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ABSTRACT

The prediction of tropical cyclones (TCs) in the western North Pacific (WNP) and the Philippines Area of

Responsibility (PAR) has been explored in the Met Office (UKMO) global forecasting system over a 10-yr

period at 0–7-day lead times. Both the high-resolution deterministic and lower-resolution ensemble sys-

tems have been considered. Location errors for verification against the observations are comparable for the

deterministic, control, and ensemble mean forecasts; however, the ensemble spread indicates the ensemble

is underdispersive. Intensity error metrics, for pressure and surface winds, show large biases relative to the

observations, with the smallest biases for the deterministic system. For the intensity metrics the ensemble

spread shows the ensemble is severely underdispersive primarily due to the large errors relative to the

observations. Verification against the analyses shows similar results to verification against the obser-

vations for location. This is also the case for the intensities albeit with smaller errors and less under-

dispersion. The PAR region has larger intensity errors and biases and larger intensity ensemble spread

compared with the broader WNP region. Forecast errors for location and intensity have reduced sig-

nificantly with system upgrades over the period studied (2008–17) for the deterministic and ensemble

systems. Intensity errors for the latest configuration of the deterministic system at day 4 are smaller

than the initial errors of all the earlier configurations for both pressure and winds. The Madden–Julian

oscillation (MJO) and boreal summer intraseasonal oscillation (BSISO) significantly affect the in-

tensity forecast errors, but not the location errors. Intensity errors are lower at the initiation and for

early lead times of the forecasts started in phases 6–7 and 7–8, when the MJO and BSISO are active in

the WNP. These reduced errors appear to result mainly from the variations in intensity of the observed

storms with MJO and BSISO phases, though the initial states of the forecasts are also affected. Over the

studied period, the European Centre for Medium-Range Weather Forecasts (ECMWF) deterministic

and ensemble systems have lower errors and biases for both location and intensity than the UKMO

forecast systems.

1. Introduction

The western North Pacific (WNP) region experiences

the largest number of tropical cyclones (TCs) annually.

The island nations and continental countries bordering

this region are highly vulnerable to economic losses

and loss of life from such storms. It is imperative to

improve the prediction of TCs in the WNP to prevent

loss of life and mitigate against economic damage from

the associated storm surges, high winds, and intense

precipitation. For example, Typhoon Haiyan in 2013,

considered one of the most powerful typhoons to have

made landfall, killed over 7000 people predominantly

in the Philippines and caused estimated economic los-

ses of $5.8 billion (U.S. dollars). The Philippines Area

of Responsibility (PAR) experiences on average more

than 20 TCs a year, of which 5–6 make landfall. Cinco

et al. (2016) showed that although the frequency of

TCs affecting the Philippines over the last 40 years has

not changed significantly, the annual losses attributed

to TCs have increased over the period. Other WNP

countries are also severely impacted by TCs, including

China, Vietnam, Japan, and the Korean Peninsula.
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In view of the vulnerability of the Philippines to TCs,

theMet Office (UKMO) has built a partnership with the

PhilippineAtmospheric, Geophysical andAstronomical

Services Administration (PAGASA), the Philippine

National Meteorological Service. A particular focus of

this partnership is to improve the capability to predict

regional weather extremes to prevent loss of life and

mitigate damage. For TCs, the focus is on theMet Office

high-resolution deterministic global forecast model,

the Met Office Global Ensemble Prediction System

(MOGREPS-G) and the Global Seasonal (GLOSEA)

forecasting system, together with regional dynamical

downscaling (Short and Petch 2018).

Recent studies have highlighted improved TC fore-

casts of location or position (often referred to as

‘‘track’’ in the literature) in global numerical weather

prediction (NWP) models (Yamaguchi et al. 2017). TC

intensity is still underestimated due primarily to a

lack of resolution and the use of parameterized pro-

cesses (DeMaria et al. 2014). Regional downscaling

can provide more accurate TC forecasts. However,

at the convective-scale resolutions required, with grid

spacing less than 5 km, downscaling is often possible

only over a rather restricted area that precludes fore-

casts beyond about 5 days (Short and Petch 2018).

Studies have also shown that prediction errors, both

of location (track) and intensity, can vary considerably

between different ocean basins (Hodges and Emerton

2015, hereafter HE15). The WNP tends to have larger

errors than most other TC regions.

Various tropical modes of variability can affect WNP

TC genesis, path, and possibly intensity, for example, the

El Niño–Southern Oscillation (ENSO; Kim et al. 2011),

subtropical high variability (Wu et al. 2005), monsoon

variability (Wu et al. 2012), and the Madden–Julian

oscillation (MJO) (Klotzbach and Oliver 2015). How-

ever, studies of the impact of these modes of variability

on the prediction of WNP TCs have so far been limited

to seasonal (Lee et al. 2018; Vitart 2009; Camp et al.

2015) or longer-term prediction, with a frozen model.

These studies emphasize TC occurrence rather than

location and intensity errors of observed TCs, which

is the focus of NWP. The lack of emphasis on NWP time

scales is likely due to the lack of long-term datasets

and the continual changes to the NWP systems. We

attempt to address this issue in this paper in a limited

way for the MJO and boreal summer intraseasonal

oscillation (BSISO) (Lee et al. 2013). The MJO and

BSISO are tropical modes of variability active on 30–

70-day time scales. The MJO modulates the large-

scale tropical environment and hence TC genesis

(Klotzbach and Oliver 2015). The convectively active

MJO phases are associated with enhanced TC activity

and rapid intensification in all the main TC active re-

gions (Klotzbach and Oliver 2015). The BSISO is con-

sidered since it is active during themainWNPTC season

(May–October), whereas the MJO is generally more

active during boreal winter. The BSISO also impacts

the WNP TC genesis (Yoshida et al. 2014). How NWP

forecast errors of TCs are affected by the MJO and

BSISO is so far unknown.

The aims of this paper are to assess the accuracy of

WNP TC predictions in the Met Office global model,

document the improvements in TC predictions made

in recent years with improvements to the forecasting

system (data assimilation and model), and explore the

impact of the subseasonal MJO and BSISO modes of

variability on TC prediction. Heming (2016) found a

dramatic improvement in TC track and intensity

predictions in the global Met Office model, following

upgrades to model resolution and physics in 2014,

and in particular the introduction of a new TC bogusing

scheme in 2015. However, this evaluation only covered

forecasts conducted for a limited number of particular

case studies. Here, a much longer record of forecasts

are considered, encompassing several major model up-

grades. We also contrast the performance of the high-

resolution UKMO deterministic NWP system with that

of the lower-resolution ensemble system and with the

European Centre for Medium-Range Weather Fore-

casts (ECMWF) deterministic and ensemble prediction

systems.

