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ABSTRACT

Currently in operational numerical weather prediction (NWP) the density of high-resolution observations,

such as Doppler radar radial winds (DRWs), is severely reduced in part to avoid violating the assumption of

uncorrelated observation errors. To improve the quantity of observations used and the impact that they have

on the forecast requires an accurate specification of the observation uncertainties. Observation uncertainties

can be estimated using a simple diagnostic that utilizes the statistical averages of observation-minus-

background and observation-minus-analysis residuals.We are the first to use amodified formof the diagnostic

to estimate spatial correlations for observations used in an operational ensemble data assimilation system.

The uncertainties for DRW superobservations assimilated into the Deutscher Wetterdienst convection-

permitting NWP model are estimated and compared to previous uncertainty estimates for DRWs. The new

results show that most diagnosed standard deviations are smaller than those used in the assimilation, hence, it

may be feasible to assimilateDRWs using reduced error standard deviations. However, some of the estimated

standard deviations are considerably larger than those used in the assimilation; these large errors highlight

areas where the observation processing system may be improved. The error correlation length scales are

larger than the observation separation distance and influenced by both the superobbing procedure and ob-

servation operator. This is supported by comparing these results to our previous study using Met Office data.

Our results suggest that DRW error correlations may be reduced by improving the superobbing procedure

and observation operator; however, any remaining correlations should be accounted for in the assimilation.

1. Introduction

It is now routine for national weather prediction

centers to run a convection-permitting forecast model

with resolutions of 1.5–3 km (Baldauf et al. 2011; Tang

et al. 2013; Müller et al. 2017). At the convective scale

the errors in the background are highly flow dependent

(Chung et al. 2013) and, hence, it is beneficial to determine
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the background error covariance matrix explicitly using

ensemble data assimilation. The local ensemble trans-

form Kalman filter (LETKF) (Hunt et al. 2007) is an

efficient ensemble data assimilation scheme that is

suitable for use in numerical weather prediction (NWP),

and the Deutscher Wetterdienst (DWD) are now using

it for operational data assimilation (Schraff et al. 2016).

To further advance the quality of convection-permitting

NWP it is important to assimilate observations containing

detailed information on appropriate scales (Sun et al. 2014;

Clark et al. 2016; Ballard et al. 2016;Gustafsson et al. 2018).

One such set of observations are Doppler radar radial

winds (DRWs). The assimilation of DRWs provides a

significant positive impact on the forecast (Montmerle and

Faccani 2009; Xue et al. 2013, 2014) and as a result they are

now assimilated at a number of operational centers (Xiao

et al. 2008; Simonin et al. 2014). However, to effectively

assimilate high-resolution observations it is necessary to

understand and correctly account for their error statistics

(Gorin and Tsyrulnikov 2011).

In data assimilation, the observation errors contain

contributions from both the instrument error and rep-

resentation error (Janjić et al. 2018). It has been shown

that the observation errors may be correlated, state

dependent and, due to the mismatch in scales repre-

sented by themodel and the observation, dependent on

the model resolution (Waller et al. 2014; Hodyss and

Nichols 2015). Yet, until recently, observation errors

have been assumed uncorrelated and the data are often

thinned or ‘‘superobbed’’ (Lorenc 1981) in an attempt to

satisfy this assumption. However, the inclusion of sat-

ellite interchannel error correlations in data assimilation

systems has been shown to lead to improvements in the

forecast skill score (Weston et al. 2014; Bormann et al.

2016; Campbell et al. 2017). Furthermore, the inclusion

of spatially correlated DRW errors in the assimilation

permits an increased percentage of high-resolutionDRW

observations to be assimilated (Simonin et al. 2019).

Theoretical work has also shown that improved specifi-

cation of observation error statistics in data assimilation

can improve analysis accuracy and allow the inclusion of

more observation information content (Stewart et al.

2008, 2013; Fowler et al. 2018).

Observation uncertainties must be estimated statisti-

cally. Desroziers et al. (2005) proposed a method that

has become popular for estimating observation error

statistics due to its simplicity. The diagnostic provides an

estimate of the observation error covariancematrix using

the statistical average of observation-minus-background

and observation-minus-analysis residuals. A detailed

discussion of this diagnostic and its limitations is given

in section 2. Despite these limitations the diagnostic has

been successfully used in operational settings to estimate

satellite interchannel error covariances (Stewart et al.

2014;Weston et al. 2014; Bormann et al. 2016), temporal

error covariances (Bennitt et al. 2017) and spatial error

covariances (Waller et al. 2016a; Cordoba et al. 2017).

Spatial error correlations for DRWs have previously

been calculated for observations assimilated at the Met

Office andMétéo-France (Waller et al. 2016c; Wattrelot

et al. 2012). The diagnostics can also be used to learn

about the assimilation system. For example, to test self-

consistency in the system (Desroziers et al. 2005), check

for observation bias (Waller et al. 2016a) and to deter-

mine sources of errors (Waller et al. 2016c) as well as

providing guidance for quality control procedures (Waller

et al. 2018).

