.3c) we can observe 4 peaks

at 284.0 eV, 284.7 eV, 287.0 eV and 289.1 eV and 3 peaks in the O 1s region

(Fig. 3.3d) at 531.9 eV, 533.0 eV and 534.0 eV. It is worth noting that the shape

of the peaks associated with the intact TA molecule in the C 1s region in Fig. 3.3c

differ from the C 1s spectra in Fig. 3.2c. The area ratio ( [COO-+COOH(ads)]
[COOH+COOH+COH(nonads)]

)

in the O 1s spectrum in Fig. 3.3d is ∼ 0.8:1 (Fig. 3.4b-3.4c) suggesting the same

conformation/chemical state of TA as it was found in the saturated layer in Fig-

ures 3.2c-3.2d (HTA- chemical state supporting an µ2 (monotartrate)/µ3 adsorp-

tion configuration, Fig. 3.1). The coverage at this temperature is 94% of the

saturated layer in Figures 3.2c-3.2d. Further heating to 400 K (Fig. 3.3c-3.3d),

causes increase in the area ratio ( [COO-+COOH(ads)]
[COOH+COOH+COH(nonads)]

) in the O 1s spectrum

in Fig. 3.3d to 1.6:1 (Fig. 3.4b-.3.4c), causing the transition of the molecule to-

wards more µ4 adsorption configuration (Fig. 3.1). The peak at 534 eV shifts to

534.4 eV in line with the O 1s spectra in Figure 3.3b. The area percentage of the

aforementioned peak (with respect to to the total XPS area) drops from 14% to

6%. The coverage at this temperature is 81% of the saturated layer.

Heating the saturated layer to 443 K (Fig. 3.3a-3.3b) causes significant loss in

the XPS signal in both regions (ΘTA=74% sat). All the peaks associated with TA
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(a) (b)

(c)

Figure 3.4: (a+b) Areas profiles as function of temperature obtained from the
O 1s spectra in Figures (a) 3.3b and (b) 3.3d. (c) Area ratio of the peaks shown
in Figures 3.4a and 3.4b as a function of temperature.
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shift to lower binding energies, confirming the decrease in the coverage of tartaric

molecules on the nickel surface. The area ratio ( [COO-+COOH(ads)]
[COOH+COOH+COH(nonads)]

) in the

O 1s spectrum in Fig. 3.3b at this temperature increases to 2.7:1 (Fig. 3.4a and

Fig. 3.4c). Heating the multilayer to 430 K (Fig. 3.3c-3.3d) causes a slight decrease

in the XPS signal area with respect to the spectrum at T=400 K (ΘTA=76% sat)

but increase in the area ratio ( [COO-+COOH(ads)]
[COOH+COOH+COH(nonads)]

) in the O 1s spectrum in

Fig. 3.3d to 1.9:1 (Fig. 3.4b-3.4c). Significant changes are observed upon annealing

to 467 K. In particular we can observe the generation of decomposition species

in the C 1s region (Fig. 3.3c) at 282.9 eV and 285.8 eV, the latter been assigned

to CO species. The area ratio ( [COO-+COOH(ads)]
[COOH+COOH+COH(nonads)]

) in the O 1s spectrum

in Fig. 3.3d at this temperature is close to 3.2:1 (Fig. 3.4b-3.4c), which might be

explained by also the presence of decomposition species on the surface. Heating

the saturated layer 522 K (Fig. 3.3a-3.3b) and the multilayer to 500 K (Fig. 3.3c-

3.3d), triggers the full decomposition of the molecule leaving only dissociation

products on the surface.

NEXAFS Results

Figure 3.5 shows angle resolved NEXAFS in the C K-edge and O K-edge re-

gion obtained in the HE-SGM beamline upon dosing TA onto Ni{100} at 310-

350 K to 85% saturation (Fig. 3.5a-3.5b) and upon dosing TA onto Ni{100} at

298 K to multilayer regime and anneal the layer to 377 K to 94% saturation

(Fig. 3.5c-3.5d). According to the O 1s spectra in Fig. 3.2d and Fig. 3.3d (which

present the corresponding O 1s XP-spectra of the two aforementioned layers) the

area ratio ( [COO-+COOH(ads)]
[COOH+COOH+COH(nonads)]

) is 0.9:1 and 0.8:1, respectively, which sug-

gest that TA is found predominantly in HTA- chemical state supporting an µ2

(monotartrate)/µ3 adsorption configuration (Fig. 3.1). The C K-edge NEXAFS

consist of a sharp π* resonance at 288.8 eV, three σ* resonances at 292.1 eV,

295.6 eV and 301.7 eV and a step at 289-289.1 eV. The O K-edge NEXAFS con-

sist of a sharp π* resonance at 532.6-532.7 eV, two σ* resonances at 539.2-539.3 eV

and 544.0 eV and a step at 532.8-533 eV. It is difficult to determine the exact

position of the σ* resonances due to their large FWHM, however this does not

influence the purpose of our NEXAFS data analysis which relies on the intensity

of the π* resonance.

The σ* resonances in the C and O K-edge region regions are due to C-C and

C-O bonds [46, 99, 104, 105]. We cannot exclude the presence in the NEXAFS

spectra of features associated with decomposition products or contamination of

the surface, especially in the C K-edge region (Fig. 3.5a and 3.5c), where we
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(a) (b)

(c) (d)

Figure 3.5: Angle resolved NEXAFS acquired at the HE-SGM beamline. Top
panel: (a) C K-edge and (b) O K-edge NEXAFS spectra obtained after dosing
(R,R)-tartaric acid onto Ni{100} at 310-350 K to 85% saturation (see Fig. 3.2c-
3.2d for the corresponding XP-spectra). Bottom panel: (c) C K-edge and (d) O
K-edge NEXAFS spectra obtained after dosing (R,R)-tartaric acid onto Ni{100}
at 298 K to multilayer regime and anneal the layer to 377 K (see Fig. 3.3c-3.3d for
the corresponding XP-spectra). The markers represent the raw data and the solid
thick lines the fitted curves. The red curves below the spectra show the individual
Gaussian peaks, the linear background and the the step function used for fitting.
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(a) (b)

(c) (d)

Figure 3.6: (a-d) Plots (black markers) showing the intensity of the oxygen and
carbon π* resonance in Fig. 3.5a-3.5a, respectively as a function of angle θ, where
θ refers to the angle between the electric field vector and the surface plane. The
solid red line shows the fitted curve calculated by the function in Eq. 3.1.
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can clearly observe features between ∼ 283.3-287 eV. These peaks are probably

associated with sp2(-C=C-)/graphitic carbon [106], or atomic carbon [105], which

has been also observed in the C 1s XPS signal (Fig. 3.2c and 3.3c). Alternatively,

these peaks could also be due to transitions related to the central carbons (C-OH)

of the TA molecule [104, 107, 108].

The π* resonance (Fig. 3.5) in the C and O K-edge region is associated with the

COO- group and C––O group of the protonated carboxyl group of the TA molecule

[69, 99, 109, 110]. By plotting the intensity of these peaks, obtained upon fitting

the NEXAFS figures, as a function of angle θ (Fig. 3.6), where θ refers to the

angle between the electric field vector and the surface plane, we could determine

the tilt angle α of the C––O/COO- groups of the TA molecule with respect to

the Ni{100} surface plane, using the following equation for surfaces with 4-fold

symmetry [96]:

I(θ) = A[P (sinθ)2 · (1− 3

2
sin2α) +

1

2
sin2α] (3.1)

where P is the polarisation factor (0.91 for the HE-SGM beamline). The values of

the tilt angle α obtained upon fitting using Eq. 3.1 along with the fitting error are

shown in the corresponding figures (Fig. 3.5-3.6). The values lie between ∼ 55-

56◦, which are close to the “magic angle” (α=54.7◦), i.e the tilt angle in which the

intensities of the resonance are independent of the angle of incidence [96], which

is partially observed in our NEXAFS spectra (Fig. 3.6). Alternatively, the lack

of polar angle anisotropy in the intensity of the π* resonance might also reflect a

lack of ordering of the TA overlayer on the Ni{100} surface.

Figures 3.7a and 3.8a show angle resolved NEXAFS in the C and O K-edge

region, respectively, obtained in the D1011 beamline upon dosing TA at T=303-

304 K to 79% saturation. According to the XP-spectrum in the O 1s region

(Fig. 3.2b) the TA in this layer exists mainly in its bitartrate form, chemisorb-

ing on the nickel surface through both of the deprotonated oxygen atoms of the

carboxyl group in a 4-point adsorption geometry (Fig. 3.1). The C K-edge NEX-

AFS spectra (Fig. 3.7a) consist of a sharp π* resonance at 287.9 eV, three σ*

resonances at 291.0 eV, 295.6 eV and 300.0 eV and a step at 288.2 eV. The O

K-edge NEXAFS spectra (Fig. 3.7a) could only be reasonably fitted with two π*

resonances which are found at 530.0 eV and 531.2 eV. The O K-edge NEXAFS

spectra (Fig. 3.7a) consist also of two σ* resonances at 537.0 eV and 541.7 eV and

a step at 531.7 eV. The small discrepancy on the energy positions with respect to

C and O K-edge spectra in Fig. 3.5 is attributed to the difference in the energy

calibration of the monochromator of the two beamlines. By using Eq. 3.1 (P≈1 for
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(a)

(b)

Figure 3.7: (a) Angle resolved C K-edge NEXAFS acquired at the D1011 beamline
after dosing (R,R)-tartaric acid onto Ni{100} at 303-304 K to 79% saturation (see
Fig. 3.2a-3.2b for the corresponding XP-spectra). The dots represent the raw data
and the solid thick lines the fitted curves. The red curves below the spectra show
the individual Gaussian peaks, the linear background and the the step function
used for fitting. (b) Plots (black markers) showing the intensity of the carbon π*

resonance in Fig. 3.7a as a function of angle θ, where θ refers to the angle between
the electric field vector and the surface plane. The solid red line shows the fitted
curve calculated by the function in Eq. 3.1.
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(a)

(b) (c)

Figure 3.8: (a) Angle resolved O K-edge NEXAFS acquired at the D1011 beamline
after dosing (R,R)-tartaric acid onto Ni{100} at 303-304 K to 79% saturation
(see Fig. 3.2a-3.2b for the corresponding XP-spectra). The markers represent the
raw data and the solid thick lines the fitted curves. The red curves below the
spectra show the individual Gaussian peaks, the linear background and the the
step function used for fitting (b+c) Plots (black markers) showing the intensity of
the two oxygen π* resonances in Fig. 3.8a as a function of angle θ, where θ refers
to the angle between the electric field vector and the surface plane. The solid red
line shows the fitted curve calculated by the function in Eq. 3.1.
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the D1011 beamline) the angular dependency of the π* resonance in the C K-edge

region (Fig. 3.7b) returned tilt angle α=68.7◦ whereas the angular dependency of

the two π* resonances in the O K-edge region (Fig. 3.8b-3.8c) returned tilt angles

α1=42.1◦ and α2=63.8◦ for the peaks at 530.0 eV and 531.2 eV, respectively. The

presence of two π* resonances in the O K-edge spectra (Fig. 3.8a) suggest that,

in this layer, the carboxylate of the TA molecule exists in two different confor-

mations with respect to the nickel surface. We cannot exclude the contribution

to this signal from CO molecules, which were present before dosing, although in-

vestigation on the adsorption of CO on Ni{100}, [111] show that the molecule is

upright, close to the surface normal of the nickel surface (α=90◦), something that

is not consistent with the obtained tilt angles of this layer.

3.3.2 Tartaric acid on oxidised Ni{100}/UHV

Introduction

The oxidation of Ni{100} has been a subject of many studies [112–129]. According

to Ref.[116] the oxidation of Ni{100} occurs in three reaction regions. The first

two regions consist of rapid dissociative chemisorption followed by rapid genera-

tion of epitaxial NiO (2 layers thick) [116]. These regions depend on the oxygen

exposure [116]. The last reaction is the slow thickening of the bulk NiO which

according to Ref.[116] it only occurs ay high oxygen pressures and low surface tem-

peratures. The chemisorption of oxygen leads to the generation of p(2 × 2) and

c(2 × 2) superstructures [114, 116, 119, 121, 123, 125, 126, 129], which correspond

to 0.25 ML and 0.5 ML coverage, respectively [114].

Three structures of the NiO film on Ni{100} were observed in previous stud-

ies. One of the structures is referred to as NiO{111} and it is identified by a 12

spot ring pattern (Fig. 3.9), which was initially explained by two hexagonal unit

meshes (twice the parameter of nickel atom), in two equivalent orientations [119].

In a later study [112], the 12 spot ring pattern was explained by the presence of

four orientational domains with (111) stacking sequence, in four azimuthal orien-

tations. The formation of this structure is favoured at temperatures close and/or

below room temperature (it is formed under conditions of kinetic limitations)

[112, 115, 128–130]. The surface of this structure is polar and is stabilized by

the presence of OH groups [127, 129]. Heating this oxide layer causes dehydrox-

ylation of the surface and reconstruction to the non-polar NiO(100) [115, 129].

The NiO(100) structure is the thermodynamically-favoured [115, 128, 129] and

is formed at T>500 K [112, 115, 125, 127, 128]. The third oxide structure, is
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observed mainly between 300 K to 400 K and presents a O-(7x7) superstructure

[115, 122, 128]. According to Ref.[122] this oxide grows mainly as NiO(001) in a

strained superlattice which is expanded by 1
6

with respect to the metal substrate.

This layer is thinner, more ordered and uniform than the NiO(100) structure,

which is kinetically limited at these temperatures [128]. Kopatzki et al (1995)

[113] have studied the temperature dependence on the rate oxide nucleation on

Ni{100}. The nucleation proceeds mainly at steps and grows laterally forming

2D oxide islands. At 300 K the oxidation is facile even at low exposures, forming

(7x7) and NiO(111) suboxide phases. At higher temperatures, the steps facet

to {001} segments due to the interaction of chemisorbed oxygen and Ni atoms,

suppressing the oxide nucleation [113].

XPS/LEED Results

Figure 3.9 shows LEED patterns and the corresponding Ni 2p XP spectra of clean

and oxidised Ni{100}. Fig. 3.10 shows top up XP-spectra of tartaric acid (TA)

onto two different oxidised layers (top and bottom panel). In both cases the signal

of tartaric acid was saturated. The coverages shown are based on the fitted XPS

area of the saturated signal of tartaric acid (excluding impurities) in the C 1s

region (Fig. 3.10a and 3.10c). It is worth mentioning the binding energy axis in

the C 1s region (Fig. 3.10a and 3.10c) is highly inaccurate since we did not have

available spectra of the Fermi edge. Calibration of the binding energy axis was

performed by using the average value of the lowest and the largest offset observed

during the beamtime. The first oxidised layer (top panel, Fig. 3.10a-3.10b) was

generated by the following procedure :

1. Dose O2 at P≈2 × 10-8 mbar for 1 min at room temperature (room tem-

perature).

2. Anneal the crystal to 850 K in O2 atmosphere and switch off the gas and

heating at the same time.

3. Heat in vacuum to 500 K.

4. Re-expose the crytal to O2 at P≈1 × 10-7 mbar for 1 min at Tsample≈318 K,

annealed to 900 K in O2 atmosphere and cool to 373 K in the same atmo-

sphere (PO2≈1 × 10-7 mbar).

The second oxidised layer (bottom panel, Fig. 3.10c-3.10d) was created by the

following procedure:
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1. Dose O2 at P≈1 × 10-7 mbar at Tsample≈357 K for 1 min, anneal to 900 K

and cool to 373 K all in oxygen atmosphere (PO2≈1 × 10-7 mbar).

2. Dose O2 at P≈1 × 10-7-2 × 10-7 mbar at Tsample≈311-317 K for 64 min.

3. Dose O2 at P≈1 × 10-7 mbar at Tsample≈306 K for 1 min, anneal to 900 K

and cool to 373 K all in oxygen atmosphere (PO2≈1 × 10-7 mbar).

4. Dose O2 at P≈5.8 × 10-7-7.6 × 10-7 mbar at Tsample≈323 K for 60 min.

The aforementioned procedures were followed in order to create an oxide layer

on the Ni{100} surface while at the the same time treat the carbon impurities

by annealing in O2 atmosphere. Cooling in O2 atmosphere prevented also the

contamination of the surface from adventitious carbon or CO present in the back-

ground pressure of the chamber. Carbon impurities were present on the surface

before dosing tartaric acid. The XPS area (obtained upon fitting) of the car-

bon impurities were ∼ 11% (Fig. 3.10a) and ∼ 22% (Fig. 3.10c) of the XPS area

(obtained upon fitting) of the corresponded saturated signal of TA (excluding

impurities) in the C 1s spectra in Fig. 3.10a and Fig. 3.10c, respectively.

The LEED image of the NiO layer (Fig. 3.9, top panel) presents a 12-spot

ring pattern which is characteristic for a NiO{111} film grown on the Ni{100}
surface [112, 129, 130]. The formation of this structure under our experimental

conditions is in disagreement with previous studies [112, 115, 129, 130], which

suggested that the NiO{111} film on Ni{100} is formed only at T≤300 K . Fig-

ure 3.9 shows XP-spectra in the Ni 2p region of clean and oxidised Ni{100}. The

spectrum corresponding to NiO shows 7 peaks at 852.6 eV, 854.0 eV, 855.9 eV,

860.8 eV, 869.9 eV, 872.2 eV and 879.9 eV. The peak positions are in close agree-

ment with the work of Langell et al (1994, 1995) [129, 130] on NiO{111}/Ni{100}.
The peaks at 852.6 eV and 869.9 eV are associated with doublet splitting of the

2p state of the Ni0 substrate (2p3/2 and 2p1/2, respectively) caused by spin orbit

coupling [129]. The peaks at 854 eV/855.9 eV and 872.2 eV are linked to mul-

tiplet splitting of the 2p state of the Ni2+ substrate (2p3/2 and 2p1/2 transitions,

respectively). These transitions generate satellite peaks at 860.8 eV and 879.8 eV,

respectively [129, 130]. The O 1s spectra of the oxide layer (Fig. 3.10b and 3.10d)

show two peaks at 529.5-529.6 eV and 531.3 eV which are assigned to lattice ox-

ide (O-2) and hydroxyls species (OH), respectively [129–132]. The hydroxyls are

formed through interaction of the oxide layer with background pressure of H2O

and/or H2 [127, 129, 131]. The presence of the hydroxyls might explain the for-

mation of NiO{111} structures at these temperatures, over the other structures

observed in previous studies, because they are known to stabilize the NiO{111}
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Figure 3.9: LEED patterns and the corresponding Ni 2p XP spectra for the
clean (bottom panel) and oxidised Ni{100} (top panel) obtained in the MAX-Lab
synchrotron in Lund (Sweden) in the UHV endstation of the D1011 beamline. The
LEED patterns were recorded at Ebeam=90 eV. The XP-spectra were obtained at
hν=1000 eV and 50 eV pass energy. The data were normalised also to the peak
for clarity.

polar surfaces, and their presence is essential for the formation of these structures

[127, 129]. Based on the area of saturated TA (O 1s spectrum in Fig. 3.2b), the ex-

pected saturation coverage of TA on Ni{100} (0.25 ML, 1 TA molecule per 4 nickel

atoms, see Fig. 3.1), correcting by factor of 6 (6 oxygen atoms per TA molecule)

and without taking account any attenuation effects, the oxide concentration (O-2)

in the layer in the O 1s spectrum in Fig. 3.10b is ∼ 1.4 ML and ∼ 1.0 ML in

Fig. 3.10d. The corresponding hydroxyl concentration is 0.9 ML and 1.1 ML,

respectively. The extent of oxidation is higher in the first layer (O 1s spectrum in

Fig. 3.10b), even though we have used more oxidising conditions during the forma-

tion of the second oxide layer. This is probably related to the base pressure of the

chamber during oxidation, which was approximately one magnitude higher during

the second oxidation cycle (Fig. 3.10c-3.10d, Pbase≈3 × 10-9 mbar) in compari-

son with the first oxidation cycle (Fig. 3.10a-3.10b, Pbase≈4 × 10-10 mbar).This

resulted in lower amount of impinged oxygen atoms on the nickel surface during

the second oxidation cycle (Fig. 3.10c-3.10d) while at the same time increased the
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hydroxyl concentration on the nickel surface due to the increased background pres-

sure. In addition, during the second oxidation cycle (Fig. 3.10c-3.10d), the nickel

surface was exposed for a longer period at lower temperatures in O2 atmosphere,

inducing even more the formation of hydroxyl species.

Dosing TA onto hydroxylated NiO{111}/Ni{100} film causes an increase in

the XPS signal at the high binding energy end of the O 1s region (Fig. 3.10b

and 3.10d), which is consistent with the presence of an organic molecule on the

surface. The C 1s spectra in Fig. 3.10a show 4 peaks at 283.7-284.0 eV, 284.6-

284.8 eV, 286.6-287.0 eV and 288.6-289.0 eV whereas the C 1s spectra in Fig. 3.10c

show three peaks at 284.4-284.7 eV, 286.3-286.7 eV and 288.4-288.8 eV. The

two high binding energy peaks are assigned in a similar fashion to the previous

C 1s spectra in Fig. 3.2a of the TA/Ni{100} system, to the (COH and to the

COO-/COOH of the adsorbed TA molecule, respectively). The area ratio of these

two peaks ( [COH]
[COO-+COOH]

) is ∼ 1.2-1.3:1. The other two peaks (283.7-284.0 eV and

284.4-284.8 eV) are associated with decomposition fragments. Comparing the

saturated C 1s XPS signal of the two TA/NiO/Ni{100} systems, we observe that

the TA overlayer area is higher in the least hydroxylated layer (C 1s spectrum

in Fig. 3.10a), which is also higher than the corresponding C 1s XPS area of the

saturated layer in the TA/Ni{100} system (Fig. 3.2a).

Langell et al (1994) [130] and Jones et al (2004) [39] have investigated the ad-

sorption of acetic and tartaric acid respectively on hydroxylated NiO{111} films.

Acetic acid was found to adsorb in a bridging acetate form on Ni2+ ion through

condensation reaction of the adsorbed hydroxyl and the hydrogen of the molecule,

which releases H2O in the gas phase [130] (Fig. 3.11). Similar results were ob-

tained by Jones et al. (2004) [39] upon interaction of TA on the hydroxylated

NiO{111}/Ni{111} substrate. The author found evidence of the formation of

species similar to nickel tartrate. In this system [39], TA is found in its bitartrate

form, bridging two OH-Ni2+-OH surface sites and releasing two H2O molecules in

the gas phase [39]. Fitting the O 1s spectra in our study (Fig. 3.10b and 3.10d)

was particularly challenging because of the overlap of the signal corresponding to

the deprotonated carboxyl group of TA (COO-) and the hydroxyls. Fitting was

achieved by keeping the fitting parameters of the substrate NiO and adjusting

the fitting signal corresponding to the TA molecule, so that the estimated TA

coverage will be in close agreement to the coverage estimated using the XPS fit-

ted area of the TA molecule in the C 1s region. The XPS signal corresponding

to the TA molecule is fitted by three peaks at 531.4-531.75 eV, 532.8-532.9 eV

and 533.9-534.2 eV. The peaks are assigned in a similar fashion to the previous

O 1s spectra in Fig. 3.2b of the TA/Ni{100} system, to oxygen atoms of the de-
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(a) (b)

(c) (d)

Figure 3.10: Top-up XP-spectra of (R,R)-tartaric acid (TA) onto two different
NiO/Ni{100} layers (bottom and top panel) in (a+c) C 1s region (hν=400 eV) and
(b+d) O 1s region (hν=650 eV). Top panel, dosing conditions of TA: Tsample≈302-
304 K, Tevaporator≈404-406 K, Pbase≈4 × 10-10-3 × 10-9 mbar, Pdosing≈5 × 10-9-
2 × 10-8 mbar, Deposition time≈145 min/saturated layer. Bottom panel, dosing
conditions: Tsample≈301 K, Tevaporator≈403-404 K, Pbase≈1 × 10-9-2 × 10-9 mbar,
Pdosing≈6 × 10-9-1 × 10-8 mbar, Deposition time≈130 min/saturated layer. The
spectra were obtained in the MAX-Lab synchrotron in Lund (Sweden) in the
UHV endstation of the D1011 beamline. The black thick dots are the raw spectra
and the black thick lines are the fitted curves. The solid coloured curves are the
individual peaks.
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Figure 3.11: The adsorption mechanism of acetic acid on hydroxylated NiO{111}
as it is proposed and shown in Ref.[130].

protonated carboxyl group of the TA molecule chemisorbed on the nickel surface

(COO-), to oxygen atoms dangling from the surface (COH/COOH/COOH) and to

oxygen with high degree of protonation, respectively. The signal corresponding to

hydroxyls decreases with increasing coverage of TA suggesting the Langell mecha-

nism [130] of adsorption of acetic acid on hydroxylated NiO{111} (Fig. 3.11) is the

most possible adsorption mechanism in our study [130]. For the purpose of elab-

orating this mechanism, we tried to correlate the amount of desorbed hydroxyls

with the amount of deprotonated carboxyl groups. This mechanism suggests that

for every hydroxyl desorbed from the surface we have a 2fold gain in the signal

corresponding to the oxygen atoms of the deprotonated carboxyl group (peak at

531.4-531.75 eV). Comparing the value of desorbed hydroxyls with the signal of

carboxylate species (peak at 531.4-531.75 eV), and correcting by factor of two, we

observe that at low coverages (36% sat, O 1s spectrum in Fig. 3.10b) and 38% sat

(O 1s spectrum in Fig. 3.10d), the amount of deprotonated carboxyl group is

∼ 19% and ∼ 36% higher than the desorbed -OH, respectively. It is possible that

at low coverages, TA binds on empty sites of the Ni2+ substrate, without displac-

ing any hydroxyls. In addition, it is probable, especially at low coverages, that the

oxide surface will react with background pressure or the tartaric acid itself and

generate more hydroxyls [39, 127, 129, 131]. At 100% saturation, the amount of

desorbed hydroxyls is ∼ 20-24% higher than the amount of deprotonated carboxyl

groups of the TA molecule (Fig. 3.10b and 3.10b). This is probably explained by

attenuation of the carboxylate group from the rest of the TA molecule. It is also

possible that a hydroxyl and a hydrogen (originating the background pressure of

the chamber) or two hydroxyls, coalesce, releasing H2O in the gas phase. It is
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probable that the increased crowding of the surface from the TA molecules could

have triggered this kind of behaviour. The presence of hydroxyls in the saturated

overlayer of TA, suggest that some hydroxyls are unreactive to the presence of

TA molecules, or even blocking the adsorption. The latter probably explains why

the increased hydroxylation of the second oxide (O 1s spectrum in Fig. 3.10b) in

comparison with the first (O 1s spectrum in Fig. 3.10b), decreased the amount

of adsorbed TA. The peak associated with the deprotonated carboxyl group of

the tartaric acid molecule (531.4-531.75 eV) shifts to higher binding energies with

increasing coverage (∼ 0.2-0.3 eV) while at the same time the peak associated

with the hydroxyl species shifts to lower binding energy by the same magnitude

(∼ 0.2-0.3 eV). The species described in Ref.[39], generated upon deposition of

TA onto hydroxylated NiO{111}/Ni{111}, imply that the carboxylate group of

the TA molecule is co-bonded on the Ni2+ substrate with the hydroxyls. It is

very likely that there is a charge transfer between the co-bonded hydroxyl and

deprotonated carboxyl group, which alters the binding energy of the two species.

The ratio of the area of the low binding energy peak and the the sum of areas

of the two high binding energy peaks ( [COO-(ads)]
[COOH+COOH+COH(nonads)]

) is ∼ 1.8:1 and

∼ 1.6:1 in the O 1s spectra in Fig. 3.10b (36% sat) and in Fig. 3.10d (38% sat),

respectively, whereas at the saturated coverage the aforementioned ratio is ∼ 0.9:1

and ∼ 1:1, respectively. The ratio implies that tartaric acid is mainly on its bitar-

trate form in the submonolayer regime, whereas in the saturated layer, we have

coexistence of bitartrate (TA2-) and monotartrate (HTA-) phases. The strong

electrostatic interaction between the negatively charged carboxylate groups and

the Ni2+ substrate [39] makes the presence of an µ3 adsorption geometry (which

involves adsorption of TA on the Ni2+ substrate without deprotonation of one

of its carboxyl groups, Fig. 3.1), highly unlikely. The increase in the HTA-:TA2-

ratio with increasing coverages is consistent with what we have observed in the

TA/Ni{100} system in Fig. 3.2 and is induced by the molecular crowding of the

surface with increasing coverages [100]. A further insight into the chemical state

of TA on NiO/Ni{100} substrate will be provided further on. The peak related

to the oxide (529.4 eV) in the saturated layer decreases by ∼ 62% (O 1s spectrum

in Fig. 3.10b) and 53% (O 1s spectrum in Fig. 3.10d) with respect to the pure

oxide layer. This decrease is most likely related to attenuation effects of the oxide

layer from the TA overlayer, even though it is also possible that the oxide layer

is reduced from gases from the background pressure of the chamber or from the

TA molecule itself [39, 127, 129, 131].

Figures 3.12a and 3.12b show step anneal XP-spectra of the TA saturated

overlayer on NiO/Ni{100} shown in Fig. 3.10c and 3.10d. As in the case of the
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C 1s spectra in Fig. 3.10a and 3.10c, the binding energy axis in the C 1s region

is highly inaccurate since we did not have available spectra of the Fermi edge.