2. Data and methodology

a. Forecast data

The primary data for this study are the operationalMet

Office forecasts from the global forecasting system, both

the deterministic and ensemble (MOGREPS-G) fore-

casts, produced by the Unified Model (UM). The period

covered is 2008–17. The deterministic system forecasts

are produced twice a day at 0000 and 1200UTC, resulting

in over 7300 forecasts. The MOGREPS-G ensemble

forecasts are produced twice a day at 0000 and 1200 UTC

until November 2014 and four times a day after this (0000,

0600, 1200, and 1800 UTC) resulting in over 9300 fore-

casts. However, for consistency, only the 0000 and

1200 UTC MOGREPS-G forecasts are used. Note, not

all forecasts will contain aTC in theWNPand PAGASA-

PAR study areas.

During the 2008–17 period the assimilation system

and model experienced several major upgrades, which

are summarized in Table 1. The UM dynamical core

is nonhydrostatic since 2002 (Davies et al. 2005),

solving the deep atmosphere equations on a latitude–

longitude horizontal grid with terrain following eta
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levels in the vertical using a semi-implicit, semi-

Lagrangian methodology. In 2014, significant improve-

ments were made to both the dynamical core and physics

packages (Walters et al. 2017). The effect of TC initiali-

zation (bogusing) on the forecasts of TCs in this new

model setup was evaluated and contrasted with an older

scheme by Heming (2016), which found significant

improvements in both track and intensity errors. The

single high-resolution deterministic forecasts are gen-

erally run at twice the resolution, in latitude and lon-

gitude, of the ensemble forecasts. Initial conditions are

provided by a four-dimensional variational data assim-

ilation scheme (4DVar).

For the ensemble forecasts, a single unperturbed

control forecast is performed using the analysis from

the higher -esolution deterministic system interpolated

to the ensemble resolution. This constitutes onemember

of the ensemble. The other members are derived from a

perturbed initial state obtained via the ensemble trans-

form Kalman filter (ETKF) (Bowler et al. 2009). Addi-

tionally, the model is perturbed during the forecast

integration using two stochastic physics schemes: the

stochastic kinetic energy backscatter (SKEB) scheme

(Shutts 2005) and the random parameters (RP) scheme

(Bowler et al. 2008) that applies small perturbations

to several parameters within the parameterizations.

Perturbations are also applied to sea surface temper-

ature (SST) and soil moisture.

The cyclone tracking scheme (section 2c) is applied

to the 6-hourly data of all forecasts for the entire fore-

cast; however, for verification only the common 0–7-day

forecast lead times are used.

b. Verification data

To verify the TC forecasts two datasets are used. The

first is the commonly used International Best Track

Archive for Climate Stewardship (IBTrACS) dataset

(Knapp et al. 2010), which is a postseason reanalysis

of TC observations from all available agencies. In

the WNP multiple TC operational agencies contribute

data to IBTrACS, which must be quality controlled.

However, there are considerable uncertainties in the

data from the different agencies in terms of the fre-

quency and intensity of WNP TCs (Ren et al. 2011;

Barcikowska et al. 2012). These uncertainties affect

TC verification, depending on which agency’s data are

used. Further discussion of the impact of observa-

tional uncertainty on forecast verification and the

identification of TCs in model data can be found in the

appendix of HE15 and in Hodges et al. (2017). Miss-

ing data in IBTrACS affect the verification of intensity

measures of 10-m winds and surface pressure, both of

which are used here. The original IBTrACS 10-m windT
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speed data in knots are converted to meters per sec-

ond. TheWorldMeteorological Agency (WMO)winds

from IBTrACS are used here, which are the Japan

Meteorological Agency (JMA) 10-min-average sustained

winds. These are converted to 1-min sustained wind

speeds using a factor of 1.13 (Harper et al. 2010). Dis-

cussion of the uncertainties in the use of this conversion

factor can be found in HE15. This conversion is retained

here for consistency with that study.

While verification against IBTrACS data is important,

a complementary perspective can be obtained by verify-

ing against the unperturbed analyses, used as initial con-

ditions for the deterministic forecasts, or a reanalysis

product. This gives a broader scope for verification as

more data are generally available than are present in

IBTrACS. It also gives a clearer picture of the error

growth, in particular for intensity, than obtained by veri-

fying against best track, for which the initial errors swamp

the error growth. This approach was used in HE15 for

the ECMWF deterministic and ensemble predictions of

NH TCs for 2008–12. The main uncertainty in this ap-

proach is that the samemodel is used for the deterministic

analyses and the forecasts. The analyses and the forecasts

have the same resolution and use parameterized physics,

which results in weaker TCs than observed. However,

the verification can be performed at a comparable reso-

lution. Analyses are also sensitive to the observations that

are assimilated and the data assimilation method. The

operational analysis system changes over time with fre-

quent upgrades, in particular to the background model

(see Table 1). An alternative would be to use a reanalysis

where the model and data assimilation system are frozen;

however, current reanalyses have considerably coarser

resolutions than the forecasts used here. Ideally, the

Met Office 6-hourly operational analyses could be used.

However, for the early part of the study period a consid-

erable fraction of the analysis data ismissing from theMet

Office archive. Therefore, the ECMWF operational ana-

lyses are used instead. The ECMWF analysis system has

also changed over the study period, as summarized in

HE15, but has much higher resolution (between 25 and

10km) than any global reanalysis with no missing time

steps. Using an independent verification dataset, pro-

duced by a different model and data assimilation system,

might also provide a fairer evaluation of the UKMO

forecast errors than using the initial conditions used for

the forecasts.

c. Methods: Tracking and statistics

The methods used here to track and identify the TCs

in the Met Office forecasts and ECMWF analyses, and

to produce the error diagnostics, are the same as used

by HE15, where further details can be found. The

tracking is performed using the scheme described in

Hodges (1994, 1995, 1999), which has been applied in

several TC related studies, as well as for other weather

system types. First the vertical average of the relative

vorticity between 850 and 600 hPa is obtained, which

essentially uses the 850-, 700-, and 600-hPa levels. This

field is then spatially filtered using spherical har-

monics to a T63 resolution, at the same time removing

the large-scale background by setting total wave-

numbers n# 5 to zero. Vorticity maxima (in the NH)

are then first determined on the T63 grid. These are

then used as the starting points for determining the off-

grid locations using a B-spline interpolation and a

steepest ascent maximization method (Hodges 1995).

