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Preface 

This thesis includes two published manuscripts (Chapters 3 and 4, respectively): 

Boult, V. L., Sibly, R. M., Quaife, T., Fishlock, V., Moss, C. J. & Lee, P. C., 2018. Modelling large herbivore 

movement decisions: beyond food availability as a predictor of ranging patterns. African Journal 

of Ecology, 57(1), 10–19. 

Boult, V. L., Quaife, T., Fishlock, V., Moss, C. J., Lee, P. C. & Sibly, R. M., 2018. Individual-based 

modelling of elephant population dynamics using remote sensing to estimate food availability. 

Ecological Modelling, 387, 187–195. 

In this thesis, Chapter 5 has also been submitted for publication as follows:  

Boult V.L., Fishlock, V., Quaife, T., Hawkins, E., Moss, C.J., Lee, P.C. & Sibly, R.M., in review. Human-

driven habitat conversion is a more immediate threat to Amboseli elephants than climate 

change.  
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Abstract 

Biodiversity conservation has limited resources so must identify and prioritise the most critical threats 

facing species and ecosystems. This is especially apparent in light of current rates of global change 

which alter the abundance, distribution and resilience of species and habitats. Traditional approaches 

to understand the impacts of change have generally related variation in environmental factors to 

species’ dynamics, but these methods are unreliable when making predictions under novel conditions. 

Process-based approaches are built on fitness-maximising mechanisms that are robust to change and 

thus present the opportunity to both project the effects of global change and identify the most 

significant threats facing species.  

This PhD aimed to develop process-based models to simulate the impacts of environmental change on 

the elephants of Amboseli in Kenya. Food availability was considered a key driver of elephant 

movement decisions and demographic rates throughout.  Satellite-derived measures of vegetation 

were calibrated with ground-based measures of biomass and used to estimate the food available to 

elephants through time and space. Elephant tracking data was used to confirm the importance of food 

availability as a key driver of elephant movement decisions and to identify additional explanatory 

variables, including risk and reproductive state, which mediated elephant space-use. An individual-

based model (IBM) was developed and calibrated to accurately predict historic elephant population 

dynamics emerging from temporal variation in food availability. The IBM was subsequently used to 

project the impacts of changes in food availability resulting from anthropogenic climate change and 

habitat conversion on Amboseli’s elephants. Using climate projections for different greenhouse gas 

emissions scenarios and land use scenarios based on empirical data and stakeholder opinion, the 

model predicted elephant population size through the 21st century. Model results identified habitat 

conversion, rather than climate change, as the primary threat facing Amboseli’s elephants.  

Future model developments through the incorporation of behavioural mechanisms, spatially explicit 

landscapes and multiple stressors would provide more robust predictions of elephant population 

responses to environmental change. Nonetheless, the work presented here documents an early 

example of a process-based model developed to inform land management decisions and the 

conservation of Amboseli elephants.  
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Chapter 1. Introduction 

In this thesis I use process-based models to show how food availability and other environmental 

factors drive the population dynamics of the elephants inhabiting the Amboseli ecosystem in Kenya. In 

this introductory chapter, I begin by identifying the value of process-based models then introduce the 

Amboseli ecosystem and its elephants. I conclude by outlining the aims and objectives of this thesis, 

and provide a guide to the structure of the thesis.  

1.1 The need for predictive modelling in ecology and conservation 

Global change is expected to create conditions beyond those previously recorded. Changes in global 

temperatures and precipitation patterns will present novel climates which may push species beyond 

physiological thresholds or cause shifts in species distributions, which in combination with the human-

assisted spread of species creates novel species assemblages (Wood, Stillman and Hilton, 2018). In 

addition, the world’s growing human population puts increasing pressures on species through 

overexploitation, pollution and habitat conversion.  

The future of many species will depend on their ability to cope and adapt to new circumstances. Given 

the current unprecedented rate of global change, adaptation by evolution is likely to be outpaced in 

most cases. Rather species adaptation may involve behavioural changes and innovations (Sol et al., 

2005) or geographical shifts in a species range (Laidre et al., 2018) or in how an individual utilises its 

existing range (Olden et al., 2004; Tucker et al., 2018). 

Predictive models are required to answer questions about the likely future state of the world’s 

ecosystems in order to assess possible risks and inform decision-making (Evans, 2012). Biodiversity 

conservation in the face of expected global change especially relies on predictive models to forecast 

how changes will impact species and their habitats (Clark et al., 2001; Sutherland, 2006; Wood, 

Stillman and Hilton, 2018). The capacity to anticipate ecological responses to global change will 

improve our ability to adapt and initiate crucial conservation actions (Clark et al., 2001). 