Calibration of the binding energy axis was performed by using the average value

of the lowest and the largest offset observed during the beamtime. Leaving the

TAsat/NiO/Ni{100} layer for some period (∼ 8 hours) in the chamber at room

temperature, caused some decomposition of the TA overlayer (reduced to 84%

of the saturated signal, Fig. 3.12a-3.12b). At 84% sat/room temperature (O 1s

spectrum in Fig. 3.12b), we can observe a small increase in the signal of the peaks

corresponding to the oxide (529.6 eV) and to the hydroxyl by ∼ 15% and ∼ 20%,

respectively with respect to the saturated layer shown in the O 1s spectrum in

Fig. 3.10d, while at the same time the peak corresponding to hydroxyls has been

also shifted by 0.3 eV to the high binding energy region (peak position 531.3 eV).

The area ratio ( [COO-(ads)]
[COOH+COOH+COH(nonads)]

) has been reduced to ∼ 0.8:1 (O 1s

spectrum in Fig. 3.10d), indicating an increase in the HTA-/TA2- ratio in the

TA overlayer. Heating to 400 K, causes some desorption and dissociation of TA

(reduced to 75% of the saturated signal). At this temperature, we can observe

also a slight increase in the signal corresponding to hydroxyls (∼ 531.2 eV) and an

increase in the area ratio ( [COO-(ads)]
[COOH+COOH+COH(nonads)]

) to ∼ 1.2:1 (O 1s spectrum

in Fig. 3.12b). At 460 K (68% of the saturated signal), the bitartrate phase is the

dominant geometry of the TA molecule ( [COO-(ads)]
[COOH+COOH+COH(nonads)]

≈1.6:1).

Major changes are observed upon annealing to 530 K (ΘTA= 47% sat). At

this temperature, more than half of the TA molecule is decomposed. The high

binding energy peak in the O 1s region (Fig. 3.12b) has disappeared, indication

of the deterioration of the intermolecular interaction between the TA molecules.

The area ratio in the O 1s spectrum in Fig. 3.12b ( [COO-(ads)]
[COOH+COOH+COH(nonads)]

)

has increased to ∼ 5.5:1, however we can argue that the low binding energy peak

has contribution from decomposition fragments of TA. The peak corresponding to

hydroxyls shifts to high binding energies (∼ 531.6 eV) while at the same time, the

peak corresponding to the carboxylate group of TA shifts to low binding energies

(∼ 531.45 eV, O 1s spectrum in Fig. 3.12b). This feature is the opposite effect to

what we have observed in the top up XP-spectra in the O 1s region (Fig. 3.10b

and 3.10d) and is attributed to charge transfer between the co-bonded hydroxyls

and carboxylate groups on the Ni2+ substrate. The oxide peak (529.7 eV, O 1s

spectrum in Fig. 3.12b) increases by ∼ 69% with respect to the saturated layer.

At this temperature, the attenuation is weaker, since a significant amount of the

TA molecules have desorbed from the surface. Heating to 650 K decreases the TA

signal to 10% of the saturated layer, while at the same time the peak corresponding

to the carboxylate group of the TA molecule (COO-, O 1s spectrum in Fig. 3.12b)
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(a) (b)

(c)

Figure 3.12: (a+b) Step anneal XP-spectra of saturated (R,R)-tartaric acid (TA)
overlayer layer on NiO/Ni{100} (Fig. 3.10c-3.10d) (a) C 1s region (hν=400 eV)
and (b) O 1s region (hν=650 eV). The black thick dots are the raw spectra and the
black thick lines are the fitted curves. The solid coloured curves are the individual
peaks (c) LEED pattern of the oxygen overlayer generated upon step annealing
the TAsat/ NiO/Ni{100} layer to 750 K. The LEED was recorded at Ebeam=90 eV.
The spectra and the LEED pattern were obtained in the MAX-Lab synchrotron
in Lund (Sweden) in the UHV endstation of the D1011 beamline
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shifts even more to low binding energies (531.3 eV).

Heating to 750 K causes the complete disappearance of the signal corre-

sponding to TA with no traces of decomposition fragments in the C 1s region

(Fig. 3.12a). At no time during the step anneal process, we have observed any

significant signal of decomposition species in the C 1s region (Fig. 3.12a) like we

have observed in the TA/Ni{100} system (Fig. 3.3a and 3.3c). It is likely that

the surface carbon (BE ≤ 283 eV) is diffused and buried under the oxygen layer

or desorbs as CO/CO2. Upon heating this layer to 1000 K (results not shown)

and subsequent desorption of the oxygen layer we have observed a rise of signal at

∼ 283 eV, which could be either carbon originated from the TA molecule or from

the background gases of the chamber. The peak corresponding to hydroxyls in the

O 1s region (Fig. 3.12b) was reduced only by ∼ 29% with respect to the saturated

layer. Step anneal XP-spectra of the NiO/Ni{100} [129], show that heating to

T>600 K causes full desorption of hydroxyls from the nickel surface. The nature

of our step anneal procedure (anneal and cool), could hydroxylate the surface

through adsorption from the background gases, even though according to Langell

et al. 1995 [129], the cooling of the crystal does not cause re-hydroxylation of the

surface. It is also possible that the hydroxylation of the surface occurred from

decomposition products of TA molecule (mainly hydrogen) from the COH and

COOH group. At 750 K, the peak corresponding to the oxide in the O 1s region

(Fig. 3.12b) has shifted to 530.2 eV. Based on the total area of the O 1s spectrum

(Fig. 3.12b) the coverage of the oxygen layer is ∼ 1.0 ML. The LEED pattern

(Fig. 3.12c) presents a c(2 × 2) superstructure, in line with work of Langell et al

1995 [129]. At this temperature the oxide characteristics have almost vanished,

and only chemisorbed oxygen is present on the surface.

Tartaric acid on NiO/Ni{100} decomposed fully T>650 K which is about 200

degrees higher than on clean Ni{100} (Fig. 3.3). A similar decomposition tem-

perature was observed for the TA/NiO/Ni{111} system [39]. The higher decom-

position temperature of the TA overlayer on NiO/Ni{111} substrate with respect

to the TA/Ni{111} system was explained by the strong electrostatic interaction

between the Ni2+ substrate and the negatively charged bitartrate species [39].

Jones et al (2004) [39] argued that the TA/NiO/Ni{111} layer closely resembles

the nickel (II) tartrate complex which also decomposes at ∼ 650 K [32]. In the

light of this argument the monotartrate and bitartrate phase in this study, corre-

spond actually to nickel monotartrate and nickel bitartrate phases, respectively.

The positive charge of this adsorption complexes is compensated by the presence

of -OH, co-bonded on the Ni2+ substrate. Our data suggest that it is likely that

the nickel monotartrate and bitartrate phases present 1 and 2 point adsorption
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geometries, respectively. A two and four adsorption geometry for the monotar-

tate and bitartrate phase will require 3 hydroxyls atoms for every carboxylate

adsorbed on the surface for full compensation of the positive charge, something

that is not consistent with our data.

NEXAFS Results

Figure 3.13 shows angle dependent O K-edge NEXAFS of the oxide layer on

Ni{100}, corresponding to the O 1s spectrum in Fig. 3.10d. The NEXAFS spectra

show 6 peaks at 528.5 eV, 530.0 eV, 530.9 eV, 534.4 eV, 538.4 eV and 543.7 and

a step at 534.9 eV. It is in close resemblance with NEXAFS spectra of NiO in

previous studies [133–136].

Figure 3.13: Angle resolved O K-edge NEXAFS acquired at the D1011 beamline
of the oxide layer shown in the O 1s spectrum in Fig. 3.10d. The markers represent
the raw data and the solid thick lines the fitted curves. The red curves below the
spectra show the individual Gaussian peaks, the linear background and the step
function used for fitting.
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(a) (b)

(c) (d)

Figure 3.14: (a+b) Angle resolved NEXAFS in the C K-edge region obtained
(a) upon dosing (R,R)-tartaric acid (TA) onto NiO/Ni{100} layer up to satu-
ration (using the layer in the O 1s spectrum in Fig. 3.10d as precursor) and
leaving the layer for some period (∼ 6-8 hours) in the chamber at room temper-
ature, which decreased the coverage to ΘTA=84-86% (b) and upon step anneal
the TA/NiO/Ni{100} saturated layer to 460 K (see Fig. 3.12a-3.12b for XPS ref-
erence). The markers represent the raw data and the solid thick lines the fitted
curves. The red curves below the spectra show the individual Gaussian peaks,
the linear background and the step function used for fitting. The spectra were
obtained in the MAX-Lab synchrotron in Lund (Sweden) in the UHV endstation
of the D1011 beamline. (c+d) Plots (black markers) showing the intensity of the
carbon π* resonance in Fig. 3.14a and 3.14b as a function of angle θ, where θ
refers to the angle between the electric field vector and the surface plane. The
solid red line shows the fitted curve calculated by the function in Eq. 3.1.
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Figures 3.14a and 3.14b show angle dependent NEXAFS in the C K-edge re-

gion upon dosing TA on top of a NiO/Ni{100} layer to saturation using the layer

in the O 1s spectrum in Fig. 3.10d as substrate and leaving the layer for some

period (∼ 6-8 hours) in the chamber at room temperature, which decreased the

coverage to ΘTA=84-86% (Fig. 3.14a) and upon step anneal the aforementioned

layer to 460 K (Fig. 3.14b). At ΘTA=84-86% (Fig. 3.14a) the O 1s spectrum

(Fig. 3.12b/ΘTA=84%, the spectrum shown was obtained upon completion of

acquisition of the NEXAFS in Fig. 3.14a) suggest the coexistence of nickel bitar-

tate and monotartate phases. At T=460 K (Fig. 3.14b), the O 1s spectrum

(Fig. 3.12b/460 K) suggest the nickel bitartate phase as the predominant species

in the TA/NiO/Ni{100} overlayer ( [COO-(ads)]
[COOH+COOH+COH(nonads)]

≈1.6:1). The NEX-

AFS spectra show a sharp π* resonance at 287.6-287.9 eV, two σ* resonances at

293.2-293.4 eV and 298.6-298.9 eV and a step at 287.9-288.2 eV, assigned in a

similar fashion to the C K-edge NEXAFS spectra in Fig. 3.5a and 3.5c of the

TA/Ni{100} system. By using Eq. 3.1 (P≈1 for the D1011 beamline) the angular

dependency of the two π* resonances in the C K-edge region (Fig. 3.14c-3.14d),

returned tilt angles α=54.8◦ (Fig. 3.14a and 3.14c) and α=58.9◦(Fig. 3.14b and

3.14d). As in the case with the NEXAFS spectra in Fig 3.5 the values of the tilt

angle are close to the value of the “magic angle” (α=54.7◦), i.e the tilt angle in

which the intensities of the resonance are independent of the angle of incidence

[96], which might reflect a lack of ordering of the TA overlayer on the NiO/Ni{100}
substrate.

3.3.3 Tartaric acid on clean Ni{100}/Elevated H2 pres-

sures

XPS Results

Figure 3.15 shows ambient pressure (AP) XP-spectra of the TA overlayer on

Ni{100}. The spectra were obtained upon dosing TA onto Ni{100} and then

exposing the TA overlayer to increasing hydrogen pressures, as shown in Fig. 3.15.

Figure 3.16 compares step anneal XP-spectra of the TA layer under the presence

of PH2= 6.4 mbar (top panel) and under UHV conditions (bottom panel). The

XP-spectra have detected no presence of oxygen before dosing dosing TA (O 1s

spectra in Fig. 3.15b and Fig. 3.16d). The XPS area (obtained upon fitting)

of the carbon impurities (present before dosing) were ∼ 26% (Fig. 3.15a) and

∼ 29% (Fig. 3.16c) of the XPS area (obtained upon fitting) of the corresponded

TA signal (excluding impurities) in the C 1s spectra in Fig. 3.15a (UHV before)
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and Fig. 3.16c (room temperature), respectively.

(a) (b)

Figure 3.15: Ambient pressure (AP) XP-spectra of (R,R)-tartaric acid layer on
Ni{100} at elevated hydrogen pressures in the (a) C 1s region and (b) O 1s region.
The spectra were recorded in the near-ambient pressure XPS (NAP-XPS) facility
in the University of Manchester using Al Kα anode (hν=1486.7 eV) as an X-
ray source The black thick dots are the raw spectra and the black thick lines
are the fitted curves. The solid coloured curves are the individual peaks. Dosing
conditions of TA: Tsample≈352-315 K, Tevaporator≈412-417 K, Pbase≈1 × 10-9 mbar,
Pdosing≈8 × 10-9-1 × 10-8 mbar, Deposition time≈90 min/saturated layer.

The XP-spectra of the TA layer under UHV conditions (Fig. 3.15/UHV before

and Fig. 3.16c-3.16d/room temperature) show three peaks in the O 1s region at

531.6-531.7 eV, at 533.1 eV and at 535.0-535.2 eV and four peaks in the C 1s

region at 283.5 eV, 284.4-284.5 eV, 286.5-286.6 eV and 288.8-288.9 eV. The peaks

are assigned in a similar fashion to the TA top-up XP-spectra on Ni{100} at

T≈303-304 K (Fig. 3.2a-3.2b). The area ratio ( [COO-+COOH(ads)]
[COOH+COOH+COH(nonads)]

) in the

O 1s spectra in Fig. 3.15b/UHV before and 3.16d/room temperature is ∼ 2.2:1

and ∼ 2:1, respectively, which suggest that TA in this layer chemisorbs on the

nickel surface in a bitatrate geometry (µ4, Fig. 3.1). There is a discrepancy with

the saturated layer in the O 1s spectrum in Fig. 3.2b where the area ratio of
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the same peaks was ∼ 1.3:1. This can be explained by two effects: the dosing

temperature in these conditions is above room temperature (∼ 352-315 K, it is

worth mentioning that the referred dosing temperature is the temperature of the

thermocouple on the UHV manipulator, since there was no thermocouple on the

sample holder in the UHV manipulator). A preference for forming bitartrate

phases at higher temperatures was found on Cu{110} [59, 60], Ni{110} [33] and

Ni{111} [36]. In addition, step anneal O 1s XP-spectra of the saturated layer

(Fig. 3.3b) show conversion of HTA- species to TA2- upon heating to 353 K, and

it was related to the bridging of the kinetic barrier related to this conversion.

Furthermore, at this temperature, the conversion to HTA- phase might hindered

by the lower amount of adsorbed hydrogen which will cause reprotonation of one

of the carboxylate groups [36, 137, 138]. The ratio of the area of the peak at 286.5-

286.6 eV and the area of the peak at 288.8-288.9 eV ( [COH]
[COO-/COOH]

) in the C 1s

spectra in Fig. 3.15a/UHV before and Fig. 3.16c)/room temperature is ∼ 2.4:1.

Exposing the TA overlayer to elevated hydrogen pressures (Fig. 3.15) causes

a decrease in the area ratio ( [COO-+COOH(ads)]
[COOH+COOH+COH(nonads)]

) in the O 1s spectra in

Fig. 3.15b, from 2.2:1 (UHV before) to 1.7:1 at PH2= 6.4 mbar, implying the

protonation of one of the carboxylate groups by the infinite source of hydrogen

from the gas phase. The peak at 535.0 eV (O 1s spectra in Fig. 3.15b) shifts

to 535.4 eV at PH2= 6.4 mbar, suggesting stronger hydrogen bonds in this layer.

Upon evacuation of the hydrogen gas from the NAP-cell (UHV after), the area

ratio ( [COO-+COOH(ads)]
[COOH+COOH+COH(nonads)]

) in the O 1s spectrum in Fig. 3.15b increases to

1.8:1. In the C 1s region (Fig. 3.15a), we cannot observe any significant changes

in binding energy and area ratio ( [COH]
[COO-/COOH]

), upon exposing the TA layer to

elevated hydrogen pressures. The interesting feature is the increase in the area of

the peaks at 283.4-283.6 eV and 284.4-284.5 eV with respect to the XPS fitted

area of the TA molecule, as a function of hydrogen pressure. These peaks are

associated with decomposition fragments and the increase of the signal occurs even

upon evacuation of the hydrogen gas from the NAP-cell (UHV after). This feature

can be either to related decomposition of TA, induced by the presence of elevated

hydrogen pressures or adsorption of adventitious carbon from the background

pressure of the NAP-cell.

Heating the TA layer under the presence of PH2= 6.4 mbar (Fig. 3.16a-3.16b)

to 372 K and 418 K does not change significantly the signal nor the chemical

state of the molecule, apart from some increase in the signal at 284.3-284.5 eV.

On the other hand, heating the TA layer under UHV conditions (Fig. 3.16c-3.16d)

to 380 K and 394 K causes reduction in the TA C 1s XPS signal by ∼ 14% and

∼ 28%, respectively (Fig. 3.16c), with respect to the TA signal at room temper-
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(a) (b)

(c) (d)

Figure 3.16: Comparison of step anneal XP-spectra of the TA layer on Ni{100}
under the presence of PH2= 6.4 mbar (top panel) and under UHV conditions
(bottom panel). The spectra were recorded in the C 1s region (a+c) and O 1s
region (b+d). The spectra were recorded in the near-ambient pressure XPS (NAP-
XPS) facility in the University of Manchester using Al Kα anode (hν=1486.7 eV)
as an X-ray source. The black thick dots are the raw spectra and the black
thick lines are the fitted curves. The solid coloured curves are the individ-
ual peaks. Dosing conditions (top panel): Tsample≈352-315 K, Tevaporator≈412-
417 K, Pbase≈1 × 10-9 mbar, Pdosing≈8 × 10-9-1 × 10-8 mbar, Deposition
time≈90 min/saturated layer. Dosing conditions (bottom panel): Tsample≈340-
319 K, Tevaporator≈415-416 K, Pdosing1 × 10-8 mbar, Deposition time≈91 min.
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ature, whereas the O 1s XPS signal was reduced by ∼ 16% and ∼ 30%, respec-

tively. In addition the area ratio ( [COO-+COOH(ads)]
[COOH+COOH+COH(nonads)]

) in the O 1s spectra

in Fig. 3.16d increases from 2:1 to 2.7:1 and 2.8:1, respectively. In the C 1s region

(Fig. 3.16c) we can observe a significant increase in the signal corresponding to

decomposition products (peaks at 283.5-283.6 eV and 284.5-284.6 eV). Further

heating to 432 K causes further reduction in the TA XPS signal in both regions

(∼ 63%/C 1s/Fig. 3.16c, ∼ 85%/O 1s/Fig. 3.16d, always with respect to the TA

signal at room temperature) with simultaneously increase in the signal correspond-

ing to decomposition products in the C 1s region (Fig. 3.16c) suggesting almost

full decomposition of the TA molecule. On the other hand, at 443 K under the

presence of PH2= 6.4 mbar (Fig. 3.16a-3.16b), the XPS signal of the TA molecule

in the C 1s and O 1s region decreases by ∼ 29% and 34%, respectively. The area

ratio ( [COO-+COOH(ads)]
[COOH+COOH+COH(nonads)]

) in the O 1s spectrum in Fig. 3.16b increases to

2.3:1. The onset of decomposition under these conditions occurs by heating to

474 K, when the signal of the TA molecule drops by ∼ 58% (C 1s spectrum in

Fig. 3.16a) and ∼ 76% (O 1s spectrum in Fig. 3.16b), always with respect to the

layer at room temperature (Fig. 3.16a-3.16b). Small traces of TA molecule may

be present even at T≥500 K, under both conditions (Fig. 3.16). From the step

anneal XP-spectra, it is obvious that the presence of hydrogen stabilises thermally

the TA molecule on the Ni{100} surface which might be related to unavailability

of adsorption sites for decomposition products as a result of the increased hydro-

gen concentration on the nickel surface. TPD results upon adsorption of TA on

Ni{111} surface [39] show desorption of masses corresponding to CO2, CO, H2O

and H2. This decomposition mechanism suggest that the metal-molecule bond is

stronger that the intermolecular bonds, which, according to Lorenzo et al (2002)

[60], accounted partially for the lower thermal stability of the bitartrate phase

with respect to the monotartate, since the former has the highest heat of adsorp-

tion [60]. The presence of hydrogen in our study, increases the level of protonation

of the TA molecule, increasing the HTA-:TA2- ratio, increasing the thermal sta-

bility of the molecule. The increased amount HTA- species observed in the O 1s

spectra in Fig. 3.3b with respect to the O 1s spectra in Fig. 3.16d might explain

the increased thermal stability of the former system, however we have to treat

this comparison cautiously, since we are comparing two different UHV chambers,

with different sample configurations.
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3.3.4 Tartaric acid on clean Ni{100}/Elevated H2O pres-

sures

XPS Results

Figure 3.17 show AP XP-spectra of the TA layer on Ni{100}. The spectra were

obtained upon dosing TA onto nickel surface and then exposing the TA layer to

increasing water pressures. The XP spectra have detected no presence of oxygen

before dosing TA (O 1s spectrum in Fig. 3.17b). The XPS area (obtained upon

fitting) of the carbon impurities (present before dosing) were ∼ 35% (Fig. 3.17a)

of the XPS area (obtained upon fitting) of the TA signal (excluding impurities)

in the C 1s spectrum in Fig. 3.17a (UHV before).

(a) (b)

Figure 3.17: Ambient pressure (AP) XP-spectra of (R,R)-tartaric acid layer on
Ni{100} at elevated water pressures in the (a) C 1s region and (b) O 1s region.
The spectra were recorded in the near-ambient pressure XPS (NAP-XPS) facility
in the University of Manchester using Al Kα anode (hν=1486.7 eV) as an X-
ray source The black thick dots are the raw spectra and the black thick lines
are the fitted curves. The solid coloured curves are the individual peaks. Dosing
conditions of TA: Tsample≈332-314 K, Tevaporator≈417-418 K, Pbase≈2 × 10-9 mbar,
Pdosing≈1 × 10-7-5 × 10-8 mbar, Deposition time≈82 min.

The XP-spectra under UHV conditions show four resolved peaks in the C 1s
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region at 283.4 eV, 284.7 eV, 286.5 eV and 288.9 eV (Fig. 3.17a) and three peaks

at 531.7 eV, 533.1 eV, 534.5 eV in the O 1s region (Fig. 3.17b), assigned in a sim-

ilar fashion to the TA top-up XP-spectra on Ni{100} at 303 K (Fig. 3.2a-3.2b).

The area ratio ( [COO-+COOH(ads)]
[COOH+COOH+COH(nonads)]

) in the O 1s spectrum in Fig. 3.17b

is ∼ 1.5:1. The reduced ratio with respect to the O 1s spectra in Fig. 3.15b

and Fig. 3.16d can be explained by the higher deposition rate of the molecule

during dosing conditions (as a result of the increased pressure of the molecule

during deposition), especially during the early stages of deposition (Pdosing was

∼ 1 × 10-7 mbar when the gate valve was opened and drop to ∼ 5 × 10-8 mbar

when the deposition of the TA molecule was finished) and the lower sample tem-

perature (332-314 K) both with respect to the dosing conditions in Fig. 3.15 and

3.16. Again, the referred dosing temperature is the temperature of the thermo-

couple on the UHV manipulator, since there was no thermocouple on the sample

holder in the UHV manipulator. Both features increased the extent of proto-

nation of one of the carboxylate groups and induce generation of some HTA-

species along with the predominant TA2- (µ4) phase. Introducing H2O gas in the

NAP-cell increased even more the extent of protonation of the TA molecule. At

PH2O=10 mbar the area ratio ( [COO-+COOH(ads)]
[COOH+COOH+COH(nonads)]

) in the O 1s spectrum in

Fig. 3.17b is ∼ 0.7:1, implying the predominant presence of the HTA- form of the

TA molecule, which supports an µ2 (monotartrate)/µ3 adsorption configuration

(Fig. 3.1). This change in configuration due to the presence of H2O molecules in

the gas phase was also observed under the presence of elevated H2 pressures (O 1s

spectra in Fig. 3.15b). The peak at 531.7 eV in the O 1s region (Fig. 3.17b) shifts

to 531.9 eV at PH2O= 10 mbar. The XPS area of the peak at 534.5 (which is

associated with TA groups with a high degree of protonation) increases from 4%

of the total XPS area to 15% at at PH2O= 10 mbar and drops to 8% upon evacua-

tion of the water vapour from the NAP-cell (UHV after). This increase is related

to the formation of hydrogen bonds between the non-chemisorbed moieties of the

TA molecule and the H2O molecules. The chemical configuration of TA molecule

does not change upon evacuation of the water vapour from the NAP-cell, sug-

gesting that the change in the adsorption configuration of the TA molecule upon

interaction with PH2O= 10 mbar is non-reversible. In the C 1s region (Fig. 3.17a),

we can observe an increase in the signal at 284.7 eV (associated with decompo-

sition fragments) with respect to the XPS fitted area of the TA molecule, as a

function of increased water pressure and presence of the sample in the NAP-cell

with subsequent shift of the peak peak position towards high binding energies

(BE=285.0 eV at PH2O= 10 mbar). This feature can be related either to adsorp-

tion of impurities from the background pressure of the NAP-cell (adventitious
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carbon or CO) or decomposition of TA, induced by the presence of elevated water

pressures. The latter hypothesis is rejected by the XP-spectra upon evacuation

of the water vapour from the NAP-cell (UHV after), which in fact show a 27%

(C 1s region) and 16% (O 1s region) increase in the fitted XPS area corresponding

to the TA molecule with respect to the area before the exposure of the sample

to elevated H2O pressures (UHV before). This is most likely explained by the

change in the configuration of the TA molecule upon exposures to elevated water

pressures (from µ4 to µ2/µ3 adsorption geometry), since in the µ2/µ3 adsorption

geometry, one of the carboxyl groups is dangling from the surface (Fig. 3.1) and

its signal is not attenuated from the rest of the molecule.

3.4 Discussion

This study provides evidence of the influence of the temperature of the Ni{100}
surface, the deposition rate of the TA molecule and its surface coverage on the

chemical state and adsorption geometry of (R,R)-tartaric acid (TA) on clean

Ni{100}. The formation of bitartrate phase of the TA molecule (TA2-) which

supports an µ4 adsorption geometry is favoured as we increase the temperature

of the crystal away from room temperature. Cooling the crystal towards room

temperature while having high coverages of TA molecule, causes the formation

of HTA- species (which support an µ2/µ3 adsorption geometry). High deposition

rates (deposition time ≤ 24 min/saturated layer) at T<400 K as well as the pres-

ence of elevated pressures of H2 and H2O also cause the formation of HTA- species.

Depending on the chemical state, adsorption configuration of the TA molecule,

and the substrate (Ni{100} or NiO/Ni{100}), the C––O/COO- groups of the TA

molecule are tilted by ∼ 42-69◦ with respect to surface plane of the nickel sub-

strate. Under UHV conditions, TA fully decomposes on Ni{100} at T>440 K.

Its thermal stability is enhanced under the presence of PH2=6.4 mbar. TPD of

the (R,R)TA/Ni{111} system [36], show that at high coverages, the molecule de-

composes at T>400 K. The merit of TA (and other hydroxy–dicarboxylic acids),

being the most effective modifier for the enantioselective hydrogenation of MAA,

in comparison with other chiral modifiers [18], might be originated from its ther-

mal stability under modification and reaction conditions [12, 16, 24]. According to

Ref.[37, 38], the optimum modification temperature for attaining the highest enan-

tioselectivity using TA as modifier is 350 K. Kukula et al (2001) [25] suggested that

increasing the temperature during modification of TA on Raney nickel, increases

the optical yield. In this study, at 350 K under UHV conditions, at lower deposi-
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tion rate (Fig. 3.3, top panel and Fig. 3.16, bottom panel) the TA chemisorbs on

the nickel surface, mainly in a bitartrate geometry (µ4) whereas at high dosing

rate at the same temperature and pressure (Fig. 3.2, bottom panel and Fig. 3.3,

bottom panel), the XP-spectra suggest the predominant presence of HTA- species

on the nickel surface. The conversion to the bitartate phase under these dosing

conditions was facile at T≥400 K (Fig. 3.3, bottom panel). The dosing rate of the

molecule can model the concentration of the modified under reaction conditions.

Modification of Raney nickel [25] and Ni/SiO2 catalyst [24] with TA show that the

enantioselectivity of the catalyst as a function of TA concentration goes through

a maximum. The presence of elevated pressures of H2O (Fig. 3.17) favoured the

formation of HTA- species. According to Keane (1997)[24], the use of water as

modification medium decreases the amount of adsorbed TA molecules on Ni/SiO2

catalyst and increases the amount of leached nickel with respect to the use alco-

holic solvents as modification medium (methanol, ethanol and 1-butanol), while

at the same time decreases the selectivity and activity of the chirally modified

Ni/SiO2 catalyst.

The interaction of TA on oxidised/hydroxylated Ni{100} created species which

its decomposition temperature resembles the decomposition temperature of the

nickel (II) tartrate complex [32], as it was also observed in the TA/NiO{111}/
Ni{111} system [39]. This work approach more the enantioselective catalysis con-

ditions, since the modification occurs from aqueous solution and the catalyst itself

is exposed to air before the modification [39]. The decomposition temperature of

the TA molecule on oxidised/hydroxylated Ni{100} points to the formation of

nickel tartrate species. Based on XPS results of modified Raney nickel cata-

lyst with (R,R) tartaric acid [32], the stoichiometry of nickel, carbon and oxygen

on the surface layer resembles the stoichiometry of nickel (II) tartrate complex.