In this manuscript we use the diagnostic to estimate

observation error statistics for DRW superobservations

(DRWSOs) assimilated into the convection-permitting

model used at DWD. To gain insight into how different

observation processing systems affect observation error

statistics, we compare our estimated uncertainties to

uncertainties estimated for DRWs assimilated at the

Met Office. The comparison between these two esti-

mated statistics also allows us to consider how the use

of a flow dependent background error covariancematrix

impacts the results.

A review of the diagnostic method is given in section 2.

In section 3 we describe the NWP model, assimilation

system and the DRWSOs used at DWD. In section 4 we

describe the experimental design used when calculating

the average horizontal error statistics for DRWSOs.We

describe our new results in section 5. We find that the

majority of the estimated error standard deviations for

the DRWSOs assimilated into the COSMO-DE model

are smaller than those used in the assimilation suggest-

ing that it may be feasible to reduce the DRWSO error

standard deviations in the assimilation scheme. How-

ever, for observations above 10km, or those from high-

elevation beams, the estimated standard deviations are

considerably larger than those used in the assimilation.

Comparisons between different radars highlight that

contaminated observations have been assimilated and

the quality control procedure needs to be improved. The

correlation length scales are longer than the observation

separation distance.

In section 5c the averaged horizontal error statistics

are compared to the observation error statistics for

DRWSOs assimilated in the Met Office convection-

permitting model calculated in Waller et al. (2016c).

There are a number of similarities between the re-

sults; these support the hypothesis that simplifications

in the observation operator cause some correlation

between observation errors. Finally we conclude in

section 6.
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2. The diagnostic of Desroziers et al. (2005)

Following Waller et al. (2016c) we describe data as-

similation and the diagnostic proposed in Desroziers

et al. (2005).

a. Data assimilation

Data assimilation techniques combine a model pre-

diction of the state, the background xb 2 RNm

, with ob-

servations y 2 RNp

, to provide a best estimate of the

state, xa 2 RNm

, known as the analysis. In the assimila-

tion the observations and background are weighted by

their respective uncertainties using the background

and observation error covariance matrices B 2 RNm3Nm

and R 2 RNp3Np

. To calculate the analysis the back-

ground must be mapped into the observation space

using the possibly nonlinear observation operator,

H :RNm

/RNp

.

b. The diagnostic

Desroziers et al. (2005) show that the observation

error covariance matrix can be estimated using the

observation-minus-background and observation-minus-

analysis residuals. The background residual, also known

as the innovation,

do
b 5 y2H (xb) , (1)

is the difference between the observation y and the

mapping of the forecast vector xb into observation

space by the observation operator H . The analysis

residual,

do
a 5 y2H (xa) , (2)

’ y2H (xb)2HKdo
b , (3)

is similar to the background residual, butwith the forecast

vector replaced by the analysis vector xa. The analysis is

determined using

xa 5 xb 1K
�
y2H (xb)

�
, (4)

whereK5BHT(HBHT1R)21 is the gainmatrix andH is

the linearized observation operator, linearized about the

current state. Taking the statistical expectation of the

product of the analysis and background residuals, and

assuming that the forecast and observation errors are

uncorrelated, results in

E[do
ad

oT
b ]’R . (5)

Due to the statistical nature of the diagnostic the

resulting matrix will not be symmetric. Therefore, if the

matrix is to be used it must be symmetrized.

c. The diagnostic for local assimilation

The diagnostic in Desroziers et al. (2005) is derived

assuming that the analysis is calculated using minimum-

variance linear statistical estimation. However, the

diagnostic no longer provides a correct estimate of the

observation error covariance matrix if local ensem-

ble data assimilation is used to calculate the analysis.

Using a modified version of the diagnostic it is possible

to recover some of the observation error statistics.

Waller et al. (2017) show that the diagnostic can be used

to estimate the error correlations between two obser-

vations if the observation operator that determines the

model equivalent of observation yi acts only on states

that have been updated using the observation yj. Oth-

erwise, the error correlation cannot be estimated using

the diagnostic.

d. Limitations of the diagnostic

Acorrect estimate of the observation error covariance

matrix is given by the diagnostic in Eq. (5) only if the

background and observation error statistics used in as-

similation exactly represent the true statistics. However,

successive iterations of the diagnostic may improve the

result (Desroziers et al. 2005). Furthermore, when the

assumed statistics used in the assimilation are not exact,

with careful interpretation of the results, the diagnostic

can still provide useful information about the true ob-

servation uncertainties (Waller et al. 2016b; Ménard
2016). The diagnostic has further limitations; these in-

clude the assumption that the observation operator is

linear (Terasaki and Miyoshi 2014) and the fact that

ergodic, isotropic and homogeneous assumptions are

often made in order to obtain sufficient sample residuals

(Todling 2015). Because of the limitations of the diag-

nostic, observation error statistics estimated using this

methodology should be interpreted as indicative, rather

than necessarily quantitatively perfect.

