Search from over 60,000 research works

Advanced Search

Near-Earth solar wind forecasting using corotation from L5: the error introduced by heliographic latitude offset

[thumbnail of L5_corotation_error_RevisedV2.pdf]
Preview
L5_corotation_error_RevisedV2.pdf - Accepted Version (1MB) | Preview
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Owens, M. J. orcid id iconORCID: https://orcid.org/0000-0003-2061-2453, Riley, P., Lang, M. and Lockwood, M. orcid id iconORCID: https://orcid.org/0000-0002-7397-2172 (2019) Near-Earth solar wind forecasting using corotation from L5: the error introduced by heliographic latitude offset. Space Weather, 17 (7). pp. 1105-1113. ISSN 1542-7390 doi: 10.1029/2019SW002204

Abstract/Summary

Routine in‐situ solar wind observations from L5, located 60° behind Earth in its orbit, would provide a valuable input to space‐weather forecasting. One way to ulitise such observations is to assume that the solar wind is in perfect steady state over the 4.5 days it takes the Sun to rotate 60° and thus near‐Earth solar wind in 4.5‐days time would be identical to that at L5 today. This corotation approximation is most valid at solar minimum when the solar wind is slowly evolving. Using STEREO data, it has been possible to test L5‐corotation forecasting for a few months at solar minimum, but the various contributions to forecast error cannot be disentangled. This study uses 40+ years of magnetogram‐constrained solar wind simulations to isolate the effect of latitudinal offset between L5 and Earth due to the inclination of the ecliptic plane to the solar rotational equator. Latitudinal offset error is found to be largest at solar minimum, due to the latitudinal ordering of solar wind structure. It is also a strong function of time of year; maximum at the solstices and very low at equinoxes. At solstice, the latitudinal offset alone means L5‐corotation forecasting is expected to be less accurate than numerical solar wind models, even before accounting for time‐dependent solar wind structures. Thus, a combination of L5‐corotation and numerical solar wind modelling may provide the best forecast. These results also highlight that three‐dimensional solar wind structure must be accounted for when performing solar wind data assimilation.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/84534
Item Type Article
Refereed Yes
Divisions Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
Publisher American Geophysical Union
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar