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Try to imagine a life without timekeeping.

You probably can’t. You know the month, the year, the day of

the week. There is a clock on your wall or the dashboard of your

car. You have a schedule, a calendar, a time for dinner or a movie.

Yet all around you, timekeeping is ignored. Birds are not late.

A dog does not check its watch. Deer do not fret over passing

birthdays.

Man alone measures time.

Man alone chimes the hour.

And, because of this, man alone suffers a paralyzing fear that

no other creature endures.

A fear of time running out.

Mitch Albom – The Time Keeper
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Abstract

Within a generation, climate change will no longer be a subject for political debate.

By 2080, average summer temperatures in the UK are predicted to rise by up to 4.2°C,

snowfall will all but cease, and heatwaves will become increasingly common (Jenkins

et al. 2009). Whilst high temperatures are known to be detrimental to wheat crop yields

(Shah et al. 2003; Asseng et al. 2011; Asseng 2015), the effect on the distribution of

protein within the wheat grain is yet to be discovered.

Distinct gradients exist in the distribution of protein within the wheat endosperm (Cobb

1905; Kent 1966; Tosi et al. 2011), with protein accumulation concentrated towards

the outer endosperm, an effect which is increased by nitrogen fertilisation (He et al.

2013). Due to these gradients in protein concentration, during milling mill streams of

differing protein content are produced (Wang et al. 2007). Furthermore, when milling

for while flour, a portion of the outer endosperm remains adhered to the aleurone layer,

resulting in a disproportionate reduction in the protein content of the flour. Therefore

understanding the effects that determine the distribution of protein within the wheat

endosperm is of great importance.

This research has identified a combined effect of nitrogen supply and elevated temper-

ature on the gradient in grain protein concentration and size-distribution of protein

bodies in the wheat endosperm, and also how these qualities vary between genotypes.

Furthermore, data for grain yield and yield components, protein composition, and

gluten storage protein synthesis gene expression are also presented. The results of this

study lay the foundation for future work on the effect of climate change on wheat

grain quality. This study also makes available an image analysis tool capable of the

high-throughput spatial analysis of images, which can be applied to a range of future

experiments.

George Savill



ii

George Savill



iii

Acknowledgements

First and foremost I wish to thank my academic supervisors: Malcolm Hawkesford, for his

excellent guidance and insight, continuous monitoring and support, providing me with unin-

hibited access to resources, and for allowing me to be part of his amazing team of scientists;

Paola Tosi, for her thorough feedback on my written work, for sharing her expertise in mi-

croscopy and protein analysis, and for always being but a phone call away; and Peter Buchner,

for his seemingly infinite knowledge of plant biochemistry, his patience and teaching ability

in the laboratory, and the countless laughs he has provided over the past four years.

My thanks also go to Donna Fellowes, for giving me such a warm welcome on my first day, and

for continued support throughout my studentship; and to Steve Thomas, for being a friendly

and approachable mentor, for providing morale boosts when necessary, and for entrusting me

with cooking duties at the annual departmental barbecue.

For their considerable contributions to my work whilst at Rothamsted Research, I would like

to thank Adam Michalski, for developing the image analysis software which was critical to the

success of this project; Andrew Riche, for ensuring the smooth running of the WGIN diversity

field experiment; Anne Roßmann, for the incredible amount of work she put in to the collecting

and processing of field samples during her visit in 2016, and for her continued intellectual input

into my work; Chris Hall, for his extensive knowledge of cereal grain processing and bicycle

maintenance; Kirstie Halsey, for teaching me everything I know about microscopy; Saroj

Palmer, for both conducting all of my grain nitrogen content analyses, and for providing me

with many delicious lunches; Stephen Powers, for his numerous in-depth meetings discussing

the design and analysis of my experiments; Yongfang Wan, for training me in SDS-PAGE

protein analysis, and for her eagerness to help my research in any way she can; Zhiqiang Shi,

for guiding me through the process of SE-HPLC analysis and for his incredible enthusiasm

for helping others; and to everyone else at Rothamsted that made my time there so pleasant

and enjoyable.

I am also grateful to Maryna Kuzmenko and Andrii Seleznov, for inviting me to complete a

thoroughly enjoyable internship at their software company, Petriole Ltd.

And finally, thank you to Lucas Gent, Nick Evens, and Yan Ma, for providing me with daily

doses of distraction.

George Savill



iv

George Savill



v

Declaration of original authorship

Declaration: I confirm that this is my own work and the use of all material from other sources

has been properly and fully acknowledged.

George Savill

George Savill



vi

Table of Contents

Abstract i

Acknowledgements iii

Declaration of original authorship v

Table of Contents vi

List of Figures xi

List of Tables xiv

Glossary xvii

Chapter 1: Introduction 1

1.1. An introduction to wheat . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2. Wheat morphology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1. Morphology of the ear . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.2. Morphology of the grain . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3. Development of the wheat plant . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1. Grain development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1.1. Cell division . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.1.2. Cell enlargement . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.1.3. Dehydration and grain maturation . . . . . . . . . . . . . . 8

1.4. Nitrogen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4.1. The transport of nitrogen from the rhizosphere to the grain . . . . . . . 9

1.5. Composition of the wheat grain . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5.1. Carbohydrates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5.1.1. Starch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5.1.2. Non-starch carbohydrates . . . . . . . . . . . . . . . . . . . 11

1.5.2. Protein . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5.2.1. Glutenins . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.5.2.2. Gliadins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.5.2.3. Non-gluten proteins . . . . . . . . . . . . . . . . . . . . . . 14

1.5.3. Lipids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.6. Milling for bread-making . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.7. Protein gradients within the wheat grain . . . . . . . . . . . . . . . . . . 15

1.7.1. Quantification of protein gradients . . . . . . . . . . . . . . . . . . . . . 16

George Savill



TABLE OF CONTENTS

vii

1.8. Future challenges for wheat production . . . . . . . . . . . . . . . . . . . . 16

1.8.1. Reducing the environmental impact of agriculture . . . . . . . . . . . . . 17

1.8.2. Climate change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.8.2.1. The effect of climate change on wheat . . . . . . . . . . . . 19

1.9. Aims and hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.9.1. Aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.9.2. Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Chapter 2: Materials and Methods 23

2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2. Controlled-environment post-anthesis temperature experiment . . . . 23

2.2.1. Growth room conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.2. Nutrient solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.3. Experimental design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.4. Sampling protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3. WGIN diversity field trial experiment . . . . . . . . . . . . . . . . . . . . 30

2.3.1. Field conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.2. Experimental design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3.3. Wheat varieties sampled . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3.4. Sampling protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.5. Meteorological data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4. Microscopy analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4.1. Fixation, dehydration, and embedding . . . . . . . . . . . . . . . . . . . 33

2.4.2. Sample sectioning, staining, and imaging . . . . . . . . . . . . . . . . . . 34

2.5. Microscopy image analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5.1. Protein concentration gradient analysis . . . . . . . . . . . . . . . . . . . 36

2.5.2. Protein body size-distribution analysis . . . . . . . . . . . . . . . . . . . 37

2.5.3. Image analysis analysis data processing . . . . . . . . . . . . . . . . . . . 37

2.6. Nitrogen content analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.7. SDS-PAGE analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.7.1. Protein extraction for SDS-PAGE . . . . . . . . . . . . . . . . . . . . . . 39

2.7.2. SDS-PAGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.7.3. SDS-PAGE image analysis and data processing . . . . . . . . . . . . . . 40

2.8. SE-HPLC analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.8.1. Protein extraction for SE-HPLC . . . . . . . . . . . . . . . . . . . . . . . 43

2.8.2. SE-HPLC analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.8.3. SE-HPLC data collection and processing . . . . . . . . . . . . . . . . . . 43

2.9. RNA expression analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.9.1. Primer selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.9.2. RNA extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

George Savill



viii
TABLE OF CONTENTS

2.9.3. cDNA synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.9.4. Quantitative PCR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.9.5. Analysis of quantitative PCR data . . . . . . . . . . . . . . . . . . . . . 48

2.10. Statistical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Chapter 3: Results: Meteorological data 51

3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2. Temperature and accumulated thermal time . . . . . . . . . . . . . . . . 51

3.3. Rainfall and sunlight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4. Comparisons of weather experienced by different genotypes . . . . . . 54

3.5. Conclusions and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Chapter 4: Results: Grain yield and yield components 61

4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2. Controlled-environment experiment . . . . . . . . . . . . . . . . . . . . . . 61

4.2.1. Yield . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2.2. Thousand grain weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2.3. Total grain count . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2.4. Grain dimension measurements . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.5. SPAD measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3. WGIN diversity field experiment . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3.1. Yield . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3.2. Thousand grain weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3.3. Ear count and grain per ear . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4.1. Controlled-environment experiment . . . . . . . . . . . . . . . . . . . . . 73

4.4.2. WGIN diversity field trial experiment . . . . . . . . . . . . . . . . . . . . 75

4.4.2.1. Effect of climate . . . . . . . . . . . . . . . . . . . . . . . . 77

Chapter 5: Grain protein distribution 79

5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2. Controlled-environment experiment . . . . . . . . . . . . . . . . . . . . . . 80

5.2.1. Protein concentration gradients . . . . . . . . . . . . . . . . . . . . . . . 80

5.2.2. Protein body size-distribution . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3. WGIN diversity field experiment . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3.1. Protein concentration gradients . . . . . . . . . . . . . . . . . . . . . . . 88

5.3.2. Protein body size-distribution . . . . . . . . . . . . . . . . . . . . . . . . 88

5.4. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.4.1. Controlled-environment experiment . . . . . . . . . . . . . . . . . . . . . 94

5.4.2. WGIN diversity field trial experiment . . . . . . . . . . . . . . . . . . . . 97

Chapter 6: Results: Grain protein composition 101

George Savill



TABLE OF CONTENTS

ix

6.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.2. Controlled-environment experiment . . . . . . . . . . . . . . . . . . . . . . 101

6.2.1. Protein concentration and content . . . . . . . . . . . . . . . . . . . . . . 102

6.2.2. SDS-PAGE Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.2.3. SE-HPLC Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.3. WGIN Diversity Field Experiment . . . . . . . . . . . . . . . . . . . . . . 117

6.3.1. Protein concentration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.3.2. SDS-PAGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.3.3. SE-HPLC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.4. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.4.1. Controlled-environment experiment . . . . . . . . . . . . . . . . . . . . . 128

6.4.2. WGIN diversity field trial experiment . . . . . . . . . . . . . . . . . . . . 132

Chapter 7: Gene Expression Analysis 135

7.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.2. Controlled-environment experiment . . . . . . . . . . . . . . . . . . . . . . 135

7.2.1. Alpha- and Beta-gliadins . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7.2.2. Gamma-gliadins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.2.3. HMW-glutenins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

7.2.4. LMW-glutenins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

7.2.5. Omega-gliadins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7.2.6. Comparison with SE-HPLC data . . . . . . . . . . . . . . . . . . . . . . 143

7.3. WGIN diversity field trial experiment . . . . . . . . . . . . . . . . . . . . 143

7.3.1. Alpha- and Beta-gliadins . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

7.3.2. Gamma-gliadins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

7.3.3. HMW-glutenins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7.3.4. LMW-glutenins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7.3.5. Omega-gliadins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7.3.6. Comparison with SE-HPLC data . . . . . . . . . . . . . . . . . . . . . . 153

7.4. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

7.4.1. Controlled-environment experiment . . . . . . . . . . . . . . . . . . . . . 153

7.4.2. WGIN diversity field trial experiment . . . . . . . . . . . . . . . . . . . . 155

Chapter 8: General discussion 157

8.1. Key findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

8.2. Limitations of the study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

8.3. Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

8.4. Conclusion of experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

8.5. Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

Bibliography

George Savill



x
TABLE OF CONTENTS

Appendix A: Experimental protocols 185

A.1. Microscopy sample fixation, dehydration, and embedding . . . . . . . . . . . . . 185

A.2. Protein extraction for SDS-PAGE . . . . . . . . . . . . . . . . . . . . . . . . . . 188

A.3. Running SDS-PAGE gel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

A.4. Protein extraction for SE-HPLC . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

A.5. RNA extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

A.6. cDNA synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

A.7. Quantitive PCR (qPCR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

Appendix B: Microscopy imaging coordinate calculator app 199

Appendix C: Python toolbox for ArcGIS 203

Appendix D: Spatial analysis grain width calculator 213

Appendix E: Spatial analysis CSV file joiner script (1) 215

Appendix F: Spatial analysis CSV file joiner script (2) 219

Appendix G: Zone analysis CSV file joiner script 223

Appendix H: Journal of Experimental Botany publication 227

George Savill



xi

List of Figures

1.1 The mature wheat ear and spikelet . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 The progression of anthesis from Zadok’s growth stage 61 to 69, and the

mature harvest-ripe ear at growth stage 92 . . . . . . . . . . . . . . . . . . . 3

1.3 A cross-section of the mature wheat grain showing the internal structure . . 4

1.4 The external appearance of development wheat grain from early grain-filling

to maturity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Historic levels of atmospheric CO2, with predictions of future increases . . . 19

2.1 Photo of Cadenza plants at 5 weeks in the controlled-environment room . . . 26

2.2 Pre-anthesis experimental design used in the controlled-environment experiment 27

2.3 Post-anthesis experimental design used in the controlled-environment experi-

ment (control temperature treatment) . . . . . . . . . . . . . . . . . . . . . . 28

2.4 Post-anthesis experimental design used in the controlled-environment experi-

ment (high temperature treatment) . . . . . . . . . . . . . . . . . . . . . . . 29

2.5 Diagram of microscopy image capture technique of four overlapping images

per grain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.6 Grain protein composition image analysis . . . . . . . . . . . . . . . . . . . . 38

2.7 Image showing lane selection for protein gel analysis in FIJI . . . . . . . . . 41

2.8 Images showing output of protein gel analysis in FIJI . . . . . . . . . . . . . 42

2.9 Graph of example SE-HPLC absorbance curve for wheat grain protein extract 44

2.10 Image of example RNA quality check result . . . . . . . . . . . . . . . . . . . 47

3.1 Average temperature during grain-filling for the WGIN diveristy experiment 52

3.2 Accumulated thermal time during grain-filling for the WGIN diversity experiment 52

3.3 Radiation accumulated during grain-filling for the WGIN diversity experiment 53

3.4 Accumulated rainfall during grain-filling for the WGIN diversity experiment 53

3.5 Comparison of the accumulated thermal time for Cadenza and Soissons during

grain-filling in the WGIN diversity experiment . . . . . . . . . . . . . . . . . 55

3.6 Comparison of the accumulated radiation for Cadenza and Soissons during

grain-filling in the WGIN diversity experiment . . . . . . . . . . . . . . . . . 56

3.7 Comparison of the rainfall for Cadenza and Soissons during grain-filling in the

WGIN diversity experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

George Savill



xii
LIST OF FIGURES

4.1 Grain yield is increased by high nitrogen input and elevated post-anthesis

temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 Thousand grain weight is reduced by high temperatures during grain-filling,

and increased by nitrogen fertilisation . . . . . . . . . . . . . . . . . . . . . . 63

4.3 Grain count is increased by nitrogen fertilisation . . . . . . . . . . . . . . . . 64

4.4 Elevated post-anthesis temperature reduces grain area and width, whilst ni-

trogen fertilisation increases grain area and length . . . . . . . . . . . . . . . 65

4.5 Leaf chlorophyll content is increased by nitrogen fertilisation . . . . . . . . . 66

4.6 The interaction between genotype, year, and grain yield in the WGIN diversity

field experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.7 Grain yield is increased by nitrogen fertilisation, varied between genotypes,

and was lowest in the hottest year . . . . . . . . . . . . . . . . . . . . . . . . 69

4.8 Thousand grain weight is affected by nitrogen input, and varies between geno-

types and year . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.9 Ear count is increased by nitrogen fertilisation, and was highest in the coolest

year . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.10 Ears contained more grain in hotter years, and ear size varied between genotypes 72

5.1 Protein concentration gradients in the wheat endosperm are increased by

elevated temperature and high nitrogen input, with the effects increasing over

time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2 Mean protein body size decreases towards the centre of the grain, with differ-

ential effects of nitrogen and temperature over time . . . . . . . . . . . . . . 82

5.2 Abundance of different sizes of protein bodies varies across the endosperm,

with differential effects of temperature and nitrogen over time . . . . . . . . 85

5.3 Protein concentration gradients are increased by high nitrogen input in the

field, with differential responses from different genotypes over different years 87

5.3 Gradients in protein body size-distribution are determined by genotype, with

differential responses to nitrogen input and year of experiment . . . . . . . . 90

5.4 Abundance of different sizes of protein bodies varies across the endosperm,

with differential effects of nitrogen in different genotypes over different years 93

6.1 Elevated post-anthesis temperature and increased nitrogen input interact to

increase grain protein concentration throughout grain-filling . . . . . . . . . 103

6.2 Elevated post-anthesis temperature and increased nitrogen input interact to

increase the protein concentration of mature grain . . . . . . . . . . . . . . . 103

6.3 Increased nitrogen supply during vegetative development increases the protein

content of mature grain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.4 Grain protein composition is differentially affected by temperature and time

during grain-filling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

George Savill



LIST OF FIGURES

xiii

6.5 HMW-glutenin subunits P3 and P4 both show strong influence on the sepa-

ration of temperature treatments by CV analysis . . . . . . . . . . . . . . . . 107

6.6 Storage protein subunits are differentially accumulated during development

under different temperature and nitrogen regimes . . . . . . . . . . . . . . . 108

6.7 Gluten content of mature grain is increased by high nitrogen and high tem-

peratures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.8 Elevated post-anthesis temperature and increased nitrogen input increase the

ratio between HMW- and LMW-glutenins, and decrease the ratio between

gliadins and HMW-glutenins . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.9 Predicted bread-making quality is improved by high nitrogen input and ele-

vated post-anthesis temperature . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.10 The relative abundance of SE-HPLC protein fractions are differentially affected

by nitrogen supply and post-anthesis temperature . . . . . . . . . . . . . . . 116

6.11 Grain protein concentration during grain-filling is increased by nitrogen input

differentially by different genotypes, and over different years . . . . . . . . . 118

6.12 Mature grain protein concentration is increased in hotter years, and by high

nitrogen application rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.13 Grain protein composition is differentially affected by nitrogen application rate121

6.14 Omega-gliadins and LMW-glutenins show strong influence on the separation

of nitrogen treatments by CV analysis . . . . . . . . . . . . . . . . . . . . . . 121

6.15 Nitrogen input interacts with genotype to determine grain protein composition123

6.16 Gluten content varies between genotypes, and is increased by high nitrogen

input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.17 Omega-gliadin content of mature grain varies between genotypes, and was

highest in the hottest year . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.18 Alpha-, beta-, and gamma-gliadin content of the mature grain is differentially

increased by high nitrogen input in different genotypes . . . . . . . . . . . . 127

7.1 Expression of wheat storage protein synthesis genes in Cadenza is differentially

affected by elevated temperature over time . . . . . . . . . . . . . . . . . . . 138

7.2 Expression of wheat storage protein synthesis genes in Cadenza is affected by

nitrogen input and varies between years in the field . . . . . . . . . . . . . . 146

George Savill



xiv

List of Tables

1.1 Zadok’s decimal scale for the growth stages of cereals from germination to

seed dormancy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Zadok’s decimal scale for the growth stages of cereals during grain-filling . . 6

2.1 Composition of the two nutrient solutions used in the controlled-environment

experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Sampling timepoints in days post anthesis (DPA) and growing degree hours

(GDH) for each of the post-anthesis temperature treatments used in the

controlled-environment experiment . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Drilling and nitrogen application timings for the three years of the WGIN

diversity field trial experiment . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4 Sequences of primers used for real-time PCR . . . . . . . . . . . . . . . . . . 45

3.1 Anthesis dates of the four wheat varieties sampled in the Wheat Genetic

Improvement Network (WGIN) diversity field trial experiment . . . . . . . . 54

4.1 Full thousand grain weight dataset from the controlled-environment experiment 62

4.2 Full grain count dataset from the controlled-environment experiment . . . . 63

4.3 Full dataset for grain area, length, and width measurements of mature grain

from the controlled-environment experiment . . . . . . . . . . . . . . . . . . 64

4.4 Full dataset of leaf chlorophyll content measured using a SPAD meter from

the controlled-environment experiment . . . . . . . . . . . . . . . . . . . . . 66

4.5 Full grain yield dataset from the WGIN diversity field trial experiment . . . 68

4.6 Full ear count dataset from the WGIN diversity field trial experiment . . . . 71

4.7 Full dataset for grain per ear calculations from the WGIN diversity field trial

experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.1 Full dataset for grain protein content at maturity from the controlled-environment

experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.2 Results of the REML analyses of SDS-PAGE data throughout grain-filling

from the post-anthesis controlled environment experiment. . . . . . . . . . . 106

6.3 Results of the REML analyses of SDS-PAGE data at maturity from the post-

anthesis controlled environment experiment. . . . . . . . . . . . . . . . . . . 111

George Savill



LIST OF TABLES

xv

6.4 Full dataset for SDS-PAGE grain protein composition data from the controlled-

environment experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.5 Full dataset for grain gluten content at maturity from the controlled-environment

experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.6 Results from the ANOVA analyses of SE-HPLC data from the controlled

environment experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.7 Full dataset for grain protein concentration at maturity from the WGIN di-

versity field trial experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.8 Results from the REML analyses of SDS-PAGE data from the WGIN diversity

field experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.9 Full SDS-PAGE protein composition dataset from the WGIN diversity field

trial experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.10 Full gluten content dataset from the WGIN diversity field trial experiment . 125

6.11 Full dataset of ratios between SE-HPLC protein fractions F1/F2 and (F3+F4)/F1

from the WGIN diversity field trial experiment . . . . . . . . . . . . . . . . . 126

6.12 Results from the ANOVA analyses of SE-HPLC data from the WGIN diversity

field experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.13 Full SE-HPLC protein composition dataset from the WGIN diversity field trial

experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.1 Predicted mean NRQ values of α- & β-gliadins synthesis gene expression from

the controlled-environment experiment . . . . . . . . . . . . . . . . . . . . . 139

7.2 Predicted mean NRQ values of γ-gliadin (1) synthesis gene expression from

the controlled-environment experiment . . . . . . . . . . . . . . . . . . . . . 140

7.3 Predicted mean NRQ values of γ-gliadin (2) synthesis gene expression from

the controlled-environment experiment . . . . . . . . . . . . . . . . . . . . . 140

7.4 Predicted mean NRQ values of HMW-glutenin synthesis gene expression from

the controlled-environment experiment . . . . . . . . . . . . . . . . . . . . . 141

7.5 Predicted mean NRQ values of LMW-glutenin synthesis gene expression from

the controlled-environment experiment . . . . . . . . . . . . . . . . . . . . . 142

7.6 Predicted mean NRQ values of ω-gliadin synthesis gene expression from the

controlled-environment experiment . . . . . . . . . . . . . . . . . . . . . . . . 143

7.7 Linear regression analysis comparing protein synthesis gene expression to SE-

HPLC protein fractions in the controlled-environment experiment . . . . . . 146

7.8 Predicted mean NRQ values of α- & β-gliadins synthesis gene expression from

the WGIN diversity field trial experiment . . . . . . . . . . . . . . . . . . . . 148

7.9 Predicted mean NRQ values of γ-gliadin (2) synthesis gene expression from

the WGIN diversity field trial experiment . . . . . . . . . . . . . . . . . . . . 149

7.10 Predicted mean NRQ values of HMW-glutenin synthesis gene expression from

the WGIN diversity field trial experiment . . . . . . . . . . . . . . . . . . . . 150

George Savill



xvi
LIST OF TABLES

7.11 Predicted mean NRQ values of LMW-glutenin synthesis gene expression from

the WGIN diversity field trial experiment . . . . . . . . . . . . . . . . . . . . 151

7.12 Predicted mean NRQ values of ω-gliadin synthesis gene expression from the

WGIN diversity field trial experiment . . . . . . . . . . . . . . . . . . . . . . 152

7.13 Linear regression analysis comparing protein synthesis gene expression in Ca-

denza to SE-HPLC protein fractions in the WGIN diversity field trial experiment153

George Savill



xvii

Glossary

AHDB Agriculture and Horticulture Development Board.

ANOVA analysis of variance.

cDNA complementary DNA.

CSV comma separated values.

CV canonical variate.

DEPC diethylpyrocarbonate.

DF degrees of freedom.

dH2O distilled water.

DNA deoxyribonucleic acid.

dNTP deoxynucleotide.

DPA days post anthesis.

DTT dithiothreitol.

GDH growing degree hours.

GS growth stage.

HGCA Home Grown Cereals Authority.

HMW high molecular weight.

HMW-GS high molecular weight glutenin subunit.

IAA isoamyl alcohol.

IPCC Intergovernmental Panel on Climate Change.

LMW low molecular weight.

LMW-GS low molecular weight glutenin subunit.

LSD least significant difference.

mRNA messenger ribonucleic acid.

George Savill



xviii Glossary

NABIM National Association of British and Irish Flour Millers.

NRQ normalised relative quantification.

NUE nitrogen use efficiency.

PCR polymerase chain reaction.

qPCR quantitative PCR.

REML restricted maximum likelihood.

RNA ribonucleic acid.

RO reverse osmosis.

rRNA ribosomal RNA.

RT room temperature.

SDS sodium-dodecyl-sulphate.

SDS-PAGE sodium-dodecyl-sulphate polyacrylamide gel electrophoresis.

SED standard error of the difference.

SE-HPLC size-exclusion high-performance liquid chromatography.

SEM standard error of the mean.

TAE tris-acetate-EDTA.

TCA trichloroacetic acid.

TFA trifluoroacetic acid.

TGW thousand grain weight.

UV ultra-violet.

WGIN Wheat Genetic Improvement Network.

George Savill



1

Chapter 1: Introduction

Earth’s climate is changing. The temperature of the atmosphere and oceans is increasing, and

the recent aim of limiting global warming to 1.5°C above pre-industrial levels, as specified by

the Intergovernmental Panel on Climate Change (IPCC), will likely fail (Brown et al. 2017;

Mauritsen et al. 2017; Raftery et al. 2017). Whilst the effects of climate change will be varied

and far-reaching, perhaps the greatest effects will be on agriculture and food production.

Current predictions show that crop yields will decrease (Parry et al. 2004; Lobell et al. 2007;

Rosenzweig et al. 2014), driven not only by physiological responses to the environment, but

also by an increase in the prevalence of pests and pathogens (Bebber et al. 2013).

Although climate change is the biggest challenges facing agriculture in the future, it is not

the only challenge. The human population is increasing exponentially, and if this trend is

to continue, food production must increase with it. However, this comes at a time when

the impact of agriculture on the environment must be minimised through the reduction of

energy-intensive inputs and improvements in land-use management. In short, agricultural

productivity needs to continue to increase, but with fewer inputs, using the same amount of

land, and whilst withstanding increasingly unfavourable environmental conditions.

1.1. An introduction to wheat

Wheat is the largest crop in the UK, the third biggest cereal crop worldwide (FAOSTAT

2014), and is grown in an unparalleled range of environments and climates (Shewry 2009). As

a global crop, wheat represents a major source of dietary protein and carbohydrate, and its

grain is used to make a vast range of foods. Its success as a food crop is due largely to the

nutritional and processing qualities of its grain and flour. It is as flour, either wholegrain or

processed, that the majority of wheat grain is consumed (Peña 2002). Wheat flour is high in

protein compared to that of other cereals, and is defined by its large gluten protein faction

which allows for the formation of a visco-elastic dough upon wetting with water (Lásztity

1996). The abundance of these gluten proteins facilitates the creation of a dough that is both

elastic and extensible, and which allows for the production of a range of baked foods including

leavened (fermented) bread, pasta, noodles, and biscuits (Carson et al. 2009). Both the total

protein content and protein composition of the mature wheat grain vary between cultivars,

and determine the suitability of the produced flour for different applications based on certain

end-use requirements (Morris et al. 1996).

Modern wheat varieties belong to one of two species, the hexaploid common wheat (Triticum

aestivum L.) or tetraploid durum wheat (Triticum durum L.). In addition to these taxonomic

groups, wheat can be categorised by their protein content and ’hardness’ of the grain, which ul-

timately determine the end-use of the grain produced. Durum, or pasta wheats have extremely

hard grains, with high gluten and total protein content. They account for approximately 5%
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of wheat grown worldwide, and are used primarily to produce pasta food products (Morris

et al. 1996; Shewry 2009). Common, or bread wheat makes up the remaining 95% of wheat

grown, and is used to produce a much wider range of food products including leavened bread.

This study will focus solely on Triticum aestivum.

In the UK, common wheat varieties are categorised into groups in accordance with their

end-uses, as specified by National Association of British and Irish Flour Millers (NABIM)

(NABIM 2014). The NABIM rating system takes into account protein content and grain

texture to place each variety of wheat into one of four groups. Group one and two wheat

varieties are hard bread-making wheats with high protein content: group one consist of the

best bread-making varieties, which offer consistently high performance, whilst group two

wheats are less consistent, either with undesirable quality traits, or else they only produce

flour of bread-making quality under the most favourable conditions. Hence, group two wheats

generally command lower prices than group one wheats. Group three wheat varieties are

soft-grained, with lower protein content, and are suited to production of cakes and biscuits

as well as for use in distilling. Finally, group four wheats can sub-categorised as either hard

or soft-grained, have the lowest protein content, and are generally used for animal feed. The

NABIM rating system can be summarised by saying wheat varieties of a lower group number

are more valuable and have a higher grain protein content.

1.2. Wheat morphology

The wheat grain, or caryopsis, is a single-seeded fruit contained within the ear of the wheat

plant. Each ear contains multiple grain, which contain the large central starchy endosperm

and the embryo, encased in the protein-rich aleurone and bran layers which coat the entire

grain. The endosperm acts as a storage organ for the grain, and is rich in the protein and

carbohydrates that make wheat such a useful and nutritious crop. It is the physical structure

and chemical composition of the grain, as determined by the process of grain development,

that determine the yield, value and end-use suitability of the mature grain.

1.2.1. Morphology of the ear

The wheat inflorescence, known as the ear or spike, is the organ which contains the individual

flowers, which become developing grain after fertilisation. The spike consists of two rows of

alternate spikelets connected by the central rachis. Each spikelet contains up to six florets

which each produce a single mature grain (Bechtel et al. 2009). Figure 1.1 shows a graphical

representation of a mature ear and spikelet. The size of the grain within each spikelet varies,

with the florets towards the base maturing faster and producing larger grain. Likewise, mat-

uration occurs at different rates within the ear, with central spikelets maturing faster than

those at the base and tip. This behaviour is also reflected in the progression of anthesis, which

is illustrated in figure 1.2.
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Figure 1.1: The mature wheat ear (left) and spikelet (right). Each ear contains multiple
spikelets supported on a central rachis. Each spikelet contains multiple grain protected
by the palea and lamma. Adapted from Belderok2000.

Figure 1.2: The progression of anthesis from Zadok’s growth stage 61 to 69, and the
mature harvest-ripe ear at growth stage 92. Anthesis begins in the central spikelets
of the wheat ear, and spreads to the ends of the ear over the course of several days.
Adapted from Tottman 1987.
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Figure 1.3: A cross-section of the mature wheat grain showing the internal structure.
At the base of the grain is the embryo and the attachment region. Inside the crease,
running the length of the grain, is the vascular bundle, pigment strand, and endosperm
cavity. The bulk of the grain consists of the starchy endosperm, which is encased in the
aleurone, seed-coat, and pericarp layers.

1.2.2. Morphology of the grain

The wheat grain is approximately oval, with a longitudinal crease running the length of the

ventral side which reaches almost into the centre of the grain. The embryo is located on the

dorsal side at the basal end, next to the attachment region (a scar formed from where the

developing grain was attached to the wheat plant). At the apical end, opposite from the

attachment region, is a tuft of hairs which constitute the brush. The gross morphology of

the grain varies among different wheat cultivars, with some varieties showing more elongated

grain. Likewise, when observed in transverse cross-section, grain can take on shapes from

almost triangular to circular. However, the general characteristics described here are common

across all varieties.

The interior of the grain consists of the endosperm, which contains a central storage body

known as the starchy endosperm which is rich in starch and protein, with clear gradients

between these two components (Kent et al. 1969; Tosi et al. 2011; He et al. 2013). This
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starchy endosperm is coated with a single layer of protein rich cells called the aleurone layer.

The endosperm tissues are encased in the pericarp, formed by the ripened ovary wall and

consisting of an outer epidermis, hypodermis, parenchyma, intermediate cells, cross cells, and

tube cells (Bechtel et al. 2009). The pericarp is relatively low in protein, and is removed

during the production of flour. Figure 1.3 shows an illustration of a mature wheat grain in

lateral cross-section.

1.3. Development of the wheat plant

The quality and final protein content of the wheat grain is a result of the growth and

development of the wheat plant, from germination through to harvest: it is the photosynthate

accumulated, and nutrients absorbed during this period which ultimately form the grain

post-fertilisation.

Prior to the development of grain, wheat goes though several stages of vegetative development.

Following germination, seedlings emerge and possess a single tiller. During early development

‘tillering’ occurs where multiple tillers are formed and continue to grow. At this stage win-

ter wheat varieties overwinter and vernalise, whereas spring wheats—which do not require

vernalisation—continue straight into the developmental stage of stem elongation. The stems

elongate rapidly as temperatures increase before producing a flag leaf. Once a flag leaf is

established the inflorescence, or ear, begins to form within during a process known as boot-

ing. During booting the ear develop within the protective sheath of the flag leave prior to

emergence and subsequent anthesis (or flowering). Anthesis quickly leads to self-pollination

which initiates grain development (discussed in section 1.3.1).

The development of wheat can be described and quantified using the Zadoks scale for cereal

growth stages (Zadoks et al. 1974), which is a scale developed specifically for the measurement

of easily recognisable developmental stages to provide detailed information which can be used

for analysis of cereal development. The ten major groups or stages of the scale are show in

table 1.1, with table 1.2 showing the more detailed individual scores from anthesis through

to harvest ripeness. Zadok’s growth stages 60 to 92 are of interest to this study, since they

cover the period from anthesis to harvest ripeness.

1.3.1. Grain development

The development of the wheat grain takes place in the time between fertilisation and harvest,

where the grain is at full harvest maturity (Zadok’s GS 92). The process of grain development

can be divided into three distinct biological stages: the first stage of cell division, the second

stage of cell enlargement and the final stage of dehydration and grain maturation (Carceller

et al. 1999). It is during this time that the starch- and protein-rich endosperm is formed,

creating the nutritionally valuable final product that is the mature wheat grain. Figure 1.4

shows a graphical representation of seed development during this period. Whilst the key events

are common to all wheat varieties, the timings and rates of each stage of grain development

vary between genotypes, and are greatly affected by environmental conditions (Sofield et al.
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Table 1.1: Zadok’s decimal scale for the growth stages of cereals from germination to
seed dormancy. Adapted from Zadoks et al. 1974.

Growth stage Description

0n Germination n = stages from dry seed to first leaf emerging from coleoptile
1n Seedling growth n= number of leaves unfolded
2n Tillering n= number of tillers
3n Stem Elongation n= number of nodes to a total of 6. 7-9 represent flag leaf emergence
4n Booting n = degree of swelling
5n Ear emergence n = level of inflorescence emergance
6n Anthesis n = stage of anthesis
7n Milk development Grain development from watery (n=0) to milky (n=7)
8n Dough development Grain development from early dough (n=3) to hard dough (n=7)
9n Ripening n=2 is harvest-ripe, n=4 is over-ripe and n=5 is seed dormancy

Table 1.2: Zadok’s decimal scale for the growth stages of cereals during grain-filling.
Growth stages are presented for anthesis, and early (milk development), mid (dough
development), and late (ripening) grain-filling. Adapted from Zadoks et al. 1974 and
Tottman 1987.

Growth stage Description

Anthesis
60 Beginning of anthesis
65 Anthesis half way
69 Anthesis complete
Milk development
71 Caryopsis water ripe, grain is up to 3mm and contains colourless liquid
73 Early milk, grain contains white, watery liquid
75 Medium milk, grain nearly full length and contain a soft liquid centre
77 Late milk, grain contents are wet and sticky when crushed
Dough development
83 Early dough, grain contents are soft and cheesy
85 Soft dough, grain contents are firm and difficult to squeeze out. Thumb-nail impres-

sion quickly disappears. Green colour begins to fade
87 Hard dough, grain contents are dry and impossible to squeeze out. Thumb-nail leaves

impression. Green colour lost
Ripening
91 Caryopsis hard, grain is difficult to divide with thumb-nail
92 Caryopsis hard, grain cannot be dented with thumb-nail. Grain is harvest-ripe
93 Caryopsis loosens during the day
94 Over-ripe, straw dead
95 Seed dormant
96 Viable seed showing 50% germination
97 Primary dormancy lost
98 Secondary dormancy induced
99 Secondary dormancy lost
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Figure 1.4: The external appearance of development wheat grain from early grain-filling
to maturity. Stages of development from Zadok’s growth stage (GS) 71 to 92 are shown
(described in table 1.2), which cover the full range of grain development. Illustrated
grain are shown from the dorsal side. Adapted from Tottman 1987.

1977).

1.3.1.1. Cell division

The initial stage of grain development is cell division, induced by the fusion of male and

female gametes during fertilisation. The cell division phase of development is initiated just

hours after fertilisation, lasts approximately 15–20 days, and begins with the division of the

endosperm nucleus which will go on to form the endosperm of the grain. Rapid water uptake

occurs in coordination with a period of intense mitotic cell division, resulting in a vast increase

in grain dry matter, water content, and total cell number.

The increase in dry matter during this period of development is due largely to the production

of starch and protein. Within the first few days, A-type starch granules begin to form, and

reach their final size prior to the end of the cell division stage at around 19 DPA. B-type

starch granules are initiated later, increasing in size from around 21 DPA through to the later

stages of grain development (Bechtel et al. 1990; Jenner et al. 1991). In addition to starch,

proteins also begin to accumulate within the developing grain. From 10 DPA onwards, amino

acids are remobilised from proteins within the senescing leaf tissues, and storage proteins

begin to form into discrete protein bodies within the developing grain (Jenner et al. 1991).

During the later stages of grain development these protein bodies fuse to form a continuous

protein matrix which embeds the starch granules.
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By the end of this period of grain development mitotic cell division ceases, and a maximum

cell number of approximately 105 is reached (Jenner et al. 1991; Gooding 2009). After this

stage further grain growth will occur only via cell enlargement.

1.3.1.2. Cell enlargement

The cell enlargement phase of grain development overlaps with the cell division stage, begin-

ning at around 10-15 DPA, and continuing for a further 15 to 30 days. The exact timing of

this phase depends heavily on temperature (Gooding 2009).

During the cell enlargement stage, the maximum cell number is reached, and further grain

filling occurs only through the enlargement of existing cells. During this period the water

content of the developing grain is maintained at a relatively constant level, with little or

no net water loss. Dry matter levels, however, continue to increase as starch and protein

accumulation continues (Jenner et al. 1991; Pepler et al. 2006). The production of B-type

starch granules continues, and smaller C-type granules begin to form at around 20 DPA

(Bechtel et al. 1990). The protein bodies first observed during the initial stages of cell division

continue to grow, and eventually fuse to form a protein matrix embedding the newly formed

starch granules (Wang et al. 1995; Gooding 2009). This process results in a change in the

consistency of the developing grain, going from a milky liquid to a more viscous dough-like

texture.

1.3.1.3. Dehydration and grain maturation

The onset of rapid water loss from the developing grain marks the beginning of the dehydration

and grain maturation phase of grain development (Pepler et al. 2006). From onset until

maturity the water content of the grain decreases rapidly, whilst dry matter content remains

relatively stable. This results in a slight decrease in the size and weight of the grain, but a

change in consistency. During this time the grain hardens significantly from a soft dough-like

consistency to the dry, hard grain observed at harvest, which corresponds to a score of 92 on

Zadok’s cereal growth scale. The final product of grain development is a hard, dried grain,

enriched with starch and proteins which is suitable for storage or processing.

1.4. Nitrogen

Nitrogen is an essential element for all life on earth, and is the limiting factor of crop

productivity in the majority of unmanaged soils (Robertson et al. 2009). As such, modern

agriculture, and the seven-plus billion people it supports, currently relies on the application

of over a hundred million tons of nitrogen fertiliser per year, with that figure increasing

year-on-year (Tilman 1999; FAOSTAT 2014). In the UK, nitrogen fertiliser use is particularly

high, and farmers currently apply 250-300kg-N/ha to produce a crop with the 13% protein

content required for bread-making (Shewry 2009).

Both the production, and the application of such vast quantities of nitrogen fertiliser to our

farmland poses a massive environmental cost (discussed further in section 1.8.1), and as such

increasing the nitrogen use efficiency (NUE) of crop our crops should be a major priority

George Savill



CHAPTER 1. INTRODUCTION 9

for the agriculture industry. Regardless of the moral issues surrounding the environmental

issues surrounging nitrogen fertiliser use, it is likely that farmer’s ability to use high levels of

nitrogen fertilisers will be restricted in the future, either through increases in cost of product,

or due to political efforts to limit the environmental impact of agriculture.

As discussed in section 1.1, the value of a wheat crop is largely determined by the protein

content of its grain, . And whilst the amount of nitrogen supplied to a wheat crop determines

the crop’s development, yield, and grain protein content (Hussain et al. 2006; Otteson et al.

2007). through the differential effect of nitrogen input on the accumulation of differen gluten

proteins, it also determines the crop’s suitability for use in bread-making (Godfrey et al.

2010; Chope et al. 2014). Therefore reducing the amount of nitrogen supplied to a wheat

crop would be detrimental in terms of grain yield, nutritional quality, and in the value of

the grain produced. As such it would be beneficial to further our understanding of the effect

nitrogen supply has on the quality of wheat grain, to allow for the production of high-protein

bread-making wheat that require lower levels of nitrogen input.

1.4.1. The transport of nitrogen from the rhizosphere to the grain

In wheat, nitrogen is absorbed as either nitrate or ammonium by the root system (where some

is assimilated into the roots) before being transported to the shoot. Nitrate is reduced to

nitrite in the cytoplasm, before further reduction to ammonium. Ammonium, either directly

absorbed by the roots or else assimilated from nitrate, is then used in the production of the

amino acids glutamine, glutamate, asparagine, and aspartate (Lam et al. 1996). These amino

acids are then transported to the developing leaves, which act as a strong nitrogen sink during

vegetative development (Okumoto et al. 2011).

Whilst the developing leaves act as a sink for amino acids during vegetative development,

after anthesis the developing grain become a sink for nitrogen. Although a small amount of

nitrogen is supplied directly from the roots in the form of nitrate and ammonium, the majority

(up to 70%) is supplied by amino acids remobilised from elsewhere in the plant (Kichey et al.

2007; Pask et al. 2012). As grain-filling commences, senescence of leaf material begins, and

proteins within the leaf tissue are degraded into amino acids which are then transported to the

developing grain (Gregersen et al. 2008). Bancal (2009) observed that the amount of nitrogen

remobilised into the developing grain is ultimately determined by the amount of nitrogen

absorbed prior to anthesis, and so increasing the accumulation of nitrogen in the plant prior

to anthesis would be beneficial in increasing grain protein content at harvest.

Whilst the process of nitrogen assimilation, transport, and remobilisation around the wheat

plant is well understood, investigations into the mechanisms behind the production of distinct

patterns in protein accumulation in the grain have only recently begun (Moore et al. 2016),

the findings of which are discussed further in section 1.7.
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1.5. Composition of the wheat grain

The versatility of the wheat crop is a result of the variable composition of its grain. As

a product of grain development, the composition of the wheat grain is greatly affected by

the nutrition and environmental conditions experienced during development (Hurkman et al.

2013; Wan et al. 2013; Wan et al. 2014). Likewise, different varieties produce grain with vastly

different grain compositions (Bergman et al. 1998; Chope et al. 2014), from high-protein

bread-making wheats to low-protein, high-starch feed varieties. The ultimate composition of

the harvested grain dictates the end-use, and therefore value, of the crop.

1.5.1. Carbohydrates

Carbohydrates are the largest component of the grain, with mature wheat grain containing

approximately 85% carbohydrates. Of this, ∼80% is starch, which is found solely in the

endosperm of the grain, ∼7% is low molecular mass mono-, di-, and oligosaccharides, which

are present in the endosperm, aleurone layer and embryo tissues, and ∼12% is cell wall

polysaccharides, which are found in all tissues (Stone et al. 2009). Of these carbohydrates,

it is the starch which is of most importance with regards to the nutritional and processing

qualities of the grain.

1.5.1.1. Starch

In bread-making, the starch content of the mature grain contributes significantly to the baking

characteristics of wheat flour. Starch provides the sugars required for yeast-fermentation, and

dictates the gelatinisation characteristics of the flour. Hence, the starch content of the grain

dictates the crumb texture and staling of bread (Yasunaga et al. 1968), and provides the

structural strength required to make biscuits and cakes. Furthermore, starch constitutes a

major source of dietary calories, with wheat providing approximately one-fifth of the calories

consumed by humankind globally (Rasheed et al. 2014).

Biologically starch acts as the primary energy storage of the mature grain. Accumulated during

grain development, starch is formed primarily from the sucrose produced by photosynthesis,

but also from the remobilisation of other carbohydrates stored within the plant (Stone et al.

2009). In the early days of grain development, during the cell division stage, amyloplasts begin

to form large A-type starch granules, which reach a maximum diameter of 25-50µm from 19

days after anthesis. Smaller, B-type starch granules are initiated later, at approximately 10

DPA. These B-type granules begin to enlarge at around 21 days after anthesis, reaching a

final size of on 9µm in diameter at maturity (Bechtel et al. 1990). Later in development (from

21DPA onwards), smaller C-type granules grow to a diameter of less than 5.3µm. Although

these smaller B and C-type granules are much more abundant than the A-type granules, due

to the size of the A-type granules, these contain the majority of the starch present in the

grain (Evers 1973; Bechtel et al. 1990; Jenner et al. 1991).

Due to the order and nature of starch granule production, a starch gradient is established

within the starchy endosperm. Since the large A-type starch granules, which account for the
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majority of deposited starch, are formed early in development, they are concentrated within

the older tissues of the grain, i.e. in the centre. As the grain develops and grows, the smaller

B and C-type granules are produced in the newer tissues of the grain. Since they account

for a smaller proportion of the total grain starch content, there is therefore less starch in the

newer parts of the grain. Hence, a clear starch gradient is present in mature wheat grains,

with a higher concentration of starch at the centre of the starchy endosperm, and lower

concentrations nearer the aleurone layer (Jenner et al. 1991).

During milling, the wheat grain starch granules are damaged. The level of starch damage

observed is correlated with the hardness of the grain. Softer wheats experience lower levels

of starch damage to harder wheats, which in turn affects the processing properties of the

obtained flour. Flour with higher levels of starch damage absorbs water more readily, and

provides a greater source of fermentable sugars, which are required for the production of

leavened bread (Carson et al. 2009). Conversely, flours from soft wheats contain lower levels of

starch damage, absorb less water, and are more suited to the production of cakes and biscuits

(Morris et al. 1996).

1.5.1.2. Non-starch carbohydrates

Although generally considered less significant nutritionally, the non-starch carbohydrates of

the wheat grain confer various dough properties which impact on the end use of the grain. Such

carbohydrates include the free sugars and non-starch polysaccharides within the endosperm

and the cell walls of the grain (Henry 1985).

In high-protein bread-making wheat varieties, free sugars account for approximately 1-2%

of the weight of the endosperm and act as a readily available substrate for the yeast during

fermentation (D’appolonia et al. 1995). Additionally, other non-starch sugars such as cell

wall arabinoxylans have also been shown to have an impact on baking quality (Courtin et al.

2002).

In low-protein wheats used in distilling for ethanol production, such non-starch carbohydrates

have been shown to affect the alcohol yield achieved. Wheat cultivars with higher levels

of non-starch carbohydrates show an inhibition to ethanol production and achieve a lower

alcohol yield (Weightman et al. 2007).

1.5.2. Protein

After carbohydrates the grain consists primarily of a range of proteins: metabolic, structural

and storage proteins. The storage proteins are not only the most abundant group of proteins

within the mature wheat grain, but are also the most important with regards to grain quality

and end-use. For a grain protein to be classified as a storage protein it must meet the following

criteria, as specified by Kreis et al. (1985):

– Tissue specificity: Protein is specific to the grain tissues
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– Temporal accumulation: Protein accumulates during the later stages of grain develop-

ment.

– Disproportionate response to nitrogen nutrition: Accumulation is disproportionally

decreased or increased by limiting or excessive nitrogen supply respectively.

– Subcellular location: Protein accumulates to form discrete protein bodies within the

cells of the grain.

– Absence of other function: Protein lacks any function other than as a store of nutrients.

Storage proteins begin to form during the early stages of grain development, and first appear

at around 10 DPA in spherical membrane-bound vesicles, or protein bodies (Jenner et al.

1991). These vesicles are derived from the golgi apparatus and are closely associated with the

rough endoplasmic reticulum (Miflin et al. 1981). By maturity, these distinct protein bodies

are virtually absent from the grain (Payne et al. 1986), as the vesicles fuse to form larger,

irregular protein bodies, which eventually fuse to form a continuous protein matrix which

embeds the starch granules described in section 1.5.1.1 (Jenner et al. 1991; Shewry et al. 2009).

At maturity, the storage protein faction of the grain constitutes between 8% and 20% of the

total dry matter. Both the final concentration and composition of protein depends heavily

on genotype, nutrition, and the environmental conditions experienced during development

(Shewry et al. 2009).

Of the total grain protein fraction, approximately 80% to 85% are gluten storage proteins

(Peña 2002). It is this group of proteins that confer the visco-elastic properties of the dough

formed upon mixing wheat grain flour and water. Grain with a higher gluten protein content

shows greater strength, extensibility, and elasticity, and is more suited to bread-making

(Haddad et al. 1995; Sapirstein et al. 1998). Grain with lower gluten protein content, however,

is more suited to the production of cakes, biscuits, or animal feed. Therefore, the proportion

of gluten protein within the endosperm of the grain relates directly to the final quality and

hence the value of the mature grain product.