3. DWD model, assimilation, and observations

a. The operational COSMO-KENDA system

The COSMO (Consortium for Small-Scale Modeling

in Numerical Weather Prediction) model is a limited-

area NWP model developed and maintained by the

national weather services of the COSMO consortium.

At the DWD the COSMO-DE version of the model,

covering Germany and parts of the neighboring coun-

tries, is run operationally (Baldauf et al. 2011). The

COSMO-DE model has a horizontal grid spacing of

2.8 km and 50 hybrid vertical layers which follow the

terrain at lower levels and are horizontally flat in

the upper levels. The model is continuously cycled and

SEPTEMBER 2019 WALLER ET AL . 3353



the lateral boundary conditions are provided every hour

by the ICON-EU nest of the Icosahedral Nonhydrostatic

global model (ICON) (Zängl et al. 2015). The ICON-EU

model is run with a horizontal grid spacing of 6.5km for

the deterministic and 20km for the ensemble run.

An ensemble Kalman filter for convective-scale data

assimilation (KENDA) has been developed for the

COSMOmodel. For a more complete description of the

COSMO-KENDA systemwe refer the reader to Schraff

et al. (2016). The KENDA system comprises a local

ensemble transform Kalman filter (LETKF) that em-

ploys a square root filter to calculate the analysis en-

semble from the background ensemble (Hunt et al.

2007). Observations are used both at the analysis time

and during the period up to the next analysis time re-

sulting in a 4D LETKF. As well as the analysis ensemble,

the KENDA system provides a deterministic analysis.

The deterministic assimilation is updated by using the

Kalman gain for the ensemble mean from the LETKF, as

described in Schraff et al. (2016), and the innovations

(observation minus first guess) of the deterministic run.

KENDA became operational in March 2017. The

ensemble consists of 40 members. In the operational

setting conventional observation types (radiosondes,

aircraft, wind profiler, and synoptic surface data) and

Mode-S aircraft data are assimilated. An adaptive hor-

izontal localization is applied for these observations in

order to keep the number of observations more or less

constant for every analysis point. To avoid deterioration

of spread, the KENDA system makes use of an adap-

tivemultiplicative covariance inflation plus relaxation to

prior perturbation. An additive covariance inflation is

also used in the operational system. Furthermore, soil

moisture perturbations are applied to account for some

model error. Radar derived rain rates, based on 2D

reflectivity data from terrain following radar precipitation

scans, are assimilated by applying latent heat nudging to

each ensemble member (see Stephan et al. 2008; Schraff

et al. 2016).

b. Doppler radar radial winds

Radial wind observations are obtained by measuring

the phase shift between a transmitted electromagnetic

wave pulse and its backscatter echo using Doppler ra-

dars. The ‘‘Doppler shift’’ is then used to estimate the

radial velocity of the scattering target (Doviak andZrnić

1993). In this work we consider only observations where

the scattering targets are assumed to be precipitation;

however, it is possible to derive clear air radar returns

(e.g., Rennie et al. 2010, 2011).

The DRW data used at the DWD are acquired using

a radar network of 17 C-band Doppler radars covering

Germany and surrounding areas; the location of the radars

are given in Fig. 1. Each radar completes a series of plan

position indicator (PPI) scans out to a range of 180km

every 5min at 10 different elevation angles (0.58, 1.58,
2.58, 3.58, 4.58, 5.58, 88, 128, 178, and 258) with a 18 3 1km

resolution volume. The position of these elevations is

shown in Fig. 2. Before assimilation the data has to pass

quality control (QC) procedures. A first QC is done at

the radar sites by signal processor filters (see e.g.,

Werner 2014, his section 2.2.). Then, during the forecast

cycle, prior to assimilation and superobbing, the radar

operator performs dealiasing based on simulated back-

ground wind (the folding velocity is 32m s21.).

Due to the resolution of the radar scan there is po-

tential for the number of DRW observations to be very

large. Close to the radar, the observation resolution is

much higher than the resolution of themodel. Tomitigate

against the large number of high density observations,

several radar gates are combined into superobservations.

We note that, in general, there are twomain approaches to

creating superobservations; one adds average innovation

values to the background value at the superobservation

location (e.g., Daley (1991); Simonin et al. (2014)); the

other, used atDWD, simply averages observations (e.g., as

in Alpert and Kumar (2007); Salonen et al. (2009); Bick

et al. (2016)).

The superobbing procedure used at DWD for DRWs

is the same as that described by Bick et al. (2016) em-

ployed for calculating radar reflectivity superobservations.

A schematic of the procedure is given in Fig. 3.

FIG. 1. Location of DWD radars.
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The superobbing procedure is applied to every PPI

scan individually (i.e., to each elevation and each radar

station) during the model run. The radar grid is overlaid

with a Cartesian grid (blue dots in Fig. 3) with a given

resolution Lx. For every Cartesian grid point the algo-

rithm looks for the nearest radar gate (black circles)

which then will become the location of the super-

observation. If this point is too close to the radar station

(i.e., in the experiment within a range of around 10km),

it is omitted (black cross). Otherwise a wedge around

this radar point is constructed with range 6 (Lx

ffiffiffi
2

p
/2)

and azimuth 6 arctan(Lx

ffiffiffi
2

p
/2r0) at range r0 (green or

light pink wedge in Fig. 3). The azimuthal extent can be

further restricted (in this experiment at most658) (light

brown wedge over the light pink wedge in Fig. 3). If

there are at least three observations within the super-

obbing wedge and if their standard deviation does not

exceed a threshold of 10ms21, the superobservation is

obtained by averaging over this area. If there are fewer

than three observations no superobservation is created.

The number of raw observations used to calculate su-

perobservations decreases with range (165 gates at near

range, 75 at far range). We note that it is possible for the

same raw observation to be used in multiple super-

observations. The superobbing procedure can be un-

derstood as a transformation of the observations by a

linear operator and so is not, in principle, a problem for

the assimilation procedure. However, as we show in

FIG. 2. A typical radar beam at elevations 0.58 (purple), 1.58 (pink), 2.58 (red), 3.58 (orange), 4.58
(yellow), 5.58 (light green), 88 (dark green), 128 (turquoise), 178 (light blue), and 258 (dark blue).

FIG. 3. Schematic of superobbing procedure. The radar grid is overlaid by a cartesian grid

(blue dots). The radar gates that best fit the Cartesian grid points are the superobbing locations

(black circles). The superobbing value is the average over the radar data in a surrounding

wedge. Further explanation of this schematic is given in section 3b.
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section 5a(2), the use of the same raw observation in

multiple superobservations causes correlation between

superobservation errors.

Before the superobservations are used in the assimi-

lation system they have to pass a first guess check. This

check is based on the deterministic run and takes into

account the spread of the ensemble and the observation

errors. Once the observations have been quality con-

trolled and the superobservations created they are as-

similated using the COSMO-KENDA system described

in section 3a. The DRWSO observation error standard

deviation used in the assimilation is set to be 3m s21 for

all elevations and all heights. For the LETKF the locali-

zation is determined by the fifth-order Gaspari–Cohn

function (Gaspari andCohn 1999) with length scales of to

16km in the horizontal and 0.3 log (hPa) in the vertical.

c. Model Doppler radar radial winds

The observations are compared to model Doppler

velocities simulated using the efficient modular volume

scanning radar operator (EMVORADO) (Zeng et al.

2016). First, the three-dimensional wind vector v is tri-

linearly interpolated from the model grid to the radar

gates, see also (Zeng et al. (2016), Fig. 3). Then, the

radial velocity yr is calculated as in Eq. (26) of Zeng

et al. (2016):

y
r
(r

0
)5 v(r

0
) � e

r
2 (e

3
� e

r
) � w

t
,

where er is the unit vector in the radial direction, as-

suming an effective Earth radius of 4/3 true Earth radius

for beam bending, and e3 is the unit vector in the verti-

cal direction. The mean value of the local terminal fall

speedwt is calculated as in the second part of Eq. (15) of

Zeng et al. (2016) without weighting by reflectivity. It

takes into account the local set of hydrometeors (cloud

water, cloud ice, cloud rain, snow, graupel) and the

particle size distributions. Thus, if there are no hydro-

meteors in the model (no rain) the fall speed is 0m s21.

The model radial velocities are calculated for all radar

gates for all PPI scans. The superobbing procedure is

then applied to the model Doppler velocities to allow

for direct comparison of the model superobservation

to the superobservations.

4. Experimental design

a. DRWSO error statistics estimation

We use the diagnostic described in section 2 to esti-

mate observation error statistics for DRWSOs assimi-

lated into the convection-permitting model used at

DWD. To calculate estimates of the observation error

covariances we require background and analysis residuals.

We use background and analysis residuals from a data

assimilation experiment for the period 25 May–10 June

2016. In these twoweeksGermany suffered from several

severe convective events, combined with low advection,

that caused severe floods (e.g., Braunsbach flood 29May

2016). The experiments use KENDA with conventional

data and radial wind data with a supperobbing box of

Lx 5 10km, resulting in a range of 67km and azimuth

of 6 arctan(103
ffiffiffi
2

p
/2r0) at range r0. For the experi-

ments performed here there were two differences in the

COSMO-KENDA model compared to the operational

KENDA system described in section 3a. Both the latent

heat nudging and additive covariance inflation were not

used in the experiments for this paper.

When considering DRWSO error statistics we note

that error correlations can exist both spatially (along the

beam, horizontally or vertically) and in time. Here we

calculate horizontal error statistics for DRWSOs. Hor-

izontal correlations indicate how observations at a given

height are correlated [e.g., see Fig. 1 of Waller et al.

