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Abstract 

Hypertension is a major risk factor for cardiovascular disease and there is substantial evidence 

that its reduction towards the normotensive state significantly reduces the risk of developing 

cardiovascular morbidity and mortality.  In addition to pharmacological treatment of 

hypertension, diet is also capable of counteracting the development of high blood pressure and 

reducing it from an elevated state.  Diets rich in plant foods have been found to attenuate blood 

pressure rises over time and a number of polyphenol-rich foods/beverages derived from plants 

have been shown to induce beneficial effects on endothelial function and blood pressure in 

human clinical trials.  Polyphenol rich foods include many fruits and vegetables, cocoa, tea, coffee 

and their derived extracts.  Less is known regarding other polyphenol-rich staple foods, such as 

whole grains which also contain relatively high levels of these bioactives.  Whole grain oats are a 

rich source of small phenolic compounds, such as ferulic acid and avenanthramides, in addition to 

their widely recognised fibre content, so may also be capable of beneficial changes to endothelial 

function and blood pressure.  This thesis tests this hypothesis and attempts to understand the 

actions of small phenolics and their metabolites from oats on the renin-angiotensin aldosterone 

system (RAAS), a major regulator of human blood pressure homeostasis.   

To investigate the actions of the most abundant oat phenolics on the RAAS, we utilised kidney 

juxtaglomerular and HUVEC cells to test whether they and their metabolites influenced renin 

expression and whether this was regulated via interactions with the ERK-CRB/ATF pathway.  Renin 

gene expression was significantly decreased by exposure to several polyphenols, including 

avenanthramides (AV-B) and phenolic acid (as trans-Ferulic Acid).  Expression was modulated by 

significant inhibition of CREB, ERK and ATF transcription factors, which occurred when treated 

with any of the polyphenols. However, although we found small changes, contrary to some 

published studies, we found no significant inhibition of ACE activity via this mechanism, nor any 

significant increases in total NO, nitrite or nitrate.  Therefore, we did not find conclusively that 

polyphenols reduce BP via the RAAS, however, we suggest that higher doses should be tested, as 

they may result in ACE inhibition. 

In an acute randomised controlled crossover intervention trial (RCT) oat intake (90.2 g oats 

containing 50 mg phenolic acid) improved % FMD, however, while the improvements may have 

been medically relevant, they were not significant and were, therefore, inconclusive.  Similarly, 

secondary outcomes including, notably, blood pressure and endothelium-independent 

vasodilation at early time points tended towards improvement; but the trials were not assessed 
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for power against secondary outcomes which, along with the lack of significance in the primary 

outcomes, prevents conclusions being drawn based on these results. 

Similar outcomes which may signify lower stress on the vascular systems of the subjects, but were 

not statistically significant, were found from a chronic trial, where volunteers consumed different 

levels of oat based avenanthramides and phenolic acids.  In particular, 24 hour ambulatory blood 

pressure and % FMD responses improved, as did night-time systolic blood pressure, which 

reduced by 5.1 mm Hg following a high phenolic oat intervention.  High phenolic oats 

interventions also led to decreases in daytime and 24 h SBP by 0.15 and 1.16 mm Hg respectively 

and increased endothelial microvascular reactivity. 

We conclude that there while there were indications of positive, medically relevant differences in 

vascular function, following both acute and chronic trials, none was statistically significant.  The 

most marked improvements were seen in endothelium-independent blood flow at 2 h post 

consumption in the acute trial and lowered 24 h ambulatory BP in the chronic trial.  The relatively 

short duration of the trials or likely too small, insufficiently powered sample sizes may have been 

responsible for the lack of conclusive statistical evidence. 
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Chapter:  1 Introduction 

1.1 OVERVIEW 

Cardiovascular disease (CVD) has a significant detrimental impact on human health, and is 

considered by the World Health Organisation to be the leading cause of mortality globally, (WHO, 

2018), leading to 17.7 million or 31% of all deaths annually [8-11].  The most recent published 

Global Burden of Disease (GBD) figures for 1990 to 2015 show that CVD is prevalent in world-

wide, and that, like the whole of Western Europe, the UK age-standardised death rate over that 

period was 91-220 per 1 x 105 of the population [8].  The figures also showed, however, a 

significant decline.  Townsend et al. (2016), also based on the same WHO data, but in which 

information for 41 of the 52 European countries derives from 2010 or thereafter, reported that 

CVD accounted for 45% and 34% of all mortality in Europe and the UK respectively in 2015 [12].  

Of world-wide mortality, an estimated 7.4 million deaths were due to coronary heart disease and 

6.7 million were due to stroke; and over three-quarters of CVD deaths take place in low- and 

middle-income countries [13].  Furthermore, of the 17 million premature deaths (under the age of 

70) due to non-communicable diseases in 2015, 82% are in low- and middle-income countries, 

and 37% are caused by CVD.  In Europe, 3.9 million people die of CVDs each year, high systolic 

blood pressure (SBP) is the greatest medical risk factor, while diet was the most easily modifiable 

risk factor [13].  

Cardiovascular diseases (CVD) are a major global health burden and create a substantial barrier to 

quality of life [8, 14].      A wide range of risk factors contribute to CVDs, including behavioural 

factors such as smoking, unhealthy diet, insufficient physical activity, and alcohol consumption, 

and physiological factors such as high BMI (body mass index), high total cholesterol, high blood 

pressure, and high fasting plasma glucose [13, 15, 16].  It is well established that one of the most 

important prognostic risk factors for cardiovascular disease risk is elevated blood pressure [17-

20].  In particular, clinical data suggest that the maintenance of a healthy blood pressure is 

strongly associated with a reduced risk of CVDs [18, 21, 22].  Furthermore, the early detection and 

treatment of high blood pressure is thought to be an effective strategy for the prevention of early 

major cardiovascular events [23-27].  Notably, meta-analysis of existing studies indicate a 

decrease in ischaemic heart disease mortality risk by 30 % and stroke death by 40 % for a 10 

mmHg reduction in systolic blood pressure (SBP) and/or 5 mmHg reduction in diastolic blood 

pressure (DBP) [28].  Indeed, the risk of developing CVD (relative risk [RR] 0·80, 95 % CI 0·77–
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0·83), coronary heart disease (0·83, 0·78–0·88) or heart failure (0·72, 0·67–0·78) are all 

significantly reduced for every 10 mm Hg reduction in SBP [18].  

People with CVD or who are at high risk of cardiovascular events from one or more risk factors, 

such as hypertension, diabetes and hyperlipidaemia, need early detection and management with 

both medical counselling and treatment [13, 15, 18, 22, 29, 30].  With respect to treatments, as 

well as pharmacological treatment, a number of clinical trials have suggested that hypertension 

may be modifiable through the improved diet, notably reducing high saturated fat and increasing 

the intake of plant foods [31-37].  A poor diet, rich in high-fat, processed foods and low in plant 

foods may impact directly on CVD risk via actions on a number of prognostic risk factors, such as 

blood pressure (BP), or indirectly by contributing to the development of obesity and/or diabetes 

which themselves lead to elevated BP [13, 38-41].  Polyphenols have been found to reduce CVD 

risk factors [42-52]; they are naturally occurring secondary metabolites found ubiquitously in 

plants.  Their functions include: aiding growth and reproduction, providing defence against 

pathogens and protecting against environmental stressors.  In addition, they contribute 

significantly to the sensory properties of fruits and vegetables and of products derived from them 

[53-55].  Polyphenol-rich foods decrease the incidence of coronary heart disease, inflammation 

and cancer [56-59]. 

It is well established among clinicians that early detection and control of high BP contributes to 

the prevention of major cardiovascular events [17, 24].  A London based study comparing 

electronic health records from 1997 to 2010 confirmed the importance of BP control, reporting 

that people with a systolic BP of 90-114 mm Hg presented the lowest risk of being diagnosed with 

cardiovascular diseases and that high SBP presents higher risks for intracerebral haemorrhage, 

angina, peripheral arterial disease and myocardial infarction in comparison to high DBP [20].  It 

has been asserted that a combination of medications directed towards reducing four risk factors 

associated with CVD (high BP, high low-density lipoprotein cholesterol, high serum homocysteine 

and platelets), may help to prevent 80 % of adults over the age of 55 developing the disease [60, 

61].  However, the regular intake of a multi-drug treatment to influence these risk factors is in 

itself associated with several underlying complications, particularly with respect to the liver [62].  

Consequently, people are increasingly recognising the potential benefits of diet as a substitute to, 

or a way of reducing the requirement for, complex drug treatments.   

This chapter reviews the aetiology of CVD and the potential benefits that diet, in particular foods 

rich in plant polyphenols, can play in the prevention of these diseases. 
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1.2 CARDIOVASCULAR DISEASE 

CVD usually involves blood vessels and/or the heart and encompasses coronary artery disease 

(CAD) such as myocardial infarction and angina, and heart failure, rheumatic heart disease, stroke, 

hypertensive heart disease, peripheral artery disease, cardiomyopathy, arrhythmia, valvular heart 

disease, congenital heart disease, aortic aneurysms, carditis, thromboembolic disease, and 

venous thrombosis, among others [13, 63, 64].  Below the age of 65 years, most deaths from CVD 

are considered preventable (Townsend et al., 2016), amounting to 80%, including strokes, 

according to WHO (2018) [12, 65, 66].  Many types of CVD are considered to be preventable with 

appropriate lifestyle changes [15, 67].  Much research evidence points to the strong likelihood 

that cardiovascular health is dependent to a large extent on the normal function of the 

vasculature that supplies blood to the heart and other vital organs.  It is thus of crucial importance 

to understand the pathogenesis of vascular conditions that lead to peripheral artery disease and 

strokes.  Both are associated with endothelial dysfunction and atherosclerosis.   

1.2.1 ENDOTHELIAL DYSFUNCTION AND ATHEROSCLEROSIS 

The vascular endothelium is not just a physical barrier; it performs a range of functions including 

the release of a variety of agents to regulate vessel function.  These include vasodilators ( i.e. 

nitric oxide (NO), prostacyclins), vasoconstrictors (i.e. endothelin-1, prostaglandins), endothelial 

and smooth muscle cell growth regulators (i.e. fibroblast growth factor, endothelin, transforming 

growth factor, platelet-derived growth factor, heparin and heparan sulphate) and factors 

influencing platelet and leukocyte interactions (i.e. ICAM, VCAM and integrins) [68-75].  Loss of 

homeostasis of the vasculature (endothelial dysfunction) may arise from any adverse vascular 

events, including: physiological changes including reduced bioavailability of vasodilators derived 

from the endothelium, especially NO; increased bioavailability of contracting factors derived from 

the endothelium; changes in endothelium permeability; amplified expression of adhesion 

molecules on the surface of endothelial cells; reduced antithrombotic factor secretion; increased 

pro-coagulation factor production; and reduced endothelial antioxidant and anti-inflammatory 

capacity [76, 77].  Endothelial dysfunction leads to atherosclerotic processes in the blood vessel 

walls [78-81].  Atherosclerosis, the development of atheroma in arteries, also known as 

arteriosclerotic vascular disease, is a condition in which deposits of fatty material and plaques 

build up inside arteries [82, 83].  Plaques are composed of cholesterol, fat, calcium and other 

substances found circulating in the blood [84].  As the plaque increases in size, it becomes less 

pliable and can severely narrow an artery, thus limiting the flow of oxygen-rich blood to vital 

organs [83, 85].  In more advanced plaques, intracellular micro-calcifications also form within 

vascular smooth muscle cells of the surrounding muscular layer, specifically in the muscle cells 
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adjacent to the atheroma and as cells die, this leads to extracellular calcium deposits between the 

muscular wall and outer portion of the atheromatous plaques [82, 86, 87].  Although the disease 

process tends to be slowly progressive over time in medium-sized arteries, it usually remains 

asymptomatic until an atheroma ruptures, causing cardiac abnormalities such as acute myocardial 

infarction, unstable angina and ultimately sudden cardiac death [77, 82, 83, 87]. 

One of the processes thought to initiate the progression of atherosclerosis (Figure 1.1) is 

inflammation, which may lead to the oxidation of low-density lipoproteins (LDL) and their 

ingestion by monocytes [77, 88, 89].  These cholesterol-laden monocytes, promoted by recruiting 

factors such as VCAM-1, enter the artery wall, becoming "foam cells" which eventually rupture, 

depositing a greater amount of oxidised cholesterol into the artery wall.  This triggers more 

proliferation of white blood cells and further inflammation, thus perpetuating the cycle [83, 89]. 

 

 

 

Figure 1.1  Diagrammatic representation of the typical progression of atherosclerosis in an artery 

Reproduced from Widmer et al., 2016 [90].   

 

Contributing risk factors for the progression of atherosclerosis include adherence to a ‘western 

diet’, characterised by the consumption of processed food and high-fat content foodstuffs [41].  A 

sedentary lifestyle also contributes, as do diabetes, obesity, smoking and excessive alcohol 

consumption [38, 77, 86, 91, 92] all of which lead to high BP, and high levels of circulating 

cholesterol and reactive oxygen species (ROS) [93, 94].  Atherosclerosis can be prevented and 

improved in a number of ways, notably by increasing the level of exercise, improving diet, the 

cessation of smoking and by limiting alcohol intake, it is also important to take appropriate 

measures to reduce the levels of associated health-related risks such as high blood lipid levels, 

diabetes and/or high BP [18, 25, 95-97].   
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1.2.2 RISK FACTORS ASSOCIATED WITH ENDOTHELIAL DYSFUNCTION 

It is necessary to understand the mechanisms of action of cholesterol, BP, Renin-Angiotensin-

Aldosterone system (RAAS), nitric oxide (NO) and nicotinamide adenine dinucleotide phosphate 

(NADPH) oxidase, on the endothelium, all of which are linked to CVD risk factors. 

1.2.2.1 CHOLESTEROL 

Cholesterol, an isoprenoid lipid, is involved in two major biological processes.  It provides 

structural support to cell membranes and myelin and it also acts as precursor from which 

oxysterols, steroid hormones, vitamin D3 and bile acids are derived [98].  Cholesterol is 

synthesised de novo by liver and intestinal epithelial cells or is derived from dietary lipids [98, 99].  

The amount of cholesterol absorbed from the diet is approximately 400 mg/day and from the bile 

it is approximately 1 g/day [99].  Fifty percent of dietary cholesterol is absorbed and the rest 

excreted.  Both metabolic as well as genetic factors regulate cholesterol absorption in humans 

[99, 100]. 

Synthesis of cholesterol takes place via the isoprenoid biosynthetic pathway [101].  In the initial 

reactions of the pathway, HMG-CoA is formed from acetyl-CoA in the cytosol of liver cells.  After 

some enzymatic reactions, HMG-CoA is converted into isopentenyl pyrophosphate, the basic 

isoprenoid carbon building block of cholesterol.  The reaction is catalysed by HMG-CoA reductase 

[102].  Isopentenyl pyrophosphate is further reduced to squalene (composed of 6 isoprene units).  

The final stage of cholesterol biosynthesis, where squalene cyclisation takes place to form C30 

lanosterol, requires molecular oxygen.  Generation of C27 cholesterol from lanosterol requires at 

least 8 separate enzyme reactions [101].  Some enzymes involved in the cholesterol biosynthesis 

such as HMG-CoA reductase are present in the endoplasmic reticulum, whereas others are 

localised in the cytosol [99]. 

Serum lipoproteins transport cholesterol intra- as well as extra-vascularly.  Lipoproteins generated 

by the liver and intestine transport cholesterol between the intestine and the liver, and between 

the liver and peripheral cells [103].  The general structure of mature lipoproteins is in the form of 

emulsion particles which have a core of neutral lipids, such as triacylglycerol (TAG), cholesteryl 

ester (CE) and cholesterol; stability of the core is maintained by outer layer of phospholipids, 

cholesterol and apolipoproteins.  Apolipoprotein B100 (ApoB100) is the main protein component 

of LDL.  LDL receptors on the cells recognise and internalise ApoB100-containing lipoproteins 

incorporating TAG and cholesterol.  Hence ApoB100-containing LDL particles play an important 

role in atherogenesis.  High-density lipoproteins (HDL) are key mediators in reverse cholesterol 

transport (RCT).  In RCT, extrahepatic cholesterol is transported to the liver and excreted from the 
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body in faeces, therefore, HDL particles help prevent atherosclerosis.  ApoA-I, a constituent 

protein of human HDL, has important roles in processes including discoidal HDL particle 

generation, remodelling of HDL by lecithin cholesterol acyltransferase (LCAT) and interaction with 

scavenger receptor class B type 1 (SR-BI), all of which contribute to cholesterol delivery in RCT 

[104].  Cholesterol cannot be catabolised by cells in oxidative processes.  Hence disposal of excess 

cholesterol involves transportation to the liver and conversion into excretable bile acids that are 

eliminated from the intestine [98, 104, 105].  Cholesterol homeostasis is achieved by various 

feedback mechanisms.  Increased cholesterol levels modulate HMG-CoA reductase and suppress 

cholesterol biosynthesis.  High cholesterol levels also affect expression of LDL receptor and lower 

cholesterol uptake.  Cholesterol levels modulate activity of cholesterol 7 alpha-hydroxylase which 

in turn modulates cholesterol catabolism [105]. 

High levels of circulating blood cholesterol are significantly correlated with people who developed 

CVD, mainly due to the contribution of LDL particles to atherosclerosis [85].  Atherosclerosis is 

often associated with elevated levels of oxidised LDL molecules, particularly small dense LDLs [93, 

94, 106].  An abnormal lipid profile is characterised by high LDL-C and triglycerides and low HDL-C 

concentrations in plasma [106].  HDL molecules are believed to be an important mechanism for 

removal of cholesterol from atheromas, and elevated levels of HDL are associated with reduced 

rates of atheroma progression, and, in some cases, regression [86].  The long-term impacts of 

serum cholesterol levels on mortality associated with coronary heart disease (CHD) and CVD were 

studied in healthy younger males; CHD increased 2.15 to 3.63 times in men with greater than or 

equal to 240 mg/dL cholesterol compared to standard (< 200 mg/dL); levels; corresponding CVD 

mortality risk increased 2.10 to 2.87 times [107].  A life expectancy gain of 3.8 to 8.7 years was 

estimated in males with normal cholesterol levels.  HDL cholesterol (HDL-C) levels were inversely 

associated with mortality in the Framingham Heart Study and follow-up studies: the relative risk 

of death was 3.6 for CVD and 4.1 for CHD in men when HDL-C levels were > 54 mg/dL compared 

to < 35 mg/dL.  In women, relative risk of death was 1.6 for CVD and 3.1 for CHD when HDL-C 

levels > 69 mg/dL compared to < 45 mg/dL) [108].  These figures represent a two percent 

reduction in atherosclerosis risk for every 1% reduction in LDL-C level [109].   

The Multiple Risk Factor Intervention Trial (MRFIT) showed that cholesterol levels in diet are 

significantly and directly linked to diastolic blood pressure (DBP) as well as (SBP), while the 

Western Electric Study showed that average annual increases in BP were directly and significantly 

associated with dietary cholesterol levels [100].  The INTERMAP study showed that cholesterol 

intake levels were in direct proportion to SBP, but not correlated with DBP.  SBP differences of 

0.9 mm Hg between baseline and 2 standard deviation higher cholesterol consumption 
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(131.0 mg/1,000 kcal) were estimated across all participants, with, however, differences of 1.1 

mm Hg in participants who did not have hypertension.  Cholesterol levels in food varies between 

populations and the association of dietary cholesterol and BP is not yet clearly established across 

different communities with diverse diets, ethnicities and genders [100].  Of note, in relation to 

this study, dietary polyphenols have been shown to reduce TAG, LDL-C and total cholesterol [48, 

110] and flavonoids have been inversely correlated with LDL-C and total cholesterol [111]. 

1.2.2.2 BP  

BP pertains to the pressure within arteries, as the result of blood forced into circulation 

throughout the body.  SBP is the maximum pressure during ventricular contraction whereas DBP 

is the minimum pressure preceding the subsequent contraction [112], they are generally 

expressed as SBP/DBP mm Hg.  A major risk factor for CVD is long-term high BP or hypertension 

[113, 114], which is classified as either primary, resulting from non-specific genetics and lifestyle 

factors, or secondary, resulting from particular causes, such as the development of 

atherosclerosis, chronic kidney disease or endocrine disorders [115].  High BP (hypertension) was 

previously defined as persistent resting BPs of 140/90 mm Hg or above [115, 116].   

However, after extensive consultation, these guidelines have been revised [22] and four new BP 

categories have been introduced. 

1. Normal BP: SBP < 120 and DBP < 80 mm Hg  

2. Elevated BP: SBP 120-129 and DBP < 80 mm Hg  

3. Stage 1 Hypertension: SBP 130-139 or DBP 80-89 mm Hg  

4. Stage 2 Hypertension: SBP ≥ 140 or DBP ≥ 90 mm Hg  

The new US guidelines, which have lower thresholds than NICE recommendations (2016), mean 

that there will be a substantially higher diagnosis of high BP in the USA, 46% of adults compared 

to 32% in the UK.  However, for most US adults meeting the new definition of hypertension, non-

pharmacological treatment is recommended.  Since most people between 130-139 mm Hg SBP or 

80-89 mm Hg DBP will not require medical treatment; there will only be a small increase in the 

percentage of adults for whom antihypertensive medication is recommended, albeit also in 

conjunction with lifestyle modifications [22].   

Hypertension involves the activation of the sympathetic nervous system and the RAAS [117].  

Almost 30% of UK adults have hypertension, and BP patterns inevitably change with age [118].  

Hypertension related diseases cost the NHS approximately £2 billion per year, with extended 

raised BP being linked to a higher risk of renal failure, CVD and cardiovascular related mortality.  
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Longitudinal data from the Framingham Heart Study showed that SBP/DBP at 130–139/85–89 mm 

Hg, more than doubles the risk of CVD, when compared to a normal BP range [22, 119].  By 

reducing BP by just 10 mm Hg systolic or 5 mm Hg diastolic, the risk of stroke occurrence is 

reduced by 41%, and CHD by 22 % [21].  Beneficial dietary interventions include reducing sodium 

intake [120], a Mediterranean diet [121], and the inclusion of dietary proteins from plants [122], 

low fat foods [123], fish oils [124], monounsaturated fats [125], potassium derived from fruit and 

vegetables [126] and polyphenols [127].   

1.2.2.3 RENIN–ANGIOTENSIN–ALDOSTERONE SYSTEM 

 The RAAS is a hormonal system that regulates the concentration of plasma sodium, and is critical 

in arterial BP homeostasis (Figure 1.2) [128-131].  The RAAS process functions in a cascade, 

leading to the generation of angiotensin II (Ang II), which is a major vascular effector [129].  

Therefore, the RAAS is important for the study of hypertension and associated CVD [128, 132].  

The RAAS precursor molecule is Angiotensinogen, a protein produced mainly by the liver, 

angiotensin I (Ang I) is formed by cleavage of the first 10 amino acid peptides from 

Angiotensinogen by the aspartyl protease renin [133, 134].   

Renin is secreted from juxtaglomerular cells in the kidney (Figure 1.3), which sense changes in 

renal perfusion pressure through signals produced by stretch receptors in the vascular walls, it is 

the rate-limiting step in the activation of the RAAS [128, 133, 134].  The juxtaglomerular cells also 

release renin in response to signals from the macula densa located in the distal nephron, as a 

result of changes in blood flow [135].  The juxtaglomerular apparatus in the renal cortex 

represents a major structural component of the RAAS and is one of the most important regulatory 

sites of renal salt/water conservation and BP maintenance [136].  Baroreceptors in the kidneys 

are able to detect reductions in BP, sodium ion (Na+) levels or blood volume leading to an increase 

in sympathetic tone and the release of renin [137].  A schematic illustration of the juxtaglomerular 

apparatus (JGA) is shown in Figure 1.3. 
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Figure 1.2  Diagram depicting the renin-angiotensin-aldosterone system (RAAS).  

Baroreceptors in the kidneys are able to detect reductions in blood pressure (BP), sodium (Na+) 
levels or blood volume leading to an increase in sympathetic tone and the release of renin. Plasma 
renin converts angiotensinogen, a precursor protein made in the liver, into angiotensin I. This is 
then converted by angiotensin-converting enzyme (ACE), particularly found in the lungs, into 
angiotensin II (Ang II), a potent vasoconstrictive peptide. Ang II is able to exert effects in various 
organs and tissues throughout the body in order to increase blood pressure. In the kidneys, Ang II 
decreases the glomerular filtration rate, whilst in the adrenal gland, secretion of aldosterone is 
stimulated in order to retain Na+ and fluids. Ang II also increases cardiac output, vasoconstriction 
in blood vessels and stimulates the hypothalamus to release antidiuretic hormone (ADH) from the 
posterior pituitary gland, which allows greater reabsorption of water in the kidneys. 
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Figure 1.3  Microscopic Structure of the Juxtaglomerular Apparatus (JGA) 

Upper image: high-power photomicrograph of the histology of the human renal glomerulus, stained 
with haematoxylin & eosin (H&E).  Juxtaglomerular cells can be identified by their location and their 
histological appearance – they are large cells with pale, enlarged nuclei.  (Adapted from Yale.edu 
teaching website: http://medcell.med.yale.edu/histology/urinary_system_lab/juxtaglomerular_... 
apparatus.php [Accessed – 1/6/2016]. 
Lower image: diagrammatic representation of the location of the juxtaglomerular cells in the wall of 
the afferent renal arteriole, which allows secretion of renin into the blood and renal lymph.  Stretch 
receptors in the afferent arteriole and sympathetic nerve ends in the region of the JGA cells; these, 
and the renal tubular fluid reaching the macula densa, orchestrate the regulation of renin secretion.  
(Adapted from Davis, 1973). 

http://medcell.med.yale.edu/histology/urinary_system_lab/juxtaglomerular_...%20apparatus.php
http://medcell.med.yale.edu/histology/urinary_system_lab/juxtaglomerular_...%20apparatus.php
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Angiotensin converting enzyme (ACE), mainly found in the lungs, cleaves Ang I to a smaller, highly 

active, 8 amino acid peptide Ang II, which is a potent vasoconstrictor, causing the narrowing of 

blood vessels and a rise in BP, as well as stimulating the secretion of aldosterone from the adrenal 

cortex [134, 136, 138, 139].  Ang II has actions on various organs and tissues throughout the body, 

including the kidneys, where Ang II decreases the glomerular filtration rate [131].  It also increases 

cardiac output, vasoconstriction and stimulates the hypothalamus to release antidiuretic 

hormone (ADH), also termed arginine vasopressin, from the posterior pituitary gland, which leads 

to greater reabsorption of water by the kidneys [140].  ADH acts on the renal collecting ducts by 

stimulating Vasopressin V2 receptors, which increases water permeability through a Cyclic 

Adenosine Monophosphate (cAMP)-dependent mechanism.  As a consequence, volume of blood 

is increased together with cardiac output, in addition, aldosterone acts on the renal tubules, 

resulting in an increased reabsorption of Na+ and H2O into the blood, while maintaining 

electrolyte balance by excreting K+ [141].  The overall result is an increase in extracellular fluid 

volume within the body, and hence increased BP [140, 142, 143].  Thus, any abnormality or 

unwarranted increase in RAAS function results in hypertensive vasoconstriction and reabsorption 

of sodium ions.   

ACE inhibitors and angiotensin II receptor blockers are effective at reducing BP in hypertensive 

individuals, even where there is no systemic RAAS activation [144-146].  Ang II localised within the 

kidneys is regulated independently from levels in the systemic RAAS and concentrations within 

the kidneys are higher than in blood plasma and can reach even greater levels in experimental 

hypertension models [147].  Systemic and kidney Ang I receptors contribute separately to 

baseline BP [148], furthermore, the presence of renal Ang I receptors determines long-term 

sensitivity to Ang II-induced hypertension [149].  Absence of renal ACE has been demonstrated to 

provide protection against hypertension, irrespective of plasma Ang II levels.  In hypertension 

induced by Ang II, the shifting of the renal pressure–natriuresis relationship, whereby higher renal 

perfusion pressure leads to lower sodium reabsorption and higher sodium excretion, is largely 

dependent on renal ACE, since Ang II is produced locally [150].   

1.2.2.4 NITRIC OXIDE 

Vascular endothelial cells secrete numerous chemicals including NO that affect the regulation of 

vascular homeostasis.  The role of NO is pivotal in the regulation of vascular homeostasis [6], and 

is definable as the molecule’s continuous basal low level release into the endothelium through 

relaxation of vascular smooth muscle cells mediated by cyclic guanosine monophosphate (cGMP), 
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leading to vasorelaxation [151-154].  NO is, therefore, important as a BP and blood flow regulator 

[155]. 

 NO, previously called endothelium-derived relaxing factor (EDRF) until its identity was 

unequivocally established in 1987 by Palmer [156, 157], is one such crucial chemical, and was 

initially described as a vasodilator derived from the endothelium [158].  This proposal was based 

on the observation that superoxide dismutase (SOD), which removes O2
−, protected EDRF from 

rapid inactivation and that haemoglobin selectively inhibited EDRF [159], as well as on a study of 

the transient relaxations of endothelium-denuded rings of rabbit aorta to ‘acidified' inorganic 

nitrite (NO2
−) solutions.  Despite the technical difficulties related to the low solubility of NO in 

water, its reactivity with oxygen and its instability, it was observed that EDRF and NO resembled 

one another in several pharmacological tests, including their half-lives, stabilisation by SOD and 

inhibition by haemoglobin [157].   

NO synthesis from the amino acid L-arginine is through the L-arginine endothelial nitric oxide 

synthase (NOS) pathway by endothelial nitric oxide synthase (eNOS) [152, 160-163].  NO can also 

be generated in vivo by the nitrate-nitrite-nitric oxide pathway [164-166].  NO reacts with the 

haem group on an enzyme called guanylyl cyclase.  On activation, this enzyme catalyses the 

production of cGMP and finally cGMP activates protein kinase, an enzyme that phosphorylates 

other proteins to alter their activity, leading to relaxation [167-169].  High concentrations of NO 

also activate K-type Ca channels in the smooth muscle membrane, which cause hyperpolarisation 

and, therefore, vasodilation.  An increase in cGMP in vascular smooth muscle cells derived from 

an influx of NO leads to dilation of the blood vessels [170].  NO is a free radical gas and its half-life 

in vivo is a few seconds [42]. 

Endothelial cells perform regulatory functions including regulation of vascular tone (Figure 1.4) 

and structure, and have anticoagulant, antiplatelet, and fibrinolytic properties [86].  NO, ROS and 

bradykinin, are vasodilatory molecules [171].  ROS prevent platelet aggregation, and together 

with bradykinin, promote the release of NO [171].  NO moderates many of the responses of the 

vasculature (Figure 1.5) and can overturn the effects of vasoconstrictors originating from the 

endothelium, as well as inhibiting oxidation of LDL leading to lowering of CVD [172].  Endothelial 

cells produce several vasoactive factors affected by NO, among them prostacyclin (PGI2) [70].  

However, they also produce substances which act as vasoconstrictors, such as endothelin and Ang 

II (which acts as a pro-oxidant, stimulating the production of endothelin).  Both chemicals 

encourage the proliferation of smooth muscle cells [173]. 
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Figure 1.4  Vasodilation and its role in increasing blood flow and reducing blood pressure.  

Blue and green dots represent carbon dioxide and oxygen concentrations, which act on arteriolar 
smooth muscle cells.  Black and blue arrows show O2 and CO2 exchange.  (After Stanfield et al., 
2011). 

Figure 1.5  Nitric Oxide signaling in the vascular endothelium. 

cGMP - cyclic guanosine monophosphate; eNOS - Endothelial Nitric Oxide Synthase; GTP - guanosine 
triphosphate; NO – Nitric Oxide; sGC - soluble guanylate cyclase.  Reproduced from Evgenov et al., 2006 
[4]. 
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The breakdown of optimal NO homeostasis, i.e. steady-state NO levels, is one of the most critical 

features underlying endothelium dysfunction [174] and may arise from dysfunction in eNOS 

leading to reduction in NO bioavailability, or in the availability of its substrate (i.e.  L-arginine), its 

cofactors (i.e. tetrahydrobiopterin, flavin adenine dinucleotide, flavin mononucleotide and 

NADPH) or eNOS inhibitors (i.e.  L-NAME) [70, 74, 75]. 

1.2.2.5 NICOTINAMIDE ADENINE DINUCLEOTIDE PHOSPHATE OXIDASE 

The membrane bound complex NADPH oxidase comprises a GTPase and different phox subunits.  

There are a number of ways NADPH oxidase can be expressed in the cardiovascular system and it 

is possible to activate subunits of the enzyme in CVD [175].  Moderate NADPH oxidase activity is 

an important part of angiogenesis and immunity, but an excess results in excess ROS causing 

endothelial dysfunction [176-178].  NADPH’s primary function is superoxide and/or hydrogen 

peroxide (H2O2) generation.  NADPH oxidase catalyses the reduction of O2 to generate a 

superoxide anion (O2
−) regarded as a major source of ROS.  The interaction of O2

− with other 

molecules to produce secondary ROS may be direct or may be catalysed by an enzyme; in either 

case the consequence of the reduction of O2
− is that H2O2 is formed and then converted to 

hydroxyl (HO).  An alternative O2
− reaction is with NO, leading to the formation of peroxynitrite 

(ONOO−), and then to the uncoupling of eNOS followed by reduced NO production, superoxide 

generation and increased oxidative stress [179].  Figure 1.6 illustrates the role of NADPH oxidase 

activity and NO bioavailability in the rise in oxidative stress which is known to be a factor in CVD. 
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1.3 POLYPHENOLS 

Polyphenols are secondary metabolites used by plants in defence against pathogens and 

ultraviolet radiation [57, 180].  There are over 8,000 structural variants of polyphenols, which are 

classified by biological function, origins, and chemical structure into four broad subgroups: 

flavonoids, lignins, phenolic acids and stilbenes, which are then, in some cases, further 

subdivided.  Of plant polyphenols, flavonoids are the most abundant and widely distributed, with 

fruits such as apples, berries and grapes, and olives, dark chocolate, red wine and tea constituting 

the main human dietary sources [55, 181-183].   

Figure 1.6  The role of NADPH oxidase activity and NO bioavailability in increasing oxidative stress.  

NADPH oxidase, the main generator of superoxide (O2
-), and eNOS expression are major factors 

upregulated in the pathophysiology of vascular disease.  Hydrogen peroxide (H2O2) is produced with the 
dismutation of O2

-, mediated by superoxide dismutase (SOD) and can lead to increased eNOS expression. 
O2

- generated through NADPH oxidase activity and NO produced through increased eNOS activity react to 
form ONOO−. ONOO− oxidises tetrahydrobiopterin (BH4), an essential cofactor of eNOS, causing uncoupling 
of eNOS.  As a result, functional NO-producing eNOS is converted to a dysfunctional O2

- generating enzyme 
which increases oxidative stress in the vascular system.  
Adapted from Förstermann and Sessa, 2011 [6]. 
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1.3.1 STRUCTURE 

Polyphenols, also referred to as polyhydroxyphenols, are a specific structural group of naturally 

occurring organic chemicals comprised of multiple phenol units.  Polyphenols are mostly natural 

macromolecular compounds; however, semi- and synthetic-polyphenols are now common [184].  

One important subgroup of polyphenols, phenolic acids, is further classified into hydroxybenzoic 

acids and hydroxycinnamic acids, which include gallic, p-coumaric, caffeic, ferulic and sinapinic 

acids [185].  Flavonoids, another important subgroup, include anthoxanthins (flavones and 

flavonols), flavanones, flavanonols, flavans, anthocyanidins and isoflavonoids (Figure 1.7) [2, 186, 

187].  The resveratrol in the stilbenoid subgroup is under active scientific investigation for its anti-

carcinogenic properties [188]. 

 

1.3.2 DIETARY SOURCES 

Polyphenols are abundantly available in normal, routine dietary sources including fruits and 

beverages such as coffee, tea and red wine [180, 183].  Some types of polyphenols, such as 

quercetin, are available in all plant sources, for example: fruits, vegetables (including legumes) 

Figure 1.7  Classification of Polyphenols  

Showing the four main groups of polyphenols and their chemical structures, as well as the subgroups 
of phenolic acids and flavonoids.  (Adapted from Spencer et al., 2008) [2].  
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and cereals, as well as derived products such as tea.  Other polyphenols, such as flavanones and 

isoflavones, are specific to certain citrus fruits, soya, and apples [189-192].   

The consumption of polyphenols is dependent on diet and so varies between individuals and 

populations.  An extensive European Prospective Investigation into Cancer and Nutrition (EPIC) 

study of dietary polyphenol intake in the European diet of more than 36,000 adults was carried 

out [193].  The mean total intake of polyphenols in a general population was highest in Aarhus 

(Denmark) at 1,786 mg/day in men and 1,626 mg/day in women and the lowest in Greece at 744 

mg/day in men and 584 mg/day in women.  The highest intake of total polyphenols overall was 

observed in the UK health-conscious group of subjects (1521 mg/day), followed by non-

Mediterranean then Mediterranean countries.  The biggest proportion of polyphenols consumed 

was phenolic acids (52.5 - 56.8%), except in men from Mediterranean countries and in the UK 

health-conscious group where they it was flavonoids (49 - 61.7 %).  Coffee, tea, fruits and wine 

were the most important food sources of total polyphenols.  A total of 437 different individual 

polyphenols were consumed, including consumed at a level of ≥ 1 mg/day.  The most abundant 

ones were 5-caffeoylquinic acid, proanthocyanidin polymers, and 4-caffeoylquinic acid [193].   

World-wide studies on dietary intake of polyphenols and total polyphenol content, and its 

variation between genders, have shown high levels of heterogeneity between countries; 

especially among flavonoids and phenolic acids [191].  Within Europe, apples, strawberries and 

potatoes are the main fruit and vegetable sources of polyphenols e.g. in the French diet [189, 

193] while fruits, along with coffee, are the primary dietary source of polyphenols in the Spanish 

population, additional consumption in olives and olive oil differentiates this and other 

Mediterranean populations from others [194].  Of note, in this respect, the traditionally 

polyphenol-rich diet in Greece, resulting from vegetables (particularly wild plants), fruits, nuts, 

cereals, and moderate amounts of wine, also includes olives and olive oil [192].  In Portugal, the 

total polyphenol intake from fresh fruits has been estimated to be 783.9 ± 31.7 mg/day of gallic 

acid equivalents (GAE), of which 14% are from berries, particularly strawberries [190].  Studies of 

northern European diets, such as the Finnish, have shown that berries, coffee and cereals are the 

leading polyphenol sources [195].  The average intake of polyphenols in Poland has been 

estimated as 1,756.5 ± 695.8 mg/day, with flavonoids (897 mg/day) and phenolic acids (800 

mg/day) the major polyphenols consumed [196].  Flavanols and hydroxycinnamic acids are the 

primary dietary polyphenols in the United Kingdom [193, 197].  Outside of Europe, there is 

evidence from the United States, that the average dietary polyphenol intake is about 1,000 

mg/day, and from Brazil, where it is 1,198.6 mg/day [198].  In Japan it is 1,492 ± 665 mg/day [199]  

and in Korea, 318.0 mg/day, mostly from flavonoids [200]. 
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1.3.3 ABSORPTION, DISTRIBUTION, METABOLISM AND EXCRETION (ADME) 

It has been shown that dietary polyphenols beneficially affect a range of chronic diseases, 

including CVD, but these compounds’ biological properties in vivo will depend on their degree of 

biotransformation and conjugation as they are absorbed from the gastrointestinal (GI) tract, then 

in the liver and finally in cells [201, 202].  Understanding polyphenols’ bioavailability and 

bioaccessibility is a key prerequisite for determining which phenolic metabolites may mediate 

health benefits [203].  Natural polyphenols are extensively metabolised following oral ingestion.  

Dietary polyphenols in the upper GI tract act as substrates for several enzymes and are 

extensively metabolised by glucosidase enzymes, phase I enzymes (hydrolysing and oxidising), 

such as cytochrome P450, and phase II enzymes (conjugating and detoxifying) which are found in 

the small intestine and liver [44, 204].  Further transformation in the colon has been reported, 

with enzymes in the gut microflora breaking flavonoids down to simple phenolic acids [205, 206].  

Colonic microbiota are responsible for bio-converting bioactive compounds into metabolites of 

lower molecular weight which, on absorption, are likely to be the cause of the health benefits 

resulting from food rich in polyphenols [207, 208].  Metabolites that have entered the circulation 

are available for transport throughout the body and can, therefore, act on a variety of tissues 

including the endothelium.   

a) Upper GI tract  

Polyphenol structure may be modified at a number of points in the GI tract as the following 

examples show.  In the upper GI tract, saliva causes degalloylation of flavanol gallate esters 

including epigallocatechin gallate, but has little effect on the stability of green tea catechins [209, 

210].  The quercetin rutinoside, rutin, is hydrolysed by cell-free extracts of human salivary cultures 

[211] and by streptococci isolated from the mouths of normal individuals, but quercetin-3-

rhamnoside (quercitrin) is not susceptible to hydrolysis and this suggests that only rutin-

glycosidase-elaborating organisms occur in saliva [212, 213].  An interaction has been shown 

between flavanols and procyanidins with salivary proteins and this indicates that the affinity of 

(+)-catechin for proline-rich proteins is higher than that of than (-)-epicatechin and that C(4)-C(8) 

linked procyanidin dimers bind more strongly than their C(4)-C(6) counterparts [214].  This 

polyphenol-protein binding with salivary proteins of high molecular weight, bacterial cells and 

mucous materials may explain the decrease in quercetin mutagenicity seen after incubation with 

saliva [215].  Many factors influence the extent and rate of the small intestine’s absorption of 

ingested compounds [216] including physiochemical factors such as molecular size, lipophilicity, 

solubility, pKa, and biological factors such as gastric and intestinal transit time, lumen pH, 

membrane permeability and first pass metabolism [217].  For some polyphenols, significant non-
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enzymatic hydrolysis may occur at low gastric pH.  Aglycone secoiridoids, for example, which 

occur in extra virgin olive oil, are subject to time-dependent hydrolysis in the acidic gastric 

environment which increases the longer they stay in the GI tract [218].  However, under normal 

pH conditions (pH 2.0) and normal physiological time frames (up to four hours) some remain 

intact and enter the small intestine without having been hydrolysed [218].  Procyanidin oligomers 

ranging from a dimer to decamer (isolated from Cocoa, Theobroma cacao), have shown instability 

under low pH similar to that present in the stomach’s gastric juice [219].  Secoiridoid absorption 

from olive oil, as with flavanols and procyanidins after ingestion of chocolate or cocoa, are likely 

to be affected by earlier events in the gastric lumen within the residence time.   

Glycosides which are polyphenol derivatives are relatively polar molecules and unlikely to diffuse 

passively across the membranes of the small intestinal brush border.  It has, however, been 

suggested in a number of studies that -glucosidases affect flavonoid glycosides before they are 

absorbed in the jejunum and ileum and removal of the glycosidic moiety is generally believed 

necessary before the flavonoid can be absorbed [220-226].  Most polyphenol glycosides, and 

sometimes aglycones, in foods derived from plants, are extensively conjugated and metabolised 

during absorption in the small intestine and then again in the liver.  There is particularly strong 

evidence for extensive phase I de-glycosylation and phase II metabolism by UDP-

glucuronosyltransferases, sulphotransferases and catechol-O-methyltransferases to yield 

glucuronides, sulphates and O-methylated derivatives [44, 204].  Indeed, in the small intestine’s 

jejunum and ileum there is efficient glucuronidation of nearly all polyphenols to a greater or 

lesser extent by UDP-glucuronosyltransferase enzymes.  Olive oil simple phenolics hydroxytyrosol 

and tyrosol are also extensively conjugated to glucuronides in both the jejunum and ileum tracts 

of the small intestine [218].  Hydroxytyrosol, as a catechol, is also subject to extensive 

O-methylation by the action of catechol-O-methyltransferase.  Unabsorbed polyphenols will reach 

the large intestine and be further metabolised to simple phenolic acids by enzymes of the gut 

microflora. 

b) Lower GI tract 

Studies have suggested relatively small amounts of absorption of dietary polyphenols in the small 

intestine, to the extent of just 10% to 20%, which implies that most ingested polyphenols, 

including those absorbed and conjugated in the enterocytes and/or the liver before they are 

returned directly or through the bile, progress as far as the large intestine and the colonic 

microflora [227-230].  With some 1012 micro-organisms/cm3, the colon has huge catalytic and 

hydrolytic potential, and the enzymatic degradation of flavonoids leads to the creation of a huge 



20 

array of new metabolites.  Bacterial enzymes, for example, can catalyse a number of reactions 

including hydrolysis, dehydroxylation, demethylation, ring cleavage and decarboxylation as well as 

rapid de-conjugation [231].  In the large intestine bacteria catalyse the breakdown of the 

flavonoid backbone itself to simpler molecules such as phenolic acids.  Specific metabolites have 

been found in urine after a range of phenolics have been ingested.  For example, hippuric acid, 

the glycine conjugate of benzoic acid, is mainly derived from plant phenolics and aromatic amino 

acids through intestinal bacteria action and hippuric acid levels would, therefore, be expected to 

rise in the urine of individuals consuming diets rich in flavanols or polyphenols.  However, hippuric 

acid could also be derived from other sources such as quinic acid or the aromatic amino acids 

tryptophan, tyrosine and phenylalanine, or from the use of benzoic acid as a food preservative.   

It is believed that the 5,7,3,3,4-hydroxylation pattern of flavan-3-ols enhances ring opening after 

hydrolysis [232] and metabolism of flavanols by enzymes of the microflora of the large intestine 

result in many metabolites: 3,4-dihydrophenylacetic acid, 3-hydroxyphenylacetic acid, 

homovanillic acid and their conjugates derived from the B-ring and phenolic acids from the C-ring 

[231].  Flavanols, because of their structures, they lack a C-4 carbonyl group, can also degrade to 

the specific metabolites phenylvalerolactones.  Phenylpropionic acids, which may undergo further 

metabolism to benzoic acids, may also, as shown by animal studies, be the products of flavanol 

metabolism, which demonstrates fission of the A-ring [231].  The metabolism of flavan-3-ol 

oligomers may also take place in the colon.  A single ingestion of green tea has been enough to 

detect colonic-derived metabolites of flavanols in human plasma and urine, suggesting significant 

metabolism by gut microflora in the colon [233].  Such flavonols as quercetin-3-rhamnoglucoside 

and quercetin-3-rhamnoside may also undergo metabolism by the colonic flora with Bacteroides 

distasonis, B. uniformis and B. ovatus able to cleave the sugar using -rhamnosidase and 

-glucosidase to liberate quercetin aglycone and other phenolic metabolites [234, 235].  Other 

bacteria, such as Enterococcus casseliflavus, have been found to degrade quercetin-3-glucoside 

[236], luteolin-7-glucoside, rutin, quercetin, kaempferol, luteolin, eriodictyol, naringenin, taxifolin, 

and phloretin [237] to phenolic acids and E. ramulus is capable of degrading the aromatic ring 

system of quercetin producing the transient intermediate, phloroglucinol [231].  Other flavonoid 

glycosides, hesperidin, naringin and poncirin are also metabolised to phenolic acids, via aglycones, 

by human intestinal microflora that produce -rhamnosidase, exo--glucosidase, 

endo--glucosidase and/or -glucuronidase enzymes [238].  Studies have shown that 99.9% of 

anthocyanin glucosides in foods are unabsorbed in the upper GI tract and reach the colon, 

suggesting extensive bacterial biotransformation.  Anthocyanin metabolism by colonic microflora 

and the formation of high amounts of small phenolic acids such as protocatechuic and syringic 
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acid as degradation products has been proved, suggesting that phenolic acids could be the more 

bioavailable form after intake of anthocyanins [239, 240]. 

 

1.4 POLYPHENOLS AND CVD 

1.4.1 IMPACT OF POLYPHENOL INTAKE ON CVD 

Hypertension is a major cardiovascular disease risk factor and is associated with the development 

and progression of atherosclerosis.  For the past two decades, polyphenolic compounds have 

been studied for their health benefits in preventing and treating a number of diseases, but 

particularly CVD [47, 50, 241, 242].  Clinical and nutritional epidemiological studies have shown 

that populations with diets rich in polyphenols are less susceptible to chronic CVDs, including to 

systemic hypertension, and have lower morbidity and mortality [181, 242-244].  Polyphenols such 

as resveratrol, epigallocatechin gallate (EGCG), and curcumin, have been shown to have beneficial 

effects on cardiovascular health [245, 246].  The therapeutic efficacy of polyphenols appears to be 

associated with average daily dietary consumption, polyphenol type, bioavailability in terms of 

mode of absorption, tissue penetration, plasma concentration and routes of elimination [247]. 

Figure 1.8  The metabolic pathway of dietary polyphenol: flavonoid in human subjects.  

In phase I/II metabolism most flavonoids are released from food gradually through the action of 
digestive juices and colonic microflora in the gastrointestinal tract.  Phenolic compounds are delivered 
into the blood stream and eventually some enter particular tissues/cells in phase III metabolism 
Adapted from Rendeiro,2012  [5]. 
Source 
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Potential health benefits may be partly attributed to the natural antioxidants present in 

polyphenol-rich foods, such as tocopherols, ascorbic acid and carotenoids, as well as their 

phenolic compounds (polyphenols) per se [248].  Previously, these benefits were thought to be 

attributable to the antioxidant capacity of polyphenol molecules afforded by multiple ring 

structures [58, 249-251].  However, recent evidence suggests that concentrations of polyphenols 

in the circulation are unlikely to elicit health benefits through antioxidant activity alone, because 

they are absorbed and metabolised rapidly and, therefore, lose their antioxidant properties.  It is 

probable, therefore, that they have other effects on cells, independent of antioxidant 

mechanisms, which may be through actions on the RAAS and/or the NO systems [252-256].   

Numerous randomised controlled trials (RCTs) have demonstrated the beneficial effects of 

polyphenols on cardiovascular health [42, 49, 257-260].  An inverse association has frequently 

been demonstrated between the consumption of foods high in polyphenols and the occurrence of 

hypertension [57, 261, 262].  This antihypertensive effect is thought to be due to the protection 

and enhancement of endothelial functions, and may be related to inhibition of RAAS enzymes, 

and increased NO bioavailability [29, 46, 162, 167, 174, 263-267].  The evidence for the role 

polyphenols might play in maintaining vascular health depends on appropriate markers of 

peripheral vascular function; assessment of endothelial function is often favoured, as it can 

identify endothelial damage and predict cardiovascular risk [268].  It should be possible to 

describe disease development and to obtain prognostic data in advanced phases of CVD from 

measurements of endothelial function [269].   

Very few well-controlled clinical studies have been conducted to date into the impact of 

flavonoids on CVD mortality, many more human intervention studies, all carried out short-term 

and on small samples, have examined their effects on CVD risk factors, including vascular function 

and hypertension.  Notwithstanding the noted limitations, when added together the sum of the 

trials gives credibility to the idea that endothelial function may be improved by flavonoids. 

1.4.1.1 EPIDEMIOLOGICAL EVIDENCE 

There is evidence from epidemiological studies that flavonoids taken daily may protect humans 

from cardiovascular illness, but the difficulties surrounding measurement of intake of flavonoids 

in the human diet must be considered before reaching any conclusions.  Three factors make such 

measurement difficult and the analysis of results from such studies problematic.  The first is 

simply the absence of comprehensive and systematic information regarding the amount of 

flavonoids in commonly consumed foods.  The USDA flavonoid database and Phenol Explorer, 

major resources in this field, are known to be flawed because of the variation in properties (for 
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example variety and ripeness) and growing conditions of the plants from which foodstuffs were 

prepared for assessment [270].  The second is finding a method of analysis that can measure 

flavonoid intake biomarkers in human samples.  Thirdly is the absence of information on what 

impact food processing has on food flavonoid content and it is likely that the flavonoid content of 

processed foods is often overstated. 

Thirteen of fifteen studies in a review of flavonoid intake and its relationship with cardiovascular 

disease showed a positive correlation between intake of flavanols and flavanones and the risk of 

CVD, mortality was reduced by up to 65% [271].  Positive results were also forecast by the Iowa 

Women’s Health Study of 34,489 postmenopausal women carried out over sixteen years, which 

found a correlation between anthocyanin and flavanone intake and reduced CVD-related 

mortality [52], foods highlighted in this study as most likely to significantly contribute to reduced 

risk of CHD and CVD risk were bran, apple, pear, chocolate, red wine and strawberries [259].   

The Zupthen Elderly Study followed 806 elderly men for fifteen years and found an inverse 

correlation between flavonoid intake and risk of death due to ischaemic heart disease.  Cocoa, 

which is rich in flavanols, when ingested was shown to be associated with reduced CVD, lower BP 

and total mortality [272-274].  Tea is another rich source of flavanols and meta-analysis has 

shown that three cups each day can reduce the risk of cardiovascular illness by about 11% [275].  

Reduced risk of CVD has also been shown to result from red wine intake [276], and, in a 

systematic review, from ingested soy and cocoa flavonoids [277]. 

Many foods most strongly associated with reduced CVD risk contain flavanols.  The Kuna Indians 

of the San Blas Islands (Panama) have a diet very high in flavanol-rich cocoa, and studies that have 

compared them with genetically similar communities in Panama City have shown much lower 

levels of hypertension and cardiovascular disease among the island people, which is likely to be at 

least partly due to their very high unprocessed, high flavanol cocoa intake [278].  All of this 

evidence supports the view that foods like cocoa which are rich in flavonoids may prevent 

hypertension related to age and therefore CVD. 

For all these positive studies, a number of epidemiological studies have found no relationship 

between intake of flavonoids and risk of CVD [279-282].  This discrepancy may result from 

shortcomings in diet questionnaires and food composition tables which fail to give an accurate 

picture of human flavonoid intake; it may also be due to differences between the samples in the 

different studies, their degrees of nourishment, for example, or their flavonoid intake at the 

baseline [283].  To avoid these differences, observational studies should in future use reliable 

biomarkers from plasma, urine or stool samples to assess flavonoid intake.   
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1.4.1.2 CLINICAL AND IN VITRO EVIDENCE 

Markers of polyphenol health benefits include Blood Pressure and RAAS, flow-mediated dilatation 

(FMD), laser Doppler iontophoresis (LDI) and NO, there is evidence from both humans and 

animals from intervention trials and in vitro studies for the beneficial effects of increased 

polyphenol in- or uptake.   

a) Blood Pressure and RAAS 

A number of clinical intervention studies have tested the effects of flavonoid-rich foods on BP.  

Data from randomised clinical trials is in broad agreement with the results of epidemiological 

studies [277, 284-292].   

Chocolate or cocoa rich foods which are rich in flavanols are widely reported to reduce mild to 

severe hypertension in both healthy subjects and those at risk of CVD [277, 284, 286, 288, 289].  A 

meta-analysis of five studies showed dark chocolate consumption reduced systolic BP by 0.7 mm 

Hg and diastolic BP by 2.8 mm Hg [289].  Meta-analysis of 10 randomised controlled trials of 297 

subjects who included healthy normotensive, pre-hypertensive and subjects with stage 1 

hypertension found SBP and DBP were reduced by 4.5 mm Hg and 2.5 mm Hg respectively as a 

result of consuming chocolate or cocoa rich in flavanols for two to eighteen weeks [284].  N.B., 

however, seven of the studies used white chocolate as a control and the composition of white 

chocolate is so different from dark chocolate that volunteers could not be blinded.  Flavanols in 

cocoa varying from 36 - 902 mg administered to 49 overweight individuals, reduced BP and 

improved endothelial function, and may, the authors concluded, therefore, be useful in reducing 

cardiometabolic risk factors in obese individuals [293].   

Studies with polyphenols in green and black teas and coffee have similarly demonstrated a wide 

range of cardiovascular benefits.  A -controlled trial in healthy volunteers found that a daily 

dietary dose of 400 mg of chlorogenic acid (equivalent to the caffeine content of 2 cups of coffee) 

resulted in significantly increased plasma concentrations of chlorogenic acid, and, despite the 

absence of significant changes in NO status and endothelial function markers, there was an 

observed reduction in post-treatment mean SBP and DBP [255].  

Many other foodstuffs containing polyphenols have also been found to be efficacious at reducing 

BP including numerous berries, however, the evidence, is often from small or short trials and 

therefore not conclusive.  A study that followed 156,957 subjects for fourteen years found that 

regular anthocyanin consumption, mostly from blueberries and strawberries, reduced 

hypertension by 8% [42].  Olive oil polyphenols at 30 mg/day in the diet of young women with 
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mild hypertension led to SBP 7.91 mm Hg and DBP 6.65 mm Hg lower, with a significant increase 

in plasma NOx (+4.7 ± 6.6 µmol/L, P < 0.001) and improved endothelial function [294].  The 

impact of polyphenol-rich berry juice on BP in a 12-week trial of hypertensive subjects with 

controls and it was found that with an intake of 500 mL/day, SBP was significantly reduced [295].  

Grape polyphenols have been shown to reduce BP and improve endothelial function in a 30-day 

trial of men at high risk of CVD [296].  Some effects on the RAAS have been demonstrated from 

polyphenol intake, however, the number and extent of human studies is relatively few: just four 

studies and all are similarly inconclusive.  A supplementary black chokeberry preparation given to 

patients with metabolic syndrome for two months revealed it as a weak ACE inhibitor [297].  

Pomegranate juice containing polyphenols, consumed at 50 ml  1.5 mmol daily, by hypertensive 

patients, demonstrated a 36 % reduction in serum ACE activity [254].  The plant polyphenol 

quercetin was found to be associated with a reduction in BP, however, the reduction was noted 

independently of changes in ACE activity [298] and blueberry reportedly led to no significant 

changes in ACE activity, following a 3 week chronic trial [299] 

Despite the plethora of studies, insufficient conclusive evidence exists that polyphenols lower BP, 

largely because there have been insufficient well-controlled, long-term intervention studies.  

Acute BP reductions after polyphenol intake are widely recognised, but clinical relevance makes it 

necessary also to observe sustained changes after chronic ingestion over months or years.  

However, despite the body of evidence, the case for polyphenolic health benefits is not proven, a 

meta-analysis by Hooper and colleagues showed that chronic intake of black tea, red wine and 

grapes had no significant effect on SBP or DBP [300-302]. 

b) Flow-Mediated Vasodilation (FMD)  

FMD measures the extent to which arteries are able to vasodilate in response to endothelial NO 

release in reactive hyperaemia, after the brachial artery has been occluded for five minutes by 

means of a BP cuff [303, 304].  FMD was first tested in vivo by Celermajer et al. [305] who used 

ultrasound to measure brachial artery changes and has been used more recently as a primary 

outcome by a number of researchers studying the effects of dietary interventions [186, 277, 306, 

307].  Most have investigated the acute (within 4 to 8 hours) effect on endothelial function of 

consuming flavonoid-rich food in healthy subjects or in patients at risk of cardiovascular disease.  

FMD was used, notably using controlled interventions, to demonstrate that consuming cocoa 

improved endothelium-dependent vasodilation by increasing the bioavailability of plasma NO in 

patients with hypertension, CAD, or diabetes; the intervention comprised a cocoa drink rich in 

flavanols or a control drink with exactly the same macro- and micro-nutrient content but, while 
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the control drink contained less than 10 mg flavanols the other contained 176 mg of flavanols 

(monomers and oligomers) [308].  Vascular improvement was correlated in time with changes in 

plasma flavanol metabolites, which suggested that the flavanol/vascular improvement 

relationship is one of cause and effect.  It has also been shown that flavanol-rich cocoa reverses 

endothelial dysfunction in smokers, and this has been observed, too, in healthy volunteers after 

short-term consumption of chocolate rich in flavanols [285, 309].  Flavanols appear to be the 

directly mediating agent in these effects, as ingesting pure epicatechin or epigallocatechin gallate 

has produced similar vascular effects in healthy volunteers as well as in in patients with CAD [310, 

311]. 

Increased FMD response in healthy volunteers and CVD patients has been reported after 

consuming other foods rich in flavonoids, including black tea, grape juice and red wine [312-318].  

Consuming grape juice for fourteen days has produced a long-term vascular effect in CAD 

patients, while chronic intake of flavanol-rich cocoa increases FMD response and hyperaemic 

brachial artery blood flow in hypercholesterolemic postmenopausal women [319, 320].  Fourteen 

days consuming flavanol-rich chocolate by hypertensive subjects also increased FMD [286].  

Finally, it has been shown that long-term tea consumption produces sustained increase in 

baseline FMD levels and an additional increase in FMD response [312].  This has also been noted 

in both healthy smokers and diabetics with high flavanol cocoa [321, 322].   

The most convincing evidence so far amassed that endothelial function is improved by 

polyphenols derives from foods rich in flavanols, especially cocoa [44].  Meta-analysis of 42 

human trials comprising a total of 1297 participants found that FMD improved after ingestion of 

chocolate/cocoa in both acute and/or short-term chronic formats, while another found that a 

2.6% improvement in FMD is possible after moderate consumption (500 ml or 2 to 3 cups per day) 

of green or black tea [323, 324].  Improved FMD response has also been noted in relation to other 

foods rich in polyphenols.  Meta-analysis of nine studies found that FMD improved significantly 

30, 60 and 120 minutes after consuming grape polyphenols but did not report any effect after 

chronic interventions [241].  It was demonstrated that two weeks of consuming 472.8 mg of TPs 

(total polyphenols) from Concord grape juice improved healthy smokers’ FMD, while another 

chronic study found that, for men with metabolic syndrome, consuming 267 mg of TPs of a grape 

preparation for thirty days significantly improved vascular endothelial function [296, 325].  

The evidence of FMD improvement in the case of berry phenolics is not so persuasive.  No 

cumulative effect was found from chronic cranberry juice consumption at the rate of 835 mg TPs 

and 94 mg anthocyanins, either on FMD or on vascular function in general; the sample comprised 
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stable CAD patients [326].  Notwithstanding that, the same authors carried out an open-label pilot 

study which found the effect on FMD to be acute and favourable, while a different study found 

that 766 mg of TPs, including 310–727 mg anthocyanins, in a blueberry drink consumed by 

healthy young men gave significantly and acutely improved FMD 1, 2 and 6 hours after 

consumption [327].  This acute effect was also visible when processed blueberry products were 

consumed by matched volunteers; this suggests that the form in which polyphenol-rich blueberry 

is consumed is not relevant to the benefits conferred [328].  In the case of overweight men, an 

acute study showed a correlation between improved FMD and consumption of 694 mg TPs, 

including 493 mg anthocyanins, in açaí [329].   

The flavanone content of citrus fruits may also positively affect endothelial function.  Vascular 

impairment in healthy middle-aged men, as measured by FMD, was reversed by acute flavanone 

intervention, whether as whole orange or as juice [330].  The dose was 128-452 mg TPs, including 

107-352.80mg hesperidin, and the effect was observed notwithstanding the differing levels of 

flavanone metabolites measured in the subject's plasma.  It has also been shown that a 2.5% FMD 

improvement is experienced by subjects with metabolic syndrome after three weeks of 

consuming 500 mg of hesperidin per day [331]. 

An evaluation of FMD of the brachial artery demonstrated that red grape polyphenol extract, 

which contains a wide variety of polyphenolic compounds, could trigger a surge in FMD, showing 

an acute improvement in endothelial function [332].  Clinical assessment of post-ischaemic 

endothelial function of the brachial artery, following black tea doses of 5 cups per day over a 4-

week-period, demonstrated significant and consistent FMD [333].  In acute, uncontrolled pilot 

studies, it was demonstrated that mean brachial artery flow was enhanced 4 hours post 

consumption of a single 480 mL dose of cranberry juice [334].  Using double-strength cranberry 

juice (54% juice, containing 835 mg TPs, and 94 mg anthocyanins) per day over a 4-week period, 

the same authors also found, in patients with CAD, reduced mean carotid-femoral pulse wave 

velocity, a measure of central aortic stiffness.  It has also been found that polyphenol 

consumption in both blueberries (at 1,791 mg) and cranberries (at 1,910 mg) led to significant 

increases in FMD at 1-2 and 6 hours post-intake [49, 335].  Onion peel extracts containing 162 mg 

quercetin consumed daily for a 12-week period, enhanced endothelial function, as defined by 

FMD and endothelial progenitor cell (EPC) circulation measured by flow cytometry, in healthy 

obese individuals [336].   
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c) Laser Doppler Iontophoresis 

Another commonly used marker for reduced risk of CVD is LDI, which measures vasodilation of 

the forearm’s peripheral microvasculature in response to 1 % acetylcholine (Ach) (endothelium-

dependent vasodilation) and 1 % sodium nitroprusside (SNP) (endothelium-independent 

vasodilation) agents delivered by iontophoresis using an electrical field.  A laser Doppler imager 

measures changes in blood flow and the area under the curve (AUC) and incremental area under 

the curve (iAUC) express microvascular responses for flux versus time, using arbitrary units of 

measure [337].   

Studies using laser Doppler flowmetry (LDF) have shown that endothelial dysfunction in patients 

with preclinical and borderline hypertension can be improved by pycnogenol extract, which 

abounds in water-soluble polyphenols including procyanidins, bioflavonoids and organic acids 

[338].  In another trial, oral administration of pycnogenol, was also shown to enhance NO 

production leading to improved forearm blood flow by elevating levels of endothelium-dependent 

vasodilation in response to Ach [339].   

In a randomised control trial, LDI was used to assess the effects of acute ingestion of a purée-

based drink rich in flavonoids and demonstrated improved vascular reactivity and endothelium-

dependent vasodilation [340].  It has also been found that acute consumption of a flavonoid-rich 

blackcurrant juice drink on improved vascular reactivity markers measured by LDI [341].  Another 

randomised control trial, in this case dose-dependent and concerned with men on a diet high in 

flavonoids, used LDI to show an improvement in endothelium-dependent microvascular reactivity 

together with reduced vascular cell adhesion molecules including E-selectin and lower levels of C-

reactive protein [342].  Polyphenols in champagne have also been shown to be beneficial with 

respect to CVD, inducing a significant, positive endothelium-dependent vascular affect within 4 

hours [343], while acute consumption of blackcurrant juice, known to be polyphenol-rich, was 

demonstrated by LDF to produce a positive impact on vascular reactivity markers [341].  Earlier 

studies using LDF to examine acute effects of cocoa on microcirculation in the dermis also showed 

an increase in blood flow and oxygen saturation [344]. 

Animal studies using female, spontaneously hypertensive rats (SHR) have demonstrated a range 

of cardiovascular effects following consumption of red wine polyphenols.  Doxorubicin was 

prevented from inducing blunted endothelium-dependent hyper-polarisation (EDH) type 

relaxations and vascular oxidative stress.  Expression levels of target proteins were improved.  

ROS and endothelium-derived contracting factors in Ang II-induced endothelial dysfunction were 
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counteracted.  COX-1 and COX-2 were upregulated.  SBP was reduced and the endothelium-

dependent relaxation response to Ach improved. [345, 346] 

d) Nitric Oxide (NO) 

Studies in humans have shown correlations between vascular and BP improvements and increases 

in circulating NO with flavonoids and metabolites appearing in the plasma, and it is likely that 

flavonoids influence NO levels [176, 345].  RCTs examining the effects of polyphenols on FMD in 

humans, considered likely to rely on bioavailability of NO, indicate significant improvements in 

both acute and chronic cases [346].   

A study of (-)-epicatechin’s vasodilatory effects in a coca drink rich in flavonols using healthy adult 

males indicated acutely elevated levels of circulating NO [347].  Hydroxycinnamates and phenolic 

acids are flavonoids in champagne and have been shown in fifteen healthy adults to raise the 

bioavailability of NO and acutely improve vascular function [348].  Vanillic and homovanillic acids 

are among the small phenolic acid metabolites of blueberry flavonoids and are similar in structure 

to the pharmacologic NADPH oxidase inhibitor apocynin.  The conclusion of an acute study of 

healthy men was that consuming them by way of 766, 1278, and 1791 mg doses of blueberry 

flavonoids was associated with a reduction in NADPH oxidase activity in neutrophils [349].  

Evidence is increasing that polyphenols have a beneficial effect on the bioavailability of NO as well 

as identifying possible mechanisms, but an exact understanding would require cell and animal 

studies using physiologically relevant doses as well as well-designed chronic human intervention 

studies. 

1.4.2 INVESTIGATIONS INTO THE UNDERLYING MECHANISMS OF POLYPHENOLS ON VASCULAR 

FUNCTION 

a) RAAS 

In in vivo studies of humans, food components like pomegranate juice, rooibos tea, green tea and 

polyphenols (especially flavonoids) have been shown to have inhibit ACE activity, preventing Ang I 

from being converted into Ang II.  Induced reduction in Ang II leads vasodilation and blood volume 

is increased and BL is lowered [350, 351].  A decrease in the expression of endothelin-1 

messenger RNA, increased by Ang II inhibition of endothelin secretion and regulation of the 

changes in intracellular calcium concentration and mitochondrial membrane potential, have all 

been demonstrated [352] 

In vivo studies have demonstrated that polyphenols regulate the RAAS by reducing plasma Ang II 

and renin levels, thereby reducing hypertension.  For example, an animal model of endothelial 
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function in aldosterone-salt-mediated hypertension demonstrated a link to an increase in 

circulating micro particles, the release of which were retarded by polyphenols [353].  Studies of 

the effects of polyphenols in red wine found that they prevented Ang II-induced VEGF expression 

and matrix metalloproteinase enzyme (MMP)-2 activity in the aortic wall, and Ang II-induced 

expression of eNOS, the formation of ROS, and the nitration of protein [354], resulting in reduced 

hypertension and improved endothelial function.  It has been reported that they prevented Ang II-

induced hypertension and endothelial dysfunction as shown by vascular relaxation, by normalising 

vascular superoxide anion production and NADPH oxidase subunit expression in ex vivo organs 

[355].  Another study of red wine polyphenols, on ischaemic rat hindlimbs, showed the angiogenic 

processes implicated in the development of atherosclerotic lesions, the formation of ROS and 

nitrated proteins, and the expression HIF-2alpha, eNOS, and VEGF induced by Ang II were 

prevented [356].  A 4-week study of the mechanisms underlying the amelioration of a range of 

endothelial dysfunctions in mesenteric artery rings of middle aged rats found the expression of 

eNOS, ArgI, NADPH oxidase and angiotensin receptors were all normalised by red wine [357].   

Recent studies have also shown improvements in the management of doxorubicin-induced 

vascular injury (damaged endothelial cells, increased vascular permeability) by improving the 

vascular RAAS.  This was assessed by organ chamber vascular reactivity, dihydroethidine detection 

of vascular formation of ROS, levels of small and intermediate calcium-activated potassium 

channels involved in EDH-type relaxations and immunofluorescence detection of eNOS, Ang II, 

and AT1 receptors [358].  In vitro studies, with quercetin and wine polyphenols, have shown that 

flavonoids could regulate the NO-guanylyl cyclase pathway, EDH factor(s), endothelin-1 and 

protect endothelial cells from apoptosis.  Similarly, and in the same review, in vivo studies with 

hypertensive animals have also demonstrated the prevention of endothelial dysfunction, 

reduction in BP, regulation of oxidative stress and protection against end-organ damage [359].   

Studies with polyphenols from green and black teas have shown a decrease in the expression of 

endothelin-1 messenger RNA, increased by Ang II inhibition of endothelin secretion and 

regulation of the changes in intracellular calcium concentration and mitochondrial membrane 

potential [352], this corroborates earlier work, which showed decreased ROS through the 

regulation of the protein expression of NADH oxidase, p22phox and p67phox, and upregulated 

catalase expression in bovine carotid artery endothelial cells [360].  Superoxide anion levels and 

permeable fluorescence intensities were notably decreased in Ang II-stimulated bovine carotid 

artery endothelial cells, suggesting that tea polyphenols could assuage Ang II-induced 

hyperpermeability, primarily by the reduction of ROS and regulation of ROS-related protein 

expression [360].  Similar studies, involving caffeic acid along with its nineteen novel derivatives, 
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chlorogenic acid and quercetin on the inhibition of renin and ACE activities, demonstrated strong 

renin (IC50 = 229 µM) and ACE (IC50 = 9.1 µM) inhibition [361]. 

Studies on enzyme kinetics also suggest that tea polyphenols inhibit ACE activity.  Substrate-

dependence of the reaction kinetics for green and black tea polyphenolic size fractions have 

revealed enzyme velocity curves that matched allosteric and non-Michaelis-Menten relationships, 

with a mixed mode of in vitro inhibition of ACE, mostly of a kinetically uncompetitive type [362].  

Combined blackberry (Rubus fruticosus agg.), raspberry (R. idaeus) and black raspberry (R. 

occidentalis) polyphenol extracts counteracted Ang II-induced senescence in vascular smooth 

muscle cells.  An attempt to decipher the molecular mechanisms underlying the process found 

that 200 μg mL of the triple berry extract led to a decrease in cells positive for senescence-

associated β-galactosidase, and downregulated p21 and p53 expression associated with 

decreased levels of ROS and Ang II signalling [363].  This study also showed that blackberry 

polyphenol extract increased superoxide dismutase 1 expression, attenuated the upregulation of 

NADPH oxidase 1 (NOX1) expression and the Ang II-induced phosphorylation of Akt, p38 MAPK 

and extracellular-signal-regulated kinase 1/2, as well as reducing senescence in response to NOX1 

overexpression.   

Inflammatory angiogenesis is a pivotal pathogenic development in atherosclerosis, and is 

controlled by the proinflammatory enzyme cyclooxygenase (COX)-2 and degrading MMPs, a study 

on the effects of oleuropein, hydroxytyrosol, resveratrol and quercetin on endothelial cell 

angiogenic response in vitro, demonstrated these polyphenols could reduce inflammatory 

angiogenesis in cultured endothelial cells, through MMP-9 and COX-2 inhibition [364].  Another 

study to evaluate increases of Ang II type I receptor (AT1R), cyclooxygenase-2 (COX-2), lectin-like 

oxidised LDL receptor-1 (LOX-1), prostacyclin/prostaglandin I 2 synthase (PGIS), and thromboxane 

A2 synthase (TXA2S) by tumour necrosis factor-alpha (TNFα) in hyperglycaemic conditions (30 

mM) of human endothelial cells over a short period, and to investigate the regulatory effects of 

dietary flavonoids on these increases, demonstrated that apigenin, kaempferol, chrysin, and 

flavone all significantly impeded TNFα-induced LOX-1 expression and that a flavone skeleton was 

needed to reduce LOX-1 expression by apigenin, the double bond found in its C-ring, and the 

absence of a third hydroxyl group from its B- and C-rings [365]. 

Recent animal studies have demonstrated that a flavonoid-rich red wine vinegar beverage could 

inhibit the RAAS and hence reduce hypertension.  A baseline increase in mean BP induced by Ang I 

(1 microg/kg, i.v.) was attenuated an hour following administration of the beverage, when a 

significant reduction in serum ACE activity from 39.4+/-1.2 IU/l at baseline to 37.0+/-1.4 IU/l was 
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also observed [366].  Another animal study conducted to measure the effect of flavonoids from 

the seeds of Astragalus complanatus found a significant reduction (17%) in mean arterial pressure 

in the high dose group (200 mg/kg) for both renal and SHR.  The antihypertensive regulation was 

attributed to a decrease in plasma concentration of Ang II caused by the flavonoids quantified by 

radioimmunoassay at 60 minutes post drug administration [367].  More recent animal studies to 

evaluate the antihypertensive effect of total flavone extracts from Pueraria Radix (the dried root 

of Pueraria lobata) in vitro have also shown that consumption for as short a period as 14 days 

notably reduced BP in SHR [368].  The flavone extract considerably inhibited ACE and plasma 

renin activities, depending on the dose thus substantiating other studies which have found 

flavone mediated regulation of the RAAS. 

In vitro, cultured endothelial cells from human umbilical veins incubated with bilberry 25E extract, 

exhibited significant, dose-dependent inhibition of ACE activity after 10 minutes [369].  Phenolic 

extracts from the Garden egg fruit (Solanum aethiopium = S. aethiopicum L.) were investigated 

with enzymes α-amylase, α-glucosidase and ACE, and demonstrated strong inhibition of ACE 

activity in rat lung homogenates in vitro [370].  Studies with lentil polyphenols have demonstrated 

that extracts could ameliorate Ang II-induced hypertension and associated pathological changes 

including remodelling and perivascular fibrosis in small resistant arteries of the heart and kidneys 

by up to 30 %, and reduce ROS levels in the aorta by up to 48.9 % [371].   

A study to investigate the in vitro modulation of the RAAS by polyphenolic extracts from two 

green leafy vegetables, Vernonia amygdalina and Gongronema latifolium, showed that they 

inhibited ACE and renin [253].  This study also demonstrated that the extraction method was 

significant, since ethanol column fractionations appeared to show higher ACE and renin inhibition 

than crude acetone extracts.  Peach and plum juices containing polyphenols also reduce Ang II in 

plasma and its receptor Agtr1 in heart tissues and are, therefore, effective as protection against 

metabolic disorders that promote CVD [372].   

Recent studies have shown that phlorotannins, the predominant polyphenols in brown algae, are 

ACE inhibitors, phenolic extracts of Spiral wrack (Fucus spiralis) showed remarkably high ACE 

inhibition (88.8 ± 2.4%), with a total phenolic content of 156.6 ± 1.4 mg PE/g of dry weight [373].  

In vitro experimental evidence has previously confirmed that oat polyphenols have strong ACE 

inhibitory activity, in various hydrolysis conditions [374].   
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b) NO 

Several mechanisms for the interference of polyphenols with NO have been suggested.  There is 

limited evidence that the high antioxidant nature of phenolic groups and their reaction with ROS 

may be capable of reducing NO breakdown [375-377].  It is also possible that polyphenols or 

circulating phenolic metabolites including Ferulic Acid (FA) could prevent the breakdown of NO by 

inhibiting enzymes that generate ROS, including NADPH oxidase, xanthine oxidase and 

lipoxygenase [375, 378-380].   

The ortho-methoxy-substituted catechol of FA is similar in structure to known NADPH oxidase 

inhibitors such as apocynin, which may explain why it is effective in vivo [381, 382] (Figure 1.9).  

 

eNOS is considered primarily responsible for NO generation in vascular epithelium tissue and a 

number of studies have considered how it is affected by polyphenols.  In vitro tests with quercetin 

and its metabolites administered at 5 and 10 μM, on human endothelial aortic cells [383] have 

evidenced phosphorylation of eNOS and increased NO production via Adenosine 

Monophosphate-activated protein kinase (AMPK) and similar outcomes have been found in E-

knockout mice [384].  Isolated human arteries have also been investigated, they demonstrated 

that polyphenols increased endothelial NO formation, mediated by redox-sensitive activation of 

the phosphatidylinositol 3-kinase/Akt (PI3K–AKT) pathway, again resulting in increased eNOS, 

activity [385].  Polyphenols were also shown to activate eNOS by raising the concentration of 

intracellular free calcium, and by activating oestrogen receptors in endothelial cells.  A study that 

examined the effects of (-)-epicatechin, at 0.3-10 μM, on human umbilical vein endothelial cells 

a b 

Figure 1.9  Similarities between the ortho-methoxy-substituted catechol structures 

Diagram shows (a) ferulic acid and (b) apocynin 
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(HUVEC) reportedly increased NO, possibly connected with the compound’s vasodilatory potential 

[386]. However, the observed effects of dietary polyphenols in vitro do not always translate to an 

in vivo setting.  As such, many questions remain concerning their physiological mode of action 

including the effects of metabolites. 

It also thought likely that flavonoids can influence NO levels by modulating endothelial 

intracellular signalling pathways such as the PI3-kinase/Akt pathway and intracellular Ca2+ levels 

that lead first to eNOS phosphorylation and then to production of NO [46, 176, 308, 387-390].  A 

supplement of 625 mg/day of pomegranate extract was shown to reduce vascular inflammation 

and other vaso-beneficial effects by activation of the Akt/eNOS pathway and lower monocyte 

chemoattractant protein-1 expression [391].  Another recent animal study [392] investigating the 

effects of chlorogenic acid, a polyphenol abundant in coffee, revealed that it could protect blood 

vessels against HOCl-induced endothelial dysfunction with a significant increase in NO production 

[392].  This study also demonstrated that eNOS dimerization was increased, as was the expression 

of heme oxygenase-1, an isoform of heme oxygenase usually produced during oxidative stress.  

Another study has demonstrated that polyphenols caused NO-mediated endothelium-dependent 

relaxations mediated by redox-sensitive activation of the phosphatidylinositol 3-kinase/Akt (PI3K–

AKT) pathway, resulting in increased eNOS, increased concentrations of intracellular free calcium 

and activating oestrogen receptors in endothelial cells may also have been responsible for 

elevated ENOS levels [385].  Açaí stone extract extracts given to hypertensive rats at 200 

mg/kg/day, were also responsible for antihypertensive effects, preventing endothelial dysfunction 

and vascular structural changes; the mechanisms likely to be associated with antioxidant effects, 

NOS activation, and inhibition of MMP-2 activation [393].  Studies on rat mesenteric arteries have 

implicated grape polyphenols in reversing age related endothelial dysfunction that affects both 

the NO- and EDH-mediated relaxations associated with vascular oxidative stress, as well as 

activation of the RAAS [394, 395].  Red wine polyphenols, in porcine arterial tissue, induced NO 

and EDH-mediated coronary vasodilatation, Aronia melanocarpa (black chokeberry), an abundant 

source of polyphenols showed substantial NO-mediated endothelium-dependent relaxations in 

the same tissue [396, 397]. 

There is evidence that flavonoids increase eNOS gene expression, inducing production of 

prostacyclin in endothelial cells and inhibiting endothelin-1 and endothelial NADPH oxidase [398-

402].  Inhibition of the latter reduces production of superoxide and its possible scavenging of NO 

to give ONOO−.   
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Several other mechanisms of action on NO production have also been proposed following in vitro 

studies.  These include endothelin-1 production [403], via both Ca2+-dependent BK Calcium 

channel-mediated hyperpolarisation, and Ca2+-independent PI3K/Akt pathways [404], redox-

sensitive activation of the phosphatidylinositol 3-kinase/Akt (PI3K–AKT) pathway (also resulting in 

increased eNOS activity).  In studies on rat mesenteric arteries, polyphenols in grapes have been 

implicated in reversing age related endothelial dysfunction that affects both the NO- and EDH-

mediated relaxations associated with vascular oxidative stress, as well as activation of the RAAS 

[394, 395].   

Studies in vitro have shown that avenanthramides (Avn) inhibited the development of vascular 

smooth cells, acting against the adverse effects of atherosclerosis [405, 406].  Avn in oats have 

also been shown to exhibit antioxidant activity in various cells [407].  Avn in enriched oat extract 

has been shown to significantly suppress IL-1 β-stimulated secretion of proinflammatory 

cytokines, such as IL-6, IL-8, and MCP-1, by human aortic endothelial cells [408].   

Avn-2c was demonstrated to inhibit serum-induced smooth muscle cell proliferation notably at a 

concentration of 120 μM and to improve NO production, dependent on the dose, in both vascular 

smooth muscle cells and human, aortic endothelial cells.  A three-fold increase in NO production 

in vascular smooth muscle cells and a nine-fold increase in NO production in human aortic 

endothelial cells has also been reported [406].  These increases were corroborated by a 

simultaneous increase in mRNA expression for eNOS, suggesting that Avn could prevent 

atherosclerosis through inhibition of vascular smooth muscle proliferation and increase NO 

production in both cell types. 

FA increased levels of cAMP, cGMP and phosphorylated vasodilator-stimulated phosphoprotein, 

while at the same time decreasing phospho-mitogen-activated protein kinase and 

phosphodiesterase in washed rat platelets [409].  Earlier vasoreactivity studies on ferulic acid, 

assessed using aortic rings isolated from normotensive Wistar-Kyoto rats (WKR) and SHR, have 

demonstrated that ferulic acid restored endothelial function through enhanced bioavailability of 

basal and stimulated NO in the aortas [380].  A similar study to assess the vasoreactivity of ferulic 

acid in chronic two-kidney, one-clip, renal hypertensive rats, showed that ferulic acid restored 

endothelial function by altering the bioavailability of NO [410].   

However, the observed effects of dietary polyphenols in vitro or in animals do not always 

translate to a human, in vivo setting.  As such, many questions remain concerning their 

physiological mode of action including the effects of metabolites. It should be borne in mind, 

however, that rodents have a very different metabolism to humans. 
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1.5 POLYPHENOLS OF WHOLE GRAINS 

1.5.1 WHOLE GRAIN PHENOLICS 

The structure of a representative whole grain is shown in Figure 1.10.  The wide range of 

phytochemicals in whole grain include, inter alia folates, tocols, sterols and PAs [411].  The most 

significant are PAs which comprise derivatives of hydroxycinnamic  or hydroxybenzoic acids 

(Figure 1.11).  Most significant among the hydroxycinnamic acids in grain are ferulic, caffeic, p-

coumaric and sinapic acids, while for hydroxybenzoic acids it is vanillic, syringic, gallic and 

protocatechuic acids.  These PAs are sited primarily in the outer bran layers (Figure 1.10), most 

abundant are ferulic, p-coumaric, vanillic and syringic acids [412].  Small amounts of PAs are 

available in both free and soluble conjugated forms, but most are bound as complex insoluble 

esters to polysaccharides [413, 414] and serve as a cross linking mechanism in the plant cell wall.  

Between 70 % and 90 % of the phenolics found in wheat are ferulic acids (FA) in the grain’s 

aleurone layer, a single layer of cells overlaying the endosperm and adhering strongly to the 

pericarp (Figure 1.10) [415, 416].  FA is a hydroxycinnamate synthesised from cinnamic and p-

coumaric acid through the shikimic acid pathway by hydroxylation and methylation reactions 

[417].   

 

 

Embryo 

Outer bran layers 

Endosperm 

Figure 1.10  Break down (structure) of a typical whole grain.  

Most of the micronutrients (including PAs and avenanthramides) are contained in the outer bran layers. 
In the production of white flour, only the starchy endosperm is used.  After Krygier, 1982 [3]. 
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Another constituent of whole grain is diferulic acids, or FA dehydrodimers, which are present in 

different forms; the main structures involve oxidative coupling at 8-5, 8-O-4, 8-8 and 5-5 in grass 

cell walls [7].  Monomer and dimer FA forms both bind covalently via ester linkage to the major 

structural polysaccharide arabinoxylans, as well as to mixed, linked β- glucan and other 

polysaccharides (Figure 1.11).  This attachment is by way of the carboxylic acid group acylating the 

primary hydroxyl at the C5 position of the arabinosyl side-chains of arabinoxylans (AXs), with the 

commonest being 5-O-feruloyl-L-arabinofuranose and 5-O-feruloyl-AXe [418]. 95.8% of bran is 

conjugated form with only 4.2% present in a free form [419]; the antioxidant potential of bran has 

been shown to be determined by the amount of free FA released during metabolism in the 

digestive tract. 

The oats (Avena spp., family Poaceae) are a genus of cereal grains which originated in the 

Mediterranean region and grow well in temperate regions where some species, particularly Avena 

sativa L., the subject of this study, are widely cultivated.  Oat meal is a popular food produced 

from the seed of Avena sativa L. and is chiefly consumed in the form of porridge which comes in 

Figure 1.11  Ferulic Acid Esterified to Arabidoxylan 

(A) Ferulic Acid linked to O-5 of arabinose chain.  (B) β-1,4-linked xylan backbone.  (C) α-1,2-linked L-
arabinose [1].  The most common diferulic acid structures with oxidative coupling at 8,5, 8-O-4, 8-8 and 
5-5. Ralph et al 1994 [7]. 
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several varieties, including steel cut oats, rolled (also known as old fashioned and whole) oats, and 

quick cook (also known as instant) oats.  The varieties derive from increasing degrees of 

processing, which results in faster cooking times and substantially different nutrient compositions 

[420].  The widely established health benefits of oats have led to an increase in their consumption 

in recent years [421].  Oats are a rich source of soluble fibres, β-glucans, which contribute to the 

reduction of blood cholesterol [422], and also contain a unique group of low molecular weight 

soluble phenolic compounds, the avenanthramides which are not present in other cereals  [406].  

Avenanthramides have recently been shown to exhibit anti-inflammatory, anti- proliferative and 

anti-itching properties which may provide protection against CHD, colon cancer  

and skin irritation [407, 436]. 

Class of Nutrients 
 

Nutrient Components (%) Location in the oats References 

Starch  Amylose 60 % Endosperm [423-426] 

Protein Total 11 - 15 % 
 Globulins    (% of total)  80 % 
 Prolamins  15 % 
 Glutelin  5 - 66 % 
 Albumin  1 - 12 % 

Germ and bran [427, 428] 

Lipids  Total 5 - 7 % 
 
(mono and polyunsaturated fatty acids: 
mainly oleic (18:1) and linoleic (18:2) 
saturated fatty acids including myristic (14:0) 
and palmitic (16:0) acid) 

Kernel and bran [429, 430] 

Trace Minerals Calcium: 0.54 % 
Iron 0.04 - 7 % 

Bran [431] 

Vitamins  Niacin 0.032 % 
Thiamine 0.00 2 % 
Riboflavin 0.001 % 

Bran [431] 

Fibre Total: 10-12% 
 β-glucan 2.3 - 8.5 % 

Bran [432, 433] 

Phytochemicals  Tocols  
 α-Tocotrienols and 
 α-tocopherols (% of total) 86 -  91 % 
 
Phenolic Compounds 5.7 % 
(Ferulic, Vanillic, Syringic,  
Protocatechuic, p-Coumaric, Caffeic, Sinapic) 
 
Flavanoids  trace % 
 
Avenanthramides  
 AV-A 2.1 - 4.3 % 
 AV-B 2.8 - 6.2 % 
 AV-C 2.5 - 4.7 % 

Bran and outer 
layers of Kernel 

[434, 435] 

    
Table 1.1.  Nutritional composition and disposition of Oats (Sativa spp.) 
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Oats are also a rich dietary source of phytochemicals including vitamin E, phenolic acids and 

avenanthramides [437].  Phenolic acids contain one aromatic ring bearing acid group and one or 

more hydroxyl groups (Figure 1.12) [438], they are found in three different forms within the oat 

food matrix: as soluble free acids; as soluble conjugates esterified to low molecular weight 

components such as sugars; and as insoluble bound acids esterified to high molecular weight 

components including lignin, cell wall polysaccharides and storage proteins [439, 440]. 

Hydroxybenzoic acids and hydroxycinnamic acids are the two classes of phenolic acids found in 

oats.  Hydroxybenzoic acid derivatives include, protocatechuic, syringic, vanillic, p-hydroxybenzoic 

and gallic acids, while hydroxycinnamic acid derivatives are ferulic, p-coumaric, o-coumaric, 

caffeic and sinapic acids (Figure 1.12) [441, 442].  Avenanthramides are a unique group of 

compounds in oats, consisting of an amide conjugate of anthranilic acid and hydroxycinnamic 

acids. The 3 major subgroups are avenanthramide-A (Avn-A), avenanthramide-B (Avn-B) and 

avenanthramide-C (Avn-C), they all occur in the bran or outer layers of the kernel (Figure 1.12). 

The chemical structure of Avn and its subgroups is shown in Figure 1.12.  Avn-C is one of the 

major avenanthramide polyphenols of oats, it inhibits the serum-induced proliferation of vascular 

smooth muscle cells, a vital process in the onset of atherosclerosis.  Flow cytometry analysis on 

this inhibition process has shown that Avn-C could block the cell cycle in G1 phase, as a rise in the 

number of G1 phase cells and a fall in the number of S phase cells was observed.  Inhibition of the 

cell cycle along with decreased cyclin D1 expression and increased cyclin-dependent kinase 

inhibitor p21cip1 expression, with no notable changes in p27kip1 expression, have also been 

linked with Avn-c mediated reduction in the phosphorylation of retinoblastoma protein, a key 

process in G1-S transition [405].  
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1.5.2 BIOAVAILABILITY OF WHOLE GRAIN PHENOLICS 

While studies involving animals indicate immediate and effective absorption of free FA in the 

stomach [419, 443, 444], the large and complex nature of esterified diferulates means that they 

cannot be absorbed through the mucosal barrier.  Free FA absorption has been reported in the 

small intestine in direct proportion to the amount perfused [445-447], but molecules bigger than 

30 kDa cannot diffuse through the small intestinal mucosa, which suggests that the potential for 

absorption of FA and diferulates in the small intestine depends on its initial release from the 

bound state [448].  While there have been reports of esterase activity in the small intestine’s 

mucosa and to a low extent (0 – 5 %), in the lumen [445, 449], only about 2.6% of total feruloyl 

molecules are released during gastric and small intestine digestion [450].  This is supported for 

Figure 1.12  Chemical Structure of Cinnamic Acid derivatives, Benzoic Acid derivatives and 
Avenanthramides A-C in Oat. 
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both wheat and rye that, in both human and rat intestines, esterase(s) induces release of free 

diferulic acids and monoester products via hydrolysis of 5-5, 8-O-4 and 8-5-benzofuran diferulate 

ester bonds [445].  It is known that most FA-AX cleavage occurs in the colon during fermentation 

in which faecal bacterial esterase activity releases 20% of AX linked hydroxycinnamic acids from 

bran [449].  Esterase activity, i.e. hydrolysing diferuloyl ester bonds, is carried out more efficiently 

by human colonic microbiota than by those in the small intestine, due to the presence in large 

intestinal bacteria of other enzymes and in particular xylanases which can begin the breakdown of 

insoluble fibre improving the access of esterases to FA-AX complexes.  Esterase on its own 

releases only 4% of alkali-extractable FA from wheat bran; when xylanase is also present the 

figure rises to 95% [451].   

When insoluble AX reaches the colon, xylanases cleave the xylan β-1,4 backbone by to release 

small soluble oligosaccharides which make easily accessible good substrates for ferulic acid 

esterases [452].  These in turn release free FA, the amount of which is influenced by the 

xylanase’s source.  Talaromycetes emersonii xylanases release 1.35% of total FA while for T. viride 

xylanase the figure is 48 % [453].  This difference results from the rate of polysaccharide 

degradation and the xylanase’s ability to produce feruloylated oligosaccharides with longer chain 

lengths of up to 3 or more units, the optimum size for esterase action [452, 454]. 

Few human studies have focused on FA absorption and metabolism after consumption of whole 

grain wheat.  Maximum hydroxycinnamate absorption from high-bran cereal, a particularly rich 

source of FA and diferulates because they include the outer husk including the aleurone layer, 

occurs between one and three hours after ingestion [455].  It was not found necessarily to be the 

case, though, that the main cleavage and release of FA from AX happens in the small intestine, 

but more likely that FA observed in plasma derived from the 4 % of free FA that the grain also 

contains.  It also found low hydroxycinnamic acid levels in plasma after 6 hours, which suggests 

not much absorption occurring in the large intestine.  This may be the result of long, slow FA 

cleavage as food passes through the large intestine, with minimal amounts being observed in the 

circulation.  No diferulic acids were detected in urine or plasma and were most likely still in bound 

form, which would suggest that very little of these compounds was absorbed all the way through 

the gastrointestinal tract.  All of this suggests the need for further human studies to fully 

understand absorption and metabolism of whole grain phenolic acids. 

 

While cleavage and release of ferulic and diferulic acids from wheat bran can take place in the 

human gastric tract, how far this can extend is unclear.  The gut’s acidic environment may have 
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the ability to cleave ester bonds, with the ester cleaved by acid hydrolysis to yield a carboxylic 

acid (R-COOH) and an alcohol (Figure 1.13) [456]. 

 

FA is recovered intact after being incubated in HCl-NaCL (9g/L) aqueous solution for one hour at 

37°C [444], this suggests that the acid nature of the gut breaks it down or metabolises it very 

little.  Alkaline, as opposed to acidic, hydrolysis causes release of PAs, including FA, in markedly 

greater amounts [457], hence it follows that using both esterases and xylanases in bread making 

may make these hydroxycinnamates more bioavailable, increasing potential health benefits. 

1.6 WHOLE GRAIN AND VASCULAR FUNCTION 

1.6.1 EPIDEMIOLOGICAL STUDIES 

A number of studies have shown an inverse relationship between CVD and whole grain intake as 

well as positive links between whole grain and whole grain product intake and higher insulin 

sensitivity, lower waist to hip ratio, lower cholesterol, lower LDL and total lipids, and lower fasting 

insulin concentrations [458-464].  The Nurse’s Health Study followed 75,521 women between the 

ages of 38 and 63 for 10 years, looking for a relationship between heart disease and whole grain 

intake [465].  The sample excluded anyone previously diagnosed with cardiovascular disease such 

as stroke, angina or myocardial infarction and age and adjusted for smoking and dietary factors 

such as multivitamin supplements.  The results showed a strong inverse relationship between CVD 

risk and whole grain intake, however, when dietary fibre, folate, vitamin B6 and vitamin E had 

been adjusted for, the remaining reduction in CVD risk, although slight, was considered likely 

attributable to other constituents of whole grain.  Data from the Iowa Women’s Health Study of 

34,492 postmenopausal women followed up over eight years supported this conclusion, with a 

finding that a single serving of whole grain was responsible for a one-third reduction in risk of 

death from ischaemic heart disease [458].  Here again, adjusting for dietary fibre intake did not 

change the reduction in risk.  Meta-analysis of studies in this area found consumption of 2.5, 

H20 + 
+ 

H
+
 

Figure 1.13  The ester to ferulic acid cleavage reaction 

Gastric acid is thought to catalyse the ester bond along with H2O, resulting in free ferulic and carboxylic 
acids.  After Hilal et al. 2006. 
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compared to 0.2, servings of whole grain per day were associated with a 21 % decreased risk of 

CVD, as a result of which a number of guidelines were drawn up with the aim of increasing intake 

of whole grain [466].  The advice most commonly accepted recommends daily consumption of 

three servings of whole grain products (48g) [467].  While these data do show a positive link 

between protection against CVD and whole grain intake, they are subject to a number of flaws: 

food intake is self-reported by trial subjects; food is grouped into refined or whole grain products; 

and those with a high whole grain intake tend not smoke less, to exercise more and to be more 

likely to have a higher vitamin diet; whole grain-rich diets tend to be high in carbohydrates, folate 

and protein and low in fat, cholesterol and alcohol [459]. 

1.6.2 CLINICAL AND IN VITRO STUDIES 

Physiological effects suggested to arise from whole grain intake include: lower risk of CHD [468], 

reduced LDL and cholesterol [469], increased insulin sensitivity [470, 471] and reduced BP [472].  

The phytosterols, complex carbohydrates, fibre, minerals and vitamins (especially vitamin E) and 

polyphenols in whole grain are believed to be responsible for these beneficial effects.  They are 

found for the most part in the bran layers on the surface of the grain (Figure 1.10), which is why 

refining the grain, leaving for consumption only the starchy endosperm, results in less potential 

for positive health effects [473-477].  Whole grain is a source of plant sterols and stanols capable 

of lowering cholesterol owing to their ability to inhibit cholesterol absorption from the small 

intestine.  Studies have demonstrated that increasing dietary phytosterols can increase excretion 

and reduce cholesterol absorption, so that there is an inverse relationship between total plant 

sterol intake and total and LDL serum cholesterol [478].  Substituting or supplementing typical 

Western diets with high amounts of cereal grains and legumes reduces LDL cholesterol by 23% 

and 29% respectively [479].  Whole grains also provide the soluble fibre associated with lowered 

cholesterol levels and BP [469, 480, 481] and are significant sources of tocopherols, including 

vitamin E [482], which has been suggested as an inhibitor of LDL oxidation and oxidative cell 

damage [483] . 

Other protection mechanisms suggested by high intake of whole grains are reductions in insulin 

demand and a lower body-mass index (BMI).  Consuming more than a single daily serving of 

whole grain increases insulin sensitivity and reduces BMI, while increasing whole grain intake can 

increase HDL and reduce DBP [484].  A randomised, controlled clinical trial showed that, in CAD 

patients, consuming whole grain and legume powder reduced insulin demand, lipid peroxidation 

and plasma homocysteine levels [484].  Whole grain products are generally digested and 

absorbed slowly, because of their high viscous fibre content and physical structure [485].  This 
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means that whole grain has a relatively low glycaemic index which is regarded as positively 

correlated with reduced CVD risk.  It should be noted, though, that, while whole grain’s health 

benefits have been linked to factors such as fibre, folate and vitamin content, adjusting the results 

of observational studies (see Epidemiological Studies, above) for these factors shows that they are 

not responsible for all of the protection.  Researchers, therefore, believe that whole grain’s 

beneficial CVD effects may be mediated at least in part by other whole grain components, 

including polyphenols. 

Human intervention studies have shown improved vascular response and endothelial function 

associated with a daily consumption of whole grain oat cereal, or whole grain in general [486].  A 

study of the effects of acute and chronic consumption of oat and wheat cereal on 

vascular/endothelial function following a high-fat meal showed hyperaemic blood flow was 

significantly decreased by acute wheat cereal and increased by oat cereal or vitamin E (though to 

an insignificant degree) [487]. 

The designs of the other human studies focused on whole grain and endothelial function have 

limited their contributions to our understanding in this field.  One study [487], for example, used 

wheat cereal as a control, as opposed to a non-contributory treatment and it is probable that 

wheat produces effects similar to those of oats.  A placebo with no known benefits (perhaps a 

refined rice or wheat product) might have led to more informative results.  The unsuitability of 

the control became apparent in the results showing every treatment appearing to give sustained 

beneficial effects on vascular response and no significant decline during the one month of the 

trial, irrespective of control or oat intervention.  Supplementing a diet can be problematic, for 

example though volunteer inconsistency.  Subjects who know their diet is being observed may eat 

more healthily during the study, with consequent increases in vascular responses.  A partial 

solution is a diet diary, but studies do not always report whether one was kept, or whether it was 

used when analysing results.  Another study by the same group found that oats favourably 

affected vascular response in overweight subjects with dyslipidaemia to a greater extent than 

antioxidant vitamins E and C, after a high-fat meal, the results were not, however, significant 

[487]. 

Ferulic acid which occurs in the grain aleurone of wheat (Triticum spp., Poaceae) and other plant 

sources, as well as oats, has been shown to exert significant beneficial health effects, including 

antioxidant properties, in plasma studies.  Purple wheat varieties, compared to white and red, 

have the highest total phenolic content and antioxidant activity, with bound ferulic, vanillic and 

caffeic acid levels notably abundant [488].   
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There is little evidence from human trials for the effect of just PAs or PAs and Av-B-rich foods in 

whole grain on vascular function and related mechanisms of action.  Whether polyphenols/PAs in 

whole grain wheat can beneficially affect endothelial function is therefore insufficiently 

researched. 

1.6.3 INVESTIGATIONS INTO UNDERLYING MECHANISMS OF WHOLE GRAIN PHENOLICS ON 

VASCULAR FUNCTION 

NO, animal and ex vivo studies of whole grain effects on vascular function include thoracic aortic 

ring experiments, which suggested that FA can produce endothelium-dependent vasodilation by 

way of increased NO bioavailability in SHR but not normotensive WKY [489]. Further, studies have 

also demonstrated that ferulic acid could attenuate adhesion molecule expression in gamma-

radiated HUVEC cells, and also inhibit vascular smooth muscle cell proliferation induced by Ang II 

[490].  L-NAME inhibited the relaxation, which would suggest that vasodilation is mediated by NO, 

though exposure to FA did not increase levels of cGMP which would suggest that the NO level was 

not enough to stimulate soluble guanylate cyclase.  These findings imply a direct effect for FA on 

smooth muscle walls and not endothelial cells, and this needs to be further investigated.   

To date there is no substantial evidence for the effects of whole grain on the RAAS.  

1.7 CONCLUSION, HYPOTHESIS AND STUDY OBJECTIVES  

1.7.1 CONCLUSIONS 

In conclusion, both clinical and laboratory studies have provided wide-ranging evidence for the 

beneficial vascular system actions of polyphenols, including phenolic acids.  While several studies 

have investigated potential nitric oxide-mediated mechanisms of action, few have considered the 

influence of phenolic acid interactions with the renin-angiotensin-aldosterone system as a 

potential underlying mechanism. Indeed, most interventions with cereals, including oats to date 

have focussed either on their antioxidant and anti-inflammatory properties, or has focussed on 

the action of fibre and cholesterol. As such, more trials aimed at understanding the impact of the 

phenolics in whole grain oats on the human vascular system are warranted, to understand better 

the contribution these bioactive components of oats play in defining the cardiovascular benefits 

of whole grain intake.  

1.7.2 HYPOTHESIS AND OBJECTIVES 

Overall Hypothesis: consumption of phenolic acid-rich oats will improve markers of human 

vascular system health (vascular blood flow and BP) through the influence of absorbed small 

phenolic acids on the RAAS system. 
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The hypothesis will be investigated using established, gold standard, clinical measures of vascular 

function in two randomised, controlled, human intervention trials.  The oat interventions will be 

based on current dietary guidelines recommending that individuals consume at least one-half of 

all their grains as whole grains (i.e.  3 servings/day; 1 serving = 16 grams) and, therefore, 

represent both realistic and physiologically appropriate levels of consumption.  In vitro 

experiments will be designed to show the mechanisms by which small phenolic acids from oats 

positively influence the RAAS, Renin expressions in juxtaglomerular kidney cells and ACE activity 

and levels in primary human endothelial cells (Objective 1).  Their effects on the vascular system 

will be quantified using clinically relevant measures of vascular function, notably FMD and BP, 

along with a host of biochemical markers (including blood lipids, RAAS levels and activities).  

Urinary mineral excretions will also be assessed to shed light on the impact of oat consumption on 

these BP related markers (Objectives 2 and 3).  Collectively, this multi-platform approach will 

enable the most comprehensive study to date regarding the beneficial vascular effects of oat 

phenolic acid consumption and will lead to a better understanding of the beneficial actions and 

effects and public health potential of this cheap and sustainable temperate region crop.   

Overview: recent data has suggested that foods/beverages rich in phenolic acids may, as 

flavonoid-rich foods are known to do, positively influence human vascular function.  Evidence that 

the favourable effects of some flavonoid-rich foods (e.g. oats) are mediated by small phenolic 

metabolites produced during absorption and metabolism increases the likelihood that phenolic 

acids have a role.  At present, the best evidence for cardiovascular benefits from polyphenols 

comes from studies involving flavanol-rich foods, in particular cocoa and tea, however, many such 

studies intervene with above physiologically appropriate dosages.  Flavanol studies do, however, 

suggest that both their acute and regular consumption result in positive cardiovascular outcomes, 

mainly through their effects on endothelial function, nitric oxide bioavailability and hence BP 

regulation.  The RAAS plays a crucial role in BP homeostasis via the production of a 

vasoconstrictor, angiotensin II, which has a role in regulating blood volume and vasodilation 

independently of the NO system.  The very scant body of evidence in this area points to the 

possibility of a role for plant polyphenols in reducing angiotensin II production, perhaps through 

interference with ACE and renin activities.  The experimental trials in this study seek to extend 

this narrow background of reliable evidence, focusing on oats, which uniquely contain high levels 

of phenolic amides known as avenanthramides as well as small phenolic acids including ferulic 

acid consumed at physiologically realistic dosages.  There is very limited evidence for their 

positive effects on the cardiovascular system, in particular BP and lipids, but we predict that due 
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to their structural similarity to flavanols they may be confirmed to demonstrate improvements in 

cardiovascular risk markers through effects on both the NO and RAAS. 

The following Objectives are designed to test this hypothesis. 

Objective 1: to investigate the effects of a range of oat phenolic compounds and their metabolites 

at physiologically appropriate concentrations on key enzymatic and transcription factor 

components of the NO and RAAS systems.   

Rationale: polyphenols are widely reported to modulate physiological processes which leads to 

improved health outcomes, in particular cardiovascular health, but the mechanisms by which 

they exact their beneficial actions remain unclear.  The two physiological processes likely 

involved in regulation of BP and vascular function are the modulation of NO bioavailability 

through interference with the eNOS pathway and interference with the RAAS, but our 

knowledge of both is inadequate.  Phenolic compounds including some present in oats have 

been identified as ACE inhibitors in vitro in HUVEC cells, in part through interactions with 

amino acids at the enzyme's active site.  Hence, to meet our objective, we used cultured cell 

lines in which these processes occur in vitro to: first, determine the strength of inhibition of 

key enzymes (renin and ACE) by a range of common polyphenols, particularly those found in 

oats; and second to consider in detail the impacts of the polyphenols on a range of key 

bioactive components of both processes.  We measured renin expressions, both shed and 

membrane bound ACE levels and activity and compared the bioavailability of NO and NOx, in 

comparable trials.   

Objective 2: To investigate the impact of acute phenolic acid-rich oat intake on blood pressure 

and vascular blood flow in healthy men with pre- or stage 1 hypertension.   

Rationale: there is strong evidence for improvements in cardiovascular function including 

lowering of BP following acute consumption of polyphenols. Oats are a rich source of 

polyphenols, notably avenanthramides and phenolic acids including ferulic acid.  We predict, 

based on whole grain and results from trials of other polyphenols, that consumption of oats 

will lead to improvements in vascular function through their effects on endothelial function, 

nitric oxide bioavailability and the inhibition of the RAAS enzymic pathways.  To test this, we 

designed a randomised single-centre, two-arm, single-blinded, placebo-controlled crossover 

trial with stage 1 and pre-hypertensive volunteers, to assess the impact of a single moderate 

intake of oats.  After consumption we measured and analysed the results of a range of 

previously well proven cardiovascular risk markers, notably: anthropometric, particularly BP; 
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microvascular blood flow, particularly FMD of the brachial artery and endothelial vasodilatory 

responses; blood biochemistry, particularly enzyme-linked immunoassay to investigate ACE 

and renin inhibition.  

Objective 3: To investigate the impact of 4 weeks of phenolic acid/Avenanthramide rich oat intake 

on blood pressure, vascular blood flow and a range of vascular and lipid biomarkers of CVD risk in 

adults with pre- and stage 1 hypertension.   

Rationale: while evidence has accumulated for the efficacy of plant polyphenols in acute 

reduction of BP, to be clinically relevant sustained improvements over months or years have to 

be demonstrated conclusively in chronic trials.  The strongest evidence for long-term vascular 

improvements comes from studies of cocoa, however, cocoa and chocolate are relatively 

expensive-to-buy products and, therefore, not routine staples of daily diets.  Likewise, many 

other frequently tested plant polyphenol sources.  Furthermore, much of the seemingly 

efficacious evidence is from in vitro or very high dosages experiments.  Our study of oats aims 

to determine if a relatively cheap, readily-available, sustainable foodstuff can be as effective at 

lowering BP at realistic dosages.  We predict that sustained consumption of oats may lead to 

improved long-term vascular function, including nitric oxide bioavailability, inhibition of the 

RAAS enzymic pathways and reduced blood cholesterol.  To test this, we used a trial design 

and subject selection similar to those of our acute trial, to assess the impact of moderate 

intake of oats over a 28 day period.  We used two levels of Avenanthramide and phenolic acid 

interventions and an energy balanced but low polyphenol control.  Fibre intake was 

standardised in all three interventions.  We measured and analysed the same cardiovascular 

risk markers, as in our acute trial, with the addition of 24 h ambulatory BP and urinary mineral 

excretions.    
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Chapter:  2 In vitro Examination of the Impact of 
Polyphenols and their Circulating Metabolites on the 
Renin-Angiotensin-Aldosterone System (RAAS). 

2.1 INTRODUCTION 

Foods naturally high in phytochemicals, or which have been enhanced by their addition, have 

been shown to modulate physiological processes resulting in improved health outcomes, in 

particular cardiovascular health [43, 47, 48, 491-493].   It has been reported that around 80 g of 

specific fruits and vegetables, or beverage extracts derived from them, may contain up to 300 mg 

of polyphenols [57].  Polyphenols can also be found in cereals, legumes, and pulses, whose intake 

has long been associated with protection against cancers, diabetes and several disorders 

associated with poor lifestyle and aging, as well as cardiovascular diseases [53, 405, 406, 494, 

495].  Notably, clinical trials have indicated that the intake of cocoa or berries leads to reductions 

in measurable levels of cardiovascular risk factors, such as blood pressure and enhancement of 

peripheral vascular function [49, 264, 309, 334, 496-498].  However, despite these promising 

physiological activities, the mechanisms by which they express their beneficial actions remain 

unclear. 

Various suggestions have been made to account for this physiological activity, although the two 

most commonly supported by data are 1) the modulation of nitric oxide (NO) bioavailability 

through regulation of the endothelial nitric oxide synthase (eNOS) pathway, and 2) the regulation 

of the renin angiotensin aldosterone system (RAAS); the former has been more extensively 

investigated [46, 254, 297, 406, 499].  Evidence suggests that NO breakdown might be prevented 

by polyphenols or their circulating metabolites through the inhibition of enzymes that generate 

reactive oxygen species (ROS), including nicotinamide adenine dinucleotide phosphate (NADPH) 

oxidase, xanthine oxidase and lipoxygenase [375, 378].  NO production is also increased by 

quercetin and (-)-epicatechin in in vitro tests on human endothelial aortic cells and human 

umbilical vein endothelial cells (HUVEC) which shows that (-)-epicatechin works as an O2
− 

scavenger.  Quercetin was shown to cause phosphorylation of eNOS via the adenosine 

monophosphate-activated protein kinase (AMPK) pathway [383, 500].  There is also evidence that 

flavonoids increase eNOS gene expression, inducing production of prostacyclin in endothelial cells 

and inhibiting endothelin-1 and endothelial NADPH oxidase [398-402]  In human trials, NO 

bioavailability has also been shown to be maintained for longer following intake of 

hydroxycinnamates and phenolic acids in champagne, as well as acutely improving vascular 
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function in fifteen healthy adults [348].  Similarly, vanillic and homovanillic acids, small phenolic 

acid metabolites of blueberry flavonoids, also led to a reduction in NADPH oxidase activity in 

neutrophils when consumed in an acute study of healthy men [349].   

Many pharmacological treatments for hypertensive, cardiovascular and renal disorders have been 

targeted towards inhibition of the RAAS.  RAAS is a multi-enzyme facilitated, hormonal system 

that regulates the concentration of plasma sodium, and powerfully affects arterial blood pressure 

[130, 131, 501, 502].  The RAAS process functions in a cascade, leading ultimately to the 

generation of Ang II, which is a potent vasoconstrictor, causing the narrowing of blood vessels and 

a rise in BP, as well as stimulating the secretion of aldosterone from the adrenal cortex [134, 136, 

138, 139].  Ang II acts on various organs and tissues throughout the body, including the kidneys, 

where it decreases the glomerular filtration rate [131].  Ang II also increases cardiac output and 

stimulates the hypothalamus to release antidiuretic hormone (ADH) (arginine vasopressin), from 

the posterior pituitary gland which leads to greater reabsorption of water by the kidneys [140] 

which results in an increase in extracellular fluid volume within the body, and so increased BP 

[140, 142, 143].  Suppression of renin and angiotensin converting enzyme (ACE), two of the 

principle RAAS hormones, are two of the strategies used for reducing blood pressure, maintaining 

electrolyte homeostasis, and regulating haemodynamics and volume status [503-505], although 

adverse effects on the kidneys are frequently encountered with such pharmacological treatments.  

As such, there is an interest in finding novel RAAS inhibitors without such unwanted side effect 

and among those being investigated are polyphenols [253, 506]. 

Modulation of the RAAS may occur through inhibition of ACE, which would lead to increased NO 

production [507], as has been demonstrated by studies using pomegranate juice, rooibos tea, 

green tea and polyphenols (especially flavonoids), which found that ACE activity was inhibited and 

angiotensin II (Ang II) is not formed.  Vasoconstriction does not, therefore, take place and 

consequentially blood flow is maintained or increased [350, 351].  For example, intake of 

pomegranate juice polyphenols by hypertensive patients led to a 36% reduction in serum ACE 

activity [254] and caffeic acid and its derivatives may be capable of modulation of the RAAS, 

acting by reducing renin, ACE and aldosterone production [361].  Garden egg fruit, with enzymes 

α-amylase, α-glucosidase, demonstrated strong inhibition of ACE activity in rat lung homogenates 

in vitro [370].  In in vivo studies of humans, food components like pomegranate juice, rooibos tea, 

green tea and polyphenols (especially flavonoids) have been shown to have inhibit ACE activity, 

hence Ang II is not formed and its vasoconstrictive function is lost and blood volume is increased 

[350, 351].   
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Another target for blood pressure reduction within RAAS in renin, which is primarily expressed in 

myoepithelioid granulated cells of the kidney, called juxtaglomerular cells, situated in the afferent 

arteriole.  Within juxtaglomerular cells, cyclic adenosine monophosphate (cAMP) is thought to 

play a major controlling role in renin production and release, with the transcription factors cAMP-

response element-binding protein-1 (CREB) and cyclic AMP-dependent transcription Factor (ATF-

1), and subsequent activation of protein kinase A (PKA), also necessary to activate extracellular 

signal-related kinase (ERK) pathway [508-512], angiotensin induced activation of ERK1/2 is NADPH 

oxidase independent but is cAMP/PKA-dependent in mesangial cells.  Following renin expression 

in the cell it cleaves the N-terminus of angiotensinogen to initiate an enzymatic cascade by 

producing angiotensin I (Ang I) which is released into circulation and further cleaved by ACE to 

produce Ang II, a vasoconstrictor [513, 514].  Inhibiting renin therefore blocks the RAAS pathway 

through prevention of Ang II production, Ang II production leads to vasoconstriction and an 

increase in blood pressure (BP).  In As4.1 cell, CREB-1 and cyclic AMP-response element 

modulator (CREM) bind to the cAMP-responsive element (CRE) consensus binding site [515] and 

inhibit renin expression.   

There are relatively few studies relating to the influence of polyphenols and their metabolites on 

enzymatic inhibition of the RAAS especially renin, hence their mechanisms of action on the RAAS 

are poorly understood [366, 516-518].  However, studies on the modulation of ACE activity have 

generally incorporated polyphenol interventions at high concentrations, so their physiological 

relevance is limited.  To generate more informative results regarding renin inhibition and the 

physiological effects of its release from cells, interventions comprising physiologically realistic 

plasma concentration post intakes have been used in this study.   

Since most of the evidence for the protective characteristics of polyphenols against stress 

relevant to chronic disease pathophysiology is derived from in vitro studies, juxtaglomerular cells 

have frequently been used as a model to study renin inhibition and the impact of polyphenols on 

renin [519-521].  Similarly, vascular endothelial cells from human umbilical veins (HUVEC) are a 

standard model used to study endothelial-derived vasoactivity, such as endothelial NO synthase 

and prostacyclin.  Therefore, these cells provide a suitable model in which to study changes in 

endothelial NO, ACE levels and vascular function [522-525].  In this study we use an in vitro model 

to investigate the effects of several polyphenols found in oats with suitable comparator 

polyphenols found in many of the polyphenol-containing foods/beverages that have been shown 

to induce physiological improvements in vascular function.  In particular we consider the effects 

of oat phenolic compounds and their metabolites on RAAS using juxtaglomerular and HUVEC cells.  

We specifically assess whether polyphenols and their circulating metabolites influence renin 
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expression and upstream kinases and transcription factors which control renin release in 

juxtaglomerular cells.  Furthermore, we assess whether oat phenolics affect ACE activity and 

levels in HUVEC, to better understand the mechanisms of polyphenol actions.  The results from 

these in vitro studies provide evidence that the RAAS is an important mechanism in the body by 

which polyphenols produce some of their cardiovascular benefits. 

2.2  MATERIALS AND METHODS 

2.2.1 LIST OF POLYPHENOLS USED IN THE EXPERIMENTS. 

(-) Epicatechin (EC), avenanthramide-B (Avn-B), avenanthramide-C (Avn-C), trans-ferulic acid 

(t-FA), 2, 4-dihydroxybenzoic acid (2,4-DHBA), vanillic acid (VA), 3-(4-hydroxyphenyl) propionic 

acid (3,4-OHPPr), 4-hydroxybenzoic acid (4HBA), caffeic acid (CA), sinapic acid (SA), ferulic acid-

glucuronide (FAG) and isoferulic acid-sulphate (IFAS) were dissolved in methanol (34860) obtained 

from Sigma-Aldrich (Gillingham, UK).   

2.2.2 OTHER MATERIALS 

In vitro Toxicology Assay, Methylthiazolyldiphenyl-tetrazolium bromide (MTT) (M-5655), MTT 

Solubilisation solution (M-8910) (Sigma, UK), Genios Microplate Reader (Genios Microplate 

Reader, TECAN Group Ltd., Switzerland).  Renin-expressing cell line (As4.1 cells) (CRL-2193), 

Dulbecco's Modified Eagle's Medium (30-2002), (LGC Standards, UK).   

Penicillin-Streptomycin (15070-063), 7-TrypLE™ Select Enzyme, NO phenol red (12563-011) (Life 

Technologies Ltd, USA).  PBS (14190086) was purchased from (Thermo Fisher Scientific Inc., 

Roskilde, Denmark).  RNeasy Mini Kit (74104), RNase-Free DNase Set (79254), RT2 First Strand Kit, 

Polymerase Chain Reaction: (330401), QuantiTect SYBR Green PCR Kit (204141), RNase 

inhibitor(129916) mouse glyceraldehyde-3-phosphate dehydrogenase (GAPDH) primer 

(Mm_Gapdh_3_SG, QT01658692) (Qiagen, Netherlands), 7300 Real-time PCR system (AB Applied 

Biosystems, California, Unite States), Primer Renin F Sequence TGA-AGA-AGG-CTG-TGC-GGT-AGT, 

Primer Renin R Sequence TCC-CAG-GTC-AAA-GGA-AAT-GTC, RNaseZap® RNase Decontamination 

Solution (Life Technologies Ltd, USA) and Tris-EDTA buffer solution (Sigma-Aldrich, UK).  Pierce™ 

BCA Protein Assay Kit (23227), RIPA Buffer (89900), Halt™ Protease and Phosphatase Inhibitor 

Cocktail (78440), iBlot® Transfer Stacks, Nitrocellulose (IB23002), ECL prime western blotting det 

(10308449) (Thermo Fisher Scientific, USA), Precision Plus Protein™ WesternC™ Blotting 

Standards (1610385), 10 % Mini-PROTEAN® TGX™ Precast Protein Gels, 50 µl well (IB23002) 

(Thermo Fisher Scientific, USA), 2x Laemmli Sample Buffer, 2-Mercaptoethanol (Bio-Rad, USA), 

Marvel Original Dried Skimmed Milk (Iceland), Sodium chloride (S7653), Trizma® hydrochloride 
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(T3253), Bovine Serum Albumin (A7906), Trizma® base Primary Standard and Buffer (T1503), 

Glycine (G8898), Sodium dodecyl sulphate (L4509) TWEEN® 20 (P1379) from (Merck, Germany), 

Anti-rabbit IgG, HRP-linked Antibody, Phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204) 

(D13.14.4E) XP® Rabbit mAb (4370), p44/42 MAPK (Erk1/2) (L34F12) Mouse mAb (4696), 

Phospho-CREB (Ser133) (1B6) Mouse mAb, CREB (86B10) Mouse mAb, Anti-mouse IgG, HRP-

linked Antibody (Cell Signaling Technology, USA).  Coupled antibody pair (Duo Set Kit, DY929 R&D, 

Wiesbaden, Germany), Colour Reagent A (H2O2) and Colour Reagent B, Tetramethylbenzidine, 

Capture Antibody, ACE (CD143) specific mouse monoclonal antibody, Angiotensin Converting 

Enzyme from rabbit lung (A6778), FAPGG (F7131), CHAPS 100 mM solution(19899), N-Hippuryl-

His-Leu hydrate (H1635), Phthaldialdehyde (79760 ), 5-Hydrochloric acid, Glycerol, Captopril 

powder (Sigma-Aldrich, Germany), Human Umbilical Vein Endothelial Cells, Pooled (HUVEC) 

(C2519A), EGM-2 (CC-3162), Cryo amp EGM-2 Bullet Kit (CC-3156 & CC-4176) (LONZA,UK), 

Nitrate/Nitrite Colorimetric Assay Kit (CAY780001) (Cambridge Bioscience Ltd, UK), Human ACE 

Quantikine ELISA Kit (DACE00), Quantikine Immunoassay Control Set 839 for Human ACE/CD143 

(QC32) (R&D Bio-Techne Ltd, UK), Angiotensin Converting Enzyme from rabbit lung(ACE) (A6778). 

2.2.3 CELL CULTURE AND GROWTH  

2.2.3.1 AS4.1 CELLS 

As4.1 cells are a renin-expressing clonal cell line derived from the kidney neoplasm of a transgenic 

mouse [520].  Cell were cultured at 37 °C in a humidified atmosphere with 95 % oxygen and 5 % 

CO2 in DMEM medium supplemented with 10 % FBS and 1 % Penicillin-streptomycin [526, 527].  

The medium was changed every two days to increase growth rate.  After conspicuous confluence, 

the cells were washed with a solution of PBS free from calcium and magnesium ions, followed by 

trypsinization, creating a single-cell suspension.  The resultant cell suspension was centrifuged at 

100 x g for 5 min at 20 ˚C (Centrifuge C 12, AWEL Industries, France).  The supernatant was then 

removed by suction.  Fresh culture medium was added to create a new single-cell suspension with 

the desired seeding cell number quantified per 1 mL volume.  Seeding was done using a 75m2 

tissue culture flask.  With a haemocytometer and trypan blue exclusion, cell counting was carried 

to determine cell number.  Cell suspensions with the desired seeding number were distributed 

evenly onto several flasks.   

2.2.3.2 HUMAN UMBILICAL VEIN ENDOTHELIAL CELLS 

Pooled human umbilical vein endothelial cells (HUVECs) (TCS CellWorks, Buckingham, UK) were 

used between passages 2 to 4 [263, 528, 529].  Cells were routinely cultured in Nunclon™ Δ 75cm2 

flasks in endothelial cell growth medium (TCS CellWorks; proprietary basal medium formulation 
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supplemented with growth factor, antibiotics gentamicin & amphotericin B and 2 % v/v foetal 

bovine serum) at 37°C and 5 % CO2.  HUVECs were sub-cultured using 0.025 % trypsin and 0.01 % 

EDTA (TCS CellWorks).   