Nickel tartrate species were generated upon adsorption of TA from solution (at

low pH) on Ni{111} single crystal [38]. The high solubility of the nickel tartrate

species in aqueous solution in combination with the strong electrostatic interac-

tion between the charged tartrate species and the Ni2+ substrate, could assist

the etching of the nickel catalyst during modification [39], and generate chiral

surfaces/arrangements similar to those shown in Ref.[8]. The work of McFadden

et al. (1996) [8], suggested, that a single crystal can produce intrinsically chiral

surfaces if it is cut to expose high Miller indices planes. If at these high Miller

indices, the step lengths on either side of the kink site are uneven, then the kink

sites can be considered chiral [8]. It is worth mentioning that chiral films have

been grown on achiral Au surface, by electrodepositing copper oxide films in the

presence of tartrate anions [139]. Adsorption of L-lysine [55] and S-alanine [56–58]
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on Cu{100} caused the generation of {3 1 17} chiral facets whereas adsorption of

(R,R)-tartaric acid on Ni{110} in its bitartrate form [34], caused relaxation and

reconstruction of the nickel surface, resulting in chiral footprint on the surface.

Previous studies [51, 52] have shown that two enantiomers of a chiral molecule

present different adsorption energetics when they are adsorbed on a chiral surface

[51], whereas a chiral surface itself is more reactive towards one enantiomer of a

chiral molecule with respect to the other [52]. In addition, interaction of pure R

and S propylene oxide on chiral Cu surfaces (Cu{643}) [53], show that the desorp-

tion of the enantiopure molecule depends on the chirality of the Cu{643} surface.

This kind of different adsorption behaviour, should be expected also for the two

pro-chiral configurations of the β-ketoester reactant on a chiral nickel substrate

during the hydrogenation reaction [45].

During the actual modification procedure at 350 K using TA as modifier, de-

pending on the concentration of the modifier and the modification medium we

will have either TA2- or HTA- as predominant chemical species of tartaric acid

on the Ni{100} facet. The former is favoured at low modifier concentration and

the latter at high modifier concentrations and/or by using water as modification

medium. Kukula et al (2002) [26] have suggested that the highest enantioselec-

tivity of Raney nickel catalyst modified with (R.R) tartaric acid is achieved at

Treaction=333 K with THF or no solvent as reaction medium, at PH2≈100 bar. In

Ref.[18] it is reported that aprotic solvents such as THF or methyl propionate are

the most suitable solvents and highest enantioselectivity using (R,R)-tartaric acid

as modifier is attained at Treaction=313 K. Izumi (1983) [16] have present data

upon modification of Raney nickel with (R,R) tartaric acid, in which the reac-

tion temperature as a function of optical yield, goes through a maximum between

∼ 313-333 K. Under the aforementioned hydrogenation conditions we will expect

the predominant presence of HTA- species on the Ni{100} surface (O 1s spectra

in Fig. 3.15b and Fig. 3.16b). Under modification and reaction conditions using

NiO/Ni{100} as a catalyst (in the absence of elevated hydrogen pressure) the

XP-spectra of our study suggest the coexistence of nickel monotartrate and nickel

bitartrate species on the NiO/Ni{100} substrate (O 1s spectra in Fig. 3.12b), with

most likely 1 and 2 point adsorption geometries, respectively. These adsorption

geometries could not imprint a chiral environment on the nickel substrate. Only

species with at least µ3 or µ4 adsorption geometries could create such an envi-

ronment and generate chiral surfaces through etching of the crystal. The strong

electrostatic interaction between the negatively charged carboxylate groups and

the Ni2+ substrate [39] makes the presence of an µ3 adsorption geometry (which

involves adsorption of TA on the Ni2+ substrate without deprotonation of ones
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of its carboxyl groups, Fig. 3.1), highly unlikely. Based on the XP-spectra of our

study, an µ4 (bitartrate) geometry in TA/NiO{111}/Ni{100} overlayer, suggests

an excess of positive charge on the nickel surface.

The concentration of modifier on the nickel surface upon the washing proce-

dure depends on the modification temperature and pH of the tartaric acid solution

[38]), with increase in the pH, causing reduction in the concentration of the mod-

ifier on the Ni{111} surface [38]. The optimum pH in terms of enantioselectivity

is 5 [38]. According to Ref.[37] high coverages of pre-adsorbed TA molecules on

Ni{111}, forbade the interaction of the MAA with the nickel surface. XPS [48]

and RAIRS [42] studies of modified polycrystalline nickel and Ni{111}, respec-

tively, with (S)-aspartic acid (upon washing the catalyst) showed that at opti-

mum (in terms of enantioselectivity) conditions, the aspartic acid is untraceable

spectroscopically. These studies [42, 48] provided evidence that asymmetric hy-

drogenation could occur at low or even in the absence of a chiral modifier, during

the reaction. If the coverage of the modifier is low (after washing) it is most likely

that the chiral modification will occur by generation of chiral surfaces from the

µ4 nickel bitartrate species, as described above. The presence of HTA- species,

especially at higher TA concentration on the Ni{100} surface, could induce the

interaction of the molecule with the β-ketoester reactant via hydrogen bonding

and assisting its enantioselective hydrogenation through stabilising a pro-chiral

configuration over the other. Modification of Ni{111} with (R,R)-tartaric acid

from solution at 350 K following washing of the catalyst, caused also generation

of HTA- species on the nickel surface [38]. According to the aforementioned study

[38], under these modification conditions and upon immersion of the crystal in an

MAA solution, there was an enhancement of the diketone:enol ratio of the MAA

molecule on Ni{111} surface with respect to the modification at 300 K [38]. Ac-

cording to Ref.[38] the origin of the enantioselectivity of this system might be due

to the formation of hydrogen bonds between the diketone and the HTA- species

in orientation that will preferably generate the R-enantiomer as a product during

the hydrogenation reaction.

3.5 Conclusions

This study characterises the influence of the temperature of the crystal, the dos-

ing rate of the TA molecule and its surface coverage on the chemical state and

adsorption geometry of TA on clean Ni{100}. The bitartrate phase in which both

carboxyl groups of the TA molecule are deprotonated (TA2-) and chemisorbed on
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the nickel surface in an µ4 adsorption geometry is favoured as we increase the

temperature of the crystal away from room temperature. Cooling the crystal to-

wards room temperature while having high coverages of TA molecule, causes the

formation of HTA- species (which support an µ2/µ3 adsorption geometry). High

deposition rates (deposition time ≤ 24 min/saturated layer) at T<400 K as well as

the presence of elevated pressures of H2 and H2O also cause the formation of HTA-

species. Under UHV conditions, TA fully decomposes on Ni{100} at T>440 K. Its

thermal stability is further enhanced under the presence of PH2= 6.4 mbar. Depo-

sition of TA on oxidised Ni{100}, causes the generation of tartrate species whose

thermal stability resembles the thermal behaviour of the nickel (II) tartrate com-

plex, since they decomposed fully on NiO/Ni{100} substrate at T>650 K. Their

presence under modification conditions could assist the etching of the nickel sur-

face and induce the generation of chiral surfaces/arrangements. On the other

hand, the presence of HTA- species on Ni{100} under optimum modification and

reaction conditions could potentially create an enantiospecific system through in-

teraction of the substrate and the modifier via hydrogen bonding. Depending on

the chemical state, adsorption configuration of the TA molecule, and the substrate

(Ni{100} or NiO/Ni{100}), the C––O/COO- groups of the TA molecule are tilted

by ∼ 42-69◦ with respect to the surface plane of the nickel substrate.
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Chapter 4

Interaction of (S)-alanine on

clean Ni{100} under UHV and

elevated hydrogen pressures

Abstract

Enantioselectivity is a key aspect in the field of heterogeneous catalysis, since it

can provide products with valuable biological activity. Alanine acts as a chiral

modifier in the enantioselective hydrogenation of β-ketoesters. The present study

explores the chemical state and thermal stability of (S)-alanine on clean Ni{100}
upon depositing the molecule onto the nickel surface at Tsample=250 K, using X-ray

photoelectron spectroscopy (XPS) and temperature programmed-XPS (TP-XPS).

Alanine at ΘAla ≤ 0.10 ML chemisorbs on Ni{100} in both its anionic and neutral

form, whereas at ΘAla>0.10 M some zwitterionic species are formed, which coexist

with the anionic and neutral forms of alanine. It is not fully conclusive whether

these zwitterionic species belong to the first chemisorbed layer or they are found

in a second layer deposited on top of the chemisorbed layer. In the multilayer,

alanine is almost exclusively in its zwitterionic form. The multilayer desorbs

at T≈320 K whereas according to the TP-XP-spectra, alanine decomposes on

Ni{100} at T≈330-390 K, depending on the molecule’s initial surface coverage.

According to angle dependent NEXAFS, the C––O/COO- groups of the alanine

molecule are tilted by ∼ 48.5◦ with respect to the plane of the nickel surface.

The chemical state and thermal stability of (S)-alanine on clean Ni{100},
upon depositing the molecule onto the nickel surface at Tsample=room tempera-

ture (T≤330 K), was investigated under the presence of elevated hydrogen pressure

conditions using ambient pressure (AP)-XPS. Dosing alanine at room tempera-
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ture (T≤330 K), causes saturation of the XPS signal without formation of any

multilayers. At ΘAla ≥ 78% sat alanine chemisorbs on Ni{100} in both its anionic

and neutral form. AP-XPS has shown that the presence of elevated hydrogen

pressures causes increase in the amount of neutral species of alanine on Ni{100}
and perhaps the generation of zwitterionic species. Step anneal XP-spectra of

the alanine overlayers formed on Ni{100} at room temperature, show that the

molecule fully decomposes on Ni{100} at T>460 K and T≥400 K under UHV

and elevated hydrogen pressure conditions (PH2= 6.3 mbar), respectively. The

contribution of this study into the understanding of the mechanism of the chiral

modification of the nickel catalyst is discussed at the end of the chapter.

4.1 Introduction

The pharmaceutical and agrochemical industry is in demand of more enantiop-

ure chemical compounds since the chirality of the molecule affects their biological

activity and response. In addition many enantiopure products are also used as

flavours and fragrances [1–5]. In the area of heterogeneous catalysis enantiose-

lectivity could be achieved in several ways, such as attaching a metal to a chiral

support or adsorbing a chiral auxiliary to the metal [4]. The merit of using hetero-

geneous catalysts in comparison with homogeneous is the fact that these catalysts

can be easily separated and recycled, can reduce the presence of metal traces in the

product, and they can be easily controlled during their use [2, 6]. One great exam-

ple of an enantioselective catalysed reaction is the hydrogenation of β-ketoesters

(such as methyl acetoacetate MAA) using nickel as a catalyst. The reaction ge-

nerates optically active products, if the catalyst is modified with α-hydroxyacids

(such as tartaric acid) or α-amino acids (such as alanine) [2, 11, 12, 16]. According

to the work of Keane (1994) on silica-supported nickel catalysts [17], alanine is

a promising chiral modifier since it not only enhances the enantioselectivity but

also improves the reaction rates. The authors suggested that in aqueous solu-

tion, alanine presents higher affinity than tartaric acid, for the adsorption on the

supported nickel metal [17].

Different studies attempted to understand the mechanism behind the chi-

ral modification of the nickel surface. Adsorption of (R,R)-tartaric acid (TA)

on Ni{110} [34] caused the creation of a chiral footprint on the nickel surface,

breaking its symmetry. Depositing (R,R)-tartaric acid onto oxidised Ni{111} [39]

caused the generation of species similar to nickel tartrate, which could assist the

etching of the crystal and generation of chiral defects. Co-adsorption of (R,R)-
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tartaric acid [37] and (S)-glutamic acid [40] with MAA on Ni{111} show evidence

of interaction between the substrate (MAA) and the chiral modifier in a config-

uration that will generate the R-product during the hydrogenation reaction. On

the other hand, work, on the adsorption of aspartic acid on Ni{111} [41] show

evidence of formation of oligosuccinimide clusters which could create a docking

position for the substrate.

The adsorption of alanine on different surfaces has been studied extensively,

for obtaining spectroscopic and fundamental insights on the interaction of the

amino acid on different metals. Of our main interest is the interaction of alanine

on Cu{100} and Pd surfaces, since these two elements are the closest ones with

nickel, in the periodic table. On Ni{111}, alanine chemisorbs in both zwitterionic

and anionic form supporting a bidentate and tridentate geometry, respectively

with the latter species being in majority on the nickel surface. The molecule

decomposes on Ni{111} at temperatures between 300 K and 450 K, following

multistep processes [46]. Exposing the saturated (S)-alanine layer on Ni{111}
(0.25 ML) to elevated pressures of H2, causes protonation of the amino group of

(S)-alanine and reorientation to bidentate geometry, which under the presence of

elevated pressures of H2, is the majority species on the nickel surface [47].

The interaction of enantiopure and racemic alanine on Cu{100} was studied

using STM, RAIRS, LEED and theoretical calculations [56, 57, 140–142]. Ac-

cording to Ref. [56, 140, 142], alanine chemisorbs on Cu{100} in its anionic form

in an µ3 adsorption geometry, through the two oxygen atoms of the carboxylate

group and the nitrogen of the neutral amino group. Alanine forms c(2×4) su-

perstructures on the Cu{100} surface [56, 140, 142], driven by the presence of

intermolecular hydrogen bonds between the hydrogen of the amino group and the

oxygen atoms from the carboxylate group. According to STM, LEED and RAIRS

studies upon exposing the Cu{100} to racemic alanine (DL-alanine) [56, 140, 142],

D and L alanine segregate, creating their own c(2×4) domains, in disagreement

with theoretical calculations from Rankin et al. (2005) [141]. The authors of

Ref.[141] suggested that an ordered racemic structure of both enantiomers of ala-

nine on Cu{100} is favoured over the segregation of D and L- alanine. STM study

upon adsorbing (S)-alanine on on Cu{100} [56], show that the molecule causes

step faceting to <310>directions and bunching of these <310>steps to generate

{3 1 17} facets. The faceting and the bunching is enhanced upon annealing the

crystal [56]. According to Ref.[57, 58], adsorption of S-alanine on Cu{100} and

subsequent annealing of the surface, will cause the generation of both Cu{3 1

17}R and Cu{3 1 17}S facets, with the latter being in slightly greater abundance.

The adsorption of alanine on Pd{111} was investigated by Gao et al (2007)
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[143] and Mahapatra et al (2014) [64]. Gao et al (2007) [143] proposed that ala-

nine adsorbs in its zwitterionic form on Pd{111} in the first layer whereas in the

multilayer regime alanine exists both in its zwitterionic and neutral form. The

multilayer desorbs at temperatures between 350 K and 380 K [143]. The dissoci-

ation of alanine on Pd{111} occurs via C-C cleaving, which leads to desorption

of CO2 and CO desorption from the COO- moiety, and desorption of ethylamine

or HCN from the CH3-CH-NH3
+ [143]. Mahapatra et al (2014) [64] have found

evidence of formation of both zwitterionic and anionic alanine on Pd{111} sur-

face, with the isolated anionic form of the molecule, based on DFT calculations,

being significantly more stable. The molecule was found to construct dimers or

tetramers on Pd{111}, which could potentially behave as chiral templates [64].

In this study we will explore the chemical state, molecular orientation and

thermal stability of (S)-alanine on clean Ni{100} using XPS, TP-XPS and angle-

dependent NEXAFS. In addition, we have investigated the influence of elevated

pressures of H2 (up to 6.3 mbar) on the chemical state and the thermal stability

of alanine on Ni{100}, using AP-XPS. The elevated pressures of H2 were used

to approach more realistic (reaction) conditions. All the data were analysed by

the author. The synchrotron (UHV) data, obtained in the Elettra synchrotron in

Trieste (Italy) in the UHV endstation of the SuperESCA beamline, were collected

by Jacopo Ardini (University of Reading), by Dr. Silvia Baldanza (University of

Reading), by Dr. Chanan Euaruksakul (University of Reading), by Dr. Rachel

Price (University of Reading) and by Prof. Georg Held (University of Reading).

The AP-XPS data, obtained in the NAP-XPS facility in the University of Manch-

ester, were collected by the author and by Tom Statham. The overall contribution

of the author to this study is ∼ 70% of the total work.

4.2 Experimental methods

The XPS and NEXAFS experiments were performed in two different UHV cham-

bers. The UHV experiments were performed in the Elettra synchrotron in Trieste

(Italy) in the UHV endstation of the SuperESCA beamline, which provides a hor-

izontally polarized X-ray beam. The high pressure experiments took place in the

near-ambient pressure XPS (NAP-XPS) facility in the University of Manchester

using a Al Kα anode (hν=1486.7 eV) as an X-ray source. The dosing and the

sputtering occurred in the preparation chambers. The XPS and NEXAFS ex-

periments were performed in an analysis chamber. The XPS experiments were

performed using a 150 mm hemispherical electron analyser in the SuperESCA
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beamline and a SPECS system in the NAP-XPS facility in the University of

Manchester. The base pressure of both chambers in the SuperESCA endstation

was in the 10-10 mbar range whereas in the NAP-XPS facility was in the 10-9 mbar

range. Sample cleaning in the SuperESCA endstation, was achieved by cycles of

sputtering at 170 K (P=3 × 10-6 mbar) with subsequent annealing to 443 K, fol-

lowed by cycles of oxygen treatment (dose O2 at P=1 × 10-8 mbar at 170 K for

1-3 minutes and subsequent anneal to ∼ 1100 K). In the NAP-XPS facility, clean-

ing was achieved by sputtering at ∼ 400 K (P=2 × 10-7 mbar/1.5 kV) followed

by oxygen treatment (dose O2 at P=1 × 10-7 mbar at T≈400 K for 4 minutes

and subsequent anneal to ∼ 706 K). Sample cleaning was confirmed by XPS. In

the SuperESCA beamline, the nickel crystal was mounted at the base of a liquid

nitrogen-cooled coldfinger. The sample was heated resistively and its temperature

was adjusted using a programmable temperature controller and measured using

a spot welded thermocouple fixed on the sample. In the NAP-XPS facility the

sample was mounted on a sample holder and again its temperature was measured

using a spot welded thermocouple fixed on the sample. The sample was heated

both resistively and via an e-beam heater. For the purpose of NAP-XPS exper-

iments, the sample was mounted inside a NAP-cell which was docked into the

analyser. With this configuration the pressure inside the analysis chamber did

not change significantly during the exposure of the crystal to high pressures.

(S)-alanine (L-alanine) was dosed from a home built evaporator which was

mounted on the chamber through a gate valve. The evaporator consisted of a

stainless steel crucible containing a glass tube filled with alanine powder. Depo-

sition of the alanine molecule was performed by resistively heating the crucibles

to ∼ 418-428 K and opening the gate valve to the chamber. The measurement of

the temperature was achieved by K-type thermocouples spot-welded on the cru-

cibles. A pressure rise to ∼ 4 × 10-10-3 × 10-9 mbar was observed during dosing

of the molecule in the preparation chamber of the SuperESCA endstation, and to

∼ 2 × 10-9-2 × 10-7 mbar in the NAP-XPS facility. Due to differences in pumping

speed, there was no good correlation between dosing time and coverage, therefore

the coverage was determined using XPS (see Results section).

The synchrotron XPS data were obtained in the C 1s (hν=400 eV), N 1s

(hν=510 eV) and O 1s region (hν=650 eV) using pass energies of 10 eV, 10 eV

and 15 eV, respectively. Spectra of the Fermi edge were also obtained, every time

the monochromator was moved, to calibrate the offset of the binding energy axis.

The ambient pressure (AP)-XPS data were also acquired in C 1s, N 1s and O 1s,

using an Al Kα anode (hν=1486.7 eV) as an X-ray source and 30 eV as pass en-

ergy. The offset of the binding energy was calibrated using the position of the Ni
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2p peak (BE=852.7 eV). For quantitative analysis, all the spectra were normalised

at the low binding region followed by linear subtraction of the background. In

order to study the temperature dependence of alanine on Ni{100}, temperature-

programmed XP-spectra were acquired at a rate of ∼ 20 s/spectrum, by heating

the sample at a constant rate (8 K min-1) in front of the analyser while recording

alternating N 1s and C 1s or O 1s and C 1s spectra. During the TP-XPS exper-

iments the sample was moved under the beam to minimise any potential beam

damage.

The NEXAFS spectra were obtained in the O K-edge region, by detecting O

KLL Auger electrons with kinetic energies of 505 eV. In order to determine the

molecular orientation of alanine on Ni{100}, angle dependent NEXAFS spectra

were obtained using three different angles of incidence: θ= 0◦ (normal incidence),

θ= 35◦ and θ=70◦ (normal emission), where θ is the angle between the electric

field vector and the surface plane. All the spectra were normalised in the low

photon energy region and corrected for the transmission of the beamline through

dividing by the photon flux (I0). The I0 was collected using the drain current

of the last refocusing mirror. Spectra of the clean surface, corrected in the same

way, were subtracted as background. Finally the spectra were also normalised

with respect to the step height, at energies above all oxygen resonances.

4.3 Results

4.3.1 Alanine on clean Ni{100}/UHV

XPS Results

Figure 4.1 shows C 1s, N 1s and O 1s XP-spectra, as a function of surface coverage

obtained upon dosing (S)-alanine onto Ni{100} at Tsample=250 K. The coverage

(in ML) was calibrated by comparison of O 1s spectra acquired at hν=1000 eV

with those of adsorbed CO to saturation at room temperature (293 K). According

to Ref.[144] the saturation coverage of adsorbed CO on Ni{100} at room temper-

ature is Θ=0.5 ML

Five peaks are observed in the N 1s region at 397.3 eV, 398.0-398.1 eV, 399.4-

399.7 eV, 400.3-401 eV and at 401.8-402.2 eV (Fig. 4.1b ). The peak at 397.3 eV

is associated with atomic nitrogen whereas the peak at 398.0-398.1 eV is related

to decomposition fragments/surface impurities such HCN or NH2CHCH3 species.

The peak at 399.4-399.7 eV has been previously assigned to the nitrogen of the

neutral amino group (NH2) of glycine whereas the peak at 401.8-402.2 eV was
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assigned to the nitrogen of the protonated amino group (NH3
+) [69, 145]. The

peak associated with the protonated amino group of alanine (401.8-402.2 eV) is

present at ΘAla>0.10 ML and grows with increasing coverage whereas the peak

related to the amino group attenuates in the multilayer regime (ΘAla ≥ 0.33 ML).

The peak at 400.3-401 eV is present at ΘAla>0.06 ML and its area accounts for

approximately 6-11% of the XPS area of intact alanine (excluding impurities) at

all coverages. This peak could be related either to the neutral amino group (NH2)

chemisorbed on the nickel surface in a different adsorption site or to the amino

group forming hydrogen bonds with other groups of the alanine molecule.

(a) (b) (c)

Figure 4.1: XP-spetra as a function of surface coverage (a) in the C 1s region
(hν=400 eV), (b) in the N 1s region (hν=510 eV) and (c) in the O 1s region
(hν=650 eV) obtained upon dosing (S)-alanine onto Ni{100} at Tsample=250 K.
The spectra were obtained in the Elettra synchrotron in Trieste (Italy) in the
UHV endstation of the SuperESCA beamline. The black dots are the raw data
and the solid black thick lines are the fitted curves. The solid coloured curves are
the individual peaks obtained upon fitting.

The O 1s spectra (Fig. 4.1c) consist of four peaks at 530.6-530.7 eV, 531.3-

531.5 eV, 532.7-533.0 eV and 534.5-534.8 eV. The lower binding energy peak

(530.6-530.7 eV) is only present at low coverages ΘAla ≤ 0.18 and is proba-

bly related to CO or chemisorbed O. O 1s XP-spectrum, of saturated CO on

Ni{100} (Fig. 4.2b) at Tsample=293 K, obtained during this study, shows two

peaks at ∼ 531.0 eV and ∼ 532.0 eV in close agreement with Ref.[146]. This

kind of shift in the binding energy of the O 1s core electron was also observed
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upon co-adsorption of CO with benzene on Ni{111} (from 531.0 eV/pure CO to

530.8 eV/CO+benzene)[147]. The peak at 531.3-531.5 eV is a combination of sig-

nal originating from the overlap contribution from the COO- and COOH oxygen

[69]. In the deprotonated form (COO-), the two oxygen atoms are in an equivalent

chemical environment, hence the signal does not split [104]. The position of this

peak shifts to 531.8 eV in the multilayer regime. In the multilayer the core hole

experiences less screening from the metal substrate, thus increasing the binding

energy of the O 1s core electron [69]. According to Ref.[109], both the peaks at

531.3-531.5 eV (O 1s spectra in Fig. 4.1c) and 399.5-399.8 eV (N 1s spectra in

Fig. 4.1b) are indicators of alanine chemisorbed via the oxygen atoms of COO-

group and nitrogen atom of the amino group. The two high binding energy peaks

(532.7-533 eV and 534.5-534.8 eV) are related to the carboxyl group of the ala-

nine molecule with a high degree of protonation. The peak at 532.7-533 eV was

previously attributed to the -OH group of the neutral carboxyl group (-COOH)

in glycine [69, 148], whereas the peak at 534.5-534.8 eV was previously assigned

to satellite peak or oxygen atoms of the carboxyl group of tartaric acid with high

degree of protonation (hydrogen bonds)[99]. In our study, these hydrogen bonds

could be either between the protonated carboxyl groups of the alanine molecule

or between the protonated carboxyl group and the neutral amino group (peak at

400.3-401 eV, N 1s spectra in Fig. 4.1b). The sum of the area of the peaks related

to protonated carboxylic species (532.7-533 eV and 534.5-534.8 eV) accounts for

approximately 33-43% of the XPS area of intact alanine (excluding impurities)

at ΘAla ≤ 0.1, ∼ 18-24% at 0.1 ML<ΘAla ≤ 0.33 ML, and ∼ 14% in multilayer.

We cannot exclude contribution to the XPS signal of alanine in the O 1s region

(especially at low coverages) from co-adsorbed CO, oxygen, water and hydroxyls.

(a) (b)

Figure 4.2: XP-spectra in the (a) in the C 1s region (hν=400 eV) and (b) in the
O 1s region (hν=650 eV) obtained upon dosing CO onto Ni{100} to saturation at
Tsample=293 K. The spectra were obtained in the Elettra synchrotron in Trieste
(Italy) in the UHV endstation of the SuperESCA beamline.
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The C 1s spectra consist (Fig. 4.1a) of seven peaks. The three low binding

energy peaks (282.8-283.0 eV, 283.3-283.6 eV, 284.7-285.0 eV), which represent a

really intense signal (in comparison to the signal of intact alanine) at low coverages

(ΘAla ≤ 0.18 ML), are associated with decomposition fragments and surface im-

purities. The peak at 282.8-283.0 eV was previously assigned to carbidic/surface

carbon [101, 102]. The peak at 283.3-283.6 eV was also observed upon adsorbing

alanine on Ni{111} [46] and it can be assigned to atomic carbon/nickel carbide

[46, 103], allylic carbon [102] and/or HCN species [46]. The peak at 284.7-285.0 eV

could be associated with sp2(-C=C-)/graphitic carbon [46, 103] and/or decompo-

sition fragments of alanine such as NH2CHCH3 species. C 1s XP-spectrum of

saturated CO on Ni{100} (Fig. 4.2a) at Tsample=293 K, obtained during this

study, shows two peaks at ∼ 285.3 and ∼ 285.7 eV, in close agreement with

Ref.[146], therefore the peak at 285.3 eV (C 1s spectra in Fig. 4.1a) is assigned to

CO. This peak shifts to low binding energies (285.1 eV) with increasing coverage.

Similar behaviour was observed upon co-adsorption of CO with alanine [46] and

benzene [147] on Ni{111} surface. The peaks at 285.6-285.9 eV, 286.7-287.2 eV

and 288.2-289.0 eV are assigned to the carbon of the methyl group of alanine

(-CH3), to the α-carbon of alanine (C-NH2/C-NH3
+), and to the carbon of the

carboxyl group of alanine (COO-/COOH). The XPS signal of the peak associated

with the methyl carbon of alanine (285.6-285.9 eV), has most likely contribution

from CO as well. This contribution will also explain the variation of the peak

shape with coverage. The peak assigned to the carbon of the carboxyl group

of alanine (288.2-289.0 eV) presents a large FWHM (∼ 3 eV)at low coverages

(ΘAla ≤ 0.18 ML), suggesting also the contribution to this signal from surface

impurities/decomposition fragments.

According to the XP-spectra in Fig. 4.1, alanine chemisorbs on Ni{100} in

its anionic and neutral form at ΘAla ≤ 0.1. In its anionic form, the carboxyl

group of alanine is deprotonated, and alanine forms three surface bonds with

the nickel substrate (the two oxygen atoms of COO- group and nitrogen atom

of the amino group) whereas in its neutral form, one of the two oxygen atoms

of the carboxyl group is protonated and dangled from the surface, which results

in an µ2 adsorption geometry (Fig. 4.3). Increasing the coverage of alanine on

the nickel surface (ΘAla>0.1 ML) causes the generation of zwitterionic species,

which also support an µ2 adsorption geometry (Fig. 4.3). The zwitterionic species

coexist on the anionic and neutral forms of alanine. One might speculate that

these zwitterionic species are found in a second layer deposited on top of the

chemisorbed layer. According to Fig. 4.3, the estimated saturation coverage of

alanine on Ni{100} is ∼ 0.33 ML (1 molecule per 3 nickel atoms). We need to be
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Figure 4.3: The three possible chemical states of the chemisorbed (S)-alanine on
Ni{100} surface with their corresponding adsorption geometries. The black circles
are carbon atoms, the red circles are oxygen atoms, the blue circles are nitrogen
atoms, the grey circles are hydrogen atoms and green circles are nickel atoms.

cautious about the estimation of absolute coverage of alanine on Ni{100} using

XPS, especially at low coverages, since the O 1s spectra contains features which

do not correspond to intact alanine, such as water, hydroxyls and CO. In the

multilayer, alanine is almost exclusively in its zwitterionic form.

The thermal behaviour of (S)-alanine on Ni{100} was evaluated using Tem-

perature Programmed-XP-spectra (TP-XPS). Figures 4.4-4.6 show C 1s and N 1s

TP-XP-spectra for three different coverages of (S)-alanine on Ni{100} surface

(multilayer, Θ=0.22 ML, Θ=0.10 ML), whereas Fig. 4.7 shows C 1s and O 1s TP-

XP-spectra obtained upon dosing (S)-alanine onto Ni{100} up to ΘAla=0.18 ML

ΘAla=0.18 ML.

The XPS signal does not change significantly upon heating the alanine over-

layers from 250 K to 300 K (Fig. 4.4-4.7). In this temperature range (∼ 250-

300 K) there is some oscillating behaviour in the intensity of the XPS signal of

the multilayer alanine, as a function of temperature, in both C 1s and N 1s region

(Fig. 4.4), which is probably related to beam damage and/or the fact that the

sample was moved during the TP-XPS experiments. Heating the multilayer to
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(a) (b)

(c) (d)

Figure 4.4: (a+b) TP-XP-spectra in the (a) C 1s region and (b) N 1s region,
obtained upon dosing (S)-alanine onto Ni{100} at Tsample=250 K up to the mul-
tilayer regime. Heating rate: 8 K min-1, hν=510 eV. The spectra were obtained
in the Elettra synchrotron in Trieste (Italy) in the UHV endstation of the Su-
perESCA beamline. (c+d) Intensity profiles (in 0.5 eV wide bands) as a function
of temperature, obtained from the TP-XP-spectra in Fig. 4.4a and 4.4b, respec-
tively for the (c) carbon peaks at 282.8 eV, 283.4 eV, 285.8 eV, 287.1 eV and
288.8 eV and (d) for the nitrogen peaks at 397.2 eV, 398.1 eV, 399.5 eV and 402.0
eV.
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(a) (b)

(c) (d)

Figure 4.5: (a+b) TP-XP-spectra in the (a) C 1s region and (b) N 1s re-
gion, obtained upon dosing (S)-alanine onto Ni{100} at Tsample=250 K up to
ΘAla=0.22 ML. Heating rate: 8 K min-1, hν=510 eV. The spectra were obtained
in the Elettra synchrotron in Trieste (Italy) in the UHV endstation of the Su-
perESCA beamline. (c+d) Intensity profiles (in 0.5 eV wide bands) as a function
of temperature, obtained from the TP-XP-spectra in Fig. 4.5a and 4.5b, respec-
tively for the (c) carbon peaks at 282.9 eV, 283.4 eV, 285.8 eV, 287.2 eV and
288.8 eV and (d) for the nitrogen peaks at 397.3 eV, 398.1 eV, 399.5 eV and 402.0
eV.
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(a) (b)

(c) (d)

Figure 4.6: (a+b) TP-XP-spectra in the (a) C 1s region and (b) N 1s re-
gion, obtained upon dosing (S)-alanine onto Ni{100} at Tsample=250 K up to
ΘAla=0.10 ML. Heating rate: 8 K min-1, hν=510 eV. The spectra were obtained
in the Elettra synchrotron in Trieste (Italy) in the UHV endstation of the Su-
perESCA beamline. (c+d) Intensity profiles (in 0.5 eV wide bands) as a function
of temperature, obtained from the TP-XP-spectra in Fig. 4.6a and 4.6b, respec-
tively for the (c) carbon peaks at 282.8 eV, 285.8 eV, 286.7 eV and 288.4 eV and
(d) for the nitrogen peaks at 397.2 eV, 398.1 eV, 399.7 eV.
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(a) (b)

(c) (d)

Figure 4.7: (a+b) TP-XP-spectra in the (a) C 1s region and (b) O 1s re-
gion, obtained upon dosing (S)-alanine onto Ni{100} at Tsample=250 K up to
ΘAla=0.18 ML. Heating rate: 8 K min-1, hν=650 eV. The spectra were obtained
in the Elettra synchrotron in Trieste (Italy) in the UHV endstation of the Su-
perESCA beamline. (c+d) Intensity profiles (in 0.5 eV wide bands) as a function
of temperature, obtained from the TP-XP-spectra in Fig. 4.7a and 4.7b, respec-
tively for the (c) carbon peaks at 282.8 eV, 283.5 eV, 285.8 eV, 286.8 eV and
288.2 eV and (d) for the oxygen peak at 531.2 eV.
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∼ 320 K (Fig. 4.4) causes reduction in the signal corresponding to the protonated

group (NH3
+) of alanine in the N 1s region (Fig. 4.4b and 4.4d) while at the same

time there is a rise in the signal corresponding to the neutral amino group (NH2).

In the C 1s region (Fig. 4.4a and 4.4a) at ∼ 320 K we can observe a significant

reduction in the XPS signal of the alanine overlayer, suggesting desorption of the

multilayer alanine. The full decomposition temperature of (S)-alanine on Ni{100}
decreases with decreased initial surface coverage of the alanine overlayer. The full

decomposition occurs at T≈370-390 K for multilayer alanine (Fig. 4.4), at T≈350-

370 K for ΘAla=0.22 ML (Fig. 4.5), at T≈340-360 K for ΘAla=0.18 ML (Fig. 4.7)

and T≈330-350 K for ΘAla=0.10 ML (Fig. 4.6). During decomposition, we can

observe almost full disappearance of the XPS signal in the O 1s region (Fig. 4.7b)

accompanied by rise in the signal associated with decomposition species in the

C 1s region (BE<285 eV, Fig. 4.4a,4.4c,4.5a, 4.5c, 4.6a, 4.6c, 4.7a and 4.7c) and

in the N 1S region (BE<399 eV, Fig. 4.4b,4.4d 4.5b,4.5d, 4.6b and 4.6d). The

peak associated with carbidic/surface carbon (∼282.8 eV, C 1s spectra in Fig. 4.4-

4.7) and the peak associated with the atomic nitrogen (∼397.2 eV, N 1s spectra

in Fig. 4.4-4.6) are still present in the XPS signal even upon heating to ∼ 1050 K,

with the atomic nitrogen being thermally more stable than the carbidic/surface

carbon.

NEXAFS Results

Figure 4.8a shows angle resolved NEXAFS in the O K-edge region after dosing

(S)-alanine onto Ni{100} at Tsample=250 K up to ΘAla=0.22 ML. The O K-edge

NEXAFS spectra consist of a sharp π* resonance at 532.0 eV, two σ* resonances

at 539.3 eV and 542.3 eV and a step at 532.6 eV. It is difficult to determine

the exact position of the σ* resonances due to their large FWHM, however this

does not influence the purpose of our NEXAFS data analysis which relies on the

intensity of the π* resonance. The σ* resonances are due to C-C(539.3 eV) and

C-O(542.3 eV) bonds [46, 104, 105].

The π* resonance (532.0 eV, Fig. 4.8a) in the O K-edge region is associated

with the COO- group and C––O group of the protonated carboxyl group of the

alanine molecule. The intensity of the π* resonance shows angular dependency

(Fig. 4.8b), therefore it was used to determine the tilt angle α of the C––O/COO-

groups of alanine with respect to the Ni{100} surface, according to the following

equation for surfaces with 4-old symmetry [96]:

I(θ) = A[P (sinθ)2 · (1− 3

2
sin2α) +

1

2
sin2α] (4.1)
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(a)

(b)

Figure 4.8: (a) Angle resolved O K-edge NEXAFS spectra after dosing (S)-alanine
onto Ni{100} at Tsample=250 K up to ΘAla=0.22 ML. The spectra were obtained
in the Elettra synchrotron in Trieste (Italy) in the UHV endstation of the Su-
perESCA beamline. The dots represent the raw data and the solid thick lines
the fitted curves. The red curves below the spectra show the individual Gaussian
peaks, the linear background and the the step function used during the fitting
process (b) Plots (black markers) showing the intensity of the oxygen π* reso-
nance in Fig. 4.8a as a function of angle γ, where γ is related to the angle of
incidence θ (γ=90◦-θ). The solid red line shows the fitted curve calculated by the
cos function in Eq. 4.2.
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Where θ is the angle between the electric field vector and the surface plane

and P is the polarisation factor. Assuming P=1 for the SuperESCA beamline,

the Eq. 4.1, is transformed to Eq. 4.2:

I(γ) =
A

3
[1 +

1

2
(3cos2γ − 1)(3cos2α− 1)] (4.2)

Where γ=90◦-θ. The angular dependency of the π* resonance (Fig. 4.8b) re-

turned tilt angle α≈48.5◦ (Fig. 4.8b). The error margin stated in Fig. 4.8b refers

to the fitting error. Angle dependent NEXAFS of (S)-alanine on Ni{111} in the O

K-edge region [46] showed two π* resonances which were assigned to the carboxy-

late group in the tridentate (anionic alanine) and bidentate (zwitterionic alanine)

adsorption mode of the alanine molecule on the Ni{111} substrate. The angular

dependency of these two π* resonances returned tilt angles α=56◦ and α=64◦ [46].

These values correspond to the tilt of the carboxylate group with respect to the

Ni{111} surface plane in the anionic and zwitterionic alanine, respectively [46].

The XP-spectra of (S)-alanine on Ni{100} for ΘAla=0.22 ML (Fig. 4.1) suggest

the coexistence of anionic, neutral and zwitterionic alanine on the Ni{100} surface

which support an µ3, µ2 and µ2 adsorption geometry, respectively (Fig. 4.3), with

the signal of zwitterionic alanine being ∼ 6% (N 1s XP-spectrum in Fig. 4.1b) of

the total N 1s XPS area (excluding impurities). The tilt angle of the C––O/COO-

groups of alanine with respect to the Ni{100} surface plane (∼ 48.5◦), obtained

in our study is close to the tilt angle of carboxylate group of the anionic alanine

with respect to the Ni{111} surface plane (56◦, [46]). It is possible that our NEX-

AFS data could not resolve the zwitterionic conformation of the alanine molecule

because of its low concentration on the nickel surface. In a later study from

Nicklin et al. (2018) [47], the tilt angle of the carboxylate group of (S)-alanine

with respect to the Ni{111} surface plane was determined 63◦ and 34◦, by using

angle dependent NEXAFS in the O K-edge region under UHV conditions and

under the presence of elevated pressures of H2 (P=4 × 10-1 Torr), respectively.

The two different tilt angles were associated with the tridenate and the bidentate

conformation of the alanine molecule on the Ni{111} surface, respectively, since

the presence of elevated pressures of hydrogen caused the protonation of the neu-

tral amino group of anionic alanine, and generation of zwitterionic species of the

molecule [47].

104



Chapter 4. Interaction of (S)-alanine on clean Ni{100} under UHV and elevated
hydrogen pressures

4.3.2 Alanine on clean Ni{100}/Elevated H2 pressures

XPS Results

Figure 4.9 shows ambient pressure (AP) XP-spectra of the (S)-alanine layer on

Ni{100}. The spectra were obtained upon dosing (S)-alanine onto Ni{100} to

saturation (at room temperature, T≤330 K) and then exposing the alanine layer

to increasing hydrogen pressures as shown in Fig. 4.9. Dosing at room temper-

ature (T≤330 K) does not cause creation of multilayers, as expected from the

the TP-XP-spectra of multilayer alanine in Fig. 4.4. Upon evacuation of the

hydrogen gas from the NAP-cell (UHV after), the alanine layer was re-exposed

to PH2= 6.3 mbar (Fig. 4.9). Figure 4.10 compares step anneal XP-spectra of

two (S)-alanine overlayers on Ni{100} under the presence of PH2= 6.3 mbar (top

panel) and under UHV conditions (bottom panel). The coverage of (S)-alanine on

Ni{100} was calibrated based on the XPS area of the saturated signal of alanine

in the O 1s region. It was difficult to determine the coverage in ML because of the

the high amount of surface impurities and decomposition fragments present upon

deposition of the molecule on the nickel surface. Surface impurities were present

on the nickel surface before deposition of the molecule. The fitted XPS area of

the carbon impurities present before dosing alanine in Fig. 4.10d were ∼ 14% of

the fitted XPS area of the saturated alanine (excluding impurities) in the C 1s

region, whereas the fitted XPS area of the nitrogen impurities (Fig. 4.10e) were

∼ 23% the fitted XPS area of the saturated alanine in the N 1s region (excluding

impurities).

The XPS signal of the saturated (S)-alanine layer (at room temperature,

T≤330 K) in the C 1s region (Fig. 4.9a, UHV before), consists of five peaks at

283.4 eV, 284.8 eV 285.9 eV, 286.9 eV and 288.3 eV. The peak at 283.4 eV is as-

signed to atomic carbon/nickel carbide [46, 103], allylic carbon [102] and/or HCN

species [46] whereas the peak at 284.8 eV could be associated with sp2/graphitic

carbon [46, 103], co-adsorbed CO and/or decomposition fragments of alanine such

as NH2CHCH3 species. The peaks at 285.9 eV, 286.9 eV and 288.3 eV are as-

signed in a similar fashion to the (S)-alanine top-up XP-spectra on Ni{100} at

250 K (C 1s spectra in Fig. 4.1a), to the carbon of the methyl group of ala-

nine (-CH3), to the α-carbon of alanine (C-NH2/C-NH3
+), and to the carbon of

the carboxyl group of alanine (COO-/COOH). The intense signal of the peaks

associated with decomposition fragments/surface impurities in the C 1s spectra

in Fig. 4.9a (283.4 eV and 284.8 eV) with respect to the peaks associated with

the intact alanine molecule (285.9 eV, 286.9 eV and 288.3 eV) is a result of the
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(a) (b) (c)

Figure 4.9: Ambient pressure (AP) XP-spectra of 100% saturated (S)-alanine layer
on Ni{100} at elevated hydrogen pressures (a) in the C 1s region, (b) in the N 1s
region and (c) in the O 1s region. The black dots are the raw data and the solid
black thick lines are the fitted curves. The solid coloured curves are the individual
peaks obtained upon fitting. The spectra were recorded in the near-ambient pres-
sure XPS (NAP-XPS) facility in the University of Manchester using Al Kα anode
(hν=1486.7 eV) as an X-ray source. Dosing conditions of L-alanine: Tsample=room
temperature(T≤330 K), Tevaporator≈418-428 K, Pbase≈1 × 10-9-2 × 10-9 mbar,
Pdosing≈4 × 10-9-2 × 10-7 mbar.

sample temperature during deposition of the alanine molecule onto the nickel sur-

face (room temperature, T≤330 K), which according to the the TP-XP-spectra

of alanine on Ni{100} in Fig. 4.4-4.7 is close to the decomposition temperature

of alanine on Ni{100} surface (330-390 K). The N 1s spectrum of the same ala-

nine layer (Fig. 4.9b, UHV before) consists of three peaks at 397.5 eV, 399.5 eV,

and 400.6 whereas the O 1s spectrum (Fig. 4.9c, UHV before), shows also three

peaks at 531.5 eV, 533.0 eV and 535.5 eV. The peak at 397.5 eV is related to

atomic nitrogen and/or decomposition fragments/surface impurities such as HCN

or NH2CHCH3 species, whereas the peak 399.5 eV is related to the nitrogen of

the neutral amino group (NH2) of alanine [69, 145]. The peak at 400.6 accounts

for approximately 29% of the XPS area of intact alanine (excluding impurities)

and it has been assigned, either to the neutral amino group (NH2) chemisorbed

on the nickel surface in a different adsorption site or to the amino group forming

hydrogen bonds with other groups of the alanine molecule. The peak at 531.5 eV

in the O 1s spectrum in Fig. 4.9b, is a combination of signal originating from the
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overlap contribution from the COO- and COOH oxygen atoms [69]. The peak

at 533.0 eV was previously attributed to the -OH group of the neutral carboxyl

group (-COOH) in glycine [69, 148], whereas the peak at 535.5 eV could be as-

signed to satellite peak or to oxygen atoms of the carboxyl groups with high degree

of protonation (hydrogen bonds) [99]. The sum of the area of the peaks related

to carboxyl groups with high degree of protonation (533.0 eV and 535.5 eV, O 1s

spectrum in Fig. 4.9c, UHV before) accounts for approximately 21% of the XPS

area of intact alanine. In the light of this argument (Fig. 4.9, UHV before), in

the saturated layer (room temperature, T≤330 K) under UHV conditions, ala-

nine chemisorbs on Ni{100} in both its anionic and neutral form (almost 1:1 ratio

species), supporting an µ3 and µ2 adsorption geometry, respectively (Fig. 4.3).

Exposing the saturated layer to PH2= 0.20-0.25 mbar causes generation of a

peak in the O 1s region at 529.9 eV (Fig. 4.9c). This peak is probably related to

atomic oxygen which originates either from the background pressure of the NAP-

cell or decomposition fragments of alanine, even though we do not observe any

significant increase in the signal of decomposition fragments/surface impurities

in the C 1s (283.4-283.6 eV and 284.7-284.8 eV in Fig. 4.9a) and N 1s region

(397.4-397.7 eV in Fig. 4.9b) with respect to the XPS signal of intact alanine.

The signal of the peak at 529.9 eV (with respect to the signal of intact alanine)

is reduced with increasing hydrogen pressure and presence of the sample in the

NAP-cell, suggesting that the hydrogen gas is reacting with these species causing

their desorption from the nickel surface. Increasing the hydrogen pressure in the

NAP-cell causes an increase in the area of the peaks related to the protonated

carboxylic species (532.7-533 eV and 534.7-535.5 eV, O 1s spectra in Fig. 4.9c).

This increase is with respect to the total XPS area of intact alanine (excluding

impurities). The extent of protonation of the carboxyl groups of alanine is caused

by the infinite source of hydrogen from the gas phase. At PH2=6.30 mbar, the sum

of the area of the peaks related to carboxyl groups with high degree of protonation

(532.7 eV and 534.7 eV, O 1s spectrum in Fig. 4.9c) accounts for approximately

32% of the XPS area of intact alanine. Upon evacuation of the hydrogen gas

from the NAP-cell (UHV after), we can observe an additional N 1s signal at

402.1 eV (N 1s spectrum in Fig. 4.9b). The low intensity of the signal makes it

difficult to determine whether it is an actual peak or it is related to the noise

of the background. The signal at 402.1 eV implies the protonation of the amino

group of alanine (NH3
+) [69, 145] and generation of zwitterionic species of alanine

(Fig. 4.3). The signal is further increased (with respect to the the total XPS area

of intact alanine, excluding impurities) at PH2=6.30 mbar.

Heating the alanine overlayer to 352 K and 375 K under the presence of PH2=
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(a) (b) (c)

(d) (e) (f)

Figure 4.10: Comparison of step anneal XP-spectra of two (S)-alanine overlayers
on Ni{100} under the presence of PH2= 6.3 mbar (top panel) and under UHV
conditions (bottom panel) . The spectra were recorded in the C 1s region (a+d),
in the N 1s region (b+e) and in the O 1s region (c+f). The black dots are
the raw data and the solid black thick lines are the fitted curves. The solid
coloured curves are the individual peaks obtained upon fitting. The spectra were
recorded in the near-ambient pressure XPS (NAP-XPS) facility in the University
of Manchester using Al Kα anode (hν=1486.7 eV) as an X-ray source. Dosing con-
ditions (top panel): Tsample=room temperature(T≤330 K), Tevaporator≈418-428 K,
Pbase≈1 × 10-9-2 × 10-9 mbar, Pdosing≈4 × 10-9-2 × 10-7 mbar. Initial surface
coverage of (S)-alanine (before exposure to elevated hydrogen pressures): 100%
sat. Dosing conditions (bottom panel): Tsample= room temperature (T≤320 K),
Tevaporator≈423-424 K, Pdosing≈2 × 10-9-1 × 10-8 mbar. Initial surface coverage of
(S)-alanine (before step anneal process): 78% sat.
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6.3 mbar (N 1s spectra in Fig. 4.10b) causes reduction in the XPS signal of alanine

by∼ 21% and∼ 40%, (with respect to the layer at room temperature) respectively,

but does not cause any significant change in the chemical state of the molecule.

Heating to 400 K, under the presence of PH2= 6.3 mbar (Fig. 4.10, top panel),

causes the onset of full decomposition of the alanine molecule on the Ni{100}
surface which is completed by T=458 K. At this temperature we can observe only

decomposition fragments/surface impurities in all the three regions (Fig. 4.10,

top panel). The decomposition of the alanine molecule on the Ni{100} surface

under the presence of PH2= 6.3 mbar did not cause any significant increase in the

signal of the decomposition species in the C 1s region (Fig. 4.10a) and N 1s region

(Fig. 4.10b), as we have observed in the TP-XP-spectra of alanine on Ni{100} in

Fig. 4.4-4.7. It is likely that the hydrogen gas is reacting with the decomposition

fragments of alanine causing their desorption or the presence of hydrogen gas

alters the decomposition mechanism of alanine on Ni{100}.
Heating the alanine overlayer to 401 K under UHV conditions (Fig. 4.10, bot-

tom panel) causes reduction in the XPS signal of alanine by ∼ 30-37% (with

respect to the layer at room temperature), but does not change, significantly, the

chemical state of the molecule on the Ni{100} surface. Heating to 460 K (again

under UHV conditions) causes even further reduction in the XPS signal of alanine

(∼ 42-51%, always with respect to the layer at room temperature), but still does

not cause full decomposition of the alanine molecule, as we have observed under

the presence of PH2= 6.3 mbar . In the light of this observation we can suggest that

the presence of PH2= 6.3 mbar destabilises thermally the alanine molecule on the

Ni{100} surface. The TP-XP-spectra in Fig. 4.4-4.7 suggest that the decomposi-

tion temperature of alanine on Ni{100} is ∼ 330-390 K whereas the step anneal

XP-spectra (under UHV conditions) in Fig. 4.10 (bottom panel) suggest that at

460 K approximately half of the alanine layer is still intact on the Ni{100} surface.

This discrepancy is most likely originated from the nature of those experiments.

In the TP-XPS experiments, the sample is heated at a constant rate whereas in

the step anneal experiments the sample was heated to a constant temperature

and then cooled while taking XP-spectra. In addition the two alanine overlayers

were generated at different sample temperatures: in Fig. 4.4-4.7 the alanine layers

was generated at Tsample=250 K whereas in Fig. 4.10 (bottom panel) was gener-

ated at Tsample= room temperature (T≤320 K). Finally this discrepancy might

be caused by the difference between sample configuration in the UHV endstation

of the SuperESCA beamline and the sample configuration in the near-ambient

pressure XPS (NAP-XPS) facility in the University of Manchester.
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4.4 Discussion

Dosing (S)-alanine onto Ni{100} at room temperature (T≤330 K, Fig. 4.9) causes

saturation of the XPS signal. No multilayers are formed at this temperature (room

temperature, T≤330 K), whereas the XP-spectra in the C 1s region (Fig. 4.9a),

suggest strong presence of decomposition fragments/surface impurities. In the sat-

urated layer (formed at room temperature, T≤330 K, Fig. 4.9) alanine chemisorbs

on Ni{100} in both its anionic and neutral form. These chemical states support an

µ3 and µ2 adsorption geometry, respectively (Fig. 4.3). Deposition of alanine onto

Ni{100} at Tsample=250 K (Fig. 4.1) causes also generation of anionic and neutral

species. At ΘAla>0.10 ML we can observe generation of zwitterionic species of ala-

nine which also support an µ2 adsorption geometry (Fig. 4.3), which coexist with

the anionic and neutral forms of alanine. It is not fully conclusive whether these

zwitterionic species belong to the first chemisorbed layer or they are found in a

second layer deposited on top of the chemisorbed layer. Deposition of (S)-alanine

onto Ni{100} at Tsample=250 K, causes generation of zwitterionic multilayer ala-

nine, which desorbs at T≈320 K (TP-XP-spectra in Fig. 4.4). TP-XP-spectra

of (S)-alanine layers on Ni{100} formed at Tsample=250 K (Fig. 4.4-4.7), suggest

that the molecule decomposes on the nickel surface at T≈330-390 K, depend-

ing on the initial coverage of alanine (the decomposition temperature of alanine

decreases with decreased initial surface coverage of the alanine overlayer). On

the other hand step-anneal XP-spectra of 78% sat (S)-alanine layer on Ni{100}
formed at room temperature (T≤320 K, Fig. 4.10, bottom panel), suggest that

at T=460 K, approximately half of the alanine layer is still intact on the Ni{100}
surface. Exposing the 100% sat alanine layer, grown on Ni{100} at room tempera-

ture (T≤330 K, Fig. 4.10, top panel), to PH2= 6.3 mbar, destabilises thermally the

molecule, which decomposes at T≥400 K. According to previous work [16, 17], the

temperature range used for modification of Raney nickel [16] and silica-supported

nickel catalysts [17] using alanine as chiral modifier, as well as the temperatures

used for the enantioselective hydrogenation of MAA using the aforementioned

catalysts lies between 273 K and 373 K [16, 17]. This temperature range is close

to some of the decomposition temperatures of (S)-alanine on Ni{100}, observed

in this study, therefore we cannot fully conclude whether the molecule remains

intact on the Ni{100} in the range of temperatures typically used in enantioselec-

tive catalysis. A further study, which will exploit the interaction of the molecule

on the Ni{100} surface under elevated solvent pressures is essential, to obtain

full conclusions about the thermal stability of the molecule on the Ni{100} facet
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under modification and reaction conditions.

Exposing the saturated layer (formed at room temperature, T≤330 K, Fig. 4.9)

to elevated hydrogen pressures, causes an increase in the amount of neutral species

of alanine on Ni{100} and perhaps generation of zwitterionic species. It is clear

that elevated pressures of hydrogen cause some loss of “chiral environment” on

the nickel surface, resulting from the µ3 adsorption geometry of the molecule and

transition to an µ2 adsorption geometry. Transition to an µ2 adsorption geometry

(from µ3) was also observed upon exposing the saturated (0.25 ML) (S)-alanine

layer on Ni{111} to elevated hydrogen pressures) [47]. These geometries may

facilitate an interaction of the modifier with the β-ketoester reactant. Work on

the interaction of (S)-glutamic acid and MAA on Ni{111} [40, 43, 44] provided

evidence for a strong correlation between the increase of the keto:enol ratio of

MAA, the protonation of the amino group of the modifier ((S)-glutamic acid) and

the conditions that favour the generation of the R-product in excess. Under these

conditions, it is possible, that the protonated amino group of the modifier ((S)-

glutamic) can support an interaction with the β-ketoester reactant via hydrogen

bonding in a configuration that will preferably produce the R-product during the

hydrogenation reaction [40, 43, 44], as it was observed by Jones et al. (2006) [40]

using RAIRS. In addition, modification of Ni{111} with (R,R)-tartaric acid from

solution at 350 K (which according to Ref.[37, 38] is the optimum modification

temperature for attaining the highest enantioselectivity using TA as modifier) fol-

lowing washing of the catalyst, caused generation of HTA- species on the nickel

surface [38]. Subsequent immersion of the crystal in a MAA solution caused

enhancement of the diketone/enol ratio of MAA substrate with respect to the

modification at 300 K [38]. According to Ref.[38] the origin of the enantioselec-

tivity of this system might be due to the formation of hydrogen bonds between the

diketone and the HTA- species (maybe through the protonated carboxyl group of

tartaric acid), in orientation that will preferably generate the R-enantiomer as a

product during the hydrogenation reaction.

4.5 Conclusions

Alanine at Tsample=250 K/ΘAla ≤ 0.10 ML and T=room temperature (ΘAla ≥
78% sat) chemisorbs on Ni{100} in both its anionic and neutral form. Dosing

alanine at room temperature (T≤330 K) causes saturation of the XPS signal

without formation of any multilayers. At Tsample=250 K and ΘAla>0.10 ML, some

zwitterionic species are formed, which coexist with the anionic and neutral forms
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of alanine. It is not fully conclusive whether these zwitterionic species belong

to the first chemisorbed layer or they are found in a second layer deposited on

top of the chemisorbed layer. In the multilayer alanine is almost exclusively in

its zwitterionic form. The multilayer desorbs at ∼ 320 K. According to TP-XP-

spectra, the alanine overlayers formed at Tsample=250 K, decompose at T≈330-

390 K depending on the initial coverage of alanine, whereas step anneal XP-spectra

of alanine overlayers formed on Ni{100} at room temperature, show that the

molecule fully decomposes on Ni{100} at T>460 K and T≥400 K under UHV and

elevated hydrogen pressure conditions (PH2= 6.3 mbar), respectively. According

to angle dependent NEXAFS, the C––O/COO- groups of the alanine molecule are

tilted by ∼ 48.5◦ with respect to the Ni{100} surface plane. AP-XPS has shown

that the presence of elevated hydrogen pressures causes increase in the amount

of neutral species of alanine on Ni{100} and perhaps generation of zwitterionic

species, which both might be important for enantioselective catalysis since in

both forms, alanine can interact with the reactant creating an enantiospecific

environment for asymmetric hydrogenation.
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Co-adsorption of (S)-alanine and

water on Ni{110}

Abstract

Enantioselectivity is a key aspect in the field of heterogeneous catalysis, since it

can provide products with valuable biological activity. Alanine acts as a chiral

modifier in the enantioselective hydrogenation of β-ketoesters. The present study

explores the chemical state and thermal stability of alanine and H2O on clean

Ni{110} using temperature programmed desorption, (TPD), X-ray photoelectron

spectroscopy (XPS) and Temperature Programmed-XPS (TP-XPS). In addition

the thermal stability and chemical state of alanine was investigated under co-

adsorption of the amino acid with pre-covered water on Ni{110}. In both cases,

the tilt angle of alanine with respect to the surface plane was determined using

angle resolved NEXAFS. The interaction of H2O with surfaces is of high impor-

tance since is the most abundant solvent of our planet. XPS results of alanine

on clean Ni{110} under different coverages provide evidence that the amino acid

is present in the chemisorbed layer mainly in its anionic and neutral form sup-

porting an µ3 and µ2 adsorption geometry, respectively. The XPS signal in the

submonolayer regime, suggests also the presence of zwitterionic alanine, however

it is not fully conclusive whether these zwitterionic species belong to the first

chemisorbed layer or they are found in a second layer deposited on top of the

chemisorbed layer. In the multilayer, alanine is mainly in its zwitterionic form.

TP-XPS and TPD results suggest that the multilayer desorbs around 300-340 K

whereas the chemisorbed alanine dissociates around 400-420 K. The tempera-

ture is well above the temperature typically used in enantioselective catalysis and

is the highest observed on any nickel surface. The presence of multilayer H2O
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changes the chemical state of alanine, whereas at low coverages of H2O, alanine

displaces the H2O molecules. In both cases water does not alter the decompo-

sition temperature of alanine. The tilt angle of the C––O/COO- groups of the

alanine molecule with respect to the surface plane was found to be ∼ 42.1◦ and

did not change significantly upon co-adsorption of (S)-alanine with submonolayer

H2O (α≈42.0◦)

5.1 Introduction

The pharmaceutical and agrochemical industry is in demand of more enantiop-

ure chemical compounds since the chirality of the molecule affects their biological

activity and response. In addition many enantiopure products are also used as

flavours and fragrances [1–5]. In the area of heterogeneous catalysis enantiose-

lectivity could be achieved in several ways, such as attaching a metal to a chiral

support or adsorbing a chiral auxiliary to the metal [4]. The merit of using hetero-

geneous catalysts in comparison with homogeneous is the fact that these catalysts

can be easily separated and recycled, can reduce the presence of metal traces in the

product, and they can be easily controlled during their use [2, 6]. One great exam-

ple of an enantioselective catalysed reaction is the hydrogenation of β-ketoesters

(such as methyl acetoacetate MAA) using nickel as a catalyst. The reaction ge-

nerates optically active products, if the catalyst is modified with α-hydroxyacids

(such as tartaric acid) or α-amino acids (such as alanine) [2, 11, 12, 16]. According

to the work of Keane (1994) on silica-supported nickel catalysts [17], alanine is

a promising chiral modifier since it not only enhances the enantioselectivity but

also improves the reaction rates. The authors suggested that in aqueous solu-

tion, alanine presents higher affinity than tartaric acid, for the adsorption on the

supported nickel metal [17].

Different studies attempted to understand the mechanism behind the chi-

ral modification of the nickel surface. Adsorption of (R,R)-tartaric acid (TA)

on Ni{110} [34] caused the creation of a chiral footprint on the nickel surface,

breaking its symmetry. Depositing (R,R)-tartaric acid onto oxidised Ni{111} [39]

caused the generation of species similar to nickel tartrate, which could assist the

etching of the crystal and generation of chiral defects. Co-adsorption of (R,R)-

tartaric acid [37] and (S)-glutamic acid [40] with MAA on Ni{111} show evidence

of interaction between the substrate (MAA) and the chiral modifier in a config-

uration that will generate the R-product during the hydrogenation reaction. On

the other hand, work, on the adsorption of aspartic acid on Ni{111} [41] show
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evidence of formation of oligosuccinimide clusters which could create a docking

position for the substrate.

The adsorption of alanine on different surfaces has been studied extensively,

for obtaining spectroscopic and fundamental insights on the interaction of the

amino acid on different metals. Of our main interest is the interaction of alanine

on Cu{110} and Pd surfaces, since these two elements are the closest ones with

nickel, in the periodic table. On Ni{111}, alanine chemisorbs in both zwitterionic

and anionic form supporting a bidentate and tridentate geometry, respectively

with the latter species being in majority on the nickel surface. The molecule

decomposes on Ni{111} at temperatures between 300 K and 450 K, following

multistep processes [46]. Exposing the saturated (S)-alanine layer on Ni{111}
(0.25 ML) to elevated pressures of H2, causes protonation of the amino group of

(S)-alanine and reorientation to bidentate geometry, which under the presence of

elevated pressures of H2, is the majority species on the nickel surface [47].

The adsorption of alanine on Cu{110} was studied using different techniques

such as RAIRS, LEED, STM, circular dichroism in the angular dependence (CDAD),

XPS, NEXAFS, photoelectron diffraction (PhD) and theoretical calculations [62,

63, 104, 109, 141, 149–152]. According to Ref.[62, 63, 109, 149] alanine chemisorbs

on Cu{110} in its anionic form. At low coverages (in the 300-520 K temperature

range), (S)-alanine chemisorbs on Cu{110} in an µ3 adsorption geometry, via both

oxygen atoms of the carboxylate group and the nitrogen atom of the amino group

[63]. This geometry causes generation of a chiral footprint on the copper surface

[63]. High coverages of (S)-alanine (up to saturation), grown at room tempera-

ture, cause the generation of anionic µ2 species which interact with the copper

surface via the nitrogen of the amino group and only one of the oxygen atoms

of the carboxylate group along with presence of µ3 species. At room tempera-

ture, these species start to form single and double chains in a non symmetrical

direction. Annealing the high coverage layer up to 430 K does not change the

orientation and bonding of the molecule with respect to the copper surface (the

alaninate molecules still chemisorb on the copper surface in both µ2 and µ3 ad-

sorption configurations) [63], but causes the formation of chiral clusters (from the

chiral chains formed at room temperature) of six or eight molecules, interspersed

with chiral channels of metals which assemble into a chiral array without creation

of its mirror domain on the surface [62, 63]. This induced chirality is mirrored

upon adsorption of R-alanine on the copper surface, which also generates similar

chiral assemblies [62]. Finally annealing the high coverage (S)-alanine/Cu{110}
layer to 470 K, causes the generation of achiral (3×2) structure, in which all the

alaninate molecules interact with the copper surface in an µ3 adsorption geometry
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[63]. This structure was also characterised by Rankin and Sholl [141, 152] using

theoretical calculations, by Sayago et al. (2005) [151] using photoelectron diffrac-

tion and by Jones et al (2006) [104] using XPS, angle dependent NEXAFS and

DFT. Finally, Shavorskiy et al. (2011) [109] have studied the interaction of ala-

nine on Cu{110} under the presence of ambient pressure water. According to the

results of Ref.[109], the presence of ambient pressure water destabilises thermally

the molecule on the Cu{110} surface with respect to UHV conditions.

The adsorption of alanine on Pd{111} was investigated by Gao et al (2007)

[143] and Mahapatra et al (2014) [64]. Gao et al (2007) [143] proposed that ala-

nine adsorbs in its zwitterionic form on Pd{111} in the first layer whereas in the

multilayer regime alanine exists both in its zwitterionic and neutral form. The

multilayer desorbs at temperatures between 350 K and 380 K [143]. The dissoci-

ation of alanine on Pd{111} occurs via C-C cleaving, which leads to desorption

of CO2 and CO desorption from the COO- moiety, and desorption of ethylamine

or HCN from the CH3-CH-NH3
+ [143]. Mahapatra et al (2014) [64] have found

evidence of formation of both zwitterionic and anionic alanine on Pd{111} sur-

face, with the isolated anionic form of the molecule, based on DFT calculations,

being significantly more stable. The molecule was found to construct dimers or

tetramers on Pd{111}, which could potentially behave as chiral templates [64].

There are several models proposed for explaining the adsorption of water on

Ni{110} surfaces. Benndorf and Madey (1988) [153] found four desorption peaks

after obtaining thermal desorption spectra (TDS) of H2O on Ni{110} : peak

C (T=155K), peak A2 (T=210 K), peak A1 (T=245K) and peak B (T=350-

360 K). The authors assigned these four peaks to recombination of surface OH

to generate desorbed H2O (T=350-360 K), desorption of H2O dimers probably

stabilised by OH (T=245K), desorption of H2O from bilayer clusters (T=210)

and multilayer desoption (C, ice layers)[153]. Based on their structural model,

the authors have defined the saturation of A2, A1 and B peaks to ΘH2O=1 [153].

For ΘH2O<0.5 a four spot ESDIAD pattern was observed, which suggested the

presence of H2O dimers, whereas at higher coverages (ΘH2O=0.5-1) the ESDIAD

show normal emission of H+ (suggesting that the OH groups are located perpen-

dicular to the surface) while at the same time LEED showed a c(2x2) pattern

[153]. Benndorf and Madey (1988) [153] suggested a distorted hexagonal bilayer

form for ΘH2O=0.5-1, where the water molecules form hydrogen bonded clusters

in a c(2x2) arrangement. On the other hand, Callen et al. (1990) [154] recom-

mended, based on nuclear reaction analysis, that the saturation coverage of the

A1, A2 and B desorption states is equalled to 0.48 ML, which represents the first

chemisorbed layer that can be selectively populated at 180 K. This layer shows
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a sharp c(2x2) LEED pattern. Furthermore adding a second layer of water (to-

tal coverage 1 ML) by cooling to 130 K, produced also a c(2x2) LEED pattern,

but less sharp compared to the first chemisorbed layer. The second layer is part

of the ice layer but it was distinguished from the rest of multilayer by specific

work function change. Callen et al. (1990) [154] argued that the dosing method

of Benndorf and Madey (1988) [153] could not clearly separate the chemisorbed

layer from the ice layers. According to infrared spectroscopy measurements [155],

the water on the first chemisorbed layer, does not present intermolecular hydro-

gen bonding since it was IR inactive, whereas the second layer (or first ice layer)

forms a clustering structure, originating from strong hydrogen bonding interac-

tions. The addition of the second layer, converted the initial plane of the water

which was initially parallel to the surface, to be positioned normal to the surface.

According to Callen et al. (1992) [156] the big distance between water molecules

in the first chemisorbed layer forbades the formation of hydrogen bonds [156]. In

addition, according to Ref.[156], the lowest temperature that the partial dissocia-

tion of water occurs is 205±2 K, whereas all the water is removed by 293K, leaving

OH and H on the surface. Based on ESDIAD and FTIR-RAS measurements, the

authors of Ref.[156] suggested that at low coverages of water (0.06-0.5 ML) and

under their reported experimental conditions there is no evidence of formation of

dimers of water [156], in contrast with Benndorf and Madey (1988) [153] findings,

while at the same time they have not observed any FTIR activity at 80 K until the

formation of multilayers [156]. The authors of Ref.[156] argued that the four spot

ESDIAD pattern observed in previous report was detecting minority species [156].

The authors of Ref.[156] also suggested that H2O molecules are forming hydro-

gen bonds with OH groups (generated by partial dissociation of H2O), increasing

their binding energy, which results to the rise of the A1 thermal desorption state

[156]. Based on Callen et al. (1992) [156] and Pangher et al. (1994) [157] work,

the water, in the first chemisorbed c(2x2) layer, is adsorbed on atop sites [157]

and its molecular plane presents high inclination to the surface normal [156, 157].

Finally Pirug et al. (1994)[158], proposed a different model for the c(2x2) H2O

saturated layer formed at 180 K. This layer has total coverage 1 ML and contains

water and hydroxyls in the ratio 1:1. The water and hydroxyls are forming a

compressed bilayer with the hydroxyls groups located in the first layer forming

hydrogen bonds with the molecular water in the second layer [158]. Moreover

Pirug et al. (1994) [158] suggested that the water dissociation occurs even at

temperatures below 163 K. A review by Hodgson et al. (2009), on the adsorption

of water on metal surfaces [159], pointed out that the lack of OH stretching modes

in vibrational spectroscopy suggests the presence of a planar OH/H2O overlayer
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and not necessary the absence of hydrogen bonds. The authors of Ref.[159] in-

terpreted the results described in Ref.[156], at temperatures above the multilayer

desorption (∼ 140 K), with the presence of flat dissociated structure [159]. The

model proposed by Pirug et al. (1994) [158] could explain the enhanced thermal

stability of H2O on the Ni{110} surface with respect to intact water films, which

typically desorb at ∼ 160-170 K [159]. The model described in Ref.[158], suggests

that the water and hydroxyls are forming a compressed bilayer with the hydroxyls

groups located in the first layer forming hydrogen bonds with the molecular water

in the second layer, with a small vertical displacement between the two layers

[158, 159]. Further studies are essential to determine the chemical structure of

the c(2x2) H2O/Ni{110} chemisorbed layer.

The aim of this study was to study the interaction of alanine on Ni {110} using

XPS, NEXAFS and TPD and the effect of pre-adsorbed water on the chemical

state, thermal stability and molecular orientation of the amino acid on the nickel

surface. The interaction of water on nickel surfaces is important for enantioselec-

tive catalysis since and is one of the typical modifying solvents [17] and it could be

co-adsorbed in surfaces especially under realistic ambient pressure conditions [75].

The synchrotron data were collected by Dr. Alix Cornish (University of Reading),

by Dr. Ed Nicklin (University of Reading), by Prof. Georg Held (University of

Reading) and by Dr. David Watson (University of Surrey), whereas the TPD

data were collected by Dr. Alix Cornish (University of Reading). The data were

co-analysed by the author and by Dr. Alix Cornish [67]. The overall contribution

of the author to this study is ∼ 50% of the total work.

5.2 Experimental methods

The XPS and the NEXAFS experiments were performed at the SuperESCA beam-

line in the synchrotron of Elettra in Trieste (Italy) which provides a horizontally

polarized beam, whereas the TPD data were obtained at Reading University.

The endstation in Elettra consisted of a preparation and analysis chamber (both

under UHV conditions) connected through a gate valve. The dosing and the

sputtering occured in the preparation chamber. The XPS and NEXAFS exper-

iments were performed in the analysis chamber which also contained a LEED

system. The base pressure of both chambers in the SuperESCA beamline was in

the 10-10 mbar range. Sample cleaning was achieved by cycles of sputtering (1 kV,

P=3 × 10-6 mbar) and subsequent annealing to ∼ 1100 K, and it was verified by

the XPS spectra. In the SuperESCA beamline, the nickel crystal was mounted
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at the base of a liquid nitrogen-cooled coldfinger in an orientation such that the

polarisation vector was parallel to the [001] direction of the nickel surface, per-

pendicular to the close-packed rows [67]. The sample was heated resistively and

its temperature was adjusted using a programmable temperature controller and

measured using a spot welded thermocouple fixed on the sample.

(S)-alanine (L-alanine) was dosed from a home built evaporator which was

mounted on the chamber through a gate valve. The evaporator consisted of a

stainless steel crucible containing a glass tube filled with alanine powder. Deposi-

tion of the alanine molecule was performed by resistively heating the crucibles to

∼ 423-436 K and opening the gate valve to the chamber. The measurement of the

temperature was achieved by K-type thermocouples spot-welded on the crucibles.

A pressure rise to ∼ 4 × 10-10-1 × 10-9 mbar was observed during dosing of the

molecule in the preparation chamber of the SuperESCA endstation. The crystal

temperature was kept at T=200 K during deposition of the molecule, unless oth-

erwise stated. Due to differences in pumping speed, there was no good correlation

between dosing time and coverage, therefore the coverage was determined using

XPS (see Results section). Water was dosed via a leak valve. Prior to dosing the

liquid was purified by means of freeze thaw cycles. A pressure rise to ∼ 10-9 range

was observed during dosing of the water in the analysis chamber.

The XP-spectra were acquired in the C 1s region (hν=400 eV), in the N 1s

region (hν=510 eV) and O 1s region (hν=650 eV) using pass energies of 10, 20

and 20 eV respectively, which resulted in combined resolution of beamline and

analyser of ∼ 0.1-0.2 eV for all the aforementioned photon energies. Spectra

of the Fermi edge were obtained, every time the monochromator was moved, to

calibrate the offset of the binding energy axis. For quantitative analysis, all the

spectra were normalised at the low binding region followed by linear subtraction

of the background. In order to study the temperature dependence of alanine

on Ni{110}, temperature-programmed XP-spectra were acquired by heating the

sample at a constant rate in front of the analyser while recording XP-spectra of

one region at a time. During the TP-XPS experiments the sample was moved

under the beam to minimise any potential beam damage.

The NEXAFS spectra were obtained in the O K-edge and N K-edge region,

by detecting O KLL and N KLL Auger electrons with kinetic energies of 505 eV

and 380 eV, respectively. In order to determine the molecular orientation of

alanine on Ni{110}, angle dependent NEXAFS spectra were obtained using three

different angles of incidence: θ= 0◦ (normal incidence), θ= 35◦ and θ=70◦ (normal

emission), where θ is the angle between the electric field vector and the surface

plane. All the spectra were normalised in the low photon energy region and
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corrected for the transmission of the beamline through dividing by the photon

flux (I0). The I0 was collected using the drain current of the last refocusing

mirror. Spectra of the clean surface, corrected in the same way, were subtracted

as background. The spectra were also normalised with respect to the step height,

at energies above all resonances.

For the experiments in Reading, the sample was mounted at the base of the

manipulator, and its temperature was measured via a spot welded thermocouple.

Sample cleaning was achieved by cycles of sputtering (P=1× 10-5 mbar/Idrain=3.6-

4.1 µA/t-30 min) and subsequent annealing to ∼ 900 K for 1 min, and it was

verified by LEED [67]. The sample was resistively heated and the manipulator

was cooled through a liquid nitrogen coldfinger. Alanine was dosed as explained

above, by heating the crucibles to 423 K. The crystal temperature was kept at

T=150 K during deposition of the molecule. A pressure rise to ∼ 5 × 10-9-

9 × 10-9 mbar from ∼ 1 × 10-9-2 × 10-9 mbar was observed during deposition

of the molecule. TPD data were obtained by heating the sample at 1 K/s from

150 K to ∼ 900 K while recording the partial pressure of the following masses:

2(H2) 15(cracking pattern of alanine), 18(H2O), 28(CO) and 44(CO2). During

the TPD experiments, the sample was 15 mm away in a direct sight from the

quadrupole mass spectrometer ion source [67].

5.3 Results

5.3.1 TPD Results

Figure 5.1 shows TPD data of (S)-alanine adsorbed on Ni{110}, for masses 2(H2),

15, 18 (H2O), 28 (CO, N2, HN=CH) and 44 (CO2), at three different initial

coverages of the molecule on the nickel surface. Mass 15 was recorded as a signal

for intact alanine, since it was observed in the cracking pattern of the amino acid

and the same time does not correspond to any decomposition fragment. The TPD

raw data had their background subtracted.

Two key temperatures can be identified from the TPD data: T=320-340 K and

T≈420 K. The peaks in the lower temperature region are observed for masses 2, 15,

18, 44 amu and small traces for 28 amu for 10 and 20 minutes. These peaks grow

upon increasing the dosing time of alanine and shift to high temperatures with

increasing dosing time (initial surface coverage), therefore they can be assigned

to multilayer desorption [66, 84]. At 420 K, peaks are observed for masses 2,

15, 28, 44 for all coverages and their position and size are almost independent

of the initial surface coverage and they are associated to the decomposition of
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(a) (b)

(c) (d)

(e)

Figure 5.1: TPD data of (S)-alanine on Ni{110} for masses (a) 2 amu, (b)
15 amu,(c) 18 amu,(a) 28 amu and (a) 44 amu obtained at three different ini-
tial coverages of the molecule on the nickel surface. Heating rate 1 K s-1.

chemisorbed alanine. Peaks are also visible at temperatures between 170 K and

210 K for mass 18, related to the desorption of intact H2O from the sample or the

heating wires. Finally two peak are observed at 800 K for mass 2 and 28 which

correspond to desorption of decomposition fragments of alanine. Their size is also

independent of the initial surface coverage [67].

5.3.2 XPS Results

Adsorption of alanine on clean Ni{110}

Figure 5.2 shows XPS-spectra of (S)-alanine on clean Ni{110} as a function of

different dosing time, in the three regions: N 1s, O 1s and C 1s.

Two peaks are observed in the N 1s region, which are centred approximately

at 399.5-399.8 eV and 401.6-402.2 eV (Fig. 5.2b). These peaks have been previ-

ously assigned to NH2 and NH3
+ species, respectively [69, 145, 160]. The signal
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of the first peak starts to attenuate at higher exposures (t>10 min) whereas the

signal of NH3
+ species grows with coverages, indicating that at high coverages the

amino group of alanine is predominantly present in its cationic form. It is worth

noting that the high binding energy peak in the N 1s spectra (401.6-402.2 eV,

Fig. 5.2b) is present at all coverages. The shift of this peak to low binding en-

ergies at t<10 min and its subsequent shift to high binding energies at higher

exposures (t>10 min) indicates multilayer formation at exposures higher than 10

min. This shift coincides also with the saturation of the low binding energy peak

(399.6 eV, N 1s spectrum in Fig. 5.2b). In the multilayer the core hole experiences

less screening from the metal substrate, thus increasing the binding energy of the

N 1s core electron [69]. The peak at 399.6 eV (t=10 min), also shifts by 0.2 eV

towards high binding energies at t=170 min. The area of the low binding energy

peak (399.6 eV, N 1s spectrum in Fig. 5.2b) at the onset of multilayer formation

(t=10 min) was used to calibrate the coverage by defining it as ΘAla=100% satu-

ration. The coverage in the multilayer regime (ΘAla ≥ 240% sat) was estimated

by the attenuation of the low binding energy peak in N 1s region (Fig. 5.2b) using

the Beer-Lambert Law which relates the attenuation of an XPS peak signal with

the inelastic mean free path (IMFP) of electrons through a material (λ) [67, 84]:

I = I0e
−d
λ (5.1)

Where I0 and I is the intensity before and after the electron has travelled

a distance d through the material. To the best of our knowledge, there is no

information on the inelastic mean free path of electrons travelling through alanine,

hence we will consider the guanine which contains the same chemical elements (H,

C, N, O). The peak at 399.5-399.8 eV (N 1s spectra in Fig. 5.2b) is generated from

electrons with ∼ 110 eV kinetic energy (hν=510 eV). The IMFP of electrons with

100 eV kinetic energy travelling in guanine is 6.2 Å [161] and the thickness of

one layer of alanine is 2.8 Å [67]. The relative coverage of alanine after different

exposures of the amino acid on Ni{110}, along with the exposure times is shown

on the right hand side of the XP-spectra (Fig. 5.2). For instance, the ratio of the

area of the peak at 399.8 eV at t=170 min to the area of the same peak at t=10 min

(at the onset of multilayer formation) is ∼ 0.33. According to Eq. 5.1 this ratio

corresponds to 7.0 Å thickness of the multilayer alanine, which corresponds to 2.5

layers of molecules on top of the saturated layer (350% sat).

In the O 1s spectra (Fig. 5.2c), the signal consists of an asymmetric wide

feature which could only be fitted by two peaks. The low binding energy peak

is observed initially at 531.5 eV binding energy and shifts towards higher bind-
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(a) (b) (c)

Figure 5.2: Top up XP-spectra of (S)-alanine on Ni{110} (a) in the C 1s region
(hν=400 eV), (b) in the N 1s region (hν=510 eV) and (c) in the O 1s region
(hν=650 eV). The black dots are the raw data and the solid black thick lines are
the fitted curves. The solid coloured curves are the individual peaks obtained
upon fitting.

ing energies (532.1 eV) at t>10 min (130% sat). The latter is again evidence of

multilayer formation, which is confirmed also by the change in the shape of the

peak. The peak is a combination of signal originating from the overlap contribu-

tion from the COO- and COOH oxygen atoms [69]. In the deprotonated form of

alanine (COO-), the two oxygen atoms are in an equivalent chemical environment,

hence the signal does not split [104]. According to Ref.[109], both the peaks at

531.5 eV (O 1s spectra in Fig. 5.2c) and 399.5-399.8 eV (N 1s spectra in Fig. 5.2b)

are indicators of chemisorbed alanine via the oxygen atoms of COO- group and

nitrogen atom of the amino group. A smaller peak was found at 532.6-533.2 eV.

This peak was previously attributed to the -OH group of the neutral carboxyl

group (-COOH) in glycine [69, 148]. The area of the peak, accounts for approx-

imately 20-30% of the total XPS area for all coverages. We cannot exclude the

contribution to the signal of this peak from oxygen atoms with a high degree of

protonation due to intermolecular hydrogen bonding. The presence of the peak

at 532.6-533.2 eV suggests the presence of neutral alanine as well, in the alanine

overlayer, which supports an µ2 adsorption geometry with the Ni{110} surface

(Fig. 4.3).

According to Fig. 5.2a, three peaks are observed in the C 1s region at ΘAla=80% sat:
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around 285-286 eV, 287.3 eV and 288.8 eV. Previous reports have assigned the

peaks at 285-286 eV and 288.8 eV to an overlap of the C-NH2/-CH3and the over-

lap of the signals COO-/COOH), respectively [104, 105]. The first signal between

285-286 eV, at low coverages, was fitted by two peaks, with energy separation

around 0.5-0.6 eV. Work of Powis et al. (2003) [162] on gaseous alanine proposes

that the methyl carbon signal is found at lower binding energy region than the

α-carbon signal. In the multilayer regime, the signal of these two peaks merge into

one peak since the low binding energy peak (285.3-285.5 eV), corresponding to

the methyl carbon signal, moves to high binding energies. The peak at 288.8 eV

shifts to high binding energies in the multilayer and changes its shape. Finally

the peak at 287.3 eV shows a similar trend with the peak at 401.6-402.2 eV eV

in the N 1s spectra in Fig. 5.2b, showing low signal at coverages Θ<130% sat

and increasing rapidly at higher coverages, hence this peak was assigned to the

α-carbon binding to the cationic amino group (C-NH3
+) found in the multilayer.

This peak also shift to higher binding energies in the multilayer regime.

In order to determine the thermal stability of (S)-alanine on Ni{110}, TP-

XP-spectra were obtained in the submonolayer and multilayer regime. Figure 5.3

shows TP-XPS spectra in the N 1s and C 1s region after dosing alanine for 30 min.

In this layer, the amino group is present in its neutral state, suggesting that the

coverage of alanine is in the submonolayer regime (ΘAla=80% sat). No change

in the signal is observed in both region upon heating to 350 K. Between 350 K

and 420 K, a rise of a signal in the low binding region is observed in both spectra

(more pronounced in the C 1s region), which can be associated with decomposition

products (the nature of these products will be discussed below). At 420 K, all

alanine is dissociated, leaving decomposition fragments on the surface.

Figures 5.4a-c and d-e show TP-XP-spectra and image line profiles, respec-

tively, upon exposing Ni{110} to higher amounts of alanine (ΘAla=330-390% sat).

The predominant signal corresponding to the protonated amino group (402.1 eV

and 287.4 eV in Fig. 5.4b and 5.4a, respectively), suggests that the coverage is

in the multilayer regime. No change in the signal is observed upon heating to

∼ 240 K. Between ∼ 240-280 K an interesting oscillating behaviour is detected

between the signals corresponding to NH3
+ and NH2 (N 1s spectra in Fig. 5.4b

and 5.4e). This behaviour will be discussed below. At ∼ 310 K the signal corre-

sponding to the protonated group almost disappears while at the same time there

is a rise in the signal corresponding to the neutral amino group. The C 1s and

N 1s TP-XPS data above this temperature resemble the spectra in the sumbmono-

layer coverage of alanine (Fig. 5.3), suggesting the desorption of the multilayer.

At approximately 410-420 K the signal in the O 1s region (Fig. 5.4c) disappears
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(a) (b)

Figure 5.3: Submonolayer TP-XP-spectra of (S)-alanine on Ni{110} in the: (a)
C 1s region (hν=400 eV) and (b) N 1s region (hν= 510eV) (Heating rate=9 K
min-1).

coinciding with the generation of decomposition fragments in the C 1s (Fig. 5.4a)

and N 1s (Fig. 5.4b) region. Based on these results, alanine is decomposing by

C-COO- cleaving, which generates a desorbed CO2 and leaves carbon and nitro-

gen fragments on the surface. High resolution XP-spectra (Fig. 5.4f-5.4h) were

obtained between the TP-XP-spectra in the O 1s region (Fig. 5.4c) at 274 K and

346 K. Upon annealing to 274 K, all peaks in all the regions have shifted to the

low binding energy region (Fig. 5.4f-5.4h). In the N 1s region (Fig. 5.4g), a small

loss in the signal of multilayer alanine is observed together with a small increase in

the signal corresponding to NH2. In the O 1s region, the low binding energy peak

increases in intensity whereas the signal of the high binding energy peak decreases,

suggesting a re-arrangement of the COO-/COOH(ads) groups upon heating. Heat-

ing to 346 K, causes fading in the signal of the zwitterionic alanine and the shift

of all peaks to the low binding region, confirming that the molecule has almost

lost all its multilayer characteristics.