A process-based approach  

Traditional modelling approaches to understand how ecological dynamics respond to environmental 

variation are based on observed or empirical relationships between an ecological property of interest 

and an environmental variable (reviewed in Sutherland 2006). However, such relationships are usually 

only recorded under a narrow range of environmental variation and are unlikely to hold under novel 

future conditions, especially when considering complex non-linear responses (Stillman et al., 2015).  

Process-based approaches improve our mechanistic understanding of the processes underlying 

ecological dynamics and extend our predictive ability to novel environmental conditions (Evans et al., 

2013). They do so by assuming that natural selection has shaped behaviours and processes to 
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maximise fitness (Grimm and Railsback, 2005). The mechanisms underlying these fitness-maximising 

behaviours are not expected to change under novel conditions and this feature allows robust 

predictions beyond environmental conditions in which the model was parameterised (Grimm and 

Railsback, 2005; Wood, Stillman and Goss-Custard, 2015).  

Individual-based models 

Individual-based models (IBMs) present a process-based approach which is well suited for modelling 

the mechanisms underlying species’ responses to environmental change. Individual-based ecology 

considers population-level properties to emerge from individual-level behaviours and interactions 

between individuals and with the environment (Grimm and Railsback, 2005). IBMs refer to simulation 

models in which individuals are the basic entity. More specifically, IBMs represent the processes and 

behaviours of a system’s individual components which are often too complicated to describe through 

traditional differential equations. Individuals are represented as autonomous and adaptive entities: 

autonomous because each individual pursues its own objectives through fitness-maximising 

behaviours and adaptive because individuals respond and adjust to the current state of the system 

(Railsback and Grimm, 2012). IBMs are also able to incorporate heterogeneity between individuals 

(Grimm and Railsback, 2005), allowing responses to drivers to vary between individuals depending on, 

for example, their age, sex and reproductive state. As a result of individual behaviours and interactions 

with others and the environment, system dynamics emerge (DeAngelis and Mooij, 2005; Grimm and 

Railsback, 2005; Wood, Stillman and Goss-Custard, 2015). 

The early use of IBMs arose for both pragmatic and paradigmatic reasons (Grimm, 1999). 

Pragmatically, some questions simply could not be addressed using classical approaches which do not 

consider individuals (Botkin, Janak and Wallis, 1972; DeAngelis, Cox and Coutant, 1979). 

Paradigmatically, some believed that classical approaches were severely limited in their ability to 

understand general ecological theory (Lomnicki, 1978, 1988; Kaiser, 1979). However, the use of IBMs 

only really took off following a review by Huston et al. (1988) who hypothesised that IBMs could unify 

ecological theory. Despite an increase in the number of so-called IBMs, the true contribution of IBMs 

to ecology was hard to determine as the lack of a solid definition meant many models were wrongly 

coined “IBMs”. Uchmański & Grimm (1996) attempted to address this issue and defined IBMs as 

models in which: 1) individual life cycles are considered, 2) the dynamics of resources sought by 

individuals are represented, 3) populations are defined by integer rather than real numbers, and 4) 

variation between individuals of the same age is considered. Following this clarification, Grimm (1999) 

reviewed Huston et al.’s earlier hypothesis, but concluded that whilst individual IBMs had successfully 

achieved their intended purpose, very few had aimed to address general ecological theory and as 

such, little ground had been made by IBMs. Grimm & Railsback (2005) added that the complexity of 

IBMs and the lack of a standardised approach to such models likely also contributed. With the added 
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complexity of IBMs, the development, analysis and communication of models is difficult, more data 

are required to inform the increasing number of parameters, which in turn leads to greater 

uncertainty in predictions and models which are less general (Grimm and Railsback, 2005). In later 

work, Grimm and colleagues have attempted to address many of these issues. Grimm et al. (2006) 

proposed the ODD protocol as a standardised method for documenting IBMs and subsequently found 

the protocol provided additional benefits in standardising the formulation of IBMs and outlining the 

theory underlying complex models (Grimm et al., 2010). Further advances in the documentation of 

IBMs were proposed by Schmolke et al. (2010) and Grimm et al. (2014). Theoretical advances of IBMs 

have also been made (Grimm and Railsback, 2005), whilst significant guidance for practically 

approaching IBMs (Railsback and Grimm, 2012) has been aided by the development of tools including 

NetLogo (Wilensky, 1999) and RNetLogo (Thiele, Kurth and Grimm, 2012). 