The gluten proteins which accumulate within the wheat grain can be categorised as either

monomeric gliadins or polymeric glutenins (Shewry et al. 2009). Within these two groups,

the gluten proteins can be further sub-divided into several families. The glutenin proteins are

categorised according to their molecular weights as either high molecular weight (HMW) or

low molecular weight (LMW) subunits. Likewise, the gliadins are also further categorised as

alpha-, beta-, gamma, or omega-gliadins (Kreis et al. 1985). It is both the quantity, and the

ratio between these groups of storage proteins which dictate the processing qualities of the

mature wheat grain (Khatkar et al. 1995; Uthayakumaran et al. 2000).

1.5.2.1. Glutenins

The glutenin protein polymers are elastic in nature, and confer strength and extensibility to the

dough. This elasticity is due largely to the polymeric nature of the glutenin proteins: glutenin
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polymers consist of high- and low-molecular-weight subunits that are linked by disulphide

bonds to form molecules of expansive molecular weights. It is the quantity, composition and

ratio of these two categories of subunits which interact to determine dough strength and

extensibility (Khatkar et al. 1995; Zhang et al. 2007b; Zhang et al. 2007a).

High molecular weight glutenin subunits (HMW-GSs) account for approximately 12% of

the total storage protein within the mature wheat grain, and are most important for dough

strength (Rasheed et al. 2014). Encoded by genes at the Glu-1 loci on the long arms of the

homologous group 1 chromosomes named Glu-A1, Glu-B1 and Glu-D1 respectively. Each of

these loci encode for the production of x and y-type subunits, with slightly higher and lower

molecular weights respectively. Common to all bread-making wheat cultivars are the 1Bx,

1Dx and 1Dy subunits, whilst some bread-making wheats additionally contain the 1By, 1Ax

and rare 1Ay subunits (Margiotta et al. 1996; Rasheed et al. 2014). Further to the different

subunits produced by genes at different loci, these is also allelic variation within these loci,

with the Glu-A1, Glu-B1 and Glu-D1 loci having 21, 69 and 29 known alleles respectively

(Rasheed et al. 2014). Through this allelic variation there is scope for considerable variation

in bread-making quality.

Low molecular weight glutenin subunits (LMW-GSs) represent approximately a third of the

total storage proteins, make up around 60% of the glutenin protein group (Rasheed et al.

2014), and are important in the determination of dough extensibility (Békés et al. 2006). The

LMW-GSs are encoded by the Glu-A3, Glu-B3 and Glu-D3 genes located on the short arms

of the group 1 chromosomes (Sreeramulu et al. 1997). Additionally, three other loci have

recently been identified, Glu-2, Glu-4 and Glu-5 on chromosomes 1B, 1D and 7D respectively

(McIntosh et al. 2013). The LMW-GSs can be categorised as belonging to one of three

biochemical groups based on their mobility under sodium-dodecyl-sulphate polyacrylamide

gel electrophoresis (SDS-PAGE): B, C and D types (Jackson et al. 1983), with the B type

LMW-GS further divided among LMW-m, LMW-s and LMW-i according to the first amino

acid residue, methionine, serine or isoleucine respectively (Muccilli et al. 2010). As with the

HMW-GS, there is also allelic variation within the three LMW-GS encoding loci, with 17,

26 and 11 alleles reported for the Glu-2, Glu-4 and Glu-5 loci respectively (McIntosh et al.

2013).

1.5.2.2. Gliadins

Gliadins make up the the remaining 40-50% of wheat grain storage protein, and are generally

poorly understood when compared to glutenins (Rasheed et al. 2014). Although they have

a lesser impact than glutenins, gliadins also effect the processing and nutritional quality of

the mature wheat grain (Khatkar et al. 1995; Rasheed et al. 2014). Whilst glutenins provide

strength and elasticity to the dough, gliadins provide the dough with viscosity (Cornec et al.

1994; Khatkar et al. 1995).

The gliadins are a diverse group of monomeric proteins which can be divided into three
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distinct groups: alpha- and beta-, gamma, and omega-gliadins (Shewry et al. 1986). As with

the glutenins, cysteine residues confer the ability for gliadin monomers to form intra-chain

disulfide bonds (Shewry et al. 1997). However, unlike glutenins, they are unable to form

inter-chain disulfide bonds, preventing the formation of large, heterogeneous high molecular

weight molecules (Veraverbeke et al. 2002). The alpha-, beta-, and gamma-gliadins are both

related to the LMW-GSs, contain six and eight cysteine residues respectively (Veraverbeke

et al. 2002), and are classified as sulfur-rich prolamins (Shewry et al. 1986). Omega-gliadins,

however, are known as sulfur-poor prolamins due to their lack of cysteine residues and low

methionine content (Shewry et al. 1986).

As with the glutenins, there is significant genetic variation of gliadin proteins present in the

modern wheat population. All of the alpha- and beta- and some gamma-gliadins are encoded

by the Gli-1 loci on the short arms of the group 1 chromosomes, with 23, 24 and 15 alleles

known for the Gli-A1, Gli-B1 and Gli-D1 loci respectively. Additionally, all omega- and the

majority of gamma-gliadins are encoded at the Gli-2 loci on the shorts arms of the group 6

chromosomes, with the Gli-A2, Gli-B2 and Gli-D2 loci having 36, 47 and 31 known alleles

respectively.

1.5.2.3. Non-gluten proteins

Non-gluten proteins make up the remaining 15–20% of the protein in the wheat grain, and

are mostly monomeric albumin and globulin proteins with either structural or metabolic roles

(Goesaert et al. 2005). Such proteins include alpha-amylase, protease inhibitors, and enzymes

with synthetic, metabolic, regulatory, or protective roles in the wheat plant (Singh et al.

2001b). In addition to the monomeric non-gluten proteins are the polymeric triticin globulin

proteins, which play a minor storage role (Singh et al. 1987). Although associations between

some non-gluten proteins and bread-making performance have been made (MacRitchie 1987),

the influence of non-gluten proteins on bread-making quality is poorly understood, and is

generally considered somewhat insignificant in comparison to the far more abundant gluten

protein (Veraverbeke et al. 2002)

1.5.3. Lipids

Often overlooked, lipids in the wheat grain fulfil an essential role in determining bread-

making quality, largely due to their affinity for binding with starch and protein (MacRitchie

1987; Chung et al. 1978). The lipids present in wheat flour generally originate from cellular

membranes and organelles. However, Hargin et al. (1980) identified triglyerides stored in

spherosomes within the wheat endosperm.

Wheat grain lipids can be classified as either starch lipids, or free and bound non-starch lipids

(Eliasson et al. 1990). The majority (66–75%) of total wheat flour lipids are free non-starch

lipids, and are mostly triglycerides and other non-polar lipids. The bound non-starch lipids are

mostly associated with proteins, and consist of glyco- and phospholipids (Eliasson et al. 1990;

Hoseney 1994). The starch lipids are primarily lysophospholipids, and are minor constituents
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of starch in the grain.

In relation to bread-making, starch lipids are so strongly bound to starch granules that they

have little impact on dough quality (Goesaert et al. 2005). However, the polar lipids play

an important role in increasing dough strength and handling characteristics, increasing gas

retention, and improving loaf crumb structure (Graybosch et al. 1993; Gan et al. 1995).

1.6. Milling for bread-making

The purpose of milling is to produce flour from the wheat grain. For the production of white

flour, milling is more specifically the process by which the starchy endosperm is removed from

the aleurone and bran layers, and the embryo or germ (Posner 2009). In the UK, the majority

of wheat is consumed as bread made from white flour, and it is the factors that affect the

production of white bread-making flour that are of interest to this study.

Commercial wheat milling uses a series of rollers and sieves to break apart and grind wheat

into different flours. The first stage of milling is the break, where whole grain are fed into

rotating corrugated rollers, which tear the grain apart. This stage is repeated, and results in the

production of some flour, but mostly various grain particles containing different combinations

of the starchy endosperm, aleurone layer and bran, and embryo. These particles are then

graded using a series of sieves based on the size and composition of the grain particle. Pure

endosperm segments are directed into smooth rollers which reduce them into white flour,

whilst other particles are sent for further sorting, or purification. During purification, grain

particles are sorted based on their size, shape, and specific gravity using sieves and controlled

airflow. Corrugated sizing rollers are then used to remove any remaining aleurone, bran, or

embryo material adhered to the starchy endosperm, with the aim of complete separation of

the endosperm. Extracted endosperm material is then directed to the smooth reducing rollers

to produce white flour, whilst bran and germ by-products are processed separately. The result

of this process is the production of multiple mill streams containing flour extracted from

different parts of the grain and, due to gradients in the protein concentration and composition

within the grain (discussed in section 1.7, with different protein compositions (Wang et al.

2007; He et al. 2013; Wan et al. 2014). The miller will then create a white flour that is a blend

of different mill streams, and is suited to requirements of the production of the relevant food

product. Likewise, the setting of the rollers can be adjusted to suit different grain, and to

account for variations in grain size and hardness.

1.7. Protein gradients within the wheat grain

Distinct gradients have long been observed in the protein accumulated within mature wheat

grain, and these gradients are now known to be both quantitative (Cobb 1905; Kent 1966; Tosi

et al. 2011) and qualitative (Wang et al. 2007; He et al. 2013; Wan et al. 2014). These protein

gradients have two notable effects on the end-use of the grain. The first of these effects is due

to the absolute gradient in protein, whereby gluten protein accumulates in the cells closest

to the aleurone layer, with less protein present towards the central cells of the grain. During
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the production of white flour the aleurone and bran layers are removed from the starchy

endosperm. However, the extraction rate (or milling yield) is not 100%, and the cells closest

to the aleurone often remain adhered to the aleurone layer. This results in a disproportionate

amount of protein being lost during the production of white flour. The second effect is caused

by the differences in the accumulation of different gluten subunits within the endosperm

(Wang et al. 2007; He et al. 2013; Wan et al. 2014). Since different mill streams are enriched

with different parts of the grain, the result is the production of multiple flours each with a

different protein composition, and with different baking characteristics (Yahata et al. 2006).

However, to a certain extent this variation in mill stream quality can be accounted for by the

miller when they mix the different flours to produce the final white flour product.

Whilst the presence of a protein distribution gradient has been known for over a hundred years

(Cobb 1905), the mechanisms responsible for the formation of this gradient remain unknown.

Recent work by Moore et al. (2016) used N15 labelled glutamine, the most abundant form of

nitrogen transported into the developeing wheat grain (Fisher et al. 1986), to demonstrate

that the precursors for protein production may be transported radially from the endosperm

cavity, across the endosperm, to become concentrated in the subaleurone cells. The authors

speculate that the subaleurone cells have a higher requirement for amino acids than the rest

of the endosperm, and hence act as a strong sink, driving amino acid transport across the

endosperm.

1.7.1. Quantification of protein gradients

Previous work on the protein gradients in the wheat grain have used techniques such as micro-

dissection (Cobb 1905; Ugalde et al. 1990a; Ugalde et al. 1990b), pearl-milling (He et al. 2013)

or milling on a laboratory experiment mill (Wang et al. 2007) and subsequent nitrogen and

protein content analysis in mature grain, or sub-sampling of light- and immunofluorescence-

microscopy images of developing grain (Tosi et al. 2011; Wan et al. 2014). These techniques

have been relatively low-throughput, and so to facilitate the analysis of larger experiments

with more combinations of treatment factors one of the aims of this project was to develop

and implement a new high-throughput method to describe the protein gradients in the wheat

grain.

1.8. Future challenges for wheat production

Over the next 80 years, it is predicted that the human population will increase by 50% (United

Nations 2017). To support this population growth, it is estimated that food production will

need to be increase by 50–100% as soon as 2050 (Southgate 2009; Parry et al. 2010). With

wheat yields predicted to increase by only 38% over the same period (Ray et al. 2013), it seems

unlikely that the required increase in production will be achieved through yield improvements

alone. It should also be noted that these predictions are based on the extrapolation of the

yield increases achieved since 1989, and do not take into account the difficulties that will be

faced in improving crop yields in the future. When combined with the pressures of policy and
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environmental change predicted for the future, it is likely that this deficit will be somewhat

larger.

1.8.1. Reducing the environmental impact of agriculture

According to the Millennium Ecosystem Assessment, the greatest changes to terrestrial ecosys-

tems have been due to the land-use changes associated with increased agricultural production

(MEA 2005). Converting land for agricultural use disrupts both local ecosystems through

habitat destruction, and also through the leaching of agrochemicals into watercourses, which

can cause damage to both freshwater and marine aquatic life. To support the previous in-

creased in food production, the amount of fertiliser applied has increased year-on-year, a

trend that is likely to continue (Tilman 1999; Tilman et al. 2001). In addition to the on-going

environmental damage caused by farming, the initial practice of clearing and tilling land for

agricultural use is energy intensive, and results in the production of large amounts of carbon

dioxide, further fuelling climate change (Tilman 1999). Tilman et al. (2001) predicted that a

further 109 hectares of land will be converted for use in agriculture by 2050, an action that

will cause “unprecedented ecosystem simplification, loss of ecosystem services, and species

extinctions”.

Fertilisation of agricultural land is associated with a range of environmentally damaging

effects. The initial production of fertilisers is an energy-intensive process, and accounts for a

third of the carbon emissions associated with crop production (Gellings 2009). The application

of fertilisers (and other agrochemicals) is again an energy-intensive activity, producing further

greenhouse gas emissions. Once applied the environmental damage continues. Of the nitrogen

applied to agricultural land, as much as 2.5% is converted to nitrous oxide (Davidson 2009)

(an ozone-depleting greenhouse gas with 300 times the global warming potential of carbon

dioxide (Solomon et al. 2007)), which accounts for the majority of the relative greenhouse

gas emissions from agriculture (Snyder et al. 2009). Whilst somewhat avoidable by proper

management (Schröder et al. 2003), further environmental damage can be caused by the

run-off and leaching of fertilisers into groundwater and watercourses, which may result in

eutrophication and a decrease in biodiversity.

Whilst it is difficult to predict the future regulations that will govern global agriculture, it

is likely that an increasing emphasis will be placed on reducing the environmental impact

of food production. With regards to land-use, this could mean limiting the amount of land

converted to agricultural land in an effort to protect natural ecosystems and biodiversity. As

for the regulation of fertiliser usage, due to the energy-intensive nature of both the production

and use of man-made fertilisers it seems likely that limitations will be imposed on the amount

of fertiliser that can be applied to our soils in the future.
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The furnaces of the world are now burning about 2,000,000,000

tons of coal a year. When this is burned, uniting with oxygen, it

adds about 7,000,000,000 tons of carbon dioxide to the atmosphere

yearly. This tends to make the air a more effective blanket for the

earth and to raise its tempaerture. The effect may be considerable

in a few centuries.

Francis Molena – Popular Mechanics, March 1912

1.8.2. Climate change

As a result of mankind’s actions over the last two hundred years, earth’s climate is changing.

Until recently, the production and release of greenhouse and ozone-depleting gases has gone

unchecked, resulting in a decrease in the levels of ozone in the stratosphere, and an increase

in the greenhouse effect. As a result, global temperatures have increased, and will continue

to do so (Alexander et al. 2006; Jenkins et al. 2009). In addition to a general trend towards

higher temperatures, it is also predicted that the frequency of extreme weather events such

as heatwaves and droughts will increase (Hennessy et al. 2008). In the UK, the most current

predictions state that by 2080 mean maximum daily temperatures will rise by up to 5.4°C,

the warmest day of summer will increase by up to 4.8°C, summer precipitation will reduce by

up to 40%, and the frequency of droughts and heatwaves will increase (Jenkins et al. 2009).

The effects of climate change will not be limited to summer, however, with average daily

temperatures in winter also predicted to rise by up to 4.1°C. As a result, snowfall in the UK

will be reduced by up to 95%. The effect of such dramatic changes to our climate will be

to the detriment of agriculture and food security, as crops struggle to remain productive in

increasingly hostile conditions (Wheeler et al. 2013).

Perhaps the most irrefutable, and widely known impact that human activity has had on the

planet is the rapid increase in the levels of atmospheric CO2 since the industrial revolution, a

trend which will continue to an extent determined by the collective action of the international

community (figure 1.5). Whilst the effects of greenhouse gas emissions on our climate have

been known for decades (Sawyer 1972), the global community have been slow to act, with the

first legally-binding global action to limit global warming made in the 2015 Paris Agreement.

This agreement, signed by 195 nations, aims to limit global warming to a “safe” limit of 1.5°C,

or to an absolute limit of 2°C. However, scepticism over the conclusions of research into climate

change continues, with the United States of America (the second largest source of carbon

dioxide emissions) intending to leave the Paris agreement in 2020 in favour of protecting the

coal, oil, and gas industries (Zhang et al. 2017). Likewise, the Montreal Protocol to eliminate

the production and use of ozone-depleting gases which has been enforced since 1989 is flaunted,

and chlorofluorocarbons (CFCs) continue to be produced and released into the atmosphere

(Montzka et al. 2018). Even assuming compliance with the emission mitigation policies, it is

unlikely that the 2°C limit outlined in the Paris Agreement will be achieved (Brown et al. 2017;

Raftery et al. 2017). Furthermore, even if fossil fuels were instantly eliminated altogether,
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Figure 1.5: Historic levels of atmospheric CO2, with predictions of future increases.
Atmospheric CO2 records from shortly prior to the industrial revolution to present
day, as determined by ice core, firn, and direct atmospheric measurements of CO2

by MacFarling Meure et al. (2006) (solid line). Future predictions (dotted line) of
atmospheric CO2 are presented based on the best- (B1) and worst-case (A1FI) scenarios
outlined by the IPCC (2001). Both scenarios anticipate the human population to
peak mid-century and to decline thereafter, with the A1FI scenario anticipating rapid
economic growth supported by fossil-intensive energy supply, whilst the B1 scenario
predicts shift towards a service- and information-based economy, with the introduction
of environmentally friendly, resource-efficient technologies.

global warming will likely reach the 1.5°C “safe” limit target of the Paris Agreement through

the residual action of past emissions (Mauritsen et al. 2017).

1.8.2.1. The effect of climate change on wheat

As with any crop, wheat is sensitive to changes in to its environment. Increased temperatures

result in lower yields, with a drop of 6% for each °C that the temperature increases (Asseng

2015). With the prediction that average summer temperatures in the UK will increase by up

to 4.2°C (Jenkins et al. 2009), this indicates that we can expect a 25% decrease in wheat yield

by 2080. However, this isn’t taking into account the disproportionate effect that heatwaves

and droughts during grain-filling have on wheat production. Asseng et al. (2011) showed that

sustained temperatures above 34°C during grain-filling can result in a 60% decrease in yield.

In 1976, the UK experienced a heatwave in which the maximum daytime temperatures were

above 30°C for 16 consecutive days. By combining the predictions that the summer maximum

daily temperature in the UK to increase by up to 5.4°C (Jenkins et al. 2009) and that the

frequency of heatwaves will increase (Hennessy et al. 2008), it is likely that the 60% decrease

in yield observed by Asseng et al. (2011) will become a reality for British farmers unless

adaptations are made to overcome such extremes in temperature.
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The primary effect of high summertime temperatures on wheat is a reduction in the duration,

but not the rate, of grain-filling (Altenbach et al. 2003; Gooding et al. 2003; Shah et al. 2003).

The result of this is a decrease in the weight of the grain produced, which is mostly due to a

reduction in the starch content of the grain. This effect was described further by Hurkman

et al. (2011), who showed that high temperatures resulted in a decrease in the size of starch

granules, which resulted in an increase in the relative proportion of protein in the grain. The

authors also point out that these observations are known to result in variation in the quality

of the flour produced from these grain. With regards to quality, high temperature is known to

alter the protein composition of the mature grain, and is associated with a reduction in the

relative amount of LMW-glutenins and omega-gliadins, and an increase in the proportion of

HMW-glutenins and alpha-, beta-, and gamma-gliadins (Dupont et al. 2006b; Dupont et al.

2006a; Yang et al. 2011). However in contrast to the changes in grain yield, the changes in

protein composition are generally positive, resulting in an increase in gluten content (Koga

et al. 2015), protein and sulphur content, and Hagberg falling number Nasehzadeh et al.

(2017). In the context of UK agriculture, this research suggests that there may be an increase

in the amount of wheat meeting the quality requirements of bread-making. However, this will

be accompanied by a decrease in both grain and milling yield (Dupont et al. 2006b). This

decrease in milling yield is particularly relevant for the present study, which aims to describe

how the differential concentration of protein in the outer endosperm is affected by factors

such as increased temperature during grain-filling.

Whilst the majority of studies have focussed on the effect of increased summer temperature,

the warming effect of climate change will apply year round. The predicted increase in winter

temperatures is particularly relevant to UK wheat production, since the majority of wheat

grown is winter wheat, and requires a period of vernalisation at low temperature over winter.

The result of poor vernalisation is detrimental to the vegetative development of a wheat crop,

resulting in a decrease in leaf emergence and tiller formation (Miglietta et al. 1995; Robertson

et al. 1996).

The predicted increase in the frequency of heatwaves will be accompanied by more frequent

droughts (Hennessy et al. 2008; Jenkins et al. 2009), with the two conditions often occurring

simultaneously. The effect of drought on a wheat crop is a decrease in photosynthesis, leaf

area, shoot mass, and grain yield (Shah et al. 2003), as well as inducing changes in grain

protein content and composition (Altenbach et al. 2003; Yang et al. 2011). Furthermore, the

effect of drought is often exacerbated when combined with an increase in temperature.

Among the numerous negative effects that climate change will have on wheat production in

the future, the associated increase in atmospheric CO2 (see figure 1.5) is likely to be beneficial.

The comprehensive review by Amthor (2001) concludes that increasing the concentration of

ambient CO2 primarily results in an increase in grain yield, whilst also reducing the negative

effects of drought. However, it also states that the positive effect of increase CO2 may be
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negated by moderate increased in ambient temperature. Crucially though, increased ambient

CO2 reduces grain protein content (either as a result of dilution caused by an increase in

starch accumulation or a reduction in nitrogen uptake efficiency (Taub et al. 2008)) and

decreases bread-making quality (Fernando et al. 2015).

1.9. Aims and hypotheses

1.9.1. Aims

– Develop and implement a high-throughput method for the quantification of protein

gradients in the wheat endosperm.

– Identify the effect that elevated temperature during grain-filling, nitrogen supply, and

genotype have on the protein distribution gradients in the wheat endosperm.

– Investigate how temperature, nitrogen supply, and genotype interact to alter the protein

composition, and therefore bread-making quality of the mature wheat grain.

– Link the expression of gluten storage protein synthesis genes with any observed changes

in protein accumulation during grain-filling.

1.9.2. Hypotheses

– Elevated temperature and increased nitrogen fertilisation increase the gradient in protein

distribution in the wheat endosperm.

– Nitrogen input has a differential effect on the grain protein distribution gradients in

different wheat varieties.

– Response to nitrogen input varies between genotypes and across years when grown in

the field.

– Any factors affecting grain protein distribution also affect grain yield and yield compo-

nents, protein composition, and the expression of protein synthesis genes.
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Chapter 2: Materials and Methods

2.1. Introduction

To investigate the effects of temperature, nitrogen input, and genotype on grain morphology,

protein distribution, protein composition, and related gene-expression, two practical experi-

ments were conducted. To observe the combined effects of elevated temperature and reduced

nitrogen supply, a single wheat variety, Cadenza, was grown in controlled-environment rooms

with two post-anthesis temperature treatments, and two levels of applied nitrogen fertiliser.

To investigate how nitrogen supply affects different commercial wheat genotypes in the field,

four varieties grown under two levels of nitrogen were sampled over three years of the WGIN

diversity field trial experiment.

Developing and mature grain was sampled from both the controlled-environment and field

experiments for microscopy analysis of the protein distribution in the endosperm, protein com-

position according to SDS-PAGE and size-exclusion high-performance liquid chromatography

(SE-HPLC), messenger ribonucleic acid (mRNA) expression related to protein production,

and morphological characteristics of the grain. To investigate the differences in climate ex-

perienced between the three different years of field trials, meteorological measurements for

temperature, accumulated thermal time, rainfall, and sunlight were recorded.

2.2. Controlled-environment post-anthesis temperature experiment

The controlled-environment post-anthesis temperature experiment was completed to investi-

gate the combined effects of elevated temperature during grain-filling and limited nitrogen

supply prior to anthesis on grain morphology and quality. Two different levels of nitrogen were

supplied prior to anthesis, and plants were subjected to one of two temperature treatments

after anthesis. The aim of this experiment was to simulate the effect that a prolonged heatwave

during grain-filling might have on a wheat crop, both in terms of yield and quality, and how

any negative effects may be exacerbated or alleviated by reduced nitrogen input.

2.2.1. Growth room conditions

The British spring wheat variety Cadenza was grown in controlled environment rooms at

Rothamsted Research, Harpenden, UK in 2015. Two identical Weiss Gallenkamp controlled

environment rooms were used for the experiment, with a floor area of 16m2, growth area of

8m2, and a height of 3m. Plants were sown five to a pot in nutrient-poor soil, and grown to

anthesis in a single growth room under standard cereal growth conditions, supplied with either

a high or a low nitrogen fertiliser regime, and with day/night temperatures of 20°C/15°C and

humidity of 65%/75% respectively. The photoperiod was maintained at 16 hours throughout.

After anthesis, which was determined as when three out of five plants per pot showed emerged

anthers, half of the plants were moved to a second room with a higher daytime temperature

of 28°C whilst maintaining the same night temperature of 15°C to prevent any unwanted

George Savill



24 CHAPTER 2. MATERIALS AND METHODS

stress effects caused by elevated night-time temperatures (Prasad et al. 2008). Humidity

and photoperiod remained unchanged at 65%/75% day/night and 16 hours respectively. The

rooms were programmed to take two hours to change between the day and night temperatures

to better reflect conditions seen in the field.

Lighting was provided by 400W HQI metal halide lamps with a supplementary 10% mix of

tungsten lighting. Light intensity was maintained at 500µmols throughout.

2.2.2. Nutrient solutions

Nutrition was provided to the plants by liquid nutrient solution applied 12 times prior to

anthesis. Two nutrient solutions were used, the high-nitrogen control, and a low-nitrogen

solution containing 1/10th of the nitrogen in the control. Plants were grown in the nutrient-

poor ‘Rothamsted Nematode mix’ soil (80% sterilised loam, 15% sand and 5% 5mm grit) to

allow the effects of the different nutrient solutions to become apparent whilst providing a

growth medium capable of facilitating normal plant growth without inducing undue stress.

All pots were placed on saucers to prevent the nutrient solution from draining. During the

course of the experiment, a total of 504 and 50.4mg of nitrogen was applied per pot under

the high-and low nitrogen treatments respectively.

Nutrient solution was provided weekly until ear emergence, and biweekly thereafter. Nutrient

solution was applied 12 times in total, with 500ml used per application. Plants were watered

with reverse osmosis (RO) water as required; from six weeks onward, this was daily.

A 10× concentrated stock solution of each nutrient solution was made, and diluted immediately

prior to application. One dilution was performed per experimental block of 32 pots to ensure

any variation in the concentration of applied nutrient solution was contained within an

experimental block, so that it could be accounted for in later statistical analysis.

The full composition of the nutrient solutions used are presented in table 2.1.

2.2.3. Experimental design

A complete randomised block design was used to grow 640 plants in 128 pots split equally

between four experimental blocks, with a treatment structure of two levels of nitrogen fertiliser

nested within two post-anthesis temperature regimes. Each experimental block contained

32 pots, of which 16 were subjected to either control or elevated post-anthesis daytime

temperature. These 16 pots were again split between a high and a low nitrogen fertiliser

regime, giving eight pots to be sampled at different timepoints during the experiment. Of

these eight pots, two were sampled at harvest maturity (GS 92) to provide grain material for

analysis and for yield calculations. Five of the pots were sampled at one of five timepoints

during grain filling, and one pot (sampled at anthesis) was used in a separate study.

All plants were grown to anthesis in the same room under the low daytime temperature

regime (see figure 2.1 for a schematic of the layout used). At anthesis, every other pot

was removed in a chessboard pattern, and moved to the high-daytime temperature room,
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Table 2.1: Composition of the two nutrient solutions used in the controlled-environment
experiment

Solution Nutrient Concentration

Macro-nutrients
KH2PO4 0.25 mM
KOH 0.50 mM
MgSO4.7H2O 0.75 mM
CaCl2 0.03 mM
FeNaEDTA 0.10 mM

High N Ca(NO3)2.4H2O 4.00 mM
Low N Ca(NO3)2.4H2O 0.40 mM
Low N CaCl2 3.60 mM

Micro-nutrients
H3BO3 30.0 µM
MnSO4.4H2O 10.0 µM
ZnCl2.7H2O 1.0 µM
CuSO4.5H2O 3.0 µM
Na2MoO4.2H2O 0.5 µM

maintaining the original block structure. Figure 2.2 shows a schematic of the 128 pots used

in the experiment as grown to anthesis in the first controlled environment room. Figures 2.3

and 2.4 show schematics for the 64 pots in the rooms used for the post-anthesis control and

high temperature treatment respectively.

2.2.4. Sampling protocol

Grain was sampled at five timepoints during grain-filling, and again at maturity. The five

timepoints used to sample during grain-filling (T1–5) were adjusted to account for the dif-

ferences in accumulated thermal time between the control and high-temperature treatments.

Material was also sampled at anthesis (T0) for use in another study. Material was collected

from all four experimental blocks, but was only analysed from the first three blocks, since the

additional level of replication proved unnecessary.

Sampling was conducted at set periods of thermal time after anthesis, as opposed to calendar

days, as it allows for more robust comparisons to be made between plants grown under different

temperature regimes. Without this approach, grain sampled from the high temperature

treatment would be significantly more advanced developmentally than grain sampled from

the control temperature treatment.

Accumulated thermal time was calculated in GDH using hourly temperature figures from

each of the two controlled-environment rooms, and a base temperature of 4°C. Values for the

accumulated thermal time of each of five sampling timepoints for the control temperature

treatment (10, 13, 21, 28, and 35 DPA) were used to calculate the sampling timepoints used

in the high temperature treatment, with the result rounded to the nearest calendar day. Table

2.2 shows the sampling timepoints used in both DPA and thermal time (GDH).
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Figure 2.1: Photo of Cadenza plants at 5 weeks in the controlled-environment room. A
second identical room was used for the post-anthesis high temperature treatment.

Table 2.2: Sampling timepoints in DPA and GDH for each of the post-anthesis temper-
ature treatments used in the controlled-environment experiment.

Timepoint (T) Control (20°C) High temperature (28°C) Accumulated thermal time

0 0 DPA 0 DPA 0 GDH
1 10 DPA 7 DPA 3,440 GDH
2 14 DPA 10 DPA 4,816 GDH
3 21 DPA 15 DPA 7,224 GDH
4 28 DPA 20 DPA 9,632 GDH
5 35 DPA 25 DPA 12,040 GDH

Chlorophyll content of the flag leaf was monitored using a SPAD-502Plus meter (Konica

Minolta, Tokyo, Japan) during the controlled-environment experiment to quantify the effect

of the two nitrogen treatments. Measurements were taken 5 days after anthesis for all plants

in the block, after all nutrient solution had been applied. Fifteen measurements were taken

from each pot, with three replicated measurements from the flag leaf of each plant in a pot.

Measurements were taken from pots for all sampling timepoints in the first experimental block

only, resulting in 8 sets of measurements for each combination of temperature and nitrogen

treatment.

For microscopy analysis of protein distribution gradients and protein body size-distribution,

three grains were taken from the central third of the first ear to reach anthesis on one plant

randomly selected from each pot. Transverse sections were cut in fixative from the middle of

the grain, and stored in fixative prior to further processing (described in section 2.4). Samples
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Figure 2.2: Pre-anthesis experimental design used in the controlled-environment experi-
ment. Con/High represent control of high temperature treatments and N1/N2 represent
low and high nitrogen treatments respectively. T0–T5 represent the six sampling time-
points during development (see table 2.2), and M1/M2 the pots sampled at maturity.
This design was maintained post-anthesis, with pots moved to a second room for the
high temperature treatment in a chessboard pattern. Figures 2.3 and 2.4 show the
post-anthesis layouts for the control and high temperature treatments respectively.
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Block I Block III

1 N1 T4 2 3 N1 T2 4 65 N1 M2 66 67 N1 T0 68

5 6 N2 M2 7 8 N2 T1 69 70 N1 T4 71 72 N2 M1

9 N2 T2 10 11 N1 T0 12 73 N2 T1 74 75 N2 T4 76

13 14 N2 M1 15 16 N1 M2 77 78 N2 M2 79 80 N1 T3

17 N2 T4 18 19 N1 T3 20 81 N2 T2 82 83 N2 T0 84

21 22 N2 T5 23 24 N1 T1 85 86 N1 M1 87 88 N1 T2

25 N1 M1 26 2 N2 T0 28 89 N1 T1 90 91 N2 T5 92

29 30 N1 T5 31 32 N2 T3
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w
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Block II Block IV
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37 38 N1 T0 39 40 N2 T5 101 102 N2 M2 103 104 N1 M1

41 N2 T2 42 43 N1 T1 44 105 N1 M2 106 107 N2 T3 108

45 46 N1 T5 47 48 N2 M2 109 110 N2 T4 111 112 N2 T0

49 N1 M2 50 51 N2 T0 52 113 N1 T1 114 115 N1 T0 116

53 54 N2 T3 55 56 N1 T3 117 118 N1 T4 119 120 N1 T2

57 N1 T4 58 59 N2 T1 60 121 N1 T3 122 123 N1 T5 124

61 62 N2 T4 63 64 N1 T2 125 126 N2 T1 127 128 N2 T2

Door to room

Figure 2.3: Post-anthesis experimental design used in the controlled-environment ex-
periment for the control temperature treatment (20°C). See legend from figure 2.2 for
explanation of notation.
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Block I Block III
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17 18 N2 T0 19 20 N2 T2 81 82 N2 T5 83 84 N2 T0

21 N2 T5 22 23 N1 T4 24 85 N2 T3 86 87 N2 M2 88
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41 42 N2 T1 43 44 N1 M1 105 106 N1 M2 107 108 N1 T1

45 N1 T1 46 47 N1 M2 48 109 N1 T5 110 111 N1 M1 112

49 50 N2 T2 51 52 N2 T5 113 114 N2 T1 115 116 N1 T2

53 N2 T0 54 55 N1 T5 56 117 N1 T0 118 119 N2 M1 120

57 58 N2 M1 59 60 N1 T4 121 122 N2 T5 123 124 N1 T4

61 N2 M2 62 63 N1 T2 64 125 N2 T3 126 127 N2 T4 128

Door to room

Figure 2.4: Post-anthesis experimental design used in the controlled-environment ex-
periment for the high temperature treatment (28°C). See legend from figure 2.2 for
explanation of notation.
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were collected for microscopy analysis at five timepoints during grain-filling, but were only

analysed from timepoints T2 and T3, since samples from the earliest timepoint (T1) contained

insufficient protein to produce useful data, and samples collected at later timepoints (T4 and

T5) could not be sectioned to a consistent standard.

For all other analysis, grain was sampled at five timepoints during grain-filling from the first

three ears to reach anthesis on each of the four plants not sampled for microscopy. Sixteen

grain were taken from the central third of each ear and immediately frozen in liquid nitrogen.

Samples from each pot were bulked and ground for 120 seconds in liquid nitrogen using a

SPEX SamplePrep 6870 freezer mill such that each sample contained material from twelve

ears taken from four plants. Samples collected during grain-filling were analysed for nitrogen

content (see section 2.6), protein composition by SDS-PAGE (see section 2.7), and mRNA

expression analysis (see section 2.9).

Mature plants were hand cut and threshed, and grain samples bulked grain from all plants

within a pot. Mature grain samples were oven dried to 5% moisture at 80°C. Measurements

for yield and thousand grain weight were taken from grain sampled at maturity, and from

these measurements an estimated grain count per plant was calculated. Mature grain was also

analysed for nitrogen content (from which nitrogen yield per grain was calculated), protein

composition by SDS-PAGE and SE-HPLC (see section 2.8), and for grain morphology. Grain

area, length, and width measurements were obtained using the MARVIN grain analyser (GTA

Sensorik GmbH, Neubrandenburg, Germany) from sub-samples of 100 mature grain from

each treatment combination.

2.3. WGIN diversity field trial experiment

The WGIN diversity field trial is an ongoing long-term field experiment which has run since

2004 at Rothamsted Research, Harpenden, UK, in which 20–30 commercial wheat genotypes

are grown under different levels of applied nitrogen fertiliser. Grain was sampled from this field

trial in 2015, 2016, and 2017, with four varieties selected, grown under two different levels of

nitrogen application. The aim of this experiment was to identify how grain-filling is affected by

different nitrogen inputs, different climate year-to-year, and how different genotypes respond

to these factors.

2.3.1. Field conditions

Different fields hosted the WGIN diversity field trial in each of the three years of sampling

used in this study, all within 2km of each other on the Rothamsted Research farm. In 2015, the

WGIN field trial experiment was held in the Bones Close field, in 2016 in the Blackhorse field,

and in 2017 in the Great Harpenden field. The Bones Close and Great Harpenden fields were

the closest together, at approximately 600m, whilst Blackhorse was a considerable distance

away, at 2km from Great Harpenden, and 1.5km from Bones Close. In 2015, 25 varieties were

sown, whilst in both 2016 and 2017 there were 30 wheat varieties. The predominant soil type

in each field was typical Batcombe (Avery et al. 1995).
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Four levels of nitrogen fertiliser were applied to the WGIN diversity field trial: 0, 100, 200,

and 350kg-N/ha. Nitrogen was applied in multiple applications, with an initial application

of 50kg-N/ha for all treatments, a second application of 50, 100, or 250kg-N/ha, and a final

application of 50kg-N/ha for the 200 and 350kg-N/ha treatments only. The timing of these

applications, along with the timing of sowing, is shown in table 2.3. Soil nitrogen in the top

90cm prior to fertiliser application was measured at 36.5kg-N/ha in 2015, 48.0kg-N/ha in

2016, and 25.6kg-N/ha in 2017.

Of the four nitrogen treatments, two were sampled as part of this study: 100kg-N/ha and

350kg-N/ha. These two were selected to give samples with both an abundance of nitrogen

and a moderate deficiency of nitrogen, whilst not severely stressing the plants.

Table 2.3: Drilling and nitrogen application timings for the three years of the WGIN
diversity field trial experiment. First (N1) and second (N2) nitrogen application made
to all treatments, and third (N3) application made to 200 and 350kg-N/ha only.

Year of experiment Drilling N1 N2 N3

2015 harvest 03/10/2014 16/03/2015 01/04/2015 30/04/2015
2016 harvest 12/10/2015 21/03/2015 08/04/2016 26/04/2016
2017 harvest 04/10/2016 15/03/2017 05/04/2017 09/05/2017

2.3.2. Experimental design

A complete randomised block design was used in all three years to grow 25–30 wheat varieties

under four different levels of nitrogen fertiliser, split equally between three experimental

blocks. In 2015, 25 wheat varieties were grown, whilst in 2016 and 2017, 30 varieties were

grown. The nitrogen fertiliser treatments were preserved between years, whilst the randomised

layout of varieties and nitrogen treatments within each experimental block was changed each

year.

2.3.3. Wheat varieties sampled

The four wheat varieties sampled from the WGIN diversity field trial were selected to cover

a range of phenotypes and end-uses. The varieties sampled were Cadenza, a British spring

bread-making wheat (NABIM group 2), which is extensively used in glasshouse/controlled-

environment experiments at Rothamsted Research; Istabraq, a low-protein high-yielding

NABIM group 4 feed; Hereward, a benchmark NABIM group 1 bread-making wheat; and

Soissons, a French bread-making wheat (NABIM group 2), which is photoperiod-insensitive

(Bentley et al. 2013), and so anthesis occurs earlier than in other varieties, generally resulting

in milder temperatures experienced during grain-filling. Unfortunately due to technical issues,

the final harvest of Soissons in 2017 was contaminated, and so no mature grain was available

for analysis from Soissons in 2017.
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2.3.4. Sampling protocol

Grain was sampled at five timepoints during grain-filling, and again at maturity. The five

timepoints used to sample during grain filling were 10 DPA, 14 DPA, 21 DPA, 28 DPA, 35

DPA. The same timepoints were used throughout, with no correction made for differences in

the thermal time experienced by different genotypes and between different years.

Sampling made during grain-filling was from 15 plants randomly selected in the middle of a

3m × 2.5m destructive sampling plot, with three plants sampled at each of the five sampling

timepoints during grain-filling; sampling of mature grain was made from the adjoining 3m ×
9m main plot, which was separated from the destructive sampling plot by 3m wide vehicle

tracks.

For microscopy analysis of protein distribution gradients and protein body size-distribution,

one grain was taken from the first tiller of three randomly selected plants at each sam-

pling timepoint. Transverse sections were cut in fixative from the middle of the grain, and

stored in fixative prior to further processing. Samples for microscopy analysis were analysed

from a single sampling timepoint, T4 (28DPA). This timepoint was chosen as grain was at

an approximately equivalent developmental stage to grain sampled at timepoint 3 in the

controlled-environment experiment, and also represents the latest point (28DPA) point at

which grain could be reliably sectioned and imaged. Additionally, it was only possible to

analyse microscopy samples collected in 2015 and 2017, since samples collected in 2016 were

destroyed due to malfunctioning equipment during sample preparation.

For all other analysis, grain was sampled at five timepoints during grain-filling from the same

plants used for microscopy analysis, with 20 grain being taken from the centre of each of

the three ears sampled. Samples were bulked between the three ears sampled, immediately

frozen in liquid nitrogen, and later ground for 120 seconds in liquid nitrogen using a SPEX

SamplePrep 6870 freezer mill. All samples collected during grain-filling were analysed for

nitrogen content and all Cadenza samples from the 2016 and 2017 experiments were analysed

for RNA expression. Cadenza was chosen as the sole variety on which to complete RNA

expression analysis due to its use in the controlled-environment experiment, and the years

of 2016 and 2017 were chosen since the weather during grain-filling was markedly different

between these two years, with a heatwave occurring in 2017 (see chapter 3).

The main plots were machine-harvested at maturity, and the grain samples bench dried to

approximately 15% moisture. Measurements were taken for yield, thousand grain weight, and

ears per plant, from which an estimated grain count per ear was calculated. Mature grain

was analysed for nitrogen content (from which nitrogen yield per grain was calculated) and

protein composition by SDS-PAGE and SE-HPLC.

2.3.5. Meteorological data

Meteorological data was collected from the on-site weather station at Rothamsted Research,

Harpenden, UK (51.82°N, 0.37°W, 128m altitude) to monitor the climate during grain-filling
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over the three years of field trials (2015, 2016, and 2017). Measurements were taken for hours

of sun, rainfall, and mean temperature, from which accumulated thermal time was calculated

using a base temperature of 4°C.

The proximity of the weather station to the field trial site was 1.1km in 2015, 2.6km in 2016,

and 800m in 2017.

2.4. Microscopy analysis

Image analysis of light-microscopy sections was used to quantify both the distribution of

protein concentration and the protein body size-distribution in the endosperm of developing

grain samples. Developing grain samples collected from the controlled-environment experiment

and WGIN diversity field trial were fixed, embedded, sectioned, stained, imaged, and analysed.

Analysis of microscopy images was completed using a novel image analysis software technique

developed with Adam Michalski (Wroc law University of Environmental and Life Sciences,

Wroc law, Poland) (Savill et al. 2018).

2.4.1. Fixation, dehydration, and embedding

Developing grain samples were fixed, dehydrated, and embedded in LR white resin to facilitate

sectioning, staining, and imaging (protocol presented in appendix A.1).

Developing grain were removed from the ear by hand, and placed immediately in 4% (w/v)

paraformaldehyde + 2.5% (v/v) gluteraldehyde fixative in 0.1M Sorensen’s phosphate buffer

(pH 7.4). Thin transverse sections of approximately 1mm were cut, and placed into glass

vials of fixative. A light vacuum was applied and released three times for approximately two

minutes each time, to aid the infiltration of fixative and removal of air from the grain sample.

Vials were placed in a sample rotator at room temperature for 3–5 hours, and then washed

three times in 0.1M Sorensen’s buffer (pH 7.4) for 30min in each wash. Samples were then

stored at 4°C prior to further sectioning.

Samples were dehydrated in a graded ethanol series from 10–100% ethanol in steps of 10%.

Samples were placed in a rotator for one hour for each ethanol concentration, and ethanol

concentrations of 50–90% were repeated once. Samples were stored overnight at 4°C in 70%

ethanol if required. Finally, samples were placed in 100% absolute ethanol for one hour, and

repeated twice for a total of three hours in 100% ethanol.

Once dehydrated, samples were immediately infiltrated with medium grade LR white resin in

a series of 4:1, 3:2, 2:3, and 1:4 ethanol/resin mixes. Samples were placed in each ethanol/resin

mix on a rotator at room temperature for a minimum of six hours, and stored overnight at

4°C. After the graded series, samples were placed in 100% LR white resin for one hour, which

was repeated twice to remove all ethanol. Samples were then stored in 100% LR white resin

for at least five days, with the samples at room temperature on a rotator during the day, and

stored at 4°C overnight. Resin was changed twice per day.

After infiltration with LR white resin, samples were polymerised so that the samples were
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contained in a solid resin block. Grain samples were carefully removed from the glass vials

with tweezers and placed in pre-filled polyethylene capsules, ensuring the samples were sitting

flush against the bottom of the capsule. Capsules were placed in a nitrogen-filled oven at 55°C
for 16-24 hours until cured. Embedded sections were then left to cool prior to trimming and

sectioning.

2.4.2. Sample sectioning, staining, and imaging

To image the wheat grain endosperm, embedded wheat grain samples were trimmed, sectioned,

stained, mounted, and imaged with a light microscopy.

Resin blocks containing samples were trimmed down using a fresh double edged razor blade

to create a trapezoidal cutting face. This reduces pressure on the microtome knife, and helps

to produce a clean cut without striations. A diamond Diatome histology knife (Diatome Ltd,

Nidau, Switzerland) was used to cut 1µm sections on a Reichert Ultracut ultramicrotome

(Ametek Reichert Technologies, Depew, NY, USA). Samples were floated on a bath of deionised

water, removed using a fine paintbrush and placed onto deionised water drops on an eight-well

glass microscopy slide (Hendley-Essex Ltd, Loughton, Essex, UK). Slides were dried on a hot

plate at 80°C before staining.

Sections were stained for 30 seconds at room temperature with 1% (w/v) Naphthol Blue

Black in 7% (w/v) acetic acid. Slides were then rinsed with deionised water and air dried

prior to mounting.

Samples were mounted under no. 1.5 (0.17mm) glass cover slips with DPX Mountant to

minimise distortion of images due to both starch bodies refracting light and from defects in

the section.

Samples were imaged at 20× magnification using a Zeiss Axiophot light microscope (Carl

Zeiss AG, Oberkochen, Germany). The MetaMorph (Molecular Devices, Sunnyvale, CA, USA)

software package was used to automatically scan and image each section. Multiple images were

mosaicked using the MetaMorph software to produce high resolution images. Four overlapping

scans were taken per image, each covering different areas of the section. The microscope was

re-focused prior to taking each scan. This approach was required to capture in-focus images,

since any variation in slide angle or mountant thickness would cause the image to go out

of focus as the microscope scanned the full width of the section; out-of-focus areas proved

particularly problematic in the development of the image analysis technique, as small protein

bodies would be obscured, and therefore not detected. Each of the four scans covered 62.5%

of the width and height of the final image, as illustrated in figure 2.5. These four images were

then checked for focus, and combined into a composite image using the ‘photomerge’ feature

in Adobe Photoshop (Adobe Systems Inc., San Jose, CA, USA) with care taken to minimise

blurred sections in the final image. A Python application was written to calculate the input

coordinates of each of the four images (see appendix B).
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Figure 2.5: Diagram of microscopy image capture technique of four overlapping images
per grain to ensure entire image was in focus. Individual images (labelled 1–4) were
taken, and later combined into a single composite image prior to analysis.

2.5. Microscopy image analysis

A novel image analysis software technique was developed in ArcMap to detect and describe

the pattern of protein within the wheat grain endosperm. The analysis uses a high-resolution

light-microscopy image and a manually-drawn outline as inputs, and produces data describing

both the gradient in protein concentration from the outside of the grain to the inside, and

the size-distribution of protein bodies across the whole endosperm (Savill et al. 2018).

A prototype analysis toolbox was created using the ArcMap, part of ArcGIS 10.4 (ESRI®,

Redlands, CA, USA), ‘ModelBuilder’ tool. This initial toolbox was used for the analysis of

the controlled-environment experiment data. Prior to the analysis of the WGIN field trial

experiment data, the toolbox was re-written in Python, available online at doi: 10.5281/zen-

odo.1066914 (and in appendix C). The Python toolbox was functionally identical to the initial

toolbox, but offered performance improvements, and introduced the automatic calculation of

zone widths (explained further in section 2.5.1), conversion from pixels to micrometers, and

improved formatting of the output data.

Both the protein concentration gradient and protein body size-distribution image analysis

techniques rely on the supervised maximum-likelihood image classification method to identify

areas of protein within the input image. For image classification to accurately detect areas

of protein within a microscopy image, sectioned were stained with the selected protein stain

Naphthol Blue-Black, which stains protein bodies dark blue and leaves the remaining areas

largely unstained. This contrast between areas of interest and background is essential for the

efficiency of the technique, as it relies solely on pixel colour and intensity for the detection

of protein from background. For the supervised maximum-likelihood image classification,

training sample areas must be defined for both protein and non-protein areas of the image.

These sample areas must cover a range of pixel hues and intensities to correctly differentiate
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between protein and non-protein areas. The image classification protocol then compares these

training samples against the image on a pixel-by-pixel basis, and each pixel is marked as either

protein or background. Pixels marked as protein are then extracted from the background for

measurement.

Microscopy images of stained wheat grain sections were loaded into ArcMap, and an outline

manually drawn around the endosperm, just within the cells of the aleurone layer. One outline

was drawn per grain image, and saved for use in the analysis. Training samples were then taken

from each image, with ten samples selected from areas of protein, being careful to account

for all variation present in the colour and intensity of the stained protein. Multiple samples

were then taken that represented non-protein areas of the grain, including starch bodies, cell

walls, and nuclei. Sufficient samples of non-protein were taken to ensure that all hues and

intensities of pixels representing non-protein were taken into account. These training samples

were then saved into an image classification file for use in the analysis toolbox. Three image

classification files were created for each image, and the analysis run three times for each image

using these classification files. This was to account for any variation in the training samples

collected between images, since slight differences in the training samples selected inevitably

alter the results of the analysis. The analysis toolbox was then run using the microscopy

image, outline, and classification file as input. An overview of the analysis process is shown

in figure 2.6.

2.5.1. Protein concentration gradient analysis

The protein concentration gradient analysis describes the changes in protein concentration

from outer to inner endosperm, and relies on a zoning of the endosperm with five zones of

equal width drawn concentrically inwards from the outline of the endosperm. The width

of each zone was calculated on a per-grain basis to account for differences in grain size. In

the initial analysis toolbox used in the analysis of the controlled-environment experiment, a

measurement was taken for the width of the two lobes of each imaged grain which was then

halved, and divided to create five zones of equal width. In the python toolbox used in the

analysis of the WGIN diversity field trial experiment, this process was fully automated. The

resultant zones represent layers of the endosperm ranging from directly below the aleurone

layer (zone 1), to the centre of the lobe (zone 5). Five zones were chosen as a result of

preliminary empirical modelling on a sub-sample of data, which indicated that five zones were

optimal for describing the distribution of detected protein.

The calculated zones were overlaid onto the extracted protein data, and area measurements

for both the protein within each zone, and the total area of that zone recorded. From this

data, a value for percentage protein by area was calculated for each zone, providing a profile

of protein concentration from outer to inner endosperm tissues.
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2.5.2. Protein body size-distribution analysis

The protein body size-distribution analysis was developed to investigate how the size of

individual protein bodies varies in relation to their distance from the aleurone layer. It doesn’t

rely on the zones used in the protein concentration gradient analysis (section 2.5.1), but

rather uses an exact measurement of distance from the aleurone layer. The analysis technique

identifies protein bodies as groups of pixels representing protein (as determined by image

classification), and measures the area of the protein body. It then measures the euclidean

distance from the centre of the protein body to the outline drawn around the grain at the

aleurone layer. Hence, it treats every single protein body as an individual datapoint, assigning

an area and distance measurement to each one. This analysis is run concurrently with the

protein concentration gradient analysis, but outputs its results separately.

Since individual pixels are often incorrectly identified as areas of protein, a limit was imposed

which restricted the minimum size of each protein body to three pixels. This was deemed to

be sufficient to still account for the smallest protein bodies, whilst excluding the majority of

incorrectly assigned pixels. Such a consideration was not required for the protein concentration

gradient analysis since single pixels identified as protein account for very little area, but were

numerous enough to significantly affect the reliability of the protein body size-distribution

analysis results.

2.5.3. Image analysis analysis data processing

Data from the microscopy image analysis methods had to be processed to improve the accuracy

of the results, and to format the data for statistical analysis.

To improve the accuracy of the results from the protein concentration gradient analysis, a

conversion was applied on the collected data using nitrogen content measurements taken

from grain sampled from the same pot/plot at the same timepoint as the imaged grain. The

nitrogen content data was multiplied by a factor of 5.7 (Sosulski et al. 1990), and used to

calculate a conversion factor to correlate the grain protein content as detected by image

analysis with the actual grain protein content. A unique conversion factor was calculated

for each treatment combination, that effectively normalised the amount of protein detected

by image analysis. This was deemed necessary since initial analysis showed some disparities

between protein detected by image analysis, and actual protein measurements made on the

grain. It is hypothesised that these differences are caused by differences in protein density,

which are not taken into account by our by-area measurements of protein concentration. The

formula for the calculation of the conversion factors applied was as follows:

Conversion factor = Protein concentration from nitrogen content measurements

100×(Total protein area from microscopy image analysis
Total grain area from microscopy image analysis

)

This conversion was applied to all data collected from the protein concentration gradient

analysis method, from both the controlled-environment and WGIN diversity field trial experi-

ments. No conversion was applied to the protein body size-distribution data, since the protein
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Figure 2.6: Grain protein composition image analysis workflow: top image shows the
original wheat grain section, stained for protein with 1% Naphthol Blue Black in 7%
acetic acid; middle left shows image with outline manually drawn around endosperm,
just within the aleurone layer; middle right shows extracted protein data from image
classification protocol; bottom left shows the zoning applied to describe the gradient
in protein content; bottom right shows the final analysed image of detected protein
overlaid with zones to calculate protein concentration by area for each zone.
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body size itself is of interest rather than the amount of protein. However, the data from the

size-distribution analysis was filtered to removed erroneous measurements: any protein bodies

detected below an area of three pixels were removed, since during testing objects below this

size threshold rarely represented correctly identified protein bodies.

Whilst the collection of protein concentration gradient data from the controlled-environment

experiment was performed manually, the Python toolbox used for the analysis of the WGIN

diversity field experiment automatically output data as comma separated values (CSV) files,

with a single file produced for each run of the analysis. To quickly collate these individual

results into a single dataset file that could be used for statistical analysis a Python script was

written, and is presented in appendix G.

Similarly, the protein body size-distribution analysis method outputs single CSV files, each

containing individual measurements of the area, and distance from the aleurone layer of every

protein body detected within the image. Due to the number of data files produced, and the size

of these files, it is impossible to manipulate the data using traditional spreadsheet software,

and so a Python script was written to combine the CSV files, and also to assign each protein

body to one of the five zones (as used in the protein concentration gradient analysis) which

was used in the production of figures, but not for any data analysis. The script presented in

appendix D was used to produce a list of the maximum grain width (from aleurone layer to

the centre of the lobe of the grain), which was used to attribute size-distribution datapoints

to the relevant endosperm zone. The output of this script was then used with scripts to join

the multiple CSV files produced by the size-distribution analysis. The Python scripts used to

collate the results from the controlled-environment and WGIN diversity field experiment are

presented in appendices E and F respectively.

2.6. Nitrogen content analysis

Nitrogen content of wholemeal flour was determined by the Dumas method using a LECO

CN628 Combustion Analyser (LECO corporation, St Joseph, MI, USA) on 0.5–1g of freeze-

dried ground grain material. This method measures nitrogen content as a percentage of

dry matter, from which protein content was calculated using a factor of 5.7 (Sosulski et al.

1990).

2.7. SDS-PAGE analysis

SDS-PAGE analysis was used to measure the relative abundance of the reduced gluten

protein subunits within the wheat grain samples collected during this study. Gluten protein

was selectively extracted, and then run on electrophoresis gels to separate the individual

protein subunits. Images of the stained gels were then captured and analysed.

2.7.1. Protein extraction for SDS-PAGE

Prior to protein extraction all grain samples were homogenised for 120 seconds in liquid

nitrogen using a SPEX SamplePrep 6870 freezer mill. Once milled, the whole-grain flour

was kept frozen in liquid nitrogen, and sub-samples were taken and freeze-dried. Dried flour
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samples were kept in sealed plastic tubes at room temperature until use. The extraction

protocol used was adapted from the method for extraction and separation of wheat gluten

proteins described by Tatham et al. (2000), and is presented in appendix A.2.

Wheat gluten storage proteins were extracted from 10mg flour samples in 150µl propan-1-

ol + 2% dithiothreitol (DTT), to act as a reducing agent to break down the inter-chain

disulphide bonds of the gluten proteins, in a heated shaker at 50°C for 45 minutes. Samples

were centrifuged at maximum speed for 15 minutes, and the supernatent removed and retained.

The pellet was resuspended in 150µl propan-1-ol + 2% DTT, and placed in a heated shaker

at 50°C for a further 45 minutes. Samples were centrifuged at maximum speed for 15 minutes,

and the supernatents combined. The extracted protein was freeze-dried overnight. Dried

protein was resuspended in 150µl of total loading buffer: 2% (w/v) sodium-dodecyl-sulphate

(SDS), 200mM DTT, 10% (v/v) glycerol, 0.1% (w/v) bromophenol blue in 50mM Tris-HCL

(pH 6.8). Protein samples were then heated to 90°C for three minutes, and centrifuged at

maximum speed for 15 minutes. The supernatent containing extracted gluten protein was

then run on an SDS-PAGE gel. Extracted protein was stored at -20°C, and heated at 90°C
for three minutes prior to use.

2.7.2. SDS-PAGE

Wheat gluten protein samples were separated using the Bolt® Mini Gel Tank electrophoresis

system. This system utilises pre-cast Bis-Tris gels to obtain consistent results both across

and between runs. Stained gels were then imaged and analysed. The full technical protocol is

available in appendix A.3.

Bolt® pre-cast 8% Bis-Tris gels with 17 wells were used throughout the experiment to separate

protein samples for analysis. Gel cassettes were rinsed in deionised water, the wells washed

with MES running buffer, and then fitted into the gel tanks. Six gels were run across three

tanks for each of the two experiments, to ensure that separation was consistent for all samples

in each experiment. The gel tanks were filled with MES buffer, and 1–10µl of protein sample

loaded per well (adjusted through trial-and-error to produce the clearest separation). Gels

were run at a constant current of 20mA for 30 minutes to settle the sample in the well, and

then at 50mA for a further 330 minutes. Gels were then removed from their cassettes and

placed in Coomassie stain overnight: 0.1% (w/v) Coomassie Brilliant Blue (R-250), in 40%

(v/v) methanol with 10% (w/v) trichloroacetic acid (TCA). Stained gels were then destained

in 10% (w/v) TCA, with a small strip of foam in the container to absorb the dye, until the

background was clear. Gels were then imaged using a flatbed scanner prior to analysis.

2.7.3. SDS-PAGE image analysis and data processing

Images of the stained gels were captured at 1200dpi using an HP Scanjet G4010 flatbed scanner,

and stored as 24-bit TIF files. Captured images were analysed using the gel analysis feature

of the open-source software package FIJI (Schindelin et al. 2012). This analysis measures the

intensity of bands running down each lane of the gel, and can be used to compare relative
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Figure 2.7: Image showing lane selection for protein gel analysis in FIJI. A rectangular
lane is drawn over than protein bands of interest, and copied on to each lane. The
intensity of each band within each lane is then measured.

protein levels between treatments. Identical rectangles were drawn onto each of the lanes

of the gel, as shown in figure 2.7. Once all lanes were selected the analysis was run and

intensity levels for each lane generated. The output of the analysis of each lane on the gel is

a continuous graph of pixel intensities within the selected rectangle, as shown in figure 2.8a.

The peaks of these graphs were ruled across at the base to remove background information.

The area of the remaining ruled off peak represents the pixel intensity of the relative band on

the protein gel. Figure 2.8b shows the output graph from figure 2.7 with each individual peak

ruled off. The area under each peak was then measured using the wand tool in FIJI, and the

pixel intensity values recorded.

Areas under peaks in the pixel intensity output graphs were recorded, and represent the

relative abundance of a particular gluten protein subunit within the total gluten protein

extract. Due to the fact that that the efficiencies of the protein extraction and subsequent

staining on the electrophoresis gel, absolute measurements were not used in the analysis.

Relative levels of each protein subunit with respect to the total amount of gluten protein

detected were calculated, and used for statistical analysis.
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(a)

(b)

Figure 2.8: Images showing output of protein gel analysis in FIJI. Sub-figure a shows
the raw pixel intensity output from one lane of the gel analysis in FIFI (lane 6 from
figure 2.7). Sub-figure b shows the pixel intensity graph with a baseline ruled along the
bottom of the peaks to remove background staining, and vertical ruling of the limits
of each detected band in a lane. The area of these peaks is then measured, and this
absolute value is compared against the total area under all peaks to give a relative
measurement of each protein band.
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2.8. SE-HPLC analysis

SE-HPLC analysis was used to quantify the abundance of different protein groups in the

wheat grain, to give an approximation of baking quality in lieu of any direct measurements

of flour performance. Whilst SDS-PAGE measures the relative amount of reduced proteins

present in a flour sample, SE-HPLC analysis quantifies protein polymers. As such, SE-HPLC

analysis provides a lower resolution approach to measuring grain composition, providing

measurements of five protein fractions enriched with either HMW-glutenins (F1), LMW-

glutenins (F2), omega-gliadins (F3), alpha-, beta-, and gamma-gliadins (F4) or albumin and

globulins (F5).

2.8.1. Protein extraction for SE-HPLC

Protein extracts for SE-HPLC were made from whole-grain flour that had been homogenised

and freeze-dried as described in section 2.7.1. Total protein extracts were prepared using

sonication with SDS in a phosphate buffer using a protocol (presented in appendix A.4)

adapted from the method described by Millar (2003).

Wholemeal flour sub-samples of 16.5mg were extracted in 1.5ml of SDS protein extraction

buffer: 2% (w/v) SDS in 0.1M NaH2PO4 buffer, corrected to a pH of 6.9 with HCl. Samples

were sonicated for 45 seconds with an ultrasonic disintegrator fitted with a 3mm exponential

tip, and an amplitude of 6µm. Samples were then centrifuged at maximum speed for 30

minutes and the supernatant removed. The protein extract was filtered with a 0.45µm filter

and transferred into 2ml glass vials prior to analysis by SE-HPLC.

2.8.2. SE-HPLC analysis

Grain protein extracts were analysed using a Shimadzu (Kyoto, Japan) SE-HPLC machine

with a Phenomenex BioSep® 5µm SEC-s4000 column and a 50% (v/v) acetonitrile with

0.1% (v/v) trifluoroacetic acid (TFA) eluent. 20µl of each sample was analysed with a flow of

0.2ml per minute for 25 minutes. A detection frequency of 210nm was used to quantify the

abundance of protein fractions in each sample.

2.8.3. SE-HPLC data collection and processing

Data collected from the SE-HPLC analysis of wheat grain protein extracts was in the form of a

ultra-violet (UV) (at 210nm wavelength) absorption curve. The area underneath the peaks of

this graph provide quantification of five protein fractions enriched with either HMW-glutenins,

LMW-glutenins, omega-gliadins, alpha- and gamma-gliadins, or albumin and globulins. Figure

2.9 shows an example absorption curve adapted from Millar (2003).

Identification of the five peaks shown in figure 2.9 was semi-automated, and quantification

of the area under each peak completed by the LCsolution software (Version 1.22, Shimadzu

Corporation, Kyoto, Japan). Results were checked for correct identification of peaks prior to

analysis.

As with the SDS-PAGE analysis, the proportion of each SE-HPLC protein fraction of the
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total detected protein was analysed. However, this was not due to potential variation in

the efficiency of the protein extraction, but rather in the fact that the absolute protein

measurements from the SE-HPLC analysis were heavily compounded with the overall increase

in grain protein concentration. Therefore, analysis of the levels of different protein groups was

made using relative measurement of each protein fraction as a percentage of the total protein

detected. Additionally, the relative ratios of F1/F2 (the ratio between HMW-glutenins and

LMW-glutenins), of (F3+F4)/F1 (the ratio between gliadins and HMW-glutenins), and of

gluten protein to total protein were analysed.

Whilst the absolute measurements from the SE-HPLC analysis were not presented in isola-

tion, absolute SE-HPLC values were used in the linear regression analysis with accumulated

gene expression data (as described in section 2.10). This was deemed appropriate since this

regression analysis was an exploratory approach to identify a link between the gene expression

results (presented in chapter 7) with the amount of protein present in the grain. This analysis

would not have been possible with relative protein measurements.

Figure 2.9: Graph of example SE-HPLC absorbance curve for wheat grain protein
extract, with labelled peaks corresponding to the five protein groups detected. Adapted
from Millar (2003).

2.9. RNA expression analysis

Real-time polymerase chain reaction (PCR) (quantitative PCR (qPCR)) was used to analyse

the expression of gluten protein synthesis genes, to identify how mRNA expression was

affected by temperature and nitrogen supply in the controlled-environment experiment, and

by different nitrogen fertiliser regimes in the WGIN diversity field trial experiment. For the

WGIN diversity field trial experiment, expression analysis was only completed on Cadenza

grain sampled during 2016 and 2017. This was to allow for comparison with the controlled-
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environment experiment, which also used Cadenza, and to compare between two years with

a significantly different weather during grain-filling.

2.9.1. Primer selection

For qPCR, oligonucleotide primer pairs were designed to amplify all homeologous copies of the

gluten protein synthesis genes for alpha- and beta-gliadins, gamma-gliadins, omega-gliadins,

HMW-glutenins (A- and B-type), and LMW-glutenins. Primers were also designed for the 18S

and 28S mRNA reference genes (table 2.4). Primer pairs were designed by Dr Peter Buchner

(Rothamsted Research, Harpenden, UK) with a length of 20-25 bases, GC content of 45-60%,

Tm of 62–66°C (Nakano et al. 1999; Kibbe 2007), Tm differences of 5°C or less between pairs,

and a maximum of two degenerate bases.

Table 2.4: Sequences of primers used for real-time PCR analysis of gluten protein
synthesis genes, and the 18S and 28S ribosomal RNA (rRNA) reference genes.

Primer Sequence (5’ to 3’) Amplicon size Tm

18Ssqas2 CTG GTC GGC ATC GTT TAT GGT TG
125bp

64.6
18Srts1 AA CTG CGA AAG CAT TTG CCA AGG 65.2

28S-Ribo-rtFor1 GTT TAC GGC GAT GTT AGG AAG TC
95bp

62.9
28S-Ribo-rtRev1 AAC CGT TTC CAA GGT TGA CAG GC 64.6

Ta-abGliaFor3 ATG AAG ACC TTT CTC ATC CTT GCC
92bp

63.6
Ta-abGliaRev3 TGT GGC TGC AAT TGT GGC ACT G 64.2

TaGlia1For CCT GCG GCC ACT ATT TCA GCT C 126bp 65.8
TaGlia2For GCA GCA ACA GGT GGG TCA AGG T 132bp 65.8
TaGlia1/2Rev GGG ACA TAC ACG TTG CAC ATG G 64.2

Ta-OmegaGliaFor1 TGT CCT CCT TGC CAT GGC GAT G
80bp

65.8
Ta-OmegaGliaRev1 TGA GGT GAT TGT ARC TCT TTG TTG C 62.5–64.1

TaLMW-Glut-abFor3 GAA GAC CTT CCT CRT CTT TGC C
96bp

62.1–64.2
TaLMW-Glut-abRev3 TGG TCT CTC CAA ACC AGG GAT G 64.2

TaHMW-ABrtFor1 GAG ATG GCT AAG CGC YTG GTC

105bp
63.2–65.8

TaHMW-ABrtRev1a GCT CGC GCT CAC ACT GTA GTT G 65.8
TaHMW-ABrtRev1b GCT CGT GCT CAC ATT GTA GTT GTC 65.2

2.9.2. RNA extraction

Ribonucleic acid (RNA) was extracted from grain samples collected to analyse the expression

of gluten protein subunit synthesis genes in grain subjected to different treatments. The

extraction of RNA was performed on grain samples which were removed from the plant,

immediately frozen with liquid nitrogen and milled in a freezer mill. Samples were not freeze-

dried, and at no point were samples allowed to defrost prior to RNA extraction. RNA

extraction was only completed on developing grain, and the full technical protocol is presented

in appendix A.5 for reference.
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Prior to RNA extraction, all relevant solutions were treated with 0.1% (v/v) diethylpyrocar-

bonate (DEPC) to destroy potential RNase activities. The solutions were thoroughly shaken,

left to incubate at room temperature for several hours, and autoclaved prior to use.

RNA was extracted from approximately 0.5–1.0g of fresh, frozen milled grain in a hot (80°C)

phenol/extraction buffer (8:12 ratio). The extraction buffer contained: 1% (w/v) SDS, 0.1M

LiC, and 10mM EDTA in 0.1M Tris-HCl (pH 8.0). 1ml of hot phenol/extraction buffer was

added to the frozen ground sample, vortexed until completely thawed and homogenised, and

then vortexed for a further 30 seconds. 0.5ml of a 24:1 mix of chloroform/isoamyl alcohol (IAA)

was then added and vortexed for a further 30 seconds. The samples were then centrifuged at

maximum speed for five minutes at 4°C. The aqueous phase was removed and transferred to

a new 2ml micro-centrifuge tube. If the interphase was large, the initial extraction stage was

repeated, and the aqueous phases combined. To the aqueous phase, 1ml of chloroform/IAA

was added, vortexed for 30 seconds, and centrifuged at maximum speed for five minutes at

4°C. The aqueous phase was then transferred to a new 1.5ml micro-centrifuge tube. The

volume was measured, and an equal volume +20µl of 4M LiCl was added. The samples were

mixed well and incubated at 4°C overnight.

Incubated samples were centrifuged at maximum speed for 20 minutes at 4°C, and the super-

natent discarded. The pellet was washed with 1ml of 70% ethanol, centrifuged at maximum

speed for five minutes at 4°C, and the supernatent discarded. The pellet was then allowed to

air dry. A DNAse treatment was prepared: 8µl RNAse-free DNAse, 15µl 10× DNAse buffer in

127 DEPC-treated H2O per sample. 150µl of the DNAse treatment was added to each pellet,

and dissolved on ice for 30–40 minutes. When completed dissolved, the samples were incu-

bated at 37°C on a shaker for 30 minutes. DEPC-treated H2O was added at 150µl per sample,

and 300µl of chloroform/IAA was added and vortexed for 30 seconds. The sample was then

centrifuged at maximum speed for five minutes at 4°C. The aqueous phase was transferred to

a new 1.5ml micro-centrifuge tube and 300µl of phenol/chloroform/IAA added, and vortexed

for 30 seconds. The sample was then centrifuged at maximum speed for five minutes at 4°C.

After a second extraction with chloroform/IAA, the aqueous phase was tramsferred into a

1.5ml micro tube, and the total RNA precipitated by adding 1/10 volume of 3M NaOAc (pH

5.2) and 2.5× volume of 100% ethanol. The extract was mixed well and incubated at -20°C
overnight.

After centrifugation at maximum speed for 20 minutes at 4°C, the supernatent was discarded,

and the pellet washed with 1ml of 70% ethanol by further centrifugation for five minutes

at 4°C. The supernatent was discarded and the pellet allowed to air dry. The pellet was

dissolved on ice in 30–150µl of DEPC-treated H2O (depending on the size of the pellet). Once

dissolved, the extracted RNA was heated to 37°C in a shaking heat block for five minutes and

centrifuged at maximum speed for five minutes at 4°C. The supernatent was transferred to a

fresh 0.5ml micro-centrifuge tube, and the concentration of RNA measured at 260nm using
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a NanoDrop 2000c spectrophotometer (Thermo Fisher Scientific, Hemel Hempstead, UK).

RNA was diluted with DEPC-treated H2O to a concentration of 1000ng/µl or less.

The quality of extracted RNA (as measured with the NanoDrop 2000c spectrophotometer)

was then tested by tris-acetate-EDTA (TAE)-agarose electrophoresis. A 1% (w/v) agarose in

TAE gel was prepared with 1% (v/v) Sybr® Safe DNA Gel Stain for RNA detection. 1µg of

RNA in 10µl water and RNA loading dye was loaded per well. The gel was run for 40 minutes

at a constant 60V and observed under UV light. An example result of this quality check is

shown in figure 2.10

Figure 2.10: Image of example RNA quality check result. Two crisp bands indicate
good quality RNA. The upper band represents the 28s rRNA, and the lower band is
the 18s rRNA.

2.9.3. cDNA synthesis

Complementary DNA was synthesised from the extracted total RNA, to be used in qPCR

analysis (full protocol in appendix A.7). Using the RNA concentration data from the NanoDrop

spectrophotometer, DEPC-treated H2O was added to 0.2ml micro-centrifuge tubes such that

a final volume of 13µl including primers and RNA was achieved. 1µl of 10mM dT-adapter

primer and 2µg of RNA was added. The contents of the tubes were mixed, and incubated for

seven minutes at 70°C to denature the template RNA before chilling on ice. The tubes were

centrifuged briefly to collect the contents at the bottom of the tube. A master mix containing

4µl of 5× first strand buffer, 1µl of 0.1M DTT, 1µl 10mM deoxynucleotide (dNTP) mix, and

1µl of SuperscriptTM III reverse transcriptase (InvitrogenTM) was added to each tube and

mixed gently. The tubes were centrifuged briefly to collect the contents at the bottom of the

tube, and were incubated in a PCR machine for five minutes at 22°C, two hours at 50°C for

complementary DNA (cDNA) synthesis, and 15 minutes at 70°C to terminate the reverse

transcriptase, before being promptly removed and chilled on ice. The cDNA was diluted 1:10

with DEPC-treated H2O, and stored at -20°C until required.

2.9.4. Quantitative PCR

Quantitative PCR was used to quantify the gene expression of wheat grain samples col-

lected during this study, and was performed on cDNA synthesised from RNA extracted from

George Savill



48 CHAPTER 2. MATERIALS AND METHODS

developing grain. The full tehnical protocol is presented in appendix A.7.

A master mix was prepared containing 0.7µl of 10µM sense primer, 0.7µl of 10µM anti-sense

primer, 0.03µl of 100× ROX internal reference dye, 11.22µl of H2O, and 13.75µl of SYBR®

Green JumpStartTM Taq ReadyMixTM (Sigma Aldrich, Gillingham, UK) per sample. 26.4µl

of master mix and 1.1µl of cDNA was added to a 1.5ml micro-centrifuge tube, mixed well,

and centrifuged to collect the contents. 25.1µl was loaded into each well of a white 96-well

PCR plate, which was sealed with a transparent qPCR seal, and centrifuged to collect the

contents. The completed plate was loaded into an Applied Biosystems 7500 qPCR machine

(Applied Biosystems, Foster City, CA, USA) and run for two minutes at 50°C, ten minutes

at 95°C, 41 cycles of 15 seconds at 95°C and one minute at 60°C, 15 seconds at 95°C, and a

final 15 seconds at 60°C.

2.9.5. Analysis of quantitative PCR data

The results from qPCR were analysed using the Applied Biosystems 7500 software (v2.05).

Rn values were exported, and mean primer efficiency values calculated using the LinRegPCR

software (v12.3, Ruijter et al. (2009)). Analysis of the Ct values with relation to the primer

efficiency values was conducted using the normalised relative quantification (NRQ) method

(Rieu et al. 2009), which relies on the expression of the 18S and 28S rRNA reference genes

for normalisation. For calculating the NRQ values, the following formula was used:

NRQ = Target primer efficiency- Target Ct√
(18s primer efficiency- 18s Ct)×(28s primer efficiency- 28s Ct)

Log transformed (log2( 1
NRQ)) NRQ values were then used for statistical analysis to describe

the relative expression of protein synthesis genes during grain-filling.

2.10. Statistical analysis

The GenStat® statistical software package (2015, Eighteenth Edition, VSN International Ltd,

Hemel Hempstead, UK) was used to analyse all data collected during this study.

Analysis of variance (ANOVA) was applied to all single-variate data, including all morpholog-

ical data (yield, thousand grain weight, grain count etc.), grain nitrogen concentration data,

and SE-HPLC data. The least significant difference (LSD) at the 5% (P=0.05) level, calcu-

lated from the standard error of the difference (SED) between means on the residual degrees

of freedom (DF) from the ANOVA was used to make comparison of relevant means.

Restricted maximum likelihood (REML) was used to fit linear mixed models in instances

where the application of ANOVA unsuitable or inadequate, namely in the analysis of the

SDS-PAGE protein composition data, the light-microscopy protein gradient and protein body

size-distribution data, and the RNA expression data. In the case of the analysis of the SDS-

PAGE data, REML was used in order to account for the complex design structure required

to account for variation across protein gels, and between gel electrophoresis tanks (which

each contained two gels). For the analysis of light-microscopy and RNA expression data,

REML was used to regress on certain variables in the model, which would not be possible
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in ANOVA. With regards to the analysis of the light-microscopy data, this allowed for the

variable associated with distance from the aleurone layer to be included as a factor in the

analysis. This approach was essential for the analysis of the continuous size-distribution

data, and beneficial in the analysis of the discrete protein concentration gradient data, which

consisted of protein concentration measurements attributed to one of five endosperm zones.

These zones were converted to physical distance (which varied between different treatment

combinations), and this variable used as a factor in the analysis to provide further insight to

this data. As a result, any difference in the size of grain between treatments was accounted

for in the analysis of the data. A similar approach was taken in the analysis of the RNA

expression data, with the accumulated thermal time variable included as a factor in the model,

allowing for differences in the experienced thermal time to be accounted for.

Canonical variate (CV) analysis was used in the exploratory analysis of SDS-PAGE protein

composition data to illustrate the effect, and magnitude of effect, that each treatment com-

bination had on protein composition. Individual (in the case of the controlled-environment

experiment) and grouped (for the WGIN field experiment) protein measurements were used

as the terms in the CV analysis, with a grouping factor relating to the specific treatment

combination. In the controlled-environment experiment, this grouping provided separation

of protein composition data by each combination of temperature (20/28°C) and nitrogen

(low/high) treatment over the six sampling timepoints; and in the WGIN diversity field exper-

iment, the grouping consisted of each combination of year (2015–2017) and nitrogen treatment

(100kg-N/ha/350kg-N/ha) for each of the four genotypes used in the study. The loadings of

each protein/protein group are also presented, as an indication of which protein or group of

proteins were most affected by the applied treatments. It should be noted that whilst CV

analysis generally requires higher levels of replication that available in this study, this does

not preclude its application for investigative purposes when used in combination with REML

analysis.

Simple linear regression was used for the comparison of storage protein synthesis gene expres-

sion data with the SE-HPLC measurements of the relevant protein. The NRQ values were

summed over all sampling timepoints to produce a value for accumulated NRQ, and this

value was regressed against the absolute measurements of the appropriate SE-HPLC protein

fraction. The abundance of the F1 fraction was regressed against the relative expression of

the HMW-glutenin transcript, the F2 fraction against the expression of the LMW-glutenin

transcript, the F3 fraction against the ω-gliadin transcript, and the F4 fraction was regressed

against the sum of the expression of the α- and β-gliadin and the mean of the two γ-gliadin

transcripts. The relevant coefficient of determination (R2) and P values are presented for

comparisons between gene expression, and abundance of the corresponding protein.
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Chapter 3: Results: Meteorological data

3.1. Introduction

Meteorological data was recorded from the on-site weather station at Rothamsted Research,

Harpenden, UK, and provided daily measurements for mean temperature, rainfall, and hours

of sun for the duration of the WGIN field trial experiments held in 2015–2017. From this data,

accumulated thermal time was calculated to record how developmental speed and timing may

vary between years. Only the data for the period of grain-filling are reported, since this covers

this is the only stage of development of interest to this project. For figures 3.1, 3.2, 3.3, and

3.4, the period of time covering the 35-day sample period for Cadenza is shown.

3.2. Temperature and accumulated thermal time

Mean temperature data for the first 35 days of grain-filling in Cadenza for 2015–2017 are

presented in figure 3.1. Events of note include prolonged periods of high temperatures from

20–26 days after anthesis in 2015, and between 14–23 days after anthesis in 2017. The period

of high temperature in 2017 is of particular interest as it falls within a critical time for grain-

filling with regards to protein accumulation. The year of 2016 was relatively unremarkable

in comparison, with no prolonged periods of hot weather, and stable temperatures day-to-

day.

From the mean daily temperature measurements accumulated thermal time was calculated,

and is presented in figure 3.2. The accumulated thermal time data shows a linear increase in

accumulated thermal time in 2016 due to the relatively stable mean temperatures experienced.

However, the periods of elevated temperature are evident in the data from 2015 and 2017,

with 2017 in particular showing a rapid increase in accumulated thermal time in mid grain-

filling. The total accumulated thermal time over the 35 day period covering grain-filling was

comparable between 2015 and 2016, but was greater in 2017.

3.3. Rainfall and sunlight

Accumulated hours of sunlight was measured for the duration of grain-filling, and the data

from the first 35 days of grain-filling in Cadenza is presented in figure 3.3. The years of 2015

and 2017 showed comparable levels of sunlight by the end of this 35-day period, with increased

sunlight that mirror the daily temperature measurements shown in figure 3.1. There was less

sunlight throughout grain-filling, and less accumulated sunlight by the end of grain-filling in

2016.

Rainfall during grain-filing is presented in figure 3.4 as total accumulated rain. This data

shows that 2017 was a particularly dry year during grain-filling, with approximately half of

the accumulated rainfall of 2016, and with a prolonged spell over approximately two weeks

with no recorded rainfall. The situation was similar in 2015, although rainfall was more regular

than 2017, without any prolonged period with no rain.
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Figure 3.1: Average temperature during grain-filling for the WGIN diversity
experiment. Mean daily temperatures are presented for the 35 days of grain-filling
following the anthesis of Cadenza, over the three years (2015–2017) of the WGIN
diversity field experiment, with overall mean shown as a dashed line. Horizontal lines
represent the five timepoints (T1–T5) at which grain were sampled for analysis.
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Figure 3.2: Accumulated thermal time during grain-filling for the WGIN
diversity experiment. Accumulated thermal time was calculated from the daily
mean temperature using a base temperature of 4°C, and expressed as GDH. Data is
presented for the 35 days of grain-filling following the anthesis of Cadenza, over the
three years (2015–2017) of the WGIN diversity experiment. Horizontal lines represent
the five timepoints (T1–T5) at which grain were sampled for analysis.
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Figure 3.3: Radiation accumulated during grain-filling for the WGIN diversity
experiment. Hours of sun data is presented for the 35 days of grain-filling following the
anthesis of Cadenza, over the three years (2015–2017) of the WGIN diversity experiment.
Horizontal lines represent the five timepoints (T1–T5) at which grain were sampled for
analysis.
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Figure 3.4: Accumulated rainfall during grain-filling for the WGIN diversity
experiment. Data is presented for the 35 days of grain-filling following the anthesis of
Cadenza, over the three years (2015–2017) of the WGIN diversity experiment. Horizontal
lines represent the five timepoints (T1–T5) at which grain were sampled for analysis.
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Table 3.1: Anthesis dates of the four wheat varieties sampled in the WGIN diversity
field trial experiment. Cadenza, Hereward, and Istabraq show similar antehsis dates,
whilst the photoperiod-insensitive Soissons consistently reached anthesis earlier.

Variety Anthesis in: 2015 2016 2017

Cadenza 09/06 07/06 30/05
Hereward 10/06 09/06 31/05
Istabraq 10/06 09/06 31/05
Soissons 03/06 30/05 25/05

3.4. Comparisons of weather experienced by different genotypes

Of the four different genotypes sampled in this study, Soissons was notable for its early

flowering. Whilst Cadenza, Hereward, and Istabraq all reached anthesis within one or two

days of each other, Soissons flowered between five to ten days earlier, as shown in table 3.1.

Due to this, the climate experienced by Soissons was different to that experienced by the other

varieties. The accumulated thermal time, hours of sun, and rainfall were compared between

Cadenza and Soissons in each of the three years sampled as part of this study. Only these

two genotypes are compared for clarity, as differences between the conditions experienced

between Cadenza, Hereward, and Istabraq were minimal.

Comparisons of the accumulated thermal time experienced by Cadenza and Soissons during

the first 35 days of grain-filling are presented in figure 3.5. These comparisons show how the

prolonged periods of hot weather shown in figure 3.1 occurred later in development for Soissons.

Furthermore, they show how the accumulated thermal time by 35 days was comparable in

2015 and 2017, but was lower for Soissons in 2016 due to cooler weather in the early days of

grain-filling.

Figure 3.6 shows how hours of sunlight varied between Cadenza and Soissons for the first 35

days of grain-filling for. In 2015, Soissons had more sun over the first 21 days of grain-filling,

and ultimately accumulated more hours of sun over the duration of sampling. Differences

between the two genotypes were less pronounced in 2016 and 2017, with similar levels of sun

throughout grain-filling.

The differences in rainfall during grain-filling for Cadenza and Soissons are presented in figure

3.7. In 2015 and 2016, Soissons generally saw less rainfall that Cadenza at the same time

after anthesis. The dry periods in 2015 and 2017 discussed in section 3.3 occurred later in

development for Soissons, which may be favourable, since water scarcity would occur closer

towards the dehydration stage of grain-filling.

3.5. Conclusions and discussion

The meteorological data collected as part of the WGIN diversity field trial experiment revealed

some clear differences between the three years sampled as part of this study. With regards

to temperature and accumulated thermal time, the years of 2016 and 2017 stand out: 2016

George Savill



CHAPTER 3. RESULTS: METEOROLOGICAL DATA 55

(a)

0 10 20 30
0

0.5

1

·104

T1 T2 T3 T4 T5

Days after anthesis

A
cc

u
m

u
la

te
d

th
er

m
al

ti
m

e
(G

D
H

)

2015

(b)

0 10 20 30
0

0.5

1

·104

T1 T2 T3 T4 T5

Days after anthesis

A
cc

u
m

u
la

te
d

th
er

m
a
l

ti
m

e
(G

D
H

)

2016

(c)

0 10 20 30
0

0.5

1

·104

T1 T2 T3 T4 T5

Days after anthesis

A
cc

u
m

u
la

te
d

th
er

m
a
l

ti
m

e
(G

D
H

)

2017

Cadenza
Soissons

Figure 3.5: Comparison of the accumulated thermal time for Cadenza and
Soissons during grain-filling in the WGIN diversity experiment. The differ-
ences in accumulated thermal time in the first 35 days of grain-filling following anthesis
for Cadenza and the early-flowering Soissons are presented. Data is presented for all
three years of the WGIN diversity experiment: (a) 2015, (b) 2016, and (c) 2017. Hor-
izontal lines represent the five timepoints (T1–T5) at which grain were sampled for
analysis.
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Figure 3.6: Comparison of the accumulated radiation for Cadenza and Sois-
sons during grain-filling in the WGIN diversity experiment. The differences
in radiation (presented as accumulated hours of sun) in the first 35 days of grain-filling
following anthesis for Cadenza and the early-flowering Soissons are presented. Data is
presented for all three years of the WGIN diversity experiment: (a) 2015, (b) 2016, and
(c) 2017. Horizontal lines represent the five timepoints (T1–T5) at which grain were
sampled for analysis.
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Figure 3.7: Comparison of the rainfall for Cadenza and Soissons during grain-
filling in the WGIN diversity experiment. The differences in rainfall in the first
35 days of grain-filling following anthesis for Cadenza and the early-flowering Soissons
are presented. Data is presented for all three years of the WGIN diversity experiment:
(a) 2015, (b) 2016, and (c) 2017. Horizontal lines represent the five timepoints (T1–T5)
at which grain were sampled for analysis.
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was a mild year, with stable temperatures throughout the grain-filling period, whilst in 2017

there was a nine day period of elevated temperature during early to mid grain-filling. There

was a shorter heatwave in 2015, slightly later in grain-filling, which likely had a lesser effect

on the development of the plants than the heatwave in 2017. The amount of thermal time

accumulated throughout grain-filling was greatest in 2017, driven by both the heatwave and

higher temperatures throughout grain-filling, and was lowest in 2016. The short heatwave in

2015 resulted in a slight boost in accumulated thermal time compared to 2016, but ultimately

2015 and 2016 accumulated similar amounts of thermal time. From the temperature data

collected, we could predict that 2015 and 2016 would achieve higher yields due to the slower

accumulation of thermal time, whilst the high temperatures of 2017 would reduce yield,

mainly by reducing starch content, thereby increasing the concentration of nitrogen within

the grain.

In addition to temperature data, the collection of sunlight and rainfall data also showed

some differences between the three years. Both 2015 and 2017 saw approximately 150% of

accumulated sunlight during grain-filling compared to 2016, with increases in accumulated

sunlight correlating with the heatwaves in 2015 and 2017. The lower accumulated sunlight

in 2016 was reflected in the rainfall data: 2016 saw approximately 200% of the rainfall of

both 2015 and 2017 during grain-filling, with no period without rain of more than three days

during this period. The driest year was 2017, which also saw a period of 18 days with no rain,

which spanned from early to late grain-filling in Cadenza. 2015 had more consistent rainfall,

and accumulated more than in 2017, but was still considerably drier than 2016.

In summary, 2015 saw relatively mild temperatures during grain-filling, with a short (five

days) heatwave at mid to late grain-filling, and a low level of accumulated thermal time when

compared to 2017. The mild temperatures in 2015 were also accompanied by high levels of

sunlight, and relatively consistent rainfall without a prolonged period with no rain. 2016 was

the most consistent year temperature-wise, with mild temperatures throughout grain-filling.

However, 2016 saw less sunlight than the other years, as well as significantly more rain. 2017

was particularly noteworthy due to the occurrence of a prolonged heatwave, as well as generally

higher temperatures, which resulted in a much greater amount of accumulated thermal time

during grain-filling. Sunlight was high during 2017, but rainfall was the lowest of the three

years, with a prolonged period (18 days) with minimal rain that lasted from early to late

grain-filling. Of the three years, it could be predicted that 2015 would show the best yield

and grain quality due to the mild temperatures, high level of sunlight, and regular rain. The

differences between 2016 and 2017 are perhaps too great to make a prediction on which would

produce the highest yield. Whilst 2017 saw the highest temperatures, and the least rainfall,

it also experienced a much greater amount of sunlight during grain-filling than 2016. Since

in UK agriculture sunlight is more likely to be limiting yield than rainfall (AHDB 2018), it

is possible that the increased rainfall and mild temperatures in 2016 may be overpowered by

the lack of sunlight with regards to yield.
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Of the three years of the WGIN field trial experiment, 2016 and 2017 stand out as the most

contrasting years, with 2016 representing a consistently mild year with adequate rainfall, and

2017 a year with a heatwave and prolonged period with no rain during grain-filling. Since

one of the aims of this study is to investigate the effect that climate change, and increased

frequency of heatwave and drought, may have on grain-filling, the comparison of data between

2016 and 2017 are of great interest. This data was used to inform the decision of which two

years should be compared with RNA expression analysis; the years of 2016 and 2017 were

chosen to increase the chances of identifying a year-on-year difference in gluten storage protein

synthesis gene expression.

The photoperiod-insensitive variety Soissons was included in the analysis to investigate the

effect that early anthesis might have on grain yield and quality. When compared to the

photoperiod-sensitive varieties, Soissons flowered five to ten days early, resulting in consider-

able differences in the timing of climate events with regards to grain development. Analysis

of the temperature data collected during grain-filling showed that Soissons accumulated less

thermal time in 2015 and 2016 than the other genotypes, and a comparable amount in 2017.

The differences in accumulated thermal time were greatest in 2016, where Soissons experienced

particularly low temperatures during the first six days of grain-filling. From the information

presented in figure 3.5, it is clear that the accumulated thermal time at a particular sampling

timepoint (T1–T5) was often different between varieties, and so it is likely that development

was not at a directly comparable stage between the photoperiod-sensitive and -insensitive

varieties. Again, this difference is particularly evident in 2016.

As with temperature, there were differences in the amount of sunlight and rainfall experi-

enced by Soissons when compared to the photoperiod-sensitive varieties. In 2015, Soissons

experienced more sunlight during early grain-filling, and accumulated more hours of sun by

35DPA, in 2016 Soissons generally saw less sun throughout grain-filling, and accumulated

slightly fewer hours of sun in total than the other varieties, and in 2017 Soissons accumulated

radiation more slowly during mid grain-filling, but ultimately accumulated the same amount

of sunlight over the first 35 days of grain-filling as the other varieties. The differences in rainfall

between the different varieties are likely less important than the differences in sunlight and

temperature, since the soil’s ability to hold water buffers the plants against periods without

rain to a certain degree. Nevertheless, Soissons experienced less total rainfall in the first 35

days of grain-filling in 2015 and 2016, but had more rain in 2017. However, since rainfall was

generally plentiful, perhaps the only considerable difference was the timing of the period of

drought in 2017, with the drought occurring earlier in grain-filling for Soissons compared to

the other genotypes.

Whilst the differences in yield and grain quality between the early-flowering Soissons and the

other varieties may be obscured by any number of factors unrelated to climate, it may be

possible to identify climactic effects by looking at the differences between years and genotypes.
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Unfortunately since no final harvest data for Soissons was available in 2017, only 2015 and

2016 can be used for comparison of factors such as yield and protein composition. However,

measurements for nitrogen content were taken throughout grain-filling for all three years,

and as such it may be possible to analyse the effect that the timing of the heatwave and

drought in 2017 had on the protein accumulation in each cultivar. If an increase in nitrogen

concentration, relative to other years, was observed during the 2017 heatwave in the three

late-flowering varieties but not Soissons, it could be speculated that the later timing of the

increased temperature reduced the severity of the heatwave on nitrogen concentration in the

grain. Aside from the dramatic differences between 2017 and 2016, it may also be possible

to identify the effect that some of the less pronounced yearly differences had on the early-

maturing Soissons. For instance, the difference in accumulated thermal time between Soissons

and the other cultivars was less in 2015 than in 2016. This difference could manifest itself as

Soissons showing higher yields in 2016, relative to the other cultivars.
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Chapter 4: Results: Grain yield and yield components

4.1. Introduction

With a growing population, maximising the yield of our crops is a shared aim between

farmers, breeders, and agricultural scientists. In wheat, yield is determined by both the

size and number of grain produced. Whilst the weight of an individual grain is simple to

characterise, determining and understanding the grainset of the mature wheat plant is more

complicated. Tiller and ear number, spike size, and fertility of individual spikelets all interact

to determine the number of grain harvested from any one plant. Both grain yield components,

size and number, are sensitive to changes in temperature (Spiertz et al. 2006; Ataur Rahman

et al. 2009), solar radiation (Fischer 1985), nitrogen regime (Otteson et al. 2007), and genotype

(Slafer2014), and as such understanding the response wheat has to each of these factors is

of great importance. To this aim, two experiments were completed as part of this study: a

controlled-environment study looking at the combined effects of nitrogen input and elevated

temperature during grain-filling, and the WGIN diversity field trial, from which four wheat

genotypes grown under either low (100kg-N/ha) or high (350kg-N/ha) nitrogen regimes were

sampled over three consecutive years.

4.2. Controlled-environment experiment

In the controlled environment experiment, UK spring wheat cultivar Cadenza was grown to

anthesis under either low or high nitrogen input, before being exposed to either a control

(20°C) or high (28°C) daytime temperature treatment for the duration of grain-filling. At

harvest measurements were taken for total grain yield and thousand grain weight. From

this data grain count was calculated, allowing for any changes in yield to be attributed to

changes in grain weight, changes in grainset, or a combination of these factors. Additionally,

dimensional measurements for grain area, length, and width were taken from a sub-sample

of mature grain to describe how individual grain morphology is affected by temperature and

nitrogen. Finally, to quantify the effect that the two nitrogen treatments used had to the

nitrogen status of the plants, leaf chlorophyll content measurements were taken using a SPAD

meter.

4.2.1. Yield

Total grain yield was measured on grain harvested from plants at full maturity, bulking the

grain from all five plants within each pot before oven drying to 5% moisture.

Grain yield was decreased by elevated temperature during grain-filling, and increased by the

high nitrogen treatment applied prior to anthesis, with a significant interaction between these

factors (F1,6=15.28, P=0.008, SED=0.324 on 7.34 DF) (figure 4.1). Of these two factors,

temperature had the greatest effect, with an average decrease in yield of 34% when elevated

temperatures were experienced during grain-filling. The effect of nitrogen was overall smaller
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Figure 4.1: Grain yield is increased by high nitrogen input and elevated post-
anthesis temperature. Mean grain yield from the controlled-environment experiment,
presented as individual treatment combinations of control temperature (20°C), low- and
high-nitrogen, and elevated temperature (28°C), low- and high-nitrogen. LSD (at the
5% level) of 0.49 for comparing means within the same level of temperature treatment,
and 0.76 for all other comparisons.

.

Table 4.1: Full thousand grain weight dataset from the controlled-environment experi-
ment presented per treatment combination, and averaged over experimental blocks.

Treatment Thousand grain weight (g)

20°C, low-nitrogen 38.52
20°C, high-nitrogen 41.59
28°C, low-nitrogen 27.56
28°C, high-nitrogen 28.62

than the effect of temperature, but was also different depending on the temperature treatment,

with increased nitrogen supply resulted in a greater yield increase (19%) under the control

temperature treatment than under the elevated temperature treatment (13%).

4.2.2. Thousand grain weight

Thousand grain weight was measured on a sub-sample of the grain used to measure yield, i.e.

grain bulked from five plants within the same pot at maturity. As a representative measure of

individual grain weight, thousand grain weight (TGW) can help to describe the mechanisms

behind changes in yield, and can indicate whether any increases in yield are due to increases

in the weight of individual grain, or increases in the number of grain produces. The mean

thousand grain weights for each treatment combination are presented in full in table 4.1.

Thousand grain weight was significantly decreased by elevated temperature during grain-filling

(F1,5=67.47, P<0.001, SED=1.456 on 5 DF) (figure 4.2a), with an average decrease of 30%
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Figure 4.2: Thousand grain weight is reduced by high temperatures dur-
ing grain-filling, and increased by nitrogen fertilisation. Mean TGW from the
controlled-environment experiment, showing the effects of (a) post-anthesis temperature,
LSD (at the 5% level) of 3.74, and (b) nitrogen supply during vegetative development,
LSD of 1.59.

.

Table 4.2: Full grain count dataset from the controlled-environment experiment. Grain
count calculated from yield and TGW data, and is presented per treatment combination,
averaged over experimental blocks.

Treatment Grain count per plant

20°C, low-nitrogen 281
20°C, high-nitrogen 314
28°C, low-nitrogen 270
28°C, high-nitrogen 296

between the control- and high-temperature treatments used in this experiment. Limiting the

nitrogen supply prior to anthesis also resulted in a decrease in TGW (F1,6=10.19, P=0.019,

SED=0.648 on 6 DF) (figure 4.2b), with TGW 6% higher, on average, when nitrogen sup-

ply was increased. There was no significant interaction between temperature and nitrogen

treatments (F1,6=2.50, P=0.165).

4.2.3. Total grain count

To complete the description of the factors contributing to grain yield, a total grain count

was calculated from the yield and TGW data. In combination with TGW, this information

can tell us whether changes in yield were due to increases in grain size, increases in grain

number, or a combination of these two factors. Calculated grain counts for each treatment

combination are presented in table 4.2.

Limiting nitrogen supply to the plants during vegetative development resulted in a 10%

decrease in the total grain count (F1,6=26.17, P=0.002, SED=5.35 on 6 DF) (figure 4.3).

However, the elevated post-anthesis temperature treatment had no significant effect on grain
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Figure 4.3: Grain count is increased by nitrogen fertilisation. Calculated grain
count data from the controlled-environment experiment, grouped by nitrogen treatment
and averaged over temperature treatments. LSD (at the 5% level) of 13.

Table 4.3: Full dataset for grain area, length, and width measurements of mature grain
from the controlled-environment experiment, presented by treatment combination and
averaged over experimental blocks. Measurements were made on sub-samples of 100
grain using the automated MARVIN grain analyser.

Treatment Area (mm2) Length (mm) Width (mm)

20°C, low-nitrogen 18.88 6.28 3.72
20°C, high-nitrogen 19.36 6.44 3.73
28°C, low-nitrogen 16.28 6.29 3.28
28°C, high-nitrogen 16.98 6.52 3.31

count (F1,5=2.20, P=0.198), with an average of 297 grain per plant under the control treat-

ment, and 283 when the high-temperature treatment was applied (LSD at the 5% level of

25). Likewise, no evidence was found of a significant interaction between temperature and

nitrogen treatments (F1,6=0.14, P=0.720).

4.2.4. Grain dimension measurements

Grain area, length, and width was measured for grain sampled at maturity. These measure-

ments provide data for grain size, which is complementary to the TGW data, and describes

how different dimensions of the grain may be affected by nitrogen supply, and post-anthesis

temperature. The grain size analysis measurements are presented in full in table 4.3.

Elevated post-anthesis temperature decreased grain area by an average of 13%, from 19.12mm2

to 16.63mm2 (F1,4=28.43, P=0.006, SED=0.330 on 4 DF) (figure 4.4a). Nitrogen supply had

a smaller effect on grain area, with the low-nitrogen treatment reducing grain area by 3%

from 17.58mm2 to 18.17mm2 (F1,22=7.48, P=0.012, SED=0.213 on 22 DF) (figure 4.4b). No

significant interaction was found between temperature and nitrogen treatments on grain area

(F1,22=0.26, P=0.617).
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Figure 4.4: Elevated post-anthesis temperature reduces grain area and width,
whilst nitrogen fertilisation increases grain area and length. Grain dimension
measurements from the controlled-environment experiment grouped by significant ef-
fects: (a) mean grain area for each temperature treatment, LSD (at the 5% level) of
1.30, and (b) for each nitrogen treatment, LSD of 0.44; (c) mean grain length for each
nitrogen treatment, LSD of 0.09; (d) mean grain width for each temperature treatment,
LSD of 0.12.
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Grain length and width were differentially affected by the temperature and nitrogen treat-

ments used in this experiment: grain length was increased by 3% under the high nitrogen

treatment (F1,22=18.1, P<0.001, SED=0.0451 on 22 DF) (figure 4.4c), whilst grain width

was reduced by 12% under the elevated post-anthesis temperature treatment (F1,4=96.57,

P<0.001, SED=0.0441 on 4 DF) (figure 4.4d). Temperature did not have a significant effect

on grain length (F1,4=0.09, P=0.776), and nitrogen did not have a significant effect on grain

width (F1,22=0.78, P=0.387). Likewise, no interactions were found between these factors for

either grain length (F1,22=0.55, P=0.467), nor width (F1,22=0.09, P=0.771).

4.2.5. SPAD measurements

SPAD measurements were taken to identify differences in leaf nitrogen content, primarily

to assess the impact of the two different nitrogen treatments on the nitrogen status of the

plants. Measurements were taken once all nutrient solutions had been applied, five days after

anthesis was complete for all plants sampled. The aim of this was to identify the effect that

the two nitrogen treatments had on the plants, since it was impossible to visually detect a

Table 4.4: Full dataset of leaf chlorophyll content measured using a SPAD meter from the
controlled-environment experiment. Measurements were taken five days after anthesis
from three points on the flag leaves of all five plants in a pot, with eight pots sampled for
each treatment combination. Presented figures are average values for each combination
of temperature and nitrogen treatment.

Treatment SPAD measurement

20°C, low-nitrogen 52.10
20°C, high-nitrogen 53.20
28°C, low-nitrogen 51.75
28°C, high-nitrogen 53.92
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Figure 4.5: Leaf chlorophyll content is increased by nitrogen fertilisation.
SPAD measurements taken after anthesis from the controlled-environment experiment,
presented by nitrogen treatment and averaged across temperature treatments. LSD (at
the 5% level) of 0.82.

.
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difference between the two treatments used. Full results are shown in table 4.4.

The low-nitrogen treatment reduced the leaf chlorophyll content measured by SPAD (F1,16=18.04,

P<0.001, SED=0.385 on 16 DF), decreasing the average measurement from 53.6 to 51.9 (with

an LSD of 0.8 at the 5% level) (figure 4.5). The temperature treatment, which had only been

applied for a approximately five days, had no significant effect on the leaf chlorophyll con-

tent (F1,16=0.23, P=0.639), and there was no interaction between nitrogen and temperature

treatments found (F1,16=1.93, P=0.183).

4.3. WGIN diversity field experiment

Over three years of the WGIN diversity field trial, grain yield, TGW, number of ears, and

grain per ear was measured for four wheat genotypes: Cadenza, the group 2 bread-making

wheat used in the controlled-environment experiment; Hereward, a group 1 bread-making

wheat; Istabraq, a group 4 feed wheat; and Soissons, an early-flowering group 2 bread-making

wheat. This range of genotypes was sampled to capture differences in the responses shown to

both nitrogen input and to the climate experienced during grain-filling, which varied from

year to year, and is discussed in detail in chapter 3.

Measurements for yield and TGW were made on grain machine-harvested at maturity from

the 3m × 9m field plots after bench drying to 15% moisture, ear counts were made on a

square metre sub-sample, and grains per ear was calculated from yield, TGW, and ear count

data.

Results for Soissons in 2017 are unavailable due to contamination of the plots with seed from

another variety. The missing results were entered as missing values as part of the statistical

analysis of the data, and the predicted values generated by the ANOVA model are presented

throughout (marked *). For any data averaged across years, genotypes, or nitrogen treatments,

the predicted means from the ANOVA model are presented, which include corrections made

for the missing values for Soissons in 2017.

4.3.1. Yield

Grain yield was measured on grain sampled from the 3m × 9m field trial plots, from which

yield in tonnes per hectare (t/ha) was extrapolated. Yield data for all combinations of year,

genotype, and nitrogen supply is presented in table 4.5.

Analysis of the yield data from the WGIN diversity field experiment identified a significant two-

way interaction between genotype and year of experiment (F5,32=11.94, P<0.001, SED=0.364

on 9.82 DF). However, this interaction is primarily describing the high yield of Hereward

relative to other genotypes in 2016 (see figure 4.6), and whilst this may prove interesting, it

is unlikely to be the best descriptor of the data as a whole. Therefore the individual effects

of year, nitrogen, and genotype are also presented.

Yield was significantly increased by the high nitrogen (350kg-N/ha) treatment (F1,6=131.53,

P<0.001, SED=0.279 on 6 DF) with an average yield increase of 39%, from 8.16 to 11.36t/ha

George Savill



68 CHAPTER 4. RESULTS: GRAIN YIELD AND YIELD COMPONENTS

Table 4.5: Full grain yield dataset from the WGIN diversity field trial experiment. Grain
yield expressed as t/ha, and is averaged across experimental blocks. Predicted values
from the ANOVA model are presented for Soissons in 2017 (marked *).

Yield (t/ha)
Nitrogen input Genotype 2015 2016 2017

100kg-N/ha

Cadenza 8.21 7.25 7.46
Hereward 8.83 8.78 7.78
Istabraq 9.84 8.26 8.65
Soissons 8.86 6.75 7.23*

350kg-N/ha

Cadenza 12.49 10.90 9.90
Hereward 12.28 12.64 10.13
Istabraq 13.37 11.89 10.46
Soissons 12.04 10.87 9.36*
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Figure 4.6: The interaction between genotype, year, and grain yield in the
WGIN diversity field experiment. Grain yield by genotype and year from the
WGIN diversity field experiment, averaged across nitrogen treatments. Figure represents
the two-way interaction between genotype and year of experiment identified by ANOVA,
which largely describes the high yield of Hereward in 2016. Predicted values from the
ANOVA model are presented for Soissons in 2017 (marked *). LSD (at the 5% level) of
0.41 when comparing means within the same year, and 0.81 for all other comparisons.
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Figure 4.7: Grain yield is increased by nitrogen fertilisation, varied between
genotypes, and was lowest in the hottest year. Grain yield data from the WGIN
diversity field experiment presented by the individual effects of (a) nitrogen treatment,
LSD (at the 5% level) of 0.684; (b) genotype, LSD of 0.234; and (c) year, LSD of 0.785
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between the 100 and 350kg-N/ha nitrogen treatments respectively (figure 4.7a). Genotype

was also found to have a strong effect on yield (F3,32=50.82, P<0.001, SED=0.115 on 32DF):

Istabraq was the highest yielding with a yield of 10.41kg/a, followed by Hereward with

10.07kg/ha, Cadenza with 9.37kg/ha, and Soissons with 9.18kg/ha (figure 4.7b). Finally, yield

was also significantly different between years (F1,6=17.12, P=0.003, SED=0.321 on 6DF),

with 2015 having the highest average yield at 10.74kg/ha, followed by 2016 with 9.67kg/ha,

and 2017 showing a 17% decrease compared to 2015 with 8.87kg/ha (figure 4.7c).

4.3.2. Thousand grain weight

Thousand grain weight was measured on a sub-sample of the grain harvested at maturity,

and as with yield, was measured on grain bench-dried to 15% moisture.

Year of harvest, genotype, and nitrogen application rate all interacted to determine TGW

(F5,31=3.71, P=0.010, SED=1.309 on 27.8 DF) (figure 4.8). This three-way interaction is

largely describing the response of Soissons to year of harvest, as well as the different responses

to nitrogen input. Over the three years, TGW was generally greatest in 2016, and lowest

in 2017. However, for Soissons, TGW was lower in 2016 than in 2015, a response that

wasn’t observed in any other genotype. Looking at the genotypes individually, Cadenza had

the highest average TGW at 42.1g, Hereward and Istabraq had TGWs of 40.4g and 40.6g

Cadenza Hereward Istabraq Soissons
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Figure 4.8: Thousand grain weight is affected by nitrogen input, and varies
between genotypes and year. TGW data from the WGIN field experiment shown
as individual treatment combinations of genotype, nitrogen, and year of experiment.
Predicted values from the ANOVA model are presented for Soissons in 2017 (marked
*). LSD (at the 5% level) of 1.94 within the same combination of year and nitrogen
treatment, 2.66 within the same year, or combination of year and genotype, and 2.68
for all other comparisons.
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respectively, whilst Soissons had the lowest TGW at 35.0g. The effect of nitrogen supply was

comparatively small, and varied between combinations of genotype and year. Whilst increased

nitrogen input generally decreased TGW, this response was not consistent, and indeed wasn’t

universal across all treatment combinations. By comparing the predicted means with the

LSD at the 5% level, it is evident that TGW was only significantly decreased under the

high nitrogen treatment in Istabraq in 2016, and Hereward in 2017, and that no instances of

increased in TGW due to nitrogen treatment were significant.

4.3.3. Ear count and grain per ear

The number of ears in a one square metre sub-sample was counted, and using grain yield and

TGW measurements, an average number of grains per ear was calculated. Data for the number

of ears are presented in table 4.6, and for the number of grain per ear in table 4.7.

Both genotype and nitrogen input interacted to determine ear count (F3,31=4.09, P=0.015,

SED=35.46 on 36.56 DF) (figure 4.9a), with Cadenza, Istabraq, and Soissons all showing a

Table 4.6: Full ear count dataset from the WGIN diversity field trial experiment. Ear
count measured on a one square metre sub-sample, and the average value over three
experimental blocks is presented. Predicted values from the ANOVA model are presented
for Soissons in 2017 (marked *).

Ears per m2

Nitrogen input Genotype 2015 2016 2017

100kg-N/ha

Cadenza 361 417 298
Hereward 460 559 393
Istabraq 385 422 333
Soissons 559 399 386*

350kg-N/ha

Cadenza 483 529 405
Hereward 535 539 477
Istabraq 506 512 493
Soissons 631 772 643*

Table 4.7: Full dataset for grain per ear calculations from the WGIN diversity field trial
experiment. Grain per ear calculated from ear count and TGW data. Predicted values
from the ANOVA model are presented for Soissons in 2017 (marked *).

Grain per ear
Nitrogen input Genotype 2015 2016 2017

100kg-N/ha

Cadenza 47.1 32.8 55.8
Hereward 39.7 31.5 46.1
Istabraq 52.4 38.8 59.7
Soissons 34.9 38.4 50.5*

350kg-N/ha

Cadenza 53.2 36.9 56.9
Hereward 49.7 44.4 56.0
Istabraq 53.5 47.5 51.8
Soissons 40.9 34.5 45.1*
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Figure 4.9: Ear count is increased by nitrogen fertilisation, and was highest
in the coolest year. Ear count data from the WGIN field experiment shown by (a)
genotype and nitrogen treatment combination, LSD (at the 5% level) of 78.3 when
comparing within the same level of nitrogen, and 71.9 for all other comparisons; and
(b) year, LSD of 23.2.
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Figure 4.10: Ears contained more grain in hotter years, and ear size varied
between genotypes. Grain per ear data from the WGIN diversity field experiment
grouped by (a) year, LSD (at the 5% level) of 4.9; and (b) genotype, LSD of 5.0.
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significantly higher ear count under the high (350kg-N/ha) nitrogen treatment. Whilst the

ear count for Hereward wasn’t significantly increased by the high nitrogen treatment, it could

equally be stated that the ear count wasn’t reduced by limiting nitrogen application, since

Hereward achieved the highest ear count under the low (100kg-N/ha) nitrogen treatment. Of

the four genotypes that saw an increase in ear count due to nitrogen input, Soissons showed

the strongest response with a 50% increase in the number of ears, whilst Cadenza and Istabraq

showed increases of 32% and 33% respectively. In comparison, the ear count of Hereward

varied by only 10% between nitrogen treatments. Ear counts were also significantly different
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between years (F2,6=47.14, P<0.001, SED=9.49 on 6 DF) (figure 4.9b), with the highest ear

count recorded in 2016 with 519 ears per metre squared, 490 in 2015, and the lowest count of

429 in 2017.

The number of grain per ear was significantly different between years (F2,6=27.44, P<0.001,

SED=1.987 on 6 DF) (figure 4.10a), with the most grain per ear recorded in 2017 with 52.7,

46.5 in 2015, and the fewest in 2016 with 38.1 grain per ear. Grain per ear also varied between

genotypes (F3,31=5.73, P=0.003, SED=2.435 on 31 DF) (figure 4.10b) with mean grain per

ear counts of 50.6 for Istabraq, 47.1 for Cadenza, 44.6 for Hereward, and 40.8 for Soissons.

Whilst not significant at the 5% level, there was some evidence for an effect of nitrogen input

(F1,6=5.46, P=0.058), whereby higher nitrogen input increased grain per ear from an average

of 44.0 to 47.5 grain.

4.4. Discussion

4.4.1. Controlled-environment experiment

The controlled-environment experiment used liquid nutrient solutions applied during vegeta-

tive development (prior to anthesis) in combination with a post-anthesis elevated temperature

treatment to identify the combined effect that nitrogen supply and temperature have on the

morphology of the mature grain. Both post-anthesis temperature and nitrogen input had

significant effects on the grain morphology, each contributing to changes in yield by different

mechanisms. Whilst the yield data demonstrates the ultimate effect of these treatments on

grain yield, the data for TGW, grain count, and for grain size describe the means by which

yield is determined.

SPAD data for leaf chlorophyll content was collected shortly after anthesis to confirm that

the two nutrient solutions applied prior to anthesis were different enough to have a small,

but statistically significant effect on the nitrogen status of the plants. Both the low and the

high nitrogen treatments had average SPAD values above 50, with a difference between the

two treatments of 1.64. By comparing the collected SPAD values with values from other

studies (Monostori2016; Islam et al. 2014), it is clear that the difference between the two

nitrogen treatments used in this study was minimal, and also that the plants given the low-

nitrogen treatment were by no means deficient in nitrogen. The minimal difference between

the two nitrogen treatments is likely due to the composition of the potting mix used, which

contained 80% loam and likely provided more nitrogen to the plant than anticipated. As

a result of this information, the low- and high-nitrogen treatments used in the controlled-

environment experiment can be considered ‘sufficient’ and ‘abundant’ rather than ‘deficient’

and ‘sufficient’.

Grain yield was greatly reduced by high temperatures during grain filling, and to a lesser

extent by limiting the nitrogen supply prior to anthesis, confirming previous reports (Thorne

et al. 1987; Mitchell et al. 1993). Of the two temperature treatments, plants grown under

control temperature showed a greater yield response to nitrogen input, with plants grown at
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high temperature showing a minimal increase in grain yield when nitrogen supply was greater.

This differential response to nitrogen input suggests that the reduction in yield observed when

temperatures are high during grain-filling cannot be reversed by increasing nitrogen supply

to the crop.

Elevated temperature during grain filling resulted in a decrease in TGW, as previously

described by Sofield et al. (1977). The reduction in TGW under high post-anthesis temperature

was of a comparable magnitude to the reduction in yield under the same conditions, and so

this yield response can largely be explained by a reduction in grain size. To understand the

degree to which TGW was reduced by high temperature, comparisons can be made to the

data collected from the WGIN diversity field experiment. The clearest comparison to make

is between the TGW measurements taken under the high temperature treatment, and those

recorded from the hottest year of the field experiment (2017). The hottest year of the field

experiment also correlated with the lowest TGW measurements, but even the lowest TGW

achieved in the field was still approximately 10g higher than the TGW from the elevated

temperature treatment in the controlled-environment experiment. This perhaps shows how

harsh the high temperature treatment was on growth and development of the plants when

compared to typical year-to-year variation. In addition to elevated temperature, lower nitrogen

input also reduced TGW, albeit to a lesser extent. Furthermore, when compared with the

associated reduction in yield observed under lower nitrogen input, the reduction in TGW is

minimal in comparison, which suggests that TGW alone cannot explain the differences in

grain yield observed between the two nitrogen treatments used in this experiment.

The analysis of the TGW data showed that the reduction in yield caused by high temperature

during grain-filling could largely be explained by a reduction in grain size, whilst the reduction

associated with reduced nitrogen input could not. Grain count was not significantly different

between the two post-anthesis temperature treatments, confirming the assertion that the

differences in yield were predominantly due to changes in grain weight. This result was

expected, since whilst high temperature is known to reduce grain set, the mechanisms by

which this occurs is through either reduced tiller (and therefore ear) production (Thorne

et al. 1987), or by inducing sterility when extremely temperatures are experienced in the

days immediately following anthesis (Tashiro et al. 1990): our temperature treatment was

only applied post-anthesis, and used a relatively mild temperature. Grain count was, however,

reduced under the low nitrogen treatment. This result shows that lower levels of nitrogen

input reduce yield without reducing the grain weight: the number of grain produced by a

plant receiving less nitrogen is decreased. Since grain count was derived from yield and TGW

data collected at harvest, it is impossible to dissect what caused this reduction in grain count,

i.e. whether it was a reduction in the amount of ear-bearing tillers, a reduction in the size of

each ear, or a combination of both of these factors.

Measurements taken on the dimensions of the mature grain provide further information on
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how the morphology of the grain is altered by different nitrogen and temperature conditions.

Grain area measurements mirror the TGW results, with high temperature during grain-filling

resulting in a large decrease in grain area, and limiting nitrogen application resulting in a

smaller decrease. However, the effects observed in the grain area data are less pronounced

than those seen in the TGW data, which suggests that the changes in TGW are due to a

change in both grain size, and grain density. Interestingly, the dimensional measurements

of length and width showed different responses to the nitrogen and temperature treatments

used: grain was longer when provided with more nitrogen during development, and grain were

narrower when temperatures during grain-filling were elevated.

4.4.2. WGIN diversity field trial experiment

The aim of the WGIN diversity field trial experiment was to investigate the impact that

nitrogen supply and climate have on grain yield and morphology in different genotypes. As

well as yield and TGW, the number of ears produced was also recorded. From this information

is was possible to calculate the size of each ear, providing more information on the determinants

of grain yield.

Initial analysis of the yield data from the WGIN diversity field experiment found a two-way

interaction between year of harvest and genotype, which signifies that different genotypes

responded differently to different years. However, this interaction was found to be describing

the high yield of Hereward in 2016 when compared to other genotypes (see figure 4.6).

Whilst the other three genotypes sampled during this experiment showed a decrease in

yield between 2015 and 2016, Hereward showed an increase that was observed for both the

low (100kg-N/ha) and high (350kg-N/ha) nitrogen treatments. It is therefore clear that the

conditions of 2016 were uniquely favourable to Hereward. Although the two-way interaction

between genotype and yield identified the response of Hereward to the conditions of 2016,

it fails to signify any interesting response in the other genotypes sampled. Therefore the

individual effects of genotype, nitrogen, and year were also investigated. When looking at the

treatments individually, increased nitrogen supply had the greatest effect on yield, with a 40%

increase in yield due to increased nitrogen application. This is not surprising, since unlike in

the controlled-environment experiment, the difference between 100kg-N/ha and 350kg-N/ha

nitrogen treatments was great enough to cause significant phenotypical differences between

plants: plants grown under the low nitrogen treatment were smaller, with fewer tillers, and

its leaves were a paler shade of green when compared to plants grown with plentiful nitrogen.

Yields were also significantly different between the different genotypes sampled, with the

NABIM group four feed wheat Istabraq achieving the highest yields, closely followed by

Hereward, and with the lowest yields from Soissons and Cadenza. As a feed wheat, Istabraq is

low in protein, and due to grain protein deviation, whereby high protein wheats generally yield

lower (Simmonds 1995), could be expected to yield higher than the high-protein bread-making

wheats. The high average yield of Hereward can be partly explained by its high performance

in 2016, but perhaps also by its tendency to show high grain protein deviation (Monaghan
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et al. 2001), achieving a higher yield than could be expected when considering its protein

content. Grain yield also varied between years, with 2015 emerging as the highest yielding

year, followed by 2016 and 2017. This is most likely due to the differences in the climate

experienced during grain-filling, and is discussed in more detail in section 4.4.2.1.

With regards to TGW, the biggest determining factor was year of experiment. The largest

grain were generally recorded in 2016, with the only clear exception to this trend being

Soissons, which had larger grain in 2015 than in 2016. However, when viewed alongside the

yield data, it is perhaps Cadenza and Istabraq that stand out, since both of these genotypes

had larger grain in 2016 compared to 2015, whilst achieving lower yields. In this respect,

Hereward and Soissons are alike, in that the TGW data was more closely correlated to

grain yield. Therefore it may be that grain size (as TGW) is a stronger determinant of

yield in Hereward and Soissons than in Cadenza and Istabraq. Whilst clear differences were

evident between the TGW measurements of different genotypes, and between different years,

the effect of nitrogen was comparatively weak. In contrast to the controlled-environment

experiment, increased nitrogen input did not result in an increase in grain size. Rather, TGW

was generally reduced by the high nitrogen treatment, although only statistically significant

at the 5% level for Istabraq in 2016 and Hereward in 2017. Although this is in contrast

to the findings of the controlled-environment experiment, it is not unheard of for nitrogen

input to have this effect (Kindred et al. 2008), with certain genotypes more likely to show a

reduction in TGW accompanied by an increase in yield under higher levels of nitrogen input.

The inclusion of Cadenza in both the controlled-environment and the WGIN diversity field

experiment allows for some direct comparisons to be made between the two experiments. In

the controlled-environment experiment, higher nitrogen input resulted in an increase in TGW,

an effect that was only observed in year 2016 of the field experiment, and was not statistically

significant.

In contrast to TGW, the number of ears counted per square metre was greatly increased by

the high nitrogen treatment, with an increase of 50% seen in Soissons. Whilst Soissons stands

out due to its large response to nitrogen fertiliser input, Hereward showed a much smaller

response, which could perhaps more accurately be described as a minimal drop in ear count

under lower nitrogen conditions. As with number of ears, nitrogen application increased the

number of grain within each ear, the combined effect of which being more grain being produced

per unit of area under the high nitrogen application rate. However, in this instance there

was no interaction between genotype and nitrogen application rate, with different genotypes

showing a comparable response to nitrogen input. Among the four genotypes, the highest

(Istabraq) and lowest (Cadenza) yielding varieties had comparable ear count results. When

compared with the grain-per-ear data, it is clear that Cadenza’s smaller ears are resulting

in a decreased yield. The result is a 12% decrease in the amount of grain produced when

compared to Istabraq, and even with the higher TGW achieved by Cadenza, this is enough

to create a large difference in final yield. Soissons also stands out, with the highest count of
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ears out of all of the genotypes, but the lowest number of grain per ear. These two results

essentially cancel each other out, resulting in a similar number of grain being produced to

Istabraq and Hereward (but more than Cadenza), which when combined with a low TGW

results in a low yielding crop. Of the three years, 2015 had the highest grain yield, but 2016

had the highest TGW. Again, comparing the number of ears, and the size of these ears, shows

that in 2015 more grain were produced over fewer ears, resulting in an increased yield. Again,

the effect of year-to-year variation is discussed further in section 4.4.2.1

4.4.2.1. Effect of climate

Of the three years sampled as part of the WGIN diversity field experiment, the highest yields

were observed in 2015, followed by 2016, and with the lowest yields recorded in 2017. With

regards to accumulated thermal time, 2015 and 2016 were comparable, and both accumulated

less thermal time than 2017. By only considering accumulated thermal time, it could be

predicted that 2016 would have achieved the highest yields, since this was the year with

the mildest temperatures during grain-filling. However, the difference in grain yield between

2015 and 2016 is considerable, with the yields in 2016 closer to those obtained in 2017, a

much hotter, drier year. The most obvious difference between the climate experienced during

grain-filling in 2015 and 2016 is in the amount of accumulated sunlight. In 2016 the amount of

accumulated sunlight was approximately two-thirds of the sunlight accumulated in 2015, and

so it is reasonable to attribute lack of incident radiation to the decrease in yields observed in

2016. With regards to the lowest yields, recorded in 2017, these are doubtlessly a product of

the high temperatures and lack of rain during grain-filling.

With regards to TGW, the highest values were recorded in 2016, closely followed by 2015, and

with the lowest recorded in 2017. Of the meteorological information recorded, accumulated

thermal time may best explain the TGW results over the three years. In 2016, the amount of

accumulated thermal time was the lowest, which would allow for slower grain development,

resulting in a larger grain, an effect clearly evident in the results of the controlled-environment

experiment. An exception to this trend, however, is observed in the TGW measurements for

Soissons. Soissons was the only genotype for which the TGW measurements from 2015 and

2016 don’t correlate with the total accumulated thermal time during grain-filling. It could

therefore be possible that Soissons was particularly affected by the lack of sunlight during

2016, and that this resulted in a decrease in the size of the grain produced.
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Chapter 5: Grain protein distribution

5.1. Introduction

The endosperm is the central storage organ of the wheat grain, rich in starch and protein,

and is the tissue from which white flour is produced. Within the endosperm, there are clear

gradients in the distribution of protein, and these gradients are known to be both quantitative

and qualitative (Tosi et al. 2011; He et al. 2013; Wan et al. 2014), i.e. different proteins

show different distribution gradients. During the production of white flour, the wheat grain

is milled using a series of rollers and sieves. This milling process breaks apart the endosperm,

separating it from the aleurone and bran layers. As a result multiple mill streams are produced,

each with different protein content, composition, and baking characteristics (Wang et al. 2007;

Zhou et al. 2018). These individual mill streams are then blended by millers to produce

flour with the desired qualities. Therefore identifying the factors that affect the grain protein

distribution, and hence the quality of each mill stream, is of great importance. Furthermore,

during milling the separation of endosperm from aleurone and bran layers is not complete,

and a proportion of the endosperm remains adhered to the removed aleurone layer. It has

long been established that protein is concentrated towards the outer layers of the endosperm

(Cobb 1905; Kent 1966; Ugalde et al. 1990b), and as a result a disproportional amount of

protein is removed during the production of white flour. Therefore it would also be beneficial

to understand any factors that might impact on the gradient of protein accumulated within

the endosperm, since they would directly affect the amount of protein that is lost during

milling.

Whilst the grain protein distribution gradient in wheat has been studied for over a hundred

years, to date the quantification of these gradients has been a low-throughput process relying

on micro-dissection (Cobb 1905; Ugalde et al. 1990a; Ugalde et al. 1990b), the sub-sampling

of microscopy images (Tosi et al. 2011), or experimental milling (He et al. 2013). The image

analysis technique used in this study (described in section 2.5) is the first published high-

throughput method for the quantification of wheat grain protein distribution gradients (Savill

et al. 2018), and uses a custom Python toolbox run in ArcGIS to spatially analyse protein

in light-microscopy images. This image analysis technique uses semi-automated maximum-

likelihood classification to detect and measure protein within an image, allowing for the

quantification of protein concentration across the endosperm. Furthermore, individual mea-

surements are taken for the area and position (relative to the aleurone layer) of each protein

body in order to describe the size-distribution of protein bodies within the endosperm.

Previous studies in wheat (He et al. 2013; Wan et al. 2014) have shown a link between grain

protein distribution and nitrogen supply, with increased nitrogen input resulting in an increase

in the gradient in protein between outer and inner endosperm. Likewise, the distribution of

grain protein is often different between different genotypes (He et al. 2013). Whilst work in
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Barley has shown that day-length can influence the distribution of Hordein storage proteins

(Holopainen et al. 2012), an environmental effect on the protein distribution in wheat is yet to

be identified. With regards to protein body size-distribution, little work has been completed

to date, however, drought has been shown to increase the difference in average protein body

size between outer and inner endosperm tissue (Chen et al. 2016).

To investigate the effects of temperature during grain-filling, nitrogen fertiliser regime, geno-

type, and year-to-year climate variations in the field, two experiments were completed. The

first was a controlled-environment experiment, where British spring bread-making wheat

Cadenza was subject to either a high (28°C) or control (20°C) temperature treatment during

grain-filling, and was supplier with either high or low nitrogen nutrient solution applied peri-

odically during vegetative growth. The second experiment was based on samples taken from

the WGIN diversity field trial experiment, with grain collected from four commercial wheat

varieties grown under either 100kg-N/ha or 350kg-N/ha over two years (2015 and 2017). Grain

was harvested at mid to late grain-filling, and light-microscopy images analysed to quantify

both the gradient in total protein across the grain, and the size-distribution of individual

protein bodies relative to the aleurone layer.

5.2. Controlled-environment experiment

In the controlled-environment experiment, wheat was grown to anthesis with either high

or low (one-tenth strength) nitrogen input, followed by a control (20°C) or elevated (28°C)

temperature treatment applied for the duration of grain-filling. The aim of this experiment

was to investigate the effects that nitrogen supply and increased temperature have on the

distribution of protein within the wheat grain, and to identify any interactions between these

two factors.

Grain from the controlled-environment experiment was sampled at two timepoints during mid

to late grain-filling to analyse both the protein distribution, and the size-distribution of protein

bodies within the endosperm. Sampling timepoints were calculated based on accumulated

thermal time (see table 2.2), in an effort to sample grain at a comparable developmental stage

regardless of the temperature treatment.

5.2.1. Protein concentration gradients

In the REML analysis of the protein concentration gradient data, a significant four-way

interaction was found between post-anthesis temperature treatment, nitrogen supply, sam-

pling timepoint, and the mean distance of each measurement from the aleurone layer (i.e.

the mid-point of each zone) (F=3.92, P=0.049). Under all treatment combinations, protein

concentration was greatest closest to the aleurone layer, and decreased linearly towards the

centre of the grain. The gradient in protein concentration was greater in grain subjected to

elevated temperature post-anthesis, with this effect unchanged across sampling timepoints

under low nitrogen input, but increasing over time under high nitrogen input. The effect of

nitrogen input was smaller than the effect of temperature, with a moderate increase in pro-
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Figure 5.1: Protein concentration gradients in the wheat endosperm are in-
creased by elevated temperature and high nitrogen input, with the effects
increasing over time. Results of the protein concentration gradient analysis from the
controlled-environment experiment at the early (T2) sampling timepoint with (a) low
nitrogen input, and (b) high nitrogen input; and from the later (T3) timepoint with (c)
low nitrogen input, and (d) high nitrogen input. Temperature treatments are shown
within each sub-figure, with open circles and squares representing the control (20°C)
and high temperature (28°C) treatments respectively. Trend-lines represent the predic-
tions from the REML analysis, and data-points show the mean protein concentration
in each of the five endosperm zones from the three biological replicates.
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Figure 5.2: Mean protein body size decreases towards the centre of the grain,
with differential effects of nitrogen and temperature over time. Results of
the protein body size-distribution analysis from the controlled-environment experiment
at the early sampling timepoint with (a) low nitrogen input, and (b) high nitrogen
input; and from the later timepoint with (c) low nitrogen input, and (d) high nitrogen
input. Temperature treatments are shown within each sub-figure, with open circles
and squares representing the control (20°C) and high temperature (28°C) treatments
respectively. Trend-lines represent the predictions from the REML analysis, and data-
points show the mean protein body size in each of the five endosperm zones (as used
in the protein concentration gradient analysis) from the three biological replicates.
Analysis was conducted on log-transformed data, and is presented as such.
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tein concentration gradient in all treatments with the exception of the elevated-temperature

treatment sampled at the early timepoint. These results are presented in figure 5.1.

5.2.2. Protein body size-distribution

In the protein body size-distribution analysis, a significant four-way interaction was found

between post-anthesis temperature, nitrogen supply, sampling timepoint, and distance of

protein body from the aleurone layer (F=213.64, P<0.001). A decreasing gradient in protein

body size between the aleurone layer and the central endosperm tissue was observed in all

treatment combinations except the control temperature-low nitrogen treatment sampled at

the later timepoint, in which protein bodies saw a marginal increase in average size towards

the centre of the endosperm. Protein bodies generally increased in size between the early

and late sampling timepoints, were slightly larger when nitrogen supply was increased, and

were affected by elevated temperature differently at each of the two timepoints: at the early

timepoint, protein bodies were larger under the control temperature treatment, and at the

later timepoint, protein bodies were larger under the elevated temperature treatment. The

gradients in protein body size-distribution were also different between the two sampling time-

points. In grain sampled at the early timepoint, the gradient in protein body size-distribution

was increased by both elevated temperature and high nitrogen input, with the effect of tem-

perature greater under high nitrogen input, and the effect of nitrogen greater under elevated

temperature. However, at the later sampling timepoint the gradients in protein body size-

distribution were reduced, with negligible gradients detected in either of the temperature

treatments under low nitrogen input that were only slightly increased under high nitrogen

input. Under high nitrogen input, the effect of temperature was reversed when compared to

grain sampled earlier, with a greater gradient in protein body size-distribution under the

control temperature regime. The results of the REML analysis of log-transformed data are

presented in figure 5.2.

The histograms in figure 5.2 show the breakdown of protein body size across the endosperm

for each combination of temperature and nitrogen treatment at each sampling timepoint.

The abundance of protein bodies by size are shown for each of the five zones used in the

protein concentration gradient analysis (described in section 2.5.1). Although these zones

were not used in the protein body size-distribution analysis (since individual measurements of

distance from the aleurone layer were recorded for each protein body), they are used here as

a convenient means to summarise how protein body sizes vary aross the endosperm. Whilst

it is difficult to separate the individual effects of temperature and nitrogen on the protein

body size-distribution over the endosperm using these histograms, a few trends emerge which

describe both the dataset as a whole and the effects under investigation. These trends are

discussed in the discussion towards the end of this chapter (section 5.4.1).
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Figure 5.2: Abundance of different sizes of protein bodies varies across the
endosperm, with differential effects of temperature and nitrogen over time.
Histograms showing the frequency of protein body size across the five endosperm zones,
from outer in inner endosperm, represented by dark to light grey bars respectively.
Each individual sub-figure shows the frequency of protein body sizes in each of the
five zones, for a single combination of temperature treatment, nitrogen input, and
sampling timepoint: 20°C with low nitrogen input at (a) the early timepoint, and (b)
later timepoint; 20°C with high nitrogen input at (c) the early timepoint, and (d)
later timepoint; 28°C with low nitrogen input at (e) the early timepoint, and (f) later
timepoint; and 28°C with high nitrogen input at (g) the early timepoint, and (h) later
timepoint.

.

5.3. WGIN diversity field experiment

As part of the WGIN diversity field experiment, grain was collected from four commercial

wheat genotypes grown under either 100kg-N/ha or 350kg-N/ha of applied nitrogen fertiliser.

The wheat varieties sampled were chosen to represent a variety of genotypes from low-protein

feed wheat to high-protein bread-making wheat. Whilst samples were collected in 2015, 2016,

and 2017, the samples from 2016 were destroyed during processing. As such, grain from the two

years, 2015 and 2017, were analysed to identify the effect that nitrogen input and year-to-year

climatic variation have on the grain protein distribution in different wheat genotypes. The

aim of this experiment was to build on the findings of the controlled-environment experiment,

to demonstrate the effect of nitrogen on the gradients in protein concentration and protein

body size-distribution in field-grown wheat, and also to identify any unique responses shown

by different genotypes which could be worthy of further investigation.

Unlike in the controlled-environment experiment, only a single sampling timepoint was anal-

ysed for material collected from the WGIN field experiment. Grain was sampled at 28 days

post anthesis, which represents accumulated thermal time of 8407 GDH in 2015 and 9580

GDH in 2017, compared to the 7224 GDH accumulated by the later sampling timepoint used
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Figure 5.3: Protein concentration gradients are increased by high nitrogen
input in the field, with differential responses from different genotypes over
different years. Results of the protein concentration gradient analysis from the WGIN
diversity experiment showing how protein distribution is affected by nitrogen input
in four commercial wheat varieties over two years of field experiments. The effect of
nitrogen is presented in each sub-figure for Cadenza in (a) 2015, and (b) 2017; Hereward
in (c) 2015, and (d) 2017; Istabraq in (e) 2015, and (f) 2017; and Soissons in (g) 2015,
and (h) 2017. Nitrogen treatment is represented within each sub-figure, with open
circles and squares representing 100kg-N/ha and 350kg-N/ha respectively. Trend-lines
represent the predictions from the REML analysis, and data-points show the mean
protein concentration in each of the five endosperm zones from each biological replicate
(which ranges from one to three).

.
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in the analysis of grain from the controlled-environment experiment. Therefore when making

comparisons between the two experiments it should be considered that grain sampled from

the WGIN field experiment will be more developmentally advanced than the grain analysed

as part of the controlled-environment experiment. Likewise, the difference in accumulated

thermal time between 2015 and 2017 is considerable, so again it must be kept in mind that

the results from each of these years represent grain at different stages of development.

5.3.1. Protein concentration gradients

In the protein concentration gradient analysis, a significant four-way interaction was found

between year of experiment, genotype, nitrogen treatment, and the mean distance of each

measurement from the aleurone layer (F=3.71, P=0.011). As in the controlled environment

experiment, protein concentration was greatest closest to the aleurone layer, decreased linearly

towards the central endosperm tissue, and high nitrogen input was associated with an increase

in the gradient of protein across the endosperm. The effect of nitrogen was slightly greater

in 2017 compared to 2015 in all genotypes except Cadenza. Of the four genotypes, the

steepest gradients were observed in Cadenza, then Hereward, Soissons, and the shallowest

gradients in feed-wheat Istabraq. With regards to the response to nitrogen input, Cadenza

showed the greatest response, whilst Hereward, Istabraq, and Soissons all showed a similar,

weaker response. Differences between years for each genotype were slight, but with Cadenza

and Soissons showing the greatest differences between years under low nitrogen input, and

Hereward and Istabraq showing the greatest difference under high nitrogen input. The results

from this analysis are presented in figure 5.3.

5.3.2. Protein body size-distribution

In the protein body size-distribution analysis, a significant four-way interaction was found

between year of experiment, genotype, nitrogen input level, and distance of protein body

from the aleurone layer (F=36.41, P<0.001). In contrast to the results from the controlled-

environment experiment there is a lack of a general trend for protein bodies to decrease in

size towards the centre of the grain. Rather, in three instances there is an upwards gradient

in protein body size, with the average size of protein bodies increasing towards the central

endosperm. This upwards gradient is only observed under the low (100kg-N/ha) nitrogen

treatment, and was recorded in Cadenza in 2015 and 2017, and Soissons in 2015. In Hereward

over both years, and Soissons in 2017, there was a downwards gradient in the size-distribution

of protein bodies moving away from the aleurone layer which was increased by high (350kg-

N/haN) nitrogen input. Istabraq stands out in this analysis as showing a minimal response to

nitrogen with regards to the gradient in protein body size, although it does show a consistent

response for larger protein bodies under higher levels of nitrogen input. Between years the

response to nitrogen input is relatively consistent between genotypes, with the exception of

Soissons. Soissons is unique in that a minimal response to nitrogen was observed in 2015

(both in terms of gradient and average protein body size), whilst in 2017 there is a clear

difference between the two nitrogen treatments. The results of this analysis is presented in
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Figure 5.3: Gradients in protein body size-distribution are determined by
genotype, with differential responses to nitrogen input and year of experi-
ment. Results of the protein body size-distribution analysis from the WGIN diversity
experiment showing how protein body size-distribution is affected by nitrgeon input in
four commercial wheat varieties over two years of field experiments. The effect of nitro-
gen is presented in each sub-figure for Cadenza in (a) 2015, and (b) 2017; Hereward in
(c) 2015, and (d) 2017; Istabraq in (e) 2015, and (f) 2017; and Soissons in (g) 2015, and
(h) 2017. Nitrogen treatment is represented within each sub-figure, with open circles and
squares representing 100kg-N/ha and 350kg-N/ha respectively. Trend-lines represent
the predictions from the REML analysis, and data-points show the mean protein body
size in each of the five endosperm zones (as used in the protein concentration gradient
analysis) from each biological replicate (which ranged from one to three). Analysis was
conducted on log-transformed data, and is presented as such.
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Figure 5.4: Abundance of different sizes of protein bodies varies across the
endosperm, with differential effects of nitrogen in different genotypes over
different years. Histograms showing the frequency of protein body size across the
five endosperm zones, from outer in inner endosperm, represented by dark to light grey
bars respectively. Each individual sub-figure shows the frequency of protein body sizes
in each of the five zones, for a single combination of year of experiment, genotype,
and nitrogen treatment: Cadenza in 2015 under (a) 100kg-N/ha and (b) 350kg-N/ha,
and in 2017 under (c) 100kg-N/ha and (d) 350kg-N/ha; Hereward in 2015 under (e)
100kg-N/ha and (f) 350kg-N/ha, and in 2017 under (g) 100kg-N/ha and (h) 350kg-
N/ha; Istabraq in 2015 under (i) 100kg-N/ha and (j) 350kg-N/ha, and in 2017 under
(k) 100kg-N/ha and (l) 350kg-N/ha; Soissons in 2015 under (m) 100kg-N/ha and (n)
350kg-N/ha, and in 2017 under (o) 100kg-N/ha and (p) 350kg-N/ha

.
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figure 5.3.

Histograms showing the abundance of different sizes of protein bodies over the five endosperm

zones are presented in figure 5.4 for each combination of genotype and nitrogen treatment

over the two years of the experiment. Again, the information presented in these histograms

is discussed in the discussion at the end of this chapter (section 5.4.2).

5.4. Discussion

5.4.1. Controlled-environment experiment

The analysis of light-microscopy images of grain sampled from the controlled-environment

shows that temperature and nitrogen input interact to determine a gradient in both the

total protein concentration, and the size-distribution of protein bodies. Grain was sampled

at two timepoints during mid to late grain-filling, with significant differences observed be-

tween these two timepoints. For the purpose of extrapolating the observations made in the

grain protein concentration analysis to grain at maturity, the observations made at the later

timepoint are most relevant, since they were made closer to the cessation of grain protein

accumulation.

The protein concentration analysis from the controlled-environment experiment identified

a linear decreasing gradient in protein concentration in all treatment combinations, with

protein concentration decreasing towards the centre of the endosperm, confirming previous

reports (Cobb 1905; Kent 1966; Tosi et al. 2011). Furthermore, this analysis shows for the first

time that increased temperature during grain-filling results in more protein concentrated in

the outer endosperm cells, and that an interaction exists between temperature and nitrogen

supply. Under the low nitrogen treatment, the effect of temperature was comparable between

sampling timepoints, whilst under high nitrogen input the effect of temperature was greater

later in grain-filling. Since the effects aren’t diminishing through development (i.e. between

the early and later timepoint), it is likely that the effects of temperature and nitrogen

supply on the distribution of protein in the developing wheat endosperm are preserved,

or even enhanced, by the time grain is fully mature. These flat or increasing trends add

confidence in our ability to use these results from mid to late grain-filling to predict the

protein concentration gradients present in mature grain. Therefore this study provides evidence

that grain grown in hotter temperatures will have a higher proportion of protein removed

during the milling of white flour than grain grown under more temperature conditions, and

also that the protein concentration of different mill streams will change, which must be

accounted for in the blending of flour. Additionally, it shows how nitrogen supply interacts

with temperature during grain-filling, causing greater changes in protein distribution when

temperature are higher. In making comparisons with the field-grown wheat sampled from the

WGIN diversity field trial experiment, it is interesting to note that the gradients observed in

field-grown grain were more comparable to the gradients from plants subjected to the elevated

(28°C) temperature treatment than the control (20°C) treatment when grown in controlled-
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environment. This is unexpected, since the average day and night temperatures experienced

during grain-filling under the high temperature treatment in the controlled environment

experiment were considerably higher (23.7°C) than those recorded in either year of the field

experiment (15.6°C in 2015, 17.36°C in 2017). This observation is likely represents a pot effect,

whereby the root systems of indoor-grown plants are less efficient and accumulate less protein

in the grain, which results in a decrease in the gradients in protein concentration across the

endosperm. This assumption is supported by the grain protein content measurements taken

on mature grain (presented in chapter 6), with plants grown under the high (350kg-N/ha)

nitrogen treatment in the field recording an average grain protein content of 13.63%, compared

to a grain protein content of 9.32% in plants grown under the control (20°C) temperature

treatment with high nitrogen input in controlled environment experiment.

The size-distribution analysis of protein bodies within the endosperm of grain grown in the

controlled environment experiment describes the effect that temperature and nitrogen have on

the average protein body size relative to its distance from the aleurone layer. A general linear

trend for protein body size to decrease towards the centre of the endosperm was observed, with

a greater gradient in protein body size-distribution recorded under higher levels of nitrogen

input. Between the early and late sampling timepoints there was a reversal in the observed

response to elevated temperature: earlier in grain-filling, protein bodies were generally larger

under control temperature than elevated temperature, whilst later in grain-filling the opposite

was true. Furthermore, at the later sampling timepoint the gradient in protein body size-

distribution was less pronounced, and was practically non-existent under the low nitrogen

treatment. The latter observation suggests that unlike the observations made in the protein

concentration analysis, the gradients in protein body size-distribution decrease as grain-filling

progresses. However, in this case predicting the state of mature grain from observations made

on developing grain was never an objective, since the protein bodies fuse to form a protein

matrix at maturity. Therefore the analysis of protein body size-distribution is more useful as

a means of observing the initiation and growth of protein bodies during development, rather

than for predicting the quality of mature grain.

The histograms presented in figure 5.2 show the results of the protein body size-distribution

analysis (presented in figure 5.2) in more detail, with the abundance of protein bodies in

each of the five endosperm zones sorted according to size. These figures illustrate not only

the effects of temperature and nitrogen input over the two sampling timepoints, but also the

general distribution of data. The requirement for the log-transformation used in the REML

analysis is clear, since the majority (approximately 60–70%) of the protein bodies present were

very small (with an area less than 4.29µm2). The general trend of protein bodies increasing

in size between the two sampling timepoints can be seen in the histograms, with a general

“flattening” of the histograms at the later timepoint. This is to be expected, and shows that

the analysis is detecting the growth of protein bodies over time. The histograms also provide

some evidence for the mechanism by which gradients in the protein body size-distribution
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come about. However, it should be noted that this analysis is based on the relative abundance

of protein bodies according to size, and no absolute information is available.

As noted above, the greatest gradients in protein body size-distribution were identified at the

earlier sampling timepoint. However, whilst the overall gradients are greater, the differences

in the steepness of these gradients between temperature and nitrogen treatments are small

(shown in figures 5.2a and 5.2b). Of the four combinations of temperature and nitrogen

treatment, grain grown under elevated temperature with high nitrogen supply stands out as

having the steepest negative gradient, whilst the other three treatment combinations show

similar gradients in protein body size-distribution. This is mirrored in the histograms, with

similar size-distributions observed for each treatment combination (see figures 5.3a, 5.3c, and

5.3e). These three histograms can be summarised by saying that the abundance of the smallest

protein bodies was lowest in the far outside and inside (zones 1–2 and 4–5 respectively) of the

endosperm, and that the abundance of medium protein bodies was greatest in these areas,

whilst there was minimal differences in the abundance of the largest protein bodies across the

endosperm. These differences in protein body sizes around the midpoint between inner and

outer endosperm (zones 2–4) can be seen in the results of the REML analysis (figures 5.2a and

5.2b), whereby the plotted means appear to curve. This effect was only observed in the results

from the early sampling timepoint, and after investigation the linear trend identified by the

REML analysis was found to be the most suitable interpretation of the data. In contrast to the

other three treatment combinations, for the elevated temperature, high nitrogen treatment

combination, there is a higher abundance of the smallest (0.30–0.74µm2) protein bodies in

the inner endosperm, whilst a pattern similar to the other treatment combinations is seen

in medium- and large-sized protein bodies. This suggests that under these conditions there

are relatively more newly-formed protein bodies in the inner endosperm than the rest of the

grain. However, due to the fact that only the relative number of protein bodies are analysed,

this could indicate either an increase in the number of newly formed protein bodies, i.e. a

stimulating effect on protein body initiation, or a lack of large protein bodies, indicating a

delay in the onset of protein body initiation in this area of the grain.