The thermal behaviour of (S)-alanine on Ni{110} was also studied at lower

coverage of alanine (N 1s TP-XP-spectra in Fig. 5.5a, ΘAla=190% sat) and by

using two different ramping rates (N 1s TP-XP-spectra in Fig. 5.5b, 12 K min-1

and N 1s TP-XP-spectra in Fig. 5.5c, 6 K min-1).The coverage and the ramping

rate did not influence the multilayer desorption and decomposition temperature of
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(a) (b) (c)

(d) (e)

(f) (g) (h)

Figure 5.4: Temperature dependence of (S)-alanine on Ni{110} in multilayer re-
gion: (a-c) TP-XP-spectra in the (a) C 1s region (hν=400 eV) (b) N 1s region
(hν=510 eV) and (c) O 1s region (hν=650 eV) (Heating rate=9 K min-1). (d-e)
Image line profiles from the corresponded TP-XP-spectra in the (d) C 1s region
(hν=400 eV) and (e) N 1s region (hν=510 eV) (f-h) XP-spectra in the: (f) C 1s re-
gion (hν=400 eV) (g) N 1s region (hν=510 eV) and (h) O 1s region (hν=650 eV).
The black dots are the raw data and the solid black thick lines are the fitted
curves. The solid coloured curves are the individual peaks obtained upon fitting.
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(a) (b) (c)

(d)

(e) (f)

Figure 5.5: Temperature dependence of (S)-alanine on Ni{110}. (a-c) TP-XP-
spectra of (S)-alanine on Ni{110} in the N 1s region (hν= 510 eV). (d) Image line
profiles from the N 1s TP-XP-spectra in Fig. 5.5c(hν=510 eV). (e-f) XP-spectra
in the: (e) C 1s region (hν= 400 eV) and (f) N 1s region (hν=510 eV). The black
dots are the raw data and the solid black thick lines are the fitted curves. The
solid coloured curves are the individual peaks obtained upon fitting.
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alanine. No significant oscillating behaviour is observed for ΘAla=190% sat (N 1s

TP-XP-spectra in Fig. 5.5a) and for ΘAla=320% sat/heating rate=12 K min-1

(N 1s TP-XP-spectra in Fig. 5.5b). At 6 K min-1 heating rate and ΘAla=350%

(N 1s XP-spectra in Fig. 5.5c and 5.5d) the onset of the oscillation took place at

a slightly higher temperature (∼ 280 K) compared to the N 1s TP-XP-spectra in

Fig. 5.4b. High resolution XP-spectra were obtained in the C 1s and N 1s region

(Fig. 5.5e-5.5f, the signal of oxygen was flat) at T=473 K. The spectra were

obtained between the N 1s TP-XP-spectra in Fig. 5.5c. Two peaks are observed

in the N 1s region at 397.3 eV and 398.4 eV and three peaks in the C 1s region:

283.2 eV, 284 eV and 284.6 eV. The peak at 284 eV disappears along with peak

at 397.3 eV at T≈770-800 K and can be associated with CN species. The exact

chemical nature of this peak will be discussed in the NEXAFS part. The peaks at

398.4 eV and 284.6 eV disappear at T>500 K. These peaks are probably fragments

of NH2CHCH3, kept on the surface, before the full dissociation of alanine. Finally

the low binding energy peak in the C 1s region is atomic carbon generated upon

further decomposition of alanine and is thermally less stable than the CN species.

All fragments of alanine have disappeared from the surface at T>800 K.

Adsorption of H2O on clean Ni{110}

Figures 5.6a and 5.6e show TP-XP-spectra and XP-spectra in the O 1s region

after dosing H2O onto Ni{110} at 120 K and 180 K, respectively. Figure 5.6b-5.6c

show vertical image line profiles obtained from Fig. 5.6a for the two main peaks

(533.6 eV and 530.85 eV). Figure 5.6d shows horizontal image line profiles for sev-

eral temperatures also obtained from TP-XP-spectra. The high binding energy

peak is assigned to molecular water whereas the low binding energy peak is asso-

ciated with hydroxyl groups [158]. Dosing H2O at 120 K creates ice multilayers

on Ni{110} (Fig. 5.6a). The multilayer desorption occurs around 150 K, in line

with Benndorf and Madey (1988) [153]. The multilayer desorption is indicated by

the significant decrease in the H2O signal and its shift to the lower binding region

(from 534 eV to 533.3 eV, Fig. 5.6a-b). An increase in the signal of the peak corre-

sponding to hydroxyls (530.85 eV) is also observed (Fig. 5.6c), which suggests that

at this temperature, the H2O is not only desorbed, but also partially dissociates

to hydroxyls. Increase from 150 K to 220 K, causes significant reduction in the

signal corresponding to water while at the same time the signal of the hydroxyls

stays almost the same (Fig. 5.6a-d). Heating to 250-260 K induces almost full

dissociation and desorption of water, while at the same time the peak correspond-

ing to hydroxyls moves to lower binding energies (around 530.7 eV, Fig. 5.6a and
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5.6d). The two latter effects are consistent with the A2 and A1 thermal desorption

peaks in the work of Callen et al (1992) [156], observed at 220 K and 260 K, re-

spectively. The authors of Ref.[156] proposed that the aforementioned desorption

peaks originate from the desorption of H2O bonded to nickel in the chemisorbed

layer and desorption of H2O stabilised by adsorbed OH, respectively. Annealing

above 350 K causes almost total removal of the hydroxyls from the nickel surface

(Fig. 5.6a, 5.6c and 5.6d).

Dosing H2O at 180 K (O 1s spectrum in Fig. 5.6e) causes saturation of the

XPS signal. The XP-spectra show 2 peaks around 533.2 eV and 531.3 eV in 3.7:1

ratio, which correspond to H2O and -OH species, respectively [158]. The total

coverage (H2O and -OH species) of the saturated layer was estimated ∼ 0.61 ML,

whereas the coverage of H2O species is ∼ 0.48 ML. The coverage was calculated

based on area of the signal of alanine in the N 1s and O 1s region at ΘAla=

80% sat (Fig. 5.2b-5.2c) and the area of the low binding energy peak (399.6 eV)

in the N 1s spectrum in Fig. 5.2b at the onset of multilayer formation (t=10 min,

ΘAla=130% sat) which corresponds to ΘAla=100% sat or 0.33 ML absolute cover-

age (3 bonds on 3 nickel atoms). The estimated value was corrected by factor of

2 (2 oxygen atoms per alanine molecule). This estimated coverage of H2O species

(∼ 0.48 ML) in the saturated layer (O 1s spectrum in Fig. 5.6e) is in agreement

with the work of Callen et al (1990) [154] on the adsorption of H2O on Ni{110}.
The authors of Ref.[154] suggested that saturation coverage of the A1, A2 and

B desorption states of water is equalled to 0.48 ML, which represents the first

chemisorbed layer that can be selectively populated at 180 K. However the pres-

ence of the peak associated with hydroxyls (531.3 eV), implies partial dissociation

of water at 180 K (in a later study Callen et al. (1992) [156] suggested that the

partial dissociation of water occurs at 205±2K). Both peaks shift to low binding

energies (∼ 0.1 eV) upon annealing to 190 K. At this temperature the H2O signal

is reduced by 22% with respect to the saturated layer, implying desorption of H2O

species from the chemisorbed layer, and also partial dissociation which is reflected

in increase of the signal corresponding to the hydroxyl species. Further annealing

to 215 K induces further dissociation and desorption of both water (58% reduction

with respect to the saturated layer) and hydroxyl species (25% reduction with re-

spect to the layer at 190 K). The ratio of the peaks at this temperature is 1.8:1.

At 240 K, the low binding energy peak becomes broader while at the same time

the ratio of the peaks is reduced to 0.9:1. The hydroxyl signal does not change

significantly with respect to 215 K while at the same time the water signal drops

by 77% with respect to the saturated layer. At this temperature the A2 state has

been fully desorbed, leaving only H2O-OH species in a hydrogen bonding complex
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(a) (b) (c)

(d) (e)

Figure 5.6: (a) TP-XP-spectra in the O 1s region (hν=650 eV) after dosing H2O
onto Ni{110} at 120 K (Heating rate= 6 K min-1), (b-c) the corresponded vertical
image line profiles for the two main peaks (in 2 eV wide bands) and (d) the
corresponded horizontal image line as shown in Fig. 5.6a. (e) XP-spectra in the
O 1s region (hν=650 eV) after dosing H2O onto Ni{110} at 180 K up to saturation
and subsequent annealing to different temperatures. The black dots are the raw
data and the solid black thick lines are the fitted curves. The solid coloured curves
are the individual peaks obtained upon fitting.
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[156]. The coverage of water-hydroxyls at this temperature is ∼ 0.23 ML. Both

peaks have been shifted to low binding energies by 0.3-0.4 eV with respect to the

saturated layer. At 260 K, only small traces of water are present on the surface

(reduced by 88% with respect to the saturated layer) while at the same time we

can argue that the signal of both peaks contains CO species co-adsorbed on the

nickel surface, since both peaks are broader with respect to the spectrum of the

chemisorbed layer at 180 K. The signal of the peak corresponding to the hydroxyls

species does not change significantly and is position shifted by ∼ 0.6-0.7 eV to

the low binding energy region (530.65 eV) with respect to the spectrum of the

saturated layer at 180 K. This shift, which was also spotted in the TP-XP-spectra

at 120 K (Fig. 5.6a and 5.6d) at 250-250 K, coincides with the A1 desorption state

[156]. The H2O and -OH species interact through hydrogen bonding, therefore the

presence of H2O shifts the binding energy of the -OH to 531.2-531.3 eV, an effect

that deteriorates following desorption and dissociation of H2O, restoring the peak

position at 530.7-530.6 eV [158]. According to Ref.[158] this effect is reversible af-

ter re-adsorption of H2O at lower temperatures. This effect might also explain the

broadening of the peak corresponding to OH (at 240 K) and the H2O (at 260 K)

with respect to the spectrum of the saturated layer. The presence of hydrogen

bonds causes elongation and weakening of OH bond of water, causing decrease

in the vibrational frequency of the bond [159], which makes the XPS peak less

broader with respect to the XP-specta without the presence of hydrogen bonds.

It is worth noting that the present study provides evidence of dissociation of H2O

even at temperatures T<163 K, as proposed by Ref.[158].

Co-Adsorption of alanine and multilayer H2O on Ni{110}

Figure 5.7 shows XP-spectra after co-adsorbing alanine and H2O on Ni{110}.
The layer was prepared by dosing H2O at 141 K for 400 s and subsequently

dosing alanine for 30 min at T=140 K. XP-spectra of alanine deposited on clean

surface at Tsample=200 K (t=30 min, ΘAla= 80% sat) are shown for the purpose

of comparison.

The O 1s spectrum upon dosing H2O at 141 K (Fig. 5.7c, top panel) shows

three resolved peaks at 531.1 eV, 533.3 eV and 534.4 eV. The two low binding

energy peaks are assigned in similar fashion to the O 1s H2O step anneal XP-

spectra in Fig. 5.6e to -OH and molecular H2O species, respectively [158]. The

high binding energy peak (534.4 eV) is linked with ice water multilayer species,

as expected at this dosing temperature (T=141 K). Based on the area of the peak

at 533.3 eV the coverage of H2O species found under the ice multilayer species is
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(a) (b) (c)

Figure 5.7: Comparison of XP-spectra obtained after dosing (S)-alanine for
30 minutes onto Ni{110} at 140 K which was previously dosed with H2O for
400s at 141K (multilayer H2O), with spectra with the same alanine dosing time
without pre-adsorption of water and with the O 1s spectrum of the pure H2O/OH
overlayer, present before dosing alanine in the (a) C 1s region (hν=400 eV), (b)
N 1s region (hν=510 eV) and (c) O 1s region (hν=650 eV).

∼ 1.2 ML, which is in close agreement with the bilayer model of water on Ni{110}
(1 ML total coverage) described in Ref.[154]. It is possible, however, that the

formation of the multilayer takes place before the completion of this layer, which

will lead to underestimating the calculated coverage of the non multilayer water.

In is worth pointing that the XP-spectrum in Fig. 5.7c (top panel) suggests the

presence of hydroxyls even at this low adsorption temperature (T=141 K).

Dosing alanine onto Ni{110} covered with multilayer H2O, causes an increase

in the level of protonation of the amino group with respect to the the spectra of

pure alanine overlayer, indicated by the increase in the intensity of the peak at

401.9 eV (N 1s spectrum in Fig. 5.7b) and 287.0 eV, (C 1s spectra in Fig. 5.7a) cor-

responding to the nitrogen and the carbon of of the C-NH3
+ group, respectively)

and the decrease in the signal of the peak corresponding to the NH2 group found

at 400.0 eV (N 1s spectrum in Fig. 5.7b). The presence of H2O does not influence

significantly the amount of adsorbed alanine (Fig. 5.7b). The XP-spectrum in the

O 1s region (Fig. 5.7c) upon depositing alanine on top of multilayer H2O, contains

one extra peak in comparison with the spectrum of pure H2O/OH overlayer, found

at 531.9 eV, which is associated with COO-/COOH species. The peaks associated
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(a) (b)

(c) (d)

Figure 5.8: TP-XP-spectra and the corresponded image line profiles, obtained
upon dosing H2O onto Ni{110} up to the multilayer regime and subsequently dos-
ing (S)-alanine. The spectra were obtained in the (a-b) N 1s region (hν=510 eV)
(Heating rate=9 K min-1) and (c-d) in the O 1s region (hν=650 eV) (Heating
rate=12 K min-1). The black dots are the raw data and the solid black thick lines
are the fitted curves. The solid coloured curves are the individual peaks obtained
upon fitting.
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with the COO-/COOH (O 1s spectrum in Fig. 5.7c) and NH2 groups (N 1s spec-

trum in Fig. 5.7a) shift to high binding energies with respect to the spectrum of

alanine deposited on clean nickel (from 531.4 eV to 531.9 eV and from 399.8 eV

to 400.0 eV, respectively), implying that these species are not chemisorbed on

the nickel surface. The peak linked to molecular H2O (533.3 eV) decreases by

∼ 40% with respect to the spectrum of the pure H2O/OH overlayer. According

to Eq. 5.1, and considering λ=6.2 Å [161] and d=2.24Å (80% sat × 2.8Å, 2.8Å

being the thickness of one layer alanine [67]), the expected attenuation of the H2O

signal from the alanine overlayer (1-I/I0) is ∼ 30%, therefore a partial destruction

of the H2O “bilayer” from the alanine molecule, must have taken place. It is

worth noting that the XPS signal of molecular H2O (533.3 eV) might have con-

tribution from the signal of COOH groups, which might be present in the alanine

overlayer. The peak of multilayer water is reduced by ∼ 80% with respect to

the spectrum of the pure H2O/OH overlayer and its position shifts to 534.6 eV,

suggesting that the alanine layer almost destroys the water multilayer while at

the same time some of the remaining H2O layer is interacting with the molecule.

It is possible also that some of this effect is caused by attenuation effects. Fi-

nally the significant reduction of the peak associated to hydroxyls (∼ 61%) with

respect to the spectrum of the H2O/OH overlayer, might be due to condensation

reaction between the hydrogen of the molecule and the hydroxyl group, as it was

proposed by Langell et al. (1994) [130], for describing the adsorption of acetic

acid on hydroxylated NiO{111} (see Fig. 3.11). The reduction can be also related

to attenuation effects. The shift of this peak from 531.1 eV to 530.9 eV suggests

that the presence of the alanine layer distorts the hydrogen bonding between the

H2O and -OH molecules.

The temperature dependence of alanine upon depositing the molecule onto

Ni{110} covered with multilayer H2O is shown in Figure 5.8. Heating the sam-

ple to 200 K causes significant reduction in the signal corresponding to H2O

layer whereas the signal corresponding to the COO-/COOH groups of the alanine

molecule (531.8 eV) does not alter significantly (Fig. 5.8c). At ∼ 225-235 K, the

water signal is untraceable with XPS (O 1s spectra in Fig. 5.8c-5.8d) while at the

same time spectra in the O 1s and N 1s region (Fig. 5.8b+d) resemble the spectra

of the chemisorbed alanine (almost all the amino group has deprotonated) main-

taining the same thermal stability (decomposition at ∼ 420 K, Fig. 5.8a) with the

pure alanine overlayer. The thermal destabilisation of H2O upon co-adsorption

with alanine molecules with respect to the pure water overlayer is explained by

the suppression of the hydrogen bonding between H2O and -OH molecules by the

alanine molecules, which normally will stabilise the former, and cause the desorp-
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tion of A1 desorption state at T≈250-260 K [153, 156]. Tzvetkov et al 2005 [163],

have also observed thermal destabilisation of H2O upon co-adsorbed with glycine

on single crystalline of Al2O3. This effect was explained by the suppression in

the transition between the amorphous to crystalline phase at 140-160 K from the

glycine molecules [163].

Co-Adsorption of alanine and submolayer H2O on Ni{110}

Figure 5.9 shows TP-XP-spectra upon depositing (S)-alanine onto Ni{110}, cov-

ered with submonolayer H2O. The layer of H2O was prepared by dosing H2O at

213 K to saturation. Two peaks are observed at 533.1 eV and 531.1 eV (in ∼ 1.7:1

ratio) which are unambitiously assigned to molecular H2O and OH species, respec-

tively. The coverage of H2O at 213 K (Θ≈0.27 ML, O 1s spectrum in Fig. 5.9b)

are below the saturation coverage of H2O at 180 K (Θ≈0.48 ML, O 1s spectrum in

Fig. 5.6e). The XP-spectra in all the regions, upon dosing alanine on top of sub-

monolayer H2O (O 1s spectrum in Fig. 5.9b carbon and nitrogen are not shown),

almost resemble the spectra of alanine on clean Ni{110} (Fig. 5.7), therefore it

is assumed that either H2O species are suppressed by the alanine molecules or

were displaced from the surface. Work of Langell et al (1994) [130] on the adsorp-

tion of acetic acid on hydroxylated NiO(111), has proposed that the acetic acid

displaces the hydroxyls from the surface, through condensation reaction between

the hydroxyl on the surface and the hydrogen of the molecule, releasing H2O in

the gas phase (see Fig. 3.11). Heating the layer to 365-375 K (Fig. 5.9) causes

a shift of both peaks (∼ 531.4 eV and ∼ 532.8 eV) to 531.1 eV and 532.4 eV,

respectively. The O 1s signal disappears at 420 K in agreement with the previous

TP-XP-spectra.
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(a) (b)

Figure 5.9: TP-XP-spectra of in the O 1s region (hν=650 eV) (Heating rate=9 K
min-1) and the corresponded image line profiles upon dosing H2O onto Ni{110} at
Tsample=213 K and subsequently dosing (S)-alanine for 30 min at Tsample=200 K.
The black dots are the raw data and the solid black thick lines are the fitted
curves. The solid coloured curves are the individual peaks obtained upon fitting.
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5.3.3 NEXAFS Results

Figures 5.10a and 5.11a show angle resolved NEXAFS in the O K-edge region upon

depositing (S)-alanine onto clean Ni{110} up to multilayer regime (ΘAla=390% sat)

and anneal the layer to 346 K (Fig. 5.10a) and upon dosing H2O onto Ni{110} at

Tsample=213 K and subsequently dosing (S)-alanine for 30 min at Tsample=200 K

(Fig. 5.11a). The XP-spectra of these two layers are shown in Fig. 5.4f-5.4h and

Fig. 5.9b, respectively. In both layers the coverage of (S)-alanine on Ni{110} is

close to the saturation (ΘAla=130% sat and ΘAla=80% sat, respectively), existing

predominantly in its anionic and neutral form, with traces of zwitterionic alanine

(16% and 8% of the total XPS area, respectively). The O K-edge NEXAFS spec-

(a)

(b)

Figure 5.10: (a) Angle resolved O K-edge NEXAFS spectra obtained upon dosing
(S)-alanine onto Ni{110} for 60+60 min (ΘAla=390% sat) and anneal the layer to
346 K. The dots represent the raw data and the solid thick lines the fitted curves.
The red curves below the spectra show the individual Gaussian peaks, the linear
background and the the step function used during the fitting process. (b) Plots
(black markers) showing the intensity of the oxygen π* resonance in Fig. 5.10a as
a function of angle γ, where γ is related to the angle of incidence θ (γ=90◦-θ).
The solid red line shows the fitted curve calculated by the cos function in Eq. 5.3.
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tra (Fig. 5.10a and 5.11a) consist of a sharp π* resonance at 530.6 eV, two σ*

resonances at 535.3-536.3 eV and 541.2-541.3 eV and a step at 531.8 eV. It is

difficult to determine the exact position of the σ* resonances due to their large

FWHM, however this does not influence the purpose of our NEXAFS data anal-

ysis which relies on the intensity of the π* resonance. The σ* resonances are due

to C-C (535.3-536.3 eV) and C-O (541.2-541.3 eV) bonds [46, 104, 105].

The π* resonance (530.6 eV, (Fig. 5.10a and 5.11a) in the O K-edge region is

associated with the the COO- group and C––O group of the protonated carboxyl

group of the alanine molecule. The intensity of the π* resonance shows angular

dependency (Fig. 5.10b and 5.11b), therefore it was used to determine the tilt

angle α of the C––O/COO- groups of the alanine molecule (Fig. 5.12) with respect

(a)

(b)

Figure 5.11: (a) Angle resolved O K-edge NEXAFS spectra obtained upon dos-
ing H2O onto Ni{110} at Tsample=213 K and subsequently dosing (S)-alanine for
30 min at Tsample=200 K. The red curves below the spectra show the individual
Gaussian peaks, the linear background and the the step function used during the
fitting process. (b) Plots (black markers) showing the intensity of the oxygen π*

resonance in Fig. 5.11a as a function of angle γ, where γ is related to the angle
of incidence θ (γ=90◦-θ). The solid red line shows the fitted curve calculated by
the cos function in Eq. 5.3.
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to the Ni{110} surface according to Eq. 5.2[96]:

I(θ) = A[P (sin2θ ∗ cos2α+ cos2θ ∗ sin2α ∗ cos2φ− sin2α ∗ sin2φ) + sin2α ∗ sin2φ]

(5.2)

Where θ is the angle between the electric field vector and the surface plane, φ

the azimuthal angle of the vector of the final state orbital and P is the polarisation

factor. Assuming φ=0 and P=1 for the SuperESCA beamline, the Eq. 5.2, is

transformed to Eq. 5.3:

I(γ) = B[(cos2(γ + α)) + (cos2(γ − α))] (5.3)

Where γ=90◦-θ. The angular dependency of the π* resonance (Fig. 5.10b and

5.11b) returned tilt angle α≈42.1◦ (Fig. 5.10b) and α≈42.0◦ (Fig. 5.11b) for the

NEXAFS spectra in Fig. 5.10a and Fig. 5.11a, respectively. The error margins

stated in Fig. 5.10b and 5.11b refer to the fitting error. Both angles are in close

agreement with the corresponding tilt angle of the carboxylate group of alanine

on Cu{110} (45◦) [104]. Angle dependent NEXAFS of (S)-alanine on Ni{111} in

the O K-edge region [46] showed two π* resonances which were assigned to the

carboxylate group in the tridentate (anionic alanine) and bidentate (zwitterionic

alanine) adsorption mode of the alanine molecule on the Ni{111} substrate. The

angular dependency of these two π* resonances returned tilt angles α=56◦ and

α=64◦ [46]. These values correspond to the tilt of the carboxylate group with

respect to the Ni{111} surface plane in the anionic and zwitterionic alanine, re-

spectively [46]. The tilt angles of the C––O/COO- groups of alanine with respect

to the Ni{110} surface plane (∼ 42◦), obtained in our study are close to the tilt

angle of carboxylate group of the anionic alanine on the Ni{111} surface plane

(56◦, [46]). It is possible that our NEXAFS data could not resolve the zwitterionic

conformation of the alanine molecule because of their low concentration on the

nickel surface. In a later study from Nicklin et al. (2018) [47], the tilt angle of

the carboxylate group of (S)-alanine with respect to the Ni{111} surface plane

was determined to be 63◦ and 34◦, by using angle dependent NEXAFS in the O

K-edge region under UHV conditions and under the presence of elevated pressures

of H2 (P=4 × 10-1 Torr), respectively. The two different tilt angles were associ-

ated with the tridentate and the bidentate conformation of the alanine molecule

on the Ni{111} surface, respectively, since the presence of elevated pressures of

hydrogen caused the protonation of the neutral amino group of anionic alanine,

and generation of zwitterionic species of the molecule [47].
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Figure 5.12: Schematic view of the tilt angle α, which is the angle between the
C––O/COO- groups of the alanine molecule with respect to the Ni{110} surface
plane, for the two possible adsorption orientations. The blue circles are carbon
atoms, the red circles are oxygen atoms, the green circles are nitrogen atoms and
grey circles are nickel atoms.

N K-edge NEXAFS spectra were recorded (Fig. 5.13a) in order to define the

nature of the decomposition products of alanine on Ni{110} at 473 K (N 1s spec-

trum in Fig. 5.5f). The N K-edge NEXAFS spectra (Fig. 5.13a consist of two π*

resonances at 396.7 eV and 398.5 eV,a σ* resonance at 411.6 eV and a step at

399.0 eV. The presence of two π* resonances in the N K-edge region suggest that

the decomposition species contain multiple bonds between the C and N atoms.

The TPD data of mass 2 in Fig. 5.1a show a peak at 800 K which suggests desorp-

tion of molecular hydrogen from the decomposition species, therefore we propose

that the decomposition fragments are H,C,N species with general chemical for-

mula HxCN. Zubavichus et al. (2004) [164] have also observed generation of peaks

in the N K-edge region in the the range of 399-403 eV, upon irradiating pristine

with soft X-rays. The authors have attributed these peaks to π*transitions due

to N––C and N–––C bonds [164]. By using Eq. 5.3, the angular dependency of the

two π* resonances (Fig. 5.13b-5.13c), returned tilt angles α1≈26.7◦ and α1≈25.4◦

for the peaks at 396.7 eV(Fig. 5.13b) and 398.5 eV (Fig. 5.13c), respectively. The

error margins stated in Fig. 5.13b and 5.13c refer to the fitting error.
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(a)

(b) (c)

Figure 5.13: (a) Angle resolved N K-edge NEXAFS spectra obtained upon dos-
ing (S)-alanine onto Ni{110} for 60+60 min ((ΘAla=350% sat) and heating to
473 K. The dots represent the raw data and the solid thick lines the fitted curves
The red curves below the spectra show the individual Gaussian peaks, the lin-
ear background and the the step function used during the fitting process. (b-c)
Plots (black markers) showing the intensity of the two nitrogen π* resonances in
Fig. 5.13a as a function of angle γ, where γ is related to the angle of incidence θ
(γ=90◦-θ). The solid red line shows the fitted curve calculated by the cos function
in Eq. 5.3.
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5.4 Discussion

Alanine chemisorbs on Ni{110} mainly in its anionic and neutral form. These

chemical states support an µ3 and µ2 adsorption geometry, respectively (Fig. 4.3).

Traces of protonated amino group (∼ 8-21% of the total signal), are also present

in the submonolayer regime regime. These species point to the existence of zwit-

terionic alanine in the submonolayer regime (which supports also an µ2 adsorption

geometry, Fig. 4.3), however it is not fully conclusive whether this species belong

to the first chemisorbed layer or they are found in a second layer deposited on

top of the chemisorbed layer. The tilt angle of the C––O/COO- groups of the

alanine molecule with respect to the surface plane was found to be α≈42.1◦ and

did not change significantly upon co-adsorption of (S)-alanine with submonolayer

H2O α≈42.0◦). In the multilayer, alanine exists in its zwitterionic form, with the

XP-spectra in the O 1s region showing a peak at 532.6-533.2 eV (the signal of

this peak accounts for ∼ 20-27% of the total XPS signal). This signal could be

due to the signal of the -OH group of the neutral carboxyl group found in the

chemisorbed layer of alanine or from oxygen atoms with a high degree of proto-

nation due to intermolecular hydrogen bonding. TP-XP-spectra suggest that the

multilayer desorbs around 300-310 K whereas TPD data suggest that the desorp-

tion of multilayer occurs at 320-340 K. This discrepancy is related to the heating

rate between the two experiments. According to Eq. 2.14, higher heating rates

cause a positive shift in the position of the desorption peak (TP). In the TP-

XPS experiments the heating rate was 6-12 K min-1 and in the TPD experiments

was 1 K s-1 or 60 K min-1, with the latter experiments, presenting the highest

desorption temperature of the multilayer alanine.

There is an interesting oscillating behaviour in intensity in the N 1s TP-XP

spectra in Fig. 5.4b (ΘAla=330% sat/heating rate=9 K min-1) at temperatures

between ∼240 K and ∼280 K. In particular there is a rise in the signal of anionic

alanine at ∼ 240 K with sudden decrease in the signal at ∼402 eV, a feature that

disappears at ∼ 280 K, when the signal of zwitterionic alanine upsurges again.

This behaviour (in less extent) is also observed in the N 1s TP-XP spectra in

Fig. 5.5c (ΘAla=350% sat/heating rate=6 K min-1) at slightly higher tempera-

tures (onset of oscillation took place at ∼ 280 K). In both cases the XPS signal in

the N 1s region does not change significantly after the oscillation (T≈281-292 K

in Fig. 5.4b and T≈297 K in Fig. 5.5c) with respect to the signal before the os-

cillation (T≈214-222 K in Fig. 5.4b and T≈264.5 K in Fig. 5.5c). Some decrease

in the N 1s XPS area (with respect to the XPS area before the oscillation) is
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observed during this oscillation (∼-17% in Fig. 5.4b/T≈236-247.5 K and ∼-10%

in Fig. 5.5c/T≈279.5 K). This behaviour is most likely due to diffusion of an-

ionic/neutral alanine from the chemisorbed layer to the bulk multilayer. This will

cause attenuation of the zwitterionic alanine from the anionic/neutral alanine and

cause rise in the signal of the peak corresponding to the neutral amino group in

the N 1s region (∼ 400 eV) with simultaneous decrease in the signal correspond-

ing to the protonated amino group (∼ 402 eV) . This behaviour is triggered by

the constant heating in the TP-XPS experiments, which explains why it is not

observed in the high resolution XP-spectra obtained between the O 1s TP-XP-

spectra in Fig. 5.4c (Fig. 5.4f-5.4g) and it is reversible with further heating (hence

the oscillation). This oscillation depends on the initial coverage of (S)-alanine on

the Ni{110} surface (was not observed at ΘAla=190% sat, N 1s TP-XP-spectra in

Fig. 5.5a) and on the heating rate (was not observed for heating rate=12 K min-1,

N 1s TP-XP-spectra in Fig. 5.5b, whereas the onset of oscillation was found at

different temperatures at 9 K min-1 and 6 K min-1 heating rate). This behaviour

is not observed in the C 1s TP-XP-spectra in Fig. 5.4a. It is possible that the XPS

signal associated with the α-carbon of the anionic/neutral alanine in the multi-

layer (C-NH2), overlaps with the signal of the α-carbon of zwitterionic alanine

(C-NH3
+).

Figure 5.14 provides a possible decomposition mechanism for alanine on clean

Ni{110} based on the TPD and TP-XPS results. The full decomposition of ala-

nine occurs between 400-420 K, even though an appearance of decomposition

fragments was observed at T=350 K in submonolayer coverages (Fig. 5.3). The

first step of the decomposition of alanine on clean Ni{110} is the cleavage of Cα-

COO bond, which releases CO2 (Fig. 5.14), as was indicated by TPD peaks for

masses 28 and 44 and the loss of the TP-XPS signal in the O 1s at the decom-

position temperature. This decomposition, results with NH2CHCH3 species on

the surface, detected as a small signal in the XPS spectra at 473K (Fig. 5.5d-e),

vanishing upon heating to 500 K. Apart from the aforementioned peak, one peak

in the N 1s region and two peaks in the C 1s are detected in the XP-spectra, stable

up to 700-800 K. The TPD results show a desorption peak for mass 2 at the de-

composition temperature, therefore a successive decomposition of the NH2CHCH3

fragment must take place. This could involve a Cα-CH3 backbone cleavage with

simultaneously desorption of H2 leaving HxCN species and atomic carbon on the

surface (Fig. 5.14). The former species are validated by the NEXAFS results

(Fig. 5.13a) which suggest the presence of multiple bonds in the nitrogen con-

tained decomposition fragments. At 800 K a thermal desorption peak is observed

for mass 2 and 28, which probably originates from thermal decomposition of the
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amino species. A study on the interaction of methylamine and ethylamine [165]

proposed that the final thermal dissociation stage of these two amines is atomic

carbon and nitrogen. It is likely that the TPD peak at 800 K for mass 2 and

28 originates from recombinant desorption of atomic hydrogen and nitrogen, re-

spectively. At this temperature the atomic carbon diffuses into the bulk leaving

no fragments of alanine on the nickel surface. The decomposition temperature of

alanine on Ni{110} is much higher than Ni{111}[46]. On Ni{111} the onset of the

decomposition occurs ar T∼ 300 K following a different multistep process which

includes first dehydrogenation and then breaking of the Cα-COO bond [46].

Figure 5.14: Proposed decomposition mechanism of (S)-alanine on Ni{110}.

The presence of multilayer water enhances the partial formation to zwitteri-

onic alanine but does not influence the decomposition temperature of the amino

acid whereas submonolayer water is displaced from the surface by the alanine

molecules. Adsorption of glycine on Pt{111} pre-covered with chemisorbed or

amorphous solid water (ASW) studied by Shavorskiy et al. (2013) [69], favours

also the conversion to zwitterionic alanine, a state which was also observed in the

multilayer regime as is the case with study. The authors of Ref.[69] suggested

that glycine is adsorbed on top of the ice layer, since at this adsorption sequence,

and at Tsample<170 K, the interlayer diffusion is kinetically hindered. Upon des-

orption of water, the layer of glycine resembles spectroscopically the pure glycine

overlayer deposited at 200 K [69], as we also observed in our experiments. Expo-

sure of the low covered adsorbed glycine on Pt{111} to ambient pressure water

(up to 0.2 Torr) does not influence the chemical state at T>300 K nor its de-

composition temperature, but it does stabilise the decomposition products of the

molecule [69]. Similar results were obtained by Tzvetkov et al. (2005) [163], who

found that glycine is predominantly in its zwitterionic form, when it is deposited

on top of low density amorphous ice phase which was condensed on single crys-

talline of Al2O3 [163]. The authors recommended that upon desorption of H2O,

glycine lands on the Al2O3 surface [163]. Work of Shavorskiy et al. (2011) [109] on

the interaction of alanine and glycine on Cu{110} after exposed to near-ambient

pressure water, did not show any significant change in the chemical state of the
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amino acids, which maintain their anionic form. The presence of ambient pres-

sure water, decreases the decomposition temperature of alanine and glycine on

Cu{110} (in the magnitude of 75-80 K) and changes the decomposition path of

the amino acids, due to interaction of the decomposition products of H2O with

the adsorbed amino acid [109]. In the present study, even though an amount of

alanine was converted to its zwitterionic form, alanine is still predominantly in

its anionic form. Theoretical work from Campo et al. (2006) [166] on the inter-

action of glycine with water, provided evidence that zwitterionic glycine forms

six hydrogen bonds with water molecules at infinite dilution. Ab initio molecular

dynamics from Leung et al. [167], show the zwitterionic glycine is surrounded by

8 water molecules in an aqueous solution. Computanional work on the interac-

tion of alanine with water [168], revealed that increase of the number of water

molecules, makes the hydrated zwitterionic alanine more thermodynamically sta-

ble. Six or seven surrounding water molecules can favour the coexistence of the

neutral and zwitterionic alanine, whereas 8 surrounding water molecules assure

the dominance of the zwitterionic alanine. It is possible that the limiting factor

of the low amount of zwitterionic alanine is the low concentration of the adsorbed

H2O on Ni{110} surface. DFT calculations on the interaction of solvated alanine

on Ni{111} [169], showed that in bulk water, alanine is favoured in its zwitteri-

onic form, since the charged groups can form hydrogen bonds. The amino acid is

bonded on the nickel surface through the one oxygen of the carboxylate group and

one water molecule forms a hydrogen bond with the protonated amino group. We

propose that dosing alanine onto pre-covered multilayer H2O on Ni{110}, causes

almost total destruction of the water multilayer while the alanine molecule sits on

top of the H2O bilayer. The latter explains the change in the shape of the peak at

531.9 eV (O 1s spectrum in Fig. 5.7c), which is the same with the corresponding

peak of multilayer alanine, and the change in the shape of the peak correspond-

ing to the neutral amino group (N 1s spectrum in Fig. 5.7b) and their shift to

high binding energies with respect to the spectra of alanine deposited on clean

Ni{110}. In addition, according to Ref.[69], at this adsorption temperature (∼ 140

K), we should not expect any interlayer diffusion of the alanine molecule within

the water layer. The presence of the water also causes protonation of the amino

group, which probably forms hydrogen bonds with the remaining H2O molecules

of the multilayer. Upon desorption of H2O (T∼ 220-220 K), alanine sits on the

nickel surface as and behaves thermally and chemically as in the case of a pure

chemisorbed alanine on Ni{110}.
Alanine is thermally stable on Ni{110} up to 400-420 K, under both clean and

wet conditions, a temperature range higher than the normal modification and
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reaction conditions [16, 17]. The tridentate anionic form of alanine could induce

chirality on the nickel surface through chiral reconstruction of the nickel atoms, in

a similar way with the bitartrate(TA)/Ni{110} system in Ref.[34]. Adsorption of

S-alanine on Cu{110} causes creation of chiral clusters of six or eight molecules,

interspersed with chiral channels of metals which assemble into a chiral array

without creation of its mirror domain on the surface [62]. This induced chirality is

mirrored upon adsorption of R-alanine on the copper surface, which also generates

similar chiral assemblies [62]. This structure was supported by generation of

anionic alanine in both µ3 and µ2 adsorption geometries [62]. In the µ2 anionic

alanine the molecule interacted with the copper surface through its protonated

amino group and through only one of the oxygen atoms of the carboxylate group

[62]. The presence of an oxygen belonging to the deprotonated carboxyl group

of alanine, dangled from the nickel surface, should have given a shift of ∼ 0.3-

0.5 eV towards high binding energies (with respect to the peak corresponding

to the oxygen atoms of the COO-/COOH(ads) groups) in the XP-spectra in the

O 1s region, something that could not be resolved in our data. The presence

of the neutral and anionic form of alanine in our study, can assist the generation

these ordered structures on the Ni{110} surface since they can support a hydrogen

bonding network. The presence of protonated carboxyl groups in the neutral form

of alanine could also induce the interaction of the molecule with the β-ketoester

reactant via hydrogen bonding and assisting its enantioselective hydrogenation

through stabilising a pro-chiral configuration over the other.

In the presence of multilayer water, alanine partially converts in its zwitterionic

form. Work on the interaction of (S)-glutamic acid and MAA on Ni{111} [40,

43, 44] provided evidence for a strong correlation between the increase of the

keto:enol ratio of MAA, the protonation of the amino group of the modifier ((S)-

glutamic acid) and the conditions that favour the generation of the R-product in

excess. Under these conditions, it is possible, that the protonated amino group

of the modifier ((S)-glutamic) can support an interaction with the β-ketoester

reactant via hydrogen bonding in a configuration that will preferably produce the

R-product during the hydrogenation reaction [40, 43, 44], as it was observed by

Jones et al. (2006) [40] using RAIRS. The adsorption temperature (∼ 140 K)

and adsorption sequence (H2O and then alanine) might not be exactly describe

the exact reaction conditions, since at reaction temperatures we will expect the

presence of only small amount of hydroxyls, however the multilayer H2O can

partially model the interaction of solvated alanine on Ni{110}. Further studies of

the interaction of this molecule with the nickel surface under solution and high

pressures of H2O are essential to approach more realistic conditions.
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5.5 Conclusions

Alanine plays an important role on the enantiomeric hydrogenation, since it is

thermally stable on Ni{110} under reaction conditions (decomposes at ∼ 400-

420 K). Alanine chemisorbs on Ni{110} mainly in its anionic and neutral form.

These chemical states support an µ3 and µ2 adsorption geometry, respectively.

The XPS signal in the submonolayer regime, suggests also the presence of zwitte-

rionic alanine, however it is not fully conclusive whether these zwitterionic species

belong to the first chemisorbed layer or they are found in a second layer deposited

on top of the chemisorbed layer. In the multilayer, alanine is present mainly in

its zwitterionic form. The presence of multilayer water does not influence the

decomposition temperature of the amino acid but it enhances its conversion to its

zwitterionic form, a feature that its important for the generation of pure enan-

tiomeric products under reaction conditions. The tilt angle of the C––O/COO-

groups of the alanine molecule with respect to the surface plane was found to be

α≈42.1◦ and did not change significantly upon co-adsorption of (S)-alanine with

submonolayer H2O (α≈42.0◦).
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Adsorption of methyl

acetoacetate (MAA) on Ni{100}

Reprinted (adapted) with permission from [170]. Copyright (2018) American

Chemical Society.

Abstract

The enantioselective hydrogenation of methyl acetoacetate (MAA) over modified

Ni-based catalysts is a key reaction in the understanding of enantioselective het-

erogeneous catalysis as it represents the only example of this class of reactions

catalysed by base metals. Yet, there is very little molecular-level information

available about the adsorption complex formed by the reactants on Ni surfaces.

Here, we report a combined experimental and theoretical study of the adsorp-

tion of MAA on the Ni{100} surface. X-ray photoelectron spectroscopy shows

that MAA forms stable multilayers at low temperatures, which desorb between

200 K and 220 K. At higher temperatures a single chemisorbed layer is formed,

which decomposes between 300 K and 350 K. Density functional theory mod-

elling predicts an enolate species with bidentate coordination as the most stable

chemisorbed species. Comparison of photoelectron spectroscopy and X-ray ab-

sorption data with simulations using this adsorption model show good qualitative

and quantitative agreement. The molecular plane is tilted with respect to the

surface plane by about 50◦. This breaking of symmetry provides a mechanism for

the enantioselective hydrogenation.
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6.1 Introduction

The hydrogenation of β-ketoesters over modified Raney nickel opens up a path-

way into enantioselective heterogeneous catalysis of bio-related molecules. Much

of the characterisation of this reaction in terms of kinetics, modifier and solvent

dependence was done by Izumi and coworkers in the 1960’s [12, 16]. The quan-

titative characterisation at the molecular scale and the understanding of chiral

and chirally-modified surfaces of model catalysts experienced a rapid growth over

the last two decades, driven by the refinement of experimental surface character-

isation techniques and theoretical modelling [2, 171–173]. This progress has also

been driven by the increasing demand for enantiopure chemicals in drug manu-

facturing, where homogeneous catalytic processes are predominantly used [174].

However, the subsequent phase separation necessary in homogeneous catalysis is

difficult and generally expensive. The use of heterogeneous catalysts avoids this

problem; therefore, viable heterogeneous routes would make the production of

pharmaceuticals greener and more economical.

In the case of one of the simplest β-ketoesters, methyl acetoacetate,

CH3 –O–C(O)–CH2 –C(O)–CH3, (MAA, see Fig. 6.1), the hydrogenation results

in a racemic mixture of the R and S methyl-3-hydroxybutyrate (MHB) when car-

ried out over an unmodified Raney Ni catalyst. However, the modification of

the catalyst with chiral α-amino acids or α-hydroxy acids leads to optically ac-

tive products. (R)-hydroxy acids (such as (R,R)-tartaric acid) or (S)-amino acids

(such as (S)-glutamic acid) modifiers will produce (R)-product in excess, while

(S)-hydroxy and (R)-amino-acid modifiers will generate (S)-products in excess

[2, 11, 12, 16]. The reaction is well-characterised in terms of enantiomeric ex-

cess, temperature and solvent dependencies [16, 17, 24, 44]. Izumi (1983) [16]

suggested that the surface modification is due to a combination of modifier and

solvent molecules since the solvent has a significant influence on the enantiomeric

excess of the catalyst. Furthermore, they showed that the enantioselective be-

haviour depends on how the reactant MAA adsorbs on the Ni surface and how it

interacts with the modifier rather than on the transition state of the hydrogena-

tion reaction [16]. Hence, determining the adsorption geometry of MAA at the

molecular level and the influence modifiers have on it is a key step to understand

and optimize the enantioselective behaviour of Ni-based catalysts.

On close-packed single crystal surfaces of many coinage and Pt-group met-

als chiral modifiers and/or reactants often form ordered adsorbate layers with

well-defined chemical environments under UHV conditions [12]. On Ni surfaces,
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Figure 6.1: Molecular structure of MAA enol, which was found to be the most
stable MAA tautomer in gas phase in Ref.[175].

such ordered structures are rare. Therefore little quantitative molecular-scale in-

formation is available on reactants and modifiers of enantioselective reactions on

these surfaces. Raval and coworkers studied the adsorption of tartaric acid on

Ni{110} and showed that the interaction with the modifier caused a chiral recon-

struction of the surface [33–35]. Our group has studied the adsorption of alanine

on Ni{111} using XPS and near-edge X-ray absorption fine structure (NEXAFS)

spectroscopy [46]. In this and earlier studies, the combination of these two ex-

perimental techniques has proved very powerful for characterising the adsorption

complex in terms of chemical state, bond coordination, and molecular orientation

[46, 69–72].

The adsorption of MAA and several modifiers, including tartaric acid and

glutamic acid, on Ni{111} was studied by Baddeley’s group using temperature-

programmed desorption (TPD), IR spectroscopy and scanning tunneling microscopy

(STM). There, the spatial configuration between the modifiers and the substrate

depends on the coverage and adsorption temperature. Evidence was found for

a one-to-one interaction between the chiral modifiers and MAA. In addition, it

was shown that the experimental conditions, in particular temperature, influence

the keto-to-enol ratio of MAA. [36, 37, 39, 40, 43, 44]. Recently, our group com-

bined XPS and NEXAFS with DFT modelling to study the adsorption complex

of MAA on Ni{111}. We found that the reactant MAA adsorbs on a flat surface

forming deprotonated enolate species with bidentate coordination. The formation

of energetically more favourable adatom adsorption complexes is kinetically hin-

dered at low temperatures [175]. To our knowledge, no detailed study exists for
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MAA adsorbed on the Ni{100} surface. The present study provides experimental

data and theoretical modelling characterising the adsorption complex of MAA

on Ni{100}. This study is published in Ref.[170]. The theoretical modelling of

this study was performed by Dr.Jorge Ontaneda (University of Reading) and by

Dr. Ricardo Grau-Crespo (University of Reading). The experimental data were

collected by the author, by Prof. Georg Held (University of Reading) and by Dr.

Roger Bennett (University of Reading) and analysed by the author. The overall

contribution of the author to this study is ∼ 50% of the total work.

6.2 Methodology

The computational methods are described in Ref.[170]. The XPS and NEXAFS

experiments were performed in the Elettra synchrotron in Trieste (Italy) in the

UHV endstation of the SuperESCA beamline, which provides a horizontally po-

larized X-ray beam. The base pressures in the preparation and analysis chamber

were in the 10−10 mbar and 10−11 mbar range, respectively. Sample cleaning was

achieved by cycles of sputtering (3 × 10−6 mbar / 1-1.5 kV) and oxygen treat-

ment (1 × 10−8 mbar for 1 min at room temperature with subsequent annealing

to 900 K). Sample cleanliness was confirmed by XPS and LEED. The Ni single

crystal was mounted at the base of the a liquid nitrogen-cooled cold finger and

could be heated indirectly by a filament mounted close to the back face of the

sample. Its temperature was measured through a spot-welded thermocouple and

controlled using a programmable temperature controller. MAA was dosed via a

leak valve. Prior to dosing, the liquid was purified by means of freeze-thaw cycles,

until no bubbles were observed during thawing (4 cycles). A pressure rise to the

low 10−9 mbar range was observed during dosing of the molecule in the prepara-

tion chamber. Because of the small rise in pressure and differences in pumping

speed, there was no good correlation between dosing time and surface coverage,

hence the coverage was determined by XPS (see below).

The XP-spectra were acquired in the C 1s region (hν=400 eV) and O 1s

region (hν=650 eV) using pass energies of 5 eV and 15 eV, which resulted in

combined resolution of beamline and analyser of ∼ 0.1-0.2 eV for both photon

energies. Spectra of the Fermi edge were obtained every time the monochromator

was moved, for calibrating the offset of the binding energy axis. The spectra were

normalised at low binding energy (BE) and the background was subtracted for

quantitative analysis. The coverage (in ML) was calibrated by comparing O 1s

spectra measured with a photon energy of hν=1000 eV with those of CO ad-
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sorbed to saturation at room temperature (0.5 ML, i.e. 1 molecule per 2 surface

Ni atoms, [144]). Temperature-programmed XP-spectra were recorded by heating

the sample at a constant rate of 12 K min-1 in front of the analyser while measur-

ing alternating C 1s and O 1s spectra (∼ 15 s/spectrum). During the TP-XPS

experiments the sample was moved under the beam to minimise any potential

beam damage.

NEXAFS spectra were acquired in the O K-edge region detecting O KLL Auger

electrons with kinetic energies of 507 eV. Three angles of incidence were used for

determining the orientation of MAA on surface: θ = 0◦ (normal incidence), 35◦

and 70◦, where θ refers to the angle between the electric field vector and the surface

plane. The photon energy was calibrated using the π∗-resonance in CO NEXAFS

spectra [111]. The spectra were corrected for the transmission of the beamline

through dividing by the photon flux, I0, which was collected using the drain

current of last refocusing mirror. Spectra of the clean surface, corrected in the

same way, were subtracted as background. Finally, the spectra were normalised

at 565 eV, which is above all oxygen absorption resonances.

6.3 Results

6.3.1 XPS Results

Figure 6.2 shows C 1s and O 1s XP-spectra of MAA on Ni{100}. The spectra

were obtained after dosing MAA at 180 K for 1 min and 3 min, which led to

coverages of 0.22 and 0.23 ML, respectively, and at 100 K for 6 min, which led

to the growth of a “multilayer”. On the basis of modelling results (see below),

it was estimated that a MAA molecule would block about 6 Ni atoms, i.e. the

saturation coverage of the chemisorbed layer is around 0.17 ML. Above this value

the coverage calibration by XPS is not linear anymore, as molecules in the second

and higher layers attenuate the signal from the molecules below. This also depends

on the growth kinetics / speed of growth and thus explains the differences between

the 0.22 ML and 0.23 ML spectra despite the small difference in nominal coverage.

The O 1s spectrum, for 0.22 ML (Fig.6.2b) show two resolved peaks at ∼ 531.3

eV and ∼ 533.2 eV with an area ratio of 0.7:1. The low binding energy peak (peak

A) can be attributed to deprotonated oxygen in contact with the nickel surface

[46], while the peak at 533.2 eV (B) is related to oxygen atoms detached from

the surface. The latter peak in the O 1s region broadens towards lower binding

energies with increasing coverage, indicating the onset of multilayer formation.

When the coverage increases and a thicker multilayer is formed, a third peak at
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532.6 eV (C) can be resolved which is linked to the multilayer species. This species

could be a protonated oxygen, implying the coexistence of two species of MAA in

the multilayer regime.

(a) (b)

Figure 6.2: XP-spectra of MAA dosed onto Ni{100} at the indicated tempera-
tures, in the (a) C 1s (hν=400 eV) and (b) O 1s regions (hν=650 eV).

In the C 1s region (Fig. 6.2a) we can detect six peaks at 283.0 eV (A),

283.8 eV (B), 285.3 eV (C), 286.8 eV (D), 288.2 eV (E) and 289.2 eV (F). Fol-

lowing previous work [46], the two peaks at the lowest binding energies (peak A

and B) are associated with dissociation products of the MAA molecule. The

remaining peaks are associated with intact MAA. Using calculated core-level

shifts from DFT (see Tab. 6.2) the XPS signal 285-287 eV (peaks C and D)

is assigned, in order of increasing binding energy, to the convoluted lines of C1

(C2 – – ––C1 – – ––C3), C5 (C3–C5H3), C3 (C1 – – ––C3(–O2)–C5), C4 (H3C4–O3) and C2

(O3 – – ––C2(–O1) – – ––C1) of the chemisorbed molecule (see also Fig. 6.7). The two

peaks at high binding energies (E and F) are most likely multilayer and/or satel-

lite features.

Figures 6.3a and 6.3b show temperature-programmed TP-XP-spectra after

dosing MAA on Ni{100} for 3 min at 180 K (0.23 ML) while Fig. 6.3c and 6.3d

show spectra of a MAA multilayer adsorbed at 100 K (3 min dose) and after

successive annealing steps. The TP-XP-spectra are normalised at the low binding

side without background subtraction, while the spectra in Fig. 6.3c-d have the

background subtracted. Multilayer desorption occurs around 200-220 K, indicated

by the disappearance of the peaks at 288.2 eV and 289.2 eV in the C 1s region

(Figs 6.3a,c; peaks E and F) and 532.6 eV in the O 1s region (Fig. 6.3b,d; peak

C), as well as by the shift of peak B in the O 1s region (Fig. 6.3d) to low binding
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(a) (b)

(c) (d)

Figure 6.3: Temperature-dependent XP-spectra of MAA on Ni{100}: TP-XPS
of the (a) C 1s and (b) O 1s regions (hν=650 eV) after dosing MAA onto on
Ni{100} at 180 K for 3 min (heating rate 12 K min-1); (c) C 1s (hν=400 eV); (d)
O 1s (hν=650 eV) XP-spectra after dosing MAA at 100 K for 3 min and stepwise
annealing as indicated.
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energies. Above 200 K we can observe a clear splitting of peak C in the C 1s region

and the appearance of a new peak at 284.5 eV (indicated by an arrow in Fig. 6.3c),

which is assigned to the -C3-C1=C2- species. Heating from 300 K (0.21 ML) to

330 K (0.19 ML), causes a significant reduction in the signal corresponding to the

intact molecule in both regions, accompanied by an increase in signal at 283.0 eV

(peak A) in the C 1s region. This peak is associated with decomposition products,

most likely atomic carbon. At 340 K we observe a significant shift of peak B in

the O 1s region (O atoms not bound to the Ni surface) to lower binding energies

(from 533.2 eV to 533.0 eV, Fig.6.3d). At this point the coverage is close to the

saturation coverage (0.16 ML) and the intensity ratio between the O 1s peaks A

(O atoms in contact with Ni) and B (O atoms not in contact with Ni) is 1.9:1,

which indicates that MAA forms a bond with the Ni{100} surface through two

oxygen atoms in a bidentate geometry. Above 350 K MAA is fully dissociated,

leaving only decomposition fragments on the surface.

6.3.2 NEXAFS Results

Figure 6.4a shows angle dependent NEXAFS spectra after dosing MAA on Ni{100}
for 1 min at 180 K (0.22 ML) and annealing to 250 K (0.21 ML). The corresponding

XP-spectra are shown in Fig. 6.4b-6.4c. The experimentally determined coverage

of 0.21 ML is close to the estimated saturation coverage of 0.17 ML. However, the

presence of small peaks at 288.2 eV and 289.2 eV in the C 1s region (Fig. 6.4b)

indicate that there is a small number of molecules adsorbed in the second layer

which are not part of the chemisorbed layer.

The NEXAFS spectra (Fig. 6.4a) show a strong π∗ resonance feature around

533.4 eV, a step at 536.4 eV and two σ∗ resonances around 541 eV and 544 eV.

The NEXAFS spectra were fitted using a linear background, a step function and

Gaussian peaks representing the σ∗ and π∗ resonances of the molecule. The indi-

vidual components of each function used for fitting the spectra are shown as red

lines in Fig. 6.4a for each spectrum. The strong π∗ resonance feature consists of

three peaks at 532.5 eV, 533.5 eV and 535.3 eV. The intensities of these peaks

show strong angular dependence, which allows the determination the molecular

tilt angle α for each resonance, according to the following equation [96] for surfaces

with 4-fold symmetry:

I(θ) = A[P (sinθ)2 · (1− 3

2
sin2α) +

1

2
sin2α] (6.1)

Where θ is the angle between the electric field vector and the surface plane and

P is the polarisation factor. Assuming P=1 for the SuperESCA beamline, the
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(a)

(b) (c)

Figure 6.4: (a) Angle resolved O K-edge NEXAFS spectra after dosing MAA onto
Ni{100} at 180 K for 1 min and annealing the layer to 250 K (0.21 ML). The dots
represent the raw data and the solid lines the fitted curves. The red curves below
the spectra indicate the individual Gaussian peaks, linear background, and the
step function used for fitting. Right panel: complete spectra; Left panel: energy
range of π∗ resonances. (b+c) XP-spectra of the MAA layer used for the NEXAFS
study: (b) C 1s region (hν=400 eV) and in the (c) O 1s region (hν=650 eV).
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Eq. 6.1, is transformed to Eq. 6.2:

I(γ) =
Iα
3

[1 +
1

2
(3cos2γ − 1)(3cos2α− 1)] (6.2)

Where γ=90◦-θ. The values of tilt angles, α, with respect to the surface

plane, are 50.0◦, 66.9◦ and 58.0◦ for the peaks at 532.5 eV, 533.5 eV, 535.3 eV,

respectively. The error margins stated in Fig. 6.4a refer to the fitting error. The

two σ∗ resonances can be assigned to C-C and C-O bonds respectively [46, 104].

6.3.3 DFT results

MAA belongs to the class of β-diketones of the type R-C(O)-CH2-C(O)-R. The

keto-enol tautomerism of these compounds depends strongly on the substituent

R. Symmetrically substituted β-diketones exist in the enol tautomeric form R-

C(OH)-CH-C(O)-R when R is CH3, and in the diketo tautomeric form R-C(O)-

CH2-C(O)-R when R is OCH3 [176]. Both substituents are present in MAA,

making its tautomeric behavior interesting: MAA vapor at 309 K exhibits a com-

position of 80% enol and 20% diketo form [177], whereas liquid MAA at room

temperature exists exclusively in the diketo form [178]. In our previous work we

found that DFT predicts the enol configuration as the most stable tautomer of

MAA in the gas phase [175]. The diketo tautomer of MAA in its most stable con-

figuration was found to be 0.24 eV above the enol ground state. Because the enol

form is the most stable tautomer, we use it as the reference for the calculation of

adsorption energies, regardless of the mode of adsorption. Both tautomeric forms

of MAA have been considered, when we tested the adsorption geometries on the

Ni{100} surface, however, the candidates with the MAA in its diketo form were

less stable by at least 0.8 eV compared to the two most stable enol species shown

in Fig. 6.5. The first local minimum corresponds to the flat enol configuration

shown in Fig. 6.5a. The main molecular plane formed by the three carbons C2-

C1-C3 (see Fig. 1.5 for numbering) is parallel to the surface with both oxygen

atoms from the carbonyl and hydroxyl groups (O1 and O2) above atop sites. Un-

like in the gas phase, the methyl and methoxy groups are not within this plane

but bent away from the surface. The second global minimum (Fig. 6.5.b) cor-

responds to the bidentate enolate configuration, where O2 is deprotonated and

the molecular plane is tilted with respect to the Ni surface. The surface bond

is formed via the carbonyl groups sited located on bridge sites of non-adjacent

rows. The dissociated hydrogen atom is adsorbed elsewhere on the surface on a

four-hollow site. In this case, the methyl and methoxy groups remain aligned to
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Figure 6.5: Top and side views of the two lowest-energy configurations found by
DFT for the adsorption of MAA on the Ni{100} surface: (a) flat enol and (b)
bidentate enolate (b) Key: red=O, gray=C, white=H and blue=Ni.

the plane of the molecule. The calculated adsorption energies without vibrational

contributions are -1.91 eV for the flat enol and -1.82 eV for the bidentate eno-

late configuration. When vibrational contributions are included, the change in

zero-point energy (ZPE) between gas phase and the adsorbed species stabilises

the bidentate enolate by -0.20 eV but the flat enol only by -0.06 eV. This result

is expected as the number of intra-molecular bonds in the latter is the same as in

the gas-phase molecule, whereas with the enolate deprotonation occurs and the

adsorbed species has one bond less and the vibrations of the dissociated hydrogen

atom bound to Ni are much softer. This extra stabilisation yields a total adsorp-

tion energy (including electronic and vibrational contributions) of -2.02 eV for

the bidentate enolate configuration compared to -1.97 eV for the flat enol, hence
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rendering the enolate more stable.