Thanks therefore to significant advancements in the field of individual-based modelling, increasingly 

realistic IBMs are possible. In addition, the predictive ability of IBMs under novel conditions (Stillman 

et al., 2015) and when incorporating the cumulative impacts of multiple stressors (Nabe-Nielsen et al., 

2018) has established IBMs as a key decision support tool to inform evidence-based environmental 

decision-making (Schmolke et al., 2010; Wood, Stillman and Goss-Custard, 2015). 

Incorporating energy budgets 

Conservation biology is often concerned with the dynamics of populations, since population dynamics 

can determine the resilience of a population to stochastic or directional changes in the environment 

(Grimm and Railsback, 2005). IBMs aiming to capture population dynamics should include energy 

budgets if the population is to realistically respond to variation in food availability (Sibly et al., 2013). 

Energy budget models allow growth and reproduction when food is sufficient, and starvation and 

death during periods of food shortage. The conservation of energy means that energy utilised by one 

process cannot be used simultaneously by another. Energy is therefore divided between the energy 

expending processes of life, but how it is divided is the cause of some debate. The widely used 

dynamic energy budget (DEB) model uses the ‘kappa rule’ which assumes that a constant fraction of 

energy is allocated to maintenance and growth with the rest going to growth in juveniles and 

reproduction in adults (Kooijman, 2000). An alternative approach is described in Sibly et al. (2013) in 

which energy is allocated to processes by order of priority. The idea is that if an individual cannot 

cover the costs of maintenance it will die. Hence, energy is first allocated to maintenance and then to 

reproduction or growth (depending on life stage) if sufficient energy remains. Sibly et al.’s model has 

successfully been used to model the population dynamics of earthworms (Johnston et al., 2014) and 

mackerel (Boyd et al., 2018). 
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The potential of remote sensing in IBMs 

A key criteria of IBMs is the representation of resources to which individuals respond (Uchmański and 

Grimm, 1996). Satellite remote sensing (referred to hereafter as remote sensing or RS) presents the 

opportunity to estimate key environmental drivers consistently through space and time with little 

effort by the user (Kerr and Ostrovsky, 2003). The global coverage and long timespan of RS data 

provides information on environmental drivers at scales which would be impossible using traditional 

ground-based approaches. When using energy budgets to model population dynamics, information on 

the spatiotemporal dynamics of food availability may be derived using RS. The use of RS in ecology has 

grown dramatically over the past few decades thanks to improved computing power, technical 

expertise and freely available data (Kerr and Ostrovsky, 2003; Turner et al., 2003; Pettorelli et al., 

2014), but the use of RS in the analysis of IBMs or to represent key drivers in IBMs remains limited. 

In the following chapters, an individual-based approach is adopted to predict the impact of global 

change on one of the world’s most charismatic and vulnerable mega-herbivores, the African elephant 

(Loxodonta africana). RS data are employed to estimate the food available to elephants inhabiting the 

Amboseli ecosystem over a 17-year period, a task which would be logistically unfeasible using 

traditional methods. Models are used to identify factors influencing elephant movement decisions and 

population dynamics in order to contribute to the conservation of the species. 

1.2 The African elephant 

General elephant biology 

Elephants are the only extant members of the Mammalian order Proboscidea (Meyer et al., 2017) and 

comprise three species: the African savannah or bush elephant (Loxodonta africana), the African 

forest elephant (Loxodonta cyclotis) and the Asian elephant (Elephas maximus). This thesis focuses 

only on African savannah elephants, hereafter referred to as either African elephants or elephants. 

African elephants once had a near continental distribution, but are now confined to only scattered 

fragments of their former range across sub-Saharan Africa (Chase et al., 2016). As generalist 

herbivores, feeding on a mixture of plant materials from grass and leaves, to bark, roots and fruit 

(Owen-Smith and Chafota, 2012), elephants can exist in a range of habitats including dense forests, 

savannahs and arid deserts. Throughout their range elephants are considered to play a vital role in the 

maintenance of ecosystems, earning them designation as a keystone species (Western, 1989): feeding 

on woody vegetation prevents bush encroachment, maintaining savannah grasslands (Laws, Parker 

and Johnstone, 1975); elephants act as important seed dispersers (Campos-Arceiz and Blake, 2011); 

elephants dig to access groundwater in dry seasons, providing a vital water source for other species as 

well as their own (Ramey et al., 2013). Seasonal ranging patterns naturally maintain the grassland-

woodland matrix of African habitats and in doing so are crucial for the maintenance of biodiversity and 

ecosystem function.   