The cells were sub-cultured at 70-85 % confluence.  For each 25 cm2 of cells to be sub-cultured, 5 

ml of the medium from one culture vessel was aspirated and the cells rinsed at room 

temperature.  Subsequent to the aspiration from the flasks, the cells were ensconced with 2 mL of 

Trypsin/EDTA solution and the culture vessels placed into a 37°C humidified incubator for 3-5 

minutes.  Microscopic examination of the cell layer was done periodically to check for cell 

separation.  The process of trypsinization was allowed to continue until approximately 90 % of the 

cells are rounded up.  After cell release, the trypsin was neutralized in the flask with 5 mL of 

Trypsin Neutralizing Solution at room temperature and the detached or separated cells quickly 

transferred to a sterile 15 mL centrifuge tube.  The flask was rinsed with a final 2 mL of HUVECs to 

collect residual cells, and the rinse added to the centrifuge tube.  The thus harvested cells were 

then centrifuged at 200 x g for 5 min to collect pellet of the cultured cells after aspiration of most 

of the supernatant. 

2.2.4 PREPARATION OF POLYPHENOLS 

Epicatechin, avenanthramide-B, avenanthramide-C, trans-ferulic acid, 2,4-dihydroxybenzoic acid, 

vanillic acid, 3-(4-hydroxyphenyl) propionic acid, 4-hydroxybenzoic acid, caffeic acid, sinapic acid, 

ferulic acid-glucuronide and isoferulic acid-sulphate, were each dissolved in 70 % methanol as 3 

mg/ml stock.  The final concentration of solvent in experiments was ≤ 0.5 %.  All stocks were kept 

at −80°C. 

2.2.5 EVALUATION OF AS4.1 CELLS VIABILITY 

Cytotoxicity of selected polyphenols is determined by an Methylthiazolyldiphenyl-tetrazolium 

bromide (MTT) assay as described previously in [530, 531], which utilizes the outcome based on 

mitochondrial conversion of the tetrazolium salt (3- [4, 5-dimethylthiazol-2-yl]-2, 5 

diphenyltertrazolium bromide).  In this study, an MTT assay has been employed to assess the 

quantity of viable AS4.1 juxtaglomerular (JG) cells following a 24h polyphenol exposure in various 

physiological relevant concentrations (i.e.  0.1 - 50 μM).  Cells were plated in a 24-well culture 

plates (Thermo Fisher Scientific Inc., Roskilde, Denmark) calibrated at 5×104 cells per well in 500 

µL of media followed by 24 h adherence at 37˚C with 5 % CO2.  On reaching the confluence, the 

medium was replenished with fresh medium containing various doses of polyphenols (100 nM, 

500 nM, 1.0 μM, 5 μM, 10 μM and 50 μM) in triplicate and again incubated for 24 h at 37 °C.  Each 

well in the 24-well plate was then administered 20 µL of MTT solution (5 mg/ml in PBS, M-5655, 
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Sigma), followed by incubation at 37˚C for 4 h.  After incubation, the MTT solution in the medium 

was extracted by pipetting.  In order to solubilise the formazan crystals formed, 100 µL of 

solubilisation solution (M-8910, Sigma) were added to each well, and the plates mildly shaken for 

20 Seconds.  For each sample, absorption of three replications were measured at 595 nm with a 

Genios Microplate Reader (TECAN Group Ltd., Switzerland) and their mean value was used for the 

final result.  Absorbency values were plotted against counted cell numbers in order to establish a 

standard calibration curve.  MTT absorbency was used to determine viable cell numbers on 

meshes or culture-well bottom from the standard curve; this procedure was replicated twice. 

2.2.6 RENIN INHIBITION ASSAY 

The human recombinant renin inhibitor screening assay kit (CAY10006270-96 wells) (Cambridge 

Bioscience Ltd, UK) comprising human recombinant renin (1006270), Substrate (Arg- Glu(EDANS)-

Ile-His-Pro-Phe-His-Leu-Val-Ile-His-Thr-Lys(Dabcyl)- Arg) and Tris-HCl buffer (50 mM, pH 8.0, 

containing 100 mM NaCl) (Cayman Chemical Co.  Ann Arbor, MI, U.S.).  The procedure was carried 

as per the manufacturer’s instructions and described previously [532-535].  Prior to each assay, 

renin enzyme was freshly prepared by diluting it 1:20 in Assay buffer (50 mM Tris-HCl, pH 8.0, and 

100 mM NaCl).  A 95 μM solution of renin substrate (Arg-Glu(EDANS)-Ile-His-Pro-Phe-Leu-Val-Ile-

His-Thr-Lys(Dabcyl)-Arg) in dimethyl sulfoxide (DMSO) was ready to use as supplied (10006872, 

Cayman Chemical Co).  For each assay, background wells were used by adding 20 µL of substrate, 

160 µL of Assay buffer and 10 µL of solvent (methanol).  The activity wells (control) were prepared 

by adding 20 µL of substrate, 150 µL of Assay buffer and 10 µL of solvent, and the inhibitor wells 

were prepared in the same way but with 10 µL of inhibitor (polyphenols) instead of solvent.  All 

reactions were tested in triplicate.  The reaction was initiated by the addition of 10 µL of renin to 

activity and inhibitor wells.  Plates were gently mixed for 10 seconds and left to incubate at 37 ˚C 

for 15 minutes.  Plates were measured using a Genios microplate reader (TECAN Group Ltd., 

Mannedorf, Switzerland) using excitation wavelengths of 340 nm and emission wavelengths of 

465 nm.   

The renin inhibitory activity was calculated as percentage of inhibitory activity (Inhibition %) with 

the following equation.   

 % 𝐼𝑛ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛 =  [
𝐴𝐹 (𝐶𝑜𝑛𝑡𝑟𝑜𝑙) − 𝐴𝐹 (𝑆𝑎𝑚𝑝𝑙𝑒)

𝐴𝐹 (𝐶𝑜𝑛𝑡𝑟𝑜𝑙)
]  × 100 

 



56 

The analysis was performed based on the dose-dependent suppression of renin activity with three 

different concentrations of the inhibitors in triplicate, and then determined the average 

fluorescence.  The IC50 value, defined as the concentration of the inhibitor required to inhibit 50 % 

of the renin activity, was calculated using the linear function of percentage renin inhibition versus 

the logarithm of the inhibitor concentration in accordance to previous published paper [499].   

2.2.7 RENIN GENE EXPRESSION BY RT-PCR 

2.2.7.1 STIMULATION OF CELLS WITH DIFFERENT CONCENTRATIONS OF POLYPHENOLS 

The cultured As4.1 JG cells (described in Section 2.2.3.1) were seeded at a density of 1 × 106 in a 

25 cm2 tissue culture dish.  Upon reaching confluence (approximately 7 × 106 cells), the individual 

polyphenols prepared as described in (Section 2.2.4) were added in carrier medium at different 

concentrations (100 nM, 500 nM and 1.0 μM) in order to stimulate the cells.  Cells were then 

incubated at 37 ˚C with 5 % CO2 for 20 h. 

2.2.7.2 EXTRACTION OF RNA AND CDNA SYNTHESIS 

After stimulation, the RNeasy Mini Kit was used according to manufacturer’s instructions to 

extract the cellular RNA.  RNA concentrations and quality were determined using NanoDrop ND-

1000 spectrophotometer (NanoDrop Technology, Delaware, US).  After extraction, RNA samples 

were treated with the RNase-Free DNase Set to further minimise presence of DNA.  The samples 

were then stored at -80° C until further use. 

For synthesis of complementary DNA (cDNA), 1 μg of RNA and the RT2 First Strand Kit were used 

adhering to manufacturer’s instructions.  Purified DNA was stored at -20° C until gene expression 

was measured.   

2.2.7.3 RENIN GENE EXPRESSION MEASUREMENT 

Renin Gene Expression was measured as described previously [536].The mouse Mm_Gapdh_3_SG 

primer was used as internal control gene (housekeeping gene), Renin R and Renin F primers were 

used (Table 2.1).  Each primer was supplied dry and reconstituted in 1.1 ml TE buffer [1M Tris pH 

8.0 and 0.05 M EDTA in RNase-free water] and then were stored at -20o C. 
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For amplification, the QuantiTect SYBR Green PCR Kit was used and following reaction mix was 

prepared by mixing: 2.5 µL of cDNA, 12.5 µL of SYBR green master mix, 2.5 µL of each primer and 

7.5 µL of RNA-free water.  Subsequently, the 96-well plate was vortexed and spun to remove 

bubbles using Heraeus Multifuge 3SR Plus (Thermo Scientific, UK).  Amplification was carried in a 

Thermal cycler (7300 Real-time PCR system, AB Applied Biosystems, California, United States) 

with the following settings; an initial denaturation for 15 min at 95°C, followed by 40 cycles of 15s 

at 94°C and 30s at 55°C.  The final step comprised of 30s at 72°C.  Following amplification, melting 

curve analysis was performed to verify the specificity of the reactions.   

The relative levels of gene expression were determined from the real-time PCR efficiencies using 

the Delta Delta Ct method (the 2−ΔΔCT) [537].  Results are presented relative to the control cells 

grown without polyphenols (which is arbitrarily defined as 1).  The expression of the target gene 

was normalised to GAPDH expression (housekeeping gene).  Statistically significant differences 

were determined using a GLM then post hoc analysis (Tukey adjustment) in SPSS. 

2.2.8 WESTERN IMMUNOBLOTTING 

Western immunoblotting was undertaken to study the underlying mechanisms of gene expression 

in PCR outcomes with reference to proteins CREB, ATF-1 and ERK1 and 2.  Western 

immunoblotting described in [538]. 

2.2.8.1 LYSATE PREPARATION 

Cells were grown as described in Section 2.2.3.1, in 25 cm2 flask at a seeding concentration of 2× 

106 cells, at 37 °C with 5 % CO2 in DMEM medium.  After conspicuous confluence, the cells were 

washed with a solution of PBS free from calcium and magnesium ions, followed by trypsinization, 

cells were exposed for 1 h to media containing different polyphenols, each at a concentration of 1 

M.  Media was then removed and cells washed with PBS followed by addition of 250 µL of RIPA 

buffer, 2.5 µL of Protease and Phosphatase Inhibitor.  Lysates tubes were mixed and incubated on 

ice for 20 min, passed through needles 19G–25G, vortexed again and left on ice 5 min.  Finally, the 

lysates were pelleted by centrifugation at 1400 ×g for 12 min at 4 °C.  The cell pellets were stored 

at -20 °C until western blot analysis.  Protein content was determined by the BCA Protein Assay Kit 

(Pierce, USA) and quantified with a Genios Microplate Reader (TECAN Group Ltd., Mannedorf, 

Primer I.D. Sequence  
Mouse Renin F 5’ - TGA-AGA-AGG-CTG-TGC-GGT-AGT  
Mouse Renin R 3’ - TCC-CAG-GTC-AAA-GGA-AAT-GTC  
 
Table 2.1  Primer used for RT- PCR 
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Switzerland) at a wavelength of 540 nm.  The concentrations of the cell lysate were then 

calculated from the standard curve of the BCA samples of known concentration. 

2.2.8.2 WESTERN BLOT: PHASE I (PROTEIN SEPARATION) 

Gradient 10 % pre-casted gel (stain-free) (Bio-Rad, Hertfordshire, UK) was used to separate the 

protein samples according to their molecular weight.  Proteins mixed with equal volume of 2x 

Lamaelli buffer supplemented with 2-mercaptoethanol (50 μl in 950 μl) (Bio-Rad) then heated at 

100 °C for 3 min in a water bath, heated to lyse cells and denature proteins.  5 μl of Precision plus 

protein standard (ladder) in the range of 10-250 kDa (Bio-Rad) were loaded as a marker in each 

gel stain-free ladder.  And 20 μg of protein samples were loaded into the wells.  The main gel tank 

was filled with 1x running buffer [25 mM Tris pH 8.3, 0.1 % (w/v) SDS, 192 mM glycine].  The gel 

was run at 200V for about 25 minutes, until the blue dye was at the bottom of the gel.   

2.2.8.3 WESTERN BLOT: PHASE II (TRANSFER) 

To transfer the gel to the membrane, a nitrocellulose membrane (iBlot® 2 Transfer Stacks) with a 

pore size of 0.2 µm was used.  The membrane was placed into the iBlot® 2 Gel Transfer system 

(Thermo Fisher Scientific, USA).  After ensuring no bubbles were present, and the transfer was set 

up at 1.3 A constant current for 7 minutes.  After which the membrane was washed with 25 ml 

Tris buffered saline (TBS) [0.1 % Tween-20, 150 mM NaCl, 2 mM KCl and 50 mM Tris pH 7.4].  

Washing steps took 5 min each and were carried at room temperature with gentle rocking.  

Washing was followed by blocking for 1 h with 5 % (w/v) dried milk in TBS-T 25 mL of blocking 

buffer at room temperature with gentle rocking.  The gels were then washed again 3 times with 

15 mL TBS. 

2.2.8.4 PHASE III (PROTEIN DETECTION) 

The membrane was incubated with appropriate primary antibody at the dilution shown in Table 

2.2 diluted in 5 % w/v BSA (Sigma) in TBS-T 5 mL of primary antibody dilution buffer in a heat-

sealable bag with gentle agitation for 1h and 30min at room temperature. 

The membrane was then washed three times with of TBS-T for 5 min each and then incubated 

with appropriate HRP-linked secondary antibody and the marker conjugate (Precision Plus protein 

StrepTactin-HRP conjugate) at (1:5000) to detect biotinylated protein markers.  Both diluted in 

TBS-T and 5 % w/v dried milk for 30 min with gentle agitation at room temperature.  The 

membrane was washed thrice for 5 min on a rocking platform with TBS-T.   
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Bands were detected using enhanced chemiluminescence (ECL) (GE Healthcare) according to the 

manufacturer's instructions and quantitation was done digitally using a Luminescent Image 

Analyser (Image Quant LAS4000mini, GE Healthcare).  The Image was analysed using ImageJ 

software, the intensity of each band was obtained in numerical form.  Results were expressed as a 

ratio to the relevant loading control (total protein), band signals were normalised relative to 

digitally quantified total protein using the Bio-Rad Stain-Free System. 

2.2.9 POLYPHENOLS AND ANGIOTENSIN CONVERTING ENZYME 

Evaluation of the effects of polyphenols on ACE enzyme was carried out with HUVEC cells with 

four experimental sequels; first shed ACE (enzyme linked immunosorbent assay (ELISA), second 

membrane-bound ACE ELISA measurement and third measurement of ACE activity. 

2.2.9.1 SHED ACE ELISA 

Shed ACE was measured in culture supernatant of HUVEC by Human ACE Quantikine ELISA Kit 

commercially available ELISA (Duo Set Kit, DACE00 R&D, Wiesbaden, Germany), methods 

described previously [539, 540].  HUVEC cells grown in 6-well plates were washed 3 times with 

PBS and incubated with different polyphenols (1.0 μM) diluted in 3 mL of culture medium in 

triplicate.  After 24 hours, the supernatant of the aqueous medium was collected and centrifuged 

at 1,500 rpm for 10 min at 5˚C.  The monoclonal antibody specific ACE was supplied attached onto 

microplate by the company.  The desired antigen (ACE) is then added and bound to the 

immobilized antibody on the microplate, hence an enzyme-linked monoclonal antibody (detection 

antibody) is added.  Furthermore, a substrate solution is added to the wells, which produces a 

detectable signal due to a change in colour.  The samples were prepared in a 10-fold dilution 

adding Calibrator Diluent RD6-45 (180 µL) to tested polyphenols samples (20 µL).  Using a Human 

Antibody Source Dilution 

Phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204) 
(D13.14.4E) (Primary Antibody). 

Rabbit 1:2000 

p44/42 MAPK (Erk1/2) (L34F12) (Primary Antibody). Mouse 1:2000 

Phospho-CREB (Ser133) (1B6) (Primary Antibody). Mouse 1:2000 

CREB (86B10) mAb (Primary Antibody). Mouse 1:2000 

Anti-mouse IgG, HRP-linked Antibody (secondary 
antibody). 

Mouse 1:5000 

Anti-rabbit IgG, HRP-linked Antibody (secondary 
antibody). 

Rabbit 1:5000 

Precision Plus protein StrepTactin-HRP conjugate  1:5000 

   

Table 2.2  List of antibodies used for immunoblotting 

The results represented the average ± SEM (n = 3) of biological replicates generated from 3 independent cell 
cultures and were analysed for statistical significance using GLM with post hoc analysis (Tukey adjustment). 
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ACE Standard stock (100 ng/mL) and Calibrator Diluent RD5P, a serial dilution was carried at the 

following concentrations: 50, 25, 12.5, 6.25, 3.13, 1.56, 0.781 and 0 ng/mL.  High, Medium and 

Low controls were also used. 

All reagents and samples were brought to room temperature before used and all samples, 

standards, and controls were assayed in duplicate.  All reagents, standard dilutions, and samples 

were prepared as directed in the product insert.  To each well 100 µL of assay diluent was added 

followed by 50 µL of standards, controls and sample.  The plate was covered with a plate sealer 

and incubated at room temperature for 2 h on a horizontal orbital microplate shaker (Stuart SSM5 

Shaker, Microtitre, Mini, Cole-Parmer, Staffordshire, UK) at 500±50 rpm.  The wells were 

aspirated and washed by wash buffer (20 mL to dH2O and filled up to 500 mL) 4 times in total 

using a multichannel pipet (Sartorius Stedim Plastics GmbH, Germany).  After every washing step, 

the liquid was removed completely by blotting against clean paper towels.  After the last 

aspiration step, 200 µL of human ACE conjugate was added to each well.  A new plate sealer was 

used to cover the plates and the wells incubated at room temperature for 2 h on the shaker.  

After repeating the washing procedure 4 times, 200 µL of substrate solution was added to each 

well.  The plates were then incubated for 30 min on the bench at room temperature and 

protected from light.  Finally, 50 µL stop solution was added to each well and the plates were 

measured at 450 nm within 30 min using a microplate reader was determined in Spark ® 

multimode microplate reader (TECAN Trading AG, Switzerland) set to 450 nm.  Since wavelength 

correction was available, the reader was set to 570 nm to avoid subtraction during calculation.   

2.2.9.2 MEMBRANE-BOUND ACE ELISA 

Cell were grown and treated as described for shed ACE (2.2.9.1).  For membrane-bound ACE the 

wells washed with 1 mL PBS followed by addition of 50 µL of RIPA buffer with 0.5 µL of Protease 

and Phosphatase Inhibitor in each well.  Then scraped off the wells using a rubber scraper and the 

cells suspended in ice cold PBS, lysates tubes were mixed, then incubated on ice for 20 min, 

vortexed again, left on ice 5 min, and pelleted by centrifugation at 1400 ×g for 12 minutes at 4 °C.  

The cell pellets were stored at -20 °C until analysis.  Assay procedure is as shed ACE and described 

previously [539, 540]. 

2.2.9.3 ASSAY FOR ACE ACTIVITY  

ACE activity was measured in HUVEC using ACE substrate (Hip-His-Leu) as described previously by 

[541].  Briefly, cells were treated with different polyphenols (1.0 μM) in 6 well plates for 24 hours 

followed by washes with phosphate buffered saline.  Cell lysis was performed with 100 μL/well of 

8 mM CHAPS in PBS for 15 min at room temperature.  Then, scraped off the dish using a rubber 
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scraper from the wells and vortexed.  To substantiate the ACE activity in the sample, the activity 

of membrane-bound ACE was measured in a homogenate of cultured HUVEC using ACE substrate 

(Hip-His-Leu).  Followed by addition of 15 µL of cell homogenate to 200 μL of ACE substrate (1 

mM Hip-His-Leu) and incubated for 60 min at 37 °C.  The reaction was terminated with 25 μL of 

0.28 M NaOH and the His-Leu product was estimated by 10 min incubation with 10 μL of O-

phthaldialdehyde (20 mg/mL in methanol).  After addition of 20 μL 3M HCl, the fluorescence of 

samples was measured using 365 nm excitation/500 nm emission filters. 

2.2.10 NITRITE AND NITRATE ANALYSIS  

Cells were grown and treated as described for shed ACE (2.2.9.1).  After 24 h, the supernatant of 

the aqueous medium (1 mL) was collected and centrifuged for nitrite and nitrate analysis with 

methods described by [542-545].  The initial step is conversion of nitrate to nitrite, then addition 

of the Griess Reagents which convert nitrite into a purple azo compound.  Photometric 

measurement of the absorbance accurately determines NO2 concentration.  Total nitrate and 

nitrite were measured by Nitrate/Nitrite Colorimetric Assay Kit (Cambridge Bioscience Ltd, UK), 

200 µL of assay buffer were added to the blank wells, 80 µL of standards or samples added to the 

wells in duplicate.  The standards were diluted with assay buffer as following: 35, 30, 25, 20, 15, 

10, 5 and 0 µM.  The, 10 µL of the enzyme Cofactor mixture was added to standard and sample 

wells, followed by 10 µL of Reductase.  The plate was then covered and incubated at room 

temperature for 2 hours.  Incubation was followed by the addition of 50 µL of reagent R1 and 50 

µL of reagent R2 in each well.  The colour was allowed to develop for 10 minutes at room 

temperature.  Total nitrite was measured at 540 nm absorbance using a TECAN micro plate 

reader. 

For measurement of nitrite, 200 µL of assay buffer was added to blank wells, and 100 µL of 

standards and samples were added in duplicate to each well.  This was followed by 50 µL of 

reagent R1 and 50 µL of reagent R2.  The colour was allowed to develop for 10 minutes and then 

measured at 540 nm absorbance using a TECAN micro plate reader. 
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Total NO, nitrate and nitrate was calculated in (𝜇𝑀) with the following equations. 

 

(𝑁𝑖𝑡𝑟𝑎𝑡𝑒 + 𝑁𝑖𝑡𝑟𝑖𝑡𝑒)(𝜇𝑀) = (
𝐴540 − 𝑦 − 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡

𝑠𝑙𝑜𝑝𝑒
) ∗ ((200µ𝐿))/𝑠𝑎𝑚𝑝𝑙𝑒𝑣𝑜𝑙𝑢𝑚𝑒µ𝐿)) 

 

𝑁𝑖𝑡𝑟𝑎𝑡𝑒 (𝜇𝑀) = (
𝐴540 − 𝑦 − 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡

𝑠𝑙𝑜𝑝𝑒
) ∗ ((200µ𝐿)/𝑠𝑎𝑚𝑝𝑙𝑒𝑣𝑜𝑙𝑢𝑚𝑒µ𝐿)) 

𝑁𝑖𝑡𝑟𝑎𝑡𝑒(𝜇𝑀) = (𝑁𝑖𝑡𝑟𝑎𝑡𝑒 + 𝑁𝑖𝑡𝑟𝑖𝑡𝑒) − (𝑁𝑖𝑡𝑟𝑖𝑡𝑒)  

 

2.2.11 STATISTICAL ANALYSIS 

At least 3 biological replicates were carried out for each assay.  All statistical analyses were carried 

out using the statistical package for social science (SPSS, version 24; SPSS Inc., USA).  The data are 

presented as means ± SEM.  A LM was used to show significant (P ≤ 0.05) effects of independent 

(predictor) variables on the response variable and covariables.  A similar method was used for 

HUVEC cell experiments, to analyse the effects of polyphenols and time after treatment as 

independent variables on measurements of the assayed indicators as dependent variables.  

Tukey's comparison (P≤ 0.05) was used for post hoc analysis of significant results. 

2.3 RESULTS 

2.3.1 CYTOTOXICITY OF POLYPHENOL COMPOUNDS ON AS 4.1 CELLS 

Cytotoxicity of polyphenols was assessed in AS4.1 cells (as described in Section.  2.2.5).  The dose 

response curves for cytotoxicity as assessed by MTT are presented in Figure 2.1.  Cells were 

treated with different polyphenols at different concentrations (0.1 μM, 0.5 μM, 1.0 μM, 5 μM, 10 

μM and 50 μM) in control media for 24 hours.  The polyphenol concentrations ranging from 0.1 to 

10 μM did not affect cell viability as no appreciable cytotoxicity was observed.  However, a 

significant, sharp decline in cell viability was observed at a concentration of 50 μM, where 

throughout all treatments the cell viability was less than 30 % (p ˂ 0.001).  It was also observed 

that at a concentration of 10 μM of trans ferulic acid (t-FA), cell viability was reduced to 65.33 %.  

The maximum plasma concentration of polyphenols rarely exceeded 1 μM following interventions 

of 10 – 100 mg of a single phenolic compound [546].  Concentrations at 1.0 μM were therefore 

considered to be most appropriate for further assays.    
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Figure 2.1  Cytotoxicity of polyphenols on As4.1 cells 

Graphs of viability of As4.1 cells incubated for 24h at different concentrations (0.1, 0.5, 1, 5, 10 and 50 µM) 
of various polyphenols (see Section 2.2.1 for full names).  Each letter corresponds to a specific compound 
A=EC, B=AV-B, C=AV-C, D=t-FA, E=2,4 DHBA, F=VA, G=3,4-OHPPr, H=4HBA, I=CA, J=SA, K=FAG and L=IFAS. 
Cell viability was measured with MTT assays.  Each of the 6 concentrations was assessed in triplicate.  Error 
bars depict the primary results based on standard error. 

  

EC AV-B AV-C 

t-FA VA 2,4-DHBA 

3, 4-OHPPr 
4HBA CA 

SA FAG IFAS 
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2.3.2 RENIN INHIBITION ASSAY 

To investigate how different polyphenols could inhibit renin enzyme activity, a renin inhibitory 

assay was performed (Figure 2.2, Table 2.3).  Obtained data indicate that tested polyphenols exert 

renin inhibition in a concentration dependant manner, from 0.1 - 1 µM.  It was observed that t-FA 

possessed the strongest activity with inhibition ranging from only 6.43 at 0.1 µM to 79.81 % at 1 

µM, with an IC50 value of 0.51 µM (Table 2.3).  EC exhibited an inhibitory potency close to that of 

2,4-DHBA with an IC50 value of 0.52 and 0.54 µM respectively and with a maximum inhibition of 

86.41 and 90.48 % at 1 µM concentration.  AV-B and 3,4-OHPPr showed similar inhibition levels of 

renin activity with 90.78 and 85.42 % with an IC50 of 0.57 µM for both.  VA exerted renin inhibition 

activity ranging from only 16.33 to 71.43 % with an IC50 value of 0.60 µM.  In contrast, AV-C, 4HBA, 

SA and IFAS exhibited weak inhibition, with IC50 values greater than 1 µM.  The renin inhibitory 

activities of the 12 compounds are presented in Figure 2.2 and Table 2.3. 

 

Figure 1.2  Renin inhibitory activity of selected polyphenols 

Graph of inhibitory effects of selected polyphenols (see Section 2.2.1 for full names), at concentrations 
of 0.1,0 .5, and 1.0 μM, on Renin.  Results are expressed as percentage inhibition of renin activity 
(means ± SEM) in triplicate. 
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2.3.3 Effect of Polyphenols on Renin mRNA Levels 

The effects of polyphenols on renin mRNA expression were assessed in AS4.1 cells by RT-PCR and 

gene expression was quantified via real-time RT-PCR with specific primers and normalised to 

GAPDH expression (as described in section 2.2.7).  For this study, polyphenols were used at 3 

different concentrations (0.1, 0.5 and 1.0 μM) and gene expression was measured after 24 hours 

of exposure.  Overall, and when compared to controls, the tested compounds decreased renin 

Polyphenol 
compound 

IC50  
(µM) 

 

EC 0.52  

AV-B 0.57  

AV-C ˃ 1  

t-FA 0.51  

2,4-DHBA 0.54  

VA 0.60  

3,4-OHPPr 0.57  

4HBA ˃ 1  

CA 0.82  

SA ˃ 1  

FAG 0.95  

IFAS ˃ 1  

   
Table 2.3  Approximation of IC50 values of tested polyphenols 
against renin activity. 

The oat and comparator polyphenols used in this study with the 
concentrations at which IC50 occurred. 

Figure 2.3  Effects of 24 h exposure to selected polyphenols (on levels of renin mRNA expression in 
Juxtaglomerular cells (AS4.1 cells) 

Graph of effects of 24 h exposure to selected polyphenols (see Section 2.2.1 for full names) at 
concentrations of 0.1, 0.5 and 1.0 μM, on levels of renin mRNA expression in Juxtaglomerular cells, 
determined using real-time RT-PCR.    Renin expression values were normalised to GAPDH values, 

expressed as fold change from control cells grown without polyphenols by 2
-ΔΔCT

 method (relative value 
1.0).  Data presented as mean ± SEM of three independent experiments.  
 * - P ≤ 0.05; ** - P ≤ 0.01; *** - P ≤ 0.001. 
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mRNA expression in a concentration–dependent manner (Figure 2.3). 

EC at 0.5 and 1 µM concentrations significantly (P ˂ 0.001) decreased renin mRNA expression by 

41.7 and 62.7 % respectively.  Further inhibitory activity was observed for AV-B at 1 µM by 49 % 

(P ˂ 0.001), while t-FA exerted a marked downregulation of renin mRNA expression by 53 % (p ˂ 

0.001) compared to the control value.  In addition, there were significant effects on renin mRNA 

levels after exposure to 4HBA, CA and 3,4-OHPPr at 1.0 μM concentration by 35, 34.4, and 36.7 %, 

respectively (p ˂ 0.01).  After treatment with VA at 1.0 μM approximately 50-fold inhibition in 

renin mRNA expression compared to the control (P ˂ 0.001), while, 2,4-DHBA, SA and AV-C at 1.0 

μM induced non-significant decreases in expression of renin mRNA of about 15 % (p = 0.527, p = 

0.740 and p = 0.797 respectively).  Among the polyphenol compounds used, inhibition of renin 

mRNA expression following FAG and IFAS were lower than the others, statistics showed no 

significant difference compared to the control.  No significant difference in gene expressions of 

renin mRNA was observed when the smallest concentration (0.1 μM) of any polyphenol was used. 

2.3.4 EFFECTS OF POLYPHENOLS ON THE EXPRESSION OF CREB, ATF-1 AND ERK1/2 

PROTEINS 

Levels of CREB, ATF-1, ERK1/2 protein expression were measured using western immunoblotting 

(as described in Section 2.2.8).  AS4.1 cells were treated with selected compounds at 1.0 µm 

concentration for 1 hour.  Calculated means of replicates normalised to total protein showed that 

relative levels of pCREB/total CREB protein were significantly reduced following all polyphenol 

treatments (P ≤ 0.001) except 3,4-OHPPr (Figure 2.4).  In addition, all polyphenol compounds 

tested induced a significant decrease in ATF-1 phosphorylation level when compared to total 

CREB (total CREB Mouse mAb also cross reacts with ATF-1) (P < 0.001) (Figure 2.5).  With the 

exception of 2,4-DHBA, SA and AV-C, the polyphenols tested significantly (P ≤ 0.001) affected the 

levels of ERK1/2 (Figure 2.6), with SA very close to a significant level (P = 0.051).  
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Figure 2.4  Effects of selected polyphenols (1 μM) on levels of CREB (Ser 133) in AS4.1 

Cells were incubated with selected polyphenols (see Section 2.2.1 for full names) for an hour and 
determined by Western immunoblotting.   
A.  Phospho-CREB (ser133).  B.  Total CREB-1 protein.  C.  The bar diagram shows levels of Phospho-
protein relative to total protein and expressed as a fold change from the control (relative value 1.0).  
Error bars are the SEM± of three independent experiments (n=3).  * p-value ≤ 0.05 and ** p-value ≤ 0.01 
and *** p-value ≤ 0.001. 

C

43 kDa 

B
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Figure 2.5  Effects of selected polyphenols (1 μM) on levels of ATF-1 (Ser 63) in AS4.1 

Cells were incubated with selected polyphenols (see Section 2.2.1 for full names) for an hour and 
determined by Western immunoblotting.   
A.  Phospho-ATF-1(Ser63) protein.  B.  Total CREB-1 protein, used as control (total CREB Mouse mAb 
also cross reacts with ATF-1).  C.  The bar diagram shows levels of Phospho-protein relative to total 
protein and expressed as a fold change from the control (relative value 1.0).  Error bars are the SEM± of 
three independent experiments (n=3).  * p-value ≤ 0.05 and ** p-value ≤ 0.01 and *** p-value ≤ 0.001. 
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XXX 

  

 

Figure 2.6  Effects of Selected Polyphenols (1 μM) on levels of ERK1/2 (Thr202/Tyr204) in AS4.1 Cells 

Cells were incubated with selected polyphenols (see Section 2.2.1 for full names) for an hour and 
determined by Western immunoblotting.   
A.  Phospho-p44/42 MAPK ERK1/2 (Thr202/Tyr204).  B.  Total p44/42 MAP kinase (Erk1/Erk2).  C.  The 
bar diagram shows levels of Phospho-protein relative to total protein and expressed as a fold change 
from the control (relative value 1.0).  Error bars are the SEM ± of three independent experiments (n=3).  
* - p  ≤ 0.05; ** - p  ≤ 0.01; *** - p ≤ 0.001. 
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2.3.5 SHED AND MEMBRANE-BOUND ACE  

The measurements of shed ACE in HUVEC cells supernatant after 24 h exposure to different 

tested polyphenols at 1.0 μM concentration was not significantly changed when compared with 

the controls (cells without polyphenol treatment).  Shed ACE was slightly increased following 

exposure to t-FA, although not significantly, whereas there was a decreased level of shed ACE 

following incubation with all other tested polyphenols (Figure 2.7).  In line with this, ACE 

expression levels on the surface of cultured cells (membrane-bound ACE) were not affected by 

polyphenols when cells were incubated with the various polyphenols at 1 M (Figure 2.8).  

Overall, tested polyphenols induced a weaker impact on ACE levels in membrane or in cytoplasm 

of endothelial cell in comparison to the control (calculated as percentage of non-treated control 

cells). 

 

  

Figure 2.7  Detection of shed ACE in supernatant of HUVEC cells 24 h after treatment with selected 
polyphenols at 1.0 μM  

Graph shows selected polyphenol (see Section 2.2.1 for full names) at a concentration of 1.0 μM in 
triplicate calculated as percentage difference from the non-treated control (100 %).  Data presented as 
mean ± SEM. 
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2.3.6 ACE ACTIVITY INHIBITION 

The ability of selected polyphenol compounds to inhibit ACE activity was also assessed.  ACE 

activity was measured fluorometrically with Hip-His-Leu as substrate in homogenates of HUVEC 

cells.  All tested polyphenols at 1.0 μM incubated for 24 h induced some inhibition of ACE 

activities ranging from 17.2 to 48.8 % compared to 100 % non-inhibited control.  2,4-DHBA, EC 

and SA inhibited ACE by 44.7 41.4 and 41.3 %, respectively.  However, greatest inhibition was 

achieved by t-FA at 48.8 % (P = 0.067).  ACE inhibition was not statistically significant for any of 

the tested polyphenols (Figure 2.9). 

  

Figure 2.8  Effect of selected polyphenols on membrane bound ACE expression on the surface of 
HUVEC cells at 1.0 μM.   

Graph shows surface labelling of ACE measured 24 h after treatment with selected polyphenols (see 
Section 2.2.1 for full names) at 1.0 μM, in triplicate, calculated as percentage difference from the non-
treated control (100 %).  Data presented as mean ± SEM. 



72 

 

 

2.3.7 NO, NITRITE AND NITRATE ANALYSIS  

Total nitrate and nitrite concentrations were analysed with a commercially available 

nitrite/nitrate assay.  Following cell exposure to different polyphenols for 24 h, results indicated 

that NO was not significantly increased.  There was even a slight decrease in total NO production 

with AV-B (Figure 2.10 (A)).  The same was observed for nitrate, with no increase in nitrate levels 

and with a slight decrease with AV-B (Figure 2.10 (B)).  An increase in nitrite production was seen 

with most polyphenols, except 2,4-DHBA, VA and FA, where a reduction was observed (Figure 

2.10 (C)).  None of the measured effects of polyphenols significantly (P ≤ 0.05) affected total NO, 

nitrite or nitrate (Figure 2.10 (A-C)).    

Figure 2.9  ACE activity in HUVEC cells 24 h after treatment with selected polyphenols at 1.0 μM. 

Graph shows selected Polyphenols (see Section 2.2.1 for full names) applied at 1.0 μM, in triplicate, and 
calculated as percentage difference from the non-treated control (100 %).  Data presented as mean 
±SEM. 
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A 

B 

C 

Figure 2.10  Total NO (A), nitrate (B) and nitrite (C) production in HUVEC cells after 24 h incubation 
with selected polyphenols at 1 μM 

Selected (see Section 2.2.1 for full names) polyphenols at a concentration of 1 μM in triplicate, 
compared to control cells grown without polyphenols.  Data presented as means ± SEM. 
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2.4 DISCUSSION 

Several studies have shown that polyphenols improve vascular function and have potential 

cardiovascular health benefits [48, 49, 547, 548].  Polyphenols have been reported as a promising 

substitute for oral drugs that exhibit antihypertensive action [252, 499, 506, 549-551].  

Modulation of the RAAS, a critical regulator of BP and vascular function, is one of several 

proposed mechanisms for their action, which may be affected by either inhibited renin expression 

or ACE activity or both [254, 297, 358, 362, 366, 369].  The aim of this study was to better 

comprehend the mechanism of action through which polyphenols achieve such physiological 

improvements, by investigating if they are able to influence the RAAS.  The RAAS plays a crucial 

role in controlling BP via production of a vasoconstrictor, Ang II, which has a role in regulating 

blood volume and vasodilation independently of NO [501, 502].  Renin is the rate limiting step in 

the RAAS, hence it is believed to be a good target for treatment of hypertension and 

cardiovascular disease [552].  Likewise, suppression of renin and ACE are two of the strategies 

used for lowering BP, maintaining electrolyte homeostasis, and for haemodynamics and blood 

volume status regulation [253, 504].   

We examined the in vitro effects of a range of common phenolic compounds on the RAAS at 

concentrations of 0.1, 0.5 and 1.0 μM.  Trans-ferulic acid (t-FA) possessed the strongest renin 

inhibitory activity, with a mean IC50 of 0.51 µM, the proportion of inhibition varied from 6.43 - 

79.81 %.  Other polyphenols from different food sources have previously been shown to modulate 

the RAAS system, by inhibiting renin in vitro, including (-)-epicatechin gallate (IC50 = 619.4 μM), (-)-

epigallocatechin gallate (IC50 = 44.5 μM) and (-)-epigallocatechin (IC50 = 2175.3 μM) [499].  Studies 

using tea polyphenols including theasinensin B (IC50 = 19.33 μM), theasinensin C (IC50 = 40.21 μM), 

strictinin (IC50 = 311.09 μM), and a hexose sulphate (IC50= 50.16 μM) have also demonstrated the 

suppression of renin activity [553].  Renin suppression may have been due to the presence of 

polyphenol derived special functional structures such as analogues of galloyl moiety without a 

catechin skeleton and ortho-tri-hydroxy phenyl.  Polyphenols may conform the renin active site, 

reducing its activity, by forming an enzyme-substrate-inhibitor complex. However, it is also 

possible that the complex biochemical transformations that the numerous polyphenols in plants, 

for example those in tea, undergo during the fermentation process which is typically part of its 

preparation for consumption, form a variety of bioactive substances, including inter alia 

theasinensin B, theasinensin C and a hexose conjugate.  Previous studies have reported that 

polyphenols especially gallated flavonoids are able to inhibit renin activity.  However, there is no 

evidence that any phenolics inhibit renin activity. 
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In order to better understand how polyphenols influence renin expression, we also explored their 

effects on renin gene expression in juxtaglomerular cells (AS4.1).  Renin gene expression was 

significantly decreased following exposure to EC, AV-B, t-FA, 4HBA, CA, 3,4-OHPPr and VA at 

higher concentrations relative to the control (P ˂ 0.01 to P < 0.001, in all cases).  In mouse renin-

expressing clonal cell line derived from the kidney cells (As4.1), which have many features 

characteristic of the human kidney renin-expressing juxtaglomerular cells, it has been shown that 

site D contains a CRE, which binds several transcription factors including cAMP-response element-

binding protein (CREB) and ATF1.  A pathway has been identified which regulates the expression 

of the renin gene, mediated by both cAMP-responsive element binding protein-1 CREB-

dependent and CREB-independent mechanisms, in Calu-6 cells [509, 512].  Further, in renin 

expressing cells, the binding of five specific DNA-protein complexes, consisting of the ATF-1 and 

CREB-1 transcription factors, one of which was an ATF-1zCREB-1 heterodimer, suggests the 

potential for regulation of CREB-1 activity by ATF-1.  Therefore the cAMP-PKA signalling pathway 

in renin expressing cells transcriptionally activates human renin promoter [512].  Therefore, our 

hypothesis was that polyphenols might be capable of modulating the synthesis of renin, by 

interacting with the activation of CREB-1 and ATF-1 proteins, and indeed ERK1/2, which are 

upstream activators of CREB and ATF-1.  The phosphorylation and activation of all proteins were 

significantly reduced following polyphenol treatment (P ≤ 0.001, in all cases) in comparison to 

total protein in control cells.  CREB/ATFs are known to mediate stimulatory effects on renin 

synthesis in juxtaglomerular cells [508, 510, 511].  Since CREB expression was observed to be 

inhibited by several polyphenols in oats, it is likely that this may be one mechanism by which 

renin synthesis is decreased post incubation with polyphenols.  Previous data supports nutrient 

and non-nutrient inhibition of renin expression.  One study showed that vitamin d3 (calcitrol) 

suppresses the transcription of the renin gene through blocking the formation of the CRE-CREB-

CBP complex in the renin gene promoter [554].  In another study involving As4.1 cells, it was 

shown that IL-1β downregulates renin gene expression via a mechanism involving the Erk-STAT3 

pathway.  IL-1β-plays a role in phosphorylation of ERK1/2, which in turn suppresses renin by 

upregulation of STAT-3 [555].  Therefore, reduction in renin gene transcription in juxtaglomerular 

cells post incubation with some polyphenols might be a result of inhibitory interactions with 

CREB, ATF-1 and ERK 1, 2.   

Several studies have shown that polyphenols influence ERK and Protein Kinase B (Akt) signalling 

pathways [556, 557].  For example, flavonols and anthocyanins in blueberry modulate the ERK-

CREB-BDNF pathway in rodents [558].  In another study, quercetin and its O-methylated 

metabolites have been shown to induce neuronal death by inhibition of neuronal survival 
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signalling through inhibition of ERK instead of activating the c-Jun N-terminal kinase-mediated 

death pathway [556].  There is also substantial evidence that the phosphorylation of CREB, and its 

subsequent interference with the CRE, activates renin gene transcription in juxtaglomerular cells, 

include AS4.1 and Calu-6 cells [509, 512, 515, 559-561].  In conclusion, it is widely reported that 

polyphenols interact with the ERK-ATF-1 pathway and P38/ CREB, to reduce expression of the 

renin gene, and that this leads to improved cardiovascular health [558, 562, 563]. 