In contrast to the results from the early sampling timepoint, at the later timepoint the

gradients in protein body size-distribution are less pronounced, and almost non-existent

under the low nitrogen treatment (see figures 5.2c and 5.2d). The histograms for this data

are shown in figures 5.3b, 5.3d, 5.3f, and 5.2h, and show a number of trends of interest. The

clearest general trend shown across all treatments at the late sampling timepoint is seen

in the distribution of the largest protein bodies: the outer endosperm contains the highest

proportion of large protein bodies, with the proportion decreasing towards the centre of

the endosperm. However, whilst this trend is shown across all treatment combinations, it

is more pronounced under both the control-temperature treatment and the high nitrogen

treatment, which contributes to the increased gradient in protein body size-distribution under

the combined control-temperature and high nitrogen treatments. The histograms for the
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low nitrogen results are particularly interesting, since a minimal gradient in protein body

size-distribution is observed in the REML analysis (figure 5.2c), but the histograms (figures

5.3b and 5.3f) show that there are a number of differences in the size-distribution of protein

bodies that essentially cancel each other out when observing the means alone. For example,

under the control temperature and low-nitrogen treatment combination (figure 5.3b), there is

an increase in the abundance of medium-sized protein bodies towards the central endosperm,

but a decrease in the abundance of small and large protein bodies. When compared to the

histogram for the respective high-nitrogen treatment, the main difference is an increase in the

abundance of small protein bodies in the inner endosperm. This difference, although subtle, is

enough to create the gradient shown in figure 5.3d. However, although small, the change in the

abundance of the smallest protein bodies is important, since it represents a relative increase

in newly produced protein bodies. Under elevated temperature, the effect of nitrogen input

on the protein body size-distribution analysis was reduced. However, the effects described

above can still be observed in the histograms (figures 5.3f and 5.2h), with an increase in the

abundance of small protein bodies linked with an increase in nitrogen supply.

5.4.2. WGIN diversity field trial experiment

The results from the protein concentration gradient analysis of grain sampled from the WGIN

diversity field trial experiment found a significant interaction between the effects of nitrogen,

year of experiment, and genotype. As in the controlled-environment experiment, all treatment

combinations showed a linear gradient in total protein concentration that decreased towards

the centre of the grain, with increased nitrogen input increasing this gradient. Whilst the

general response to nitrogen is characterised by an increase in the protein concentration

gradient, the magnitude of this effect varied between genotypes and years. The two years

sampled as part of this experiment, 2015 and 2017, represent comparable years in terms of

rainfall and sunlight, but cooler temperatures were experienced during grain-filling in 2015

(see chapter 3). Therefore in a limited sense 2015 could be viewed as a control year, and 2017

as an “elevated temperature” year. However, the difference in average temperature during

grain-filling (day and night inclusive) between 2015 and 2017 was only 0.82°C, compared

to a difference of 5.33°C between the two temperature treatments used in the controlled-

environment experiment. This small difference in average temperature may go some way to

explain the minimal differences in grain protein concentration gradient between years: whilst

the overall protein concentration (shown by the position of the trend line in the direction

of the y axis in the figures) is generally higher in 2017 compared to 2015, the gradient in

protein concentration (i.e. the angle of the trend lines) shows minimal difference between years.

Whilst the overall effect of year was minimal, small differences in the response to nitrogen

fertiliser were shown by each genotype in each year. Hereward, Istabraq, and Soissons all

showed a slightly increased response to nitrogen in 2017 compared to 2015, whilst Cadenza

showed a slightly reduced response in 2017. Furthermore, both the response to nitrogen, and

the change in response to nitrogen over the two years of the experiment shown by Hereward,
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Istabraq, and Soissons was almost identical. With regards to Cadenza, in 2017 only shows

a slightly greater response to nitrogen compared to the other genotypes. However in 2015,

the response to nitrogen shown by Cadenza was more than double the response shown by

the other genotypes. Therefore it is likely that the large nitrogen response of Cadenza in

2015 resulted in the interaction between genotype, nitrogen, and year of experiment that

was identified as part of the REML analysis. More generally, there is a clear divide among

the protein concentration gradients observed in each genotype, with the high-protein bread-

making varieties, Cadenza, Hereward, and Soissons, having the greatest gradients, and the

low-protein feed wheat Istabraq the smallest.

With regards to the protein body size-distribution analysis, the results from the WGIN

diversity field trial experiment are somewhat complementary to those collected from the

controlled-environment experiment, and show that increased nitrogen input also increases

the gradient in protein body size in field-grown wheat. Additionally, this dataset shows how

different genotypes show different responses to nitrogen input. Of the four genotypes, Istabraq

stands out for its lack of response to nitrogen input, with no clear response in either 2015 or

2017. Cadenza and Hereward both exhibited the greatest responses to nitrogen, with Cadenza

showing the most consistent result over the two years of the experiment, whilst Hereward’s

response was reduced in 2017. In comparison to nitrogen, the effect of year appears to be

minimal. The only genotypes that shows a clear response to year of experiment are Soissons

and to a lesser extent, Istabraq. However, these genotypes responded differently: Istabraq

had greater gradients in protein body size-distribution in 2015, whilst Soissons achieved the

greatest change between years, with an increase in the negative gradient under the 350kg-N/ha

treatment, and a reversal from positive to negative gradient between 2015 and 2017 under the

100kg-N/ha treatment. However, the amount of missing data as part of this analysis should

be noted, since only one biological replication was available for analysis in both Istabraq and

Soisson in 2015, 100kg-N/ha treatment, these findings are presented with a reduced level of

confidence compared to those supported by higher levels of replication.

The histograms exploring the size-distribution of protein bodies from the WGIN field trial

experiment (presented in figure 5.4) show that the data is skewed towards an abundance of

small protein bodies (as discussed in section 5.4.1). However, in comparison to the analysis

conducted on the controlled-environment experiment, the histograms are generally flatter, with

a greater abundance of larger protein bodies. This is likely due to the fact that the accumulated

thermal time between anthesis and sampling in the field experiment was considerably greater

than that in the controlled-environment experiment, and as a result the grain is likely to be

closer to physiological maturity. Another general trend in the data from the field experiment

that is different to the controlled-environment experiment results is the abundance of the

smallest protein bodies (up to 0.74µm2) in the central endosperm under the high nitrogen

treatment (350kg-N/ha) of all genotypes used in the study. As discussed in section 5.4.1,

this increase in the proportion of the smallest protein bodies could represent an increase
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in the number of newly formed protein bodies, or a decrease in the number of larger, more

developed protein bodies. Due to difference between the field and controlled-environment it is

difficult to attribute a cause to this observation, as it could be due to any number of differences

between field and controlled-environment experiments. However, nitrogen availability is clearly

involved in this increase in the proportion of small or newly formed protein bodies in the

central endosperm, either through amount applied or amount available to the plant, which

confirms a similar, albeit smaller, response to nitrogen input in the controlled-environment

experiment.

The clearest difference between the protein body size-distribution results from the field

experiment and the controlled-environment experiment (figures 5.3 and 5.2 respectively) is

the presence of positive (increasing) gradients for Cadenza and Soissons in 2015 (based on a

single biological replication) under the 100kg-N/ha treatment. The histograms (see figures

5.4a, 5.4c, and 5.4i) show that these increasing gradients are largely caused by an increase in

the abundance of large protein bodies, but not a decrease in the proportion of the smallest

(less than 0.74µm2) protein bodies.

The histograms representing the protein body size-distribution data also show some of the

differences between the four genotypes studied in this experiment. Firstly, when comparing

the overall shape of the histograms, ignoring the distribution over endosperm zones, the high-

protein bread-making wheats Cadenza and Hereward generally have a more linear distribution

of protein body sizes, i.e. fewer medium-size bodies. Istabraq and Soissons, however, have a

relatively greater proportion of these medium-sized protein bodies, which can be observed

as a peak that is shifted down the x axis. Additionally, when comparing between these two

sets of genotypes, there are more of the largest protein bodies in Cadenza and Hereward. By

combining these observations it can be stated that these high-protein varieties contain more

small, newly initiated protein bodies, as well as more large, well established protein bodies,

which results in an overall increase in grain protein concentration.
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Chapter 6: Results: Grain protein composition

6.1. Introduction

Wheat is defined by the properties of its flour. When wetted, wheat flour forms a viscoelastic

dough that is both elastic and extensible (Lásztity 1996). These desirable dough characteristics

are largely determined by the protein content and composition of the mature grain, with

different protein compositions suited to different end-uses. Depending on the storage proteins

present in the mature grain, wheat can be used for the production of a wide range of foods,

from pasta, to biscuits, to bread. Therefore understanding the factors that influence the

accumulation of protein in the wheat grain is of great importance.

The endosperm of the mature wheat grain contains 8–20% protein (Davis et al. 1981), and of

this protein approximately 80% is gluten storage protein (Peña 2002). Both the total amount

of gluten protein present in the grain, and the composition of this gluten protein determine the

quality of the dough produced (Haddad et al. 1995; Sapirstein et al. 1998). The gluten storage

proteins can broadly be split into two groups: the polymeric glutenins, and the monomeric

gliadins. The glutenins consist of the HMW and LMW subunits, and confer strength and

elasticity to the dough, whilst gliadins consist of alpha-, beta-, gamma-, and omega-gliadin

proteins, and determine the viscosity or flow of the dough (Uthayakumaran et al. 2000).

The accumulation of storage proteins during grain-filling is a dynamic process, and is affected

by climate, nitrogen fertiliser input, and genotypic variation (Bergman et al. 1998; Hurkman

et al. 2013; Chope et al. 2014). To investigate how these factors affect protein quality in

the context of UK bread-making, both protein content and composition was measured on

grain grown both in the field, and under controlled-environment conditions. To investigate

the effects of climate, nitrogen input, and genotype in the field, samples were taken from

three years of the WGIN (www.wgin.org.uk) diversity experiment, a long-term field trial

experiment in which multiple wheat genotypes are grown under different nitrogen inputs.

A controlled-environment experiment was undertaken to identify the effects that elevated

temperature during grain-filling and the level of nitrogen input prior to anthesis have on

protein accumulation and quality.

Grain protein concentration/content was determined through nitrogen content analysis using

the Dumas method, and protein composition was measured by both SDS-PAGE and SE-HPLC,

from which the gluten protein content was calculated. Protein composition measurements

were taken to predict the bread-making quality of the sampled grain.

6.2. Controlled-environment experiment

The combined effect of temperature and nitrogen supply were investigated in the controlled-

environment experiment, which used a control (20°C) and an elevated (28°C) post-anthesis

daytime temperature treatment, and a high and low nitrogen treatment to investigate the effect
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these factors have on protein accumulation during grain-filling. Grain protein concentration

was measured both during grain-filling, and at maturity. From this data, the protein content

of the mature grain was calculated, to determine whether any changes in protein concentration

were due to changes in the amount of protein accumulated, or due to a dilution effect caused

by other cellular components such as starch. The composition of grain protein was measured

at maturity by SDS-PAGE and SE-HPLC to provide estimations of the bread-making quality

of the grain, since the grain samples collected were too small to bake test loaves. SE-HPLC

data was used to calculate the ratio between HMW- and LMW-glutenins (F1/F2), and the

ratio between HMW-glutenins and gliadins ((F3+F4)/F1), both of which are useful predictors

of bread-making quality. Protein composition was also measured by SDS-PAGE throughout

grain-filling, allowing for comparisons to be made between the relative amount of the individual

gluten protein subunits present. Such comparisons were possible since all samples were from

the same genotype (Cadenza), and therefore contained the same protein subunits.

6.2.1. Protein concentration and content

Nitrogen content was measured on grain collected both at five timepoints during grain-filling,

and again at maturity. For grain collected at maturity, the content of protein per grain was

calculated from nitrogen content data and TGW measurements. Nitrogen content data was

converted to protein using a factor of 5.7 (Sosulski et al. 1990), and is presented as such

throughout.

The analysis of protein concentration data during grain-filling found a two-way interaction

between post-anthesis temperature treatment and timepoint of measurement (F5,60=15.46,

P<0.001, SED=0.441 on 21.88 DF). This interaction describes how protein concentration is

continuously decreasing under control temperatures, but decreases during early grain-filling

before increasing again under elevated temperature, i.e. the accumulation pattern of protein

over time is different between the two temperature treatments. In addition to this two-way

interaction, there was also a two-way interaction between temperature and nitrogen treatment

(F1,6=7.59, P=0.033, SED=0.351 on 9.02 DF), which did not include the timepoint at which

the measurement was taken, and so was a consistent effect throughout grain-filling. This

interaction describes how the high nitrogen treatment resulted in an average increase of 9%

under control temperatures, and an increase of 14% under elevated temperature. Both of the

two-way interactions can be observed in the full dataset, presented in figure 6.1.

For protein concentration measured at maturity, a two-way interaction between tempera-

ture and nitrogen treatments was found (F1,6=12.27, P=0.013, SED=0.265 on 10.86 DF)

(figure 6.2): at maturity, grain protein concentration was significantly higher under the high-

temperature treatment, and increased nitrogen also increased protein concentration, albeit to

a lesser extent. The effect of the high-nitrogen treatment on grain protein concentration was

greater when temperatures were elevated, with an average increase of 15% compared to an

increase of 10% under the control temperature treatment.
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Figure 6.1: Elevated post-anthesis temperature and increased nitrogen in-
put interact to increase grain protein concentration throughout grain-filling.
Grain protein concentration data from the controlled-environment experiment, calcu-
lated as concentration of nitrogen multiplied by 5.7. Individual treatments of control
temperature, low nitrogen (light blue) and high nitrogen (dark blue), and elevated
temperature low nitrogen (light red) and high nitrogen (dark red) are shown.
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Figure 6.2: Elevated post-anthesis temperature and increased nitrogen input
interact to increase the protein concentration of mature grain. Mature grain
protein concentration data from the controlled-environment experiment, grouped by
individual treatments of control temperature (20°C), low-, and high-nitrogen, and
elevated temperature (28°C), low-, and high-nitrogen. LSD (at the 5% level) of 0.53 for
comparisons within the same temperature treatment, and 0.58 for all other comparisons.
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Table 6.1: Full dataset for grain protein content at maturity from the controlled-
environment experiment, presented per treatment combination, averaged over experi-
mental blocks. Expressed as protein per grain.

Treatment Protein content per grain (mg)

20°C, low-nitrogen 3.39
20°C, high-nitrogen 4.01
28°C, low-nitrogen 3.59
28°C, high-nitrogen 4.32

Protein content calculated from measurements taken from mature grain increased 16% from

3.59mg per grain to 4.16mg under the high nitrogen input treatment (F1,6=39.02, P<0.001,

SED=0.263 on 6 DF) (figure 6.3). Protein content was not found to be significantly different

between post-anthesis temperature treatments (F1,5=2.45, P=0.178), and no significant inter-

action between temperature and nitrogen treatments was found (F1,6=0.27, P=0.622). The

full dataset is presented in table 6.1.

6.2.2. SDS-PAGE Results

Sodium-dodecyl-sulphate polyacrylamide gel electrophoresis analysis was completed on protein

extracted during grain-filling, and again at maturity, to describe how individual gluten proteins

were affected by both elevated post-anthesis temperature and limited nitrogen supply. The

area under the curve was measured for each protein band in the intensity graph produced

during the analysis of each gel, and the size of each band was then expressed as a percentage of

the total protein detected. This approach was taken to account for differences in the efficiency

of the protein extraction, and of the staining, de-staining, and imaging of the gel. Additionally,
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Figure 6.3: Increased nitrogen supply during vegetative development in-
creases the protein content of mature grain. Protein content of the mature
grain from the controlled-environment experiment, grouped by nitrogen treatment, and
averaged across temperature treatments. LSD (at the 5% level) of 0.26.
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it allows for the protein composition to be analysed without it being compounded by any

differences in total protein content.

As an exploratory technique, canonical variate analysis was conducted on the SDS-PAGE data,

and aims to distinguish the effect of each treatment combination on the protein composition

profile of each sample as a whole. Figure 6.4 shows the results of this analysis, and predicts

that the largest factor influencing protein composition is time (represented by CV1), with

the second largest impact coming from the temperature treatment (CV2), and with nitrogen

input showing no clear differentiation in either CV1 or CV2. The analysis suggests that

the effect of temperature treatment increases as grain-filling progresses, but also that the

protein composition from timepoint T4 to maturity is relatively static, suggesting that protein

composition was largely determined at this stage. Figure 6.5 shows the vector loadings for

each individual protein in the CV analysis, and illustrates which proteins had the largest

impact on the separation of treatments shown in figure 6.4. This allows the identification of

proteins which are more susceptible to increased post-anthesis temperature, or are differentially

accumulated at different stages of development. From this analysis, protein subunits P3 and
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Figure 6.4: Grain protein composition is differentially affected by tempera-
ture and time during grain-filling. CV analysis of SDS-PAGE protein composition
data from the controlled-experiment. Analysis separates the individual combinations
of temperature, nitrogen, and sampling timepoint based on the overall protein com-
position. CV1 primarily separates the effect of time, whilst CV2 separates the two
post-anthesis temperature treatments. Nitrogen treatment shows less separation, that
isn’t clearly represented by either CV1 or CV2. CV1 and CV2 account for 67.79% and
21.72% of the observed variation respectively.
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Table 6.2: Results of the REML analyses of SDS-PAGE data throughout grain-filling
from the post-anthesis controlled environment experiment. Table shows the significant
effects of all treatment combinations on individual protein bands from the SDS-PAGE
analysis. Significant results to be interpreted are shown in bold. The single effect of
sampling timepoint was ignored, since it doesn’t relate to the experimental treatments
applied as part of the experiment.

HMW-glutenins

Fixed term P1 P2 P3 P4

Temperature <0.001 <0.001 0.003 0.368
Nitrogen 0.283 0.205 0.377 0.978
Timepoint <0.001 <0.001 <0.001 <0.001
Temperature.Nitrogen 0.939 0.732 0.080 0.392
Temperature.Timepoint 0.746 0.281 <0.001 0.684
Nitrogen.Timepoint 0.185 0.127 0.122 0.407
Temperature.Nitrogen.Timepoint 0.375 0.674 0.406 0.120

Omega-gliadins

Fixed term P5 P6 P7

Temperature 0.025 <0.001 <0.001
Nitrogen 0.002 <0.001 0.053
Timepoint <0.001 <0.001 <0.001
Temperature.Nitrogen 0.002 0.069 0.040
Temperature.Timepoint 0.006 <0.001 0.009
Nitrogen.Timepoint 0.498 0.009 0.032
Temperature.Nitrogen.Timepoint 0.296 0.885 0.705

LMW-glutenins

Fixed term P8 P9 P10

Temperature <0.001 0.717 0.331
Nitrogen <0.001 0.728 0.011
Timepoint <0.001 <0.001 0.003
Temperature.Nitrogen 0.498 0.066 0.019
Temperature.Timepoint <0.001 0.842 0.919
Nitrogen.Timepoint 0.133 0.091 0.419
Temperature.Nitrogen.Timepoint 0.483 0.716 0.910

Alpha-, beta-, and gamma-gliadins

Fixed term P11 P12 P13

Temperature 0.131 <0.001 <0.001
Nitrogen 0.631 0.671 0.918
Timepoint <0.001 <0.001 <0.001
Temperature.Nitrogen 0.332 0.129 0.398
Temperature.Timepoint 0.002 0.012 0.694
Nitrogen.Timepoint 0.484 0.399 0.162
Temperature.Nitrogen.Timepoint 0.595 0.277 0.842
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P4 (both HMW-GS) stand out as being susceptible to post-anthesis temperature, as they

both have strong influence on the separation shown by CV2.

REML analysis was used to describe how each individual protein subunit was affected by

the temperature and nitrogen treatments over the period of grain-filling (data presented in

full in figure 6.6). Separate analyses were completed for each detected protein, and the P

values from these analyses are presented in table 6.2. All of the detected proteins showed a

response to sampling timepoint, showing that the relative level of each protein significantly

changes over the period of grain-filling. However, as a single effect this response doesn’t relate

to the experimental treatments of nitrogen input and post-anthesis temperature, it wont be

discussed.

Of the four HMW-glutenin proteins present in Cadenza, three showed an effect from temper-

ature: protein P1 (F=43.38, P<0.001, SED=0.1216 on 66.2 DF) and P2 (F=25.08, P<0.001,

SED=0.1047 on 66.4 DF) both saw an increase in relative concentration under elevated

temperature, whilst protein P3 was affected by a two-way interaction between timepoint

and temperature (F=6.26, P<0.001, SED=0.1797 on 64.6 DF), with relative concentration

increasing in the elevated temperature treatment, and this effect increasing as grain-filling
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Figure 6.5: HMW-glutenin subunits P3 and P4 both show strong influence on
the separation of temperature treatments by CV analysis. Vector loadings for
CV analysis of SDS-PAGE data from the controlled-environment experiment. Loadings
indicate the influence each protein has on the CV analysis presented in figure 6.4.
HMW-glutenins P3 and P4 both show strong influence on CV2, which represents the
separation of temperature treatments.
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Figure 6.6: Storage protein subunits are differentially accumulated during
development under different temperature and nitrogen regimes. Grain pro-
tein subunit abundance detected by SDS-PAGE throughout grain development from
the controlled-environment experiment, grouped by treatment combination: (a) con-
trol temperature, low nitrogen; (b) control temperature, high nitrogen; (c) elevated
temperature, low nitrogen; (d) elevated temperature, high nitrogen.
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progresses.

All three of the omega-gliadins analysed showed multiple two-way interactions. The concentra-

tion of protein P5 was increased by high nitrogen input, but only in the elevated temperature

treatment (F=10.63, P=0.002, SED=0.1640 on 64.8 DF), and whilst the concentration of P5

generally decreased during grain-filling, the overall concentration was higher, and the drop

in concentration was less under higher temperatures (F=3.66, P=0.006, SED=0.2303 on 64.4

DF). Protein P6 concentration generally increased during grain-filling, but increased at a

greater rate under elevated post-anthesis temperatures, reaching a higher final level (F=6.49,

P<0.001, SED=0.3559 on 68 DF); whilst an interaction between time and nitrogen was also

significant (F=3.34, P=0.009, SED=0.3555 on 67.1 DF), the effect was only significant at

the early two sampling timepoints, where increased nitrogen increased the proportion of P6.

However this effect disappeared as grain-filling progressed. For the relative concentration of

omega-gliadin P7, three two-way interactions were significant: over grain-filling, the concen-

tration of protein P7 was higher under the high temperature treatment when compared with

the control temperature treatment, with this difference increasing towards maturity (F=3.33,

P=0.009, SED=0.2862 on 68.4 DF); under the high nitrogen treatment, the proportion of P7

was initially increased compared to the low nitrogen treatment, but by the end of grain-filling

there wasn’t a significant difference between the two nitrogen treatments (F=2.62, P=0.032,

SED=0.2859 on 67.4 DF); and there was a weak interaction between temperature and nitro-

gen treatments, with the proportion of P7 increasing with increased nitrogen input, but only

when subjected to elevated temperatures (F=4.38, P=0.040, SED=0.1650 on 69 DF).

With regards to the LMW-glutenins detected by SDS-PAGE, two proteins showed significant

effects from factors other than time alone. Protein P8 increased in concentration through grain-

filling, and did so at a greater rate when exposed to higher temperatures (F=15.65, P<0.001,

SED=0.4087, DF not available). A single effect of nitrogen on the proportion of P8 was also

identified, with higher levels of nitrogen application decreasing the relative concentration of

P8 (F=22.88, P<0.001, SED=0.1558, DF not available). A significant two-way interaction

between temperature and nitrogen was found for protein P10, with the proportion of P10

increasing due to high nitrogen input under control temperature, but decreasing under high

temperatures (F=5.82, P=0.019, SED=0.1839 on 68.2 DF).

The alpha-, beta-, and gamma-gliadins analysed all showed a significant response to tempera-

ture. The REML analysis reported a two-way interaction between temperature and sampling

timepoint on the proportion of protein P11 (F=4.30, P=0.002, SED=0.3381 on 69.2 DF),

however comparison of the means with the LSD at the 5% level reveals that the difference

between the two temperature treatments is only significant at the earliest sampling timepoint.

The single effect of temperature was not found to be significant (F=2.33, P=0.131). The

same two-way interaction between temperature and time was also significant for protein P12

(F=3.19, P=0.012, SED=0.3381 on 66.9 DF), but again, inspection of the means reveals that
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the interaction isn’t particularly interesting. However, P12 also showed a significant effect

from temperature alone (F=13.12, P<0.001, SED=0.2433 on 66.1 DF), with the level of P12

decreasing under elevated temperature. Finally, P13 also showed a single effect of temperature

(F=24.38, P<0.001, SED=0.1416 on 66.5 DF), with elevated temperature again decreasing

the proportion of P13.

A separate REML analysis was completed for the SDS-PAGE data from only mature grain,

to identify any effect the nitrogen and temperature treatments may have on the protein

composition of the grain at harvest. The results of these analyses are presented in table 6.3,

with the interpreted P values shown in bold, and the full table of means is presented in table

6.4.

Significant two-way interactions between the temperature and nitrogen treatments were found

for two of the HMW-glutenin proteins, P2 (F=6.61, P=0.033, SED=0.1467 on 8.1 DF) and

P3 (F=7.06, P=0.021, SED=0.1175 on 12 DF). The proportion of protein P2 was primarily

affected by nitrogen, and was reduced under high nitrogen input, however comparison of the

means with the LSD at the 5% level shows that this difference was only significant under

the control temperature treatment. Additionally, the high temperature treatment increased

the proportion of protein P2, but only in the high nitrogen treatment. Whilst the interaction

between temperature and nitrogen treatments for protein P3 was significant, further analysis

revealed that this interaction didn’t describe any significant differences when comparing means

with the relevant LSD values. Therefore for protein P3, the single effect from temperature is

interpreted instead (F=96.56, P<0.001, SED=0.0831 on 12 DF): higher temperature during

grain-filling increased the proportion of protein P3.

The proportion of all three omega-gliadin proteins was increased by the elevated temperature

treatment: protein P5 (F=12.45, P=0.012, SED=0.1806 on 6 DF), protein P6 (F=34.03,

P<0.001, SED=0.1581 on 10.5 DF), and protein P7 (F=16.83, P=0.002, SED=0.1728 on 10.5

DF). The proportion of omega-gliadin P5 was also increased by the high nitrogen treatment

(F=17.53, P=0.006, SED=0.0925 on 6 DF).

LMW-glutenin protein P8 was significantly reduced under the elevated temperature treatment

(F=72.23, P<0.001, SED=0.3377 on 10.5 DF), and was also reduced, albeit to a lesser extent,

under the high-nitrogen treatment (F=9.10, P=0.013, SED=0.3332 on 10.2 DF). A weak

significant two-way interaction between temperature and nitrogen treatments was identified

for protein P9 (F=6.24, P=0.031, SED=0.2599 on 10.1 DF). However, inspection of the

means revealed that this interaction is describing the increased proportion of P9 due to

high temperature under the low nitrogen treatment. Other responses were not found to be

significant at the 5% level. Finally, the proportion of protein P10 was increased by the high

nitrogen treatment (F=7.10, P=0.021, SED=0.2444 on 12 DF).

Of the three alpha-, beta-, and gamma-gliadin proteins, P11 and P12 showed a significant

response to the experimental treatments. Whilst the two-way interaction between temperature
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Table 6.3: Results of the REML analyses of SDS-PAGE data at maturity from the post-
anthesis controlled environment experiment. Table shows the significant effects of all
treatment combinations on individual protein bands from the SDS-PAGE analysis. Sig-
nificant results to be interpreted are shown in bold. Weakly significant interactions have
been excluded when further analysis reveals that they do not describe any significant
differences between means of interest.

HMW-glutenins

Fixed term P1 P2 P3 P4

Temperature 0.141 0.023 <0.001 0.656
Nitrogen 0.060 <0.001 0.754 0.205
Temperature.Nitrogen 0.153 0.033 0.021 0.099

Omega-gliadins

Fixed term P5 P6 P7

Temperature 0.012 <0.001 0.002
Nitrogen 0.006 0.163 0.376
Temperature.Nitrogen 0.255 0.106 0.429

LMW-glutenins

Fixed term P8 P9 P10

Temperature <0.001 0.275 0.725
Nitrogen 0.013 0.637 0.021
Temperature.Nitrogen 0.314 0.031 0.743

Alpha-, beta-, and gamma-gliadins

Fixed term P11 P12 P13

Temperature 0.755 0.034 0.314
Nitrogen 0.519 0.375 0.151
Temperature.Nitrogen 0.036 0.029 0.350
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and nitrogen treatment was significant for both P11 (F=6.21, P=0.036, SED=0.2927 on 8.3

DF) and P12 (F=6.48, P=0.029, SED=0.5025 on 10.2 DF), analysis of the means reveal that

this interaction isn’t the best descriptor of the data in either case. For protein P11, analysis of

the means reveals no significant differences at the 5% level, and for protein P12, the proportion

is increased by the high nitrogen treatment, but only under the control temperature treatment.

However, further analysis of the data suggests that the two-way interaction is largely caused by

a single, potentially anomalous, datapoint, and that the single effect of temperature (F=5.95,

P=0.034, SED=0.3590 on 10.4 DF) may be a better description of the data, with higher

temperature generally decreasing the concentration of protein P12.

6.2.3. SE-HPLC Results

Size-exclusion high-performance liquid chromatography analysis was completed on protein

extracts from mature grain to predict the effect that nitrogen supply and post-anthesis

temperature have on the baking quality of mature grain. The relative abundance of five

protein fractions representing HMW-glutenins (F1), LMW-glutenins (F2), omega-gliadins

(F3), alpha-, beta-, and gamma-gliadins (F4), and albumin and globulins (F5) were measured.

From these measurements gluten content (F1–F4 as a percentage of F1–F5), the ratios between

different protein groups (F1/F2) and (F3+F4)/F1), and the overall protein composition is

presented. As with the SDS-PAGE analysis, relative protein content is presented, to prevent

Table 6.4: Full dataset for SDS-PAGE grain protein composition data from the
controlled-environment experiment. Data is presented as the relative abundance of
each individual protein subunit as a percentage of the total protein, and is grouped
by protein group, with sub-totals for each group. Mean values for each treatment
combination are presented, averaged over experimental blocks.

Proportion of the total protein (%)
Protein group Protein 20°C, low-N 20°C, high-N 28°C, low-N 28°C, high-N

HMW-glutenins

P1 5.52% 4.67% 5.69% 5.55%
P2 6.25% 5.43% 6.27% 5.97%
P3 3.15% 2.96% 3.75% 3.99%
P4 5.53% 5.12% 5.24% 5.30%
sub-total 20.45% 18.18% 20.95% 20.81%

Omega-gliadins
P5 1.58% 1.86% 2.11% 2.61%
P6 3.81% 3.78% 4.46% 4.98%
P7 3.23% 3.25% 3.80% 4.10%
sub-total 8.62% 8.89% 10.37% 11.69%

LMW-glutenins
P8 17.87% 17.21% 15.35% 13.99%
P9 9.97% 10.50% 10.64% 10.26%
P10 3.71% 4.44% 3.88% 4.45%
sub-total 31.55% 32.15% 29.87% 28.70%

Alpha-, beta-, and
gamma-gliadins

P11 15.06% 14.42% 14.50% 14.86%
P12 15.81% 17.03% 15.84% 15.25%
P13 8.50% 9.34% 8.46% 8.66%
sub-total 39.37% 40.79% 38.80% 38.77%
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the results being compounded with differences in protein content, and to remove some of the

inaccuracies possible in this form of protein quantification.

Grain gluten content was calculated by subtracting the summed measurements for the F1–

F4 protein fractions from the total protein detected (F1–F5), and was found to be sig-

nificantly higher under both the elevated post-anthesis temperature (F1,4=32.73, P=0.005,

SED=0.4385 on 4 DF) (figure 6.7a) and the high nitrogen input treatments (F1,4=137.15,

P<0.001, SED=0.0934 on 4 DF) (figure 6.7b), with no significant interaction between these

factors (F1,4=2.08, P=0.222). Of the two factors, temperature had the greatest effect on

grain gluten content, with approximately double the difference between the two temperature

treatments when compared to the nitrogen treatments. The gluten content data is presented

in full in table 6.5.

Reliable estimations of bread-making quality can be made by analysing the ratios between

gluten protein components (Millar 2003). The two ratios of interest are the F1/F2 ratio, which

Table 6.5: Full dataset for grain gluten content at maturity from the controlled-
environment experiment, presented per treatment combination, averaged over experi-
mental blocks. Expressed as the total of SE-HPLC fractions F1–F4 as a percentage of
the total protein detected by SE-HPLC (F1–F5).

Treatment Gluten content (%)

20°C, low-nitrogen 82.31
20°C, high-nitrogen 83.53
28°C, low-nitrogen 84.95
28°C, high-nitrogen 85.91
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Figure 6.7: Gluten content of mature grain is increased by high nitrogen
and high temperatures. Proportion of protein detected by SE-HPLC as gluten
protein (F1–F4 as percentage of F1–F5), grouped by the single significant effects of (a)
temperature treatment, LSD of 0.12; and (b) nitrogen treatment, LSD (at the 5% level)
of 0.26.
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represents the ratio between large HMW- and LMW-glutenins polymers, and the (F3+F4)/F1

ratio, which is the ratio between small gliadin polymers and HMW-glutenins. Higher F1/F2,

and lower (F3+F4)/F1 numbers are associated with superior bread-making quality. All ratios

were calculated using the relative protein content values (% of total protein).

The ratio between HMW- and LMW-glutenins (F1/F2) was determined by an interaction be-

tween post-anthesis temperature and nitrogen treatments (F1,4=10.01, P=0.034, SED=0.1387

on 7.46DF): both elevated post-anthesis temperature and high nitrogen input resulted in an

increase in the F1/F2 ratio, but the effect of nitrogen input was only significant under control

temperatures (figure 6.8a). A two-way interaction between temperature and nitrogen was also

found for the ratio between gliadins and HMW-glutenins ((F3+F4)/F1) (F1,4=8.45, P=0.044,

SED=0.2360 on 7.13DF), with both elevated temperature and high nitrogen input decreasing

the (F3+F4)/F1 ratio, with the effect of nitrogen again only significant at the 5% level under

the control temperature treatment (figure 6.8).

Figure 6.9 shows a plot of the F1/F2 ratio against the (F3+F4)/F1 ratio, and provides a

visual representation of how predicted bread-making quality differs between grain from the

different treatments. Datapoints to the lower right of the graph signify superior bread-making

quality, and the figure shows that both increased temperature and higher nitrogen input
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Figure 6.8: Elevated post-anthesis temperature and increased nitrogen input
increase the ratio between HMW-glutenins, and decrease the ratio between
gliadins and HMW-glutenins. The combined effect of temperature and nitrogen on
the ratios between the relative amount of SE-HPLC protein fractions related to bread-
marking quality from the controlled-environment experiment: (a) HMW- to LMW-
glutenin ratio (F1/F2), LSD (at the 5% level) of 0.033 for comparing within the same
temperature treatment, and 0.032 for all other comparisons; and (b) gliadin to HMW-
glutenin ratio ((F3+F4)/F1), LSD of 0.53 for comparing within the same temperature
treatment, and 0.56 for all other comparisons.
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improves the predicted bread-making quality of the grain. Furthermore, the effect of the two-

way interactions between temperature and nitrogen treatments can also be observed, with a

greater separation of nitrogen treatments under the control temperature treatment.

Analysis of the individual protein fractions was performed on the relative data (figure 6.10),

which expressed the fractions as a percentage of the total protein detected. As with the SDS-

PAGE data, this allows differences in protein composition to be identified, without having the

results affected by the differences in total protein content that were also observed. The results

of the ANOVA analyses of the protein composition data is presented in table 6.6.
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Figure 6.9: Predicted bread-making quality is improved by high nitrogen in-
put and elevated post-anthesis temperature. Plot of F1/F2 against (F3+F4)/F1
SE-HPLC protein fractions for each combination of temperature and nitrogen treatment
used in the controlled-environment experiment. F1/F2 represents the ratio between
HMW- and LMW-glutenins, and (F3+F4)/F1 represents the ratio between gliadins and
HMW-glutenins. Points to the lower right of the graph indicate superior bread-making
quality. All ratios were calculated with the relative protein content data (as a % of the
total protein).

.

Table 6.6: Results from the ANOVA analyses of SE-HPLC data from the environment
experiment. Table shows the significant effects of all treatment combinations on indi-
vidual protein fractions from the SE-HPLC analysis. Effects to interpret are in shown
in bold.

Fixed term F1 F2 F3 F4 F5

Temperature 0.004 0.136 0.029 0.368 0.005
Nitrogen 0.010 0.091 0.027 0.136 <0.001
Temperature.Nitrogen 0.031 0.182 0.058 0.056 0.222

George Savill



116 CHAPTER 6. RESULTS: GRAIN PROTEIN COMPOSITION

F1 F2 F3 F4 F5

5

10

15

20

25

30

35

40

1
1
.0

1
%

2
8
.8

4
%

7
.0

9
%

3
5
.3

7
%

1
7
.6

9
%

1
3
.2

4
%

2
9
.7

5
%

7
.3

8
%

3
3
.1

6
%

1
6
.4

7
%

1
4
.5

7
%

2
8
.5

2
%

6
.9

1
%

3
4
.9

5
%

1
5
.0

5
%

1
4
.9

5
%

2
8
.6

7
%

6
.9

5
%

3
5
.3

5
%

1
4
.0

9
%

SE-HPLC protein fraction

P
ro

p
o
rt

io
n

o
f

to
ta

l
p

ro
te

in
(%

)

20°C, Low N
20°C, High N
28°C, Low N
28°C, High N

Figure 6.10: The relative abundance of SE-HPLC protein fractions are differ-
entially affected by nitrogen supply and post-anthesis temperature. Relative
protein content of mature grain by SE-HPLC, grouped by each combination of tem-
perature and nitrogen treatment from the controlled environment experiment. Protein
fractions represent HMW-glutenins (F1), LMW-glutenins (F2), omega-gliadins (F3),
alpha-, beta-, and gamma-gliadins (F4), and albumins and globulins (F5).
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The proportion of HMW-glutenins in the mature grain was increased by both elevated post-

anthesis temperature, and increased nitrogen input, with an interaction between these two

factors (F1,4=10.70, P<0.031, SED=0.5162 on 4 DF) whereby nitrogen input had a greater

effect under control temperatures than under elevated temperatures. There was no evidence

of an effect of temperature on the concentration of LMW-glutenins (F1,4=3.47, P=0.136),

but there was some evidence that high nitrogen input increases the concentration of LMW-

glutenins (F1,4=4.91, P=0.091) although not significant at the 5% level. The concentration

of omega-gliadins at maturity was increased by high nitrogen input (F1,4=11.65, P=0.027,

SED=0.0487 on 4 DF), but decreased by elevated post-anthesis temperature (F1,4=12.05,

P=0.029, SED=0.0925 on 4 DF), with some evidence that the effect of nitrogen was greater

under control temperatures (F1,4=6.90, P=0.058). For alpha-, beta-, and gamma-gliadins,

there was no significant effect of temperature (F1,4=1.03, P=0.368) or nitrogen (F1,4=3.47,

P=0.136), but there was some evidence of an interaction between these two factors (F1,4=7.15,

P=0.056). This interaction is again identifying an increased response to nitrogen under con-

trol temperature conditions, whereby the proportion of alpha-, beta-, and gamma-gliadins is

increased by high nitrogen under control temperatures, but not under elevated temperatures.

Finally, as the inverse of the gluten content results, the proportion of albumin and globu-

lins in the mature grain are decreased by both elevated temperature (F1,4=32.73, P=0.005,
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SED=0.4385 on 4 DF) and high nitrogen input (F1,4=137.15, P<0.001, SED=0.0934 on 4

DF).

6.3. WGIN Diversity Field Experiment

To investigate the effect of nitrogen application and year-to-year climatic variation on the

protein composition of different wheat genotypes, grain from the WGIN diversity field exper-

iment was sampled and analysed. Samples were taken over three years with varying weather

conditions during grain-filling (discussed in chapter 3), from four commercial wheat genotypes

grown under either low (100kg-N/ha) or abundant (350kg-N/ha) nitrogen levels. Analysis

of the protein composition of grain samples collected as part of the WGIN diversity field

experiment was similar to the analysis completed for the controlled-environment experiment:

nitrogen content analysis was used to measure protein concentration, with protein compo-

sition determined using both SDS-PAGE and SE-HPLC. However, whilst nitrogen content

was measured both during grain-filling and at maturity, SDS-PAGE and SE-HPLC analysis

was only completed on mature grain. Data for the calculated grain protein content is not

presented, since this data was compounded with the TGW data (from which it is calculated),

making the identification of genuine effects impossible.

6.3.1. Protein concentration

The analysis of grain protein concentration (nitrogen content multiplied by 5.7) during grain-

filling identified two three-way interactions: interactions between genotype, nitrogen treat-

ment, and timepoint of measurement (F15,213=4.21, P<0.001, SED=0.2535 on 251.6 DF),

and between year of experiment, nitrogen treatment, and timepoint (F10,213=4.93, P<0.001,

SED=0.2418 on 74.24 DF) were found. These two interactions describe the effects of all

treatments in the experiment, and the complete dataset is presented in figure 6.11. The first

interaction, between genotype, nitrogen, and timepoint, shows that different genotypes accu-

mulate nitrogen during grain-filling differently under each of the two nitrogen treatments, and

that this response was comparable between years. Analysis of the LSD values from the second

interaction (between year, nitrogen, and timepoint) show that this interaction is describing

the response to the high nitrogen treatment in 2017 (the hottest year), where grain protein

concentration is increased during mid to late grain-filling.

For protein concentration measured at maturity, there was a significant interaction between

year of experiment and genotype (F5,31=10.82, P<0.001, SED=0.2906 on 21.47 DF) (figure

6.12a), which primarily describes the differential response shown by different genotypes in

2016: Cadenza showed an increase in protein concentration from 2015 to 2016 to 2017, whilst

Hereward showed a marked decrease between 2015 and 2016, before increasing again in

2017, and Istabraq and Soissons achieved similar protein concentrations in 2015 and 2016,

before increasing in 2017. Overall, the lowest protein concentration was recorded in 2016,

and the highest in 2017. Additionally, a single effect from nitrogen treatment was identified

(F1,6=865.23, P<0.001, SED=0.1783 on 6 DF) (figure 6.12b), which simply describes an
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Figure 6.11: Grain protein concentration during grain-filling is increased by
nitrogen input differentially by different genotypes, and over different years.
Grain protein concentration through development for Cadenza, Hereward, Istabraq, and
Soissons under low (100kg-N/ha) and high (350kg-N/ha) nitrogen input in the 2015
(green), 2016 (blue), and 2017 (red) WGIN diversity field experiment. Calculated from
nitrogen content data using a conversion factor of 5.7, and expressed as percentage dry
matter.
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Figure 6.12: Mature grain protein concentration is increased in hotter years,
and by high nitrogen application rate. Protein concentration data from the WGIN
diversity field experiment, grouped by (a) genotype and year combination, LSD (at the
5% level) of 0.50 for comparing within the same year, and 0.60 for all other comparisons;
and (b) nitrogen treatment, LSD of 0.44. Predicted values from the ANOVA model are
presented for Soissons in 2017 (marked *).
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Table 6.7: Full dataset for grain protein concentration at maturity from the WGIN
diversity field trial experiment, averaged over experimental blocks. Predicted values
from the ANOVA model are presented for Soissons in 2017 (marked *).

Protein content (%)
Nitrogen input Genotype 2015 2016 2017

100kg-N/ha

Cadenza 7.75 8.31 8.47
Hereward 7.82 7.17 8.61
Istabraq 6.87 7.40 7.70
Soissons 8.06 8.65 9.06*

350kg-N/ha

Cadenza 13.24 13.67 13.97
Hereward 14.07 11.59 14.54
Istabraq 12.88 11.72 12.76
Soissons 13.29 13.02 14.05*

increase in grain protein concentration under the high (350kg-N/ha) nitrogen treatment. The

full dataset for protein concentration at maturity is presented in table 6.7.

6.3.2. SDS-PAGE

As part of the WGIN diversity field experiment, SDS-PAGE was used to measure protein

composition at maturity only. Since these measurements were taken from multiple genotypes,

each of which produce different gluten protein subunits, proteins were grouped rather than

analysed individually. As with SE-HPLC, proteins were categorised as either alpha-, beta-, and

gamma-gliadins, HMW-glutenins, LMW-glutenins, or omega-gliadins. As with the controlled-

environment experiment, only the relative levels of each protein group within a sample were

analysed.

Preliminary CV analysis of the SDS-PAGE data showed a strong separation of the two

nitrogen treatments, but failed to show a clear separation between the different genotypes or

years (figure 6.13). This suggests that nitrogen input level had the greatest effect on protein

composition, and that genotype and year of harvest have weaker influences. In the CV analysis

presented in figure 6.13, CV1 accounts for 86.81% of variation, and is primarily separating

the two nitrogen treatments. Whilst both CV1 and CV2 (which represents 7.94% of variation)

show some separation between genotypes and years of experiment. Of the four genotypes

analysed, Soissons shows the least separation, whilst Hereward shows the most, which could

indicate that Soissons may be less susceptible to changes in nitrogen input, with regards to

protein composition, than Hereward. Vector loadings for each protein group are presented in

figure 6.14, and show the influence each protein group had on the separation of datapoints

shown in the CV analysis. From these vector loadings, omega-gliadins are the protein group

most affected by changes to nitrogen input, closely followed by LMW- and HMW-glutenins,

with alpha-, beta-, and gamma-gliadins the least affected.

Separate REML analyses was used to determine the effect that genotype, nitrogen, and year

of experiment had on the relative proportion of each protein group measured by SDS-PAGE.
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Figure 6.13: Grain protein composition is differentially affected by nitrogen
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the separation of nitrogen treatments by CV analysis. Vector loadings for CV
analysis of SDS-PAGE data from the WGIN diversity field experiment experiment.
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influence on CV1, which represents the separation of nitrogen treatments.

.

George Savill



122 CHAPTER 6. RESULTS: GRAIN PROTEIN COMPOSITION

Table 6.8: Results from the REML analyses of SDS-PAGE data from the WGIN diversity
field experiment. Table shows the significant effects of all treatment combinations on
each protein group. Effects to interpret are in shown in bold. The significant three- and
two-way interactions for alpha-, beta-, and gamma-gliadins and HMW-glutenins groups
were investigated, and found to be unsuitable interpretations of the data.

Fixed term Alpha-, beta-,
gamma-gliadins

HMW-glutenins LMW-glutenins Omega-gliadins

Year 0.380 0.309 0.271 0.353
Genotype <0.001 <0.001 <0.001 <0.001
Nitrogen 0.952 0.799 <0.001 <0.001
Year.Genotype 0.111 0.830 0.201 0.198
Year.Nitrogen 0.267 0.037 0.177 0.722
Genotype.Nitrogen 0.309 0.472 <0.001 <0.001
Year.Genotype.Nitrogen 0.023 0.025 0.610 0.200

The results of these analyses are presented in table 6.8. For the alpha-, beta-, and gamma-

gliadins and HMW-glutenins protein groups, borderline significant interactions were identified

between year of experiment, genotype, and nitrogen treatment. However upon inspection

of the means with the LSD values, these interactions fail to identify significant differences

between treatment combinations of interest. Likewise for the HMW-glutenins a two-way

interaction between year and nitrogen was identified, but again comparison of the means

revealed no significant differences. Therefore for these two protein groups, the single effect of

genotype is interpreted instead.

The proportion of alpha-, beta-, and gamma- gliadins showed a strong effect from genotype

(F=82.59, P<0.001, SED=0.3927 on 31.8 DF) (figure 6.15a), and was highest in Istabraq,

followed by Cadenza, Hereward and Soissons, with the difference between each genotype

significant at the 5% level.

There was also a strong effect of genotype on the proportion of detected HMW-glutenins

(F=39.04, P<0.001, SED=0.4003 on 31.8 DF) (figure 6.15b), with the highest proportion

detected in Soissons, followed by Cadenza, Hereward and Istabraq.

For the LMW-glutenins, a two-way interaction between genotype and nitrogen treatment was

identified (F=9.41, P<0.001, SED=0.6188 on 32.2 DF) (figure 6.15c), with no effect of year

(F=1.46, P=0.271). Increased nitrogen input decreased the proportion of LMW-glutenins

in all genotypes, but the magnitude of this effect differed between the different genotypes:

Hereward showed the greatest response, followed by Istabraq, whilst Cadenza and Soissons

showed much smaller responses.

A two-way interaction between genotype and nitrogen was also found for the concentration

of omega-gliadins present (F=21.01, P<0.001, SED=0.5494 on 31.9 DF) (figure 6.15c), again

with no effect of year (F=1.28, P=0.353). The proportion of omega-gliadins was significantly

increased by the high nitrogen treatment in all genotypes, and as with LMW-glutenins,
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Figure 6.15: Nitrogen input interacts with genotype to determine grain pro-
tein composition. Proportion of protein groups as percentage of the total protein
detected by SDS-PAGE from the WGIN diversity field experiment: (a) alpha-, beta-,
and gamma-gliadins by genotype, LSD (at the 5% level) of 0.80; (b) HMW-glutenins
by genotype, LSD of 0.82; (c) LMW-glutenins by combination of genotype and nitro-
gen treatment, LSD of 1.38 for comparing within the same nitrogen treatment, and
1.41 for all other comparisons; (d) omega-gliadins by genotype and nitrogen treatment,
LSD of 1.01 for comparing within the same nitrogen treatment, and 1.40 for all other
comparisons.
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Table 6.9: Full SDS-PAGE protein composition dataset from the WGIN diversity field
trial experiment. Individual proteins detected were assigned to one of four groups, and
the total of each protein group as a percentage of the total detected protein is presented.

Year Nitrogen input Genotype Alpha-, beta-,
gamma-gliadins

HMW-
glutenins

LMW-
glutenins

Omega-
gliadins

2015

100kg-N/ha

Cadenza 46.76% 11.74% 37.05% 4.46%

Hereward 42.74% 11.69% 41.81% 3.76%

Istabraq 47.70% 9.99% 37.92% 4.39%

Soissons 41.51% 14.79% 38.96% 4.74%

350kg-N/ha

Cadenza 44.48% 14.71% 30.70% 10.12%

Hereward 42.39% 14.34% 30.79% 12.48%

Istabraq 47.24% 11.43% 30.96% 10.37%

Soissons 41.73% 15.79% 33.62% 8.86%

2016

100kg-N/ha

Cadenza 38.36% 22.02% 31.55% 8.07%

Hereward 36.45% 19.74% 34.49% 9.32%

Istabraq 41.01% 16.64% 34.22% 8.13%

Soissons 33.90% 21.32% 35.42% 9.35%

350kg-N/ha

Cadenza 41.06% 17.55% 27.84% 13.55%

Hereward 37.61% 18.42% 26.44% 17.54%

Istabraq 41.14% 16.22% 27.41% 15.23%

Soissons 35.98% 21.20% 30.50% 12.32%

2017

100kg-N/ha

Cadenza 42.02% 17.12% 34.17% 6.70%

Hereward 41.87% 15.26% 37.12% 5.76%

Istabraq 44.86% 14.36% 34.38% 6.41%

Soissons — — — —

350kg-N/ha

Cadenza 41.32% 17.20% 29.31% 12.17%

Hereward 38.82% 16.19% 29.11% 15.87%

Istabraq 46.37% 13.14% 29.02% 11.46%

Soissons — — — —
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Figure 6.16: Gluten content varies between genotypes, and is increased by
high nitrogen input. Gluten content as a percentage of the total protein detected
by SE-HPLC at maturity from the WGIN diversity field experiment. (a) mean gluten
content for each genotype, LSD (at the 5% level) of 0.75; (b) gluten content for each
nitrogen treatment, LSD of 2.83.