 

15 
 

Elephants live in complex fission-fusion societies in which groups merge and divide through time 

(Couzin, 2006). The central unit, known as a family group, is made up of related females and their 

immature offspring (Moss and Poole, 1983), and is headed by a matriarch. Matriarchs are usually the 

eldest female because older elephants act as important repositories of social and ecological 

information (McComb et al., 2001, 2011). Males leave their natal family group as they near sexual 

maturity and spend most of their time associating with other males or alone, only interacting with 

female groups for mating purposes (Moss and Poole, 1983; Chiyo, Archie, et al., 2011). 

Elephants are long-lived and slow breeding. Individual elephants can live for over 70 years (Lee et al., 

2012) and females have one of the longest reproductive life spans of any animal, potentially producing 

calves for over 40 years (Moss and Lee, 2011). Females become sexually mature at around age 10, 

gestation lasts for 22 months and lactation can extend for several years (Lee et al., 2016). Males 

mature later at around 20 years of age but are unlikely to successfully sire offspring until their mid-30s 

(Hollister-Smith et al., 2007). 

Their ecological importance and slow life histories make elephants of particular concern to 

conservation practitioners: being slow to adapt and recover from environmental or anthropogenic 

disturbances, elephants are particularly vulnerable to change, whilst the loss of elephants from an 

ecosystem can have cascading impacts on biodiversity and ecosystem function.  

The current status of Africa’s elephants 

The African elephant simultaneously represents a species of conservation concern and a problem for 

coexisting humans (Hoare, 2000; Evans and Adams, 2018). Poaching has been responsible for the 

drastic reduction of Africa’s elephant population from an estimated one million in 1970 (Douglas-

Hamilton, 1987) to roughly 400,000 in 2016 (Chase et al., 2016). The recent spike in poaching 

following the one-time legal sale of ivory in 2008 (UNEP et al., 2013) continues to threaten the 

persistence of elephant populations worldwide (Wittemyer et al., 2014; Bennett, 2015), but many 

working in conservation now believe elephants face greater challenges. 

In 2009, Africa’s human population hit one billion, having doubled since 1982, and is expected to 

double again by 2050 (UNDESA 2017). The associated conversion of natural habitats to human 

dominated landscapes has squeezed wildlife into smaller and more isolated pockets of land, reducing 

the availability of resources and the ability of individuals to disperse and migrate. Habitat 

fragmentation has also increased the interface between wildlife and people (Hoare, 1999). Here, 

undesirable elephant behaviours compromise human lives and livelihoods, reducing the tolerance of 

people who may in turn retaliate through injuring or killing elephants (Dickman, 2010; Browne-Nunez, 

Jacobson and Vaske, 2013).  
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Whilst absolute space available to wildlife is reduced, the quality of remaining habitats is altered by 

changing climates. Rising global temperatures and shifting rainfall regimes are expected to alter the 

distribution and composition of plant communities, with implications rising through the trophic web 

(Walther, 2010). At the same time landscapes may be degraded through overgrazing by large 

herbivore populations confined to habitat fragments or through overexploitation by Africa’s growing 

human population. As a result, not only will the absolute space available to elephants continue to 

decline in coming decades, but the quality of remnant habitats may become insufficient to support 

sustainable elephant populations in the long-term without heavy (and expensive) management 

interventions.  

Thus, whilst poaching and human-elephant interactions (HEI) can alter elephant demographics and 

cohort survival (Jones et al., 2018), greater threats may lie in the loss of sufficient space for elephants. 

Changes in habitats and vegetation owing to climate change and land use strategies will have large 

scale implications for the persistence of elephant populations, which may act to counter or exacerbate 

the effects of poaching and HEI. 

The Amboseli elephants 

The Amboseli ecosystem is an ancient lake basin (bounding coordinates: -2.02N, -3.28S, 38.03E, 

36.67W) covering an area of approximately 8000km2 straddling the southern border of Kenya and the 

northern border of Tanzania (Figure 1.1). The ecosystem comprises the central Amboseli National Park 

(ANP; 392km2) and surrounding landscape, stretching from the Chyulu Hills in the east to the granitic 

outcrops and volcanic cones in the west, and from Kilimanjaro in the south to the broken basement 

hills in the north (Croze and Lindsay, 2011). The habitat is made up of mostly grass dominated 

savannah dotted with Acacia trees and thickets. Plant biomass is generally low due to low average 

annual rainfall (340mm). Indeed, water is a key limiting factor in the ecosystem. Rain falls in two wet 

seasons: the short wet season spans November and December, whilst the long rains begin in March 

and end in May (Altmann et al., 2002). Wet seasons are interspersed by a short, hot dry season in 

January and February, and a longer, cooler dry season from June until October. An ‘Amboseli year’ 

runs October to September to align rainfall regimes and is the standard annual cycle used throughout 

this thesis. There is considerable inter-annual variation in rainfall but no clear pattern. Standing water 

in Amboseli is limited to the central system of swamps, with the exception of rivers and Lake Amboseli 

which hold water for a few short weeks following heavy rains. The swamps are fed by poorly 

understood groundwater flows from rain falling on the forested catchments of the Chyulu Hills and 

Kilimanjaro (Croze and Lindsay, 2011). They support a diverse assemblage of bird species and large 

populations of herbivores, along with the local Maasai people and their livestock (Western, 1975). 