In the first instance, all positive vorticity centers in the

Northern Hemisphere (NH) are tracked in the filtered

T63 vorticity field that exceed a threshold of 0.5 3
1025 s21 between 08 and 608N. This approach produces

the most coherent tracks for the full life cycles of the

systems, including their pre-TC and post-TC stages.

The tracking is performed over the full length of the

forecasts and for the analyses over full years (January–

January). After completing the tracking, other vari-

ables are added to the tracks, including the maximum

10-m winds and minimum mean sea level pressure

(MSLP). This is done by searching for the maximum

10-mwinds within a 68 geodesic radius, and for the true

MSLP minimum within a 58 radius using the B-splines

and minimization method.

To identify the TCs from amongst all tracked fea-

tures, the same matching methodology as in HE15 is

used, which matches the forecast tracks against the

verification tracks.

In the first instance, the identically same TC tracks

are identified in the analyses as are in the IBTrACS

data, to enable verification of forecast TCs against the

identically same tracks for both verification datasets.

Analysis and IBTrACS tracks are matched using the

same methodology as in Hodges et al. (2011) for ex-

tratropical cyclones, so that two systems match if they

overlap in time for at least 10% of their points and their

mean separation distance is less than 48. The small

temporal overlap accounts for the disparate lifetimes

of TCs in the IBTrACS data and the analyses. A

summary of the number of TCs identified in the ana-

lyses for the whole NH is given in Table 2, which shows

that nearly every IBTrACS TC can be found in the

analyses; the small number missing are primarily weak

and short lived. Also shown in Table 2 is the number

of analysis and IBTrACS TCs for the two sampling

regions described below. In this case, the number of

analysis tracks can be greater than IBTrACS due to

the longer tracks in the analyses.
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To identify and verify the forecast TC tracks, the

forecast tracks are matched to the verification tracks

using the same method and criteria as HE15, and

originally used by Froude et al. (2007a) for extra-

tropical cyclones. A forecast track is matched to a

verification track if the mean spatial separation of its

first four points (1 day) is less than or equal to 48 and is

the track with the smallest separation for those four

points. Only forecast tracks that have their first point

within the first 3 days of the forecast are considered, to

exclude matches by chance. This means that systems

are included in the verification even if they are not

present in the initial conditions. For the ensemble, this

means that a match is possible from each ensemble

member. The ensemble mean and ensemble spread can

be computed for each TC, as long as a minimum of five

members are present for each lead time. The matching

approach is considered a simpler and more objective

approach than applying objective detection criteria, such

as the presence of a warm core and intensities above a

chosen threshold to identify the TCs. The use of such

criteria are often applied in climate model studies of TCs

(Bengtsson et al. 2007; Strachan et al. 2013; Roberts et al.

2015; Manganello et al. 2012) but results depend strongly

on the chosen thresholds and the ability of the modeling

system to represent the TCs structure and intensity.

Statistics are computed for location error, absolute

intensity error, intensity bias, and the ensemble spread

for location and intensity. The 95% confidence intervals

(CIs) for the error statistics are computed from the

standard errors for each statistic. While TC intensity is

usually measured by the surface winds, here intensity

is also measured by MSLP. HE15 also used the T63

vorticity as an intensity measure, to focus on the large-

scale aspects of the TCs, which may be more predictable

than the smaller scales (Vukicevic et al. 2014); some

results discussed here also use this measure.

HE15 considered both homogeneous and non-

homogeneous samples, but for the large sample sizes

in that study, and used here, the nonhomogeneous

samples (i.e., that use all of the data) are found to be

acceptable. HE15 also considered the issue of serial

correlation of the forecasts, which in principle could

make the CIs too narrow. However, that study found

(see also supplementary material of HE15) that the

serial correlation decreases rapidly with forecast lead

time. At shorter lead times, the sample sizes used in

that study and here are so large that correcting for the

serial correlation makes little difference to the CIs,

hence this also has not been considered here. In gen-

eral, the CIs are larger for smaller sample sizes as the

standard error is proportional to 1/
ffiffiffiffi

N
p

, where N is the

number of samples at a particular forecast lead time.

The whole of the NH is initially processed, but to

focus on the WNP and in particular the Philippines

region, two sampling regions are considered: the whole

tropical/subtropical part of the WNP and a simplified

version of the PAGASA-PAR (Fig. 1). A TC is con-

sidered only if the verifying track enters the sampling

region; statistics are computed only for points on the

verifying track in the sampling region. For the ensem-

ble spread, statistics are computed for tracks for which

the ensemble mean track is in the sampling regions.

TABLE 2. Number of IBTrACS TCs in the NH, WNP, and PAGASA PAR by year and the number identified in the analysis by direct

matching.

Years 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

NH

IBTrACS 74 72 63 72 68 79 66 78 78 80

Analysis 73 70 62 70 66 77 65 77 77 75

WNP

IBTrACS 29 32 22 28 27 38 26 31 32 35

Analysis 32 32 24 28 31 38 25 30 32 33

PAGASA PAR

IBTrACS 21 20 13 20 21 25 22 16 17 23

Analysis 23 21 16 19 20 26 22 16 18 25

FIG. 1. Sampling regions for TC error statistics. Red box (08–408N,

1008E–1808); blue box (58–258N, 1158–1358E).
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d. Methods: Modes of variability

To see how the TC prediction errors might depend

on large-scale modes of variability, the error statistics

are conditioned on indices that describe two large-

scale modes. The period used here is too short to

sample ENSO robustly, or other interannual modes

associated with the subtropical high and the monsoons.

We instead consider subseasonal modes of vari-

ability, of which the most obvious in the WNP is the

MJO (Zhang 2005). We use the real-time multivariate

MJO (RMM) indices of Wheeler and Hendon (2004)

(obtained from http://www.bom.gov.au/climate/mjo/

graphics/rmm.74toRealtime.txt), based on the winds

from the National Centers for Environmental Prediction–

National Center for Atmospheric Research (NCEP–

NCAR) reanalysis and outgoing longwave radiation

(OLR) from the National Oceanic and Atmospheric

Administration (NOAA) Cooperative Institute for

Research in Environmental Sciences (CIRES). Fore-

casts are partitioned according to whether the RMM

amplitude is greater than 1 at the start of the forecast.