We also explored the effect of selected polyphenols on ACE and NO using HUVEC cells and found 

most inhibited ACE, but to different degrees and none was significant; t-FA showed the strongest 

inhibitory effect.  ACE inhibition by polyphenols has been demonstrated in similar cell strains by 

tea polyphenols.  ACE activity, and substrate-dependent reaction kinetics have revealed enzyme 

velocity curves that matched allosteric and non-Michaelis-Menten relationships, with a mixed 

mode of in vitro inhibition of ACE, mostly of a kinetically uncompetitive type [362], by green and 

black tea polyphenols.  Further, studies on cultured endothelial cells from human umbilical veins 

incubated with a bilberry polyphenol extract exhibited significant, also inhibited ACE activity after 

10 minutes, dose dependently [369].  These findings were not supported in a study on rats [564] 

which found that ferulic acid lowered ACE activity by the greatest amount (18 %).  The significance 

of this result may be due to the use of a higher dose, 9.5 mg/kg in vivo compared to our 1.0 μM in 

vitro, and to the use of an animal model which is more similar to human essential hypertension 

than our in vitro model [564].  Other phenolic compounds have been identified as ACE inhibitors 

in vitro including vanillic acid, ferulic acid, p-coumaric acid, caffeic acid, p-hydroxybenzoic acid and 

benzoic acid (IC50 = 8, 4.40, 2.80, 2.10, 5.95 and 6.20 mM respectively), which are also present in 

oats [565].  The mechanism of ACE activity inhibition is at least in part through interactions with 

amino acids at the active site, which stabilise phenolic compound interactions with zinc ions [566].  

Previously reported studies have revealed that caffeic acid at a dose of 10 to 1000 µM helps in 

multi-target modulation of RAAS by inhibiting ACE activity (IC50 = 430 µM), caffeic acid also 

reduced aldosterone production [361, 566].  Six flavonoids, apigenin, luteolin, kaempferol‐3‐O‐α‐

arabinopyranoside, kaempferol‐3‐O‐β‐galactopyranoside, quercetin‐3‐O‐α‐arabinopyranoside and 

luteolin‐7‐O‐β‐glucopyranoside have also been shown to inhibit ACE, with kaempferol‐3‐O‐β‐

galactopyranoside the most active (IC50 = 260 µM) [567].  A 3% blueberry diet for 2 weeks, given 

to stroke-prone spontaneously hypertensive rats, lowered ACE activity but had no effect on 

normotensive rats, suggesting that managing the early stages of hypertension with dietary 

flavonoid-rich blueberries may be effective, partially through, they state, soluble ACE activity 

inhibition [568].  In another study, examining the mechanisms of the inhibitory activities of 

flavonoids and metabolites in flavonoid-rich apple peel extract, it was found that inhibition was 
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due to the presence of hydroxyl groups and the B ring, as quercetin-3-O-glucoside has significant 

ACE inhibitory action compared to that of quercetin [569].  In conclusion, there is, therefore, 

substantial evidence to show that polyphenolic compounds inhibit ACE activity.  In our results, 

however, we measured smaller effects than many previous studies, this may be due to the 

differences in doses and polyphenol types, structures or concentrations, the different 

experimental models used, For example some previous published significant result from animal 

studies due to the duration of the study chronic study than single oral administration.  However, 

our in vitro experimental conditions include concentrations and application for 24 h may have 

been influential in the weakness of the ACE activity responses and changes to NO levels.  It is also 

possible that pure phenolic compounds could not fit the active site of ACE, due to their too large 

polymer sizes.  However, it should be noted that the unaltered polyphenols hexameric phenol and 

dieckol, have been shown to inhibit ACE by binding on the outside of the ACE molecule [570].  

Furthermore, phenolic acids and flavonoids, such as quercetin, are reported to inhibit ACE activity 

via interaction with the zinc ion in the active site.  Metalloenzymes, including zinc 

metallopeptidases, are known to be inhibited by suitably hydroxylated flavonoids and other 

polyphenols [571, 572].  It was also concluded that the inhibitory capabilities of phenolic 

compounds increased as their number of hydroxyl and acrylic acid groups increased, hence 

salidroside, with only one hydroxyl and no propenoic acid, compared to the ortho-dihydroxyl and 

propenoic acid properties of caffeic acid, showed much lower ACE inhibiting activity.  Another 

substructure of phenolic acids that seems to influence ACE inhibitory activity, albeit negatively, is 

the methoxy functional group.  This may be due to their steric hindrance to binding to the ACE 

active site [566].  It has become apparent that the presence of certain functional groups, such as 

hydroxyl, carboxyl, and acrylic acid, which can act as hydrogen bond acceptors or donors, seems 

to increase the potency of polyphenols to inhibit ACE, which suggests that it is not simply the 

presence or absence of such groups that influences the potential of phenolic acids to inhibit ACE 

activity.  Studies have revealed, further to this general situation, that most phenolic acids form 

charge−charge interactions with the zinc ion at the active site of ACE, via the oxygen atom in the 

carboxylate moiety.  The exact mechanism by which t-FA lowers ACE activity remains, however, 

unknown.   

Cell exposure to 1 µM of various polyphenols for 24 hours led to non-significantly increased total 

NO, nitrite and nitrate in every case, except a slight decrease in total NO production was seen for 

AV-B and a reduction in nitrite following 2,4-DHBA, VA and FAG exposure.  These results were not 

fully reflected in a study which found that Avenanthramide-2c, a polyphenol, found exclusively in 

oats, when applied at a concentration of 120 μM increased NO production three-fold in smooth 
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muscle cells and nine-fold in human aortic endothelial cells [406].  This may be due to the higher 

concentrations of Avenanthramide-2c used in comparison to ours.  Other studies have revealed 

the highest release of NO, at Δ[NO] > 8.5 nM, is induced by quercetin, myricetin, leucocianidol 

and oligomeric proanthocyanidins while moderate release, Δ[NO] > 5 nM < 8.5 nM, was shown 

after caffeic acid, fisetin, hyperoside and isoquercitrin and only marginal release after other 

phenolic compounds, Δ[NO] < 5 nM [573].  In this study a flavan moiety with free hydroxyl-

residues at C3, C3′, C4′, C5, and C7 and a hydroxyl-, oxo-, or phenolic substituent at C4 was 

associated with high NO activity.  The NO–stimulating and vaso-relaxing activities of the 

polyphenols were also positively correlated, hence the increase in NO due to polyphenols may 

promote cardiovascular health, but the concentration required for this effect is very high. 

The reduced expression of ACE in pulmonary microvascular endothelial cells is caused by two 

processes: initial increased shed of ACE followed by a compensatory downregulation of ACE-

mRNA and membrane-bound protein expression [574].  Hence, we performed similar trials with 

polyphenols, to determine if they also contribute to ACE expression inhibition by increasing either 

shed or membrane-bound ACE.  The measured levels of shed ACE in supernatant from, nor 

membrane-bound on, HUVEC cells after 24-hour incubation with polyphenols (1.0 μM), were not, 

however, significantly changed.  Therefore, we conclude that no substantive effects of 

polyphenols on ACE activity, whether membrane-bound or shed, were detected by our 

experiments.   

We did find, however, strong evidence from our experiments to conclude that polyphenols do 

modulate renin gene expression through their effects on the CREB, ERK and ATF transcription 

factors.  However, unlike some published studies, we failed show that polyphenols inhibit ACE 

activity significantly via this mechanism.  We also found no significant increase in total NO, nitrite 

and nitrate post incubation with polyphenols at 1 µM, however, we measured inhibitions smaller 

than those reported in many previous studies.  We, therefore, conclude that polyphenols may 

reduce BP via the RAAS, but need higher doses for ACE enzyme inhibition.  Polyphenols at 

physiological concentrations could decrease BP, although we cannot explain the exact 

mechanism(s) of lowered renin expression or ACE inhibition and as very few studies have been 

published in this area, this remains an important gap in our knowledge.  Further studies are 

needed to increase our understanding of the biochemical complexities of the relationship 

between polyphenols and inhibition of RAAS and decrease of BP. 

Since these results were promising by clearly demonstrating that small phenolic compounds in 

physiological concentrations might affect the RAAS albeit minimally, they may explain why people 
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who consume foods rich in such polyphenols might experience a reduction in BP.  Therefore, the 

next two chapters will seek to expand on these findings and provide a better understanding of the 

physiological effects of specific polyphenols through both acute and chronic clinical trials. 
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Chapter:  3 Investigation of the Vascular Effects of 
Acute Oat Intake on Males with Pre- and Stage 1 
Hypertension 

3.1 INTRODUCTION 

The purpose of this investigation, of an acute oat intervention on the cardiovascular health of 

males with pre- and stage 1 hypertension, is to build on the large body of existing knowledge in 

this field, which has amassed from studies of polyphenols originating from other plant sources on 

individuals with the same or similar physiological conditions.  This group of people is recognised 

to be particularly responsive to interventions which affect blood pressure (BP) and endothelial 

function.  We anticipate that, as in comparable studies, physiological changes in men in this trail 

will occur following an acute polyphenol intervention, from oats in our case, with measurable 

effects on the RAAS, specifically in observable inhibition of ACE and renin.  Our trials include 

several metrics commonly tested to represent improvements in BP and vascular function, notably 

Flow-Mediated Dilatation (FMD) and endothelium dependent and independent microvascular 

responses.  ACE activity and ACE and renin concentrations were assayed using widely deployed 

Enzyme-Linked Immunoassays (ELISA).  There are no comparable clinical trials which test the 

effects of oat specific polyphenols on BP and vascular function.  The clinical vascular data which 

does exist applies instead either to wholegrain oats without, differentiating the impact of 

polyphenols from fibre, or else where polyphenols are specifically targeted, to a number of other 

phenolic-containing foods and beverages, some of which have been investigated repeatedly [335, 

575-579].   

Recent studies suggest that diets rich in polyphenols have a range of beneficial effects on 

cardiovascular health [47, 181, 241-244].  Polyphenol rich foods which have been studied include 

fresh fruits (particularly berries) [49, 335, 580], vegetables (red onions), whole grains (oat, wheat, 

rye), tea, coffee, cocoa [498, 581], nuts (chestnut, pecans, hazelnuts), red wine, seeds (flaxseed) , 

olive and spices (cinnamon, cloves), all of which can be included with relative ease into daily diets 

[247, 498, 582-588].  The ability of polyphenol-enriched foods to attenuate the incidence of CVD, 

has been attributed to their anti-thrombotic, anti-atherogenic and anti-inflammatory properties, 

as well as their potential to induce vasodilatation and to reduce blood pressure in hypertensive 

individuals [296, 403, 589, 590].  With respect to the two latter outcomes, their potential to 

influence two key pathways of blood pressure (BP) homeostasis, endothelial nitric oxide synthase 

(eNOS) and/or the Renin-Angiotensin Aldosterone System (RAAS), are likely to underpin their 
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actions at the physiological level.  Nitric oxide is the most potent vasodilator in the body and any 

defect in its synthesis or activity may lead to endothelial dysfunction, signalled by impaired 

endothelium-dependent vasodilation.  Impaired endothelium-dependent vasodilation is the 

common cause of vascular dysfunction, one of the most important, early markers of 

atherosclerosis [86].  The RAAS plays a crucial role in controlling blood pressure via production of 

a vasoconstrictor, angiotensin II, which has a role in regulating blood volume and vasodilation 

independently of nitric oxide (NO) [501, 502].  Studies have shown that acute consumption of 

flavanol-rich dark chocolate improved endothelium-dependent vasodilation, flow-mediated 

dilatation (FMD) and protected from vascular impairment induced by a glucose load [581, 591].  

Similarly, acute interventions with cranberry polyphenol metabolites and flavonoid-rich acai 

meals are both associated with increased FMD and vascular function [335, 592].  Flavonol-rich 

grape juice containing cinnamic acid, decreases platelet aggregation, that cranberries rich in 

anthocyanin reduce BP and heart rate, and that pomegranate juice rich in tannins and 

anthocyanin induce vasodilation [186].  Small phenolic compounds such as hippuric, vanillic, 

ferulic and homovanillic acids have been recognised as structurally homologous to NAPDH oxidase 

inhibitors present in endothelial cells [593].  Likewise, betulinic acid reduces nitric oxide activity 

via upregulation of endothelial NO synthase (eNOS) and down-regulation of NADPH oxidase [594].   

Whole grain cereals, while well known for being high in fibre, are also a rich source of other 

macro- and micro-nutrients and non-nutrients, including phenolic acids.  Oat (Avena sativa L.) 

grains are rich in unsaturated fatty acids and soluble fibres (β-glucan), as well as phenolic acids 

such as ferulic acid and phenolic amides called avenanthramides [565, 595].  It has been 

postulated that these small phenolics may contribute to reductions in BP and blood cholesterol, 

and increases in nitric oxide thus contributing to a reduction in CVD risk [40, 406].  

Avenanthramides, exclusively present in oats, have been reported to be bioavailable, and shown 

previously to inhibit the development of vascular smooth cells, in in vitro studies, and presented 

potential health benefits by acting against the adverse effects of atherosclerosis [405, 406, 596].   

Studies have shown that oats could reduce systolic blood pressure (SBP), pulse pressure and 

improved vasodilation [53, 597].  The addition of whole oats to daily diets of hypertensive 

individuals led to reductions in total cholesterol and low-density lipoprotein cholesterol by at least 

10 % within 6 weeks and a reduction in systolic and diastolic BP [598].  It has been speculated that 

the inclusion of whole oats in the diets of middle-aged men and women may to lower BP and 

lipids and so contribute to reducing the risk of CVD by circa 30 % [599, 600].  The cardiovascular 

benefits of whole grain oats have been quite widely investigated and found to mediate 

vasodilation [487, 601].  Oat bread was shown to induce a significant increase in baseline brachial 
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artery diameters and post-ischemia diameters [602]. Oat consumption may attenuate declines in 

brachial artery flow responses induced by high fat intake [603].  Green oat extracts, derived from 

blending whole, young oat plants, were reported to improved vasodilator function of systemic 

and cerebral arteries [53].  The American Heart Association and other international health 

associations now recommended dietary fibres, and whole grain cereals such as oats, to help 

achieve overall goals of implementing a heart-healthy diet [604, 605].  Appropriate studies, 

therefore, to investigate and validate the association of whole grain oats and its constituents with 

cardiovascular benefits may further help to present oats as a valuable and sustainable dietary 

option, especially for adults in prehypertension. 

This study tests the hypothesis that a single intake of oats per day can result in positive CVD 

benefits for healthy men with prehypertension or stage 1 hypertension, as demonstrated by 

improvements in CVD markers, including vascular functions, BP and RAAS enzymes inhibition, and 

that such changes may be, in part, regulated by concentration of avenanthramide and phenolic 

acids. 

3.2 MATERIALS AND METHODS 

3.2.1 SELECTION OF SUBJECTS  

Potential volunteers were recruited using the Hugh Sinclair Unit of Human Nutrition database and 

local advertisements.  Interested volunteers were given a participant information sheet (Appendix 

1) detailing the background of the study and what was expected of them.  Volunteers still 

interested in participation were asked to fill in a health and lifestyle questionnaire (Appendix 2) to 

verify that they met the broad inclusion/exclusion criteria, for example age, dietary allergies and 

medication intake, as outlined below. 

Volunteers eligible for inclusion, measured as described below, comprised: males, 25-65 years 

old, pre- or stage 1 hypertension SBP 120-159 mmHg and DBP 75-99 mm Hg), non-smoking, not 

taking any long-term medication on the exclusion list below, free of disease and not undertaking 

vigorous exercise daily.  The exclusion criteria included: individuals who were hypertensive 

(SBP/DBP/≥ 160/100 mm Hg), BMI > 35, current smoker or ex-smoker, allergic to whole grains and 

taking any BP, anti-inflammatory, antidepressant, antibiotic or blood fat medication. 

Volunteers meeting the broad criteria attended a short screening visit, after having fasted 

overnight (i.e. no intake of food or drink for 10 h before the visit, except water), where the study 

was explained in detail and they were encouraged to ask any remaining questions.  

Anthropometric measures, blood pressure measurements and 20 ml of blood were collected.  
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Blood samples were analysed for biochemical and haematological markers partly on site at the 

University of Reading and partly by the pathology department of the Royal Berkshire Hospital 

(Reading, UK).  Based on screening results, as detailed below, 16 suitable individuals were invited 

to participate in the study.  All volunteers provided written, informed consent before commencing 

the study (Appendix 3). 

3.2.2 STUDY DESIGN 

The study was approved by the University of Reading Research Ethics Committee and registered 

at www.clinicaltrials.gov as NCT02731755.   

The proposed study was a single-centre, two-arm, single-blinded, placebo-controlled randomised 

crossover trial.  Volunteers were required to attend the Hugh Sinclair Unit of Human Nutrition on 

two occasions during which they either consumed one portion of avenanthramide and phenolic 

acids-rich oats or an energy matched control intervention, in random order.  The primary 

expected outcome was flow-mediated dilatation of the brachial artery (FMD).  Secondary 

outcome measures were microvascular endothelial function (measured by Laser Doppler 

Iontophoresis), BP changes, level and activity of the renin angiotensin system. 

3.2.3 STUDY INTERVENTION MATERIALS 

The study intervention materials comprised porridge containing 90.2 g oats (67.7 g CDC dancer : 

oat flakes and 22.5 g oat bran concentrate) (Pepsico, Barrington, USA) and 420 ml water.  This 

provided 45.0 mg of phenolic acids and 5.0 mg avenanthramides (total 50.0 mg).  The control 

intervention consisted of cream of rice (B&G Foods, Inc.), dry skimmed milk, sunflower oil, 

cellulose powder and pectin powder containing 4.2 mg phenolic acids and was closely matched to 

the porridge for macro- and micro-nutrient content (Table 3.1).  β- glucan, betaine, choline and 

trigonelline were present at levels too low to induce any observable vascular effects [602, 606].   

Oat interventions were measured by HPLC for phenolic acid content and analysed for macro and 

micronutrients by Campden BRI (Gloucestershire, UK ).  All dry materials were frozen until needed 

to prevent degradation and prepared as detailed in Appendix 4.  Both foods were well tolerated 

by all subjects, and no adverse events were reported.  
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3.2.4 RANDOMISATION AND MASKING 

To minimise bias researchers was ‘blinded’ to the food (intervention) product.  Scientists not 

involved in the study generated random number sequences, and managed volunteer allocation 

and intervention meal administration.  Volunteers were randomly allocated to the intervention 

sequence (i.e. experimental intervention followed by control intervention or vice versa).   

3.2.5 STUDY VISITS 

Each eligible volunteer was asked to attend 2 identical assessment visits, separated by at least 1 

week, at the Hugh Sinclair Unit of Human Nutrition.  At each visit, the acute effects of a single 

intake of phenolic-rich oat porridge or control intervention was assessed.  Volunteers were asked, 

in preparation for the visit, to fast overnight (i.e. no intake of food or drink for 10 h before the 

visit, except water), maintain complete dietary record sheets and to restrict their diet as detailed 

in Appendix 5, which included refraining from consuming (poly) phenol-rich foods, moderating 

consumption to ≤ 21 units of alcohol/week and to refrain in exercise 48 h prior to the study visits.   

On arrival for a study visit, volunteers completed a researcher-administered questionnaire to 

monitor any potential adverse events and changes in medication, and to collect a full dietary 

record from dietary record sheets and to verify adherence to the lifestyle restrictions.  Volunteers 

 
 Oat intervention 1 Control intervention 2 

Phenolic acids (mg) 45.0 4.2 
Avenanthramides (mg) 5.0 0.0 
Energy (kcal) 322 322 
Fat (g) 6.3 6.3 
Saturated fatty acids 1.2 0.9 
Monounsaturated fatty acids 2.2 1.3 
Polyunsaturated fatty acids 2.6 3.9 
Carbohydrate (g) 47.1 47.1 
Fibre (g) 12.1 12.1 
Beta-glucan 5.6 0 
Pectin 0 5.6 
Protein (g) 13.3 13.3 
Betaine (mg) 25.2 1.5 
Choline (mg) 12.0 2.6 
Trigonelline (mg) 34.0 2.0 

 
Table 3.1  Study intervention materials 

Polyphenols are highlighted in blue. 
1 67.7g CDC dancer oat flakes, 22.5g oat bran concentrate and 420ml water. 
2 39.4g cream of rice, 6.1g sunflower oil, 29.5g skimmed milk, 5.6g pectin powder, 6.5g cellulose and 
420ml water. 
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were then rested for 15min in a supine position in a temperature-controlled (22 ± 1 °C), dimmed 

room, after which a series of non-invasive clinical measurements were taken, and blood and urine 

samples collected and immediately processed, following standardised procedures.   

After completion of baseline measurements, a researcher not directly involved in the study 

provided the intervention products, which the volunteers were asked to consume completely 

over a 15min period.  Up to 24 h post-intervention, non-invasive clinical measurements and blood 

and urine sample collections, as detailed below, were continued at set times (i.e. baseline, 1, 2, 4, 

6 and 24 h; Figure 3.1).  Between the 6 h and 24 h assessments, volunteers were allowed to leave 

the facility.  To ensure the volunteers’ well-being, they were encouraged to keep well-hydrated 

during the study by drinking enough water, while otherwise consuming just the phenolic-free 

meals as provided.  Phenolic-free meals comprised a cheese sandwich consumed 5 h after the 

study intervention, and a main meal of pasta bake and crème brûlée which volunteers took home 

and consumed 8 h after the study intervention.  Water intake throughout the day was recorded.  

A further light meal was also provided at the end of the assessment visit. 

3.2.6 BLOOD COLLECTION  

Blood samples were collected into vacutainers containing lithium heparin serum isolation’s 

anticoagulants, EDTA and no serum isolation anticoagulants (Greiner Bio-one, USA), using 

standard venepuncture procedures.  Thereafter, the vacutainers were kept in ice for lithium 

heparin and EDTA or stored at room temperature for serum separator vacutainers and allowed to 

coagulate for 30-60 minutes before centrifugation for 15 min at 3000 g at 4 ˚C, in order to 

separate the plasma or serum.  The serum and plasma were isolated and stored in screw cap 

microtubes at -80 ˚C. 
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Figure 3.1  Outline study design 

24 hour intervention periods and assessments at the Nutrition Unit.  Interventions and assessment times are shown. 
BL – Baseline. 



87 

3.2.7 OUTCOME ASSESSMENTS 

3.2.7.1 FLOW-MEDIATED DILATATION  

Endothelial-dependent vasodilation was measured by using an ATL Ultrasound HDI-15000 system 

(ATL Ultrasound) following standard guidelines [607].  Briefly, by using an electrocardiogram gated 

images (ECG-gated trigger) and image-grabbing software (Medical Imaging Applications-llc) to collect 

images.  After a supine rest lasting 15 minutes in a quiet, temperature-controlled room, the brachial 

artery 2-5 cm above the antecubital fossa was imaged collected at 0.25 frames/s.  Doppler-derived 

velocity of arterial blood flow was measured for 1 min prior to commencing each FMD measurement.  

Baseline images were taken for 1 min, after which the BP cuff inflates to 220 mm Hg to occlude blood 

flow.  A sphygmomanometric cuff is placed just under the elbow of the non-cannulated arm and 

inflated using a pressure of 220 mm Hg for 5 minutes to induce a restriction of blood flow in the 

brachial artery.  The pressure cuff is then released to induce reactive hyperaemia and hence 

vasodilatation of the brachial artery.  After 5 min of occlusion, the pressure is rapidly released, 

allowing reactive hyperaemia to occur; measurement collection continued for 5 min post release.  

Analysis of the images were performed using wall-tracking software (MIA-llc).  Image files were 

analysed by a single researcher who was blinded to the measurement details, and peak diameter will 

be defined as the largest diameter obtained after the occlusion is released.  FMD response calculated 

using change from baseline to peak diameter divided by baseline and reported as a percentage value 

(% FMD).  Velocity analysis performed over a minimum of 5 cardiac cycles and averaged, then 

converted to flow by multiplying by the cross-sectional area of the artery.  Vascular measurements 

were then taken at baseline, 1, 2, 4, 6 and 24 hours post-intervention. 

3.2.7.2 LASER DOPPLER IONTOPHORESIS (LDI)  

LDI is the gold-standard measurement used as a surrogate marker of microvascular function [337, 

608].  It is non-invasive and assesses microvascular response in the forearm after stimulation with a 

vasodilatory agent [603].  Acetylcholine (Ach) and Sodium nitroprusside (SNP) were used as 

vasodilators.  Acetylcholine is critical in activating endothelium-dependent vasodilation.  It binds to 

the M2 muscarinic receptors of the endothelium surface, leading to the production of nitric oxide 

(NO) which is responsible for vasodilation as well as vascular smooth muscle relaxation.  Sodium 

nitroprusside is a nitric oxide donor and reacts with sulfhydryl groups in vivo to produce NO directly, 

thus stimulating vasodilation and exerting endothelium-independent control [609].  Measurements 

were carried out in a temperature-controlled room (22 ± 1 °C) with acclimatised volunteers in a 

supine position, after calibration of the machine.  Two chambers were set 1 cm apart on the alcohol 

cleansed volar face of the subject's forearm, using double-sided adhesive rings.  Chambers were filled 

with 2.5 ml of 1 % Ach and SNP, respectively, prepared with 0.5 % sodium chloride (Sigma Chemical 
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Co.).  The Ach and SNP were transferred trans-dermally via the anodal and cathodal chambers, 

iontophoresis was achieved using an electrical current which incremental increase from 0 to 20 µA.  

Microvascular function was measured by LDI2-IR Laser Doppler imager (Moor Instruments Ltd).  The 

Laser Doppler signal is proportional to the number and velocity of moving blood cells in illuminated, 

superficial, skin microvessels [610].  The laser beam penetrates the skin and is partially backscattered 

by moving blood cells, causing, according to the Doppler principle, a frequency shift and generating a 

signal that is linearly related to red blood cell flow (skin erythrocyte flux), as predicted by theoretical 

and experimental models [611].  Scans with 5 μA incremental increases in current from 0-20 μA were 

recorded to measure the elasticity of the small peripheral blood vessels at the lower arm [337].  A 

median flux against time graph was plotted and the area under the curve calculated to analyse the 

recorded scans by moorLDI V5.3 Software [612]. 

3.2.7.3 BLOOD PRESSURE  

Systolic and diastolic BP and heart rate were measured in the subject’s non-dominant arm, while 

sitting, with an automatic, digital, blood pressure monitor (Omron M6 Intelli-Sense Comfort; model 

HEM-72211-E8, Omron Healthcare Co.).  Before Measurement volunteers were rested for 30 minutes 

and the average of triplicate measurements separated by at least 1 min was recorded [613]. 

3.2.7.4 ANTHROPOMETRIC MEASUREMENT 

Before vascular assessments, body composition and weight were measured, using a Body 

Composition Analyser (Tanita BC-418MA, TANITA, UK Ltd.) by same trained researcher, according to 

the manufacturer's protocols.  Standing height was measured with a stadiometer (Medical scales and 

measuring system, Seca Lt., UK).  Body Mass Index was calculated as weight/height2 (kg/m2).   

3.2.7.5 ENZYME-LINKED IMMUNOASSAYS (ELISA) 

a) ACE activity 

Serum angiotensin converting enzyme (ACE) activity was measured by a spectrophotometric method 

using an ACE Kinetic test kit (Bühlmann Laboratories AG, Schonembuch, Switzerland).  Briefly ACE 

mediates the hydrolysation of the synthetic substrate N-[3-(2-furyl)acryloyl]-L-phenylalanyl-glycyl-

glycine (FAPGG) to an amino acid derivate (furanacryloyl-L-phenylalanine, FAP) and a dipeptide 

(glycylglycine, GG), the decrease in absorbance during the cleavage reaction is measured [614].   

ACE activity was measured using enzymatic assay (ACE Kinetic test kit, Bühlmann Laboratories AG, 

Switzerland).  The substrates, calibrator, controls and the serum specimen were allowed to reach 

room temperature, high and low controls were prepared by adding 2 ml of deionized H2O.  A plate 

was prepared with 250 µl substrate and 25 µl calibrator serum sample, then incubated in a Spark® 
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multimode microplate reader (Tecan Trading AG, Switzerland) for 21 min at 37 °C, after first shaking 

for 2 min.  The kinetic reaction was measured at 3 min intervals from 6 min onwards.  The cleavage 

reaction’s kinetic energy was measured as a decrease in the absorbance at 340nm, calculated as 

follows.   

𝐴𝐶𝐸 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =
calibrator value ∗ slope(sample)

slope(calibrator)
 

 

b) ACE Concentration 

ACE concentration was determined using the method described in Section 2.2.9 for shed ACE, with 

the following differences.  Blood serum replaced HUVEC cells as the tested medium.  Serum samples 

were prepared in a 10-fold dilution by adding Calibrator Diluent RD6-45 (180 µL) to 20 µL of serum.   

c) Renin Concentration 

The renin concentration in plasma was measured using a quantitative sandwich enzyme 

immunoassay (Quantikine® ELISA Human Renin Immunoassay, R&D Systems Europe, Ltd., UK) which 

requires a human renin specific monoclonal antibody pre-coated microplate.  Standards and samples 

were pipetted into wells in the plate; the immobilized antibody binds available renin to form an 

enzyme-linked monoclonal antibody.  A substrate solution, which produces a detectable signal owing 

to a colour change, was then added.  A wash buffer was prepared by mixing a manufacturer supplied 

concentrate (20 ml) with deionized H2O up to 500ml.  Calibrator diluent RD5P was then diluted at a 

ratio of 1:5, comprising 10ml calibrator diluent and 40 ml dH2O.  Diluted Calibrator Diluent RD5P (75 

µL) was mixed with an equal amount of plasma sample with EDTA anticoagulant.  The serial dilution 

with the human renin standard was also prepared.  For reconstitution, 1ml of dH2O was mixed with 

the human renin standard (20,000 pg/ml) and was left to rest for 15min prior to use.  Again, using a 

ratio of 1:5, the standard was mixed with calibrator diluent RD5P in 2000, 1000, 500, 250, 125, 62.5, 

31.3 and 0 pg/ml, to prepare the serial dilution.  High Control, Medium Control and Low Control vials 

were filled with H2O (2 ml) and mixed throughout.  To each well, 100 µL of assay diluent RD1S was 

added with a multichannel pipet, prior to adding 50 µL of the prepared standards, control or samples 

respectively.  The plate was then sealed with adhesive strip and incubated for 2 h at room 

temperature on the orbital microplate shaker (Stuart SSM5 Shaker, Microtitre, Mini, Cole-Parmer, 

UK) at 500 rpm.  After 4 washes with wash buffer (300 µL) and removal of all the liquid, a human 

renin conjugate (200 µL) was added to each well, wells were again sealed and incubated for a further 

2 h at room temperature as previously.  After repeating the washing procedure 4 times, 200 µL of 

substrate solution was added to each well.  The plates were re-incubated for 30 minutes at room 
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temperature while protected from light.  Thereafter, a (50 µL) stop solution was added and optical 

density determined using a Spark ® multimode microplate reader (Tecan Trading AG, Switzerland) at 

450nm. 

3.2.8 SAMPLE SIZE AND STATISTICAL ANALYSIS 

The power calculation was made for the primary clinical outcome measure (FMD of the brachial 

artery) to determine the minimum number of participants required for the study.  The sample size 

was calculated using the variance of repeated measurements in the control group and on the control 

data; standard deviation within the participants was 0.35 % (based on previous studies performed in 

our group).  A sample size of 13 subjects yielded 80 % power at P ≤ 0.05 significance level to 

determine a significant within-subject difference between treatments of at least 0.3 % of FMD.  

However, in order to provide power to use the secondary measures and achieve significant within-

subject differences, we aimed for 15 participants. 

To identify differences in the study outcomes (i.e. markers of CVD risk including LDI and BP) between 

assessment time points and interventions, a mixed model was used to analyse the effect of 

covariance response variables based on log likelihood, while a pairwise comparison tool used to 

analyse the significant differences between variables which are time, intervention and interaction 

between time and intervention.  RAAS enzymes levels and activities in biological samples were 

analysed by GLM to show a significant effect of covariance variable on the response variables.  Then, 

for comparison we used post hoc analysis (Tukey comparison) (P = 0.05).  All statistical analyses were 

carried out using the statistical package for social science (SPSS) version 24. 

3.3 RESULTS 

The sequence of screening, assessment and study visits followed by each participant is presented in 

Figure 3.2 and the study population’s baseline physical characteristics at screening are shown in 

Table 3.2.  All participants were male, healthy and diagnosed with pre- or stage 1 hypertension.  The 

results of statistical analyses of the intervention and control groups over the measurement period 

shown in Figure 3.1 are shown in Table 3.3.  Results are presented for each of the primary and 

secondary study objectives.   
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Characteristic Mean ± SEM  Range 

Age (y) 47.3 ± 3.3 22.0 - 68.0 

BMI (kg/m2) 26.4 ± 0.9 18.9 - 33.5 

Body Fat (%) 23.2 ± 1.8 8.0 - 34.7 

Systolic blood pressure (mm Hg) 132.1 ± 1.7 117.7 - 147.3 

Diastolic blood pressure (mm Hg) 80.5 ± 0.9 74.0 - 86.3 

Heart rate (bpm) 71.2 ± 2.4 55.3 - 95.3 

Plasma glucose (mmol/L) 5.4 ± 0.1 4.5 - 6.5 

Plasma total cholesterol (mmol/L) 5.2 ± 0.3 3.0 - 7.0 

Plasma triglycerides (mmol/L) 1.6 ± 0.2 0.6 - 4.8 

 
Table 3.2  Baseline characteristics at screening 

Characteristics of overnight fasted study participants at screening; (n = 16). 

Figure 3.2  Flow chart of study participation  

18 participants enrolled, and 16 completed both assessment visits.  Reasons for exclusion / failure to 
complete are shown to the right. 
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Measure Figure 

Intervention 

A - oats 
B – control 

Baseline 

Time after intervention (Hours) Probabilities (P) 

1 2 4 6 24 
Treat-
ment 

Time 
Treat-
ment ×
 Time 

FMD 
3.3 A 4.16 ± 0.57  4.37 ± 0.7  4.01 ± 0.67  5.03 ± 0.84  3.42 ± 0.59  4.44 ± 0.38  

0.5615 0.1829 0.482 
B 4.67 ± 0.54  3.9 ± 0.86  3.41 ± 0.45  5.48 ± 0.8  4.42 ± 0.8  3.55 ± 0.65  

Ach-iAUC 
3.4 (A) A 538.16 ± 90.36  

 
681.81 ± 182.02  633.43 ± 82.01  564.87 ± 66.25 381.31 ± 61.41  

0.8948 <.0001 0.0679 
B 465.03 ± 70.64  

 
463.69 ± 55.36  702.63 ± 30.43  649.67 ± 51.47 314.97 ± 45.54  

SNP-iAUC 
3.4 (B) A 661.12 ± 52.37   709.43 ± 68.43  555.22 ± 85.84  552.12 ± 60.19  622.38 ± 50.57 

0.1572 0.7274 0.0074 
B 757.06 ± 43.24   502.88 ± 25.58  623.28 ± 56.97 681.13 ± 63.73  513.72 ± 35.77  

Ach-AUC 
3.5 (A) A 1593.9 ± 198.85   1678.3 ± 140.6  1676.44 ± 233.96  1627.05 ± 182.27  1560.91 ± 161.29  

0.9769 0.2647 0.0777 
B 1534.1 ± 144.24   1358.26 ± 116.9  1621.82 ± 167.51  1757.69 ± 140.77  1701.63 ± 190.89  

SNP-AUC 
3.5 (B) A 1897.85 ± 159.41  

 
1693.55 ± 131.09  1406.17 ± 146.66  1795.97 ± 184.83  1889.87 ± 221.77  

0.9831 0.133 0.249 
B 2163.44 ± 209.1  

 
1694.75 ± 144.7  1723.88 ± 140.09  1760.05 ± 220.52  1903.8 ± 158.3  

SBP 
3.6 (A) A 125.38 ± 2.27  125.8 ± 2.24  125.72 ± 2.08  124.44 ± 2.28  126.37 ± 1.57  122.37 ± 1.54  

0.988 0.0064 0.5801 
B 124.42 ± 2.3  124.93 ± 1.75  123.94 ± 1.83  122.28 ± 1.34  127.07 ± 1.93  123.77 ± 1.84  

DBP 
3.6 (B) A 73.88 ± 1.51  72.75 ± 1.53  73.32 ± 1.45  74 ± 1.65  71.38 ± 1.49  72.47 ± 1.71  

0.6927 0.0207 0.9561 
B 74.15 ± 1.33  72.56 ± 1.27  73.45 ± 1.4  74.64 ± 1.55  72.78 ± 1.44  73.57 ± 1.87  

HR 
3.6 (D) A 64.66 ± 2.84  63.94 ± 2.49  62.1 ± 2.39  61.25 ± 2.08  62.69 ± 1.71  64.15 ± 2.61  

0.9757 <.0001 0.9139 
B 64.94 ± 3.18  63.69 ± 2.73  61.84 ± 2.19  61.12 ± 2.13  65.42 ± 2.27  64.87 ± 2.64  

Renin level 
3.7 (A) A 763.79 ± 61.94   753.12 ± 55.24   805.19 ± 77.1  805.99 ± 62.54  

0.736 0.0107 0.6903 
B 788.38 ± 45.22   733.05 ± 45.62   776.07 ± 52.69  845.44 ± 64.59  

ACE level 
3.7 (B) A 136.41 ± 8.6  

 
136.38 ± 8.55  

 
134.07 ± 4.85  146.5 ± 6.18  

0.0711 0.1393 0.652 
B 150.18 ± 5.42  

 
135.37 ± 8.46  

 
131.07 ± 9.32  136.68 ± 7.37  

ACE activity 
3.7 (C) A 31.76 ± 5.08  

 
28.49 ± 4.06  

 
28.32 ± 6.18  29.03 ± 3.15  

0.6786 0.6048 0.7347 
B 30.8 ± 3.38  

 
26.93 ± 2.98  

 
23.62 ± 2.78  30.38 ± 3.96  

Table 3.3  Results of Measurements of Cardiovascular Risk Biomarkers  

Values are presented as mean measurement ± SEM, for units see the text.  Primary outcomes: flow-mediated dilatation (FMD).  Secondary outcomes: endothelial-dependent 
vasodilation induced by Ach and endothelial-independent vasodilation induced by SNP, both measured by LDI and expressed as both area under curve (AUC) and incremental 
area under curve (iAUC); systolic blood pressure (SBP); diastolic blood pressure (DBP); heart rate (HR); angiotensin converting enzyme (ACE) and renin.  Results from ANOVA of 
treatment, time, and time × treatment interaction, significant probabilities are highlighted (P < 0.05 – light pink, P <0.01 – dark pink).  Post hoc analyses used Tukey’s 
comparison test.  For all measures, n = 16.   
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3.3.1 FLOW-MEDIATED DILATATION 

None of the measured changes in % FMD was significant (CI = 95 %) (Table 3.3 above), baseline % FMD 

measurements were 4.16 with the oat and phenolic acid intervention, compared to 4.67 % in the 

control.  Following the control intervention, mean FMD was observed to fall up to the 2 h measurement, 

reaching a low point of 3.41 %, before increasing to a peak at the 4 h measurements and then falling 

back to 3.55 %, below the baseline, after 24 h.  The profile (Figure 3.3) was similar following the oat and 

phenolic acid intervention, although the reduction over the first 2 h, to 4.37 %, was less than the control 

(0.1 compared to 1.56 %); measurement at 24 h was the peak, also at 4 h was 5.03 %, however the 

lowest FMD was measured after 6 h at 3.42 %, and the final FMD rose again at 24 h to 4.44 %.  FMD 

comparisons at 1 and 2 h were improved by 0.21 % and dropped by 0.15 % respectively, compared to 

the baseline level, in the oat group, however, dropped by 0.77 % and 1.26 % compared to the baseline 

level, in the control group.  At 4 h for both groups, FMD was 0.87 % above the baseline for the oat 

compared to only 0.81 % in the control group.   

Differences between the means of the oat and control treatments, the treatments over time and the 

interaction between them were not significant (Figure 3.3); treatment (P = 0.5615), time (P = 0.1829) or 

the time × treatment interaction (P = 0.482).   

 

Figure 3.3  Changes in FMD after consumption of phenol-rich, wholegrain Oats 

Oat Group consumed phenol-rich, wholegrain oats containing 45.0 mg of phenolic acids and 5.0 mg 
avenanthramides, compared to the Control Group.  Values are means ± SEMs from Table 3.3  FMD: 
flow-mediated dilatation.  GLM analysis, n=16, followed by Tukey post hoc test (P ˃ 0.05).   
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3.3.2 LASER DOPPLER IONTOPHORESIS 

Figures 4 and 5 present the results from Table 3, showing LDI vasodilation measurements over time 

expressed as area under curve (AUC) and incremental area under curve (iAUC), using Ach and SNP as 

vasodilators.  Differences in vasodilatory responses due to altered NO production, endothelial-

dependent or -independent, can be distinguished by LDI following doses of Ach and SNP, respectively, 

and provide evidence of the receptor sites on which oat polyphenols act.   

Results for LDI cannot be considered conclusive, since this is a secondary outcome of the study and the 

results for FMD, the primary outcome, were not significant; the study design only ensured sufficient 

power to reliably analyse the primary outcome.  iAUC of endothelium-independent vasodilation, 

facilitated by SNP, when analysed in a linear mixed model, with post hoc Tukey’s comparison (Table 3.3) 

showed a putatively highly significant (P = 0.0074) interaction between treatment × time, with a peak in 

vasodilation at 2 h in the oat intervention group (709.43 compared to 502.88 PU/h-1 in the control) 

(Figure 3.4(B)) but was not significant for AUC.  In contrast, analysis of endothelium-dependent 

vasodilation, with Ach as the vasodilator, was non-significant for the same interaction using both AUC 

and iAUC (P = 0.0777 and P = 0.0679 respectively) (Table 3.3, Figures 3.4 (A) and 3.5 (A)).  There is also 

an indication from iAUC that acute consumption of avenanthramide and phenolic oats may lead to an 

improvement in endothelium-dependent vasodilation over time (P ˂ 0.0001), but no other endothelial 

dependent vasodilation results reflected this finding nor were any significant for phenolic oat 

interventions only. 