Alongside the distinct Maasai culture and looming presence of Kilimanjaro, Amboseli is best known for 

its population of ca. 1700 elephants (Lee et al., 2013). Since its inception in 1972 the Amboseli 
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Elephant Research Project (AERP) has monitored the elephants of Amboseli as individuals, 

meticulously recording identities, births and deaths. Now in its 46th year, the AERP represents the 

longest-running study of wild elephants anywhere in the world and has hugely expanded our 

understanding of elephants as highly intelligent, social and thoughtful animals. In this time, the AERP 

has monitored over 3300 individuals from more than 60 family groups.  

When the AERP started, Kenya was home to some 130,000 elephants (Braude, 1992). In 2016, Kenya’s 

elephant population had fallen to around 26,000 (Chase et al., 2016). Like elsewhere in Africa, this loss 

has been largely attributed to poaching for ivory (Douglas-Hamilton, 1987). However, Amboseli’s 

elephants have been largely spared the poaching onslaught probably because of the constant 

presence of researchers in ANP and the surrounding Maasai communities who do not tolerate 

poaching (Croze, Moss and Lindsay, 2011; Kioko et al., 2015).  In fact, during this time, the Amboseli 

population has actually increased from approximately 600 individuals in 1972 to around 1700 today, 

and as a result boasts an un-skewed population structure with individuals ranging from new born to 

over 70 years of age, and adult males in their mid-50s (AERP long-term data). 



 

 
 

Figure 1.1. The geographical location and 

arrangement of the Amboseli ecosystem. Amboseli 

sits on the border of Kenya and Tanzania in East 

Africa. The ecosystem comprises the central 

Amboseli National Park (ANP) and surrounding 

community-owned group ranches. A series of 

swamps in the central basin represent the only 

year-round source of water, although swamps 

beyond the boundary of ANP have been heavily 

developed for agriculture.  



 

19 
 

Specific challenges facing the Amboseli elephants 

Alongside avoiding the worst of the poaching crisis, the previous success of Amboseli’s elephants has 

relied on their continued access to the ecosystem beyond the boundaries of the national park. Indeed, 

ANP alone makes up just 5% of the total ecosystem, meaning the surrounding group ranches (an 

artefact of the British colonial system, representative of the collective ownership key for pastoralism 

to work in semi-arid environments) provide important dispersal areas and movement corridors for 

wildlife (Western and Lindsay, 1984; Kioko, Okello and Muruthi, 2006; Croze and Moss, 2011). The 

future of Amboseli’s elephants, wildlife and people depends hugely upon the ongoing accessibility of 

the greater ecosystem, but growing human populations and land use changes threaten to reduce 

access.  

The human population of Amboseli is growing both internally and via immigration from elsewhere in 

Kenya (Campbell et al., 2000). With more people come more livestock and the increased conversion of 

land for the development of infrastructure, settlements and farming. Growing numbers of people and 

livestock in the ecosystem increases competition for resources, including water and forage, which can 

create contact points around key resources between humans and wildlife and act as a platform for 

negative interactions (Thouless, 1994; Smith and Kasiki, 2000).  

With growing competition for space across Kenya, the government has encouraged people to settle 

on increasingly marginalised land, resulting in the subdivision and sometimes fencing of small plots 

(Western, Groom and Worden, 2009). Such small plots are rarely appropriate for livestock production 

in semi-arid systems where rainfall is patchy, and so people have largely turned to crop production 

(Kangwana and Browne-Nunez, 2011).  

There has been an expansion of intensive, irrigated agriculture around the swamps beyond the 

boundaries of ANP (Kioko & Okello 2010; Schüßler et al. 2018). Not only has this removed important 

habitats for wildlife, it has also restricted access to a crucial water source for wildlife, people and 

livestock and is rapidly degrading nearby soils and polluting waterways (Githaiga et al., 2003). At the 

same time, rain-fed agriculture has expanded down the northern foothills of Kilimanjaro, encroaching 

on wildlife habitats from a second direction (Kioko and Okello, 2010; Schüßler, Lee and Stadtmann, 

2018). Both means of crop production present a platform for further HEI, where crop consumption by 

elephants threatens peoples’ lives and livelihoods, and low tolerance by people results in the 

retaliatory spearing of elephants (Browne-Nunez, Jacobson and Vaske, 2013).  

In addition to land use change, social challenges threaten Amboseli’s elephants. Across Kenya in 2015, 

it was estimated that 36% of people lived below the international poverty line of US$1.90 per day 

(World Bank Group, 2018) and unemployment is high, especially for young rural people. 
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Dissatisfaction with government policy and practise often motivates the political spearing of wildlife, 

including elephants (Lindsay, 1987). 

The challenges in Amboseli are not unique and come down to two omissions: 1) a lack of land use 

planning has allowed human populations to encroach into natural habitats and 2) there have been no 

large-scale plans to secure the benefits of wildlife for local communities. Urgent land management 

policy is required to prevent further conversion of natural habitats into human-dominated landscapes, 

protecting dispersal areas and securing movement corridors throughout the ecosystem. In 

combination, efforts must be made to promote the benefits of wildlife for local people through 

realisation of the ecosystem services provided by natural ecosystems and through the direct benefits 

of employment in, and income from, the wildlife-tourism industry. The Amboseli Ecosystem Trust and 

Kenya Wildlife Service are working to coordinate the efforts of NGOs operating in the ecosystem and 

to establish data-driven protocols to prevent land conversion and mitigate negative human-wildlife 

interactions (more details in 6.2). The research presented here hopes to support evidence-based 

discussions. 

1.3 Aims and Objectives  

Given the range of threats facing Africa’s elephants and the limited resources available for biodiversity 

conservation and land management, there is an urgent need to develop tools which can identify 

priority areas for threat mitigation. This PhD aims to develop models that simulate the impacts of 

environmental change scenarios on elephant populations to identify the drivers posing the greatest 

threats. The primary scientific objectives to address this aim are: 

▪ Synthesise current knowledge on the environmental drivers of elephant distribution and 

demographic rates, 

▪ Estimate the spatiotemporal variation in key environmental drivers by translating satellite remote 

sensing into food availability measurements, 

▪ Test the influence of spatial variation in food availability on the movement decisions of elephants 

and identify any additional explanatory variables, 

▪ Accurately replicate historic elephant population dynamics using temporal variation in food 

availability to drive an energetic model, 

▪ Project the effects of environmental change (habitat loss and climate change) scenarios on the 

food availability and elephant population dynamics in Amboseli,  

▪ Identify primary threats facing Amboseli’s elephants to inform land management decisions. 

1.4 Outline of the thesis 

The models presented in this PhD are based on the fundamental principle that animal population 

dynamics and behaviours are governed largely by the availability of food (Sinclair, 1975; Morales et al., 
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2010). Long-term monitoring of elephants has found that vital demographic rates, including 

conception and parturition (Rasmussen, Wittemyer and Douglas-Hamilton, 2006; Wittemyer, 

Ganswindt and Hodges, 2007; Wittemyer, Rasmussen and Douglas-Hamilton, 2007), coincide with 

peaks in food availability, whilst limitations in food availability increase mortality rates (Wato et al., 

2016). Spatiotemporal dynamics in food availability also drive elephant ranging behaviours, with 

movements targeted towards the highest quality and quantity of vegetation (Loarie, Van Aarde and 

Pimm, 2009; Bohrer et al., 2014). Food availability is expected to change under future environmental 

scenarios and will therefore be a crucial component driving the response of elephant populations to 

global change. Throughout this thesis, food availability is considered a key environmental driver of 

elephant demographic rates and movement behaviours. 

An individual-based approach was adopted throughout as heterogeneity in the responses of known 

individuals to key drivers can help to identify additional factors influencing animal demographics and 

behaviours. Under this approach, models were developed relating variation in food availability to the 

movement patterns and population dynamics of Amboseli’s elephants.  

The first task was to estimate the food available to elephants through time and space. Since elephants 

can live for over 70 years and range over hundreds of kilometres, quantifying food available to 

elephants using traditional methods was unfeasible. Instead, satellite remote sensing (RS) presented 

the opportunity to monitor vegetation dynamics over appropriate spatiotemporal scales. In Chapter 2, 

satellite-derived measures of greenness (NDVI) were calibrated against ground-based live plant 

biomass. Greenness measures from the Terra-MODIS (Moderate Resolution Imaging 

Spectroradiometer) satellite were related to biannual measures of biomass across the major habitat 

types of ANP. Most ground-based measures of vegetation were unsuitable for the calibration due to 

mismatches between the scale of the satellite and ground-based measures or due to interference of 

non-food vegetation. However, a relationship between NDVI and biomass was established and used in 