6.4 Discussion

6.4.1 Comparison of Modelling and Experimental Data

In order to test whether the bidentate enolate conformation is indeed the pre-

dominant mode of adsorption, we compare the experimental XPS data with

simulated spectra for the two candidate adsorption configurations. Core-level

shifts for the O 1s photoemission peaks were calculated as described in Ref.[170].

The results are summarized in Tab. 6.1 together with some key geometrical

data. For both adsorption geometries the BE shifts split into two groups, around

∆BEO1s = 0.00 − 0.29 eV and ∆BEO1s = 1.29 − 1.86 eV. For the flat enol con-

formation the oxygen of the carbonyl group (O1) falls into the lower BE group

and the oxygen atoms of the hydroxyl and methoxy groups (O2 and O3) into the

higher BE group. In the bidentate enolate configuration, the two oxygen atoms

of the carbonyl groups (O1 and O2) have low BE and the methoxy oxygen (O3)

has high BE.

For a further comparison with the experimental O 1s XPS data, spectra were

modelled by the superposition of Gaussian functions of the same height, positioned

according to the calculated binding energy shifts for each oxygen atom of the flat

enol and bidentate enolate configurations (Tab. 6.1). A width (FWHM) of 1.5 eV

was used for each Gaussian, which was determined by fitting the experimental data

and is in accordance with our earlier work [175]. Figure 6.6 shows the individual

Gaussians and their superposition alongside the experimental O 1s spectrum of

MAA after annealing to 340 K. At this temperature, the coverage is 0.16 ML, close

to the estimated saturation coverage of chemisorbed MAA on Ni{100} (0.17 ML).

The coverage is different from the one used in the DFT calculations (0.04 ML),

however strong lateral interaction, such as hydrogen bonding is not expected for

MAA, therefore the adsorption geometry for chemisorbed molecules should be

largely independent of coverage. The binding energy scale of the theoretical spec-

tra has been shifted such that they coincide with the experimental data. Clearly,

the simulated spectrum of the bidentate enolate conformation is in much better

quantitative agreement with the experimental data than the one of the flat enol.

Both the energy separation, 1.6 eV, and the relative heights of the two peaks fit

the experimental data very well. As mentioned before in the Results Section, the

intensity ratio between the low binding energy and high binding energy peaks (A

and B) is close to 2:1, in the experimental spectrum for this layer, which sug-
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Table 6.1: Key geometrical and spectroscopic parameters of the two candidate
structures found by DFTα .

flat enol bidentate

enolate

EDFT
ads −1.91 eV −1.82 eV

EDFT+ZPE
ads −1.97 eV −2.02 eV

d(C4-O3) 1.447 Å 1.447 Å

d(C2-O3) 1.367 Å 1.353 Å

d(C2-O1) 1.322 Å 1.284 Å

d(C1-C2) 1.467 Å 1.426 Å

d(C1-C3) 1.461 Å 1.387 Å

d(C3-O2) 1.423 Å 1.331 Å

d(C3-C5) 1.507 Å 1.498 Å

d(O1-Ni) 2.014 Å 2.093 Å /2.134 Å

d(O2-Ni) 2.071 Å 2.039 Å /2.007 Å

6 C2-O1-surface 0.0◦ 49.1◦

6 C3-O2-surface 0.7◦ 53.2◦

6 C2-C1-C3-surface 8.9◦ 54.3◦

∆z(C) 1.118 Å 0.640 Å

∆BEO1s (O1) 0.00 eV 0.29 eV

∆BEO1s (O2) 1.29 eV 0.00 eV

∆BEO1s (O3) 1.63 eV 1.86 eV

α∆z(C) is the maximum vertical height difference of the molecule’s carbon atoms.

gests that MAA at this coverage is chemisorbed on Ni{100} in a bidentate form,

through its two oxygen atoms, as in the bidentate enolate configuration.

C 1s spectrum (Fig. 6.7) was also modelled using the core level shifts values for

the C 1s photoemission peaks for the bidentate enolate configuration (Tab. 6.2).

Compared to the O 1s case (Fig. 6.6), the agreement between the simulated C 1s

spectrum and the experiment (Fig. 6.7) was significantly worse. This is in agree-

ment with previous findings on similar systems [104, 175] and is not fully under-

stood yet. Nevertheless, there is little variation in the calculated C 1s binding

energies between different adsorption geometries, as none of the carbon atoms is

involved in any surface bond.
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Figure 6.6: Comparison of experimental XPS data obtained after annealing the
MAA layer to 340 K (0.16 ML) and modelled XP-spectra of the flat enol and
bidentate enolate configurations. Top: direct comparison of experimental and
modelled spectra; middle: individual Gaussian peaks centered at the calculated
core level shifts for the flat enol ; bottom: individual Gaussian peaks centered at
the calculated core level shifts for the bidentate enolate.

Additional confirmation for the bidentate enolate adsorption geometry comes

from the NEXAFS data. The DFT-optimised geometry predicts the molecular

plane being tilted with respect to the surface plane. The inclination angles for

the C-O bonds are 6 C3O2 = 53.2◦ and 6 C2O1 = 49.1◦; the plane of the carbon

backbone has an angle of 6 C1C2C3 = 54.3◦ with respect to the surface (Tab. 6.1).

The NEXAFS spectra consist of three peaks in the π*-resonance region, at

532.5 eV, 533.5 eV, and 535.3 eV (Fig. 6.4a), which are most likely associated with

these bonds, as they all are expected to be part of a resonant π-system. In order

to make the correlation between the molecular geometry and these resonances, the

density of states (DOS) near the Fermi energy was calculated for the bidentate

Table 6.2: Core-level shift values for the C 1s photoemission of the bidentate
enolate configuration according to DFT. For numbering, refer to Fig.6.1.

Atom numbering ∆BE (eV)
C1 0.00
C2 3.00
C3 1.56
C4 2.29
C5 0.83
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Figure 6.7: Top panel: Comparison of experimental C 1s XP-spectrum obtained
upon annealed the MAA layer to 340 K (0.16 ML) with modelled XPS spectrum
of the bidentate enolate. Bottom panel: individual Gaussian peaks of FWHM
0.9 eV placed at the core-level shift positions of Tab. 6.2.

enolate adsorption complex. Figure 6.8 shows the total DOS (black line), the

DOS associated with the molecule (green), and the projections onto the Ni 3d,

O 2p, C 2p states (blue, red, grey).

Figure 6.8 clearly shows a high density of empty states in the vicinity of C and

O atoms around 1.7 eV and 4.8 eV above the Fermi level, which are associated

with resonant π-like orbitals extending over most of the molecule. The main

contribution to the states at 1.7 eV above the Fermi level are near the C3-O2

and C2-O1 bonds pointing towards the surface (see top panel of Fig. 6.8), while

the empty states at 4.8 eV are located near the plane formed by C2,C1, and C3

(bottom panel of Fig. 6.8). The energy difference between the two DOS maxima

(∼ 3.1 eV) is very close to the energy difference between peak 1 (532.5 eV) and

peak 3 (535.3 eV) in the NEXAFS spectra; we therefore assign the NEXAFS peaks

1 and 2 at 532.5 eV and 533.5 eV, respectively, to π-like orbital states associated

with C-O bonds, while the peak at 535.33 eV is linked to the (C2C1C3) plane.

The angles derived from the angular dependence of peaks 1 and 2 are 50.0◦ and

66.9◦ which is in fair agreement with the values from the DFT geometry (53.2◦ and

49.1◦). The angle derived from the high photon energy peak 3 (535.33 eV) is 58◦

which also close to the theoretical value 54.3◦ for the angle of the (C2C1C3) plane.

A closer look at the top and bottom panel of Fig. 6.8 shows that the respective

orbitals are not exclusively associated with only one bond. Therefore, the angular

dependence of the NEXAFS resonances, which is determined by the orientation of

orbitals rather than bonds, must be expected to deviate somewhat from the bond
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orientation. However, the experimental values are clearly not compatible with the

flat enol adsorption complex where the molecular plane is essentially parallel to

the surface (tilt angles between 0.0◦ and 8.9◦, see Tab. 6.1).

Figure 6.8: Electronic density of states (DOS) of the bidentate enolate conforma-
tion (center). The vertical dashed line marks the Fermi level (E F). The charge
density isosurfaces, corresponding to electronic states with energies between 1.28
and 2.22 eV (top) and 4.38 and 5.32 eV (bottom) above the Fermi level, are
highlighted with dotted rectangles.

Based on the above comparison of experimental and computational results we

can confidently state that MAA adsorbs on Ni{100} in a bidentate enolate geom-

etry. It should be stressed, that the small energy difference between the enolate

and the enol adsorption species would not allow an unambiguous discrimination

on the basis of DFT alone. Only the comparison with experimentally determined

parameters, such as tilt angles and chemical shifts in XPS make a reliable deter-

mination of the adsorption complex possible.
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6.4.2 Implications for Heterogeneous Catalysis

The TP-XPS experiments in this work show the onset of the decomposition of

MAA on Ni{100} around 300-330 K; the molecule is fully decomposed at temper-

atures greater than 350 K. This decomposition temperature is within the temper-

ature range of 273 K to 373 K typically used in enantioselective catalysis [16, 17].

In contrast, TP-XPS and step annealing experiments for MAA on Ni{111}, car-

ried out under similar conditions, find the onset of decomposition at a significantly

lower temperature of 270 K, but the decomposition process proceeds in two steps

and is only complete at around 390 K [175].

Earlier TPD experiments by Jones et al. suggested that MAA on Ni{111}
starts decomposing at 350 K [37]. However these experiments involved adsorp-

tion at 300 K (i.e. above the onset of the first decomposition step) and significantly

higher heating rates (2 K s-1) than in Ref.[175] . It is likely that Jones et al. only

observed the second decomposition step. The same study also shows a delayed

onset of decomposition when MAA is co-adsorbed with tartaric acid on Ni{111}.
This indicates that the interaction with modifier molecules has a stabilising effect

under reaction conditions, which is most likely also the case on Ni{100}. Nev-

ertheless, it appears that the reactant MAA is intact over the range of typical

reaction temperatures only on the Ni{100} surface, and not on Ni{111}.
The tilted bidentate enolate geometry found here is similar to the geometry

found for MAA on Ni{111} earlier [175]. The most stable adsorption complex of

MAA on Ni{100} is a enolate ( – – ––C1H – – –– ), whereas all diketo candidate structures

(–C1H2 –) tested in this study were found to be much less stable. Only the flat

enol structure is similar in energy, but could be excluded by comparison with

experimental data. The tilted adsorption geometry of the bidentate enolate offers

an obvious mechanism for enantioselective hydrogenation. If we assume that the

dissociation of H2 takes place on the Ni surface, it will be more likely for the

hydrogen atoms to attach to the molecule on the side that is tilted towards the

surface. On an unmodified Ni{100} surface, which has a mirror symmetry, the

tilt can be in both directions. The role of a modifier is, therefore, to break the

mirror symmetry and stabilise only one of two possible tilt directions. A simi-

lar mechanism would also explain enantioselectivity for the flat enol geometry or

diketo structures that break the mirror symmetry of the surface in a similar way.

Indeed, both enol and diketo conformers of MAA lead to enantioselective prod-

ucts, as a series of IR absorption studies has confirmed recently [40, 44], which

investigated MAA on glutamic-acid-modified Ni{111} model catalysts under simi-

lar conditions as earlier experiments on Raney-nickel catalysts described by Izumi
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[16]. When the surface is modified with (S)-glutamic acid the enol(ate) tautomer

leads to the (S)-methyl-3-hydroxybutyrate product and the diketo form to the (R)

product. When glutamic acid is used as modifier, the modification conditions (pH

and temperature) have an influence on whether MAA assumes the enol or diketo

conformer. Further studies with co-adsorbed reactant and modifier molecules will

be necessary to determine the exact geometry of the modifier-MAA complex at

the molecular level and establish the reaction mechanism that leads to the chiral

product formation.

6.5 Summary

In summary, we have carried out a combined experimental and theoretical study

of the interaction of MAA with the Ni{100} surface using XPS, NEXAFS, and

DFT. The desorption of the multilayer MAA occurs at 200-220 K, leaving behind a

stable chemisorbed layer which starts decomposing at 300-330 K and is completely

dissociated at ∼ 350 K.

DFT calculations predict that the chemisorbed layer consists of a deprotonated

enolate species with a tilted bidentate surface bond through two oxygen atoms.

The enolate conformer and the tilt angle between 49.1◦ and 54.3◦ with respect

to the surface plane is confirmed by comparison with spectroscopic data. A non-

deprotonated enol tautomer is less stable by 50 meV, when vibrational zero-point

energy contributions are taken into account. All diketo candidate structures were

found to be significantly less stable.
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Conclusions

The interaction of (R,R)-tartaric acid, (S)-alanine and methyl acetoacetate (MAA)

on Ni{100} and the co-adsorption of (S)-alanine and water on Ni{100}, under

UHV conditions was investigated, using XPS, NEXAFS, TPD and LEED, in or-

der to obtain fundamental insights into the mechanism of chiral modification of

nickel catalyst, which causes the asymmetric hydrogenation of β-ketoesters. In

order to bridge the pressure gap and approach more realistic reaction conditions,

we have investigated the interaction of (R,R)-tartaric acid on the Ni{100} surface

under the presence of elevated pressures of H2 and H2O and the interaction of

(S)-alanine on Ni{100} under the presence of elevated pressures of H2 using AP-

XPS. We have also investigated the interaction of (R,R)-tartaric acid on oxidised

Ni{100}. The interaction of molecules on oxidised surfaces, also approaches the

enantioselective catalysis conditions, since the modification occurs from aqueous

solution and the catalyst itself is exposed to air before the modification [39].

The chemical state and adsorption geometry of (R,R)-tartaric acid on Ni{100}
depends on the temperature of the crystal, the dosing rate of the TA molecule and

its surface coverage. The bitartrate phase, in which both carboxyl groups of the

TA molecule are deprotonated (TA2-) and chemisorbed on the nickel surface in an

µ4 adsorption geometry, is favoured as we increase the temperature of the crystal

away from room temperature. Cooling the crystal towards room temperature

while having high coverages of TA molecule, causes the formation of HTA- species

(which support an µ2/µ3 adsorption geometry). High deposition rates (deposition

time ≤ 24 min/saturated layer) at T<400 K also cause the formation of HTA-

species.

Dosing (S)-alanine onto Ni{100} at (T≤330 K) causes saturation of the XPS

signal without formation of multilayer. At room temperature, (ΘAla ≥ 78% sat),

alanine chemisorbs on Ni{100} in both its anionic and neutral form. These species

support an µ3(via the two oxygen atoms of the COO- group and nitrogen atom
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of the amino group) and µ2 (via the one oxygen atom of the carboxyl group

and the nitrogen of the amino group) adsorption geometry, respectively. Dosing

(S)-alanine at Tsample=250 K causes also the formation of anionic and neutral ala-

nine. At Tsample=250 K and ΘAla>0.10 ML, some zwitterionic species (which also

support an µ2 adsorption geometry) are formed, which coexist with the anionic

and neutral forms of alanine. It is not fully conclusive whether these zwitteri-

onic species belong to the first chemisorbed layer or they are found in a second

layer deposited on top of the chemisorbed layer. In the multilayer alanine is

almost exclusively in its zwitterionic form. Similar results were observed upon

depositing (S)-alanine onto Ni{110}. As in the case with the (S)-alanine/Ni{100}
system, (S)-alanine chemisorbs on the Ni{110} surface in its neutral and an-

ionic form, whereas in the multilayer alanine is in its zwitterionic form. Similar

with the (S)-alanine/Ni{100} system, the XPS signal in the submonolayer regime,

suggests also the presence of zwitterionic alanine, however it is not fully conclu-

sive whether these zwitterionic species belong to the first chemisorbed layer or

they are found in a second layer deposited on top of the chemisorbed layer. On

Ni{111}[46] (S)-alanine chemisorbs in both zwitterionic and anionic form sup-

porting a bidentate and tridentate geometry, respectively with the latter species

being in majority on the nickel surface. The XPS signal in the O 1s region upon

adsorbing the alanine molecule on the Ni{111}[46] show evidence of presence of

protonated species of carboxyl group at Tsample=250 K/ΘAla ≥ 0.11 ML and at

Tsample=300 K/ΘAla ≥ 0.19 ML at a fixed 10% relative intensity of the main peak

at 531.5 eV. In the light of our results and the results of Nicklin et al. (2015)

[46], we can safely conclude that the chemical state of (S)-alanine, under UHV

conditions, does not change significantly between the three nickel facets ({110},
{111}, {100}).

Under UHV conditions, (R,R)-tartaric acid (TA) fully decomposes on Ni{100}
at T>440 K. Its thermal stability is further enhanced under the presence of PH2=

6.4 mbar, suggesting that TA remains intact on the Ni{100} facet during modifi-

cation and reaction conditions [12, 16, 24].

Table 7.1 compares the decomposition temperature of (S)-alanine between the

three nickel single crystals (Ni{100}, Ni{110}, Ni{111}[46]) On Ni{110}, ala-

nine decomposes at ∼ 400-420 K, while the presence of multilayer water does

not influence the decomposition temperature of the amino acid on the Ni{110}
surface. The situation is more complicated in the (S)-alanine/Ni{100} and (S)-

alanine/Ni{111}[46] adsorption systems. TP-XP-spectra of (S)-alanine overlayers

on Ni{100}, formed at Tsample=250 K, suggest that the molecule decomposes

at T≈330-390 K depending on the initial coverage of alanine. The increase in
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the thermal stability of the molecule with increasing initial surface coverage, is

most likely related to intermolecular interactions (hydrogen bonds), which become

stronger as the surface becomes more crowded. On the other hand step anneal

XP-spectra of alanine overlayers formed on Ni{100} at room temperature, show

that the molecule fully decomposes on Ni{100} at T>460 K and T≥400 K under

UHV and elevated hydrogen pressure conditions (PH2= 6.3 mbar), respectively.

It seems that the presence of elevated pressures of H2 destabilise thermally the

(S)-alanine molecule on the Ni{100} surface, which is the opposite effect with

respect to the (R,R)-tartaric acid/Ni{100} system. On Ni{111} [46], the onset of

decomposition of the (S)-alanine molecule, is around 320 K. The desorption and

decomposition occurs in multistep processes between 300 K and 450 K [46]. Ac-

cording to previous work [16, 17], the temperature range used for modification of

Raney nickel [16] and silica-supported nickel catalysts [17] using alanine as chiral

modifier, as well as the temperatures used for the enantioselective hydrogenation

of MAA using the aforementioned catalysts lies between 273 K and 373 K [16, 17].

It seems that, at least, under UHV conditions, (S)-alanine remains intact on the

Ni{110} facet in the range of temperatures typically used in the enantioselective

catalysis [16, 17] whereas on Ni{100} and Ni{111}, its not fully conclusive whether

the molecule remains intact in the aforementioned temperature range. A further

study, which will exploit the interaction of the molecule on the nickel surfaces

under elevated solvent pressures, is essential, to obtain full conclusions about the

thermal stability of the molecule on different nickel facets under modification and

reaction conditions.

The decomposition species of the alanine molecule as well as the surface im-

Table 7.1: Comparison of the decomposition temperature of (S)-alanine (Ala)
between the three nickel single crystals (Ni{100}, Ni{110}, Ni{111} [46]).

Conditions Method
Decomposition
temperature

Ala/Ni{110}
this work UHV TPD/TP-XPS T≈400-420 K

Ala/Ni{100}
this work

UHV
UHV

PH2= 6.3 mbar

TP-XPS
step anneal XPS
step anneal XPS

T≈330-390 K
T>460 K
T≥400 K

Ala/Ni{111}
[46] UHV TP-XPS onset at T≈320 K
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purities, present before dosing, behave differently among the three nickel facets

({110}, {111} [46], {100}). Upon dissociation of the alanine molecule on Ni{110}
and Ni{111} [46], at T>500 K, the nickel surface is covered with HxCxNx species

and atomic C. According Nicklin et al. (2015) [46] the C 1s XPS signal of atomic

carbon overlaps with the signal of HxCxNx. Ref.[46] suggested that only HxCxNx

are present upon decomposition of (S)-alanine on Ni{111}. At T≈730 K (Ni{111}
[46]) and T≈770-780 K (Ni{110}), the signals of the surface impurities and de-

composition species of the alanine in the C 1s and N 1s disappear almost together

(in the Ni{110} facet the atomic carbon is thermally less stable than the CN

species), leaving a nickel surface clean of impurities . At these temperatures, ni-

trogen species desorb from the surface as molecular N2, whereas C diffuses into

the bulk [46]. On Ni{100}, at T>500 K, the XPS signal upon dissociation of the

alanine molecule, is dominated with carbidic/surface carbon and atomic nitrogen.

These species are quite resistive to high temperatures, with both being present on

the Ni{100} even upon heating to∼ 1050 K, with their temperature trend suggest-

ing that the atomic nitrogen is thermally more stable than the carbidic/surface

carbon.

According to XPS, NEXAFS and DFT calculations methyl acetoacetate (MAA)

one of the typical reactants in the asymmetric hydrogenation of β-ketoesters,

chemisorbs on the Ni{100} surface in a bidentate enolate geometry, through the

two oxygen atoms. The chemisorbed layer starts decomposing at 300-330 K

and is completely dissociated at ∼ 350 K. This decomposition temperature is

within the temperature range of 273 K to 373 K typically used in enantioselec-

tive catalysis[16, 17]. A further study, which will exploit the interaction of the

molecule on the nickel surfaces under elevated solvent pressures, is essential, to

obtain full conclusions about the thermal stability of the molecule on different

nickel facets under modification and reaction conditions.

Table 7.2 shows the tilt angles of the chemical groups of methyl acetoacetate

(MAA), (S)-alanine (Ala), and (R,R)-tartaric acid (TA) with respect to the nickel

surface plane, determined in our and previous studies [46, 47, 175]. According

to DFT calculations the bidentate enolate form of MAA is tilted between 49.1◦

and 54.3◦ with respect to the Ni{100} surface plane, confirmed also by angle

dependent NEXAFS. XPS, angle dependent NEXAFS and DFT calculations per-

formed by Ontaneda et al. 2016 [175], suggested a similar tilted geometry of

the MAA molecule on the Ni{111} surface (48-63◦ with respect to the Ni{111}
surface plane). According to angle dependent NEXFAS, the C––O/COO- groups

of the alanine molecule are tilted by ∼ 48.5◦ and ∼ 42.1◦ with respect to the

surface plane of Ni{100} and Ni{110}, respectively. The tilt angle of (S)-alanine
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Table 7.2: The tilt angles of the chemical groups of methyl acetoacetate (MAA),
(S)-alanine (Ala), and (R,R)-tartaric acid (TA) with respect to the nickel surface
plane.

Angles determined
Values of the angles

(range)

MAA/Ni{100}
this work

6 C2-O1-surfaceα

6 C3-O2-surface
6 C2-C1-C3-surface

49.1-54.3◦

MAA/Ni{111}
[175]

6 C2-O1-surfaceα

6 C3-O2-surface
48-63◦

Ala/Ni{100}
this work C––O/COO--surface ∼ 48.5◦

Ala/Ni{110}
this work C––O/COO--surface ∼ 42.0-42.1◦

Ala/Ni{111}
[46, 47] COO--surface 34-64◦

TA/Ni{100}
TA/NiO/Ni{100}

this work C––O/COO--surface ∼ 42-69◦

αSee Ref.[170, 175] and chapter 6 for the numbering of the atoms.

on Ni{110} did not change significantly upon co-adsorption of (S)-alanine with

submonolayer H2O (α≈42.0◦). According to angle dependent NEXAFS in the O

K-edge region [46, 47], the tilt angle of the carboxylate group of (S)-alanine with

respect to the Ni{111} surface plane is between 34◦ and α=64◦, depending on

the chemical state of the molecule (anionic or zwitterionic) and the pressure in

the chamber (UHV or elevated hydrogen pressures). Angle dependent NEXAFS

of (R,R)-tartaric acid overlayers on Ni{100} and NiO/Ni{100}, suggested also

similar molecular orientation. Depending on the chemical state, adsorption con-

figuration of the TA molecule, and the substrate (Ni{100} or NiO/Ni{100}), the

C––O/COO- groups of the TA molecule are tilted by ∼ 42-69◦ with respect to the

surface plane of the nickel substrate. The tilted geometry of the MAA molecule

on Ni{100} and Ni{111} [175] could lead to asymmetric hydrogenation in chirally

modified nickel surface. If we assume that the dissociation of H2 takes place on

the Ni surface, it will be more likely for the hydrogen atoms to attach to the

molecule on the side that is tilted towards the surface. On an unmodified nickel

surface, which has a mirror symmetry, the tilt can be in both directions. The role
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of a modifier is, therefore, to break the mirror symmetry of the crystal and sta-

bilise only one of two possible tilt directions. The presence of elevated pressures

of H2 and H2O caused the formation of HTA- species in the TA overlayer on the

Ni{100} surface, while the presence of H2 also caused the formation of neutral and

(perhaps) zwitterionic alanine on the Ni{100} surface. Formation of zwitterionic

alanine was also observed upon exposing the saturated (0.25 ML) of alanine on

the Ni{111} surface, to elevated pressures of H2 [46, 47]. The presence of mul-

tilayer water caused also the formation of zwitterionic species of alanine on the

Ni{110} surface. Protonation of (S)-glutamic acid [40, 43, 44] and (R,R)-tartaric

acid [37, 38] adsorbed on the Ni{111} surface, was observed, also, under con-

ditions of optimum catalytic enantioselectivity for the production of R-product.

The HTA- species of the tartaric acid molecule, as well as the zwitterionic and

neutral species of alanine, contain protonated species which are dangled from the

surface and are free to form hydrogen bonds with the β-ketoester reactant, sta-

bilising a pro-chiral configuration of the latter during the hydrogenation reaction.

(S)-alanine and (R,R)-tartaric acid on Ni{100}, have similar molecular orienta-

tion with MAA on Ni{100} (as shown by the tilt angles in Tab. 7.2). The similar

orientation of the modifiers ((S)-alanine and (R,R)-tartaric acid) with respect to

the MAA reactant, could facilitate an interaction between the chiral modifier and

β-ketoester reactant on the Ni{100} surface, since the dangled chemical groups

of the two molecules will be in close distance to form hydrogen bonds. It is also

possible that the protonation of (R,R)-tartaric acid and (S)-alanine at elevated

pressures of hydrogen is an actual step in the hydrogenation reaction, with the

modifiers acting as a hydrogen source for the β-ketoesters reactant [47]. A simi-

lar mechanism is known to occur during the (reversible) reduction of pyruvate to

lactic acid, catalysed by lactate dehydrogenase, a natural enzyme [179].

Deposition of TA on oxidised Ni{100}, causes the generation of tartrate species

whose thermal stability resembles the thermal behaviour of the nickel (II) tartrate

complex, since they decomposed fully on NiO/Ni{100} substrate at T>650 K.

Their presence under modification conditions could assist the etching of the nickel

surface and induce the generation of chiral surfaces/arrangements.

The results of this study, highlight the need to approach more realistic re-

action conditions in order to get a full understanding of the mechanism behind

the chiral modification of nickel catalyst. The AP-XPS experiments of our study

show that elevated H2 and H2O pressures influence the chemical state, bond co-

ordination and thermal stability (S)-alanine and (R,R)-tartaric acid on Ni{100}
surface. The presence co-adsorbed water also change the chemical state of ala-

nine on the Ni{110} surface, whereas adsorption of tartaric on oxidised Ni{100}

171



Chapter 7. Conclusions

generated species with increased thermal stability that could cause etching of the

nickel surface. There are several ways to do surface chemistry while approaching

the enantioselective catalysis conditions:

1. Use of elevated hydrogen and solvent pressures (AP-XPS and ambient pressure-

X-ray absorption spectroscopy).

2. Co-adsorbing chiral modifiers, NaBr and β-ketoester reactants on nickel

single crystals, polycrystalline nickel and oxidised nickel crystals.

3. Study the interaction of the aforementioned molecules on the nickel surface,

in solution, following the procedure described in previous catalytic reac-

tion studies, in similar fashion to the studies in Ref.[38, 42, 44, 48] and

then expose the sample to elevated pressures of hydrogen. This will allow

a direct correlation between the chemical state, bond coordination, molecu-

lar orientation, modifier-reactant adsorption complex and thermal stability

of the molecules on different nickel facets with the conditions of optimum

enantioselectivity. It will also be also interesting to link the coverage of

the modifier upon modification and washing of the catalyst (prior to the

hydrogen) and the conditions of optimum enantioselectivity, which will give

us clear evidence of whether the reaction occurs in low concentration or

absence of modifier as it was suggested by Ref.[42, 48], and if chiral metal

arrangements generated from the modifier are the enantioselective sites in

the asymmetric hydrogenation of β-ketoesters.

4. Study the interaction of the aforementioned molecules on more complex

nickel systems such as Raney nickel, nickel powder and supported nickel

catalyst, bridging the complexity gap.

This study showed that the progress of surface science techniques can provide

endless possibilities to investigate catalytic systems under real reaction condi-

tions, which will lead to the development of catalysts with high selectivities and

activities.
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of X-ray circular dichroism of amino acids. Chemical Physics, 232(1-2):

49–62, 1998.

182



Bibliography

[108] L Yang, O Plashkevytch, O Vahtras, V Carravetta, and H Ågren. Near-edge
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