Graphic results, Figures 3.4 and 3.5, showed that for the control group the profiles are similar for 

endothelium-dependent and -independent vasodilatory changes using both iAUC, and AUC.  The pattern 

is, however variable in the oat intervention group, which shows comparable profiles, a rise and then 

gradual decline in vasodilation, for endothelium-dependent vasodilation using AUC and iAUC.  A 

different profile emerged in endothelium-independent vasodilation, when the initial rise followed by 

decline in vasodilation was followed by a final recovery towards the baseline levels in both cases, 

suggesting that the effects of polyphenol treatment on endothelium-independent vasodilation may 

have a short duration.   

Our results indicate, therefore, that maintaining local levels of NO as a mechanism by which phenolic-

rich foods may reduce the risk of endothelial dysfunction and hence, atherosclerosis, merits further 

investigation.  
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(B) 

Figure 3.4  Effects of oat treatments on: (A) endothelium-dependent vasodilation (Ach) and (B) 
endothelium-independent vasodilation (SNP), expressed as iAUC. 

Effects of phenolic-rich, wholegrain oat consumption, compared to a control over 24 h in pre- or 
stage 1 hypertensive men, represented by incremental area under the curve (iAUC) (perfusion units 
per hour, PU/h-1), on: (A) endothelium-dependent vasodilation (Ach) and (B) endothelium-
independent vasodilation (SNP).  Mean measurements are shown from Table 3.3 at baseline (B) and 
2, 4, 6 and 24 h post intake are shown; vertical bars – standard error.  Significant differences are 
highlighted - **.  A mixed model analysis, n = 16, followed by Tukey post hoc test (P ˃ 0.05). 

(A) 
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(A) 

(B) 

Figure 3.5  Effects of oat treatments on: (A) endothelium-dependent vasodilation and (B) 
endothelium-independent vasodilation, expressed as AUC. 

Effects of phenolic-rich, wholegrain oat consumption, compared to a control over 24 h in pre- or 
stage 1 hypertensive men, expressed as area under the curve (AUC) (perfusion units per hour, 
PU/h-1), on: (A) endothelium-dependent vasodilation (Ach) and (B) endothelium-independent 
vasodilation (SNP).  Mean measurements are shown from Table 3.3 at baseline (B) and 2, 4, 6 and 24 
h post intake are shown; vertical bars – standard error.  A mixed model analysis, n = 16 followed by 
Tukey post hoc test (P ˃ 0.05). 
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3.3.3 BLOOD PRESSURE, PULSE PRESSURE AND HEART RATE 

Peripheral SBP, DBP, pulse pressure (PP) and heart rate (HR), all failed to show any significant 

differences between acute consumption of avenanthramide and phenolic acids-rich oats and the energy 

matched control treatments at any measured time-point (1, 2, 4, 6 and 24 h) (Figure 3.6), when analysed 

with post hoc Tukey’s multiple comparisons test.  Although SBP and HR showed highly significant 

differences (P = 0.0064 and P < 0.001 respectively) in mean measurements over the measurement 

period (Time, Table 3.3) compared to the baseline measurements and DBP also showed significant 

differences (P = 0.0207), these are secondary outcomes and therefore indicative rather than conclusive 

results.  Of these secondary objectives, only pulse rate did not change significantly over time.  Unlike the 

vasodilation results, these indicators did not show any significant differences in the interaction between 

treatment and time, further evidence of a low level of influence from the intervention.   

Despite the lack of significance, the results do show similar change-profiles for SBP, DBP and HR (Figure 

3.6), with all three indicators showing lower baseline measurements in the oat treatment group, 

followed by sharp increases 1 h into the measurement period, at which point they all slightly exceeded 

the control group (SBP 125.8 mm Hg compared to 124.93, DBP 72.75 mm Hg compared to 72.56 and HR 

63.94 beats/min-1 compared to 63.69), followed by a relatively steep drop, to below the control group 

levels by 2 h.  From 4 – 24 h changes in both treatment and control are equivalent, with the oat 

treatment showing measured consistently lower than the control, graph profiles, however, differ slightly 

between the three indicators.  The profile of changes in pulse pressure (Figure 3.6 (C)) is similar, 

differing in, however, the absence of the same sharp, control-exceeding peak at 2 h in the oat treatment 

group. 
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Figure 3.6  Effects of consuming phenolic-rich, wholegrain oats, on: (A) systolic blood pressure (SBP), (B) 
diastolic blood pressure (DBP), (C) Pulse pressure and (D) Heart rates  

Effects of phenolic-rich, wholegrain oat consumption, compared to a control over 24 h in pre- or stage 1 
hypertensive men, on: 
(A) - systolic blood pressure (SBP); (B) - diastolic blood pressure (DBP); (C) - pulse pressure (PP) and  
(D) heart rate. 
Mean measurements are shown from Table 3.3 at baseline (B) and 1, 2, 4, 6 and 24 h post intake; vertical bars – 
standard error.  A mixed model analysis, n = 16, followed by Tukey post hoc test (P ˃ 0.05)  

(D) 

(B) 

(C) 

(A) 
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3.3.4 ANGIOTENSIN CONVERTING ENZYME AND RENIN ENZYME INHIBITION 

In a GLM then post hoc analysis (Tukey comparison) (Table 3.3), no significant differences were observed 

in ACE activity in blood serum, or renin levels in blood plasma, between the intervention groups 

measured, at any measured time-point compared with the baseline measurements, or in the interaction 

between them.  The oat treatment and control groups did, however, show close to significant levels (P = 

0.0711) in ACE levels, with greater inhibition following oat consumption possibly suggesting a beneficial 

effect from treatment according to this secondary measure. 

In the oat treatment group, inhibition of renin level and ACE activity were highest after 2 h (Figure 3.7 

(A) and (C)), whereas ACE levels were lowest after 6 h (Figure 3.7 (B)).  Levels were 805.19 pg/ mL-1, 

28.32 U and 134.07 ng/mL-1 respectively.  In all cases there was a later recovery in enzyme levels, 

suggesting the effects of the treatments were wearing off, which for renin and ACE levels, eventually (by 

24 h) exceeded the baseline measurements.  The control groups also showed similar initial enzyme 

inhibition followed by recovery, with greatest inhibition at 2 h for renin, compared to 6 h for ACE in both 

the levels and activity measurements.  Although no results were statistically significant, there are 

indications from our results that the consumption of the treatment, irrespective of the nutritional 

differences between the oats and the control, within the constraints of this study, may lead to an initial, 

RAAS enzyme inhibition, followed by recovery to, or in excess of, the baseline measurements. 
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Figure 3.7  Effects of consuming phenolic-rich, wholegrain oats on: (A) Renin concentration; (B) 
ACE levels and (C) ACE activity 

Effects of phenolic-rich, wholegrain oat consumption, compared to a control over 24 h in pre- or 
stage 1 hypertensive men, on: (A) Renin levels (pg/ml-1) in plasma; (B) ACE level (ng/ml-1) and (C) ACE 
activity (U) in serum.  Mean measurements are shown from Table 3.3 at baseline (B) and 2, 6 and 24 
h post intake - solid bars; thin bars - standard error.  GLM, n=16, followed by Tukey post hoc test (P ˃ 
0.05). 

(B) 

(C) 

(A) 
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3.4 DISCUSSION 

This study aimed to test the hypothesis that a single acute intake of oats would reduce BP and improve 

endothelial function, in men with pre- or stage 1 hypertension, and that these physiological changes 

would be measurable in effects on the RAAS, specifically ACE and renin inhibition.  Our data indicate 

that at the intake amount used there was no significant change in mean % FMD or BP following oat 

consumption, relative to a control, but an increase in endothelium-independent vasodilation at early 

time points, as assessed by LDI with iontophoresis, was induced.  Although there are no similar clinical 

trials with oats to directly compare with our data, i.e. ones that isolate the impact of the phenolic acids 

from other potential bioactives in oats, clinical vascular data exist for the impact of other phenolic-

containing foods and beverages [335, 575-579].  For example, 400 mg pure chlorogenic acid intake has 

been shown to decrease systolic and DBP, although did not influence nitric oxide status or endothelial 

function acutely [255].  Our vasodilation results, while not showing significant responses to the 

intervention, agree broadly with a randomised, placebo-controlled trial indicating that the moderate 

intake of champagne acutely improves endothelium-independent vasodilation at 4 and 8 h post 

consumption [343], particularly with respect to endothelium-independent blood flow 2 h following 

intake.  Coffee intake has also been shown to improve endothelium-dependent brachial artery (FMD) at 

1 and 5 h following intake in acute trials, which was paralleled by the appearance of hydroxycinnamate 

such as chlorogenic acid metabolites in plasma [577].  The impact of oat polyphenol intake on the 

vascular system, however, appears to be more subtle that observed for the coffee study, which 

administered higher doses of phenolic acids compared to our oat intervention (310 mg compared to 50 

mg for oat). This may be why our results failed to induce significant responses.  Similarly, the relatively 

low oat intake in our study failed to induce the magnitude or statistical reliability of FMD increase and 

BP reductions observed for flavonoid-containing interventions such as cocoa [498, 581], berry [49, 335, 

580] and green or black tea [351, 584]. 

Our study is broadly in agreement with other clinical trials which suggest the consumption of 

avenanthramide-rich oats may mediate vasodilation [487, 601], although our data show weaker 

associations with vascular outcomes and were not reliably statistically significant.  This is likely due to 

differences in study design, particularly that of the intake dose used in the various trials and the small 

sample size.  For example, oat bread intake has been shown to not affect FMD over a 4 week period, 

although it did induce a significant increase in baseline brachial artery diameters and post-ischemia 

diameters [602], changes that were only observable as trends in our results.  Notably, this study used an 

intake of 30 g β-glucan per day, compared to our 5.6 mg, further evidence that our interventions were 

not sufficient to elicit significant results.  Other studies have also, however, failed to demonstrate 

chronic increases in FMD, with whole grain oat or wheat cereals having no effect on brachial artery 

vasodilatation when consumed with a high fat diet.  Oat, attenuated reduction of augmentation index 
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(AIx), one form of pulse wave analysis (PWA) following the high fat meal [487, 615], although similarly to 

n-3 PUFAs, oat consumption may attenuate declines in brachial artery flow response induced by a high 

fat intake [603].  In addition, consumption of green oat extracts at 1500 mg, is reported to improved 

vasodilator function of systemic and cerebral arteries [53].  Our results are also similar to a study of 

blueberry ingestion which, although dosing with 300 mg, an intake much higher than ours, nevertheless 

concluded no significant differences took place in peripheral arterial function [616]. 

Our observations regarding a lack of influence of oat phenolic intake on BP were reflected in a lack of 

influence on the RAAS, however, our results were non-significant and, therefore, only indicative.  RAAS 

inhibition is thought to be a physiological target for the prevention of high BP and thus CVD [552, 617], 

for example, in silico hydrolysates of oats and their in vitro bioassay showed that oat protein isolates did 

aid in renin and ACE inhibition [374, 618].  However, these studies used whole grain oats and do not 

directly compare the effects associated with avenanthramide and phenolic acid metabolites; the in vitro 

responses to oat protein and inhibition of ACE enzymes, renin, and dipeptidyl peptidase-IV they found 

were, however, significant.  It is easier to measure enzyme inhibition in vitro rather than in vivo, as many 

different variables, factors and environmental conditions can be controlled in vitro.  Such variables 

include bioactive peptide degradation by gastrointestinal digestion, the maintenance of bioavailability 

for exerting a favourable physiological effect, predicted solubility, toxicity and allergenicity.  

Furthermore, only blood enzyme activity can be measured in vivo and not cellular enzyme activity, 

which limits our ability, currently, to detect potential cellular level benefits of avenanthramides.  

Another study of flavonoids, notably in tea, found significant inhibition of ACE activity which led to 

improvements in vascular health [351].  In addition, the plant polyphenol quercetin was found to be 

associated with a reduction in BP, however, the reduction was noted independently of changes in ACE 

activity [298].  Our study also found no significant change in ACE activity, however, our results differ 

from these findings with quercetin, in that our results appeared, within their limitations, to show no BP 

reduction.  While several studies have indicated an inverse relationship between dietary fibre/whole 

grain content and hypertension, these trials utilised high dietary intake of fibre.  However, the reported 

antihypertensive effects from whole oats or β-glucan ingested in high concentrations or volumes are not 

consistent, since in another study they were found to have conspicuously antihypertensive effects in 

individuals with two risk factors obesity and hypertension [619]. 

Acute BP reductions after polyphenol intake are widely recognised, however, some acute trials have 

reported no significant effects of their intake on BP.  Our data ostensibly agree with studies of flavonoid-

rich acai and cranberry, which both also failed to measure significant effects on blood pressure [335, 

592].  A systematic review of the effects of oat consumption on BP, found significant reductions were 

only identified in 4 of the 20 studies considered [40].  Other studies have indicated potential decreases 
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in cardiovascular risk to individuals consuming whole grain oats through reduced LDL cholesterol while 

also still failing to detect significant reductions in blood pressure [620-622].  In a randomised, controlled 

trial involving 16 participants in the age group 51–69 y who were given orange juice, it was found that in 

spite of high serum levels of plasma flavanones and phenolics (15.20 ± 2.15 μmol/L-1) no changes in 

cardiac risk biomarkers including BP could be detected [623].   

Therefore, using a robust design, our study revealed that a single moderate intake of avenanthramide 

and phenolic acid enriched oats may influence mean % FMD beneficially, because there was a medically 

relevant magnitude of effect relative to the control, although these changes failed to achieve statistical 

significance.  There was no significant change in mean BP following the oat intervention, relative to the 

control, but an increase in endothelium-independent vasodilation, again not detected as significant in 

the models we used, was induced at early time points.   

The use of an all-male sample reduces the likelihood of confounding factors between volunteers in this 

acute trial and also makes the results more comparable to other studies.  However, the short-term 

intervention and the lack of investigation of differences in rates of metabolism and variations in 

responses to measurements and sample collections between volunteers contributed to the limitations 

of the trial outcomes.  Furthermore, the trial was uninformative with respect to the long-term effects 

that oats consumption might have on CVD biomarkers, and our knowledge, considering also the limited 

availability of published studies, remains, therefore, incomplete.  A further study was, therefore, 

planned and conducted with a chronic design and a larger sample size, to analyse the long-term effect of 

oats consumption in a similar at-risk group for cardiovascular disease, which is described in Chapter 4. 
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Chapter:  4  Investigation of the Vascular Effects of 
Chronic Oat Intake on Adults with Pre- and Stage 1 
Hypertension 

4.1 INTRODUCTION 

This chapter considers the vasoactive potential of a chronic intake of medium and high dosage 

avenanthramide and phenolic acid containing oats on pre- and stage 1 hypertensive adults.  Of the 

numerous published epidemiological and human intervention studies concerning the cardiovascular 

effects of oats, the overwhelming focus to date has been on the potential benefits of increased whole 

grain or whole grain fibre consumption and on diets or interventions incorporating β-glucan.  This 

approach has frequently failed to account for the roles and contributions of the various oat constituents 

known to be bioactive, which include, vitamins and minerals, polyphenols in general and specifically 

small phenolic compounds.  Since chronic intervention studies have usually patently failed to 

differentiate the specific effects of the polyphenolic content from other bioactive constituents, despite 

the amassed body of evidence from such studies, our understanding of both the most efficacious dietary 

ingredients and by implication the pathways of their action, is far from complete.  Most studies 

investigate chronic interventions, emphasizing a dietary rather than medicinal view of the potential 

benefits of polyphenols, and we describe some characteristic and pertinent chronic intervention studies 

below.  We also describe the scope of phenolic compounds which are contained in oats.  There is some 

limited in vitro confirmation that avenanthramides [436] and phenolic acids (PA) [593] may be capable 

of influencing CVD and related risk factors and by investigating these, the most prominent phenolic 

components of oats, at different but dietary realistic intervention levels, in a chronic intervention on 

subjects with physiological characteristics that are recognised to be likely to be susceptible to such 

intervention, i.e. pre-hypertensive adults, this set of assays will make a substantial and novel 

contribution to filling some important gaps in our understanding  

Diet is known to be capable of influencing an individual’s blood pressure and represents one of the most 

important modifiable risk factors.  For example, epidemiological studies have shown that CVD risk is 

elevated by the intake of high levels of fat, particularly trans and saturated fat [39, 624-626], and high 

levels of dietary sodium intake [627-629].  Conversely, CVD risk factors such as hypertension have been 

shown to be ameliorated by high dietary intake of vegetables, fruits and dietary fibres [13, 36, 630, 631].  

Whilst various macro- and micro-nutrient constituents of these foods may impact on CVD development 

and related risk factors, such as blood pressure [632], recently plant polyphenols including flavonoids, 

and phenolic acid, present at high concentrations in fruits, vegetables and whole grains have been 

shown to impact beneficially on blood pressure and endothelial function [342, 633, 634].  Diets rich in 
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flavonoids have been shown to improve vascular function [73, 325, 635, 636] and successfully lower BP 

in mildly hypertensive or normal BP subjects [73, 637, 638]. Specifically, flavanol intake is well reported 

to decrease blood pressure in patients with hypertension [286], whereas the intake of the flavanone 

hesperidin decreases DBP in healthy overweight men [639].  Furthermore, polyphenol intake has also 

been observed to reduce low density lipoprotein (LDL) cholesterol levels, another well-established 

marker of CVD risk [640] and an improvement in the blood lipid profile in patients with hyperlipidaemia 

[641]. Coffee intake, which has similar small phenolics to those found in whole grain oats, has been 

shown to improve vascular function in healthy men [577, 586].  

Whole grain oats are a rich source of phenolic acids, in particular ferulic acid p-coumaric acid, 4-

hydroxybenzoic acid, syringic acid and sinapic acid [595, 642], in addition to vitamins, minerals, 

phytosterols, unsaturated fatty acids and lignans [565, 643, 644].  A number of constituents have been 

suggested to contribute to the cardiovascular health benefits of oat intake, although the majority have 

been attributed to their fibre content [645-647].  Such a conclusion is reasonable in light of data 

indicating that intake of soluble fibre (β-glucan) from oats or oatmeal significantly decreases blood 

cholesterol levels and blood glucose levels [647-651].  β-glucan is the major constituent of the dietary 

fibre (DF) fraction of oats, with lower amounts of arabinoxylan (AX) and only traces of other cell wall 

polysaccharides, such as cellulose and glucomannan [652].  Although β-glucan is the dominant DF 

component in whole grain, AX is of interest as it binds over half of the phenolic acids found in the grain 

[595].  The remainder are present (in soluble form) either as free acids or conjugates (such as steryl 

ferulates), along with other potential bioactive components such as avenanthramides (N-

cinnamoylanthranilate alkaloids), alkylresorcinols (phenolic lipids), sterols, tocopherols and tocotrienols 

tocols [595].  As in all cereals, these components are concentrated in the outer layers of the grain 

(aleurone, pericarp and testa, Figure 1.10) and hence are recovered in the “bran” fraction on milling.  

Thus the impact of whole grain intake on human cardiovascular health is highly likely to be made up of 

the combined effects of both fibre and phenolic acids found within the whole grain [645].  

Several epidemiological studies have suggested that an increased intake of whole grain products is 

associated with a reduction in hypertension, type 2 diabetes, and chronic heart disease (CHD) [40, 653-

655].  Oats in particular have been shown to have a positive impact on CVD health status, reducing low-

density lipoprotein (LDL) cholesterol, SBP and DBP and improving vasodilation and blood flow [53, 547].  

It has also been speculated that their intake may reduce the necessity for anti-hypertensive drugs [650].  

Whole grain wheat and oat intervention for 12 weeks significantly reduced SBP and pulse pressure (6 

and 3 mm Hg respectively), when compared with refined cereal intake [597].  The intake of oats has 

been inversely associated with coronary heart disease, CVD and stroke by 21, 16 and 11 %, respectively 

[654, 656].  Increases in % FMD by 1.80 ± 0.50% have been reported in a trial using wild green oat 
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extract, which contains high levels of phenolic acids and other potential bioactive substances such as 

saponins, vitexins and isovitexin [53].  Whole grain has been shown to induce significant reductions in 

both SBP and DBP, in slightly hypercholesterolemic volunteers [657] and hypercholesterolemic men 

[658], using intervention levels and chronic trial periods similar to those used in this trial.  Whole grain 

oats, in studies of mildly hypertensive subjects found a significant 6 mm Hg reduction in SBP after a 6-

week intervention [601] and of 7.5 mm Hg SBP and 5.5 DBP [598, 659].   

The RAAS is an important system controlling BP homeostasis, and cardiovascular and renal function in 

humans and its critical role in probably all amelioration of CVD has been increasingly recognised in 

recent years [660].  While clinical trials using oats show mixed results with respect to RAAS effects, many 

in vitro studies show strong inhibitory effects of oat polyphenols on RAAS, particularly ACE inhibition 

and/or renin expression [374, 661].  Wheat inhibited ACE activity in vitro [662] and has been shown to 

strongly inhibit ACE levels in blood plasma [663].  Largescale studies have shown that increased urinary 

sodium and potassium excretion, as proxies for dietary intake, are associated with CVD and other health 

risks [664, 665], a 12 week study of the effects of an oat diet on 24h BP in hypertensive men found that 

excretions remained unchanged following intervention [666].   However, a 5 week whole-grain diet 

study which reduced SBP and DBP reported no effects on in urinary excretions of minerals related to BP 

[657].  A study using barley, showed higher decreases in urinary salt excretions compared to different 

whole grains in hyperlipidaemic subjects [658]. 

However, studies have not consistently found improvements in cardiovascular health indicators.  A 

meta-review of oat-based chronic studies indicated that no significant changes in a range of CVD risk 

markers [40] was a common finding.  In a study of oat and wheat based whole grain interventions no 

changes in FMD were found in hypercholesterolemic patients [667].  A larger study of 315 overweight 

individuals given whole grain oats for four months at different dosages did report small improvements in 

endothelial function but did not find any significant differences between interventions [668].  A whole 

grain intervention study found differences in both dependent and independent vasodilation, but none 

that was significant [669].  It has also been found that ambulatory 24-h BP following oat intake for 12 

weeks was not significantly changed in a study of hypertensive men [666].  Other studies which have 

concluded that whole grain diet led to no significant difference in plasma lipid profiles [668, 670] and in 

a review of 21 randomised controlled trials where the impacts of oat intake were being studied, only 13 

studies showed significant reduction in total cholesterol (TC) and only 14 significant reductions in 

LDL [656]. 

This study aims to assess the chronic effects (i.e. after 4 weeks) of consuming whole grain oats, with 

particular consideration for the levels of polyphenols (avenanthramide and phenolic acids) they contain, 

on microvascular function and 24 h blood pressure.  It also examines a potential mechanism for 
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observed physiological changes by measuring the level and activity of angiotensin converting enzyme 

(ACE) and renin. 

4.2 MATERIALS AND METHODS 

4.2.1 SELECTION OF SUBJECTS 

Potential volunteers were recruited using the Hugh Sinclair Unit of Human Nutrition database and local 

advertisements, local media, social media websites, through poster/leaflet advertisements in local 

Hospitals and through mail out via local GP practices for the latter two recruitment strategies, NHS 

ethical approval was done. Interested volunteers were given a participant information sheet (Appendix 

6) detailing the background of the study and what was expected of them. Volunteers still interested in 

participation were asked to fill in a health and lifestyle questionnaire (Appendix 7) to verify that they 

met the broad inclusion/exclusion criteria, for example age, dietary allergies and medication intake, as 

outlined below.   

Volunteers eligible for inclusion, measured as described below, comprised: males, females taking the 

contraceptive pill or on hormone replacement therapy (HRT), 25 to 75 years old, above average blood 

pressure (i.e. systolic 120-159 mmHg and diastolic 75-99 mmHg).  Exclusion Criteria were: abnormal 

biochemical/haematological results assessed at the health screening, hypertension (i.e. SBP/DBP ≥ 

160/100 mm Hg), BMI >35, current smoker or ex-smoker ceasing <3 months ago, past or existing 

medical history of vascular disease, diabetes, hepatic, renal, haematological, neurological, thyroidal 

disease or cancer, prescribed or taking lipid lowering, anti-hypertensive, vasoactive (e.g. Viagra), anti-

inflammatory, antibiotic or antidepressant medication, allergies to whole grains, dairy and lactose 

intolerance, parallel participation in another research project, having the flu vaccination or antibiotics 

within 3 months of trial start, chronic constipation, diarrhoea or other chronic gastrointestinal complaint 

(e.g. irritable bowel syndrome), on a weight reduction regime or taking food, probiotic or prebiotic 

supplements or laxatives within 3 months of the trial start, performing high levels of physical activity 

(i.e. ≥ 150min aerobic exercise/week), consumption of alcohol ≥ 21 units/week for men and ≥ 15 

units/week for women, females who were breast-feeding, or who may be pregnant, lactating or, if of 

reproductive age, are not using a reliable form of contraception (including abstinence). 

Volunteers meeting the broad criteria attended a short screening visit, after having fasted overnight (i.e. 

no intake of food or drink for 10h before the visit, except water), where the study was explained in 

detail, including gastrointestinal questionnaires, 3-day food diaries, the intake of the study intervention 

materials, the collection of urine sample and dietary & exercise restrictions.  A demonstration of the 

vascular measurements was given.  Volunteers were encouraged to ask any remaining questions.  

Anthropometric measures, blood pressure measurements and 10 ml of blood were collected.  Blood 
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samples were analysed for biochemical and haematological markers partly on site at the University of 

Reading and partly by the pathology department of the Royal Berkshire Hospital (Reading, UK).  Based 

on screening results, as detailed below, 28 healthy volunteers were invited to participate in the study.  

All volunteers provided written, informed consent before commencing the study (Appendix 8), while all 

further aspects of the study were discussed in detail. 

4.2.2 STUDY DESIGN  

The study was approved by the University of Reading Research Ethics Committee as NCT02847312 and 

registered at www.clinicaltrials.gov ID 211656 and REC reference 16/LO/1542.  The proposed study was 

a single-centre, three-arm, double-blinded, placebo-controlled randomised crossover intervention.  

Volunteers were required to attend the Hugh Sinclair Unit of Human Nutrition on six occasions (Figure 

4.1) during which they either consumed different doses of the intervention foods, or an energy matched 

control intervention, selected in random order.   

The purpose of the trial was to test the chronic effects (i.e. after 4 weeks) on cardiovascular risk markers 

and gut health of consuming a daily β-glucan matched breakfast, and afternoon snack that were 

moderate or high in oat avenanthramide and phenolic acids (hereafter "phenolic oats").  The study 

intervention materials and quantities used were as detailed in Table 4.1, which includes their nutritional 

content.  Each intervention period was separated by a washout of 4 weeks. 

The primary expected outcome was flow-mediated dilatation of the brachial artery (FMD).  Secondary 

outcome measures were microvascular endothelial function (measured by Laser Doppler Iontophoresis), 

activity and level of the renin angiotensin system, 3-day food diaries and 24 h minerals excretions, which 

all markers associated with CVD risk. 

Figure 4.1  Study design 

4-week intervention periods and attended 6 study visits at the Nutrition Unit (visits 1, 3, 5 on the first day 
of each period; visits 2, 4, 6 on the last day of each period).  

4 week
intervention 

period 1 *

Wash
out period

(≥ 4 wk)

Wash
out period

(≥ 4 wk)

Visit 1
(0wk)

* Daily intake of high or moderate dose of avenanthramides and phenolic acids from oats 
or control (given in random order during the 3 separate intervention periods)

4 week
intervention 

period 2 *

4 week
intervention 

period 3 *

Run in 
period
(2 wk)

Visit 2
(4wk)

Visit 3
(8wk)

Visit 4
(12wk)

Visit 5
(16wk)

Visit 6
(20wk)

Maintain body weight, keep habitual diet and exercise, limit coffee & tea intake to 2 cup per day, and avoid 

wholegrain oat products and dietary supplements containing pre-/probiotics and (poly)phenols.
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Food and Content Control Moderate Phenolic Oats Intervention High Phenolic Oats Intervention 

(g) Breakfast Afternoon 
Snack 

Daily 
Total 

Breakfast Afternoon 
Snack 

Daily 
Total 

Breakfast Afternoon 
Snack 

Daily 
Total 

Food 
         

Oatmeal - - - - - - 66.8 - 66.8 

Oatwell - - - 17.0 - 17.0 - - - 

Oat Cake - - - - - - - 60.0 60.0 

Cream of Rice 68.8 - 68.8 63.3 - 63.3 - - - 

Cream Cracker - 60.0 60.0 - 60.0 60.0 - - - 

  - - - - - - - - - 

Nutritional Content 
         

Energy (kcal) 274.0 226.2 500.2 274.0 226.2 500.2 239.1 261.0 500.1 

Cellulose 8.1 0 8.1 0 0 0 0 0 0 

Pectin 4.8 0 4.8 0 0 0 0 0 0 

Total polyphenols 7.4 6.4 13.8 32.0 6.4 38.9 - - 68.1 

 Phenolic acid (mg) 7.4 6.4 13.8 32.0 6.4 38.4 25.5 23.3 48.8 

 Avenanthramide (mg) 0 0 0 0.5 0 0.5 13.6 5.7 19.3 

β-glucan 0 0 0 4.8 0 4.8 2.7 2.2 4.9 

Carbohydrate 55.04 45.2 101 52.7 45.2 97.9 37.8 30.8 68.7 

Total Fibre 12.9 2.6 15.5 8.8 2.6 11.4 6.8 8.7 15.5 

 Soluble fibre 4.8 0 4.8 4.8 0 4.8 4.8 0 4.8 

 Insoluble fibre 8.1 2.6 10.7 4.0 2.6 6.6 10.7 0 10.7 

Protein 4.7 6.5 11.2 8.2 6.5 14.7 9.5 7.3 16.9 

Total Fat - 1.6 1.6 0.7 1.6 2.3 4.0 10.1 14.1 

 Saturated Fat 0 1 1.0 0.1 1 1.1 0.6 1.14 1.8 

 MUFA 0 0.2 0.2 0.4 0.2 0.6 1.4 6.6 8.0 

 PUFA 0 0.3 0.3 0.3 0.3 0.6 1.8 1.8 3.6 

Sodium 0 1.0 1.0 0 1 1.0 0 0.4 0.4 

                    

Table 4.1  Nutritional content and quantities of Intervention Food Materials  

Quantities of food stuffs including the intervention materials, phenolic acid*, avenanthramide* and β-glucan, and their nutritional content are shown in grams (g) 
unless specified as mg or kcal; for the control, moderate and high phenolic oats interventions. 
Macronutrients, total fibre and sodium contents quantified by Campden BRI group, UK.  Phenolic acid, avenanthramide, β-glucan and energy contents of the food 
materials are estimates from the literature and food labels.  Figures are rounded to one decimal place. 
MUFA - monounsaturated fatty acids; PUFA - polyunsaturated fatty acids. 
* Highlighted blue. 
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4.2.3 STUDY VISITS 

For each study visit volunteers were requested to arrive at the Hugh Sinclair Unit of Human 

Nutrition in the morning.  Volunteers were asked, in preparation for the visit, to fast overnight 

(i.e. no intake of food or drink for 10h before the visit, except water), maintain complete 

dietary record sheets and to restrict their diet as detailed in Appendix 9, which included 

refraining from consuming (poly) phenol-rich foods, moderating consumption to ≤ 21 units of 

alcohol/week and to refrain in exercise 48h prior to the study visits.  On arrival volunteers 

completed a researcher-administered questionnaire to monitor any potential adverse events 

and changes in medication, and to collect a full dietary record from dietary record sheets and 

to verify adherence to the lifestyle restrictions.   

Anthropometrical measures were performed (height, weight and % body fat composition 

(TANITA, UK, Ltd.)), following which the volunteers rested for 20 minutes in a supine position 

in a temperature-controlled (22 ± 1 C), light-dimmed room and oscillometric blood pressure, 

FMD, vascular reactivity (LDI) and pulse wave analysis measurements was performed, 

following standard procedures.  Blood was collected and immediately processed, also 

following standardised procedures.  At the end of the visit, volunteers were asked to wear an 

ambulatory blood pressure monitor for 24h, to collect their urine for 24h and to avoid intake 

of (poly) phenols, caffeine, alcohol and nitrite/nitrate (Figure 4.2).  

On visits 1, 3 and 5, the intervention products for the 4-week intervention period, together 

with the intake instructions, were provided.  A polyphenol-low breakfast (white bread toast, 

butter, cheese, and water) was provided while the volunteers were in the Hugh Sinclair Unit.  

During a 2 week run-in period and for the duration of the study, volunteers were asked to 

completely refrain from eating oats (apart from the study interventions), taking dietary, 

probiotic or prebiotic supplements, to drink no more than 400 ml/d of tea or polyphenol-low 

coffee (i.e. a highly roasted polyphenol-degraded commercial instant coffee provided by the 

researchers) but otherwise to maintain their habitual dietary and activity patterns, and to keep 

their body weight within 1 kg of their starting weight.  
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Compliant intake of the intervention materials was monitored using volunteer-maintained 

intake logs and returned, empty material sachets.  Furthermore, urinary avenanthramide 

excretion was measured as a marker of oat intake. 

4.2.4 RANDOMISATION AND MASKING  

To minimise bias both researchers and subjects were ‘blinded’ to the food (intervention) 

product.  Scientists not involved in the study generated random number sequences, and 

managed volunteer allocation and intervention meal administration.  Volunteers were 

randomly allocated to the intervention sequence (i.e. experimental intervention followed by 

control intervention or vice versa).  

The breakfast products were packaged and labelled by the company in individually weighed 

sachets that displayed the product ID, ingredient statement, PEP protocol number, repacked 

date, expiration date, researcher name, telephone number and investigational use statement.  

Study Product Intake Logs were completed upon the dispensation of the study product to each 

subject. 

4.2.5 ANTHROPOMETRIC MEASURES 

a) Anthropometric measurement 

Measurements were taken as described in Chapter 3, Section 3.2.7. 

b) 24 h Blood Pressure Measurement 

Ambulatory Blood Pressure monitoring (ABPM) was undertaken using a non-invasive ABP 

monitor (TM-2430, Scan Med, A&D Medical, UK) linked to a computer, and configured using 

Figure 4.2  Volunteer's schedule for each visit 

1d diet and exercise
restrictions **

3h morning visit at Nutrition Unit:

Measurements:
• Weight, height, body 

composition
• Blood pressure
• Blood vessel function

• Blood collection
• Stool sample collection

24h urine collection

Wearing 24h 
blood pressure monitor

** Restrictions include: no strenuous exercise and no intake of a range of foods (see list on last page). On the evening 
before the visit,  we will ask you to consume a provided dinner and then fast ≥12h.

Short visit to return 
urine, blood pressure 
monitor
and collect study foods 
(day 2, after 11am)

1day diet & exercise
restrictions **

Day1, 8am Day1, 11am Day2, 11am
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Doctor Pro TM-2430-13 (version 2.40, A&D Company limited, Japan) software.  Blood pressure 

examinations were undertaken at the same time following vascular measurements and 

breakfast using ABPM, over a 24 h period following visits to the clinic unit [671].  The monitor 

was operated according to the guidelines of the British Hypertension Society, to record BP and 

heart rate at 30 minutes intervals from 07:00 h to 21:59 h and at 60 minute intervals from 

22:00 h to 6:59 h, the two initial measurements were discarded [672].  Participants noted 

activities and sleep hours throughout the recording period in a diary provided for the purpose 

(Appendix 10). 

ABPM is an important technique to measure blood pressure levels over a period of time, which 

is used to avoid white coat responses in some individuals and to accurately diagnose 

hypertension [673] and is considered a suitable method of measurement and more accurate 

than measures used for diagnostic classification [112].  This system’s accuracy has been 

confirmed across the entire range of blood pressure levels and ages, and its efficiency does not 

fluctuate with gender [674]. ABPM is a non-invasive measurement achieved through an 

oscillometric process in which external cuff pressure is increased to the point of occluding the 

brachial artery in the arm.  Once the pressure in the cuff is higher than the blood pressure 

inside the artery, the artery collapses and as the cuff pressure is decreased to below SBP, 

blood starts to fluctuate through the arterial wall which expands with every pulse.  Pressure 

measured in the cuff at the time the blood first passes through the occluded artery is an 

estimate of systolic pressure, whereas the pressure when blood first starts to flow 

continuously is an estimate of diastolic pressure [112] 

c) Flow-mediated dilatation (FMD)  

d) Laser Doppler Iontophoresis (LDI)  

Measurements were undertaken as described in Chapter 3, Section 3.2.7 for FMD and LDI. 

4.2.6 DIET DIARY ANALYSIS 

A diet diary is a tool to identify foods, quantify the portion size and determine the frequency of 

consumption in volunteers’ daily eating patterns over a given period.  In the three days before 

each pre-intervention visit (1, 3 and 5), volunteers recorded all the food and drinks they 

consumed for four consecutive days, one during the weekend and the other three during the 

week.  Records were made on the same days of the week for each diet diary.  Data for each 

diary was analysed using the Dietplan (Version 7) software package, using the McCance, 

Widdowson and ID2 databases, which contain an extensive list of nutritional information for a 
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variety of foods available in the UK.  The nutrients compared were: saturated; Polyunsaturated 

and monounsaturated fat; carbohydrate include fibre; protein and sodium intake.  

4.2.6.1 BLOOD COLLECTION  

Venous blood was collected at every assessment visit by an experienced, qualified researcher, 

48 ml was taken per visit.  Blood was kept in vacutainers with or without anticoagulants 

(sodium citrate, lithium heparin, EDTA), as suitable for subsequent analyses.  No 

anticoagulants were used for serum isolation.  Plasma EDTA (Ethylenediaminetetraacetic acid) 

(Geriner BioOne Ltd) was kept in ice and then centrifuged at 4 C and 2000 RCF for 10 minutes 

and within 60 minutes of blood collection.  Serum vacutainers (rapid serum separator tubes) 

were kept at room temperature (RT) for 30 to 60 minutes to enable the blood to clot and then 

centrifuged at 4 C and 2000 RCF for 10 minutes. Serum and plasma separates were aliquoted 

into pre-labelled microtubes and immediately stored at 80 °C until further analysis. 

4.2.6.2 BIOCHEMICAL MEASURES  

a) Blood Lipids 

Total cholesterol (TC), Triglycerides (TAG) and HDL cholesterol (HDL-C) were assessed at every 

visit.  Quantification was undertaken with an automatic clinical chemistry analyser (ILAB 600, 

Instrumentation Laboratory, Warrington, UK), with the help of enzyme-based colorimetric 

specific kits and serum controls provided by Werfen Limited, UK.  Each run included control 

samples, which contained high and low concentrations of each biochemical parameter, using 

serum 1 and serum 2 controls.  LDL-C (Low-density lipoprotein cholesterol) was determined by 

means of the Friedewald formula, i.e. ((LDL-C = (TC –HDL-C) – (TAG)/2.2)).  Quality control was 

assured by comparison with samples supplied for this purpose by manufacturer.  

b) ACE Activity 

c) ACE Concentration  

d) Renin Concentration  

Measurements for B, C and D were undertaken as described in Chapter 3, Section 3.2.7. 

4.2.6.3 URINARY MINERAL EXCRETION  

After every visit, volunteers were requested to collect urine for 24 h.  Urine volumes were 

recorded and 4 aliquots kept at -80 °C after centrifugation at 1700 g (3000 rpm) for 15 minutes 

at 4 °C.  Mineral excretions were quantified using flame atomic absorption spectrometry as 

described below.  The metal ions being investigated were measured by comparing their atomic 

spectroscopic signal with that of a measured solution of the same ion.  Mineral element 
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excretions, including Na and K, were measured similarly.  Standard flame atomic absorption 

spectrophotometry stock solutions of the diverse metal ions, at a concentration of 1000 mg/l 

(1000ppm), were obtained from (Cole-Parmer Staffordshire, UK) and used to prepare effective 

solutions by suitable dilutions: 1,.8,.6,.4,.2 and 0 ppm.  Glassware was cleansed with Ultrapure 

de-ionized Milli-Q water prior to use, in order to avoid potential contamination. 

Measurements were conducted using an atomic absorption spectrometer (NovAA® 350, 

Analytik Jena AG, Germany), with single and double beam optics and a fully automated 8-lamp 

turret, for high sample throughput, and equipped with an air-acetylene flame burner. 

4.2.6.4 SAMPLE SIZE AND STATISTICAL ANALYSIS  

The power calculation was made for the primary clinical outcome measure (FMD of the 

brachial artery) to determine the minimum number of participants required for the study.  The 

minimal measurable, statistically significant improvement on FMD is an absolute change of 

between 1.5 to 2 %, considering a baseline vasodilatation of 6-7 % in healthy males.  This has 

taken into account the statistical limitations related to our primary measure of vascular 

function. The sample size was calculated based on the variance of repeated measurement in 

the control group and on control data.  Consequently, with a standard deviation within 

participants of 2.4 % (based on previous studies performed in our group), a significance level of 

P ≤ 0.05 and a power of 80 %, 27 subjects were needed to determine a significant within-

subject difference between interventions of at least 1.3 % of FMD.  However, to provide power 

to use the secondary measures and achieve significant within-subject differences, we aimed 

for 30 participants to complete the trial.  A total of 33 volunteers were, therefore, recruited to 

allow for a drop-out rate up to 10 %. 

To identify differences in the study endpoints (i.e. markers of CVD risk, RAAS enzyme levels 

and activities and minerals excretions in biological samples) between the assessment time 

points and interventions, a repeated measures model was used with baseline values as a 

covariate while the variables of time, intervention and interaction between time and 

intervention used as the fixed effects.  Where the repeated measures model showed 

significant differences, pairwise comparisons between the interventions and time points were 

performed using post hoc analysis (Tukey adjustment).  Only effect was considered when 

significant level was at a probability of P value ≤ 0.05. All statistical analyses were carried out 

using the statistical package for social science (SPSS) version 24. 
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4.3 RESULTS 

4.3.1 SUBJECT COHORT AND SELECTION 

The procedures for selection and assessment of subjects who were both eligible and suitable 

to undertake the study, as described in Section 4.2.1, resulted in 87 volunteers of whom 28 

completed the entire study.  The process which led to this result, and the elimination of 59 

suitable subjects following the initial assessment and recruitment procedure, is shown in 

Figure 4.3. 