subsequent chapters to estimate food available to Amboseli elephants. In Chapter 3, satellite data 

were used to estimate the relative food available in seasonal home ranges of five GPS-collared 

elephants and their families. The movements of these individuals were monitored over the course of a 

year and compared to modelled elephant locations based on maximising resource availability (food 

and water). The model predictions represented the locations of two elephants well, highlighting the 

importance of seasonal migration for maximising resource availability. The movements of other 

individuals were less well predicted by the model. Using detailed knowledge about these individuals 

and their ecosystem, additional factors moderating elephant movement choices were identified, 

including reproductive events and perceived risks. In Chapter 4, an IBM relating food availability to 

elephant demographic rates was developed. Food availability was translated to demographic rates 

through an energy budget: elephants ingested energy from food available in the environment then 
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allocated it to maintenance, growth and reproduction. When food was abundant, elephants allocated 

energy maximally to all processes, but when food was limited elephant reproductive capacity was 

reduced, individuals starved and eventually died. Elephants were represented as individuals in the 

model and responded independently to food availability depending on their age, sex, reproductive and 

physiological state. In this way, birth and death rates, and ultimately population size, emerged 

because of variation in food availability. The model was calibrated using approximate Bayesian 

computation to fit the historic population dynamics of four Amboseli elephant families and validated 

using an additional six family groups. In Chapter 5, the IBM was applied to identify the impacts of 

global change scenarios, including climate change and habitat loss, on Amboseli’s elephants. The 

historic relationship between NDVI and climate variables was established and used to project the food 

available to elephants under different greenhouse gas emissions scenarios. Habitat loss scenarios 

were developed based on stakeholder opinions and empirical records of human population growth 

and HEI. The effects of climate change and habitat loss scenarios on the Amboseli elephant population 

was simulated throughout the 21st century. Results revealed that habitat loss presents the most 

significant threat to the persistence of the Amboseli elephants and highlighted the importance of 

management plans to secure elephant access beyond the boundaries of conservation areas. In 

Chapter 6, the implications of these results for the Amboseli elephants and their ecosystem are 

discussed alongside the benefits of a process-based approach for informing conservation actions and 

landscape planning. The general mechanisms underlying models presented in Chapters 3 and 4 and 

the use of freely available RS (Chapter 2) and climate (Chapter 5) data allow these models to be easily 

adapted to understand the implications of global change for other elephant or herbivore populations. 

Finally, the value of developing an interactive toolkit incorporating these models and data is 

presented. 
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Chapter 2. Using satellite remote sensing to estimate food available 

to the Amboseli elephants 

2.0 Abstract 

The abundance and distribution of food is a key driver of animal population dynamics, behaviours and 

distribution. With an understanding of spatiotemporal variation of food, we should therefore be able 

to make predictions about animal demographic rates and movement behaviours. However, 

quantifying food availability at the spatial and temporal scales at which an animal lives can be 

challenging for traditional ground-based measures, as is often the case when animals live for many 

years and range over huge expanses. Remote sensing presents the opportunity to estimate biophysical 

parameters, such as food availability, in a way which remains consistent through space and time. To 

properly understand how remote sensing data relates to ground-based metrics and thus animal 

population dynamics, calibration is required. Here we present a method for calibrating MODIS-NDVI to 

provide estimates of herb-layer biomass, the predominant food for the Amboseli elephants. 

Estimation of herb-layer biomass was limited by interference of canopy layers and mismatches in the 

scales of the data; it nevertheless sufficed for the purpose of estimating relative food available to 

elephants through space and time. The process demonstrates key challenges in calibrating remote 

sensing data and suggests future options for minimising their effects, but alongside subsequent 

chapters, also highlights the benefits of remote sensing for improving understanding of animal 

energetics, movement behaviours and population dynamics under global change. The calibration of 

satellite NDVI presented in this chapter facilitates its use to estimate food availability in the 

subsequent chapters of this thesis. 

2.1 Introduction 

The abundance and distribution of food is an important bottom-up driver of animal ranging behaviour 

and population dynamics (Lack, 1955; Birnie-Gauvin et al., 2017). At a global scale, animals are unable 

to exist where food availability is insufficient or food types are inappropriate. Locally, animals 

generally move to maximise the food available to them in order to achieve maximum fitness 

(Wilmshurst et al., 1999; Fryxell, Wilmshurst and Sinclair, 2004; Bartlam-Brooks et al., 2013). Whilst 

food type preferences and feeding behaviours are often well documented for a species, it can be 

difficult to quantify food availability at the spatial and temporal scales at which an individual lives, 

particularly for long-lived and wide-ranging species.  

One species for which this challenge is evident is the African elephant (Loxodonta africana). 