Our approach is typical of many studies focused on

the MJO, where the RMM phases are paired according

to where the MJO has its greatest effect on the deep

convection [i.e., 2–3 (Indian Ocean), 4–5 (Maritime

Continent), 6–7 (Pacific Ocean), and 8–1 (Atlantic)].

The partitioning results in ;1000 forecasts for each

phase, which contribute between 300 and 600 TC

samples to the statistics in the WNP, depending on

the MJO phase and lead time, for the deterministic and

ensemble mean forecasts verified against IBTrACS.

Using paired RMM phases provides a large enough

sample size for reliable statistics, although for small

regions such as the PAGASA-PAR the TC sample

sizes are still limited (between 100 and 250). We also

consider an alternative pairing suggested by Klotzbach

and Oliver (2015) of 1–2, 3–4, 5–6, and 7–8. They ar-

gued ‘‘that TC activity is enhanced in the MJO phases

associated with and immediately following the con-

vective maximum in a specific basin, which causes

an approximate one-phase shift from the maximum

convective anomaly for a particular region’’ (p. 4201).

Another consideration is the seasonal cycle of the

MJO, which generally peaks in the boreal winter

(December–March) (Zhang and Dong 2004), with a

secondary maximum in the boreal summer (June–

September). This seasonal cycle also affects the sam-

ple sizes of the statistics, as the peak TC season in the

WNP is June–October. To examine the impact of this,

we consider the BSISO1 indices (Lee et al. 2013) in

the same way as for the MJO, i.e., as the two sets of

pairings. The BSISO1 indices represent the northward

30–70-day propagating mode most comparable to the

MJO (Lee et al. 2013). The BSISO1 index is computed

from a multivariate empirical orthogonal function

analysis of daily anomalies of OLR and zonal wind at

850 hPa (Lee et al. 2013), similar to the RMM index for

MJO. The BSISO1 data are obtained from http://

iprc.soest.edu/users/jylee/bsiso.

We do not analyze the MJO or BSISO conditional

statistics for the PAGASA-PAR region as the sample

sizes are too small for robust statistics at the longer

lead times.

3. Results

a. Deterministic and ensemble error statistics

First, the general performance of the Met Office de-

terministic and ensemble systems are evaluated for the

location and intensity errors in theWNP and PAGASA-

PAR regions, verifying against both IBTrACS and the

ECMWF analyses. Figure 2 shows the sample sizes

and error statistics for verification against IBTrACS

for the deterministic system (blue), the individual

members of the ensemble (black), the control (green),

and the ensemble mean (red); also shown is the en-

semble spread (orange). In general, results are similar

to those produced for the ECMWF system by HE15.

The sample sizes (Fig. 2a) are large and greater than

2 3 103 throughout the forecast range for the de-

terministic, control, ensemble mean and spread and

greater than 2 3 104 for the ensemble members. Lo-

cation errors (Fig. 2b) are determined as the great

circle distance and presented in units of degrees (18 ;
111 km). The largest location errors occur for the

perturbed ensemble members, considered as inde-

pendent forecasts. The control and deterministic

forecasts have the next lowest, but comparable errors.

The ensemble mean has similar errors to the control

and deterministic forecasts up to day 4, after which the

errors become lower than for the other forecasts. At

day 4 the control, deterministic and ensemble mean

show one day more skill for location than the indi-

vidual ensemble members; at day 7 the ensemble

mean has just over 0.5 day more skill than the control

and deterministic forecasts, though at this lead time

errors are as large as 58 (;550 km). The ensemble

spread indicates that the ensemble is progressively

more underdispersive, as the control forecast error

grows faster than the ensemble spread. This means as

lead time increases, the observed location may no

longer be within the spread of the ensemble. An ideal

ensemble forecasting system should have a similar

ensemble spread to the forecast error (Buizza 1997).
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Figures 2c and 2d show the MSLP intensity error and

bias, respectively. This shows the well-documented fact

that current forecasting systems underestimate ob-

served intensities due to coarse resolution and use of

parameterized physics. There are quite large errors and

biases, even in the initial states, of 10–15 hPa. The in-

dividual ensemble members again show the largest

errors and biases; the deterministic forecasts show the

lowest, with the control and ensemble mean between

these. A positive bias here means the TCs are too

FIG. 2. Error statistics for TCs in the deterministic forecasts in the WNP using best track verification: (a) sample size for each forecast

type, (b) location error, (c) MSLP intensity error, (d) MSLP intensity bias, (e) 10-m wind intensity error, and (f) 10-m wind intensity bias.

Location error units are geodesic degrees, MSLP units are hPa, and 10-m wind units are m s21. Shading indicates the 95% confidence

interval.
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shallow. The difference between the deterministic and

ensemble systems is likely to be mainly related to the

difference in spatial resolution between the two systems

(see Table 1). The control forecast shows systematically

smaller errors and biases than the individual ensemble

members, even though they are at the same resolution,

a result also found for the ECMWF EPS by HE15. This

is likely due to the use of stochastic physics during the

forecast integration. Froude et al. (2007b) found similar

results for extratropical cyclones in the ECMWF EPS.

They suggested that if the only difference between the

control and perturbed forecasts were the initial condi-

tions, then the errors should converge at the longer lead

times. They also suggested that the lack of convergence

may be the consequence of using the stochastic physics

that is only applied in the perturbed forecasts. The

ensemble is severely underdispersive, with a differ-

ence between ensemble mean error and spread of

similar magnitude to the error itself. This means the

observations are highly unlikely to fall anywhere within

the ensemble spread, at least over the observed TC

life cycle.

An interesting feature of the MSLP intensity error

and bias curves is the apparent semidiurnal oscillations.

This is a tidal effect associated with the absorption of

solar radiation by ozone and water vapor, and heating

from the surface that manifests itself on the SLP via

internal gravity waves (Dai and Wang 1999). Producing

the mean intensities with lead time, for the forecasts and

IBTrACS separately (Fig. S1 in the online supplemental

material), shows that the oscillations in the MSLP err-

ors and biases arise primarily from the forecast model,

with a magnitude ;1 hPa. The oscillations in the ob-

servations are much smaller (subtracting the IBTrACS

mean intensity from the forecast mean intensity re-

covers the biases exactly). The magnitude of the fore-

cast oscillations are comparable to those found from

direct surface observations, of 1 hPa in the tropics, with

peaks just before midday and midnight (Dai and Wang

1999). This suggests that the IBTrACS intensities un-

derestimate the magnitude of the pressure semidiur-

nal oscillation, probably due to uncertainties in the

determination of the pressure minima in TCs related to

the Dvorak technique, with greater error or uncertainty

in Dvorak estimates for more intense TCs (Torn and

Snyder 2012).