4.3.2 SUBJECT CHARACTERISTICS 

Baseline physical characteristics and cardiovascular indicator measurements of the 28 pre-

hypertensive or stage 1 hypertensive, mixed gender individuals who completed the study are 

shown in Table 4.2.  Characteristics were measured following overnight fasting.  The 

intervention and control food stuffs were well tolerated by all the volunteers and without any 

observed side effects. 
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Figure 4.3  Flow diagram for the recruitments and retention of study volunteers 
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4.3.3 FLOW-MEDIATED DILATATION (FMD) 

Effects on FMD due to the phenolic oats interventions is a primary expected outcome of this 

study.  In the control, moderate- and high phenolic oats interventions, % FMD responses were 

improved from baseline measurements by increases of 0.43, 0.50 and 1.09 % respectively 

(Figure 4.4, calculated from Table 4.3) after 28-days of consumption; however, there was no 

significant difference between the three groups (P = 0.520).  There was, however, a highly 

significant difference (P = 0.007) in % FMD, in all intervention groups combined, between the 

baseline and post-intervention times.  The interaction between intervention  time was not 

significant (P = 0.812).  Hence, it appears that any intervention, including the control which 

included low phenolic oats, but was energy and fibre balanced, leads to an improvement in 

vascular reactivity measured by % FMD over time, but that the level of the phenolic oat 

intervention, in these trial conditions, was not significant. 

 

Characteristic Mean ± SEM Range 

   

Age (y) 49.6 ± 2.3 26 - 68 

BMI (kg/m2) 26.7 ± 0.7 20.9 - 39.8 

Systolic blood pressure (mm Hg) 129.7 ± 1.9 112-153 

Diastolic blood pressure (mm Hg) 80.1 ± 1.2 65 - 96 

Heart rate (bpm) 71.1 ± 2.3 55.0 - 107 

Plasma glucose (mmol/L) 5.6 ± 0.1 3.9 - 7.7 

Plasma total cholesterol (mmol/L) 5.3 ± 0.1 3.4 – 7.1 

Haemoglobin (g/L) 145.5±2.1 126-177 

   
Table 4.2  Measured and physical characteristics of overnight fasted study 
participants at screening. 

BMI – Body Mass Index; n = 28 
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Vascular 
Reactivity 
Measure (pu/h-1) 

Control Moderate Phenolic Oats Intervention High Phenolic Oats Intervention  Probabilities (P) 

Baseline Post Baseline Post Baseline Post Interven-
tion 

Time I × T 

FMD (%) 5.698 ± 0.418 6.125 ± 0.482 5.647 ± 0.416 6.148 ± 0.412 5.763 ± 0.383 6.851 ± 0.471 0.520 0.007 0.812 

LDI-Ach AUC 1188.65 ± 233.23 1156.49 ± 233.4 1312.84 ± 171.5 1290.9 ± 236 1569.64 ± 227.13 1716.3 ± 292.9 0.552 0.337 0.868 

LDI-SNP AUC 1171.8 ± 200.77 1233.3 ± 150.7 1127.8 ± 127.3 1412.8 ± 256.8 1459.4 ± 241.6 2011.5 ± 386 0.221 0.037 0.363 

LDI-Ach iAUC 320.7 ± 163.4 298.22 ± 137.6 378.12 ± 135.6 344.5 ± 207.2 611.3 ± 220.4 655.0 ± 207.7 0.467 0.249 0.798 

LDI-SNP iAUC 407.22 ± 172.39 353.1 ± 114.4 255.6 ± 65.11 406.15 ± 161.2 492.0 ± 206.3 872.1 ± 286.6 0.271 0.038 0.682 

          
Table 4.3  Vascular measurements pre- and post-intervention for Phenolic Oats interventions. 

Vascular reactivity measured pre-intervention (Baseline) and week 4 post-intervention (Post), for the control, moderate and high phenolic oats interventions.  Phenolic oats 
comprise avenanthramide and phenolic acid.  A repeated measures model used for dose and time dependent differences between baseline and post-intervention 
measurements, for each intervention group.  Significant results (P < 0.05) are highlighted pink.  Pairwise comparisons between interventions and time points were 
performed using post hoc analysis (Tukey).  All values are means ± SEMs, n = 28. pu/h-1 – perfusion units per hour. 
FMD – Flow-Mediated Dilation; LDI - Laser Doppler Iontophoresis; Ach – Acetylcholine; SNP - Sodium Nitroprusside. 

Figure 4.4  Changes from baseline in FMD at the end of the 4-week intervention period 

High, Moderate and Control (low avenanthramide and phenolic acid) intervention groups.  Thick bars – means; thin bars – SEMs; (n = 28).  
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4.3.4 LASER DOPPLER IONTOPHORESIS (LDI)  

Microvascular reactivity measured using Laser Doppler Iontophoresis (LDI) is a secondary expected 

outcome of this study, measured by looking at changes in endothelium-dependent (using acetylcholine 

(LDI-Ach)) and endothelium-independent (using Sodium Nitroprusside (LDI-SNP)) microvascular blood 

flow, in volunteers fasted overnight.  However, regular intake of phenolic oats for a 28-day period led 

to no significant differences in any mean LDI measurements (Table 4.3 above), in comparison to the 

control group intake, nor was there any significant differences when intervention was combined with 

time from baseline to post-intervention (I × T, Table 4.3). 

Considering changes between the baseline and post-intervention results for the three interventions 

combined (shown as Time in Table 4.3), no significant changes were detected by LDI in skin blood flow 

in response to endothelium-dependent microvascular reactivity using LDI-Ach, expressed as either 

area under curve (AUC) or incremental area under curve (iAUC) measures (P = 0.552 and P = 0.467 

respectively) (Figure 4.5, Table 4.3).  However, there were, small but measurable increases in both 

measures, for the high-dose intervention of 146.66 and 43.7, (all ±SEM, pu/h-1, calculated from Table 

4.3); this result is indicative of a trend only, given the lack of significance.  Similar analysis for 

endothelium-independent microvascular reactivity using LDI-SNP, showed a significant improvement 

over time, expressed as both AUC and iAUC (P = 0.037 and P = 0.038, respectively), between the 

baseline and post-intervention results, for all three interventions combined (Figure 4.6, Table 4.3), this 

result reflects the significant change in the primary outcome, % FMD, over time and therefore is likely 

to represent a medically relevant finding.  Increases were found, albeit clearly non-significant and, 

therefore, also cautionary, in both measures (P = 0.221 and P = 0.271 respectively), for both the 

moderate- and high-dose interventions: moderate AUC/iAUC 285.0 and 552.1; high AUC/iAUC 150.55 

and 380.1 pu/h-1 (all ±SEM, calculated from Table 4.3).   
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Figure 4.5  Changes from baseline in LDI-Ach AUC and iAUC at the end of the 4-week 
intervention period 

Intervention groups: control (blue), moderate phenolic oats (pink) and high phenolic oats 
(green) interventions.  Thick bars – means; thin bars – SEMs; (n = 28).  Results were not 
significant (CI = 95%) 

Figure 4.6  Changes from baseline in LDI-SNP AUC and iAUC at the end of the 4-week 
intervention period 

Intervention groups: control (blue), moderate phenolic oats (pink) and high phenolic oats 
(green) interventions.  Thick bars – means; thin bars – SEMs; (n = 28).  Results were not 
significant (CI = 95%) 
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4.3.5 TWENTY-FOUR HOUR AMBULATORY BLOOD PRESSURE (ABPM) 

The evaluation of 24 hour ABPM, full 24 hour SBP and full 24 hour DBP, analysed by a repeated 

measures model, showed no significant differences between the control, moderate and high phenolic 

oat interventions.  Differences in the time between baseline and post-intervention measures and the 

interaction between intervention × time (Table 4.4, Figure 4.7) also showed no significant differences.  

However, analysis of just daytime measurements of both SBP and DBP showed a similar, significant 

reduction occurred between baseline and post-intervention measurements (P = 0.047 and P = 0.048 

respectively), which is indicative only as this is a secondary outcome of the trial.  There was no 

difference arising from the intervention dosage.   

Consumption of high doses of avenanthramide and phenolic acid oats led to a possible fall in full 24-

hour SBP, by 1.16 mm Hg on average, whereas a moderate dose intervention and the control failed to 

lower SBP, all results were not significant so must be treated with caution.  Night-time SBP reduced by 

5.1 mm Hg from 115.68 mm Hg at baseline to 110.58 mm Hg after high phenolic oat intervention, 

compared to a reduction of only 0.52 mm Hg in the moderate intervention and no reduction in the 

control group.  However, night-time SBP changes were also not statistically significant between 

interventions, time (baseline to post-intervention) or the interaction between them (P = 0.832, P = 

0.250 and P = 0.488 respectively).  A non-significant and, therefore, only suggested reduction by 2.26 

mm Hg was also found in night-time DBP for the high avenanthramide and phenolic acid intervention 

group, between the baseline and post-intervention measurements, whereas the moderate and control 

groups showed smaller reductions, by only 1.06 and 0.98 mm Hg respectively (Table 4.4, Figure 4.7). 
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Blood Pressure 
Measure 
(mm Hg) 

Control Moderate Phenolic Oats Intervention High Phenolic Oats Intervention  Probabilities (P) 

Baseline Post Baseline Post Baseline Post Intervent
ion 

Time I × T 

24 h SBP 125.77 ± 1.75 129.27 ± 2.36 126.19 ± 2.27 128.77 ± 2.75 127.39 ± 1.67 126.23 ± 1.53 0.848 0.228 0.116 

Day SBP 129.68 ± 1.89 134.85 ± 2.37 129.54 ± 2.23 134.00 ± 3.04 131.73 ± 1.82 131.58 ± 1.95 0.807 0.047 0.234 

Night SBP 113.20 ± 2.21 114.48 ± 2.34 114.17 ± 2.66 113.65 ± 2.41 115.68 ± 1.68 110.58 ± 2.05 0.832 0.250 0.488 

24 h DBP 76.77 ± 1.24 77.88 ± 1.32 77.50 ± 1.29 79.12 ± 1.47 77.65 ± 0.94 78.38 ± 0.98 1.000 0.151 0.816 

Day DBP 79.96 ± 1.10 81.46 ± 1.30 80.42 ± 1.38 83.19 ± 1.59 80.95 ± 0.95 81.92 ± 1.19 0.993 0.048 0.676 

Night DBP 68.44 ± 1.65 67.46 ± 1.25 68.83 ± 1.59 67.77 ± 1.51 68.68 ± 1.12 66.42 ± 1.51 0.939 0.306 0.977 

 
Table 4.4  Ambulatory Blood Pressure Measurements pre- and post-intervention for Phenolic Oats interventions. 

Twenty-four-hour ambulatory blood pressure measured pre-intervention (Baseline) and week 4 post-intervention (Post), for the control, moderate and high phenolic oats 
interventions. Phenolic oats comprise avenanthramide and phenolic acid.  A repeated measures model used for dose and time dependent differences between baseline 
and post-intervention measurements, for each intervention group.  Significant results (P < 0.05) are highlighted pink.  Pairwise comparisons between interventions and 
time points were performed using post hoc analysis (Tukey).  All values are means ± SEMs, n = 28.   
SBP – Systolic Blood Pressure; DBP – Diastolic Blood Pressure. 
. 
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Figure 4.7.  Changes in 24 hour, day-time and night-time systolic (A) and diastolic (B) 
ambulatory blood pressure (BP) 

Measurements taken at the beginning and end of the 4-week intervention period for the 
control, moderate phenolic oats and high phenolic oats intervention groups. Phenolic oats 
comprise avenanthramide and phenolic acid.  Thick bars – means; thin bars – SEMs; (n = 28).  
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4.3.6 RAAS ENZYME LEVELS AND ACTIVITY 

In a repeated measures GLM, no significant differences in ACE levels, ACE activity or plasma renin 

levels were observed between the control, moderate or high phenolic oats interventions.  Differences 

between baseline and post 4-week intervention, and for the interaction between intervention × time 

were also non-significant (Table 4.5).  Results suggest, albeit with weak statistical support, that renin 

and ACE levels dropped in the control, between baseline and post-intervention measurements, 

however, ACE activity rose slightly.  The reverse occurred in the moderate intervention group, with 

only ACE activity dropping, by 0.19 ng/mL).  The high phenolic oat intervention group followed the 

pattern of the control, with ACE levels and renin levels reduced by 0.37 and 28.03 ng/mL respectively, 

ACE activity also dropped in high phenolic oats by 2.4 U. 

4.3.7 LIPID PROFILE MEASURES  

A repeated measures GLM showed no significant differences in any of the measured lipid indicators 

between the control, moderate or high phenolic oats interventions (Table 4.5). However, significant 

differences in the baseline and post-intervention (time) measurements were found in total (P = 0.033) 

and HDL (P = 0.01) cholesterol.  Small, non-significant and therefore only indicative reductions were 

observed in lipid profiles.  TC fell by  0.2 and 0.16 mmol/L in the moderate and high phenolic oat 

interventions between the baseline and post-intervention measurements, compared to a slight 

increase in the control group.  LDL decreased by 0.07 and 0.26 mmol/L respectively, compared to 0.05 

in the control.  HDL also decreased by 0.14 and 0.04 mmol/L respectively, compared to 0.02 in the 

control.  Triglycerides increased slightly, by 0.17 and 0.05 mmol/L respectively, compared to 0.06 in 

the control All figures calculated from Table 4.5. However, lipid measures are a secondary outcome 

and the trial was not tested for power beyond the primary outcome.   

4.3.8 MINERAL - SODIUM (NA) AND POTASSIUM (K) EXCRETION 

The interaction (intervention × time, Table 4.5) between phenolic oat intervention and time between 

baseline and post-intervention measurements, was found to be significant (P = 0.04) in the 

measurement of Na (urinary salt, NaCl) excretion, but not K, but since this is a secondary trial outcome 

and intervention was non-significant for % FMD, therefore, as this is a possibly under-powered trial, 

the results may not be reliable.  There were no observed significant differences between the control 

and the moderate or high phenolic oats groups.  Nor were there significant differences between the 

baseline and post-intervention (time) measurements for these minerals.  While the levels of Na and K 

excretion putatively fell in the high phenolic oats treatment group, the fall was smaller than the 

control group for Na (8.51 compared to 8.62 mmol/L), but larger in K (15.95 compared to 2.48 

mmol/L).  Both Na and K excretions also rose, putatively in the moderate phenolic oats intervention 
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group, 13.29 and 4.32 mmol/L respectively, however, the caveats with respect to reliance on 

secondary outcomes pertain.  
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Lipids, Minerals and RAAS 
Enzymes 

Control Moderate Phenolic Oats Intervention High Phenolic Oats Intervention Probabilities (P) 

Baseline Post Baseline Post Baseline Post Interven
tion 

Time I × T 

Total cholesterol (mmol/L) 5.20 ± 0.18 5.28 ± 0.17 5.37 ± 0.17 5.17 ± 0.19 5.24 ± 0.15 5.08 ± 0.17 0.887 0.033 0.442 

LDL cholesterol (mmol/L) 3.15 ± 0.15 3.10 ± 0.19 2.97 ± 0.26 2.90 ± 0.22 3.18 ± 0.12 2.92 ± 0.18 0.681 0.319 0.789 

HDL cholesterol (mmol/L) 1.51 ± 0.07 1.49 ± 0.07 1.63 ± 0.08 1.49 ± 0.07 1.54 ± 0.07 1.50 ± 0.07 0.786 0.010 0.650 

Triglycerides (mmol/L) 1.19 ± 0.08 1.25 ± 0.12 1.03 ± 0.07 1.20 ± 0.10 1.16 ± 0.09 1.21 ± 0.10 0.773 0.129 0.817 

Na excretions (mmol/L)  97.60 ± 9.36 88.98 ± 7.43 93.66 ± 6.90 106.95 ± 7.54 97.97 ± 6.53 89.46 ± 5.97 0.723 0.746 0.040 

K excretions (mmol/L)   41.26 ± 5.61 38.78 ± 3.24 40.83 ± 3.45 45.15 ± 4.11 51.16 ± 14.47 35.21 ± 2.23 0.906 0.425 0.353 

Renin level (ng/mL) 752.64 ± 81.40 710.27 ± 80.16 910.89 ± 140.29 917.96 ± 136.04 818.46 ± 132.88 790.43 ± 112.23 0.548 0.381 0.694 

ACE level (ng/mL) 157.05 ± 8.98 152.20 ± 8.23 148.89 ± 8.23 151.23 ± 9.58 149.65 ± 9.14 149.28 ± 9.51 0.912 0.657 0.621 

ACE activity (U) 37.01 ± 3.38 38.86 ± 3.60 38.64 ± 3.42 38.45 ± 2.95 39.31 ± 2.86 36.91 ± 3.26 0.990 0.871 0.514 

          

Table 4.5  Fasting lipid profile, mineral excretions and RAAS enzymes Measurements pre- and post-intervention for Phenolic Oats interventions. 

Fasting lipid profile, mineral excretion and RAAS enzymes measured pre-intervention (Baseline) and week 4 post-intervention (Post), for the control, moderate and high 
phenolic oats interventions.  Phenolic oats comprise avenanthramide and phenolic acid.  A repeated measures model used for dose and time dependent differences 
between baseline and post-intervention measurements, for each intervention group.  Significant results (P < 0.05) are highlighted pink.  Pairwise comparisons between 
interventions and time points were performed using post hoc analysis (Tukey).  All values are means ± SEMs, n = 28. 
LDL – low-density lipoprotein; HDL - high density lipoprotein; Na – Sodium; K – Potassium; ACE – Angiotensin Converting Enzyme. 
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4.3.9 NUTRIENT INTAKE SUMMARY 

Although there were differences in the dietary intake of carbohydrate, fat and MUFA, there were no 

statistically significant differences observed between the groups for these nutrients (P ˃ 0.05) (Table 

4.6). 

     

 

4.4 DISCUSSION 

Of the numerous published epidemiological and human intervention studies concerning the 

cardiovascular effects of oats, the overwhelming focus has been on the potential benefits of 

increased whole grain or whole grain fibre consumption, in particular β-glucan.  In this study we have 

highlighted the vasoactive potential of the intake of medium and high phenolic acid containing oats 

in adults, over a chronic, 4-week intake period, relative to an iso-caloric control.  Our results indicate 

that the consumption of oats at our highest dosage of phenolic acids (66.8 g of oatmeal and 60 g of 

oat cake; 48.8 mg phenolic acid and 19.3 mg avenanthramides) tended to improve 24 h systolic BP, 

day and night time BP and endothelial microvascular blood flow, relative to the control, although 

these effects did not achieve statistical significance and are of limited reliability as secondary 

outcomes, given the power calculation for this trial.  Despite the lack of statistical significance, the 

magnitude of the mean reduction in BP is tentatively proposed as medically relevant (24-hour SBP 

reduced by 1.16 mm Hg on average, night-time SBP reduced by 5.1 mm Hg).  In addition, the, also 

non-significant, enhancement in microvascular blood flow observed following the intake of the high 

phenolic oat intervention might manifest as maintenance of daytime BP, relative to the control and 

the lower phenolic oat intake groups, since daytime BP was observed to increase in these groups.  

FMD of the brachial artery and microvascular reactivity were not consistently improved by whole 

Nutrient 
(g) 

Control 
Intervention 

Moderate Phenolic 
Oats Intervention 

High Phenolic Oats 
Intervention 

Range  

Energy (kcal)  2338 ± 120  2328 ± 133  2456 ± 165 2195 - 2621 

Carbohydrate   311 ± 18  305 ± 19  287 ± 16 271 - 329 

Fibre  33 ± 2  29 ± 2  33 ± 2 27 - 35 

Protein  95 ± 5  99 ± 6  107 ± 7 90 - 114 

Total Fat  75 ± 4  76 ± 6  92 ± 9 71 - 101 

 Saturated 
Fat 

 28 ± 2  28 ± 3  31 ± 3 25 - 34 

 MUFA  24 ± 2  24 ± 2  31 ± 3 22 - 33 

 PUFA  10 ± 1  11 ± 1  14 ± 1 9 - 15 

Sodium  3.1 ± 0.2  2.9 ± 0.3  3.4 ± 0.3 2.6 - 3.7 

Table 4.6  Daily intake - dietary comparison between intervention groups 

Daily consumption of the principal dietary nutrients is shown for the control, moderate and high phenolic oats 
interventions.  Phenolic oats comprise avenanthramide and phenolic acid.   
MUFA - monounsaturated fatty acids; PUFA - polyunsaturated fatty acids.  All values are means ± SEMs, n = 
28. 
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grain oat intake, which is consistent with a review study which reported that, of 25 whole grain oats 

studies, only three measured significant reductions in blood pressure [40].  Also, notably, a dose-

dependent study in people with slightly elevated blood pressure, suggested that the intake of high 

flavonoid containing fruit and vegetables did not significantly influence endothelium-dependent or -

independent blood flow [342]. Our data indicate, in general, that although there may be a tendency 

of high phenolic containing oat intake to improve a range of vascular markers, our population size is 

too small and our dosage may also have been too low to achieve statistical significance. 

The relatively recent meta-review of oat-based chronic studies introduced above reported no 

significant changes in a wide range of CVD risk markers [40], in a large majority of the studies 

reviewed.  We observed that % FMD, our primary outcome, increased significantly over the trial 

period, but while there were no significant differences between the intervention groups, baseline % 

FMD increased by 0.43, 0.50 and 1.09 % in response to control, moderate and high phenolic oats 

interventions, respectively.  Oat and wheat based whole grain studies that have found similar low-

level responses in FMD include at least one which also specifically targeted hypercholesterolemic 

patients [667].  Another, larger study of 315 overweight individuals given whole grain oats for four 

months at two dosages , also found, comparably to our results, just small improvements in 

endothelial function, between the start and end of the study and no significant differences between 

interventions [668]. However, significant increases in % FMD by 1.80 ± 0.50% have been reported 

following the consumption of a wild green oat extract (1500 mg/day), a grain derived extract 

containing much higher levels of phenolic acids and other potential bioactive substances such as 

saponins, vitexins and isovitexin [53]. FMD has also been measured in other studies of high-phenolic 

foods, for example a study using orange juice extract at 200 mg /day, one using both monomeric and 

oligomeric flavanols from grape seeds and one examining the effect of 100 mg /day of pure 

epicatechin and 160 mg /dayquercetin-3-glucoside [633, 675, 676].  These three studies all found 

small but non-significant improvements.  

We measured higher endothelium-dependent reactivity following intake of the high and medium 

phenolic acid oats relative to the control intake, although these changes were secondary outcomes 

and not significant and, therefore, of indicative only.  A whole grain intervention study found similar 

responses, with differences between dependent and independent vasodilation, not significant [669].  

It is tentatively suggested that, despite individual measures of vascular markers being relatively 

variable in our trial population making statistical significance hard to achieve, the intake of oats with 

highest phenolic acid content tends to increase endothelium-independent microvascular blood flow 

and lower blood pressure most.   
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Our results showed a putative reduction in night-time SBP in the high phenolic oats intervention 

group of around 5 mm Hg, a decrease regarded as possibly medically relevant from a chronic 

intervention trial design, however by both the lack of statistical significance and the limitations of a 

secondary outcome in a trial design that may be under-powered.  Notably, the high phenolic acid 

oats also attenuated a daytime increase in blood pressure observed in both the control and medium-

phenolic acid groups.  A maintenance of daily daytime blood pressure may signify lower vascular 

stress, in addition to the potential benefits of a reduction in night time BP [677-679].  Despite these 

potentially beneficial effects, we further emphasize that in the large part these data failed to achieve 

statistical significance and as such we are cautious with our conclusions relating to the vascular 

benefits of this dietary level of oat intake.  Whole grain has been shown to induce significant 

reductions in both SBP and DBP, in slightly hypercholesterolemic volunteers [657] and 

hypercholesterolemic men [658], during intervention levels and periods similar to our trial.  Whole 

grain oats, in a similar mildly hypertensive study groups to ours [601] found a significant 6 mm Hg 

reduction in SBP after a 6-week intervention, but, notably, the error in these results was ± 7 mm Hg.  

Significant reductions, after whole grain oat interventions, of 7.5 mm Hg SBP and 5.5 DBP have also 

been found [598, 659].  We note that previous clinical trials that have reported statistically significant 

benefits in vascular health markers, including BP, have predominantly used interventions containing 

much higher levels of phenolics than our 126.8 g whole grain oats, which contained only 68.1 mg 

combined phenolic acids and avenanthramides and was designed to represent a realistic dietary 

intake, achievable with commercially obtainable oats.   

One study which presented results comparable to ours also found that ambulatory 24-h BP following 

oat intake, despite having a longer chronic intervention of 12 weeks, was not significantly changed; 

this study also pertained to hypertensive men [666].  However, most BP studies investigating whole 

grain can be regarded as being prone to inaccurate BP reporting, particularly where reliance has been 

on point-in-time measurements which may miss diurnal changes, and which are prone to "white 

coat" effect [40].  Several studies have instead, like ours, relied on ABPM, the now more generally 

accepted approach to measuring BP [40, 671, 680] as it avoids white coat hypertension and 

incorporates natural diurnal variation.  

Another reason for the lack of significance in our results, and smaller effects compared to other 

studies, might be that phenolic acids, such as ferulic acid and its metabolites, may not be as 

biologically active as other polyphenols, such as flavonoids.  The most convincing evidence so far for 

improvements in endothelial function from polyphenol consumption has been amassed from studies 

of foods rich in flavanols, for example cocoa [44] and tea [681-683].  A meta-analysis of 133 chronic 

cocoa/chocolate trials, reported improvements in FMD by 1.45 %, on average, at flavanol intake 
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levels of 100-200 mg/day [48].  Also, trials using chronic cocoa (containing epicatechin and catechin 

levels of 88 mg flavanols) interventions have reported significant improvements in % FMD responses, 

reductions in 24 h daytime and night-time blood pressure in hypertensive subjects [286]. Phenolic-

rich olive oil intake improved endothelial function measured after four months [684].  Endothelium-

dependent microvascular relaxation was also shown after 12 weeks in men who received high doses 

of flavonoids (15 mg/100g) [342].  Consumption of (97.8 mg phenolics) of hibiscus tea for 6 weeks 

lowered SBP and left DBP unaffected [685], the likely bioactives were gallic acid, delphinidin-3-

sambubioside and cyanidin-3-sambubioside, again this was a much higher dose and slightly longer 

study than ours.   

However, evidence of improved vascular function from phenolics in berries such as cranberry and 

blueberry is also both ambiguous and reliant on abnormally high phenolic dosages.  No cumulative 

effect was found by [334] after chronic cranberry juice consumption by stable coronary artery 

disease (CAD) subjects at 835 mg/d total polyphenols (TPs) and 94 mg/d anthocyanins, either on 

FMD or on vascular function in general; while the same authors carried out an open-label pilot study 

which reported the opposite, with effects on FMD both substantive and favourable.  Polyphenol-rich 

chokeberry juice consumed for a month was also shown to significantly reduce mean 24 h, day 

systolic and diastolic BP [686] while an acute study of overweight men showed a correlation between 

improved FMD and consumption of 694 mg/d TPs, including 493 mg anthocyanins from açaí berries 

[329].  Two blueberry drink studies [49], one investigating time-related effects varied the TP dosage 

766 – 1791 mg and the other dose-dependent effects, TP dosage 319 - 1791 mg, found several CVD 

markers were unchanged with either time or dosage.  However, they also showed that while FMD 

rose significantly at two time points after consumption, 1–2 and 6 h, in the intervention group given 

766 mg TC, it was not significantly different in the higher 1278 and 1791 mg groups.  In the dosage 

dependent study, FMD increased linearly up to the 766 mg intake, after which it plateaued and 

started to decrease slightly at higher doses.  This seems to illustrate two points, firstly that while very 

high dosages may be needed to elicit significant effects on vascular function, there may be an upper 

threshold above which benefits cease to accrue, and the other that findings in this field are not 

consistent and, therefore, there are many outstanding questions to be resolved and our non-

significant and low-effect results are not unexpected..  

The RAAS is an important system controlling BP homeostasis, and cardiovascular and renal function 

humans and its critical role in probably all CVD has been increasingly recognised in recent years 

[660].  We found slight, non-significant, reductions of renin and ACE levels of 28.03 and 0.37 ng/mL 

respectively following high phenolic oat intake which should be treated with caution given the 

limitations of our trial detailed above.  Our data are in putative agreement with previous trials with 
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blueberry which reported no significant changes in ACE activities over a 3 week period [299], and a 

trial with grape seed extract for two months which found no significant decreases in plasma renin 

activity [687]. Significant effects on the mean arterial pressure, SBP and DBP, have also been shown 

in response to pomegranate intake over a four week period, but serum ACE levels showed no 

correlation to BP reduction [688, 689].  Similarly, phenolic-rich olive oil has been shown to improve 

BP, in women, via a mechanism involving RAAS.  The mechanism of action may have been through a 

decrease in serum Ox-LDL and plasma CRP which was measured in subjects after the intervention 

and hence suppression of the RAAS was likely, with hydroxytyrosol and its derivatives the most likely 

protagonists [294].  While clinical trials show mixed results with respect to RAAS effects, many in 

vitro studies show strong inhibitory effects of Oat polyphenols on RAAS, particularly ACE inhibition 

and/or renin expression [374, 661].  Wheat also inhibits ACE activity in vitro [662], and has been 

shown to strongly inhibit ACE levels in blood plasma [663].  Largescale studies have shown that 

increased urinary sodium and potassium excretion, as proxies for dietary intake, is associated with 

CVD and other health risks [664, 665].  However, we did not find any significant changes in sodium or 

potassium excretions between interventions.  A 12 week study of the effects of an oat diet on 24h BP 

in hypertensive men found that 24 hour excretions remained unchanged after intervention [666] and 

a 5 week whole-grain diet study reduced SBP and DBP but found no differences in urinary excretions 

of minerals related to BP [657].  However, study of urinary salt excretions, has shown positive effects 

from a barley diet compared to different whole grain intake in hyperlipidaemic subjects [658]. 

We found no significant changes in blood lipid profile in any of the measures we used.  Our results 

are consistent with some other studies which have concluded that whole grain diet led to no 

significant difference in plasma lipid profiles [668, 670], however, our power calculations were 

calculated based on FMD, the primary study outcome, rather than lipid markers and so our results 

may be due to lack of statistical power.   

In conclusion, we highlight the vasoactive potential of moderate and high phenolic acid and 

avenanthramide-rich oat consumption in adults over after a 4-week intake period, relative to that of 

an iso-caloric control low in fibre and phenolics.  Our data suggest that at normal dietary intake 

levels, oats may have a subtle, beneficial influence on the human vascular system, as we find some 

small improvements in CVD risk markers which were dependent on dosage of phenolic oats, Our 

observations regarding the small but discernible influence of phenolic oats intake on BP and on the 

RAAS are to an extent supported by findings reported in the literature, both in scale and in the 

markers effected.  Our results are, however, subject to several caveats.  The relatively short duration 

of the trial, along with the sample size, which was too small to have sufficient power to draw 

conclusions a cross all the markers tested, are likely the principal limitations.  Thies et al. (2014), 



131 

considered the issue of power in statistical studies, of the 25 relevant studies reviewed, they report 

none had sufficient power "to rigorously evaluate the effect of oats or oat bran on this outcome" [40] 

and only five had samples of sufficient size (> 60 per group, assuming 10-20 % baseline variation in 

subjects, to give 90% experimental power to measure effects of 5-7 %).  However, the 

inconclusiveness of our results is not uncommon amongst comparable studies.  Another systematic 

review, of 21 randomised controlled trials, where the impacts of oat intake were being studied, 

found only 13 showed significant reduction in TC and only 14 significant reductions in LDL [656].  Lack 

of compliance with the intervention diet cannot be discounted as another potential factor 

influencing our lack of statistically relevant findings.  We enforced strict controls over dietary intake 

of Oat but, as with the majority of dietary trials, relied on self-reporting of diet by individuals. Our 

dietary analysis of the study population indicated no significant differences in the dietary intake of 

carbohydrate and fat [690], fibre [691] and MUFA [31, 692], dietary components that could influence 

specific outcomes such as cholesterol and lipid profiles.  We may require further study with 

considerably more participants, and for a longer intervention period, for the effects to become 

better resolved and statistically significant. 
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Chapter:  5 General Discussion & Future Perspectives 

5.1 STUDY OUTLINE 

While there is a substantial body of evidence regarding the health benefits of dietary whole grains 

and of plant polyphenols, it is nevertheless both incomplete, and contradictory.  Oats in particular, 

while frequently studied in a whole grain dietary context, have rarely been considered for the 

purveyors of a unique combination of polyphenols which in fact they are.  Avenanthramides and 

phenolic acid, are the principal oat polyphenols, but there is very little published data specific to their 

efficacy.  In the body of published data on polyphenol bioactivity across a range of common 

foodstuffs, the conclusions regarding the size and nature of their impacts on a wide range of 

cardiovascular risk markers are widely inconsistent, which may derive from methodological or 

biomedical causes, but whatever the cause, the picture remains very unclear.  BP and a range of 

endothelial responses have been frequently assayed and are useful markers because they are both 

an easy demonstration of cardiovascular health and allow cross-study comparisons, since they are 

generally applicable and easy to measure.  However, the impacts of polyphenols and in particular oat 

polyphenols on the RAAS, despite its well known prominence in proper cardiovascular function, are 

very much more poorly understood.  We clearly do not know how effective oat polyphenols are at 

preventing CVD, at what dosages they may be effective and what their modes of operation are.  This 

study executed a series of related in vitro and human intervention trials designed to provide new 

evidence to provide more certainty in relation to all of these gaps in our scientific knowledge. 

5.2 IN VITRO ASSAYS – THE ROLE OF THE RAAS 

Modulation of the RAAS, a critical regulator of BP and vascular function, is one of several proposed 

mechanisms for polyphenolic  action, which may be affected by either inhibited renin expression or 

ACE activity or both [254, 297, 358, 362, 366, 369].  The RAAS plays a crucial role in controlling BP via 

production of a vasoconstrictor, Ang II, which has a role in regulating blood volume and vasodilation 

independently of NO [501, 502].  Renin is the rate limiting step in the RAAS, hence it is believed to be 

a good target for treatment of hypertension and cardiovascular disease [552].  Likewise, suppression 

of renin and ACE are two of the strategies used for lowering BP, maintaining electrolyte homeostasis, 

and for haemodynamics and blood volume status regulation [253, 504].  The aim of this study was to 

better comprehend the mechanism of action through which polyphenols achieve physiological 

improvements, by investigating if they influence the RAAS.   
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There are few published studies explaining the influence of polyphenols and their metabolites on 

enzymatic inhibition of the RAAS, especially ACE and renin.  Consequently we do not fully understand 

the mechanisms of polyphenolic action on the RAAS [366, 516-518].  Furthermore, those studies 

which have been undertaken on the modulation of ACE activity have generally incorporated 

polyphenol interventions at high concentrations, considerably above any typical or even moderately 

enhanced dietary intake, so their physiological relevance is limited.  To generate more informative 

results regarding ACE and renin inhibition and the physiological effects of their modulation in cells, 

we used interventions comprising physiologically realistic plasma concentration post intakes in our in 

vitro experiments.   

We began with trials of the in vitro effects of a range of common phenolic compounds on the RAAS 

at increasing concentrations.  We explored their effects on renin gene expression in juxtaglomerular 

cells (AS4.1).    Renin gene expression was significantly decreased following exposure to the oat 

polyphenols AV-B and t-FA, as well as several others present in plant products.  t-FA possessed the 

strongest renin inhibitory activity, with a mean IC50 of 0.51 µM, the proportion of inhibition varied 

from 6.43 - 79.81 %.  Other polyphenols from different food sources have previously been shown to 

modulate the RAAS system, by inhibiting renin in vitro.  Renin suppression may have been due to the 

presence of polyphenol derived special functional structures such as analogues of galloyl moiety 

without a catechin skeleton and ortho-tri-hydroxy phenyl.  Polyphenols may conform the renin active 

site, reducing its activity, by forming an enzyme-substrate-inhibitor complex. However, it is also 

possible that the complex biochemical transformations that the numerous polyphenols in plants, for 

example those in tea, undergo during the fermentation process which is typically part of its 

preparation for consumption, form a variety of bioactive substances, including inter alia theasinensin 

B, theasinensin C and a hexose conjugate.  Previous studies have reported that polyphenols, 

especially gallated flavonoids, are able to inhibit renin activity, however, there is no strong evidence 

in the literature that any phenolics inhibit renin activity. 

We went on to show that renin gene expression was significantly decreased following exposure to 

plant polyphenols via a mechanism that involved inhibition of the phosphorylation/activation of 

ERK1/2 and linked transcription factors CREB-1 and ATF-1.  Several studies have shown that 

polyphenols influence ERK and Protein Kinase B (Akt) signalling pathways [556, 557].  For example, 

flavonols and anthocyanins in blueberry modulate the ERK-CREB-BDNF pathway in rodents [558].  In 

another study, quercetin and its O-methylated metabolites have been shown to induce neuronal 

death by inhibition of neuronal survival signalling through inhibition of ERK instead of activating the 

c-Jun N-terminal kinase-mediated death pathway [556].  There is also substantial evidence that the 

phosphorylation of CREB and its subsequent interference with the CRE, activates renin gene 
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transcription in juxtaglomerular cells, include AS4.1 and Calu-6 cells [509, 512, 515, 559-561].  In 

conclusion, it is widely reported that polyphenols interact with the ERK-ATF-1 pathway and P38/ 

CREB, to reduce expression of the renin gene, and that this leads to improved cardiovascular health 

[558, 562, 563].   

We then explored the effects of selected polyphenols on ACE and NO using HUVEC cells in vitro and 

found most inhibited ACE, but to different degrees and none was significant; t-FA again showed the 

strongest inhibitory effect.  ACE inhibition by tea polyphenols has been demonstrated in similar cell 

strains.  ACE activity, and substrate-dependent reaction kinetics have revealed enzyme velocity 

curves that matched allosteric and non-Michaelis-Menten relationships, with a mixed mode of in 

vitro inhibition of ACE, mostly of a kinetically uncompetitive type [362], by green and black tea 

polyphenols.  Further, studies on cultured endothelial cells from human umbilical veins incubated 

with a bilberry polyphenol extract exhibited significant, also inhibited ACE activity after 10 minutes, 

dose dependently [369].  However, unlike the studies in the literature; we failed to show 

experimentally that phenolic compounds significantly inhibit ACE protein levels and activity, and an 

increased production of nitric oxide. By suppression of renin and ACE, it was speculated that oat 

phenolics may be effective at reducing BP and thus CVD risk.  There have been many previous studies 

that have reported the ACE inhibitory activity of a range of polyphenols [361, 362, 369], however, 

many of these have used polyphenols at concentrations much higher than that known to be present 

in the circulation following intake.  Thus, these in vitro findings are not necessarily translatable to 

clinical or public health.  

Our in-vitro findings suggest that these compounds possibly mediate changes in blood pressure 

through the RAAS system.  However, bioavailability differs greatly from one polyphenol to another, 

so that the most abundant polyphenols in our diet may not necessarily be leading to the highest 

concentrations of active metabolites in target tissues.  The metabolites present in blood, resulting 

from digestive and hepatic activity, usually differ from native compounds [693].  

Since these results were promising, by clearly demonstrating that small phenolic compounds in 

physiological concentrations might affect the RAAS, albeit minimally, they may explain why people 

who consume foods rich in such polyphenols can experience a reduction in BP.  Therefore, we 

conducted two human intervention trials using oat polyphenols at realistic dietary dosages, to 

expand on these findings and provide a better understanding of the physiological effects of specific 

polyphenols through both acute and chronic clinical responses. 
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5.3 HUMAN INTERVENTION TRIALS WITH OAT POLYPHENOLS 

Epidemiological studies have suggested that high dietary intake of fruits and vegetables, as well as 

whole grains, is strongly associated with a reduced risk of developing chronic diseases such as cancer 

and cardiovascular disease [582, 587, 694].  Human intervention studies, to date have predominantly 

investigated the intake of whole grain oats, rather than the intake of individual oat bioactives, such 

as vitamins and minerals and/or phenolic components.  Furthermore, many believe it is the fibre and 

phytochemical components of cereal grains that are the major contributing factors to their health 

benefits [40, 406, 588].  With respect to phytochemicals, phenolic acids such as hydroxycinnamic acid 

derivatives, including ferulic acid, p-coumaric acid and caffeic acid, as well as benzoic acid derivatives 

such as protocatechuic, vanillic, and syringic acids, are the predominant compounds.  A meta-analysis 

of seven large cohort studies has found consumption of 2.5 compared to 0.2 servings of whole grain 

per day is associated with a 21 % decreased risk of CVD.  As a result, a number of guidelines were 

drawn up with the aim of increasing intake of whole grain [695].  Consumption of 3 portions of 

whole-grain foods can significantly reduce cardiovascular disease risk in middle-aged people, mainly 

through blood pressure–lowering mechanisms.  Decreases in systolic blood pressure are considered 

to reduce the incidence of coronary artery disease and stroke by ≥ 15 % and 25 %, respectively [597], 

whilst improved vascular responses and endothelial function has been associated with a daily 

consumption of wholegrain oat cereal [486].   

A few human studies have focused on absorption and metabolism after consumption of whole grain 

wheat.  Maximum hydroxycinnamate absorption from high-bran cereal, a particularly rich source of 

FA and diferulates because they include the outer husk including the aleurone layer, occurs between 

one and three hours after ingestion [455].  It was not found necessarily to be the case, though, that 

the main cleavage and release of FA from AX happens in the small intestine, but more likely that FA 

observed in plasma derived from the 4 % of free FA that the grain also contains.  It also found low 

hydroxycinnamic acid levels in plasma after 6 hours, which suggests not much absorption occurring 

in the large intestine.  This may be the result of long, slow FA cleavage as food passes through the 

large intestine, with minimal amounts being observed in the circulation.  No diferulic acids were 

detected in urine or plasma and were most likely still in bound form, which would suggest that very 

little of these compounds was absorbed all the way through the gastrointestinal tract.  All of this 

suggests the need for further human studies to fully understand absorption and metabolism of whole 

grain phenolic acids. 