(2016c)]. In our experiments we consider the horizontal

correlations separately for each elevation (i.e., we con-

sider the correlation between observations at the same

height at a given elevation). The uncertainty estimation

is stratified in this way to ensure that we compare ob-

servations which are anticipated to have similar repre-

sentation errors. To calculate correlations, data from

each radar scan is sorted into 200-m height layers. All

observations that fall into a particular height layer are

considered. The data are binned by separation distance

for each pair of observations and from this the correla-

tions are calculated. We calculate ‘‘average’’ horizontal

correlations using data from all radars, and also compare

variations in the error statistics between individual radar

stations. When comparing correlations we consider the

estimated correlation length scale. We determine the

correlation length scale by considering where the corre-

lation becomes insignificant (,0.2) (Liu andRabier 2002).

It is important to note that, due to the QC and

superobbing procedures and the nature of DRW ob-

servations, it is likely that only part of a radar scan

contains observations. Hence, the data availability dif-

fers for each elevation and each radar; this means that it

is not possible to estimate standard deviations and cor-

relations for every height at every elevation. To ensure

that sampling error does not contaminate our estimates

of the error statistics we discard any estimated standard

deviation or correlations where there are fewer than

1000 samples used for the estimation. Furthermore, due

to limitations with the diagnostic applied to LETKF

analyses (discussed in section 2) it is only possible

to estimate correlations out to a separation distance

shorter than the observation cutoff distance determined
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by the localization length scale. In our experiments the

localization length scale is 16 km, using the fifth-order

Gaspari–Cohn function (Gaspari and Cohn 1999) this

results in an observation cutoff distance of approxi-

mately 60 km; therefore we estimate correlations for

separation distances less than 50 km. We also esti-

mated the observation error statistics from analyses

calculated using a larger localization radius (32 km)

for the DRWs. We do not show the results here but

note that relationship between estimated variance and

height/range and the relationship between correlation

length scale and height are qualitatively similar to

those shown here.

As discussed in section 3a, from the assimilation

we can obtain both the deterministic analysis and the

analysis ensemble mean. It is possible to calculate error

statistics using the analysis residuals from either the

deterministic analysis or analysis ensemble mean, but

we will focus on error statistics calculated using the de-

terministic analysis.We chose the deterministic analysis,

since the ensemble mean does not necessarily give a

solution consistent with the model. Error statistics esti-

mated using the ensemble analysis mean were initially

considered and showed qualitatively similar results to

those given in section 5. However, it was found that the

standard deviations were slightly smaller and correla-

tion length scales slightly larger when estimated using

the analysis ensemble mean. We hypothesize that this

is a result of the smoothed fields in the analysis ensemble

mean.

b. Comparison to previous results

In an attempt to understand the sources of observa-

tion error further we compare our estimated DRWSO

error statistics for the DRWSOs that were assimilated

using the COSMO-KENDA system with the DRWSO

error statistics estimated in Waller et al. (2016c) for the

MetOfficeUKVmodel.We note thatWaller et al. (2016c)

concluded that:

d DRWSO error standard deviations and correlation

length scales increase with height (as a function of the

increase in measurement volume).
d The DRWSOs exhibit large spatial correlations that

increase with height.
d The approximate nature of the observation opera-

tor results in error correlation at all heights, with

the correlation increasing with distance from the

radar.
d At close range the superobbing procedure does not

result in error correlation. For observations farther

from the radar the superob cell size increases which

results in error correlations.

For our comparison we consider DWD results from

the lowest eight elevations, and for all elevations we

only consider error statistics for those observations

below 10 km. When comparing our results we must

bear in mind that, although the error estimation was

performed using the same methodology as described

in the previous section, there are a number of differ-

ences between the experimental design in this manu-

script and Waller et al. (2016c). These relate to the

model, assimilation and time periods of the experi-

ment and are detailed in Table 1. The observation

operators in both systems are similar, with the DRW

being modeled as a point observation; the only dif-

ference is the inclusion of the terminal fall speed in the

DWD observation operator. The largest difference

between the DWD and Met Office observation pro-

cessing is the superobbing procedure. As described in

section 3b the superobservations at DWD are created

by averaging the observations in a given area; in

contrast, at the Met office the superobservations are

created by averaging the observation-minus-background

values in a given area, and adding this average innovation

to the background value at the superobservation location.

Furthermore, the Met office procedure ensures that

any raw observation can only be used in a single super-

observation, whereas in the DWD methodology a raw

TABLE 1. Differences between the experimental design in this manuscript (DWD) and Waller et al. (2016c) (Met Office).