For the 10-m winds, results are shown in Figs. 2e

and 2f for error and bias, respectively. These show

results consistent with the MSLP with large errors,

;12.5–17.5m s21, over the whole range of lead times.

The different forecasts have a similar relationship in

terms of largest and smallest errors, with again the de-

terministic forecasts having the lowest errors and bias.

Again the spread indicates a severely underdispersive

ensemble. The 10-m wind errors and biases also show the

semidiurnal oscillations, but they are much less apparent

than for the MSLP.

Error statistics are also computed using verification

against the ECMWFanalyses (Fig. S2). The sample sizes

are somewhat larger (Fig. S2a) as a result of the longer

life cycles of the analysis tracks. For location (Fig. S2b),

the results are remarkably similar to those for verifica-

tion against IBTrACS. This is not surprising, as HE15

showed that the mean difference in separation between

the analysis TC tracks and those of IBTrACS is less than

18, and less than 0.58 for most TCs, which is within the

uncertainty in the observed location (Torn and Snyder

2012). Intensity error statistics for T63 vorticity, MSLP,

and 10-m winds show similar results to those for verifi-

cation against IBTrACS, but with generally lower errors

and biases. This reflects the closer similarity in spatial

resolution between the Met Office NWP system and

ECMWF analyses. For the T63 vorticity intensity met-

ric, the deterministic and ensemble mean errors and

biases are comparable and lower than for the individual

ensemble members and the control forecast. For both

location and intensity the ensemble is still underdispersive,

even though the resolutions of the forecasts and ana-

lyses are comparable. When verifying against the ana-

lyses the semidiurnal oscillation is still apparent in all

three intensity measures to some extent, but the mag-

nitudes, in particular forMSLP, aremuch smaller due to

the analyses having a similar semidiurnal cyclemagnitude

to the forecasts.

For the PAGASA-PAR region (shown in Fig. 3 for

verification against the IBTrACS), the sample sizes

(Fig. 3a) are much smaller due to the smaller sampling

region, ranging from ;13 103 for the deterministic,

control, ensemble mean and spread to 1–2 3 104 for

the ensemble members. The location errors (Fig. 3b)

are slightly smaller than those for the wholeWNP, with

;0.25 day more skill for both the deterministic and

ensemble mean forecasts. The ensemble spread is also

smaller within the PAGASA-PAR region than in the

WNP overall. This can also be seen in the spatial dis-

tribution of errors (Figs. S3a,b,e) for the ensemble mean

and deterministic location errors and the location en-

semble spread, respectively. These relatively small

differences in location error between the PAGASA-

PAR and the broader WNP are likely due to the more

zonal propagation of the TCs through the PAGASA-

PAR. The larger WNP errors are likely associated

with a greater fraction of recurving TCs as discussed by

HE15. This may also explain the smaller spread seen

in the PAGASA-PAR region. This can also be seen

in the much larger location errors and spreads to the
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north of the PAGASA-PAR, where recurving TCs

are more likely (Figs. S3a,b,e).

The TC intensity forecast errors and biases in the

PAGASA-PAR can be seen in Figs. 3c–f, for verifica-

tion against IBTrACS for MSLP and 10-m winds. The

general relationship between the errors and biases is

similar to those for the WNP. The deterministic fore-

casts have the lowest errors and absolute biases and the

ensemble members the largest. However, comparing

Fig. 3 with Fig. 2 shows that the intensity errors and

biases are larger in the PAGASA-PAR region by

;5 hPa for MSLP and ;2.5m s21 for the 10-m winds

at the start of the forecasts; these are more or less

maintained over the forecast range. At a lead time

of day 4 this is equivalent to ;4 days less skill (i.e., the

error at day 4 in the WNP is similar to the error in the

FIG. 3. As in Fig. 2, but for the PAGASA PAR.
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PAGASA-PARat day 0). Verifying against the analyses

produces similar results (Fig. S4) but with ;1 day less

skill at day 4 for the T63 vorticity, ;2 days less skill

for MSLP and 1.5 days less skill for 10-m winds by

comparing with the equivalent statistics for the WNP

(Fig. S2). The spatial distribution of errors for inten-

sity, based on the T63 vorticity, confirm these results

(Figs. S3c,d,f for the ensemble mean and deterministic

intensity errors and the intensity ensemble spread, re-

spectively). Thesemetrics reveal much larger errors in the

PAGASA-PAR region than elsewhere in the WNP.

Similar results have been obtained for location and

intensity errors in this region for other forecasting

systems [e.g., the ECMWF deterministic and ensem-

ble forecasting systems for the same 2008–17 period

(not shown)]. The similarity of the intensity errors

and biases between forecasting systems from different

centers suggests systematic reasons for these errors.

The underestimation of intensity, in particular in the

PAGASA-PAR region, is likely related to both model

resolution and physical parameterizations. Bender

et al. (2017) showed that storm size had an important

impact on the prediction of TC intensities, in particu-

lar leading up to maximum intensity and for rapid

intensification. TCs tracking through this region typi-

cally attain their maximum intensity in the PAGASA-

PAR region, which combined with the fact that models

overestimate the size of the modeled TCs, may partly

explain the intensity biases. Short and Petch (2018)

found significant improvements in predictingWNP TC

intensities using convection-permitting downscaling.

b. Impact of forecast model changes

Over the study period considered, 2008–17, many

changes have been made to the forecast model and

ensemble generation system; these are summarized

in Table 1. To assess the impact of these changes, we

perform a similar analysis to that in the previous sec-

tion but for each model/ensemble configuration. These

are shown in Fig. 4 for the deterministic system for the

WNP region for verification with IBTrACS. Due to the

different periods covered by each model configura-

tion, the number of forecast samples varies consider-

ably (Fig. 4a), which affects the width of the confidence

intervals shown in Fig. 4. The sample sizes range from

less than 250 for the shortest period to ;1500 for the

longest period.

The location errors (Fig. 4b) show a steady decrease

from one model configuration to the next, such that

at day 4 there is a 1.5-day increase in skill between

the earliest and latest NWP configuration. The latest

changes in 2017 appear to have made little difference

to the location errors compared with the preceding

system configuration, but the forecast sample size is

small (,250). Consequently the confidence intervals are

broad and overlap with those of the preceding system.

For intensity, using either MSLP (Fig. 4c) or 10-m

winds (Fig. 4e), there is a steady decrease in the error,

in particular in the initial states (lead time 0). The

error decreases by ;10 hPa for MSLP and ;10m s21

for 10-m winds. This leads to smaller differences in

error at longer lead times between the different model

configurations. The reduced errors are also reflected

in steadily reducing biases. For the latest system, the

bias in MSLP (Fig. 4d) is relatively small compared to

IBTrACS; intensity is even overpredicted at longer

lead times, indicating that some TCs are deeper than

observed. This propensity to overdeepen TC has also

been seen for similar resolution forecasting systems

in HE15 and climate models (Manganello et al. 2012).

The bias has been suggested to be due to a lack of cou-

pling to the ocean (Mogensen et al. 2017).

For the 10-m winds (Fig. 4f), while the biases become

less negative in the later forecast system configurations

compared to the earlier systems, the intensities are still

underpredicted.

The wind–pressure relationship offers another perspec-

tive on the intensity errors. It is often used operationally to

obtain winds from pressure or vice versa (Knaff and Zehr

2007; Brown et al. 2008). To compute this the cyclostrophic

equation is written as P5Pref 2 (Vm/a)
c, where c5 2:0

implies cyclostrophic balance (Knaff and Zehr 2007;

Brown et al. 2008). This model is fit to the wind–

pressure data using the nonlinear regression function

in R (R project 2013). The results for the parameters

are shown in Table 3 and the plots in Fig. 5. These

show a gradual convergence toward the observations

for both the parameters and the curves from the early

to later model configurations. Substantial biases re-

main, however, primarily due to the underprediction

of the wind intensities.

The MSLP errors and biases show semidiurnal os-

cillations for each model configuration (Fig. 4), but the

oscillations seem much reduced in the absolute errors

for the latest two model configurations. It is unclear

why this should be the case, but may be due to differ-

ences in the cancellation of errors.

The ensemble forecasting system is generally upgraded

at the same time as the deterministic system. In general,

the results for the ensemble mean are similar to those

for the deterministic system for location and inten-

sity (Fig. 6). The most interesting results concern the

ensemble spread. For location, while the ensemble is

underdispersive for all forecast system configura-

tions, differences between the ensemble mean loca-

tion error and spread are definitely reduced in the latest

1198 WEATHER AND FORECAST ING VOLUME 34



configurations. This appears to be due more to reduced

errors than an increase in spread. For intensity, the

error–spread relationship also improves with both re-

duced error and increased spread for both MSLP and

10-m winds. The MSLP in particular shows significant

improvement.

Results for verification against the analyses give a

similar picture (not shown) to those shown above for

verification against IBTrACS.

For the PAGASA-PAR region, results for verification

against IBTrACS, for both the deterministic (Fig. S5) and

ensemble mean forecasts (Fig. S6), show a similar picture

FIG. 4. Error statistics for different deterministic system configurations for TCs in theWNP using best track verification: (a) sample size

for each forecast configuration, (b) location error, (c) MSLP intensity error, (d) MSLP intensity bias, (e) 10-m wind intensity error, and

(f) 10-m wind intensity bias. Location error units are geodesic degrees, MSLP units are hPa, and 10-m wind units are m s21. Shading

indicates the 95% confidence interval.
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to the results for the full WNP region, albeit with the

higher intensity errors seen earlier. Results for the latest

NWP configuration are rather noisy, with wide confi-

dence intervals, due to the small available sample size.

For the PAGASA-PAR region, results based on veri-

fication against the analyses (not shown) are consistent

with those for verification against IBTrACS. Forecast

error reduces with upgrades to the forecast model, in

particular resolution changes, though these are less

dramatic than those seen when verifying against the

observations.

c. Impact of Madden–Julian oscillation on forecast
errors

The error statistics are computed for each pair ofMJO

or BSISO1 phases. Results for the verification of the

deterministic forecasts against IBTrACS are shown in

Fig. 7 for the standard MJO phase pairings (2–3, etc.).

Since forecasts are selected based on whether the index

value is greater than 1 at the start of the forecast, the

sample sizes are much reduced, even though paired

phases are used. The sample sizes range from 300 to 600

depending on MJO phase (Fig. 7a). As with the analy-

sis in the previous section, this results in wide confi-

dence intervals with a strong overlap in places and for

particular phases.

For the location errors (Fig. 7b), there appears to be

little impact of theMJO. For intensities the lowest initial

errors occur for the 6–7 and 8–1 MJO phases for both

MSLP and 10-m winds (Figs. 7c and 7e). For phases 8–1,

the error growth is more rapid and the error becomes

similar to that of phases 2–3 and 4–5 by day 4; however,

the error for phases 6–7 continues to be the lowest

throughout the forecast. The same behavior is reflected

in the intensity biases (Figs. 7d and 7f) with the lowest

biases for phases 6–7 and 8–1. Considering the alterna-

tive MJO phase pairings (1–2, etc.), shown in Fig. 8,

gives similar sample sizes (Fig. 8a) but a slightly differ-

ent perspective. There is some indication that the MJO

affects the location errors, in particular in phases 7–8

where errors are lower after day 4. However, decreasing

sample sizes with lead time may make these results less

reliable. Comparison with the results for the ensemble

mean (not shown) and the ECMWF systems (not shown)

confirm this, as they show no obvious differences be-

tween the MJO phases for location errors. The lowest

intensity errors (Figs. 8c and 8e) are achieved for MJO

phases 7–8, with considerably lower errors than for any

of the other paired phases. The biases (Figs. 8d and 8f)

show similar behavior. Results for the ensemble mean

and for verification against the analyses generally con-

firm these results (not shown).

Phase 7 is common to the lowest errors for both sets of

phase pairings. Phase 8 may also play a role in lower

errors and biases at least in the initial part of the fore-

cast. During MJO phases 6–8 the peak convection is in

the WNP, which might influence TCs there either di-

rectly through cyclogenesis or by making the large-scale

environment more conducive to TC development (e.g.,

reduced vertical shear and increased midlevel mois-

ture). TheMJOappears to exert a strong influence at the

start of the forecasts, which then either continues to

affect the forecast (e.g., phases 6–7 and 7–8), or quickly

disappears with rapid error growth (e.g., phases 8–1).

The influence of the MJO on the initial state errors is

complicated by variable sample sizes with MJO phase,

as well as the changing data assimilation/forecast system

through the period, which substantially influences the

initial intensity errors (cf. Figure 4). How the MJO af-

fects TCs may also depend on the TC location and stage

of the TC life cycle relative to the MJO propagation.

The MJO propagates east, whereas TCs generally

propagate west. A TC may move into an MJO active

phase or trail behind it, and may be in any stage of de-

velopment. This is explored by considering the mean

intensities with lead time of the IBTrACS and forecast

intensities separately for the differentMJOpaired phases

(Fig. S7), for both MSLP and 10-m winds, and for both

sets of MJO pairings. This shows that intensity errors

and biases for each MJO phase depend strongly on the

FIG. 5. Pressure–wind relationships for the different model con-

figurations and IBTrACS.

TABLE 3. Parameters for the cyclostrophic equation obtained

by fitting to the data for the different deterministic system

configurations.

Parameters Pre-2010 2010–14 2014–17 Post-2017 IBTrACS

a 6.86 5.13 5.44 4.93 3.53

Pref 1010.0 1012.0 1012.0 1013.0 1015.0

c 2.63 2.22 2.14 1.99 1.54
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intensities at the start of the forecast. This is most ob-

vious for the observations, but can also be seen in the

forecasts. Contrasting the results in Figs. 7 and 8 with

Fig. S7, shows that phases with lower TC intensities

at the start of the forecasts often have lower errors

throughout the forecast. Conversely MJO phases with

higher initial intensities tend to have higher errors

throughout the forecasts.

The results for the BSISO1 index for the phases 2–3,

4–5, 6–7, and 8–1 pairings are shown in Fig. 9 and for

the phases 1–2, 3–4, 5–6, and 7–8) pairings in Fig. S8.

The sample sizes for BSISO1 are more variable be-

tween the phases than for the MJO (Fig. 9a), with

sample sizes as low as 200. For the location errors

(Fig. 9b) there is little difference between the different

phases, similar to that found for the MJO. However,

FIG. 6. As in Fig. 4, but for the ensemble mean (solid lines) and spread (dashed lines).
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the intensities (Figs. 9c and 9e) show more obvious

variations in errors with BSISO1 phase. In particular,

for the first set of pairings the 6–7 phase has generally

the lowest errors throughout the forecast range,

though phases 2–3 have the lowest initial error, which

then grows rapidly with lead time. However, phases

2–3 also have the lowest sample size. For the second

set of phase pairings, the lowest errors occur for

phases 5–6 and 7–8 throughout the forecast range.

Though, phases 3–4 have the lowest initial error

with a subsequent fast error growth, so that again

sampling may be an issue. The BSISO1 results are

FIG. 7. Error statistics for different MJO phases (2–3, 4–5, 6–7, 8–1) for TCs in the deterministic forecasts in the WNP using best track

verification: (a) sample size for each MJO paired phase, (b) location error, (c) MSLP intensity error, (d) MSLP intensity bias, (e) 10-m

wind intensity error, and (f) 10-m wind intensity bias. Location error units are geodesic degrees, MSLP units are hPa, and 10-m wind units

are m s21. Shading indicates the 95% confidence interval.
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similar to those for the MJO, albeit with the same

caveats on the sample sizes and changes in the fore-

casting system. The sample sizes are generally small

for the BSISO1 statistics, so these results should be

considered with caution until more reliable results

can be obtained. Mean intensities for the BSISO1

phases with forecast lead time (Fig. S9) confirm the

importance of the intensity of the storms at the start

of the forecast, in particular in the observations.

To remove the dependence of the results on the

changes in the forecasting system, the same analysis

has been performed for periods, which minimize any

FIG. 8. Error statistics for different MJO phases (1–2, 3–4, 5–6, 7–8) for TCs in the deterministic forecasts in the WNP using best track

verification: (a) sample size for each MJO paired phase, (b) location error, (c) MSLP intensity error, (d) MSLP intensity bias, (e) 10-m

wind intensity error, and (f) 10-m wind intensity bias. Location error units are geodesic degrees, MSLP units are hPa, and 10-m wind units

are m s21. Shading indicates the 95% confidence interval.
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changes to the forecasting system (Table 1), in par-

ticular the 2014–17 period. The downside of this is the

reduced number of forecast samples, so that the re-

sults are likely to be less reliable. Results (not shown)

are found to be similar to the results discussed above

for the full dataset.

A similar analysis has been performed on the ECMWF

deterministic and ensemble forecasts (not shown)

with similar results, lending confidence to the results

for the Met Office model. Ideally, a study using high-

resolution hindcasts over a longer time period, to in-

crease sample sizes, and with a consistent forecasting

system could resolve some of the uncertainties con-

cerning the MJO and BSISO1 influence on the TC

forecast errors. Current hindcast systems are at much

lower resolutions than the operational systems used

FIG. 9. As in Fig. 7, but for the BSISO1 index.
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here, however, and so would have larger intensity

biases.

d. Comparison with other forecasting systems

To compare theUKMO forecasting system to another

modern deterministic and ensemble forecasting system,

the ECMWF and UKMO forecasts are compared over

the same period. The configuration of the ECMWF

forecasting system over 2008–12 is given in HE15. Since

then further enhancements include an increase to 137

(91) vertical levels in the deterministic (ensemble) sys-

tem in 2013, an increase in horizontal resolution to 9km

(18km) in 2016, as well as changes to model physics and

the data assimilation/ensemble perturbation subsystems,

including the introduction of the ensemble of data assim-

ilations (EDA) (see https://www.ecmwf.int/en/forecasts/

documentation-and-support/changes-ecmwf-model).

For a fair comparison, only verification against IBTrACS

is performed, as this is independent of both forecasting

systems. The comparison of the deterministic and en-

semble systems for the WNP is shown in Fig. 10. Both

deterministic systems have comparable sample sizes

(Fig. 10a). However the ECMWF ensemble mean and

spread sample sizes are larger at the longer lead times,

possibly related to the larger ensemble size used by

ECMWF (50 members). The initial location errors are

similar. The error growth for the ECMWF system is

slower than for the UKMO for both deterministic and

ensemble forecasts, such that at day 4 the ECMWF sys-

tem has just under a day more skill for both deterministic

and ensemble systems. The error–spread relationship is

also better for the ECMWF system, with smaller dif-

ferences at every lead time compared to the UKMO

ensemble system. Interestingly the ECMWF ensemble

has less spread than that for the UKMO, even though

the ECMWF system has more ensemble members (50)

and both use stochastic physics, albeit with different

implementations.