To date, however, there have been relatively few human trials conducted to assess the beneficial 

effects of oat polyphenols on the cardiovascular system and the potential mechanism of action.  The 
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objective of our human intervention trials was, therefore, to assess the impact of consuming whole 

grain oats on cardiovascular health markers and in particular to discern the degree to which 

avenanthramides and phenolic acids may contribute to any physiological effects observed on human 

vascular function in healthy pre-or stage1 hypertensive individuals.   

Our in vitro findings were not borne out in our acute clinical trial, which showed no statistically 

significant change in % FMD or BP following a single intake of oats, although we tentatively, given the 

limitations of the trial discussed above, propose that an increase endothelium-independent 

vasodilation occurred at early time points.  The non-significant FMD and BP results compared to 

previous significant results of cocoa, berry and coffee could be due to: 1) the lower levels of phenolic 

intake delivered by the oats in our trial compared to those with, for example,  coffee (310 mg 

compared to 50 mg for oat) [577]; 2) the small population size of our trial and consequent lack of 

statistical power, an issue discussed at length by Thies et al. (2014), although it was not significantly 

smaller than that used in some cocoa and blueberry clinical trials; or 3) the likelihood that other 

polyphenol interventions deliver more biologically active components, such as flavonoids, as has 

been widely reported [186, 255, 335, 581, 591].   

In comparison to the acute trial, our chronic trial showed more positive evidence that the intake of 

phenolic acid rich oats may induce vascular improvements that are in terms of magnitude, possibly 

medically relevant.  However, they generally failed to achieve statistical significance and the trial may 

have been undertaken with insufficient statistical power to draw more than indicative conclusions 

from secondary outcomes.  Improvements were putatively noted for day- and night-time SBP and in 

vascular reactivity measured by FMD and LDI, following the intake of the highest phenolic acid 

containing oats for four weeks relative to the control intake.  The failure to achieve statistically 

significant results in vascular function could be due to the small population size and the natural high 

variations in volunteer vascular measurements, such as BP and FMD which is indicated by large SEM 

in several results.  Alternatively, as with the acute intervention, the nature and quantity of oat 

polyphenols delivered in our interventions may not be as biologically active as those used in 

published clinical trials, for example, flavanols in cocoa [44] and tea [681-683], with an intake of 100-

200 mg/day having been shown to improve FMD and reduce 24 blood pressure [48, 286].   In 

addition, TC, HDL and LDL levels were not significantly lowered in our volunteers after four weeks, 

whereas 12 weeks consumption of cocoa powder (total flavanol 172 mg/day) has been shown to 

increase HDL cholesterol [640].  Also, oat intake has been found to significantly reduce TC in patient 

with hypercholesterolemia, whereas our population had only slightly elevated cholesterol levels 

[667].  Similarly, the intake of 40 g oats per day for 90 days was sufficient to significantly lower LDL 
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cholesterol in obese subjects [696, 697].  These differences in outcomes may also be due to the 

length of the trial, subject selection, and population size.  

5.4 CONCLUSIONS  

In our clinical trials we did not observe the same level of inhibition on renin or ACE as seen in our in 

vitro experiments.  One potential reason for this was that the absorption of the oat phenolic acids 

and their metabolites is likely lower than that used in cell studies, i.e. below 1 μM.  It is of limited 

value to predict the in vivo efficiency polyphenols based on cell trials, since numerous factors may 

affect in vivo bioactivity, including bioavailability, metabolism and tissue distribution.  However, our 

in vitro observations make a positive contribution to establishing the role of oats phenolics as 

potential modulators of RAAS if sufficient concentrations are achieved in tissues (blood, endothelial 

and kidney). Both acute and chronic findings, need confirmation and clarification through further, 

expanded trials and it is likely, both from our own results and the literature, that the size of our trial 

and associated limitations, including the inherent variation in BP measures and other markers, the 

length of trial and the amount of the intervention, may all have contributed to the inconclusive 

outcomes.   

The results of our work contribute to and extend existing knowledge of the effects of oat polyphenols 

on cardiovascular health.  Our study is one of the first to address the possible relationships between 

oat polyphenols and the RAAS pathway and in so doing contributes important information in an area 

where knowledge is incomplete.  Our results show evidence that the RAAS pathway is affected by 

phenolic oats and this may be an important physiological impact to add to others which are already 

more widely associated with cardiovascular health. 

5.5 FUTURE PERSPECTIVES 

Our findings clearly evidence the need for future studies to establish in detail the molecular 

mechanisms and to better quantify the clinical benefits of oat avenanthramides and phenolic acid.  

There is limited conclusive clinical data on the benefits of oat polyphenols and this study, while 

contributing and highlighting the potential for benefits, was also inconclusive.  Hence further trials 

are needed to clarify effective dosage regimens to obtain optimal results.  More extensive trials are 

also needed to understand optimal combinations of polyphenols, individual studies of fibre foods 

which contain polyphenols or high dose purified active polyphenol compounds from oats rather than 

the whole grain products that have been widely promoted and studied [40, 641].  Dosages, and the 

influences of mid- and long-term consumption on people with a range of cardiovascular markers, 

volunteer’s diet history, all of which we shed light on but inconclusively, also require trials of 
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sufficient breadth and extent to be fully informative.  Future trials should also be statistically 

powered to adequately interpret all the outcomes under consideration, this may mean very large 

trials, over 60 subjects, measuring a range of risk markers, or several smaller trials, with over 30 

subjects in the intervention groups [40],  considering just one or a small number of markers.  The 

length of the trial is also critical, to adequately consider changes in RAAS enzyme levels and renin 

gene expression and to fully assess changes in BP related cardiovascular risk markers following 

polyphenol interventions.  Previously published trials generally range from three to eight weeks, and 

several achieved statistically significant results only after eight weeks of trials [294, 299, 687, 688].  

There is a lack of published information on how widely and evenly polyphenols are distributed in the 

body's tissues, their affinity for particular tissues and whether or not they are antagonised by 

reactions with other foodstuffs or cellular products which may alter their function, all of which 

should be the subjects of further study, since our 4 weeks chronic results showed only non-significant 

vascular improvements and blood pressure reduction.  There are also the influences of genetic 

influence and variations to be considered. It is clear that the biochemical structure of the polyphenol 

affects its bioactivity and further research is needed to understand, not only which metabolites are 

most active in vascular function improvement but also which are most efficacious at realistic dietary 

intake levels. 
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PARTICIPANT INFORMATION SHEET 

 

 

Study title: PRO-GRAIN 2 (Phenolic-rich oats for gut-bacteria relief and artery improvement) 

 

 

You are being invited to take part in a research study. Before you decide, it is important for you to 
understand why the research is being done and what it will involve. Please take time to read the 
following information carefully and discuss it with others if you wish. Ask us if there is anything that 
is not clear or if you would like more information.  

Thank you for your interest in this study and taking your time to reading this participant information 
sheet. 

 

Chief investigator: Professor Jeremy Spencer 

Investigators:  Dr Manuel Schar 

 Sarah Alsharif (PhD Student) 

 Angelika Kristek (PhD Student) 

 Gulten Soycan (PhD Student) 

 Patrizia Stanienda (MSc Student) 

Study e-mail: pro.grain@reading.ac.uk 

Telephone number: 0118 378 6833 

  



 

Background 

It is well known that what we eat and drink can have a major role in protecting us from disease. 
Eating more whole grain products can improve our health and this could, in part, be due to natural 
elements in whole grains such as phenolic acids. Indeed, regular intakes of phenolic acid related 
elements found in fruits, vegetables, wine, tea and chocolate has been shown to reduce our risk of 
suffering from cardiovascular disease. However, the health benefits of phenolic acids from 
wholegrains remains unclear. 

What is the purpose of the study? 

The main purpose of this study is to test if intake of a single portion of whole grain oats improves 
your heart and blood vessels health and if phenolic acids are, at least in part, responsible for these 
effects. Potential health benefits will be measured using a range of non-invasive and harmless tests. 
These include blood vessel elasticity, blood pressure, brain vessel function and potential further 
markers related to the cardiovascular system. 

Am I suitable to take part? 

We aim to recruit male subjects who are generally healthy with high normal to moderately elevated 
blood pressure. You need to be between 25 and 65 years of age, non-smoking, free of disease, not 
undertaking regular vigorous exercise and not taking long-term blood pressure or blood fat 
medication. At the beginning of your study participation, you will receive a health check and we will 
fully assess your eligibility to take part in the study. 

Do I have to take part? 

It is up to you to decide whether you wish to participate in the study. If you decide to proceed, you 
are free to withdraw at any time, without giving a reason. At your first visit, we will also describe the 
study to you in further detail and you can ask remaining questions. We will then ask you to sign a 
consent form to show you have agreed to take part. 

What will happen if I decide to take part? 

‘Health and lifestyle questionnaire’ 

If you wish to take part, please contact us and we will ask you to fill in a health and lifestyle 
questionnaire. Afterwards and if you meet our broad eligibility criteria, we will invite you to a 
consent and health check visit. 

‘Consent and health check visit'  

For a maximum 1 h morning visit, you will be asked to come to the Hugh Sinclair Unit of Human 
Nutrition in the Department of Food and Nutritional Sciences (University of Reading) in an unfed 
state (fasted, not eating or drinking anything but water from 8pm the night before). At the start of 
the visit, we will discuss the study, answer all your questions and you will then be asked to give 
consent for participating in this study. After that, we will measure your weight, height, blood 
pressure and a skilled nurse or phlebotomist will take a small blood sample (one tablespoon). You 
will be asked to fill in a questionnaire related to your habitual diet and we ask you to maintain your 
habitual diet during your study participation. You will receive a breakfast at the end of the visit. 

After approx. 2-3 weeks, you will be informed of the results of your health check and whether or not 
you are suitable to take part in the study. If your results are outside the normal range, we will 
encourage you to go to your GP to discuss the results of your health check. 



 

‘Study participation’ 

If you decide to take part and are suitable for the study, we will arrange 2 study visits at least 2 week 
apart from each other (See figure below). 

 

On each study visit, we will ask you to stay with us at the Hugh Sinclair Unit of Human Nutrition from 
around 8am to 4pm and come back for a short follow-up visit the next morning. The visit will start 
with a questionnaire, measurement of your weight, height and body composition. A qualified nurse 
will then place a small flexible cannula into a vein in your arm, and this will remain in place with 
minimal discomfort to allow us to take blood samples during the study day. 

You will then be asked to lie on a bed in a clinical room and we will perform a range of tests (blood 
vessel function, blood pressure etc.) that are all harmless and non-invasive, and collect small blood 
samples. Afterwards, you will be asked to consume a study meal, and subsequently the tests as well 
as blood sample collections will be repeated several times throughout the day (see figure above). We 
will also ask you to collect your urine until the end of the study visit. To ensure your well-being, we 
will only take little blood compared to a blood donor session and we will provide you plenty of water, 
a lunch (consisting of a cheese sandwich) and a dinner “to go” (consisting of a pasta bake and crème 
brulee). To get valid study results, it is vital that you do not eat and drink anything during the study 
visit duration, apart from the meals and water that we provide. This includes your time outside the 
unit during which you will be asked to only consume the dinner “to go” at a specified time (approx. 
5pm) and nothing else but water. You will be asked to remain in the nutrition unit for the duration of 
study visit day 1 where you will have free access to water and facilities to watch TV, DVDs, work, read 
and use the internet. You will receive a breakfast at the end of study visit day 2. 

Confidentiality, storage and disposal of information 

Confidential information will be stored securely and can only be accessed by the study investigators. 
All information collected during the study will be treated in strict confidence in accordance with the 
relevant data protection legislation. No information will be disclosed in any way that will allow 
identification of yourself. 

Are there any benefits/risks to taking part [e.g. health]? 

An experienced nurse will perform the blood cannulation, while fasting blood sample collections will 
be taken by qualified and experienced phlebotomists. There may be a small amount of discomfort 
during the clinical measures. Although, the measures and blood-taking are generally safe and 
harmless, minor bruising may occur from the venipuncture or pressure applied by blood pressure 
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cuffs. Risk of allergies may also be possible; however, this risk will be kept to a minimum because 
only latex-free materials and low allergy plasters will be used. 

What expenses and/or payment or equivalent will be made for participation in the study? 

As an inconvenience allowance for your time and travel costs that you may incur, you will receive 
£200 for completing the study. In case of early withdrawal, you will receive the payment 
correspondent to the study visits you have completed. 

What will the results of the study be used for? 

The results of this study will be used in thesis of PhD and MSc students, will be published in a 
scientific journal and presented at international conferences. 

Who has reviewed the study? 

This project has been reviewed by the University of Reading Research Ethics Committee (Tel: +44 (0) 
118 378 7119; Email: m.j.proven@reading.ac.uk) and has been given a favourable opinion for 
conduct. 

 

Thank you for reading this information. Please contact us if you have any further questions or would 
like to take part in the study. 

  

mailto:m.j.proven@reading.ac.uk


 

Appendix 2: Health and Lifestyle Questionnaire 

All the information provided will remain confidential at all times. 

Please fill the questionnaire below. 

 DAY MONTH YEAR 

Date questionnaire 
completed 

         

Example 1 0 J U N 2 0 1 4 

 

Personal Details 

 

  

Title: 

Forename(s): 

Surname: 

 

Address: 

 

 

Postcode: 

Daytime telephone no: Evening telephone no: 

Mobile telephone no: E-mail address: 

Best method (e.g. landline, mobile, e-mail) and time to contact you:  

Date of Birth: Age today 

 

Sex: 

Weight (kg): 

Height (m):   

 

Proceed?           Yes    /    
No 



 

Medical & Lifestyle Questions 

Medical & Lifestyle Questions 

 

Circle as appropriate: Further Details: 

Have you taken any antibiotics within 
the last 3 months? 

YES         NO  

Have you recently received any form of 
vaccination ? 

YES         NO  

Do you suffer from allergies to any 
food?  

YES         NO  

Are you currently taking part in another 
study ? 

YES         NO  

Have you recently taken part in a 
research study ? 

If YES, please give the study or 
researcher’s name so we can contact 
them. 

YES         NO  

Do you smoke ? YES         NO  

If you are an ex-smoker, when did you 
stop? 

Month: ........ 

Year: ......... 

 

How much exercise do you participate 
in per week ( not including walking)? 

Please specify: i) type of exercise(this 
includes cycling to work), 

ii) how often & iii) duration 

YES         NO  



 

Brief Medical History 

Please tell us if you have any pre-existing health problems,including any of the following: 

 Medical Questions Circle as appropriate: Further Details: 

Has your doctor told you that 
you suffer from heart disease 
(e.g. Angina), stroke or any 
other disease of the 
circulation (i.e. Reynaud’s 
disease)? 

YES         NO  

Has your doctor diagnosed 
you as having high blood 
pressure (hypertension)? 

YES         NO  

Has your doctor diagnosed 
you as having high 
cholesterol? 

YES         NO  

Has your doctor diagnosed 
you as having diabetes (either 
type 1 (insulin dependent) or 
type 2 (age-onset diabetes))? 

YES         NO  

Has your doctor diagnosed 
you with cancer? 

YES         NO  

Has your doctor diagnosed 
you with HIV? 

 

YES         NO  

Do you have any other health 
problems?  

 

YES         NO  

 

 

 

 

Do you take any prescription 
medication?  

 

YES         NO  

Do you take any pain killing 
medication ( e.g. aspirin, 
paracetamol, nurofen, 
ibuprofen etc) daily or more 
than 4 times per week ? 

 

YES         NO  



 

Dietary Intake and Supplement Use 

Dietary Questions Circle as appropriate: Further Details: 

Are you a vegan or 
vegeterian? 

 

YES         NO  

Do you take any form of 
dietary supplements? For 
example, minerals/vitamins, 
antioxidants, phytochemicals 
or fish oil supplements.  

 

If so, please give details and 
state the product name. 

 

YES         NO  

Do you drink alcohol ? 

If yes, how many units do you 
roughly drink per week ? 

 A unit of alcohol is half a pint 
of beer/lager, a single pub 
measure of spirits e.g. 
gin/vodka or a small glass of 
wine(125ml). 

 

YES         NO  

 

Thank you for completing this questionnaire. 

  



 

Appendix 3: CONSENT FORM 

Consent Form 

1. I have read and had explained to me by ……………………………………………..… the 
accompanying Information Sheet relating to the PROGRAIN 2 study 

I have had explained to me the purposes of the project and what will be required of me, and 
any questions I have had have been answered to my satisfaction.  I agree to the arrangements 
described in the Information Sheet in so far as they relate to my participation. 

I understand that participation is entirely voluntary and that I have the right to withdraw from 
the project any time, and that this will be without detriment. 

I authorise the Investigator to consult my General Practitioner, and provide their name and 
address details overleaf. 

This application has been reviewed by the University Research Ethics Committee and has been 
given a favourable ethical opinion for conduct. 

I have received a copy of this Consent Form and of the accompanying Information Sheet.  

I consent to my contact details being stored on the Hugh Sinclair Unit of Human Nutrition 
Volunteer Database.     

 I consent to my screening information (date of birth, height, weight, blood pressure smoking 
status, long-term use of medication, and blood test results such as levels of cholesterol, liver 
enzymes, haemoglobin, blood cell count) being stored on the Hugh Sinclair Unit of Human 
Nutrition Volunteer Database. 

Yes           No 

Name: ……………………………………………………………………………… 

Date of birth: ……………………………………………………………………… 
Signed: ……………………………………………...……………………………… 

Date: ………………………………………………………...……………………… 

GP details 

Name: ……………………………………………………………………………… 

Address: ……………………………………………………………………… 
 

…………………………………………...……………………………… 

 ………………………………………………………...……………………… 

Witnessed by: Name……………………Signature………………….Date………………  

  

 

Initials 

 

 

 

 

 

 

 

  

 



 

Appendix 4: Preparation Instructions  

Instant Oatmeal:  

1. Take pre-weighted oats out of the freezer and give 5min to bring back to room 
temperature. 

2. Pour content in a bowl 
3. Add 420 g of boiling water (determine boiling temperature and consistently reach this 

temperature each time); stir 
4. Let sit for 1 minute before serving 

 

Cream of Rice: 

1. Take container with pre-weighted cream of rice, dry skimmed milk and pectin powder 
out of the freezer and give 5 min to bring back to room temperature. 

2. Pour content in a bowl 
3. Add 6.1g of sunflower oil. 
4. Add 250 g of boiling water (determine boiling temperature and consistently reach this 

temperature each time); stir 
5. Let sit for 1 minute before serving 
6. Serve with 170g water 

Cream of Rice will be purchased from B&G Foods, Inc. 

 

 

  



 

Appendix 5: Dietary restrictions in preparation for the study 

To make sure that our measurements at your visit show valid results, it is very important that 
you avoid any foods that contain phenolic acids for 2 days prior to the study day. 

 

Foods to avoid Foods that can be eaten 

 Oats, porridge, or oat bars 
 Whole wheat bread, cereal or products 
 Products containing other whole grains 

(rye, barley or spelt) 
 Fruits 
 Vegetables 
 Soups 
 Spices 
 Herbs 
 Flavourings 
 Nuts and seeds 
 Chocolate 
 Crisps flavoured with spices 
 Jams, chutneys and dips 

 White bread (plain, no whole grain, 
without seeds) 

 Cereal (plain, no whole grain, without 
fruit, seeds or nuts etc.) 

 Meat 
 Fish 
 Poultry 
 Eggs 
 Pasta (plain) 
 Rice (plain) 
 Potatoes 
 Plain crisps (ready salted, salt & vinegar) 
 Butter and margarine 
 Dairy (plain cheese without fruit or 

spices/hers. Vanilla or greek yoghurts 
only) 

  

Beverages to avoid Beverages that can be consumed 

 Fruit juices 
 Squash/cordial 
 Tea including herbal tea 
 Coffee 
 Caffeinated drinks (e.g. red bull, coke) 
 Hot chocolate 
 Alcohol (wine, beer, spirits etc.) 
 Soya, almond or oat milk 

 Water 
 Dairy Milk 

  

Meal examples:  

 Eggs and ham 
 Macaroni cheese 
 Fish & chips 
 Baked potatoe with tuna 

 Ham & cheese sandwich 
 Egg mayonnaise sandwich 
 Cheese omelette 
 Mince and potatoes 

 

 

 

  



 

Appendix 6: PARTICIPANT INFORMATION SHEET 

 

  

 

DevOAT study: DevOAT yourself to a healthy lifestyle 

 

You are being invited to take part in a research study. Before you decide, it is important for 
you to understand why the research is being done and what it will involve for you. Please take 
time to read the following information carefully and discuss it with family and friends if you 
wish. Ask us if there is anything that is not clear or if you would like more information.  

Thank you for your interest in this study and taking your time to read this participant 
information sheet. 

 

Chief investigator: Professor Jeremy Spencer 

Investigators:  Dr Manuel Schar 

 Sarah Alsharif (PhD Student) 

 Angelika Kristek (PhD Student) 

 Gulten Soycan (PhD Student) 

 Hanna Petsch (MSc Student) 

Study e-mail: DevOAT.study@reading.ac.uk Telephone number: 0118 378 6833

mailto:DevOAT.study@reading.ac.uk


 

Background 

It is well known that what we eat and drink can have a major role in protecting us from 
disease. Eating more whole grain products can improve our health and this could, in part, be 
due to natural elements in whole grains such as phenolic acids. Indeed, regular intakes of 
phenolic acid related elements found in fruits, vegetables, wine, tea and chocolate have been 
shown to reduce our risk of suffering from cardiovascular disease. Fibre from whole grains, on 
the other hand, is an indigestible carbohydrate (that is usually part of plant foods) with many 
health effects, mainly by feeding the good bacteria in our gut and easing bowel movements. 
However, the health benefits of phenolic acids from whole grains remain unclear. 

What is the purpose of the study? 

The main purpose of this study is to test if long-term intake of a 70g breakfast cereals and 50g 
snacks improves your heart, blood vessels and intestinal health; and if phenolic acids are, at 
least in part, responsible for these effects. Potential health benefits will be measured using a 
range of non-invasive and harmless tests. These include blood vessel elasticity, blood pressure, 
gut-bacteria and further markers related to the cardiovascular system. 

Am I suitable to take part? 

We aim to recruit people who are generally healthy within study range above 120/75 and 
160/100 mmHg. You need to be between 25 and 75 years of age, non-smoking (or who 
stopped smoking in last 3 month), free of disease, not undertaking regular vigorous exercise 
and not taking long-term blood pressure or blood fat medication.  

Females taking the contraceptive pill or hormone replacement therapy (HRT) can take part. 
Females who are pregnant, lactating or, if of reproductive age and not using a reliable form of 
contraception (including abstinence) will not be able to take part in the study.  

 

At the beginning of your study participation, you will receive a health check and we will fully 
assess your eligibility to take part in the study. 

Do I have to take part? 

It is up to you to decide whether you wish to participate in the study. If you decide to proceed, 
you are still free to withdraw from the study at any time, without giving a reason. At your first 
visit, we will also describe the study to you in further detail and you can ask remaining 
questions. We will then ask you to sign a consent form to show you have agreed to take part. 

What will happen if I decide to take part? 

‘Health and lifestyle questionnaire’ 

If you wish to take part, please contact us and we will ask you to fill in a health and lifestyle 
questionnaire. Afterwards and if you meet our broad eligibility criteria, we will invite you to a 
consent and health check visit. The consent will be taken in an unfed state (fasted, not eating 
or drinking anything but water from 8pm the night before).  

 

‘Consent and health check visit'  

For a maximum 1 h morning visit, you will be asked to come to the Hugh Sinclair Unit of 
Human Nutrition in the Department of Food and Nutritional Sciences (University of Reading) in 



 

an unfed state (fasted, not eating or drinking anything but water from 8pm the night before). 
At the start of the visit, we will discuss the study, answer all your questions and you will then 
be asked to give consent for participating in this study.  

After that, we will measure your weight, height, blood pressure and a skilled nurse or 
phlebotomist will take a small blood sample (equivalent to two tablespoons). You will be asked 
to fill in a questionnaire related to your habitual diet and we ask you to maintain your habitual 
diet during your study participation. You will receive a breakfast at the end of the visit. 

After approx. 2-3 weeks, you will be informed of the results of your health check and whether 
or not you are suitable to take part in the study. If your results are outside the normal range, 
we will ask for your consent to send the results to your GP and encourage you to discuss these 
with your GP. If you are eligible we will inform your GP that you volunteered to participate in 
our study. 

 

‘Familiarisation visit’ 

If you decide to take part and are suitable for the study, we will arrange a familiarisation visit 
at the Hugh Sinclair Unit of Human Nutrition. A demonstration of the vascular measurements 
will be given, while all further aspects of the study will be discussed in detail, including the 
gastrointestinal questionnaires, 3 day food diaries, intake of the study intervention materials, 
collection of the stool and urine samples and dietary & exercise restrictions. 

`Dietary restrictions` 

For a two week period prior to your first study visit and during your total study participation 
(22 weeks), you will be asked to follow your habitual diet but to limit your intake of phenolic 
acid rich beverages (i.e. coffee and tea) to no more than 2 cups (400ml) per day and not to 
consume confirmed probiotics (e.g. live yoghurts, fermented milk drinks), supplementary 
prebiotics (such as inulin) (check last page of the Information sheet) and avoid any oat 
products.  

`Study participation` 

If you decide to take part and are suitable for the study, we will contact you in order to offer 
you an option of appointments for your study participation lasting 22 weeks in total (see figure 
below). Your participation will include that on three periods lasting 4 weeks each you eat a 
specific breakfast and afternoon snack every day, and that you attend six study visits at the 
Nutrition Unit. The day after each of these six visits, we will also ask you to drop off the blood 
pressure monitor, urine and stool samples (5min visit). Overall there are 14 visits to the 
Nutrition Unit (including health check and familiarisation visits). We will provide the breakfasts 
and afternoon snacks, which will consist of products made of oats, rice or wheat. 



 

 

Study visits` 

On each study visit, we will ask you to stay with us for 3 hours at the Hugh Sinclair Unit of 

Human Nutrition (for example from 8am to 11am) in an overnight fasted state (see figure 

below). The visit will start with a questionnaire, measurement of your weight, height and body 

composition. You will then be asked to lie on a bed in a clinical room and we will perform a 

range of tests (blood vessel function, blood pressure etc.) that are all harmless and non-

invasive, and collect a small blood sample (3 tablespoon). Anytime during the course of the 

morning we will also require you to provide a stool sample. We will provide you with a 

breakfast before you leave the Nutrition Unit. 

For the 24h after your visit, we will ask you to collect your urine and to wear a blood pressure 

monitor that will inflate every 30min during daytime and every hour during night-time. The 

following day, at a time convenient to you after 11am, we will ask you to return the urine and 

blood pressure monitor to us. Furthermore, you will be given the breakfasts and afternoon 

snacks, which you will be consuming over the following 4 weeks. 

 

4 week: daily 
intake of study 
breakfast and 

afternoon snack

4 weeks: habitual 
diet, but no oats 

and  limited 
coffee/tea

Visit 1
(0wk)

Run in 
period

(2 week)

Visit 2
(4wk)

Visit 3
(8wk)

Visit 4
(12wk)

Visit 5
(16wk)

Visit 6
(20wk)

Maintain body weight, keep habitual diet and exercise, limit coffee & tea intake to 2 cup per day, and avoid 

wholegrain oat products and dietary supplements and pre-/probiotics.

A Study overview

4 weeks: habitual 
diet, but no oats 

and  limited 
coffee/tea

4 week: daily 
intake of study 
breakfast and 

afternoon snack

4 week: daily 
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1d diet and exercise
restrictions *

3h morning visit at Nutrition Unit:

Measurements:
• Weight, height, body 

composition
• Blood pressure
• Blood vessel function

• Blood collection
• Stool sample collection

24h urine collection

Wearing 24h 
blood pressure monitor

* Restrictions include: no strenuous exercise and no intake of a range of foods (see list on last page). On the evening 
before the visit,  we will ask you to consume a provided dinner and then fast ≥12h.
** Indicated times are only an example and can be agreed on an individual basis.

Short visit to return 
urine, blood pressure 
monitor
and collect study foods 
(day 2, after 11am)

1day diet & exercise
restrictions *

Day1, 8am** Day1, 11am** Day2, 11am**



 

Before each study visit, you will also be asked to complete a 28-day gastrointestinal well-being 
diary and a 3-day food diary. Moreover, from 24h before your study visit to the end of your 
blood pressure monitoring you will be asked to abstain from vigorous exercise and follow 
dietary restrictions low in phenolic acids, and free of alcohol, caffeine and fish (see list on last 
page). 

Confidentiality, storage and disposal of information 

Confidential information will be stored securely and can only be accessed by the study 
investigators. All information collected during the study will be treated in strict confidence in 
accordance with the relevant data protection legislation. No information will be disclosed in 
any way that will allow identification of yourself. 

Are there any benefits/risks to taking part [e.g. health]? 

By taking part in this study you will be helping us understand more about the health benefits 
of phenolic acids from whole grains.  

The fasting blood sample collections will be taken by qualified and experienced phlebotomists 
or nurse. There may be a small amount of discomfort during the clinical measures. Although, 
the measures and blood-taking are generally safe and harmless, minor bruising may occur 
from the venepuncture or pressure applied by blood pressure cuffs. Risk of allergies may also 
be possible; however, this risk will be kept to a minimum because only latex-free materials and 
low allergy plasters will be used. 

What if I do not wish to take part or change my mind? 

The study is voluntary so that you should not feel under any pressure to take part. If you do 
decide to take part you are still free to withdraw at any time.  

What if something goes wrong? 

In the event that something does go wrong and you are harmed during the study the 
University of Reading has in place Professional Indemnity Insurances that provide cover against 
negligence, error or omission for the activities of its employers. 

Who is sponsoring and funding the research 

This study is sponsored by the University of Reading and financed by the UK government (90 
%) and PepsiCo Research & Development (10 %). 

 

What expenses and/or payment or equivalent will be made for participation in the study? 

As an inconvenience allowance for your time and travel costs that you may incur, you will 
receive £300 for completing the study. In case of early withdrawal, you will receive the 
payment correspondent to the study days you have completed. 

What will the results of the study be used for? 

The results of this study will be used in the thesis of PhD and MSc students, will be published in 
a scientific journal and presented at international conferences. 

Who has reviewed the study? 



 

This project has been reviewed by the University of Reading Research Ethics Committee (Tel: 
+44 (0) 118 378 7119; Email: m.j.proven@reading.ac.uk) and has been given a favorable 
opinion for conduct. 

All research in the NHS is looked at by an independent group of people, called a Research 
Ethics Committee, to protect your interests. This study has been reviewed and given a 
favourable opinion by the London – Bromley Research Ethics Committee.  

 

 

Who do I contact for further information or complaints? 

Main point of contact: 

Dr Manuel Schar 

Email: DevOat.study@reading.ac.uk  

Tel: 0118 378 6833 

Address: Department of Food and 

Nutritional Sciences, PO Box 266, 

University of Reading, Whiteknights 

Campus, Reading, RG6 6AP 

For formal complaints: 

Prof. Jeremy Spencer (Principal Investigator) 

Email: j.p.e.spencer@reading.ac.uk  

Tel: 0118 378 8724 

Address: Department of Food and Nutritional 

Sciences, PO Box 266, University of Reading, 

Whiteknights Campus, Reading, RG6 6AP 

 

Thank you for reading this information. Please contact us if you have any further questions or 

would like to take part in the study.  

 

This study has been reviewed according to procedures specified by the University of Reading 

Research Ethics Committee and has been given a favourable opinion for conduct 

(www.reading.ac.uk/internal/res/ResearchEthics) 

 

One copy to be given to the participant and one copy to be kept in the investigator study file. 

 

 

 

mailto:m.j.proven@reading.ac.uk
mailto:DevOat.study@reading.ac.uk
mailto:j.p.e.spencer@reading.ac.uk
http://www.reading.ac.uk/internal/res/ResearchEthics


 

Appendix 7: Medical and Lifestyle Questionnaire 

 

Chronic cardiovascular and gut-bacteria effects of phenolic rich oats in adults with above 
average blood pressure. 

 

Name: Title: 

Address: 

 

Date of Birth: 

Age: 

Daytime Telephone: Evening Telephone: Best time to call: 

Weight (kg): Height (m): BMI (kg/m2): 

E-mail: 

Do you use emails on a regular basis?     YES/NO 

    

How did you hear about the study? ______________________________________________ 

Please circle as appropriate 

Medical questions  

Have you been diagnosed as having any of the following?                          

a)  High blood cholesterol        
           YES/NO 

b)  High blood pressure         
           YES/NO 

If you recently had your blood pressure measured, can you give us a rough estimate of what 
the pressure was? (Reference example: 120 / 80 mmHg) 

c)  Thyroid disorder       YES/NO 

d)  Diabetes or other endocrine disorders        YES/NO 

e)  Heart problems, stroke or any vascular disease in the past 12 months        YES/NO 

f)  Inflammatory diseases (e.g. rheumatoid arthritis)        YES/NO  

g) Renal, gastrointestinal, respiratory or liver disease                                                           YES/NO                   
h) Cancer                                                                                                                                                
YES/NO                                                                                                                

i) Chronic constipation, diarrhoea or other chronic gastrointestinal complaint (e.g.  

irritable bowel syndrome)                                                                                                               
YES/NO 



 

Have you been diagnosed as suffering from any other illness?         
YES/NO 

If ‘YES’, please give details 

 

Within the past 3 months, have you taken any medication (prescription or                                         
non-prescription)?                                                                                                                                    
YES/NO        

         If ‘YES’, what are they and for what reasons?  

Have you had any surgery within the past 3 months or do you have surgery planned?  YES/NO      
If ‘YES’, please give details 

 

Have you ever suffered from a pulmonary embolism, deep vein thrombosis,                                 
blood clots or had a blood transfusion?                      
YES/NO                                     

             If ‘YES’, please give details 

 

Do you have a pacemaker?                                                                                       YES/NO                                                             

 

Do you regularly take painkillers?     YES/NO 

If ‘YES’, please give details 

 

Lifestyle questions 

Are you currently taking part in or within the last 3 months been involved in a clinical trial or a 
research study?     YES/NO 

If ‘YES’, please give details: 

 

Have you been screened or contacted recently about a study?     YES/NO 

           If ‘YES’, please give details 

 

  

 

Are you a blood donor?  YES/NO 

If ‘YES’, when was the last time you gave blood? 



 

If you are eligible to participate in the study, are you willing to postpone further blood 
donations until 3 months after your final study visit?  YES/NO 

 

Do you have any food allergies (e.g. gluten or dairy) or intolerances (e.g. lactose)?  
  YES/NO 

              If ‘YES’, what are they? 

 

Do you use any of the following: 

  Dietary supplements, e.g. fish oils, evening primrose oil, vitamins or minerals  (such as 
iron or calcium);  YES/NO 

Probiotics, e.g. Actimel, Yakult, Activia yoghurts or capsules;  YES/NO 

   Cholesterol-lowering products, e.g. Flora Pro-Activ or Benecol?  YES/NO 

     If ‘YES’ to any, please give details    

 

Are you vegetarian or vegan? YES/NO 

          If ‘YES’, please specify 

 

Are you following or planning to start a restricted diet, e.g. to lose weight?   YES/NO
              

              If ‘YES’, would you be willing to postpone this until after your final study visit?
 YES/NO  

 

Do you drink alcohol? YES/NO 

If ‘YES’, approximately how many units do you drink per week?    ____Units 

 

One unit of alcohol is half a pint of beer/lager, a single pub measure of spirits                               
e.g. gin/vodka, or a small glass of wine (125 ml). 

 

How much exercise do you participate in per week (not including walking)? 

Please specify: i) type of exercise (this includes cycling to work), ii) how often & iii) duration  

 

Do you regularly consume wholegrain (e.g. breakfast cereal, dark bread, brown rice)?  

If so, please say which types and estimate how many servings per day. 



 

Do you regularly consume coffee?  

If so, please estimate how many cups per day. 

 

Do you regularly consume tea?  

If so, please estimate how many cups per day. 

 

Do you smoke?                        
YES/NO  

If ‘YES, please give details 

 

If female, are you pregnant, intending to become pregnant or breast-feeding? YES/NO 

 

If female, are you using contraception?        
 YES/NO 

If yes, please give details. 

 

This is the end of the questionnaire - thank you for your time. 

All information provided will remain confidential at all times. 

 

  



 

Appendix 8: Consent Form 

Study title: Devoat study (Phenolic-rich oats for gut-bacteria relief and artery improvement) 

 

1. I confirm that have read and had explained to me by ……………………………………………..… 
the accompanying Information Sheet relating to the DevOAT study 

 

I have had explained to me the purposes of the project and what will be required of me, and 
any questions I had were answered to my satisfaction. I agree to the arrangements described 
in the Information Sheet in so far as they relate to my participation. 
 

I understand that participation is entirely voluntary and that I have the right to withdraw from 
the project any time without giving any reason, and that this will be without detriment 

 I understand that relevant sections of any of my data collected during the study, may be 
looked at by responsible individuals from University of Reading  , where it is relevant to my 
taking part in this research.  I give permission for these individuals to have access to my 
records 

I authorise the Investigator to consult my General Practitioner, provide their name and address 
details overleaf and inform the GP about my study participation. 

I agree for my blood, urine, stool samples to be stored for future use in this research study 

This application has been reviewed by the University Research Ethics Committee and has been 
given a favourable ethical opinion for conduct. 
 

I have received a copy of this Consent Form and of the accompanying Information Sheet.  

I consent to my contact details being stored on the Hugh Sinclair Unit of Human Nutrition 
Volunteer Database.    

 

 

 

 

 I consent to my screening information (date of birth, height, weight, blood pressure smoking 
status, long-term use of medication, and blood test results such as levels of cholesterol, liver 
enzymes, haemoglobin, blood cell count) being stored on the Hugh Sinclair Unit of Human 
Nutrition Volunteer Database. 

           

 

 

  

Initials 

Initials 



 

Name: ……………………………………………………………………………… 

 

Date of birth: ……………………………………………………………………… 
 

Signed: ……………………………………………...……………………………… 

 

Date: ………………………………………………………...……………………… 

 

GP details 

 

Name: ……………………………………………………………………………… 

 

Address: ……………………………………………………………………… 
 

…………………………………………...……………………………… 

 

 

Witnessed by 

 

Name……………………………………….Signature………………………………. 

 

Date…………………………………… 

 

One copy to be given to the participant and one copy to be kept in the investigator study file. 

  



 

Appendix 9: Dietary restrictions in preparation for the study 

To make sure that our measurements at your visit show valid results, it is very important that 
you avoid any foods that contain phenolic acids for 1 day prior to the six study days. 

Foods to avoid Foods that can be eaten 

 Oats, porridge, or oat bars 
 Whole wheat bread, cereal or 

products 
 Products containing other whole 

grains (rye, barley or spelt) 
 Fruits 
 Vegetables 
 Vegetable oils 
 Soups 
 Spices 
 Herbs 
 Flavourings 
 Nuts and seeds 
 Chocolate and chocolate biscuits 
 Crisps flavoured with spices 
 Jams, chutneys and dips 
 Fish 

 White bread (plain, no whole grain, 
without seeds) 

 Cereal (plain, no whole grain, without 
fruit, seeds or nuts etc.) 

 Meat 
 Poultry 
 Eggs 
 Pasta (plain) 
 Rice (plain) 
 Potatoes 
 Plain crisps (ready salted) 
 Butter and margarine 
 Plain cheese (without fruit or 

spices/herbs) 
 Plain or Greek style yoghurts 

  

Beverages to avoid Beverages that can be consumed 

 Fruit juices 
 Squash/cordial 
 Tea including herbal tea 
 Coffee 
 Caffeinated drinks (e.g. red bull, coke) 
 Hot chocolate 
 Alcohol (wine, beer, spirits etc.) 
 Soya, almond or oat milk 

 Water 
 Dairy Milk 

Meal examples:  

 Eggs and ham 
 Macaroni cheese 
 Baked potato with tuna 
 Ham & cheese sandwich 
 Egg mayonnaise sandwich 
 Cheese omelette 
 Mince and potatoes 

 

  



 

Appendix 10: 24-HOURS AMBULATORY BLOOD PRESSURE MEASURMENT 
DIARY 

Volunteer number:  

  

Diary number: 1/2/3/4/5/6 

     Day: M / Tu / W / Th / F / Sa / Su Date: 

     ABP Number : 

   
     Time you went to sleep: Time you woke up: 

     Did you do any exercise? Y / N If yes, at what time: 

     

     
     Note: you do not need to record your activities for the first two readings. 

Time Activity (please circle) Other activity / comments 

07:00 Lying down Sitting Standing   

07:30 Lying down Sitting Standing   

08:00 Lying down Sitting Standing   

08:30 Lying down Sitting Standing   

09:00 Lying down Sitting Standing   

09:30 Lying down Sitting Standing   

10:00 Lying down Sitting Standing   

10:30 Lying down Sitting Standing   

11:00 Lying down Sitting Standing   

11:30 Lying down Sitting Standing   

12:00 Lying down Sitting Standing   

12:30 Lying down Sitting Standing   

13:00 Lying down Sitting Standing   

13:30 Lying down Sitting Standing   

14:00 Lying down Sitting Standing   

14:30 Lying down Sitting Standing   

15:00 Lying down Sitting Standing   

15:30 Lying down Sitting Standing   

16:00 Lying down Sitting Standing   

16:30 Lying down Sitting Standing   



 

17:00 Lying down Sitting Standing   

17:30 Lying down Sitting Standing   

18:00 Lying down Sitting Standing   

18:30 Lying down Sitting Standing   

 

 

Time Activity (please circle) 
Other activity / 
comments 

19:00 Lying down Sitting Standing   

19:30 Lying down Sitting Standing   

20:00 Lying down Sitting Standing   

20:30 Lying down Sitting Standing   

21:00 Lying down Sitting Standing   

21:30 Lying down Sitting Standing   

22:00 Lying down Sitting Standing   

          

23:00 Lying down Sitting Standing   

          

00:00 Lying down Sitting Standing   

          

01:00 Lying down Sitting Standing   

          

02:00 Lying down Sitting Standing   

          

03:00 Lying down Sitting Standing   

          

04:00 Lying down Sitting Standing   

          

05:00 Lying down Sitting Standing   

          

06:00 Lying down Sitting Standing   

          

      