Variable DWD Met Office

Time period of experiment 25 May–10 Jun 2016 1 Jun–31 Aug 2013

Model domain Germany United Kingdom

Model resolution 2.8 km 1.5 km

Assimilation methodology LETKF 3D-Var

Assimilation resolution 8.4 km 3 km

Radar beam elevations 0.58, 1.58, 2.58, 3.58, 4.58, 5.58, 88, 128, 178, 258 1.08, 2.08, 4.08, 6.08
Radar resolution 1 km 3 18 0.6 km 3 18 and 0.075 km 3 18
QC See section 3b See Simonin et al. (2014)

Superobbing procedure Based on data average (Bick et al. 2016) Based on innovation average (Simonin et al. 2014)

Assumed observation error

standard deviation

3m s21 1.8–2.8m s21

SEPTEMBER 2019 WALLER ET AL . 3357



observation can be used in the creation of multiple

superobservations.

5. Results

a. Estimated observation error standard deviations
and horizontal correlations for all radars

Webegin by using observations from all radar scans to

calculate the observation error statistics at different

heights for each elevation separately.

1) STANDARD DEVIATIONS

In Fig. 4a we plot the standard deviation profiles with

height for each elevation; the same result is plotted

against distance from the radar (range) in Fig. 4b. We

see that in general the standard deviations range be-

tween 1 and 4.5m s21. The top three elevations (128, 178,
258) exhibit noisy behavior and in general the standard

deviations are larger. In part, this may be a result of

the reduced number of samples used for the standard

deviation estimation. In addition to the large standard

deviations for the high elevations, we also note that for

all elevations the observation errors become large above

10 km. The large errors in the highest elevations, and for

all elevations above 10km may be explained by simpli-

fications in the observation operator. The observation

operator only uses a mean hydrometeor fall speed in-

stead of accounting for the weighting by reflectivity [see

also Zeng et al. 2016, Eq. (15)]. The mean hydrometeor

fall speed might differ from the actual fall speed and

affects the highest elevations in particular. The large

standard deviations suggest that currently it may not be

beneficial to assimilate observations high in the atmo-

sphere or from high-elevation beams. If we consider

only the observations in the first 7 beams below 10 km,

the range of standard deviations is much smaller (be-

tween 1 and 2ms21). These estimated standard devia-

tions are smaller than the standard deviation, 3m s21,

that is used in the assimilation.

The estimated observation error standard deviation

profiles for elevations 1.58, 2.58, 3.58, 4.58, 5.58, and 88 all
exhibit similar features. Figure 4a shows that initially the

standard deviations increase with height; they reach a

‘‘low level peak’’ before decreasing to reach aminimum;

they then increase slowly with height again. We note

that the peak at low heights occurs at approximately the

same range, 30 km, for each elevation (Fig. 4b). We at-

tribute the general increase in error variances with

height to the observation operator. We note that for

each elevation the volume of atmosphere sampled by

the raw observation increases with height. For any given

height the volume sampled by the high-elevation

beam will be smaller than the low elevation beam.

Observations that sample larger volumes are subject

to more error from the observation operator. The ef-

fect of this can be seen in Fig. 4a where at any given

height, the standard deviations are larger for lower

elevations. The cause of reduction in error variance

between 30 and 60 km is unidentified; however, addi-

tional experiments with a superobbing grid where

Lx 5 20 (not shown) identify that the overlapping

superobservation wedges were not the cause of the

decrease in variances.

FIG. 4. Error standard deviations estimated using the deterministic analysis for 0.58 (purple), 1.58 (pink), 2.58
(red), 3.58 (orange), 4.58 (yellow), 5.58 (light green), 88 (dark green), 128 (turquoise), 178 (light blue), and 258 (dark
blue). (a) Standard deviations plotted with observation height. (b) Standard deviations plotted with observation

range from radar.
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For the lowest elevation, 0.58, the estimated standard

deviations decrease between the surface and 1km. The

standard deviations then increase slightly as height in-

creases. For this elevation the largest standard devia-

tions occur at the lower levels and the low-level peak in

the error profile is not seen. The 0.58 beam is the most

susceptible to clutter and large estimated standard de-

viations suggest that contaminated observations have been

assimilated. Studying the raw radar scans shows that,

despite a clutter removal step in the quality control pro-

cedure, assimilation of clutter is occurring. Currently, as-

similation tests with new quality control procedures

(Werner 2014) are ongoing at DWD. This result highlights

that the diagnostic can also be used to understand defects

in the observation processing and assimilation system.

2) CORRELATIONS

We now use observations from all radar scans to cal-

culate the horizontal observation error correlations at

different heights for each elevation separately.

We first consider the estimated horizontal correla-

tions at different heights for the low elevation beams

(0.58, 1.58, 2.58, 3.58, 4.58). In Figs. 5 and 6 we show the

correlations estimated for the 1.58 beam. We note that

the other low-level beams exhibit qualitatively similar

behavior. In Fig. 5 we see that the lowest height has

shortest correlation length scale which is approximately

11 km. The correlation length scales then increase with

height (up to a height of 1.3 km) to approximately 18 km.

Figure 6 shows that above the height of 1.9 km the cor-

relation length scales no longer increase with height.

The correlation length scale becomes more similar for

each height with length scales in the range 17 to 20 km.

When considering the estimated correlations for the

high elevations (5.58, 88, 128, 178, 258), the correlation

length scale increases with height (Fig. 7), although the

relationship is not as distinct as in the low elevations

at low heights. The range of correlation length scales

is similar to that for the lower elevations, being between

11 and 20 km.

It is clear that there are two different regimes for the

correlation length scales. At near ranges the correlation

length scale is a function of height, but at far range

the correlations appear independent of height. We hy-

pothesize that the change in regime is a result of the

superobbing procedure. To investigate, we carry out an

experiment using pseudosuperobservations to examine

the effect of the overlapping superobbing wedges. These

simple model experiments show that at far ranges there

is significant overlap in the superobbing wedges, with

raw observations being used to make several super-

observations. The use of the same raw observation to

make multiple superobseravtion results in correlation

between superobservation errors. With our pseudo-

observations we find that all observations above 2 km

have correlated errors with a length scale of approxi-

mately 14 km. Below 2km the error correlations in-

crease with height. Hence our simple model experiments

confirm that the change in regime is related to the over-

lapping of superobbing wedges. In our simple experi-

ments the estimated length scales are shorter than

estimate for the DWD DRWSOs. Waller et al. (2016c)

showed that the omission of beam broadening in the

observation operator resulted in correlation length

scales that increased with height. The observation op-

erator used here also omits beam broadening, so we

attribute the near-range increase in length scale as a

function of height to the approximations in the obser-

vation operator. In general the correlation length scales

are between 10 and 20km. Currently observation errors

are assumed uncorrelated, but assimilated at a density

where observation error correlations exist. This suggests

FIG. 5. Estimated correlations (deterministic analysis) for 1.58 beam for heights between

0.3 and 1.3 km.
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that, if the DRWSOs are to be assimilated in their cur-

rent form, either the data should be thinned or that

correlations should be accounted for in the assimilation.

b. Estimated standard deviations and correlations
per radar

In the previous section we combined data from all radar

stations to estimate the DRWSO error statistics. Here we

consider each radar individually to consider if different

radars have different observation error characteristics.

Calculating error statistics for each radar individually re-

duces the number of observations available for the esti-

mation.We still only plot results estimated withmore than

1000 samples; however, the results are not as ‘‘smooth’’ as

those seen in the previous section.

1) STANDARD DEVIATIONS

We plot in Fig. 8 the estimated observation error

standard deviations for the lowest (0.58) elevation. The

height of the radar above sea level is accounted for in the

calculations. From Fig. 8 we see that the estimated

standard deviations differ between radars, but each ra-

dar exhibits the same qualitative behavior as the ‘‘all

radar’’ 0.58 beam (decrease then increase with height)

seen in Fig. 4b. Taking account of the radar height above

sea level reduces the difference between the estimated

statistics for individual radars. This suggests that standard

deviations are related to the range of the observation

from the radar rather than the height of the observation

above the ground. We find that there are two radars that

have larger error standard deviations (those with IDs

10169 and 10204). From Fig. 1 we see that these two ra-

dars take observations over the sea. Further investigation

shows that the larger error standard deviations are the

result of contaminated observations (contaminated by

shipping lanes and wind turbines).

For the remaining elevations the individual radar

standard deviations remain qualitatively similar to the

FIG. 6. Estimated correlations (deterministic analysis) for 1.58 beam for heights between

1.7 and 3.7 layer.

FIG. 7. Estimated correlations (deterministic analysis) for 88 beam.
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all radar standard deviations. In general the errors are

more similar between radars with the exception of

radar 10169.

2) CORRELATIONS

When considering the estimated correlations (not

shown), again we find that the results are qualitatively

similar to the all radar case. For the low elevations, ini-

tially the correlation length scales increase with height.

Observations at higher heights have similar length scales.

For high elevations the correlation length scales increase

with height. However, we note that there are quantitative

differences between individual radars.

c. Comparison to previous results

We now compare the new error statistics we have

estimated for the DWDDRWSOs to the error statistics

estimated for DRWs assimilated in to the Met Office

system. A full description of the Met Office system can

be found in section 4b and Waller et al. (2016c).

1) STANDARD DEVIATIONS

For both the Met Office and DWD cases we find that

the standard deviations range between 1 and 2.5m s21.

In Fig. 4a we showed that for the DWD error profiles

above 4 km at any given height the standard deviations

are larger for lower elevations. The results shown in

Fig. 4a exhibit qualitatively similar behavior to the Met

Office results shown in Fig. 4 of Waller et al. (2016c).

We attribute this behavior to approximations in the

observation operator. We note that although DWD and

the Met Office use different observation operators, they

both become more approximate at far range (higher

heights).

For most elevations we find that the estimated stan-

dard deviations are smaller for the DWD observations.

It is possible that this is a result of the diagnostic

underestimating the observation error standard devia-

tions due to the background error variance inflation

required by the DWD data assimilation scheme. If the

background error variance is overinflated the diagnostic

will underestimate the observation error variance (Waller

et al. 2016b).

The main difference in the estimated error profiles

occurs at near range (low height). For theMet Office the

DRW standard deviations increase with height, whereas

the DWD DRW standard deviations first increase then

decrease with height before increasing again. As dis-

cussed in section 4, the DWD and Met Office use very

different superobbing procedures and hence we hypoth-

esize that the differences in the low-level error vari-

ance profiles are a result of the different superobbing

procedures used.

2) CORRELATIONS

From Fig. 5 of Waller et al. (2016c) and the results in

section 5a(2), Figs. 5 and 6, we see that the estimated

correlations for the Met Office and DWD observations

exhibit qualitatively similar behavior; the length scales

are longer than the thinning/superobbing distances and

for any given elevation the observation error correlation

length scale initially increases with height. For the Met

Office observations, it was found that for any given

height the observation error correlation length scales

decrease with elevation increase; this is not seen for

the DWD DRW error correlations. For the DWD

observations, as a result of the superobbing procedure

[see section 5a(2)] the correlation length scales no

longer increase after a particular height (the exact

height is dependent on the elevation). Therefore the

differences in the correlation length scales at large

heights are a result of the different superobbing pro-

cedures used.

6. Conclusions

Improved specification of observation uncertainties

is required for the efficient use of high-resolution

observations in convective-scale data assimilation.

The aim of this paper is to estimate observation error

statistics for DRWSOs assimilated into the DWD

COSMO-KENDA system. We also consider the im-

pact of different observation processing and data as-

similation schemes by comparing our results to those

found in previous studies.

FIG. 8. Error standard deviations estimated using the deterministic

analysis for 0.58 beam for individual radars.
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Our results show that the observation error standard

deviation profiles are influenced by the effects of the

observation operator, which becomes less accurate with

height, and by the superobbing procedure. For obser-

vations below 10 km, the estimated observation stan-

dard deviations are lower than currently assumed in the

DWD KENDA system. This suggests that it may be

feasible to reduce the DRWSO error standard de-

viations in the assimilation scheme. The exception is the

lowest observations from the lowest elevation; these

observations have large error standard deviations due to

the assimilation of observations contaminated by ship-

ping lanes and wind turbines. This highlights the use of

the diagnostic for determining shortcomings in the ob-

servation processing system. Since carrying out this

study new quality control routines are applied to radar

data within the DWD (see e.g., Werner 2014). In con-

trast to the low-level observations, observations above

10 km and those from high-elevation radar beams have

much larger standard deviations and the error profiles

exhibit noisy behavior. This may be a result of omissions

in the observation operator or reduced sample sizes.

These large standard deviations suggest that the obser-

vations high in the atmosphere and from high beams are

subject to a large representation error and may not be as

beneficial for assimilation.

For all elevations we find that initially the correlation

length scales increase with height; we hypothesize that

this is a result of the omission of beam broadening in

the observation operator. For the low elevations after a

given height the trend in correlations stops and the

length scales at higher heights fall within a given range.

This is likely a result of the superobbing procedure.

For the estimated correlations we find that in general

the correlation length scale is 12 km or longer; hence, the

current assimilation incorrectly assumes that the DRWSO

errors are uncorrelated.

When comparing our results to those of Waller et al.

(2016c), who calculated error statistics for DRW ob-

servations used at the Met Office, we find a number of

similarities. The increase in error standard deviation

with height (at far ranges) and the increase in correla-

tion length scale with measurement volume occur for

both the DWD and Met Office DRW statistics. Both

these features are a result of the approximate observa-

tion operator. The approximations are reasonable near

the radar, but become poorer as observation distance

from the radar increases and hence measurement vol-

ume, increases. The main difference between the results

is the standard deviation profile at low heights which can

be attributed to the different superobbing procedures.

In general, the results found using the DWD ensemble

system are similar to the results found in using the Met

Office variational system. The consistency between re-

sults provides further confidence in the results that can

be obtained from the diagnostic, despite its limitations.

The results shown here provide an understanding of

DRWSO error statistics. We are able to determine some

of the main contributors, the observation operator and

superobbing procedure, to the error standard deviation

and correlations. Some of the error sources can be easily

removed by improving the quality control procedures.

Previously it has been shown by Waller et al. (2016c)

that it is possible to reduce the error correlation by using

an improved observation operator. Therefore, the use of

the more complex version of the observation operator

may be beneficial. It may also be possible to reduce the

error correlation length scales by modifying the super-

obbing scheme (e.g., by forming the superobservations

on a coarser grid ensuring that a raw observation is only

used once). However, even if some of the errors can be

reduced, it is likely that significant correlation will still

remain for some heights at some elevations. Hence, for

the improved assimilation of DRW observations it will

be important to account for the correlated observation

errors in the data assimilation system.
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