The initial intensity errors in the ECMWF systems,

deterministic and ensemble, are much lower than for the

UKMO systems (Fig. 10). The largest differences in er-

rors occur in the earliest part of the forecasts. However,

the ECMWF errors grow more rapidly, so that beyond

day 5 the errors are similar to those for the UKMO for

MSLP and begin to converge for 10-m winds. The larger

ECMWF MSLP errors at the longer lead times may be

due to the ability of the ECMWF system to predict deeper

storms than in the Met Office deterministic system, which

may then lead to larger errors if the timing is wrong. The

smaller initial errors for ECMWF may partly be related

to the relative resolutions of the two systems. The

ECMWF deterministic system has been higher resolution

than the UKMO system over most of the period, until

2017 when they became more comparable (;10km).

Differences in data assimilation may also have played a

role. For the intensity ensemble spreads, the two systems

appear to give similar results, but with large differences

between the error and spread, which are marginally bet-

ter for ECMWF due to the lower errors. Intensity biases

are consistent with the errors.

A similar analysis has been conducted for the

PAGASA-PAR region (Fig. S10). This shows similar

results to the WNP region, albeit with larger intensity

errors and biases, reflecting the typically larger errors

found there that have already been discussed.

4. Summary and conclusions

An analysis of the forecast errors associated with TCs

found in the WNP and PAGASA-PAR has been con-

ducted for the UKMOglobal deterministic and ensemble

forecasting systems, over an extended period of 10 years

(2008–17). A summary of the main results and discussion

follows:

d For location, errors are comparable for the determin-

istic, control and ensemble mean forecasts; the en-

semble is underdispersive. For intensities, in terms of

pressures and winds, there are large biases relative to

observations, which are smallest for the deterministic

system; the ensemble is severely underdispersive.
d The PAGASA-PAR region has larger intensity errors

and biases and larger intensity ensemble spread com-

pared with the broader WNP region.
d The forecast errors for location and intensity have

reduced significantly with system upgrades over the

period studied. For location there is a 1.5-day increase

in skill, at day 4, between the earliest and latest NWP

configuration for the deterministic system; there is a

similar improvement for the ensemble system. For

intensity, the error of the latest configuration at day 4

is below the initial error of all the earlier configura-

tions for both pressure and winds.
d The MJO affects the intensity forecast errors, but does

not significantly affect the location errors. Intensity er-

rors are lower at the initiation of the forecasts in phases

6–7 and 7–8, when the MJO is active in theWNP, which

can persist throughout the forecasts. Results for the

BSISO1 are similar. The forecast errors depend strongly

on the observed intensities in the different phases.
d Over the studied period the ECMWF deterministic

and ensemble systems have lower errors and biases for

both location and intensity than the UKMO forecast

systems.

Global forecasting systems are improving rapidly in

their ability to predict TCs, in particular for location or
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path (often termed ‘‘track’’), such that skill for the

UKMO deterministic forecasting system in the WNP

studied here has improved by;1.5 days at a lead time of

2–4 days over the 10-yr period. Predictions of intensity

have generally lagged behind those for location, though

even here the UKMO forecasting system has improved,

such that pressures are now much more realistic in the

latest deterministic system, but winds are still under-

predicted. Short and Petch (2018) highlighted that

explicit convection-permitting models are required to

FIG. 10. Error statistics for the UKMO and ECMWF deterministic and ensemble forecasting systems for TCs in the WNP using best

track verification: (a) sample size, (b) location error, (c) MSLP intensity error, (d) MSLP intensity bias, (e) 10-m wind intensity error, and

(f) 10-m wind intensity bias. Location error units are geodesic degrees, MSLP units are hPa, and 10-m wind units are m s21. Shading

indicates the 95% confidence interval.
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realistically simulate intensities and rapid intensification

of TCs in the PAGASA-PAR region, but this requires

resolutions , 5 km, which are still computationally

prohibitive for global models. While the ensemble re-

mains underdispersive for both location and intensity,

these metrics have also improved with upgrades to the

forecasting system in terms of resolution, perturbation

methods and model formulation. The difference be-

tween error and spread has reduced since the earliest

2008 system, mainly due to the error reduction.

The smaller PAGASA-PAR region has similar loca-

tion errors to that of the full WNP region, but larger

intensity errors for both deterministic and ensemble

systems as well as the ensemble spreads. The reasons for

this are not clear, but the inability of the global model to

capture rapid intensification may play an important role

(Short and Petch 2018). This requires further evaluation.

The impact of modes of subseasonal tropical vari-

ability on the forecast errors and biases were considered.

The results are complicated by the changing forecasting

systems over the study period, although results for a pe-

riod with a relatively fixed forecasting system (2014–17)

show strong similarities with the results over the whole

period, as do results for the ECMWF forecast system.

Neither the MJO or BSISO appear to substantially af-

fect the location errors, though the MJO 7–8 phase has

some impact after day 4. However, intensity errors are

lower at the start and in the early part of the forecast

when the active phase of the MJO or BSISO1 is in the

WNP (phases 6, 7, and 8). This appears to derive pre-

dominantly from the dependence of the IBTrACS in-

tensities on the MJO phase. The effect of the MJO and

BSISO on the initial forecast states is a secondary im-

pact. This may be related to the location of TCs relative

to the active MJO phase and the TC life cycle stage.

Another interesting aspect is that of rapid intensifica-

tion. Na et al. (2018) found that official forecast errors,

issued by the operational agencies, are anticorrelated

with 24-h intensity changes. A further study could ex-

amine whether rapid intensification affects the inten-

sity errors in the different MJO and BSISO1 phases.

Further study of the dependence of TC life cycles and

modes of variability is required with larger TC sample

sizes to get a more robust view of their interdepen-

dence. Understanding the impact of modes of variability

(e.g., MJO and ENSO on the detailed predictability of

TCs) requires studies using frozen NWP forecasting sys-

tems at operational resolutions, or explicit convection-

permitting resolutions, over multidecadal periods. Such

datasets would provide both a good representation of TC

properties and large enough sample sizes for robust-

ness of forecast error statistics. Existing hindcasts or

reforcasts that cover such periods (e.g., Hamill et al.

2013) are generally too coarse to represent observed

TC intensities and are therefore not currently suitable

for this type of study.
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