.

Hereward showed the strongest response to nitrogen, followed by Istabraq, Cadenza, and

Soissons. The full dataset is presented in table 6.9.

6.3.3. SE-HPLC

SE-HPLC analysis was completed on mature grain from the WGIN diversity field experi-

ment using the same methodology as used in the controlled-environment experiment, with

gluten content, F1/F2 and (F3+F4)/F1 ratios, and individual protein fraction abundance

presented.

Table 6.10: Full gluten content dataset from the WGIN diversity field trial experiment,
presented per treatment combination, averaged over experimental blocks. Expressed as
the total of SE-HPLC fractions F1–F4 as a percentage of the total protein detected
by SE-HPLC (F1–F5). Predicted values from the ANOVA model are presented for
Soissons in 2017 (marked *).

Gluten content (%)
Nitrogen input Genotype 2015 2016 2017

100kg-N/ha

Cadenza 80.39 82.12 76.67
Hereward 82.00 81.37 79.14
Istabraq 81.67 82.55 78.47
Soissons 80.62 83.46 78.45*

350kg-N/ha

Cadenza 84.89 83.82 81.48
Hereward 87.24 84.88 82.85
Istabraq 85.66 84.13 80.66
Soissons 85.65 84.46 81.62*
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Relative gluten content was significantly different between genotypes (F3,32=4.56, P=0.009,

SED=0.369 on 32 DF) (figure 6.16a), with Hereward having the highest gluten content and

Cadenza the lowest. Gluten content was significantly affected by nitrogen input (F1,6=8.46,

P=0.027, SED=1.158 on 6 DF) (figure 6.16b), with the 350kg-N/ha nitrogen treatment

increasing gluten content from 80.58% to 83.94% when compared to the 100kg-N/ha treatment.

The full dataset is presented in table 6.10.

The ratio between large HMW- and LMW-glutenin polymers (F1/F2) was not found to be sig-

nificantly affected by year (F2,6=1.95, P=0.223), nitrogen (F1,6=1.57, P=0.257), or genotype

(F3,32=0.03, P=0.993), and no combination of these factors had a significant effect. Likewise,

for the ratio between small gliadin polymers and large HMW-glutenin polymers ((F3+F4)/F1),

no significant effect was found for year (F2,6=2.31, P=0.181), nitrogen (F1,6=0.10, P=0.768),

or genotype (F3,32=0.76, P=0.526), nor for any combination of these factors. The full dataset

of F1/F2 and (F3+F4)/F1 ratios is presented in table 6.11.

Analysis of the individual protein fractions detected by SE-HPLC was by ANOVA, and the

results of these analyses are presented in table 6.12, whilst the full dataset is presented in

table 6.13.

No significant effect on the proportion of HMW-glutenins (F1) in the mature grain was

found from year (F2,6=2.91, P=0.131), nitrogen (F1,6=1.11, P=0.333), genotype (F3,32=0.16,

P=0.922). Likewise, analysis of the results for the LMW-glutenin (F2) fraction showed sim-

ilar results, with no significant effect from year (F2,6=1.45, P=0.307), nitrogen (F1,6=2.61,

P=0.157), or genotype (F3,32=1.77, P=0.173).

The proportion of detected omega-gliadins (F3) was affected by genotype (F3,32=6.46, P=0.002,

SED=0.285 on 32 DF) (figure 6.17a), and year (F2,6=5.77, P=0.040, SED=0.463 on 6 DF)

(figure 6.17b), with some evidence of an effect from nitrogen (F1,6=4.28, P=0.084). Of the

Table 6.11: Full dataset of ratios between SE-HPLC protein fractions F1/F2 and
(F3+F4)/F1 from the WGIN diversity field trial experiment. Lower F1/F2 and higher
(F3+F4)/F1 values are associated with superior bread-making quality. Predicted values
from the ANOVA model are presented for Soissons in 2017 (marked *).

F1/F2 ratio (F3+F4)/F1 ratio
Nitrogen input Genotype 2015 2016 2017 2015 2016 2017

100kg-N/ha

Cadenza 0.86 0.78 0.63 2.35 2.89 4.16
Hereward 0.91 0.86 0.55 1.97 3.77 4.38
Istabraq 0.89 0.79 0.66 2.20 2.73 4.07
Soissons 0.68 1.01 0.61* 2.72 2.18 4.00*

350kg-N/ha

Cadenza 0.92 0.80 0.89 2.33 2.87 4.07
Hereward 1.01 0.97 0.58 2.19 2.93 4.15
Istabraq 0.91 0.84 0.81 2.49 2.72 4.08
Soissons 0.88 0.91 0.73* 2.49 2.36 3.89*
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Figure 6.17: Omega-gliadin content of mature grain varies between genotypes,
and was highest in the hottest year. Relative omega-gliadin (F3) content of mature
grain by SE-HPLC from the WGIN diversity field experiment grouped by (a) genotype,
LSD (at the 5% level) of 0.58; and (b) year, LSD of 1.13.
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Figure 6.18: Alpha-, beta-, and gamma-gliadin content of the mature grain is
differentially increased by high nitrogen input in different genotypes. Relative
alpha-, beta-, and gamma-gliadin (F4) content at maturity from the WGIN diversity
field experiment, averaged across years to show the significant interaction between
genotype and nitrogen treatment, LSD of 0.78 for comparing within the same nitrogen
treatment, and 2.61 for all other comparisons.
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Table 6.12: Results from the ANOVA analyses of SE-HPLC data from the WGIN diver-
sity field experiment. Table shows the significant effects of all treatment combinations
on each protein group. Effects to interpret are in shown in bold. The significant two-way
interaction between year and genotype for protein group F4 was investigated, and found
to be an unsuitable interpretation of the data.

Fixed term F1 F2 F3 F4 F5

Year 0.131 0.307 0.040 0.215 0.082
Genotype 0.922 0.173 0.002 0.008 0.009
Nitrogen 0.333 0.157 0.084 0.018 0.027
Year.Genotype 0.129 0.121 0.806 0.025 0.124
Year.Nitrogen 0.960 0.163 0.799 0.235 0.646
Genotype.Nitrogen 0.948 0.795 0.528 0.038 0.180
Year.Genotype.Nitrogen 0.750 0.949 0.270 0.455 0.467

three years, the highest proportion of omega-gliadins was found in 2017, and the lowest in

2015, with the difference between these two years the only significant difference. Of the four

genotypes, Hereward had the highest proportion of omega-gliadins, followed by Istabraq and

Cadenza, with Soissons having the lowest, and whilst not significant at the 5% level, the pro-

portion of omega-gliadins was slightly reduced by the high nitrogen treatment when averaging

over genotypes and years of experiment.

With regards to alpha-, beta-, and gamma-gliadins, two significant two way interactions were

found, one between genotype and year (F5,32=2.99, P=0.025, SED=1.3920 on 7.16 DF), and

another between genotype and nitrogen treatment (F3,32=3.17, P=0.038, SED=1.1098 on 7.22

DF). However, upon further inspection the interaction between genotype and year was found

to be a poor fit for the data as the differences between years were not significant at the 5% level,

and since variation between genotypes is accounted for by the interaction between genotype

and nitrogen treatment, this interaction was dropped. Looking at the results of the genotype by

nitrogen interaction (figure 6.18), the 350kg-N/ha nitrogen treatment significantly increased

the proportion of alpha-, beta-, and gamma-gliadins for every genotype, with Hereward and

Istabraq showing greater responses than Cadenza and Soissons.

The effect of genotype, year, and nitrogen treatment on the proportion of albumin and

globulins (F5) mirrors the results for the gluten content analysis, and are therefore not

presented.

6.4. Discussion

6.4.1. Controlled-environment experiment

The nitrogen content data collected as part of the controlled-environment experiment allows

for the total protein concentration of the grain to be tracked throughout grain-filling, and

also provides a final protein content for the mature grain that can be used to compare the

grain to that grown in the field. Furthermore, by comparing protein concentration with

protein content, we can determine whether the changes in grain protein concentration are
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Table 6.13: Full SE-HPLC protein composition dataset from the WGIN diversity field
trial experiment. Relative concentration of HMW-glutenins (F1), LMW-glutenins (F2),
omega-gliadins (F3), alpha-, beta-, and gamma-gliadins (F4), and albumins and globu-
lins (F4) as a percentage of the total protein (F1–F5) are presented. Predicted values
from the ANOVA model are presented for Soissons in 2017 (marked *).

Year Nitrogen input Genotype F1 F2 F3 F4 F5

2015

100kg-N/ha

Cadenza 18.13% 21.02% 11.73% 29.51% 19.61%

Hereward 20.29% 22.60% 11.69% 27.42% 18.00%

Istabraq 18.94% 21.42% 12.04% 29.27% 18.33%

Soissons 16.11% 24.16% 10.94% 29.41% 19.38%

350kg-N/ha

Cadenza 19.22% 20.97% 10.64% 34.07% 15.11%

Hereward 20.87% 20.62% 11.58% 34.16% 12.76%

Istabraq 19.04% 19.72% 11.03% 35.86% 14.34%

Soissons 18.89% 21.57% 10.82% 34.38% 14.35%

2016

100kg-N/ha

Cadenza 15.89% 20.41% 12.27% 33.55% 17.88%

Hereward 15.17% 19.25% 13.35% 33.59% 18.63%

Istabraq 16.68% 21.06% 11.62% 33.19% 17.45%

Soissons 19.99% 19.96% 10.90% 32.60% 16.54%

350kg-N/ha

Cadenza 16.92% 21.39% 11.26% 34.25% 16.18%

Hereward 17.94% 20.48% 12.20% 34.26% 15.12%

Istabraq 17.17% 20.51% 12.24% 34.20% 15.87%

Soissons 19.08% 20.99% 11.15% 33.24% 15.54%

2017

100kg-N/ha

Cadenza 11.90% 19.09% 13.01% 32.67% 23.33%

Hereward 11.95% 21.83% 13.86% 31.50% 20.86%

Istabraq 12.51% 19.02% 13.78% 33.16% 21.53%

Soissons 12.66%* 21.08%* 12.35%* 32.36%* 21.55%*

350kg-N/ha

Cadenza 15.17% 18.06% 12.66% 35.50% 18.52%

Hereward 12.20% 21.17% 12.96% 36.52% 17.15%

Istabraq 13.96% 17.32% 12.19% 37.19% 19.34%

Soissons 14.23%* 19.51%* 12.09%* 35.78%* 18.38%*
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due to a change in the accumulation of protein, or other cellular components such as starch.

Elevated temperature during grain-filling increased the concentration of protein in the grain

throughout development, and this trend continued to maturity. Increasing nitrogen input

had a similar effect, resulting in an increase in grain protein concentration both throughout

development, and at maturity. Additionally, the effect of nitrogen input was greater under

the high-temperature treatment, producing a greater increase in grain protein concentration.

The data for grain protein concentration during grain-filling (shown in figure 6.1) shows

that under control temperatures protein concentration steadily decreases towards maturity.

However, under elevated temperatures this initial decrease reverses at mid grain-filling, with

the concentration of protein increasing again towards maturity. This could suggest a differential

effect of elevated temperature on the later stages of grain-filling, where it may have a more

detrimental effect on the accumulation of starch (or other cellular components). Whilst the

post-anthesis temperature treatment used in this experiment resulted in changes to protein

concentration, it did not significantly alter the protein content, i.e. the physical amount of

protein within each grain, confirming previous reports (Koga et al. 2015). Therefore, it is clear

that the observed changes in protein concentration with relation to temperature, are likely

due to changes in starch accumulation. Nitrogen, however, did increase the amount (yield) of

protein within each grain.

By comparing the nitrogen content data from the controlled-environment experiment to that

collected from the WGIN diversity field experiment, it is possible to put into context the

changes observed due to the nitrogen and temperature treatments used in this experiment.

For the controlled-environment experiment, protein concentration at harvest was 8.5%/9.3%

under the control temperature, and 12.7%/14.6% under the elevated temperature treatment

for the low/high nitrogen treatments respectively. Cadenza grain collected from the field

had a mean protein content of 8.0% under the low nitrogen treatment (100kg-N/ha), and

13.2% under the high nitrogen treatment (350kg-N/ha). Since the difference in grain nitrogen

concentration between nitrogen treatments is much larger in the field experiment, is clear

that the difference between the two nitrogen treatments used in the controlled-environment

experiment was relatively small. Additionally, it illustrates how low the protein concentration

of the grain grown under control temperatures is, with only the grain exposed to the elevated

post-anthesis temperature treatment showing protein concentration comparable to that of

grain grown in the field under sufficient nitrogen. This suggests that even plants grown under

the high nitrogen treatment in the controlled-environment experiment were not supplied

with sufficient nitrogen to achieve grain protein concentration at the level required for bread-

making. The reason behind this observation may be that the amount of nitrogen provided

to the plants by the high-nitrogen treatment was insufficient, or it may be a result of the

fact that the controlled-environment experiment was a pot experiment, whereas the WGIN

diversity experiment was a field experiment.

SE-HPLC showed that both high nitrogen input, and elevated post-anthesis temperatures
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increased the gluten content of the mature grain, confirming previous reports (Malik et al.

2011; Moldestad et al. 2014; Tao et al. 2018). These results mirror the mature grain protein

concentration results, and indicate that the observed increase in protein concentration also

correlates with an increase in the proportion of gluten proteins. This is perhaps to be expected,

since as storage proteins, the amount of gluten accumulated within the grain is inherently

variable, whilst the albumin and globulin proteins are generally non-storage proteins associated

with various cellular roles as enzymes or inhibitors etc. (Singh et al. 2001a), and may remain

at a baseline level due to their importance in various cellular activities. Regardless, such

increases in grain gluten content are associated with greater dough strength, extensibility,

and elasticity, which results in improved bread-making performance (Haddad et al. 1995;

Sapirstein et al. 1998).

The canonical variate analysis of the SDS-PAGE data was performed as an initial investiga-

tory step to predict and visualise the effect that both temperature and nitrogen treatments

had on the protein composition throughout grain-filling. This analysis indicates that the

protein composition of the mature grain through development was more greatly affected by

elevated temperature than nitrogen input. This initial analysis was relatively accurate as a

predictor of the final results, which generally showed a lack of significance with regards to

the nitrogen treatment: of the 13 proteins measured, only four showed a significant response

to nitrogen input alone. Analysis of the CV loadings identified proteins P3 and P4 as poten-

tially more susceptible to the different temperature treatments. Whilst protein P3 did show

a strong significant increase under the high nitrogen treatment, P4 showed no significant

effect (P=0.368). This perhaps illustrates one of the limitations of CV analysis: its inability

to account for data variability and limited replication in the same way as a technique such as

ANOVA or REML.

Protein composition data was collected using both SDS-PAGE and SE-HPLC, which both

measure different aspects of protein composition: whilst SDS-PAGE measures reduced protein

subunits, SE-HPLC measures the amount of protein polymers present, grouped into one of

five fractions enriched with a particular protein group. To make direct comparisons between

the two datasets, the protein subunits identified by SDS-PAGE must be attributed to the

same groups as those used in the SE-HPLC analysis. This allows us to directly compare

the effect that each of the treatments used in the controlled-environment experiment had on

each group of gluten proteins. When the two datasets are comparably grouped, it becomes

apparent that there is little consensus between the two techniques. The only protein group

that shows consistent responses to temperature is the HMW-glutenins. Elevated post-anthesis

temperature increased the F1 fraction from the SE-HPLC analysis, and also increased the

proportion of three of the four HMW-glutenin proteins identified by SDS-PAGE. However,

for the response to nitrogen, the two techniques differ: whilst SE-HPLC reported an increase

in HMW-glutenin content under the high nitrogen treatment, SDS-PAGE generally reported

a decrease. Elsewhere, the two techniques either contradict one another, or else show a lack
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of significant responses.

Whilst it is difficult to draw conclusions on the effect of elevated temperature and nitrogen

supply on protein composition by analysing the relative levels of each protein fraction detected

by SE-HPLC, the ratios of F1/F2 and (F3+F4)/F1 provide perhaps the most useful results

from this analysis. Since these ratios are associated with key flour quality characteristics, the

significant differences between these ratios are of particular interest. The plot of this data

shown in figure 6.9 shows that grain grown under higher temperature during grain-filling

produce flour better suited to bread-making (again confirming reports by Moldestad et al.

(2014) and Tao et al. (2018)), and also that the effect of nitrogen input prior to anthesis is

reduced when high temperatures are experienced during during grain-filling. This suggests

that high nitrogen application rates may be less worthwhile in years where high temperatures

are experienced during grain-filling in terms of achieving good bread-making quality.

6.4.2. WGIN diversity field trial experiment

Protein concentration data was collected over the three years of the WGIN diversity field

experiment both during grain-filling, and at maturity. The data collected during grain-filling

shows some interesting effects, and some comparisons can be made to the results of the

controlled-environment experiment. In both of these experiments, increasing the nitrogen

input increased grain protein concentration throughout grain-filling, an effect that persisted

to maturity. Likewise in the controlled-environment experiment, the elevated temperature

treatment also increase the relative grain protein concentration, an effect that is also present

to a lesser degree between the years of the field experiment. Here, the difference between

the coolest (2016) and hottest (2017) years are clear, particularly under the high nitrogen

treatment, with the hottest year showing the highest protein concentration. As with the

controlled-environment experiment, the effects observed during grain-filling continued to

maturity, with the grain protein concentration of the mature grain being significantly increased

by the high nitrogen treatment, and with the highest concentration of protein in the grain

grown in the hottest year. A further consideration that can only be made from the field

experiment results is that of genotype. The four different genotypes responded differently to

the three years of the experiment. Whilst generally the lowest grain protein concentration

measurements were recorded in 2016, for Cadenza they were recorded in 2015. Likewise,

the year-to-year variation in grain protein concentration was lowest in Cadenza, and was

highest in Hereward. This is an important consideration when growing bread-making wheat,

since certain grain protein levels must be achieved consistently for the crop to be sold for

bread-making purposes.

As in the controlled-environment experiment, increased nitrogen input lead to an increase in

the gluten content of the mature grain in the field experiment. Whilst a significant difference

was not seen between years, different genotypes did have different gluten contents. Of the four

genotypes, the group 1 bread-making wheat Hereward recorded the highest gluten content.
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Whilst this result may be predictable, the fact that Cadenza (a group two bread-making

wheat) had a lower gluten content than feed wheat Istabraq is unexpected. However, it should

be noted that the differences between genotypes were small, with all genotypes averaging

81–83% gluten content.

The exploratory CV analysis of the SDS-PAGE data suggested that the greatest effect on

protein composition in the field experiment was from nitrogen treatment. Likewise, the analysis

showed some differences between genotypes, showing that Hereward may be more susceptible

to changes in protein composition due to nitrogen input that Soissons. The vector loadings from

each protein group provided information on which protein groups may experience the greatest

effects from changes in nitrogen input. Of the four protein groups, the LMW-glutenins and

omega-gliadins showed the highest loading value for the CV that separated the two nitrogen

treatment, suggesting that these protein groups were the most susceptible to nitrogen.

Unfortunately, for the SE-HPLC analysis of the WGIN diversity field experiment no significant

effects were identified for the F1/F2 and (F3+F4)/F1 ratios. Furthermore, the analysis of the

SE-HPLC protein composition data failed to show any significant effects on the proportion

of either HMW- (F1) or LMW-glutenins (F2). This is likely due to inaccuracies in the

quantification of the SE-HPLC plots, since the boundary between the peaks for F1 and F2

fractions is often impossible to accurately define, leading to incorrect measurements of F1 and

F2 concentration. Whilst disappointing, this doesn’t affect the quantification of the F3–F5

protein fractions, and so these results can still be interpreted.

The predictions made based on the results of the CV analysis were somewhat confirmed

by the SDS-PAGE and SE-HPLC analysis of the grain protein composition. Nitrogen input

and genotype had the greatest effect on protein composition, whilst an effect from year of

experiment was only identified in the SE-HPLC measurement of omega-gliadins, whereby the

hottest year correlated with the highest concentration of omega-gliadins. In the SDS-PAGE

data, the high nitrogen treatment was found to decrease the concentration of LMW-glutenins,

and increase the concentration of omega-gliadins, whilst in the SE-HPLC it was found to

increase the proportion of alpha-, beta-, and gamma-gliadins. In each of these cases, the

effect of nitrogen was greatest in Hereward, and smallest in Soissons, as predicted by the

CV analysis. These results confirm previous findings: the concentration of gliadin proteins in

the mature grain is increased, and the concentration of LMW-glutenins decreased by high

nitrogen input (Chope et al. 2014).
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Chapter 7: Gene Expression Analysis

7.1. Introduction

Understanding the genetics responsible for crop quality is of great significance, both academ-

ically and commercially. By quantifying the effect that experimental factors have on gene

expression we can identify the genetic mechanisms behind any physiological responses that are

observed, information which can then be used to direct future research and breeding efforts.

Whilst the use of genetic modification and gene-editing technologies are unlikely to be accept-

able to consumers in Europe in the foreseeable future, knowledge of crop genetics can still be

used in techniques such as marker-assisted breeding which combine an understanding of genet-

ics with more traditional breeding techniques. In wheat, the primary determinant of quality

is the protein composition and content within the grain (Haddad et al. 1995; Sapirstein et al.

1998). Therefore understanding the factors that impact on the expression of wheat storage

protein synthesis genes would be beneficial, both in terms of wider commercial and academic

context. In therms of the present study, it is hoped that analysis of the expression of these

protein synthesis genes will provide further understanding of the protein content, composition,

and distribution results.

As part of both the controlled-environment and WGIN diversity field experiments, mRNA

expression in spring-wheat variety Cadenza was analysed through qPCR of six storage protein

synthesis gene transcripts: α- and β-gliadins, γ-gliadins (1), γ-gliadins (2), HMW-glutenins,

LMW-glutenins, and ω-gliadins. These transcripts represent a complete coverage of the gluten

storage proteins present in the wheat grain, with their expression recorded at five sampling

timepoints during grain-filling. The aim of this analysis was to identify the effect that elevated

temperature during grain-filling, nitrogen supply, and year-to-year variation in the field would

have on the expression of storage protein synthesis genes, and also to identify any relationship

between gene expression and protein composition (results presented in chapter 6) through

linear regression analysis.

7.2. Controlled-environment experiment

In the controlled-environment experiment, British spring bread-making wheat Cadenza was

supplied with either full or one-tenth strength nitrogen fertiliser, and was subjected to either

a control (20°C) or elevated (28°C) daytime temperature treatment for the duration of grain-

filling. Grain was sampled at five timepoints between anthesis and harvest for RNA expression

analysis. The aim of this analysis was to identify the combined effect that nitrogen supply

prior to anthesis and elevated temperature after anthesis have on the expression of storage

protein synthesis genes over the course of grain-filling. The five sampling timepoints used

in this experiment were adjusted for thermal time (see table 2.2) in an effort to collect

samples at a comparable stage of development. Therefore each sampling timepoint (labelled

T1–T5) represents a different number of calendar days after anthesis depending on the applied
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Figure 7.1: Expression of wheat storage protein synthesis genes in Cadenza
is differentially affected by elevated temperature over time. Gene expression
data showing the effect of nitrogen input and elevated post-anthesis temperature on the
relative expression of six wheat grain storage protein synthesis genes over time in both
calendar days after anthesis (DPA) and accumulated thermal time (GDH). Mean NRQ
values for α- & β-gliadins by (a) thermal time and (b) calendar days, average standard
error of the mean (SEM) 0.00903 (max 0.03417); γ-gliadins (1) by (c) thermal time and
(d) calendar days, average SEM 0.00116 (max 0.00531); γ-gliadins (2) by (e) thermal
time and (f) calendar days, average SEM 0.00169 (max 0.00805); HMW-glutenins by
(g) thermal time and (h) calendar days, average SEM 0.00060 (max 0.00215); LMW-
glutenins by (i) thermal time and (j) calendar days, average SEM 0.00776 (max 0.02459);
and ω-gliadins by (k) thermal time and (l) calendar days, average SEM 0.00253 (max
0.01231). Analysis was completed on log-transformed data, but raw data is presented
for clarity.

temperature treatment. For completeness, the RNA expression data was analysed against

both accumulated thermal time (i.e. sampling timepoint) and days post anthesis (presented

in figure 7.1). Analysing the data in this way reveals how gene expression is affected by

temperature and nitrogen treatments both at a comparable level of maturity, and also at any

point in time, regardless of developmental maturity. In addition to the raw data presented

in figure 7.1, predictions from the appropriate REML models are also presented in tables

7.1–7.6, which allow for comparisons to be made between mean NRQ values on the log scale

(as the data was analysed) with the relevant LSD at the 5% (p=0.05) level.

7.2.1. Alpha- and Beta-gliadins

The REML analysis of α- and β-gliadin gene expression data identified a significant in-

teraction between both post-anthesis temperature treatment and sampling timepoint (as

accumulated thermal time in GDH) squared (F=12.94, P<0.001) (figure 7.1a and table 7.1a);

and between post-anthesis temperature treatment and calendar days post-anthesis squared

(F=19.14, P<0.001) (figure 7.1b and table 7.1b). The effect of time (either in days or accu-

mulated thermal time) was squared to investigate any non-linear effect over the course of

grain-filling. The identification of these significant interactions indicates a non-linear trend be-

tween gene expression and time. No significant interaction was found with nitrogen treatment

between either accumulated thermal time (F=0.054, P=0.467) or calendar days post-anthesis

(F=0.61, P=0.441).

When analysed against sampling timepoints of equivalent accumulated thermal time, expres-

sion of the α- and β-gliadin synthesis gene transcript was increased by elevated temperature

treatment during mid grain-filling (timepoint T3), but was decreased relative to the con-

trol temperature treatment towards the end of grain-filling (timepoint T5). In comparison,

when analysed against calendar days after anthesis, elevated temperature did not result in

an increase in α- and β-gliadin synthesis gene expression on any specific day during grain-
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Table 7.1: Predicted mean NRQ values from the REML analysis of α- & β-gliadin
synthesis gene expression data from the controlled-environment experiment, presented
on the log scale. (a) the interaction between post-anthesis temperature treatment and
sampling timepoint (or accumulated GDH after anthesis) squared; and (b) the inter-
action between post-anthesis temperature treatment and calendar days after anthesis
squared. LSD (at the 5% level) and SED values are presented.

(a)

Sampling timepoint (accumulated GDH after anthesis)
Temperature treatment T1 (3440) T2 (4816) T3 (7224) T4 (9632) T5 (12040)

Control (20°C) -2.531 -3.104 -4.036 -4.879 -5.635
Elevated (28°C) -2.693 -2.348 -2.856 -4.781 -8.123

Difference (* P≤0.05) -0.162 0.756 1.180* 0.098 -2.488*

LSD 1.107 0.784 0.957 0.892 1.259
SED 0.548 0.388 0.474 0.442 0.623

(b)

Calendar days after anthesis
Temperature treatment 7 10 14 15 20 21 25 28 35

Control (20°C) -2.083 -2.531 -3.104 -3.242 -3.908 -4.035 -4.528 -4.879 -5.635
Elevated (28°C) -2.694 -2.337 -2.646 -2.863 -4.790 -5.371 -8.117 -10.786 -18.974

Difference (* P≤0.05) -0.611 0.194 0.458 0.379 -0.882 -1.336* -3.589* -5.907* -13.339*

LSD 1.434 0.960 0.857 0.874 0.914 0.915 1.151 1.704 4.214
SED 0.710 0.475 0.425 0.433 0.453 0.453 0.570 0.844 2.087

filling. However, as grain-filling progresses the elevated temperature treatment did result in

a decrease in expression, which was significantly lower than that of the plants under the

control-temperature treatment from 21DPA onwards.

7.2.2. Gamma-gliadins

Significant interactions were found between post-anthesis temperature treatment and sam-

pling timepoint squared on the expression of both γ-gliadin transcript 1 (F=8.51, P=0.006)

(figure 7.1c and table 7.2a) and 2 (F=9.30, P=0.004) (figure 7.1e and table 7.3a). Likewise,

interactions were also identified between post-anthesis temperature and calendar days after

anthesis for both transcript 1 (F=10.11, P=0.003) (figure 7.1d and table 7.2b) and 2 (F=9.95,

P=0.003) (figure 7.1f and table 7.3b). No significant interaction was found between nitrogen

treatment and accumulated thermal time for either transcript 1 (F=0.57, P=0.0456) or 2

(F=0.23, P=0.636), and no interaction was found between nitrogen treatment and calendar

days after anthesis for either transcript 1 (F=0.91, P=0.346) or 2 (F=0.63, P=0.433).

The effect of elevated temperature on γ-gliadin protein synthesis gene expression was similar

in each of the transcripts analysed against sampling timepoint: expression was decreased at

the end of grain filling (T5). When analysed against calendar days after anthesis the results

are exaggerated, with elevated temperature causing an increasing reduction in expression

from 20DPA onwards.
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Table 7.2: Predicted mean NRQ values from the REML analysis of γ-gliadin (1) synthesis
gene expression data from the controlled-environment experiment, presented on the log
scale. (a) the interaction between post-anthesis temperature treatment and sampling
timepoint (or accumulated GDH after anthesis) squared; and (b) the interaction between
post-anthesis temperature treatment and calendar days after anthesis squared. LSD (at
the 5% level) and SED values are presented.

(a)

Sampling timepoint (accumulated GDH after anthesis)
Temperature treatment T1 (3440) T2 (4816) T3 (7224) T4 (9632) T5 (12040)

Control (20°C) -4.685 -5.498 -6.667 -7.514 -8.038
Elevated (28°C) -4.682 -4.850 -5.790 -7.555 -10.144

Difference (* P≤0.05) 0.003 0.648 0.877 -0.041 -2.106*

LSD 1.036 0.728 0.893 0.831 1.180
SED 0.512 0.360 0.442 0.412 0.584

(b)

Calendar days after anthesis
Temperature treatment 7 10 14 15 20 21 25 28 35

Control (20°C) -4.007 -4.685 -5.498 -5.685 -6.52 -6.664 -7.190 -7.514 -8.038
Elevated (28°C) -4.679 -4.850 -5.538 -5.793 -7.557 -8.025 -10.143 -12.088 -17.778

Difference (* P≤0.05) -0.672 -0.165 -0.040 -0.108 -1.037* -1.361* -2.953* -4.574* -9.740*

LSD 1.345 0.895 0.798 0.814 0.852 0.853 1.077 1.600 3.967
SED 0.666 0.443 0.395 0.403 0.422 0.422 0.533 0.792 1.964

Table 7.3: Predicted mean NRQ values from the REML analysis of γ-gliadin (2) synthesis
gene expression data from the controlled-environment experiment, presented on the log
scale. (a) the interaction between post-anthesis temperature treatment and sampling
timepoint (or accumulated GDH after anthesis) squared; and (b) the interaction between
post-anthesis temperature treatment and calendar days after anthesis squared. LSD (at
the 5% level) and SED values are presented.

(a)

Sampling timepoint (accumulated GDH after anthesis)
Temperature treatment T1 (3440) T2 (4816) T3 (7224) T4 (9632) T5 (12040)

Control (20°C) -4.327 -5.202 -6.376 -7.097 -7.363
Elevated (28°C) -4.374 -4.554 -5.465 -7.136 -9.568

Difference (* P≤0.05) -0.047 0.648 0.911* -0.039 -2.205*

LSD 1.054 0.744 0.910 0.848 1.200
SED 0.522 0.368 0.451 0.420 0.594

(b)

Calendar days after anthesis
Temperature treatment 7 10 14 15 20 21 25 28 35

Control (20°C) -3.573 -4.327 -5.202 -5.397 -6.236 -6.372 -6.844 -7.097 -7.363
Elevated (28°C) -4.370 -4.555 -5.225 -5.468 -7.138 -7.578 -9.566 -11.385 -16.691

Difference (* P≤0.05) -0.797 -0.228 -0.023 -0.0710 -0.902* -1.206* -2.722* -4.288* -9.328*

LSD 1.367 0.912 0.814 0.830 0.869 0.869 1.096 1.625 4.024
SED 0.677 0.452 0.403 0.411 0.430 0.431 0.543 0.805 1.993

George Savill



CHAPTER 7. GENE EXPRESSION ANALYSIS 141

Table 7.4: Predicted mean NRQ values from the REML analysis of HMW-glutenin
synthesis gene expression data from the controlled-environment experiment, presented
on the log scale. (a) the interaction between post-anthesis temperature treatment and
sampling timepoint (or accumulated GDH after anthesis) squared; and (b) the inter-
action between post-anthesis temperature treatment and calendar days after anthesis
squared. LSD (at the 5% level) and SED values are presented.

(a)

Sampling timepoint (accumulated GDH after anthesis)
Temperature treatment T1 (3440) T2 (4816) T3 (7224) T4 (9632) T5 (12040)

Control (20°C) -5.307 -5.683 -6.368 -7.085 -7.836
Elevated (28°C) -5.420 -4.925 -5.258 -7.119 -10.508

Difference (* P≤0.05) -0.113 0.758* 1.110* -0.034 -2.672*

LSD 1.046 0.704 0.888 0.820 1.202
SED 0.518 0.348 0.440 0.406 0.595

(b)

Calendar days after anthesis
Temperature treatment 7 10 14 15 20 21 25 28 35

Control (20°C) -5.032 -5.307 -5.683 -5.779 -6.268 -6.368 -6.774 -7.085 -7.836
Elevated (28°C) –5.423 -4.911 -5.074 -5.266 -7.129 -7.713 -10.501 -13.248 -21.770

Difference (* P≤0.05) -0.391 0.396 0.609 0.513 -0.861* -1.345* -3.727* -6.163* -13.934*

LSD 1.382 0.892 0.783 0.801 0.844 0.845 1.090 1.653 4.154
SED 0.684 0.442 0.388 0.397 0.418 0.418 0.540 0.818 2.057

7.2.3. HMW-glutenins

The expression of HMW-glutenin synthesis gene transcripts was significantly affected by an

interaction between both elevated temperature treatment and sampling timepoint squared

(F=13.05, P<0.001) (figure 7.1g and table 7.4a), and between elevated temperature and

calendar days after anthesis squared (F=20.82, P<0.001) (figure 7.1h and table 7.4b). No

significant interaction was found between either nitrogen treatment and accumulated thermal

time (F=0.31, P=0.583) or between nitrogen and calendar days after anthesis (F=0.38,

P=0.539).

In the analysis against sampling timepoint, elevated temperature resulted in an increase in

the expression of HMW-glutenin synthesis gene transcripts, at T2 and T3, but a reduction

in expression at the final sampling timepoint (T5). When analysed against calendar days

after anthesis, elevated temperature did not result in a significant increase in expression on

any specific day, but again resulted in a decrease in expression that increased in effect from

20DPA onwards.

7.2.4. LMW-glutenins

A significant interaction between temperature treatment and sampling timepoint squared

(F=13.38, F<0.001) (figure 7.1i and table 7.5a) and between temperature and calendar days

after anthesis squared (F=22.30, P<0.001) (figure 7.1j and table 7.5b) was found on the
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Table 7.5: Predicted mean NRQ values from the REML analysis of LMW-glutenin
synthesis gene expression data from the controlled-environment experiment, presented
on the log scale. (a) the interaction between post-anthesis temperature treatment and
sampling timepoint (or accumulated GDH after anthesis) squared; and (b) the inter-
action between post-anthesis temperature treatment and calendar days after anthesis
squared. LSD (at the 5% level) and SED values are presented.

(a)

Sampling timepoint (accumulated GDH after anthesis)
Temperature treatment T1 (3440) T2 (4816) T3 (7224) T4 (9632) T5 (12040)

Control (20°C) -2.827 -3.173 -3.864 -4.667 -5.580
Elevated (28°C) -2.979 -2.401 -2.724 -4.744 -8.462

Difference (* P≤0.05) -0.152 0.772 1.140* -0.077 -2.882*

LSD 1.132 0.789 0.973 0.905 1.292
SED 0.561 0.391 0.482 0.448 0.640

(b)

Calendar days after anthesis
Temperature treatment 7 10 14 15 20 21 25 28 35

Control (20°C) -2.592 -2.827 -3.173 -3.265 -3.759 -3.866 -4.309 -4.667 -5.580
Elevated (28°C) -2.982 -2.386 -2.530 -2.733 -4.756 -5.395 -8.455 -11.478 -20.878

Difference (* P≤0.05) -0.390 0.441 0.643 0.532 -0.997* -1.529* -4.146* -6.811* -15.298*

LSD 1.477 0.977 0.868 0.886 0.929 0.929 1.179 1.758 4.372
SED 0.731 0.484 0.430 0.439 0.460 0.460 0.584 0.871 2.165

expression of LMW-glutenin transcripts. Again, there was no significant effect from the

combination of nitrogen treatment and sampling timepoint (F=0.57, P=0.455) or between

nitrogen and days after anthesis (F=0.68, P=0.414).

The elevated temperature treatment resulted in an increase in expression of the LMW-glutenin

synthesis transcript at sampling timepoint T3, and a decrease in expression at timepoint T5.

As with previous transcripts, when analysed against calendar days after anthesis there was no

significant increase in expression on any specific day attributed to the elevated temperature

treatment, only an increasing reduction in expression from 20DPA onwards.

7.2.5. Omega-gliadins

The expression of the ω-gliadin synthesis gene transcript was significantly affected by an

interaction between post-anthesis temperature treatment and sampling timepoint squared

(F=19.11, F<0.001) (figure 7.1k and table 7.6a), and by and interaction between temperature

treatment and calendar days after anthesis squared (F=12.40, F<0.001) (figure 7.1l and table

7.6b). There was no significant interaction between nitrogen treatment and timepoint (F=0.38,

P<0.001) or nitrogen treatment and calendar days after anthesis (F=0.15, P=0.705).

In the REML analysis of ω-gliadin synthesis gene expression with sampling timepoint, elevated

temperature resulted in an increase in expression at timepoints T2 and T3, and a decrease in

expression at timepoint T5. When analysed against calendar days after anthesis, expression
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Table 7.6: Predicted mean NRQ values from the REML analysis of ω-gliadin synthesis
gene expression data from the controlled-environment experiment, presented on the log
scale. (a) the interaction between post-anthesis temperature treatment and sampling
timepoint (or accumulated GDH after anthesis) squared; and (b) the interaction between
post-anthesis temperature treatment and calendar days after anthesis squared. LSD (at
the 5% level) and SED values are presented.

(a)

Sampling timepoint (accumulated GDH after anthesis)
Temperature treatment T1 (3440) T2 (4816) T3 (7224) T4 (9632) T5 (12040)

Control (20°C) -3.507 -4.959 -6.608 -7.120 -6.497
Elevated (28°C) -3.695 -4.068 -5.036 -6.405 -8.176

Difference (* P≤0.05) -0.188 0.891* 1.572* 0.715 -1.679*

LSD 0.940 0.675 0.817 0.764 1.066
SED 0.466 0.334 0.404 0.378 0.528

(b)

Calendar days after anthesis
Temperature treatment 7 10 14 15 20 21 25 28 35

Control (20°C) -2.175 -3.507 -4.959 -5.264 -6.442 -6.596 -7.040 -7.120 -6.497
Elevated (28°C) -3.687 -4.073 -4.814 -5.039 -6.406 -6.736 -8.174 -9.428 -12.916

Difference (* P≤0.05) -1.512* -0.566 0.145 0.225 0.036 -0.140 -1.134* -2.308* -6.419*

LSD 1.209 0.818 0.735 0.748 0.781 0.782 0.976 1.434 3.526
SED 0.599 0.405 0.364 0.371 0.387 0.387 0.483 0.710 1.746

was not increased on any specific day by the elevated temperature treatment, but was decreased

at 7DPA, and also from 25DPA onwards.

7.2.6. Comparison with SE-HPLC data

To relate the observations in gene expression data to the amount of protein present in the

mature grain, a linear regression analysis was completed to correlate accumulated NRQ

during grain-filling with the absolute protein content measurements from the relevant SE-

HPLC fraction. This analysis made no consideration of the different combinations of nitrogen

and post-anthesis temperature, and was run solely to verify a link between protein synthesis

gene expression, and the amount of the relevant protein in the mature grain. The coefficient

of determination (R2) and P-values from this analysis are presented in table 7.7. This analysis

found that the expression of HMW-glutenin, LMW-glutenin, and α-, β- and γ-gliadin synthesis

genes is tightly associated with the quantity of the relevant SE-HPLC protein fraction detected

in the mature grain. The expression of the ω-gliadins synthesis gene transcript was more weakly

associated with the SE-HPLC data, and was borderline significant at the 5% level.

7.3. WGIN diversity field trial experiment

As part of the WGIN diversity field trial experiment, developing grain was sampled from

Cadenza wheat plants grown under either 100kg-N/ha or 350kg-N/ha applied nitrogen in both

2016 and 2017. These two years represent years with considerable differences in temperature
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Table 7.7: Linear regression analysis comparing protein synthesis gene expression to
SE-HPLC protein fractions in the controlled-environment experiment. The coefficient
of determination (R2) and P-value from the regression analysis of accumulated NRQ
value over all five sampling timepoints and the absolute protein fraction measurements
from the SE-HPLC analysis of mature grain. SE-HPLC fraction F1 is enriched with
HMW-glutenins, F2 with LMW-glutenins, F3 with ω-gliadins, and F4 with α-, β-,
and γ-gliadins. For the two γ-gliadin transcripts analysed, the mean value of both
transcripts was used.

Gene transcript(s) SE-HPLC fraction R2 P value

HMW-glutenins F1 0.546 0.006
LMW-glutenins F2 0.523 0.008
ω-gliadins F3 0.332 0.050
α-, β-gliadins and γ-gliadins(1&2) F4 0.549 0.006

Figure 7.2: Expression of wheat storage protein synthesis genes in Cadenza
is affected by nitrogen input and varies between years in the field. Gene
expression data showing the effect of nitrogen input on spring-wheat variety Cadenza
over two years of the WGIN diversity field trial experiment on the relative expression
of six wheat grain storage protein synthesis genes over time in both calendar days
(DPA) and accumulated thermal time (GDH). Mean NRQ values for α- & β-gliadins
by (a) thermal time and (b) calendar days, average SEM 0.01458 (max 0.05159); γ-
gliadins (1) by (c) thermal time and (d) calendar days, average SEM 0.03638 (max
0.02669); γ-gliadins (2) by (e) thermal time and (f) calendar days, average SEM 0.00164
(max 0.00870); HMW-glutenins by (g) thermal time and (h) calendar days, average
SEM 0.00060 (max 0.00174); LMW-glutenins by (i) thermal time and (j) calendar
days, average SEM 0.00370 (max 0.02034); and ω-gliadins by (k) thermal time and
(l) calendar days, average SEM 0.00279 (max 0.01180). Analysis was completed on
log-transformed data, with raw data presented for clarity.

and sunlight (as discussed in chapter 3) in an effort to identify any year-to-year variation

in storage protein synthesis gene expression, and how this is affected by nitrogen supply.

Analysis was completed on Cadenza to facilitate comparisons with the controlled-environment

experiment. Grain was sampled at five timepoints through grain-filling (see section 2.3.4), with

no adjustment made for the differences in accumulated thermal time between years. Whilst not

as significant as the differences between temperature treatments in the controlled-environment

experiment, there was still a considerable difference in the thermal time accumulated by

35DPA in 2016 and 2017 (10133GDH and 11608GDH respectively). Therefore, as in the data

presented from the controlled-environment experiment in section 7.2, the gene expression

data from the WGIN field experiment will be presented in terms of both sampling timepoint

(in this instance calendar days after anthesis) and accumulated thermal time (in GDH). The

raw gene expression data from the WGIN field experiment is presented in figure 7.2, and

predictions from the appropriate REML models are presented with the relevant LSD at the

5% (p=0.05) level in tables 7.8–7.12.
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7.3.1. Alpha- and Beta-gliadins

Analysis of the α- and β-gliadin gene expression data from the WGIN diversity field trial

experiment with REML identified a significant interaction between accumulated thermal time

(in GDH) and nitrogen treatment (F=5.07, P=0.029) (table 7.8a), and between accumulated

thermal time and year of experiment (F=11.02, P=0.002) (table 7.8a), with the raw data

behind each interaction presented in figure 7.2a. No interaction was found between nitrogen

input, year of experiment, and accumulated thermal time (F=0.81, P=0.371). When analysed

against sampling timepoint (or calendar days after anthesis), an interaction was identified

between sampling timepoint and nitrogen treatment (F=5.20, P=0.027) (table 7.8c), and

between sampling timepoint squared (indication a non-linear trend) and year of experiment

(F=9.37, P=0.004) (table 7.8d). The raw data for both of these interactions are presented in

figure 7.2b. Again, no interaction was found between nitrogen input, year of experiment, and

sampling timepoint (F=0.57, P=0.455).

Regardless of the analysis approach taken (regressing against accumulated time versus against

calendar days after anthesis), the results are comparable. Comparison of the predicted means

representing the weakly significant effect from nitrogen treatment show that when compared

on a like-for-like basis (either the same sampling timepoint or the same amount of accumulated

thermal time), the difference in gene expression between the two nitrogen treatments isn’t

significant at the 5% level. However, the effect from year of experiment is stronger, with

a linear trend against accumulated thermal time which is characterised by 2017 showing

reduced expression during early grain-filling (T1–T2), but increased expression at the end

of grain-filling (T5), when compared to 2016. Whilst the results from the non-linear trend

against sampling timepoint also detected a significant decrease in expression during early

grain-filling in 2017, there was no significant increase towards the end of grain-filling.

7.3.2. Gamma-gliadins

The REML analysis of γ-gliadin (2) synthesis gene expression identified a significant inter-

action between accumulated thermal time and year of experiment (F=7.36, P=0.009) (table

7.9a and figure 7.2e) and also between sampling timepoint squared and year of experiment

(F=4.43, P=0.041) (table 7.9b and figure 7.2f). No significant interaction was found between

either nitrogen treatment and accumulated thermal time (F=2.33, P=0.133) or between ni-

trogen and sampling timepoint (F=2.15, P=0.149). Conversely, the analysis of expression

of the γ-gliadin (1) transcript failed to identify a significant effect between either nitrogen

(F=2.49, P=0.121) or year (F=3.24, P=0.078) and accumulated thermal time (figure 7.2c);

nor between nitrogen (F=2.34, P=0.133) or year (F=1.32, P=0.256) and sampling timepoint

(figure 7.2d).

The comparison of the predicted means from the non-linear relationship between sampling and

γ-gliadin (2) synthesis gene expression shows that expression was significantly lower in 2017

during early grain-filling (T1–T2), but wasn’t significantly different at any other timepoint.
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Table 7.8: Predicted mean NRQ values from the REML analysis of α- & β-gliadin
synthesis gene expression from the WGIN diversity field trial experiment, presented
on the log scale. The interaction between accumulated thermal time (GDH) after
anthesis and (a) nitrogen treatment, (b) year of experiment; (c the interaction between
sampling timepoint (or calendar days after anthesis) and nitrogen treatment; and (d)
the interaction between sampling timepoint squared and year of experiment. LSD (at
the 5% level) and SED values are presented.

(a)

Accumulated GDH after anthesis
Nitrogen treatment 2712 3916 6744 9292 11227

100kg-N/ha -10.276 -8.202 -3.337 1.049 4.378
350kg-N/ha -13.930 -10.582 -2.725 4.358 9.734

Difference (* P≤0.05) -3.654 -2.380 0.612 3.309 5.356

LSD 5.669 3.922 0.734 4.072 6.883
SED 2.807 1.942 0.363 2.016 3.408

(b)

Accumulated GDH after anthesis
Year of experiment 2712 3916 6744 9292 11227

2016 -8.225 -6.597 -2.775 0.670 3.284
2017 -15.980 -12.187 -3.286 4.738 10.828

Difference (* P≤0.05) -7.755* -5.590* -0.511 4.068 7.544*

LSD 5.669 3.922 0.734 4.072 6.883
SED 2.807 1.942 0.363 2.016 3.408

(c)

Sampling timepoint (calendar days after anthesis)
Nitrogen treatment T1 (10) T2 (14) T3 (21) T4 (28) T5 (35)

100kg-N/ha 10.940 -8.456 -4.110 0.236 4.583
350kg-N/ha -14.753 -10.828 -3.960 2.908 9.777

Difference (* P≤0.05) -3.813 -2.372 0.150 2.672 5.194

LSD 5.257 3.477 0.685 2.948 6.062
SED 2.603 1.722 0.339 1.460 3.002

(d)

Sampling timepoint (calendar days after anthesis)
Year of experiment T1 (10) T2 (14) T3 (21) T4 (28) T5 (35)

2016 -4.034 -3.177 -2.325 -2.273 -3.043
2017 -7.433 -4.922 -2.350 -2.018 -3.999

Difference (* P≤0.05) -3.399* -1.745* -0.025 0.255 -0.956

LSD 1.238 0.830 1.016 0.927 1.347
SED 0.613 0.411 0.503 0.459 0.667
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However when this data is analysed against accumulated thermal time, the level of expression

in 2017 was significantly lower during early to mid grain-filling (approximately T2–T3), but

not at the start of grain-filling (approximately T1).

Table 7.9: Predicted mean NRQ values from the REML analysis of γ-gliadin (2) synthesis
gene expression from the WGIN diversity field trial experiment, presented on the log
scale. (a) the interaction between year of experiment and accumulated thermal time
(GDH); and (b) the interaction between year of experiment and sampling timepoint (or
calendar days after anthesis). LSD (at the 5% level) and SED values are presented.

(a)

Accumulated GDH after anthesis
Year of experiment 2712 3916 6744 9292 11227

2016 -12.206 -10.190 -5.459 -1.194 2.043
2017 -17.493 -14.122 -6.212 0.920 6.332

Difference (* P≤0.05) -5.287 -3.932* -0.753* 2.114 4.289

LSD 5.590 3.867 0.724 4.015 6.787
SED 2.768 1.915 0.358 1.988 3.361

(b)

Sampling timepoint (calendar days after anthesis)
Year of experiment T1 (10) T2 (14) T3 (21) T4 (28) T5 (35)

2016 -6.647 -5.663 -4.793 -4.970 -6.227
2017 -9.540 -7.414 -5.353 -5.334 -7.421

Difference (* P≤0.05) -2.893* -1.751* -0.560 -0.364 -1.194

LSD 1.241 0.832 1.018 0.929 1.350
SED 0.614 0.412 0.504 0.460 0.668

7.3.3. HMW-glutenins

The expression of HMW-glutenin synthesis genes was significantly affected by interactions be-

tween accumulated thermal time and both nitrogen (F=4.35, P=0.042) (table 7.10a), and year

of experiment (F=15.28, P<0.001) (table 7.10b, data for both interactions presented in figure

7.2g); and also by interactions between sampling timepoint and nitrogen treatment (F=4.42,

P=0.041) (table (7.10c) and sampling timepoint squared and year of experiment (F=6.12,

P=0.017) (table (7.10d, data for both interactions presented in figure 7.2h). There were no

significant interactions found between either accumulated thermal time, nitrogen treatment,

and year of experiment (F=1.47, P=0.231), or between sampling timepoint, nitrogen, and

year (F=1.77, 0.189).

Comparison of the predicted mean NRQ values for the interactions between both nitrogen

treatment and accumulated thermal time, and nitrogen and sampling timepoint found that

although there was a significant overall effect of nitrogen, when there were no significant

differences between the two treatments when comparing at the same point in time (either

in terms of accumulated thermal time of calendar days after anthesis). However, the effect

from year of experiment was greater, with HMW-glutenin synthesis gene expression higher
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Table 7.10: Predicted mean NRQ values from the REML analysis of HMW-glutenin
synthesis gene expression from the WGIN diversity field trial experiment, presented
on the log scale. The interaction between accumulated thermal time (GDH) after
anthesis and (a) nitrogen treatment, (b) year of experiment; (c the interaction between
sampling timepoint (or calendar days after anthesis) and nitrogen treatment; and (d)
the interaction between sampling timepoint squared and year of experiment.. LSD (at
the 5% level) and SED values are presented.

(a)

Accumulated GDH after anthesis
Nitrogen treatment 2712 3916 6744 9292 11227

100kg-N/ha -13.486 -11.361 -6.373 -1.877 1.536
350kg-N/ha -15.626 -12.736 -5.955 0.159 4.799

Difference (* P≤0.05) -2.140 -1.375 0.418 2.036 3.263

LSD 4.629 3.203 0.599 3.325 5.621
SED 2.292 1.586 0.297 1.646 2.783

(b)

Accumulated GDH after anthesis
Year of experiment 2712 3916 6744 9292 11227

2016 -11.986 -10.181 -5.947 -2.131 0.766
2017 -17.127 -13.916 -6.381 0.413 5.569

Difference (* P≤0.05) -5.141* -3.735* -0.434 2.544 4.803

LSD 4.629 3.203 0.599 3.325 5.621
SED 2.292 1.586 0.297 1.646 2.783

(c)

Sampling timepoint (calendar days after anthesis)
Nitrogen treatment T1 (10) T2 (14) T3 (21) T4 (28) T5 (35)

100kg-N/ha -13.904 -11.440 -7.126 -2.813 1.500
350kg-N/ha -16.227 -12.867 -6.986 -1.105 4.776

Difference (* P≤0.05) -2.323 -1.427 0.140 1.708 3.276

LSD 4.293 2.839 0.559 2.407 4.950
SED 2.126 1.406 0.277 1.192 2.451

(d)

Sampling timepoint (calendar days after anthesis)
Year of experiment T1 (10) T2 (14) T3 (21) T4 (28) T5 (35)

2016 -7.135 -6.226 -5.384 -5.464 -6.495
2017 -9.909 -7.790 -5.605 -5.295 -6.919

Difference (* P≤0.05) -2.774* -1.564* -0.221 0.169 -0.424

LSD 1.011 0.678 0.830 0.757 1.100
SED 0.501 0.336 0.411 0.375 0.545
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in 2016 during early grain-filling (T1–T2) in both the thermal time and sampling timepoint

analyses.

Table 7.11: Predicted mean NRQ values from the REML analysis of LMW-glutenin
synthesis gene expression from the WGIN diversity field trial experiment, presented
on the log scale. (a) the interaction between year of experiment and accumulated
thermal time (GDH); and (b) the interaction between year of experiment and sampling
timepoint (or calendar days after anthesis). LSD (at the 5% level) and SED values are
presented.

(a)

Accumulated GDH after anthesis
Year of experiment 2712 3916 6744 9292 11227

2016 -11.073 -9.240 -4.938 -1.059 1.885
2017 -14.496 -11.767 -5.362 0.411 4.793

Difference (* P≤0.05) -3.423 -2.527 -0.424 1.470 2.908

LSD 4.760 3.310 0.769 3.434 5.771
SED 2.357 1.639 0.381 1.701 2.857

(b)

Sampling timepoint (calendar days after anthesis)
Year of experiment T1 (10) T2 (14) T3 (21) T4 (28) T5 (35)

2016 -10.441 -8.604 -5.389 -2.174 1.041
2017 -15.757 -12.387 -6.489 -0.591 5.307

Difference (* P≤0.05) -5.316* -3.783* -1.100* 1.583 4.266

LSD 4.508 3.003 0.756 2.559 5.191
SED 2.232 1.487 0.374 1.267 2.570

7.3.4. LMW-glutenins

The expression of LMW-glutenin synthesis was significantly affected by an interaction between

year and accumulated thermal time (F=11.63, P=0.001) (table 7.11a and figure 7.2i), and

also by an interaction between year of experiment and sampling timepoint (F=7.80, P=0.007)

(table 7.11b and figure 7.2j). There was no significant interaction between either nitrogen treat-

ment and accumulated thermal time (F=2.19, P=0.146) or nitrogen and sampling timepoint

(F=2.47, P=0.123).

The effect that year of experiment had on the expression of LMW-glutenin synthesis genes

was a reduction in expression in early to mid grain-filling (T1–T3) in 2017 compared to 2016.

However, this effect was only present in the analysis against sampling timepoint, with any

comparisons made between the nitrogen treatments at a specific accumulated thermal time

not showing significance at the 5% level.

7.3.5. Omega-gliadins

The expression of ω-gliadin synthesis genes was found to be significantly effected by both

accumulated thermal time and nitrogen treatment (F=6.23, P=0.016) (table 7.12a), and

accumulated time and year of experiment (F=11.26, P=0.002) (table 7.12b, and figure 7.2k
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Table 7.12: Predicted mean NRQ values from the REML analysis of ω-gliadin synthesis
gene expression from the WGIN diversity field trial experiment, presented on the log
scale. The interaction between accumulated thermal time (GDH) after anthesis and
(a) nitrogen treatment, (b) year of experiment; and the interaction between sampling
timepoint (or calendar days after anthesis) and (c) nitrogen treatment, (d) year of
experiment. LSD (at the 5% level) and SED values are presented.

(a)

Accumulated GDH after anthesis
Nitrogen treatmentr 2712 3916 6744 9292 11227

100kg-N/ha -8.413 -7.483 -5.302 -3.336 -1.844
350kg-N/ha -13.008 -10.406 -4.299 1.206 5.385

Difference (* P≤0.05) -4.595 -2.923 1.003* 4.542* 7.229*

LSD 5.533 3.828 0.716 3.974 6.717
SED 2.740 1.895 0.355 1.968 3.326

(b)

Accumulated GDH after anthesis
Year of experiment 2712 3916 6744 9292 11227

2016 -7.901 -6.876 -4.470 -2.301 -0.655
2017 -13.520 -11.013 -5.131 0.172 4.196

Difference (* P≤0.05) -5.619* -4.137* -0.661 2.473 4.851

LSD 5.533 3.828 0.716 3.974 6.717
SED 2.740 1.895 0.355 1.968 3.326

(c)

Sampling timepoint (calendar days after anthesis)
Nitrogen treatment T1 (10) T2 (14) T3 (21) T4 (28) T5 (35)

100kg-N/ha -8.837 -7.672 -5.634 -3.595 -1.557
350kg-N/ha -13.595 -10.557 -5.240 0.077 5.393

Difference (* P≤0.05) -4.758 -2.885 0.394 3.672* 6.950*

LSD 5.263 3.481 0.686 2.951 6.069
SED 2.606 1.724 0.340 1.461 3.005

(d)

Sampling timepoint (calendar days after anthesis)
Year of experiment T1 (10) T2 (14) T3 (21) T4 (28) T5 (35)

2016 -7.676 -6.591 -4.692 -2.793 -0.893
2017 -14.756 -11.638 -6.182 -0.726 4.730

Difference (* P≤0.05) -7.080* -5.047* -1.490* 2.067 5.623

LSD 5.263 3.481 0.686 2.951 6.069
SED 2.606 1.724 0.340 1.461 3.005
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Table 7.13: Linear regression analysis comparing protein synthesis gene expression in
Cadenza to SE-HPLC protein fractions in the WGIN diversity field trial experiment
experiment. The coefficient of determination (R2) and P-value from the regression
analysis of accumulated NRQ value over all five sampling timepoints and the absolute
protein fraction measurements from the SE-HPLC analysis of mature grain. SE-HPLC
fraction F1 is enriched with HMW-glutenins, F2 with LMW-glutenins, F3 with ω-
gliadins, and F4 with α-, β-, and γ-gliadins. For the two γ-gliadin transcripts analysed,
the mean value of both transcripts was used.

Gene transcript(s) SE-HPLC fraction R2 P value

HMW-glutenins F1 0.1573 0.202
LMW-glutenins F2 0.0619 0.435
ω-gliadins F3 0.0004 0.949
α-, β-gliadins and γ-gliadins(1&2) F4 0.1047 0.304

for both interactions); as well as by sampling timepoint and nitrogen (F=6.15, P=0.017)

(table 7.12c), and sampling timepoint and year (F=8.53, P=0.005) (table 7.12d, and figure

7.2l for both interactions). There were no significant interactions between nitrogen treatment,

year of experiment, and accumulated thermal time (F=0.69, P=0.411) or sampling timepoint

(F=0.56, P=0.458).

The effect of high (350kg-N/ha) nitrogen input was an increase in the relative expression

of the ω-gliadin synthesis gene transcript towards mid to late grain-filling (T4–T5), with

comparable results when expressed against either accumulated thermal time or sampling

timepoint. Likewise, the effect of year of experiment was comparable against both the thermal

time and the sampling timepoint analysis, with a significant reduction in expression in early

to mid grain-filling (T1–T3) in 2017 compared to 2016.

7.3.6. Comparison with SE-HPLC data

As in the controlled-environment experiment, a linear regression analysis was completed on

the gene expression and SE-HPLC data from the WGIN diversity field trial experiment, to

identify any correlation between protein synthesis gene expression and the amount of the

relevant protein present in the grain at maturity. This analysis was completed on the dataset

at a whole, with no factoring in of experimental treatments. The coefficient of determination

(R2) and P-values from this analysis are presented in table 7.13. The linear regression analysis

did not find any significant (at the 5% level) correlations between the gene expression and

SE-HPLC data for any of the storage protein synthesis gene transcripts analysed.

7.4. Discussion

7.4.1. Controlled-environment experiment

The analysis of gluten storage protein synthesis gene expression revealed that the relative

expression of these genes is affected by elevated temperature during grain-filling, and that

this affect changes as grain-filling progresses. When analysed against the sampling timepoint

(or accumulated thermal time after anthesis), five of the six transcripts measured an increase
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in expression during mid grain-filling due to elevated temperature, and all six showed a

decrease in expression by the end of grain-filling. This suggests a common effect of increased

temperature on all of the storage protein synthesis genes investigated as part of the controlled-

environment experiment, whereby increased temperature results in a greater peak in expression

during mid grain-filling followed by a sharper decrease in expression at the end of grain-filling,

confirming the findings of Altenbach et al. (2002).

Whilst analysing gluten storage protein synthesis gene expression by accumulated thermal

time, and therefore at comparable stages of development, showed that temperature increased

expression, when the data was analysed against calendar days, no such increase was found.

Comparison of the figures in 7.1 shows that when compared on a day-by-day basis as opposed

to by accumulated thermal time, the expression patterns for the two temperature treatments

appear overlaid, with little difference between the two treatments. This observation is con-

firmed by the REML analysis of the data, which failed to identify any significant difference

between the two temperature treatments during early grain-filling for any of the six storage

protein synthesis gene transcripts analysed. However, whilst there was a reduction in the differ-

ence between the temperature treatments during early grain-filling, analysing the expression

data against calendar days revealed a greater increase in the effect of elevated temperature at

mid to late grain-filling. Although this observation represents a relatively large statistically

significant difference between the two treatments, it is perhaps not a particularly valid nor

useful observation to make. Whilst the predictions presented in tables 7.1–7.6 report dramati-

cally increasing differences between the two temperature treatments up to 35DPA, it must be

remembered that past 25DPA these predictions are projections that reach beyond the time

period from which samples were collected from plants grown under the elevated temperature

treatment. In fact, at 35DPA plants subjected to the elevated temperature treatment were at

full harvest maturity.

In light of previous work (Wan et al. 2014), it was expected that there would have been

a significant effect of nitrogen input on gluten storage protein synthesis gene expression.

However, the mRNA expression results from the controlled-environment experiment fail to

identify a significant response to nitrogen input to any of the six storage protein synthesis

transcripts analysed. This is perhaps surprising, since the nitrogen treatments used in the

controlled-environment resulted in significant differences in protein content and composition

(chapter 6), grain protein distribution (chapter 5), and grain yield and associated components

(chapter 4). Furthermore, since the elevated temperature treatment had a significant effect

on all protein synthesis gene transcripts analysed, the lack of a significant effect from the

nitrogen treatments cannot be attributed to excessive variation in the data. Therefore it is

likely that this negative result is a genuine reflection of the minimal difference between the

high and low nitrogen treatments used (discussed further in section 4.4.1).

Since the analysis of mRNA expression data identified a positive effect on the expression
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of storage protein synthesis genes, it is useful to compare this data to the protein content

and composition data (presented in chapter 6) to identify and concurrent responses. Across

all of the six protein synthesis gene transcripts analysed, a similar response to elevated

temperature was apparent: an earlier peak in expression (relative to accumulated thermal

time), followed by sharper drop in expression. The effect of this increase in gene expression

at mid grain-filling can be observed in the grain protein content results (figure 6.1), whereby

grain protein content increases from mid grain-filling onwards under the elevated temperature

treatment only. Although in this dataset the drop in expression observed in the elevated

temperature treatment is not represented, it may be that by this point in grain-filling this

drop in expression is inconsequential, as the majority of protein present at maturity has

already been produced. Whilst it is possible to make such casual observations, it must be

considered that protein content is a product of both the amount of protein present and the

dilution of that protein with other cellular components, and therefore is not the best measure

of the physical amount of protein present within the grain. However, the SE-HPLC analysis

completed on the mature grain from this study does provide an absolute measurement of

protein, and furthermore provides quantification of the different protein groups present. In

the linear regression analysis of gene expression and SE-HPLC data (presented in table 7.7),

clear correlations where identified between the level of gene expression and the amount of the

relevant storage protein in the mature grain. This adds confidence to the findings of both the

mRNA expression and SE-HPLC analyses completed as part of the controlled-environment

experiment, since it shows that the amount of protein present in the mature grain is a product

of the expression of the relevant synthesis genes.

7.4.2. WGIN diversity field trial experiment

Analysis of the mRNA expression data from the WGIN diversity field trial experiment iden-

tified the effect of season-to-season variation and different nitrogen input levels on wheat

grain storage protein synthesis genes in Cadenza. In contrast to the controlled-environment

experiment, the results were comparable whether analysed against accumulated thermal time

or sampling timepoint. This is to be expected, since the difference in average temperature

between the two years of the field experiment was small in comparison to the difference

between the temperature treatments applied in the controlled-environment experiment. As

a result there was a minimal difference between years in the accumulated thermal time at

each sampling timepoint. Therefore, only the analyses of gene expression in relation to sam-

pling timepoint (calendar days after anthesis) will be discussed, since these results are based

on actual datapoints with no predictions or extrapolation beyond the bounds of measure-

ment.

The effect of year on the expression of storage protein synthesis genes was generally a reduction

in expression early in grain-filling in 2017 when compared to 2016. This effect was observed in

all of the gene transcripts analysed with the exception of γ-gliadin (1), from which the SEM

of the data was particuarly high, signifying an excessively variable dataset. In the case of the
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α- and β-gliadins, γ-gliadin (2), and HMW-glutenin transcripts, a non-linear response was

identified over time, with gene expression in 2017 lower at the start and end of grain-filling, but

comparable at mid grain-filling (T3–T4). Again, as in the effect of the elevated-temperature

treatment in the controlled-environment experiment, the effect of year in the field experiment

is conserved across all gene transcripts, suggesting a shared response.

Of the six storage protein synthesis genes analysed, the transcripts for α- and β-gliadins, HMW-

glutenins, and ω-gliadins showed a significant response to an increase in nitrogen input (from

100kg-N/ha to 350kg-N/ha). However, when the mean NRQ values were compared with the

LSD at the 5% level, only the expression of the ω-gliadin transcript was significantly different

between the same sampling timepoint. In this instance, the high nitrogen treatment resulted in

an increase in the relative gene expression, but only at the end of grain-filling (T4–T5). Since

these comparisons between gene expression measurements at the same sampling timepoint

are the most relevant comparisons to make, only the results of the ω-gliadin transcript should

be interpreted with a degree of confidence. As in the results from the controlled-environment

experiment, this lack of a strong effect of nitrogen input on gene expression is unexpected.

However, unlike in the controlled-environment experiment, the lack of a significant response

to nitrogen input unlikely to be due to the treatments applied, since the difference between

100kg-N/ha and 350kg-N/ha is considerable, resulting in significant differences in grain yield

(figure 4.7a), nitrogen content (figure 6.12b), and protein composition (figure 6.15 and 6.18).

Rather, it is likely that these results are due the variability inherent in data collected from

field-grown plants.

Comparison of the raw gene expression data presented in figure 7.2 with the data from the

controlled-environment experiment (figure 7.1) shows some dramatic differences. Whilst all six

gene transcripts show similar expression patterns in the controlled-environment experiment

(an early peak in expression that rapidly drops off as grain-filling progresses), there are no

such patterns present in the data from the field experiment. Again, this is likely a product of

the variability of field-grown samples, and may go some way to explaining the weak results

from this experiment.

Perhaps most detrimental to the reliability of the conclusions made from the gene expression

results from the WGIN diversity field trial experiment is in the results of the linear regression

analysis between protein synthesis gene expression and the SE-HPLC data (see table 7.13).

Whilst in the controlled-environment experiment the results from this analysis identified a

close relationship between the abundance of each protein in mature grain with the expression

of the equivalent synthesis gene, no such correlation was found for any of the gene transcripts

analysed in the WGIN diversity experiment (see table 7.13). However, it should be noted that

these negative results are a combination of the quality of both the SE-HPLC and the mRNA

expression analysis data.
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Chapter 8: General discussion

Climate change is perhaps the greatest challenge to ever face mankind, and to date little

action has been made to counter the negative effects it will have on our planet. The danger

posed by climate change is not only due to the general increase in global temperature, but

also due to the predicted increase in the frequency of extreme weather events such as droughts

and heatwaves (Hennessy et al. 2008). The effect of these localised events will be detrimental

to agriculture (Parry et al. 2004; Lobell et al. 2007; Wheeler et al. 2013; Rosenzweig et al.

2014), and in the context of wheat production will result in decreased yield (Altenbach et al.

2003; Gooding et al. 2003; Shah et al. 2003) and changes to grain quality and protein content

(Gooding et al. 2003; Dupont et al. 2006b; Dupont et al. 2006a; Yang et al. 2011). When the

issue of climate change is combined with a rapidly growing population, a perfect storm is

created whereby more food must be produced in increasingly hostile conditions. This issue

presents an even greater challenge when considering the likelihood that regulatory efforts

to minimise the environmental impact of agriculture will limit both the chemical inputs on

which crop production is so heavily dependant and also the amount of new land that can

be converted to agricultural use. Therefore, in the near future crop researchers and breeders

must produce crops which tolerate extreme climactic conditions, and are able to produce

higher yields under lower inputs of fertilisers and pesticides, without sacrificing quality.

The edible product of the wheat crop is its grain, a single-seeded fruit which is rich in protein

and carbohydrates and contains a large starchy endosperm encased within the aleurone and

bran layers. During milling for the production of white flour, the endosperm tissue is separated

from the aleurone and bran layers, and ground to a fine powder. In the UK, the most popular

wheat product is bread produced from white flour, and so understanding how the composition

of the wheat endosperm is likely to be effected by climate change is of great importance. To

this aim, this PhD thesis analysed wheat grain grown both in controlled-environment and in

the field to identify the effects of climate, temperature, nitrogen input, and genotype on the

distribution of storage protein within the endosperm, the protein composition and related

gene expression, and on the yield and yield components of the wheat crop.

The distribution of protein within the wheat endosperm isn’t homogeneous, and it has long

been observed that there is a gradient in protein, with a higher concentration of protein towards

the outside of the grain (Cobb 1905). This distribution gradient results in the production of

mill streams with different protein content, and therefore backing quality (Wang et al. 2007),

and, since the extraction rate of endosperm from aleurone and bran layers is never 100%,

also results in a disproportional amount of protein being removed with the aleurone layer

during milling. Therefore any factors that result in an increase in this protein distribution

gradient, i.e. more protein positioned closer to the aleurone layer, would result in a decrease

in the amount of protein recovered in the production of white flour. Since previous studies
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on the distribution of protein within the wheat endosperm use low-throughput techniques,

one of the aims of this study was to develop a high-throughput method for the quantification

of protein distribution gradients in microscopy images. Once developed, this method (Savill

et al. 2018) was used to generate data on both the gradient in total protein concentration, and

the size-distribution of individual protein bodies within the endosperm. In addition to the

analysis of protein distribution in the endosperm, measurements were taken for grain yield

and yield components, protein content and composition, and for storage protein synthesis

gene expression.

This thesis reports the results obtained from plant material from two experiments, a controlled-

environment study, and from three years of the ongoing WGIN diversity field trial experiment.

The controlled-environment experiment was planned to recreate the effect of a prolonged

heatwave during grain-filling, and to identify any interactions that may exist with the supply

of nitrogen to the plants prior to anthesis. Whilst the controlled-environment experiment

included a single wheat variety (Cadenza), grain was sampled from four varieties from the

WGIN diversity field experiment. The aim of the WGIN field experiment was to identify

the effect of year-to-year climactic variation (primarily with regards to average temperature

during grain-filling) and nitrogen fertiliser regime on a range of wheat genotypes, with high-

protein bread-making wheat varieties Hereward and Cadenza, early-flowering Soissons, and

low-protein feed wheat Istabraq all sampled over three years of field experiments. This general

discussion chapter discusses key findings (section 8.1), limitations of the study (section 8.2),

proposes topics for further investigation (section 8.3), and provides a conclusion of the study

(section 8.4), as well as some more general concluding remarks (section 8.5).

8.1. Key findings

Elevated temperature during grain-filling and increased nitrogen supply increase

the gradient in protein concentration across the wheat endosperm. A novel finding

of the controlled-environment experiment was that increased temperature during grain-filling

results in an increase in the gradient of protein in the wheat grain, with more protein concen-

trated in the outer layers of the endosperm (Savill et al. 2018). Furthermore, an interaction

with the amount of nitrogen supplied during vegetative growth was identified, whereby high

nitrogen input resulted in a minimal increase in the protein distribution gradient under con-

trol (20°C) temperatures, but a considerable increase under elevated (28°C) temperatures. A

similar effect of nitrogen input on the grain protein distribution gradient was also identified

in the WGIN diversity field experiment, with greater gradients in grain grown under the high

(350kg-N/ha) nitrogen treatment. As part of the field experiment, samples from 2015 and 2017

were analysed for grain protein distribution gradients, and although the difference between

these two years was minimal, there was generally a slight increase in the response to nitrogen

in 2017, the warmer of the two years. In summary, these findings predict the effect that a

prolonged heatwave during grain-filling is likely to have on the protein distribution within the

wheat grain endosperm: the increased temperature will result in more protein concentrated
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in the endosperm closest to the aleurone layer, but decreasing the input of nitrogen prior to

anthesis may negate this effect to a certain degree. Although predicting a heatwave during

grain-filling is impossible at the point of nitrogen application, this information may be useful

in years where there is a higher chance of increased summer temperatures, for example in co-

incidence with El Niño/the North Atlantic Oscillation weather phenomena, which has already

been linked to the performance of wheat crops in the UK (Kettlewell et al. 2003).

The size-distribution of protein bodies in the wheat endosperm is affected by

nitrogen supply. The gradient in total protein concentration across the wheat endosperm

is accompanied by a gradient in the average size of protein bodies. Whilst previous work has

identified a link between the differences in average protein body size in the outer and inner

endosperm due to drought (Chen et al. 2016), the present study is the first to show a link with

nitrogen fertiliser input and protein body size-distribution (Savill et al. 2018). These results,

from both controlled-environment and field experiments, demonstrate that increasing nitrogen

supply results in an increase in the gradient in protein body size-distribution (see figures

5.2 and 5.3). Although the effects of post-anthesis temperature and year-to-year climatic

variations were also investigated, the effect of these factors was either largely inconsistent, or

too small to provide robust conclusions. The effect of elevated temperature on protein body

size-distribution in the controlled-environment experiment was particularly inconsistent, with

the effect of temperature apparently reversing between the two sampling timepoints. Therefore

it is impossible to accurately summarise the effect of elevated temperature on protein body

size-distribution. However, the effect of nitrogen input is consistent across both controlled-

environment and field experiments, and by analysing the histograms representing the protein

body size-distribution data it is apparent that the effect of increased nitrogen supply is an

increase in the relative abundance of the smallest protein bodies within the central endosperm.

These small protein bodies are likely newly formed, and an increase in their abundance could

signify an increase in the initiation of new protein bodies. However, since the protein body size-

distribution analysis is unable to generate reliable absolute quantitative data, it is not possible

to specify the causes of these changes in size-distribution with any degree of confidence, i.e.

the increase in the relative abundance of the smallest protein bodies in the inner endosperm

could be due to either an increase in the number of small protein bodies, or due to a decrease

in the number of larger protein bodies. Regardless, the significance of these results is that

they provide further insight into the process of protein accumulation in the wheat endosperm,

and how this process is affected by the supply of nitrogen to the plant.

Grain storage protein accumulation varies between genotypes. Whilst the total pro-

tein concentration and protein body size-distribution gradient analyses identified general

effects of elevated temperature and nitrogen input, there were also differences observed be-

tween the four varieties sampled as part of the WGIN diversity field trial experiment. These

four varieties were the NABIM group one bread-making wheat Hereward, group two bread-

making wheats Cadenza and Soissons, and the low-protein group four feed wheat Istabraq.
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With regards to the gradient in total protein concentration, Istabraq showed the least dif-

ference in protein concentration across the endosperm, and also the smallest response to

increased nitrogen fertiliser input. Conversely, the high-protein varieties Cadenza and Here-

ward recorded the largest protein concentration gradients, as well as the greatest response to

nitrogen input. The differential responses to nitrogen input showed by each genotype were

largely replicated in the protein body size-distribution results, with the largest response to

increased nitrogen input recorded in Cadenza, and with Istabraq failing to show any response

to nitrogen input. These results suggest a relationship between total grain protein content,

and the gradient in the distribution of this protein within the grain.

Grain protein content is increased by nitrogen fertilisation and high temperatures

during grain-filling. The protein content (as percentage dry matter) of mature wheat

grain was increased by both increased temperatures during grain-filling and by increased

nitrogen supply prior to anthesis in the controlled-environment, with an interaction between

temperature and nitrogen supply whereby increased nitrogen input had a greater effect on

grain protein content when temperatures were increased during grain-filling. In the field

experiment grain protein content was higher in warmer years, as well as in plants provided

with the high (350kg-N/ha) nitrogen treatment, however no interaction between year of

experiment and nitrogen treatment was identified. This effect of temperature and nitrogen

supply on wheat grain protein content is already well know, with the result of this study

adding to the findings of numerous other studies (Nakano2008; Dupont et al. 2006b; Kindred

et al. 2008).

Year-to-year variation in grain protein content is determined by genotype. Whilst

there effect of increasing nitrogen supply on the protein content of the mature grain was

similar in each of the four varieties sampled in the WGIN diversity field experiment, these

effects were more consistent between years for certain genotypes. Consistency between years

is a particularly useful trait, and is often marks the difference between NABIM group one

and group two bread-making wheats, whereby group one wheats are most consistent in their

performance. Therefore such consistency is importance, since it stabilises the income of farmers

and provides a consistent product from which millers can produce flour. Of the four genotypes

examined in the field experiment, Istabraq was the most consistent in terms of grain protein

content at maturity, closely followed by Cadenza, whilst the grain protein content of Hereward

was unexpectedly low in 2016. This result is even more intriguing since the grain yield of

Hereward in 2016 was the highest of all four genotypes. Therefore, Hereward may be unique

in its performance in 2016, a year of high rainfall, moderate temperatures, and low sunlight,

an effect that may be worthy of further study. Whilst Hereward would be expected to be

consistent between years as a NABIM group one bread-making wheat, it should be noted

that Hereward was removed from the HGCA (now AHDB) list of recommended winter wheat

varieties in 2011.
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Grain protein composition is affected by nitrogen input and post-anthesis tem-

perature. The protein composition (as measured by SDS-PAGE and SE-HPLC) results

generated in this study were generally inconsistent, with either a lack of significant differ-

ences between treatments, or contradictions between the two methods of analysis or between

the two experiments. The effect of the elevated temperature treatment in the controlled-

environment experiment only identified one significant results from both SDS-PAGE and

SE-HPLC analyses: increased temperature during grain-filling increases the relative abun-

dance of HMW-glutenin proteins, which confirms the findings of Hurkman et al. (2013).

With regards to the effect of nitrogen, there was a greater degree of correlation between the

controlled-environment and field experiment results. In both experiments, increased nitrogen

input resulted in an increase in the proportion of α-, β-, and γ-gliadins, ω-gliadins, but a

decrease in the proportion of LMW-glutenins, again supporting the findings of Hurkman

et al. (2013) and Wan et al. (2014). Between the years of the WGIN diversity field trial

experiment, the only significant effect was on the relative abundance of ω-gliadins as detected

by SE-HPLC, which was lowest in 2015, and highest in 2017. However the significance of this

effect was borderline (P=0.040). Whilst these results provide some insight to the effects of

elevated temperature during anthesis, year-to-year variation in the field, and nitrogen supply

on the protein composition of the wheat grain, it does not provide a complete picture of

how these factors impact on the accumulation of individual proteins. Due to the numerous

contradictions and inconsistencies in theese protein composition results, the analysis of grain

gluten content and gluten quality derived from the comparison of SE-HPLC fraction data

are perhaps more relevant for predicting the bread-making quality of grain sampled in this

study.

Wheat bread-making quality is improved by high temperatures and increased ni-

trogen input. In terms of grain protein, the determining factors of bread-making quality are

gluten content, and the quality of that gluten (Haddad et al. 1995; Sapirstein et al. 1998).

Under both field and controlled-environment conditions, gluten content was increased at

higher levels of nitrogen input, confirming previous reports (Malik et al. 2011; Moldestad

et al. 2014). Additionally, in the controlled-environment experiment, elevated temperature

was found to increase grain gluten content, again confirming previous work (Malik et al. 2011;

Moldestad et al. 2014; Tao et al. 2018). This increase in gluten content was accompanied by

an increase in gluten quality as determined by the comparison of SE-HPLC fractions F1/F2

(the ratio between HMW- and LMW-glutenins) and (F3+F4)/F1 (the ratio between gliadins

and HMW-glutenins), presented in figure 6.9, a comparison that can be used as a predictor of

bread-making quality (Millar 2003). These results indicate that bread-making quality is im-

proved when temperatures are increased during grain-filling, and also that increasing nitrogen

input greatly improves bread-making quality under control temperature conditions, but only

slightly improves it when temperatures are higher. These results suggest that nitrogen input

is less of a determinant of bread-making quality under high temperatures, and show that
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lowering nitrogen input to reduce the gradient in grain protein distribution when temperatures

are high during grain-filling would not be to the detriment of bread-making quality.

Expression patterns of gluten storage protein synthesis genes in Cadenza are

altered by elevated temperature during grain-filling under controlled-environment

conditions. For the six gluten storage protein (α- and β-gliadins, γ-gliadins (1 and 2), HMW-

glutenins, LMW-glutenins, and ω-gliadins) synthesis gene transcripts analysed in spring wheat

Cadenza, a common response to elevated temperature was identified: gene expression reaches

a higher, earlier peak, before dropping off more rapidly towards the end of grain-filling, a

response previously described by (Altenbach et al. 2002). The gene expression from the

controlled-environment was analysed both in terms of sampling timepoint (equivalent to

accumulated thermal time) and in terms of calendar days. With the adjustments for thermal

time removed from the analysis, the effect of temperature treatment largely disappear, with the

exception of predictions that reach beyond the limits at which measurements were taken from

plants grown under the high temperature treatment (i.e. predictions after 25DPA). Therefore

the analysis of gene expression against sampling timepoint is perhaps the most relevant

interpretation of the data, and shows how increased temperature increases the expression of

genes involved in gluten protein synthesis in early to mid grain-filling, before reducing it at the

final sampling timepoint of grain-filling. To add confidence to the validity of these results, the

linear regression of accumulated gene expression data with the absolute measurements of the

relevant SE-HPLC fractions showed strong correlations between all of the protein synthesis

genes analysed and the amount of the respective protein present in the grain. No significant

difference in storage protein synthesis gene expression was identified between the two nitrogen

treatments applied, a results that is likely due to the minimal difference between the low and

high nitrogen treatments used in this experiment.

Gluten synthesis gene expression in of field-grown Cadenza varies from year-

to-year, and is affected by nitrogen input. In 2017, the expression of gluten storage

protein synthesis gene transcripts during early to mid grain-filling was lower than in 2016.

However, the effect of nitrogen was less pronounced, and although significant interactions were

identified between nitrogen treatment and the expression of α- and β- gliadin, HMW-glutenin,

and ω-gliadin transcripts, direct comparisons between sampling timepoints revealed that the

only significant differences at the 5% level were from the expression of ω-gliadins, which was

increased at the later stages of grain-filling, supporting the previous findings of Wan et al.

(2014). Comparison of the expression patterns from the field-grown material (presented in

figure 7.2) with the somewhat uniform expression patterns from the controlled-environment

experiment (figure 7.1) give some indication of the reason behind the lack of significant

results from the mRNA expression analysis of the WGIN diversity field trial grain. The

expression patterns from the field-grown wheat are erratic, an observation supported by the

linear regression analysis between the gene expression and SE-HPLC protein data, which fails

to find any significant correlations between the two datasets. The most likely explanation
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between the unreliability of these results is the variation which is inherent in field-grown

plants. A limitation that is always difficult to overcome in field-based experiments.

Grain yield is increased by nitrogen fertilisation, and reduced by higher tempera-

tures during grain-filling. In both the field and the controlled-environment experiments,

yield was increased by providing more nitrogen to the plants, and was reduced under both the

elevated temperature treatment in the controlled-environment experiment and in the warmer

years of the field trial, effects which have been reported many times before (Thorne et al.

1987; Mitchell et al. 1993; Kindred et al. 2008). To explain the effect of temperature and

nitrogen on grain yield in the controlled-environment experiment further, TGW was measured.

In the analysis of data from the controlled-environment experiment, it was determined that

the reduction in grain yield due to the elevated temperature treatment could be principally

attributed to a reduction in grain size (TGW). However, it was also apparent that whilst

limiting nitrogen supply reduced TGW, it also reduced number of grain produced, and as

such the reduction in grain yield under the low nitrogen treatment was a product of fewer,

smaller grain being produced.

Limiting nitrogen supply produces shorter grains, and elevated temperature dur-

ing grain-filling produces narrower grains. Grain from the controlled-environment ex-

periment was analysed for area, length, and width to identify the effect of elevated temperature

during grain-filling and nitrogen supply on grain morphology. Whilst the measurements for

grain area approximated the TGW results, the grain length and width measurements showed

differential responses to the temperature and nitrogen treatments: grain length increased 3%

under the high nitrogen treatment (contary to the findings of Kindred et al. (2008)), and

grain width was reduced by 12% by the elevated temperature treatment. The difference in

grain width due to increased temperature is particularly relevant, since the increase in protein

distribution gradients observed in grain subjected to the elevated temperature treatment

are potentially a product of the reduced girth of these grain, which effectively reduces the

distance over which the protein distribution gradient is established, resulting in a steeper

gradient.

Early-flowering Soissons achieved lower yields and produced smaller grain in

2016 than 2015. French bread-making wheat Soissons was included as part of the WGIN

diversity field trial experiment since as a photoperiod-insensitive variety it reaches anthesis,

and therefore begins grain-filling, considerably earlier than the other varieties used in the

experiment (see table 3.1). As a result, in 2016 Soissons accumulated less thermal time than

Cadenza, whilst in 2015 a comparable amount of thermal time was accumulated over the

first 35 days of grain-filling (see figure 3.5). Soissons was included in this study in an effort

to identify any effects that this early-flowering phenotype might have both during grain-

filling and at maturity. However due to the lack of any form of control, it is impossible to

attribute any differences between the performance of Soissons and other wheat genotypes to
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its early-flowering phenotype alone. Therefore only a casual summary of potentially relevant

observations are presented. Additionally, since no samples were available from Soissons har-

vested at maturity in 2017, only the differences between 2015 and 2016 can be made. With

regards to the differences in accumulated thermal time for Soissons and the other genotypes

in 2016 compared to 2015, the most relevant observation is the fact that Soissons achieved

the lowest in 2016, compared to the second lower grain yields in 2015. Additionally, Soissons

was the only variety that recorded lower TGW in 2016 compared to 2015, producing much

smaller grain in 2016 than the other varieties. In summary, whilst it is impossible to assign

a causation, Soissons did appear to suffer in 2016, producing smaller grain, and ultimately

achieving a lower yield.

8.2. Limitations of the study

Whilst this thesis presents novel findings on the factors that affect the distribution of protein

in the wheat endosperm, there are limitations both in these findings and in the results of

the protein composition and gene expression analyses presented. These limitations include

compromises made in both the design of experiments, and in the processing and analysis of

samples.

The biggest compromise made in the design of the controlled-environment experiment is the

lack of replication of the whole experiment. Since only two controlled-environment rooms

were used for the experiment, one for the control and one for the elevated temperature

treatment, it could be argued that any effects observed in plants subjected to the elevated

temperature treatment are as a result of the different room used rather than any treatment

applied. To remove any room-effect, the entire experiment should have been repeated with

the controlled-environment rooms switched. However this approach would be prohibitively

expensive, and since the two rooms used in this experiment were both high-quality modern

controlled-environment room of identical specification, the author is confident that any differ-

ence observed between the two rooms can be accounted for by the difference in temperature

alone. A limitation that impacted on the results of the experiment, and was not apparent

at the time the experiment was run, was the limited difference between the two nitrogen

treatments used. A “nutrient poor” potting mix was used in this experiment, with a full and

one-tenth strength liquid nitrogen fertiliser applied periodically during vegetative develop-

ment. This combination of potting mix and nutrient solution has been used to greater success

by Derkx (2013), however it is likely that the chemical composition of the potting mix is not

tightly controlled, resulting in a greater amount of nitrogen being supplied to the plants than

anticipated. As a result, there was no visual difference between the plants supplied with the

low nitrogen treatment and the plants supplied with the high nitrogen treatment. However,

the leaf chlorophyl content analysis completed on plants at the time of anthesis did show a

minimal, yet statistically significant, difference in the chlorophyll content of the plants of each

nitrogen treatment (see in section 4.2.5).
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The WGIN diversity field trial was used to provide grain samples from four wheat varieties

over three years of field trials (2015–2017), in an effort to identify how the response to nitrogen

fertiliser varies between difference genotypes over multiple years. However, due to the variable

nature of data collected from field-based experiments it was often difficult to draw conclusions

from the data. This variability was also likely exacerbated by the fact that the field trial

was hosted on a different site each year. Regardless of any issues surrounding the variability

of samples collected, the purpose of running a multi-year field experiment was to identify

the effect of temperature variation between years on the process of grain-filling. However,

any differences between years cannot be attributed solely to differences in temperature as in

the controlled-environment experiment, but rather could be due to any number of factors,

including other climatic conditions, the prevalence of pests, lodging, and variation in the

nutritional composition of the soil in each field. Therefore any comparisons of the results

between years can only be made on a speculative basis, and never attributed to a single

factor such as temperature during grain-filling. However, whenever supporting evidence is

available from the controlled-environment experiment, the validity of such comparisons is

increased. A final limitation relating to the used of the WGIN diversity field trial experiment

during this study relates to the scope of the sampling completed. The WGIN diversity field

trial has run since 2004, and included 20–30 commercial wheat varieties grown under one of

four different levels of applied nitrogen fertiliser. Due to time constraints, only four of the

available genotypes were sampled, under two of the four nitrogen treatments. Analysing more

genotypes grown under more levels of nitrogen fertiliser would have added to the results, and

may have provided some interesting exceptions to the results presented in this thesis.

A limitation in the sampling method employed in both the controlled-environment and the

WGIN field trial experiment was the frequency with which samples were collected for mi-

croscopy analysis. Whilst gene expression and protein content data was easily generated

from all five of the sampling timepoints used, this was not possible with the light-microscopy

analysis. As a result, light-microscopy images were only analysed at two timepoint in the

controlled-environment experiment, and at a single timepoint in the field experiment. This is

due to the narrow time-frame from which developing grain can be processed and sectioned.

Grain sampled too late will not section cleanly, and grain sampled too early will contain

insufficient protein to analyse. In hindsight, grain should have been sampled more frequently

than every seven days for microscopy analysis, allowing for a true timecourse analysis of grain

protein accumulation over time. Likewise, the loss of a years worth of field experiment samples

due to improper processing reduced the size of the potential dataset by a third, decreasing

the changes of identifying a year effect on grain protein distribution.

Although the combination of image analysis and light-microscopy produced a large, reliable

dataset which characterised both the gradients in protein concentration and size-distribution

of protein bodies in the wheat endosperm, due to the limitations imposed by the processing of

plant tissue for light microscopy analysis, only developing grain could be analysed. Whilst the
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grain processed for light-microscopy analysis was sampled as late in grain-filling as possible to

produce good quality microscopy images, the images which were analysed were not of mature

grains. Therefore the observations made on the protein distribution gradients in these grain

must be extrapolated to made assumptions on mature grain. Although this is an obvious con-

cern, the results of the grain concentration gradient analysis from the controlled-environment

experiment was completed on grain sampled at two timepoints during development, and the

effects observed increase between the early and later timepoint, suggesting that the obser-

vations are likely to be preserved until the end of grain-filling. This observation, combined

with previous studies demonstrating the presence of a protein distribution gradient in mature

grain (Cobb 1905; Kent 1966; He et al. 2013), provide a certain level of confidence that the

observations made at mid to late grain-filling as part of this study are applicable to mature

grain.

With regards to the methods of analysis chosen for the grain samples collected, analysing

protein composition and associated gene expression in whole-grain flour samples isn’t relevant

to the distribution of these proteins within the endosperm. Whilst the protein composition

and gene expression data presented in this thesis is an interesting addition to the microscopy

analysis of grain protein distribution, it did not investigate the nature of protein distribution

in the wheat grain endosperm. Suitable alternatives to the protein composition and gene

expression analysis approach taken in this study would have been the application of the

image-analysis software used in this study on immunofluorescence-microscopy and in situ

hybridisation images respectively to investigate the spatial distribution of specific proteins,

and related gene expression (as discussed in section 8.3). Such an approach would allow for

the quantification of gradients in different storage proteins, and also the spatial analysis of

gene expression related to the synthesis of these proteins.

8.3. Future work

The greatest scope for work continuing on from this study is in the further application of

the image analysis software method that was developed for the quantification of protein

distribution gradients (Savill et al. 2018). Whilst this method was used to measure gradients

in both total protein concentration and protein body size-distribution, it can be applied to

any images in which there is clear contrast between areas of interest and background. Without

any adaptation, this image analysis technique could be used to quantify (either spatially or

generally) any number of cellular components within microscopy images. In the context of

furthering the finding presented in this thesis, however, the most relevant applications would

be in the spatial analysis of immunofluorescence-microscopy and in situ hybridisation images

of wheat endosperm tissue.

Since different wheat storage proteins are known to show different distribution patterns across

the endosperm (Wang et al. 2007; Tosi et al. 2011; He et al. 2013; Wan et al. 2014), an

obvious continuation of the present study would be to use immunofluorescence microscopy
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to investigate how climate, temperature, and nitrogen input affect the distribution of the

different storage proteins. Such work has already been completed on ω-gliadins, with Wan et

al. (2014) showing that increased nitrogen input results in an increase in the accumulation of

ω-gliadins in the outer endosperm. The high-throughput analysis technique presented in this

study was tested on immunofluorescence-microscopy images during its development, and is a

suitable means to generate data on the distribution of individual storage proteins identified

through immunofluorescence microscopy.

Another application of the image analysis technique developed would be in the spatial analysis

of gene expression through the analysis of in situ hybridisation images. Such an approach

could be used in experiments similar to those conducted by Drea (2005) and Wan et al. (2014),

and could facilitate much larger studies on the localisation of gene expression within the wheat

endosperm. As an extension to the present study, in situ hybridisation could be used to link

gene expression data with protein distribution data, something that was not possible with the

approach taken here. When completed in combination with immunofluorescence microscopy,

such a study could provide a complete picture of the synthesis and accumulation of different

gluten storage proteins within the wheat endosperm.

In terms of furthering the present study, and adding to the dataset of grain protein gradients

measured from light-microscopy image, there is definite value in continuing to analyse the

gradients in grain protein from subsequent years of the WGIN diversity field trial. Adding

data from additional years would facilitate the application of multivariate analysis, which

could statistically identify the effect of individual climatic factors, including hours of sunlight,

temperature, and rainfall. Furthermore, collecting data from more years increases the chances

of capturing data during an extreme weather event, such as the record-breaking heatwave

experienced in the UK in 2018. In addition to continuing this experiment over future years,

the number of genotypes sampled could be increased, and samples could be collected from

all four nitrogen treatments (0kg-N/ha, 100kg-N/ha, 200kg-N/ha, and 350kg-N/ha). The

expansion and continuation of this experiment would certainly add to the results already

produced, and might aid in identifying genotypes that are more resistance to the increased

temperatures expected to be commonplace in the future.

A more practical analysis of the impact of differences in the distribution of protein in the

endosperm with regards to the quality of the mature grain would be to employ experimental

milling techniques. Whilst pearl-milling was used by He et al. (2013) to identify a response to

nitrogen input in the distribution of both total protein and individual protein groups in the

wheat grain, this technique isn’t comparable to commercial milling. The use of an experimental

roller mill (a miniature version of a commercial mill), as used by Wang et al. (2007), produces

multiple mill streams which are more analogous to those produced in a commercial mill,

with true bran-separation, and the production of flour enriched with different parts of the

grain. Analysing the effect that nitrogen input and temperature during grain-filling have on
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the behaviour of grain in an experimental mill would provide more applicable information to

millers and bakers, and is another logical succession to the information presented in this thesis.

However, experimental milling requires large grain samples, which whilst not an issue for field-

based experiments, could render controlled-environment experiments prohibitively expensive.

As a continuation of experimental milling, test-loaves of bread could be baked to test for

bread-making, rather than relying on predictions based on the results of SE-HPLC protein

composition analysis which only consider the role of protein composition as a determinant of

bread-making quality.

With regards to the effects that climate change will have on the quality of wheat grain in the

future, the present study focusses solely on an increase in temperature during grain-filling.

However, climate change will also bring about an increase in the likelihood of drought, and

is closely associated with increased levels of atmospheric CO2. Both of these factors are

also know to have an effect on wheat, with drought reducing yield (Shah et al. 2003) and

altering protein content (Altenbach et al. 2003; Yang et al. 2011), and increased CO2 linked

to an increase in yield (largely due to an increase in starch accumulation) and a reduction

in bread-making quality (Fernando et al. 2015). Since there are known interactions between

elevated temperature, drought, and increased levels of atmospheric CO2 on the physiology

of the wheat plant, it would be interesting to investigate how these factors also affect grain

protein distribution.

8.4. Conclusion of experiment

Although the effects of climate change will be unprecedented and indiscriminate, thanks

to decades of research, they will not take the scientific community by surprise. To support

a growing population under increasingly difficult circumstances, agricultural research must

continue to focus on producing resilient crops which are able to withstand extreme conditions

whilst remaining productive and nutritious. To this aim, the effect of both prolonged heatwave

temperatures and restricted nitrogen input on the distribution, content, and composition of

protein within the wheat grain was investigated under controlled-environment conditions.

Multiple wheat varieties were also grown in the field, and the effect of year-to-year climatic

variation and nitrogen fertiliser regime analysed to identify any differential responses between

genotypes. A major outcome of this study is a better understanding of how temperature

and nitrogen input interact to determine protein distribution in the wheat grain endosperm.

Furthermore, a novel image analysis technique has been developed and made publicly available

(Savill et al. 2018) which has the scope to greatly increase the throughput of the spatial analysis

of objects in microscopy images, facilitating the completion of much larger experiments reliant

on these techniques in the future.

8.5. Concluding remarks

The past four years have marked a great political change across the world.

In 2015, 195 countries signed up to The Paris Agreement: the first ever legally-binding
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agreement for all nations to “undertake ambitious efforts to combat climate change”, with a

shared aim of limiting the global increase in temperature to 1.5°C.

In 2017, the President of the United States announced his intention to withdraw from The

Paris Agreement; climate modelling studies have predicted that global warming will almost

certainly exceed 1.5°C (Brown et al. 2017; Mauritsen et al. 2017; Raftery et al. 2017); and

it has emerged that the industrialised nations participating in The Paris Agreement are all

failing to honour their promises regarding reductions in greenhouse gas emissions (Victor

et al. 2017).

With the leaders of the world continuing to prioritise their own political and financial ambitions

over the future of our planet, and the sweeping rise in anti-intellectualism and right-wing

populism in recent years, it is difficult to be optimistic about the future.
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I’m not a believer in global warming.

And I’m not a believer in man-made global warming.

It could be warming, and it’s going to start to cool at some

point.

And you know, in the early [sic], in the 1920s, people

talked about global cooling...

They thought the Earth was cooling.

Now, it’s global warming...

But the problem we have, and if you look at our energy

costs, and all of the things that we’re doing to solve a problem

that I don’t think in any major fashion exists [sic].

Donald Trump – 45th president of the United States
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Appendix A: Experimental protocols

A.1. Microscopy sample fixation, dehydration, and embedding

Materials

Chemicals:

• 0.1M Sorenson’s phosphate buffer (pH 7.4)

• 4% paraformaldehyde + 2.5% gluteraldehyde fixative in 0.1M phosphate buffer

• Ethanol series from 10% to 100% dry ethanol in increments of 10%

• LR white resin, medium grade

Equipment:

• Double edge razor blades

• Glass vials

• Pencil and card for sample labels

• Polypropelene embedding capsules

• 55°C nitrogen-gas-filled oven

• Vacuum chamber and pump

Protocol

All work with fixative or LR white resin must be conducted in a fume cabinet.

1. Prepare 0.1M Sorensen’s phosphate buffer (pH 7.4).

(a) Mix 9.5ml of 0.2M NaH2PO4 with 40.5ml of 0.2M Na2HPO4.

(b) Bring up to 100ml with RO water.

(c) Test to ensure pH is at 7.4.

2. Prepare 4% paraformaldehyde + 2.5% gluteraldehyde fixative in fume cabinet.

(a) Dissolve 4g of paraformaldehyde in 50ml of 0.1M Sorensen’s phosphate buffer (pH

7.4) in a water bath at 70°C. Invert occasionally until solution goes completely

clear. Cool on ice.

(b) Add 10ml of 25% gluteraldehyde solution.
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(c) Bring up to 100ml with 0.1M Sorensen’s phosphate buffer (pH 7.4).

3. Ensure fixative and buffer are at room temperature (RT) before using.

4. Place a drop of fixative on the grain to be sampled on a piece of clean dental wax or

ceramic tile, and cut 1mm sections from the wheat grain with a sterilised double edge

razor blade using a sliding motion to avoid crushing the grain.

5. Place tissue sections immediately in a glass vial containing fixative. Use a mild vacuum

to expel air from the sample and to improve infiltration of the fixative into the grain

tissue. Apply vacuum for about 2 minutes before releasing. Repeat three times. Place

vials on a rotator at RT for 3–5 hours.

6. Wash specimens three times in 0.1M Sorensen’s phosphate buffer (pH 7.4) for 30

minutes in each wash. Ensure samples are not exposed to air to prevent air infiltrating

the sample. Samples can be stored at 4°C prior to futher processing.

7. Dehydrate samples in a graded ethanol series with samples at RT on a rotator:

(a) 10% ethanol at RT for 1 hour.

(b) 20% ethanol at RT for 1 hour.

(c) 30% ethanol at RT for 1 hour.

(d) 40% ethanol at RT for 1 hour.

(e) 50% ethanol at RT for 1 hour. Repeat.

(f) 60% ethanol at RT for 1 hour. Repeat.

(g) 70% ethanol at 4°C overnight.

(h) 80% ethanol at RT for 1 hour. Repeat.

(i) 90% ethanol at RT for 1 hour. Repeat.

(j) 100% dry ethanol at RT for 1 hour. Repeat twice.

8. Infiltrate samples with resin in increasing concentrations of medium grade LR white

resin. As with the fixative, use a mild vacuum to aid infiltration of the resin. Ensure

resin is brought to RT prior to opening. Samples can be stored at 4°C overnight between

steps.

(a) Ethanol : LR white at 4 : 1 for at least 6 hours.

(b) Ethanol : LR white at 3 : 2 for at least 6 hours.

(c) Ethanol : LR white at 2 : 3 for at least 6 hours.

(d) Ethanol : LR white at 1 : 4 for at least 6 hours.

(e) Pure LR white resin for 1 hour. Repeat twice.

George Savill



APPENDIX A. EXPERIMENTAL PROTOCOLS 187

(f) Two changes of pure LR white resin per day for at least 5 days. Place samples in

rotator at RT during the day, and store at 4°C overnight.

9. Fill labeled embedding capsules with fresh resin. Place and orientate samples within

the capsules. Polymerise samples in the oven at 55°C for 16–24 hours in an oxygen-free

environment. Allow samples to cool prior to sectioning.

George Savill



188 APPENDIX A. EXPERIMENTAL PROTOCOLS

A.2. Protein extraction for SDS-PAGE

Materials

Chemicals:

• 50% propan-1-ol + 2% DTT

• Total loading buffer:

– 50mM Tris-HCL (pH 6.8)

– 2% (w/v) SDS

– 10% (v/v) glycerol

– 0.1% (w/v) Bromophenol blue

– 200mM DTT

• Liquid N2 (for milling)

Equipment:

• SPEC SamplePrep 6870 Freezer/Mill®

• Edwards Modulyo® freeze drier

Protocol

1. Suspend 10mg of flour in 150µl of 50% propan-1-ol + 2% DTT by vortexing.

2. Shake at 50°C for 45 minutes.

3. Centrifuge at maximum speed for 15 minutes.

4. Remove supernatent to new 1.5ml micro-centrifuge tube.

5. Resuspend pellet in 150µl of 50% propan-1-ol + 2% DTT.

6. Shake at 50°C for 45 minutes.

7. Centrifuge at maximum speed for 15 minutes.

8. Remove and combine with previous supernatent from step 4.

9. Freeze-dry supernatent.

10. Add 150µl of total loading buffer.

11. Heat sample to 90°C for 3 minutes.

12. Centrifuge at maximum speed for 15 minutes.
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13. Supernatent contains wheat gluten protein extract. Store at -20°C, and repeat steps 11

and 12 prior to running frozen samples on a gel.
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A.3. Running SDS-PAGE gel

Materials

Chemicals:

• MES running buffer

• Coomassie gel stain:

– 0.1% (w/v) Coomassie Brilliant Blue (R-250)

– 40% (v/v) methanol

– 10% (w/v) TCA

– Made up to 100% with distilled water (dH2O)

• De-stain solution:

– 10% TCA

– Made up to 100% with dH2O

Equipment:

• Bolt® Mini Gel Tank

• Pre-cast 17-well Bolt® 8% gradient Bis-Tris gels

Protocol

1. Rinse pre-case gels with distilled water, and wash wells with MES running buffer.

2. Load 1–10µl of protein sample (depending on concentration) per lane.

3. Run gel for 30 minutes at a constant current of 20mA to settle sample in bottom of

well.

4. Run gel for a further 330 minutes at a constant current of 50mA.

5. Remove gel from cassette and stain in Coomassie stain overnight on a rocking shaker.

6. Destain gel with 10% TCA on a rocking shaker with a small strip of foam or paper

towel in the container to absorb the stain.

7. Remove gel from the stain when the background is clear, but protein bands remain

brightly stained.

8. Image the gel.
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A.4. Protein extraction for SE-HPLC

Materials

Chemicals:

• Protein extraction buffer:

– 2% (w/v) SDS

– 0.1M NaH2PO4 phosphate buffer

– pH 6.9 with HCl

Equipment:

• Ultrasonic disintegrator fitted with 3mm exponential tip

• 2ml disposable syringes

• 0.45µm syringe filters (Gilson, UK)

• 2ml glass vials with silicone/PTFE resealable caps (Thermo Scientific, UK)

Protocol

1. Measure out 16.5mg of freeze-dried whole-grain flour into a 2ml micro-centrifuge tube.

2. Prepare SDS protein extraction buffer and set pH to 6.9 with HCl.

3. Add 1.5ml of SDS protein extraction buffer to each flour sample.

4. Sonicate each sample for 45 seconds, inserting the microtip into the sample.

5. Centrifuge at maximum speed for 30 minutes.

6. Aliquot supernatent containing extracted protein into 2ml glass vials using disposable

syringe with 0.45µm filter.

George Savill



192 APPENDIX A. EXPERIMENTAL PROTOCOLS

A.5. RNA extraction

Materials

Chemicals:

• Molecular grade phenol

• Chloroform:IAA (24:1)

• Phenol:chloroform:IAA (25:24:1)

• RNA extraction buffer:

– 0.1M Tris-HCl

– 0.1M LiC

– 1% (w/v) SDS

– 10mM EDTA

– pH 8.0

• DNAse treatment (per sample):

– 15µl 10x DNAse buffer

– 127µl H2O (DEPC treated)

– 8µl DNAse (RNAse-free)

• 3M Na-acetate, pH 5.2 (acetic acid)

• 4M LiCl

• 70% EtOH

• Promega DNAse (RNAse-free), and 10x buffer

• 100% EtOH

• DEPC treated H2O

With the exception of the RNA extraction buffer, the H2O used to make all of the above are

treated with DEPC prior to autoclaving to destroy any RNAse activity—0.1% DEPC v/v,

incubated at RT for several hours, and autoclaved prior to use.

Equipment:

• SPEC SamplePrep 6870 Freezer/Mill®

• Refrigerated centrifuge (4°C)
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• 80°C water bath

• Thermo Scientific NanoDrop 2000c spectrophotometer

Protocol

All work with phenol or chloroform must be conducted in a fume cabinet.

Day 1:

1. Prepare phenol:extraction buffer at a ratio of 8:12, and heat to 80°C in water bath.

2. Transfer approximately 0.5ml of frozen ground sample into a pre-cooled 2ml micro-

centrifuge tube.

3. Add 1ml of hot (80°C) phenol:extraction buffer to each sample and vortex until material

is completely thawed and homogenised. Vortex for a further 30 seconds.

4. Add 0.5ml of chloroform:IAA and vortex for 30 seconds.

5. Centrifuge at maximum speed for 5 minutes at 4°C.

6. Transfer aqueous phase to fresh 2ml micro-centrifuge tube. If interphase is large, repeat

steps 3–5.

7. Add 1ml of chloroform/IAA and vortex for 30 seconds.

8. Centrifuge at maximum speed for 5 minutes at 4°C.

9. Transfer aqueous phase to fresh 1.5ml micro-centrifuge tube.

10. Measure volume, and add an equal volume +20µl of 4M LiCl.

11. Mix well and incubate at 4°C overnight.

Day 2:

1. Centrifuge at maximum speed for 20 minutes at 4°C.

2. Discard the supernatent and wash the pellet with 1ml of 70% ethanol.

3. Centrifuge at maximum speed for 5 minutes at 4°C.

4. Discard the supernatent and allow pellet to dry.

5. Add 150µl of DNAse treatment, and dissolve pellet on ice for 30–40 minutes.

6. Shake at 37°C for 30 minutes.

7. Add 150µl of H2O.
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8. Add 300µl of chloroform:IAA and vortex for 30 seconds.

9. Centrifuge at maximum speed for 5 minutes at 4°C.

10. Transfer aqueous phase to fresh 1.5ml micro-centrifuge tube.

11. Add 300µl of phenol:chloroform:IAA and vortex for 30 seconds.

12. Centrifuge at maximum speed for 5 minutes at 4°C.

13. Transfer aqueous phase to 1.5ml micro-centrifuge from step 10.

14. Add 1/10 volume of 3M NaOAc (pH 5.2) and 2.5x volume of ethanol.

15. Mix well and incubate at -20°C overnight.

Day 3:

1. Centrifuge at maximum speed for 20 minutes at 4°C.

2. Discard the supernatent and wash with 1ml of 70% ethanol.

3. Centrifuge at maximum speed for 5 minutes at 4°C.

4. Discard the supernatent and allow pellet to dry.

5. Dissolve pellet on ice in H2O—30–150µl, depending on size of pellet.

6. Shake at 37°C for 5 minutes.

7. Centrifuge at maximum speed for 5 minutes at 4°C.

8. Transfer supernatent into a fresh 1.5ml micro-centrifuge tube.

9. Measure the concentration of RNA at 260nm using NanoDrop 2000c spectrophotometer.

10. Check quality of 1µg of RNA by TAE-agarose (1%) electrophoresis.
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A.6. cDNA synthesis

Materials

Chemicals:

• 2µg of extracted RNA

• 10µM dT-AP primer

• 5X first strand buffer (InvitrogenTM)

• 0.1M DTT

• 10mM dNTP mix

• SuperscriptTM III reverse transcriptase (InvitrogenTM)

• H2O treated with DEPC

Equipment:

• Bio-Rad MJ Research deoxyribonucleic acid (DNA) Engine thermal cycler

Protocol

1. Prepare and label 0.2ml micro-centrifuge tubes.

2. Add enough DEPC-treated H2O to make a final volume to 13µl after primers and RNA

have been added.

3. Add 1µl of dT-AP primer.

4. Add 2µg of extracted RNA.

5. Incubate for 7 minutes at 70°C in PCR machine. Chill immediately on ice.

6. Centrifuge at max speed to collect contents of the micro-centrifuge tubes.

7. Add the following as a mix:

4µl of 5x first strand buffer

1µl of 0.1M DTT

1µl 10mM dNTP mix

1µl SuperscriptTM III reverse transciptase

8. Mix gently and centrifuge to collect contents of the micro-centrifuge tubes.

9. Incubate in PCR machine as follows:
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5 minutes at 22°C

2 hours at 50°C

15 minutes at 70°C

Hold at 10 °C

10. Centrifuge at max speed to collect contents of the micro-centrifuge tubes. Store cDNA

at -20°C.
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A.7. Quantitive PCR (qPCR)

Materials

Chemicals:

• 1.1µl sample cDNA

• 10µM sense primer

• 10µM anti-sense primer

• 100x ROX internal reference dye (Sigma-Aldrich)

• SYBR® Green JumpStartTM Taq ReadyMixTM (Sigma-Aldrich)

• H2O treated with DEPC

Equipment:

• 96-well PCR plates with qPCR transparent sealing film

• Applied BiosystemsTM 7500 Real Time PCR System

Protocol

1. Prepare and label 1.5ml micro-centrifuge tubes.

2. Create a master mix containing the following per sample:

0.7µl of sense primer (10µM)

0.7µl of anti-sense primer (10µM)

0.03µl of 100x ROX internal reference dye

11.22µl of H2O

13.75µl SYBR® Green JumpStartTM Taq ReadyMixTM

3. Add 26.4µl of the master mix to each of the prepared 1.5ml tubes.

4. Add 1.1µl of cDNA to each tube. Mix well, and collect by centrifugation.

5. Transfer 25.1µl into each well of a white 96-well PCR plate. Seal plate with transparent

seal, and centrifuge to collect contents.

6. Run plate in the 7500 real-time PCR machine with the following program:

2 minutes at 50°C

10 minutes at 95°C
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Repeat the following two steps 41 times:

15 seconds at 95°C

1 minute at 60°C

15 seconds at 95°C

15 seconds at 60°C

7. Download results.
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Appendix B: Microscopy imaging coordinate calculator app

Since the focal length of the light-microscope is very small at 20x magnification, any variation

in the distance of the sample from the microscope lens results in the image going out of focus.

This effect is significant when imaging large sections such as wheat grain. To allow for the

capture of in-focus images, four overlapping images of each grain must be taken, with the

microscopy re-focussed before each image is captured. These four images must then combined

into a single image prior to analysis.

The following Python 3 GUI application calculates the coordinates required to take four

overlapping images. It takes coordinates for the top left and bottom right of the area to be

imaged as inputs, and outputs the coordinates of the top left and bottom right coordinates

required for the four overlapping images to be captured. Must be compiled with py2exe prior

to use.

From Tkinter import *

# Function to calculate output coordinates from input coordinates

def calculate(*args):

try:

TLxDiff.set(TLx.get()+(((BRx.get()-TLx.get())/2.0)*1.25))

TLyDiff.set(TLy.get()+(((BRy.get()-TLy.get())/2.0)*1.25))

BRxDiff.set(BRx.get()-(((BRx.get()-TLx.get())/2.0)*1.25))

BRyDiff.set(BRy.get()-(((BRy.get()-TLy.get())/2.0)*1.25))

except ValueError:

pass

# Open GUI window

root = Tk()

root.title("Co-ordinates Calculator")

root.geometry("360x500")

# Assign input and output variables

TLx = IntVar()

TLy = IntVar()

BRx = IntVar()

BRy = IntVar()

TLxDiff = IntVar()

TLyDiff = IntVar()

George Savill



200 APPENDIX B. MICROSCOPY IMAGING COORDINATE CALCULATOR APP

BRxDiff = IntVar()

BRyDiff = IntVar()

# Draw input text boxes

TLx_entry0 = Entry(root, width=12, textvariable=TLx)

TLx_entry0.grid(column=2, row=1)

TLy_entry0 = Entry(root, width=12, textvariable=TLy)

TLy_entry0.grid(column=3, row=1)

BRx_entry0 = Entry(root, width=12, textvariable=BRx)

BRx_entry0.grid(column=2, row=2)

BRy_entry0 = Entry(root, width=12, textvariable=BRy)

BRy_entry0.grid(column=3, row=2)

# Draw of labels for four input boxes.

Label(root, text="x").grid(column=2, row=0)

Label(root, text="y").grid(column=3, row=0)

Label(root, text="Top Left").grid(column=1, row=1)

Label(root, text="Bottom Right").grid(column=1, row=2)

Label(root, text=" ").grid(column=1, row=3)

# Display image 1 (top left) output

Label(root, text="Image 1 (Top Left)").grid(column=1, row=4)

TLx_entry1 = Entry(root, width=12, textvariable=TLx)

TLx_entry1.grid(column=2, row=5)

TLy_entry1 = Entry(root, width=12, textvariable=TLy)

TLy_entry1.grid(column=3, row=5)

BRx_entry1 = Entry(root, width=12, textvariable=TLxDiff)

BRx_entry1.grid(column=2, row=6)

BRy_entry1 = Entry(root, width=12, textvariable=TLyDiff)

BRy_entry1.grid(column=3, row=6)

# Display image 2 (top right) output

Label(root, text="Image 2 (Top Right)").grid(column=1, row=7)

TLx_entry2 = Entry(root, width=12, textvariable=BRxDiff)

TLx_entry2.grid(column=2, row=8)

TLy_entry2 = Entry(root, width=12, textvariable=TLy)

TLy_entry2.grid(column=3, row=8)

BRx_entry2 = Entry(root, width=12, textvariable=BRx)

BRx_entry2.grid(column=2, row=9)

BRy_entry2 = Entry(root, width=12, textvariable=TLyDiff)
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BRy_entry2.grid(column=3, row=9)

# Display image 3 (bottom left) output

Label(root, text="Image 3 (Bottom Left)").grid(column=1, row=10)

TLx_entry3 = Entry(root, width=12, textvariable=TLx)

TLx_entry3.grid(column=2, row=11)

TLy_entry3 = Entry(root, width=12, textvariable=BRyDiff)

TLy_entry3.grid(column=3, row=11)

BRx_entry3 = Entry(root, width=12, textvariable=TLxDiff)

BRx_entry3.grid(column=2, row=12)

BRy_entry3 = Entry(root, width=12, textvariable=BRy)

BRy_entry3.grid(column=3, row=12)

# Display image 4 (bottom right) output

Label(root, text="Image 4 (Bottom Right)").grid(column=1, row=13)

TLx_entry4 = Entry(root, width=12, textvariable=BRxDiff)

TLx_entry4.grid(column=2, row=14)

TLy_entry4 = Entry(root, width=12, textvariable=BRyDiff)

TLy_entry4.grid(column=3, row=14)

BRx_entry4 = Entry(root, width=12, textvariable=BRx)

BRx_entry4.grid(column=2, row=15)

BRy_entry4 = Entry(root, width=12, textvariable=BRy)

BRy_entry4.grid(column=3, row=15)

# Create ’padding’ around the edge of the window

for child in root.winfo_children(): child.grid_configure(padx=11, pady=5)

# Set the initial focus of the window to the Top Left X coordinate input box

TLx_entry0.focus()

# Call ’calculate’ function whenever a key is pressed

root.bind(’<Key>’, calculate)

root.mainloop()
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Appendix C: Python toolbox for ArcGIS

Python toolbox for use in ArcCatalog for the protein concentration gradient and protein

body size-distribution analysis of wheat grain images. As primary inputs takes a TIFF image

file of the stained wheat grain, a shapefile (.shp) of the outline of the wheat grain drawn in

ArcMap, an image classification signature file (.gsg) generated with training samples defined

in ArcMap, and the treatment name/code as a text input. Inputs are also taken for the

number of samples within the signature file that represent area of interest (default = 10), the

number of zones to be drawn (default = 5), an optional input file for the widths of the zones

to be drawn (.txt), and a scalebar.txt file that can be used to override the default scaling

factor for converting from arbitrary units to micrometers (two line file: first line is length of

scalebar in um, second line is length of scalebar in pixels).

Toolbox produces two outputs as csv files: the result of the protein concentration gradi-

ent analysis (treatment zones.csv), and of the protein body size-distribution analysis (treat-

ment spatial.csv). Additionally, an output of the maximum grain width is produced for each

analysis, but not permenantly stored, and is overwritten by subsequent analyses.

A second ”RescalingBatch” toolbox is required to rescale input images to a 1×1 cell size.

This is required to prevent inaccuracies in the conversion of measurements from pixels to

micrometers.

# ArcPy toolbox for use with ArcGIS. Written by Adam Michalski and modified

# by George Savill

import os, sys, string, arcpy

import numpy as np

import glob

from arcpy import env

from arcpy.sa import *

arcpy.env.pyramid = "NONE" # Improves processing time

arcpy.env.overwriteOutput=True

arcpy.env.cellSize = 1 # Set the output raster cell size

class Toolbox(object):

def __init__(self):

"""Define the toolbox (the name of the toolbox is the name of the

.pyt file)."""

self.label = "Extracting Proteins"

self.alias = ""
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# List of tool classes associated with this toolbox

self.tools = [Protein,RescalingBatch]

# Main class for analysis of microscopy images

# Calculates protein concentration gradient and protein body

size-distribution

# data

class Protein(object):

def __init__(self):

self.label = ’Extract proteins from the grain’

self.canRunInBackground = False

def getParameterInfo(self):

’’’Set up the parameters and return the list of parameter objects.’’’

# Input grain raster image

param0 = arcpy.Parameter()

param0.name = ’tifFile’

param0.displayName = ’1. Input grain TIF file:’

param0.parameterType = ’Required’

param0.direction = ’Input’

param0.datatype = ’DEFile’

param0.filter.list = [’tif’, ’tiff’, ’TIF’]

# Input image classification signature file

param1 = arcpy.Parameter()

param1.name = ’signature’

param1.displayName = ’2. Input signature file:’

param1.parameterType = ’Required’

param1.direction = ’Input’

param1.datatype = ’DEFile’

param1.filter.list = [’gsg’]

# Input number of samples representing protein (default = 10)

param2 = arcpy.Parameter()

param2.name = ’number_of_samples’

param2.displayName = ’3. Input number of samples:’

param2.parameterType = ’Required’

param2.direction = ’Input’

param2.datatype = ’GPLong’

George Savill



APPENDIX C. PYTHON TOOLBOX FOR ARCGIS 205

param2.value = 10 # Default value

# Input number of zones to be drawn (default = 5)

param3 = arcpy.Parameter()

param3.name = ’number_of_zones’

param3.displayName = ’4. Input number of zones:’

param3.parameterType = ’Required’

param3.direction = ’Input’

param3.datatype = ’GPLong’

param3.value = 5 # Default value

# Input text file with zone distances (optional)

param4 = arcpy.Parameter()

param4.name = ’textZones’

param4.displayName = ’5. Input distance zones text file:’

param4.parameterType = ’Optional’

param4.direction = ’Input’

param4.datatype = ’DETextfile’

param4.filter.list = [’txt’]

# Input outline of grain shapefile

param5 = arcpy.Parameter()

param5.name = ’Borders’

param5.displayName = ’6. Select shapefile (*.shp) with grain

borders:’

param5.parameterType = ’Required’

param5.direction = ’Input’

param5.datatype = ’Shapefile’

param5.filter.list = [’shp’]

# Input text description field

param6 = arcpy.Parameter()

param6.name = ’textDescription’

param6.displayName = ’7. Text description column:’

param6.parameterType = ’Optional’

param6.direction = ’Input’

param6.datatype = ’String’

return [param0,param1,param2,param3,param4,param5,param6]
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def isLicensed(self):

"""Prevent the tool from running if the Spatial Analyst extension is

not available."""

if arcpy.CheckExtension(’Spatial’) == ’Available’:

return True # The tool can be executed.

else:

return False # The tool can not be executed.

def updateParameters(self, parameters):

return

def updateMessages(self, parameters):

return

def execute(self, parameters, messages):

# Assigning input parameters to variable names

grainTIF = parameters[0].valueAsText

signatureFILE = parameters[1].valueAsText

numberSAMPLES = parameters[2].value

numbZONES = parameters[3].value

txtFILEdistances = parameters[4].valueAsText

shpBORDER = parameters[5].valueAsText

description = parameters[6].valueAsText

arcpy.env.overwriteOutput=True

# Calculate Maximum Likelihood (ML) of pixels in input raster image

using

# image classification signature file

mlRASTER = MLClassify(grainTIF, signatureFILE)

# Con ML

# Identifying which pixels were identified as protein by ML

# classification (according to numberSAMPLES)

numberSAMPLESstring = str(numberSAMPLES)

where_clause = "VALUE >= 1 AND VALUE <= " + numberSAMPLESstring

protCON = Con(mlRASTER, 1, "", where_clause)

# RasterToPolygon

folderIN = os.path.dirname(grainTIF)
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polySHP = folderIN + "/" + "shape.shp"

arcpy.RasterToPolygon_conversion(protCON, polySHP, "NO_SIMPLIFY")

# Constants for conversion to micrometers (um).

constantLINEAR = 0.32059502436522185175686073352141 # for distance

constantAREA = 0.10278116964773719279201741905662 # for area

# Calculating scaling for distance (constantLINEAR) and area

# (constantAREA)

# scalebar.txt contains length of scalebar in um on first line, and in

# pixels on the second line.

if os.path.isfile(folderIN + "/" + "scalebar.txt"):

scale = []

scaleBAR = open(folderIN + "/" + "scalebar.txt", ’r’)

for linear in scaleBAR:

scale.append(float(linear))

scaleBAR.close()

constantLINEAR = (scale[0])/(scale[1]) # ratio between um and pixels

constantAREA = constantLINEAR ** 2

constantLINEARstring = str(constantLINEAR)

constantAREAstring = str(constantAREA)

# Add fields and calculate protein area in arbitrary units and

# micrometers squared

arcpy.AddField_management(polySHP, "ProtAreaSc", "DOUBLE")

arcpy.CalculateField_management(polySHP, "ProtAreaSc",’!shape.area!’,

"PYTHON_9.3")

arcpy.AddField_management(polySHP, "ProtAreaMi", "DOUBLE")

arcpy.CalculateField_management(polySHP, "ProtAreaMi",’!shape.area!*’

+ constantAREAstring, "PYTHON_9.3")

arcpy.AddField_management(polySHP, "areaProt", "DOUBLE")

arcpy.CalculateField_management(polySHP, "areaProt",’!shape.area!*’ +

constantAREAstring, "PYTHON_9.3")

arcpy.FeatureToPoint_management(polySHP, folderIN + "/" +

"centroids.shp")

# Calculating euclidean distances

featureTOlineTEMP = folderIN + "/" + "ftl.shp"

arcpy.FeatureToLine_management(shpBORDER, featureTOlineTEMP)

outEucDistance = EucDistance(featureTOlineTEMP, "", grainTIF)
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outExtractByMask = ExtractByMask(outEucDistance, shpBORDER)

outZonalTableTEMP = folderIN + "/" + "ozt.dbf"

ZonalStatisticsAsTable(shpBORDER, "FID", outExtractByMask,

outZonalTableTEMP, "DATA", "ALL")

distRows = arcpy.da.SearchCursor(outZonalTableTEMP, [’RANGE’])

distRow = distRows.next()

maximumDIST = distRow[0] # Maximum width of grain, aleurone to aleurone

dist = []

if numbZONES == 0:

# Reading zone distances text file, if present

txtFILE = open(txtFILEdistances, ’r’)

for line in txtFILE:

dist.append(float(line)*(-1))

txtFILE.close()

else:

# Automatically calculating zones based on maximumDIST

dist.append(-0.001)

zoneWIDTH = maximumDIST/(float(numbZONES))

for z in range(1,numbZONES):

dist.append((-1)*z*zoneWIDTH)

zoneSHP = folderIN + "/" + "zones.shp"

arcpy.MultipleRingBuffer_analysis(shpBORDER, zoneSHP, dist,"", "",

"ALL")

protein_in_ZONES = folderIN + "/" + "proteinZONES.shp"

arcpy.Intersect_analysis([zoneSHP,polySHP], protein_in_ZONES)

arcpy.CalculateField_management (protein_in_ZONES, "areaProt",

’!shape.area!*’ + constantAREAstring, "PYTHON_9.3")

# Add fields and calculate zone distance in arbitrary units and

# micrometers

arcpy.AddField_management(zoneSHP, "distZoneSc", "DOUBLE", 18,

10,"","","NULLABLE")

arcpy.CalculateField_management (zoneSHP, "distZoneSc", ’!distance! *

(-1)’, "PYTHON_9.3")

arcpy.AddField_management(zoneSHP, "distZoneMi", "DOUBLE", 18,

10,"","","NULLABLE")

arcpy.CalculateField_management (zoneSHP, "distZoneMi", ’!distance!*

(-1)*’ + constantLINEARstring, "PYTHON_9.3")
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# Add fields and calculate zone area in arbitrary units and micrometers

arcpy.AddField_management(zoneSHP, "zoneAreaSc", "DOUBLE", 18,

10,"","","NULLABLE")

arcpy.CalculateField_management (zoneSHP, "zoneAreaSc",

’!shape.area!’, "PYTHON_9.3")

arcpy.AddField_management(zoneSHP, "zoneAreaMi", "DOUBLE", 18,

10,"","","NULLABLE")

arcpy.CalculateField_management (zoneSHP, "zoneAreaMi",

’!shape.area!*’ + constantAREAstring, "PYTHON_9.3")

# Add fields and calculate protein area in each zone in arbitrary units

# and micrometers

protein_in_zonesdissolved = folderIN + "/" + "proteinsZONES.shp"

arcpy.Dissolve_management(protein_in_ZONES, protein_in_zonesdissolved,

"distance")

arcpy.AddField_management(protein_in_zonesdissolved, "protAreaSc",

"DOUBLE", 18, 10,"","","NULLABLE")

arcpy.CalculateField_management (protein_in_zonesdissolved,

"protAreaSc", ’!shape.area!’, "PYTHON_9.3")

arcpy.AddField_management(protein_in_zonesdissolved, "protAreaMi",

"DOUBLE", 18, 10,"","","NULLABLE")

arcpy.CalculateField_management (protein_in_zonesdissolved,

"protAreaMi", ’!shape.area!*’ + constantAREAstring, "PYTHON_9.3")

# Join zone background and protein areas and distances. Calculate

# percentage protein per zone

joinedRESULT = folderIN + "/" + "result.shp"

arcpy.SpatialJoin_analysis(zoneSHP, protein_in_zonesdissolved,

joinedRESULT,"","","","CONTAINS")

arcpy.AddField_management(joinedRESULT, "percent", "DOUBLE", 18,

10,"","","NULLABLE")

arcpy.CalculateField_management (joinedRESULT, "percent",

’(!protAreaMi!/!zoneAreaMi!)*100’, "PYTHON_9.3")

arcpy.DeleteField_management(joinedRESULT,["OID", "Join_Count",

"TARGET_FID", "distance", "distance_1"])

# Output results

arcpy.TableToTable_conversion(joinedRESULT, folderIN, description +

"_zones.csv")
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# Clip centroids to outline of grain

arcpy.Clip_analysis(folderIN + "/" + "centroids.shp", shpBORDER,

folderIN + "/" + "centroids2.shp")

# Load distance values for each protein body point

ExtractValuesToPoints(folderIN + "/" + "centroids2.shp",

outEucDistance, folderIN + "/" + "proteinCentroids.shp")

# Add fields and calculate protein body distances and sizes, and

# description of treatment

arcpy.AddField_management(folderIN + "/" + "proteinCentroids.shp",

"dist_Sc", "FLOAT",18, 10,"","","NULLABLE")

arcpy.AddField_management(folderIN + "/" + "proteinCentroids.shp",

"dist_Mi", "FLOAT",18, 10,"","","NULLABLE")

arcpy.AddField_management(folderIN + "/" + "proteinCentroids.shp",

"treatment", "TEXT","","","","","NULLABLE")

arcpy.CalculateField_management(folderIN + "/" +

"proteinCentroids.shp", "dist_Sc","!RASTERVALU!","PYTHON_9.3")

arcpy.CalculateField_management(folderIN + "/" +

"proteinCentroids.shp", "dist_Mi", "!RASTERVALU!*" +

constantLINEARstring, "PYTHON_9.3")

arcpy.CalculateField_management(folderIN + "/" +

"proteinCentroids.shp", "treatment", "’" + description + "’" ,

"PYTHON_9.3")

arcpy.DeleteField_management(folderIN + "/" + "proteinCentroids.shp",

["ID", "GRIDCODE", "ORIG_FID", "RASTERVALU", "areaProt"])

# Output results

arcpy.TableToTable_conversion(folderIN + "/" + "proteinCentroids.shp",

folderIN, description + "_spatial.csv")

arcpy.SpatialJoin_analysis(folderIN + "/" + "shape.shp", folderIN +

"/" + "proteinCentroids.shp", folderIN + "/" + "shapeTemp.shp")

arcpy.Clip_analysis(folderIN + "/" + "shapeTemp.shp", shpBORDER,

folderIN + "/" + "proteins.shp")

arcpy.DeleteField_management(folderIN + "/" +

"proteins.shp",["TARGET_FID", "ID", "GRIDCODE", "Join_Count",

"areaProt_1"])
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# Delete temporary files used

arcpy.Delete_management(folderIN + "/" + "centroids.shp")

arcpy.Delete_management(folderIN + "/" + "centroids2.shp")

arcpy.Delete_management(folderIN + "/" + "ftl.shp")

arcpy.Delete_management(folderIN + "/" + "ozt.dbf")

arcpy.Delete_management(protein_in_ZONES)

arcpy.Delete_management(folderIN + "/" + "shapeTemp.shp")

arcpy.Delete_management(folderIN + "/" + "shape.shp")

arcpy.Delete_management(joinedRESULT)

arcpy.RefreshCatalog(folderIN)

return

# RescalingBatch class used to rescale a batch of microscopy images to 1x1

# cell sizes

# This is required for input images used in the Protein class to ensure

# correct scaling from pixels to micrometers

class RescalingBatch(object):

def __init__(self):

self.label = ’Batch rescaling image to 1 x 1 pixel size’

self.canRunInBackground = False

def getParameterInfo(self):

’’’Set up the parameters and return the list of parameter objects.’’’

# Input grain raster

param0 = arcpy.Parameter()

param0.name = ’tifFile’

param0.displayName = ’Input grain TIF file:’

param0.parameterType = ’Required’

param0.direction = ’Input’

param0.datatype = ’DEFolder’

param0.filter.list = [’tif’, ’tiff’, ’TIF’]

return [param0]

def isLicensed(self):

"""Prevent the tool from running if the Spatial Analyst extension is

not available."""
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if arcpy.CheckExtension(’Spatial’) == ’Available’:

return True # The tool can be executed.

else:

return False # The tool can not be executed.

def updateParameters(self, parameters):

return

def updateMessages(self, parameters):

return

def execute(self, parameters, messages):

# Calculations

folder = parameters[0].valueAsText

arcpy.env.cellSize = 1

for input_file in glob.glob(os.path.join(folder,’*.tif’)):

filename = os.path.basename(input_file)

input = input_file

a = Raster(input)

rescaleRATIO = 1/a.meanCellHeight

b = folder + "/" + "pxl_1x1_" + filename

arcpy.Rescale_management(a,b,str(rescaleRATIO),str(rescaleRATIO))

return
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Appendix D: Spatial analysis grain width calculator

Python script to output a list of the maximum grain width associated with each treatment.

The resulting CSV file is then used by the CSV joining applications presented in appendices

E and F to calculate the width of the five endosperm zones which are used in the presentation

of the results.

# Script to calculate and store maximum zone width for calculation of zone

# width

# Takes arguments (1) input directory, (2) output file

import csv

import glob

import os

import sys

# Define inputs

input_path = sys.argv[1]

output_file = sys.argv[2]

# Remove trailing slashes from input_path

input_path_length = len(input_path) if input_path [-1] == "/" \

or input_path [-1] == "\\" else len(input_path) + 1

# Loop through input files

for input_file in glob.glob(os.path.join(input_path,’*.csv’)):

with open(input_file,’rU’) as csv_file:

filereader = csv.reader(csv_file)

next(filereader)

# Read maxWidth value

maxWidth = max(float(column[4].replace(’,’, ’’)) for column in

filereader)

name, ext = os.path.splitext(input_file)

# Get treatment name from filename

treatment = "{:<12}".format(name [+input_path_length:])

header = next(filereader,None)

# Print treatment name and maxWidth to file

with open(output_file, ’ab’) as csvfile:

filewriter = csv.writer(csvfile)
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filewriter.writerow([treatment, maxWidth])
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Appendix E: Spatial analysis CSV file joiner script (1)

Python script for combining the individual CSV files produced by the protein body size-

distribution analysis into a single CSV file for analysis. Script reads the treatment from the

filename of each input file (in the format of ConN1T3R1i1), saves this information into a

single file, and assigns each protein body measruement with a zone (used in figures only). The

script takes inputs of a directory containing the CSV files to be joined, an input file containing

the maximum grain width for each treatment combination (see appendix D), and outputs a

single CSV file containing all data from the protein body size-distribution analysis.

# Script used to combine multiple protein body size-distribution CSV files

# from the controlled-environment experiment.

# Reads treatment from filename (e.g. ConN1T3R1i1.csv), separates, and

# appends to output CSV file.

# Assigns each measured protein body to a zone (1--5) based on input file

# of zone widths for each treatment.

# Takes arguments (1) input directory of CSV files to be joined, (2) input

# file of zone wideths, (3) output file location.

import csv

import glob

import os

import sys

# Define inputs

input_path = sys.argv[1]

input_zones = sys.argv[2]

output_file = sys.argv[3]

# Remove trailing slashes from input_path

input_path_length = len(input_path) if input_path [-1] == "/" \

or input_path [-1] == "\\" else len(input_path) + 1

# Open output file

filewriter = csv.writer(open(output_file,’w’, newline=’’))

file_counter = 0

# Create dictionary of zone widths

zonedict = {}
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with open(input_zones, ’rU’) as csv_zones:

zonereader = csv.reader(csv_zones)

for row in zonereader:

key, maxDist = row

z1=float(maxDist)/5

z2=2*(float(maxDist)/5)

z3=3*(float(maxDist)/5)

z4=4*(float(maxDist)/5)

z5=float(maxDist)

zonedict[key] = [float(z1), float(z2), float(z3), float(z4), float(z5)]

# Loop through input csv files

for input_file in glob.glob(os.path.join(input_path,’*.csv’)):

with open(input_file,’rU’) as csv_file:

filereader = csv.reader(csv_file)

# Remove extension from input csv file

name, ext = os.path.splitext(input_file)

treatment = "{:<12}".format(name [+input_path_length:]).rstrip()

namelong = "{:<12}".format(name [+input_path_length:])

nameshort = name[+input_path_length:-1]

# Access and assign treatment parameters from input filename

temperature = namelong[:-9]

nitrogen = namelong[+3:-7]

timepoint = namelong[+5:-5]

experimentalrep = namelong[+7:-3]

imagerep = nameshort[+9:]

analysisrep = name[-1]

# Assign elements of experimental structure

room = 1 if temperature == "Con" else 2

pot = 0

pot = 1 if nitrogen == "N1" and timepoint == "T2" else pot

pot = 2 if nitrogen == "N2" and timepoint == "T2" else pot

pot = 3 if nitrogen == "N1" and timepoint == "T3" else pot

pot = 4 if nitrogen == "N2" and timepoint == "T3" else pot

# Access and assign zone measurements for appropriate treatment

z1 = float(zonedict[treatment][0])

z2 = float(zonedict[treatment][1])

z3 = float(zonedict[treatment][2])

z4 = float(zonedict[treatment][3])
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z5 = float(zonedict[treatment][4])

# Write data to output file

if file_counter < 1: # For first input file

for i, row in enumerate(filereader):

if i==0: # Write column headers to first row

row.append(’Temperature’),

row.append(’Nitrogen’),

row.append(’Timepoint’),

row.append(’ExperimentalRep’),

row.append(’ImageRep’),

row.append(’AnalysisRep’),

row.append(’Room’),

row.append(’Pot’),

row.append(’Zone’)

else: # Append treatment details to input data

row.append(temperature),

row.append(nitrogen),

row.append(timepoint),

row.append(experimentalrep),

row.append(imagerep),

row.append(analysisrep),

row.append(room),

row.append(pot),

# Calculate and add zone of each protein body

dist = float(row[5])

if dist >=0 and dist < z1:

row.append(1)

elif dist >= z1 and dist < z2:

row.append(2)

elif dist >= z2 and dist < z3:

row.append(3)

elif dist >= z3 and dist < z4:

row.append(4)

elif dist >= z4:

row.append(5)

filewriter.writerow(row)

else: # For subsequent input files

# Skip first row (column headers)

header = next(filereader,None)
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for row in filereader:

# Append treatment details to input data

row.append(temperature),

row.append(nitrogen),

row.append(timepoint),

row.append(experimentalrep),

row.append(imagerep),

row.append(analysisrep),

row.append(room),

row.append(pot),

# Calculate and add zone of each protein body

dist = float(row[5])

if dist >=0 and dist < z1:

row.append(1)

elif dist >= z1 and dist < z2:

row.append(2)

elif dist >= z2 and dist < z3:

row.append(3)

elif dist >= z3 and dist < z4:

row.append(4)

elif dist >= z4:

row.append(5)

filewriter.writerow(row)

file_counter += 1
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Appendix F: Spatial analysis CSV file joiner script (2)

Python script functionally identical to the script presented in appendix E, but for the pro-

cessing of CSV files from the WGIN diversity field trial experiment.

# Script used to combine multiple protein body size-distribution CSV files

# from the WGIN diversity field trial experiment.

# Reads treatment from filename (e.g. 15CaN2R1I1A1_spatial.csv), separates,

# and appends to output CSV file.

# Assigns each measured protein body to a zone (1--5) based on input file

# of zone widths for each treatment.

# Takes arguments (1) input directory of CSV files to be joined, (2) input

# file of zone widths, (3) output file location.

import csv

import glob

import os

import sys

# Define inputs

input_path = sys.argv[1]

input_zones = sys.argv[2]

output_file = sys.argv[3]

# Remove trailing slashes from input_path

input_path_length = len(input_path) if input_path [-1] == "/" \

or input_path [-1] == "\\" else len(input_path) + 1

# Open output file

filewriter = csv.writer(open(output_file,’w’, newline=’’))

file_counter = 0

# Create dictionary of zone widths

zonedict = {}

with open(input_zones, ’rU’) as csv_zones:

zonereader = csv.reader(csv_zones)

for row in zonereader:

key, maxDist = row

z1=float(maxDist)/5
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z2=2*(float(maxDist)/5)

z3=3*(float(maxDist)/5)

z4=4*(float(maxDist)/5)

z5=float(maxDist)

zonedict[key] = [float(z1), float(z2), float(z3), float(z4), float(z5)]

# Loop through input csv files

for input_file in glob.glob(os.path.join(input_path,’*.csv’)):

with open(input_file,’rU’) as csv_file:

filereader = csv.reader(csv_file)

# Remove extension from input csv file

fullName, ext = os.path.splitext(input_file)

# Remove _spatial appendix to filename

name = fullName [+13:-8]

namelong = "{:<12}".format(name [+input_path_length:])

nameshort = name[+input_path_length:-1]

# Access and assign treatment parameters from input filename

year = name[:-10]

genotype = name[+2:-8]

nitrogen = name[+4:-6]

block = name[+6:-4]

imageRep = name[+8:-2]

analysisRep = name[+10:]

# Assign elements of experimental structure

yearTreat = 1 if year == ’’15’’ else 2

main = 1 if nitrogen == "N2" else 2

split = 0

split = 1 if genotype == "Ca" else split

split = 2 if genotype == "He" else split

split = 3 if genotype == "Is" else split

split = 4 if genotype == "Ss" else split

# Access and assign zone measurements for appropriate treatment

z1 = float(zonedict[treatment][0])

z2 = float(zonedict[treatment][1])

z3 = float(zonedict[treatment][2])

z4 = float(zonedict[treatment][3])

z5 = float(zonedict[treatment][4])

# Write data to output file

if file_counter < 1: # For first input file
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for i, row in enumerate(filereader):

if i==0: # Write column headers to first row

row.append(’Year’)

row.append(’YearTreat’)

row.append(’Genotype’),

row.append(’Nitrogen’),

row.append(’Timepoint’),

row.append(’Block’),

row.append(’ImageRep’),

row.append(’AnalysisRep’),

row.append(’Main’),

row.append(’Split’),

row.append(’Zone’)

else: # Append treatment details to input data

row.append(year)

row.append(yearTreat)

row.append(genotype),

row.append(nitrogen),

row.append(timepoint),

row.append(block),

row.append(imageRep),

row.append(analysisRep),

row.append(main),

row.append(split),

# Calculate and add zone of each protein body

dist = float(row[5])

if dist >=0 and dist < z1:

row.append(1)

elif dist >= z1 and dist < z2:

row.append(2)

elif dist >= z2 and dist < z3:

row.append(3)

elif dist >= z3 and dist < z4:

row.append(4)

elif dist >= z4:

row.append(5)

filewriter.writerow(row)

else: # For subsequent input files

# Skip first row (column headers)

header = next(filereader,None)
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for i, row in enumerate(filereader):

# Append treatment details to input data

row.append(year)

row.append(yearTreat)

row.append(genotype),

row.append(nitrogen),

row.append(timepoint),

row.append(block),

row.append(imageRep),

row.append(analysisRep),

row.append(main),

row.append(split),

# Calculate and add zone of each protein body

dist = float(row[5])

if dist >=0 and dist < z1:

row.append(1)

elif dist >= z1 and dist < z2:

row.append(2)

elif dist >= z2 and dist < z3:

row.append(3)

elif dist >= z3 and dist < z4:

row.append(4)

elif dist >= z4:

row.append(5)

filewriter.writerow(row)

file_counter += 1
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Appendix G: Zone analysis CSV file joiner script

Since the image analysis software method was modified between the analysis of the controlled-

environment and the WGIN diversity field experiment to provide automated output of the

results of the total protein concentration gradient (by zone) analysis, a Python script was

written to combine the multiple CSV files output by this analysis.

Python 3 script for combining the CSV files produced as from a single year of the WGIN

diversity field trial experiment generated by the script presented in appendix F.

# Script used to combine multiple protein concentration distribution CSV

files

# from the WGIN diversity field trial experiment

# Reads treatment from filename (e.g. 15CaN2R1I1A1_zones.csv), separates,

# and appends to output CSV file

# Takes arguments (1) input directory of CSV files to be joined, (2) output

file

# location

import csv

import glob

import os

import sys

# Define inputs

input_path = sys.argv[1]

output_file = sys.argv[2]

# Remove trailing slashes from input_path

input_path_length = len(input_path) if input_path [-1] == "/" \

or input_path [-1] == "\\" else len(input_path) + 1

# Open output file

filewriter = csv.writer(open(output_file,’wb’))

file_counter = 0

# Loop through input csv files

for input_file in glob.glob(os.path.join(input_path,’*.csv’)):
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with open(input_file,’rU’) as csv_file:

filereader = csv.reader(csv_file)

# Remove extension from input csv file

fullName, ext = os.path.splitext(input_file)

# Remove _zones appendix to filename

name = fullName [+3:-6]

# Access and assign treatment parameters from input filename

year = name[:-10]

genotype = name[+2:-8]

nitrogen = name[+4:-6]

block = name[+6:-4]

imageRep = name[+8:-2]

analysisRep = name[+10:]

# Assign elements of experimental structure

main = 1 if nitrogen == "N2" else 2

split = 0

split = 1 if genotype == "Ca" else split

split = 2 if genotype == "He" else split

split = 3 if genotype == "Is" else split

split = 4 if genotype == "Ss" else split

# Loop through zone distance measurements to calculate zone width

for i, row in enumerate(filereader):

if i == 0:

# new file, ignore header row, reset zoneA and zoneB

zoneA = 0

zoneB = 0

if i == 1:

# read distance of last zone from aleurone layer

zoneA = row[2]

if i == 2:

# read distance of last but one zone from aleurone layer and

calculate

# zoneWidth

zoneB = row[2]

zoneWidth = (float(zoneA) - float(zoneB))

# Return to start of file

csv_file.seek(0)
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# Write data to output file

if file_counter < 1: # For first input file

for i, row in enumerate(filereader):

if i==0: # Write column headers to first row

row.append(’ZoneDist’)

row.append(’Year’)

row.append(’Genotype’),

row.append(’Nitrogen’),

row.append(’Timepoint’),

row.append(’Block’),

row.append(’ImageRep’),

row.append(’AnalysisRep’),

row.append(’Main’),

row.append(’Split’)

else:

# Calculate zoneDist

zoneDist = (0.5*zoneWidth) + ((5-i)*zoneWidth)

# Append treatment details to input data

row.append(zoneDist),

row.append(year),

row.append(genotype),

row.append(nitrogen),

row.append(timepoint),

row.append(block),

row.append(imageRep),

row.append(analysisRep),

row.append(main),

row.append(split)

filewriter.writerow(row)

else: # For subsequent input files

# Skip first row (column headers)

header = next(filereader,None)

for i, row in enumerate(filereader):

# Calculate zoneDist

zoneDist = (0.5*zoneWidth) + ((4-i)*zoneWidth)

# Append treatment details to input data

row.append(zoneDist),

row.append(year),

row.append(genotype),

row.append(nitrogen),
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row.append(timepoint),

row.append(block),

row.append(imageRep),

row.append(analysisRep),

row.append(main),

row.append(split)

filewriter.writerow(row)

file_counter += 1
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