Demographic rates and movement behaviours of elephants are to a large extent governed by the 

availability of food and water (Viljoen, 1989; Trimble, Ferreira and Van Aarde, 2009). Feeding 

behaviours in elephants, including preferences and ingestion rates, are well understood (Buss, 1961; 
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Guy, 1976; Barnes, 1982; Stokke and du Toit, 2000; Shannon, Page, Duffy, et al., 2006b). Elephants are 

considered generalist herbivores, for which almost all standing plant biomass can be considered food. 

Estimating the food available to elephants would therefore require quantification of all plant biomass 

over the spatial and temporal scales at which an elephant lives. Considering a single elephant may 

range over hundreds of kilometres and live for 70 years (Moss, Croze and Lee, 2011a), this presents an 

unfeasible task for traditional ecological methods (Kerr and Ostrovsky, 2003; Pfeifer et al., 2012), 

where the challenge lies in collecting such huge volumes of data whilst maintaining spatiotemporal 

consistency. 

Satellite remote sensing (RS) provides a relatively ‘hands-free-low-effort’ approach to collecting 

standardised, repeated measures of the Earth’s surface, in a way which is consistent over time and 

space (Le Roux et al., 1997; Kerr and Ostrovsky, 2003; Nilsen, Herfindal and Linnell, 2005; Willems, 

Barton and Hill, 2009). The use of RS in ecology and biodiversity conservation has grown dramatically 

in the past two decades (Kerr and Ostrovsky, 2003; Turner et al., 2003; Pettorelli et al., 2014), thanks 

in part to improved computing power, increased accessibility of freely-available RS data, and rising 

technical expertise.  

Using RS, biodiversity has been monitored both directly – identifying individuals or groups of 

individuals – and indirectly – using indices and proxies. Direct monitoring of individual animals and 

plants (reviewed in Hollings et al., 2018) generally requires high resolution, hyperspectral sensors 

which are often prohibitively expensive, hence their use remains limited. However direct RS has been 

achieved for, for example, whales (Fretwell, Staniland and Forcada, 2014), polar bears (LaRue et al., 

2015), zebras and wildebeest (Yang et al., 2014), and nesting bird colonies (Barber-Meyer, Kooyman 

and Ponganis, 2007), and the detection of the species-specific electromagnetic signals of plants allows 

identification plant individuals (Pu, 2009; He et al., 2011). Indirect monitoring of biodiversity relies on 

the assumption that plant and animal species are generally associated with certain biophysical 

characteristics of the Earth’s surface which can be detected by RS (Turner et al., 2003). Variables such 

as temperature and elevation can be combined with land cover classifications, which estimate the 

variety, type, and extent of different land cover classes, to inform species distribution models and 

predict the occurrence of species and species assemblages (He et al., 2015).  

RS is also widely used to detect aspects of global change, such as changes to the length of the growing 

season (Myneni et al., 1997), sea level rise (Nerem, Leuliette and Cazenave, 2006) and the northern 

shift of the treeline (Zhou et al., 2001), and to monitor threats to biodiversity, including deforestation 

(Achard et al., 2002), expanding mining operations (Kusimi, 2008) and fires (Li and Cihlar, 2000). 
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Notably, the Normalised Difference Vegetation Index (NDVI) has proven useful to a wide variety of 

ecological applications (reviewed in Pettorelli et al., 2011, 2005). NDVI measures the normalised ratio 

of the near-infrared and red reflectance bands: 

𝑁𝐷𝑉𝐼 =
(𝑁𝐼𝑅−𝑟𝑒𝑑)

(𝑁𝐼𝑅+𝑟𝑒𝑑)
 ,                    eqn 1 

where 𝑁𝐼𝑅 is near-infrared radiation and 𝑟𝑒𝑑 is red radiation reflected from the Earth’s surface. The 

ratio concept underlying NDVI helps to reduce sources of multiplicative noise, such as illumination 

differences, cloud shadows, atmospheric attenuation and some topographical variations. Healthy 

green vegetation absorbs strongly in the 𝑟𝑒𝑑 band, but is highly reflective in the 𝑁𝐼𝑅 band, hence 

green vegetation generates positive NDVI values, whilst bare soil, cloud, snow and water give low or 

negative NDVI values (Jensen, 2007). NDVI correlates closely with ground-based measures of many 

biophysical parameters including biomass, net primary productivity and leaf area index, and has been 

demonstrated to predict the space use and population dynamics of a wide variety of animals 

(reviewed in Pettorelli et al., 2014, 2011, 2005), though may be influenced by the canopy background 

and saturates at high biomass conditions. 

For elephants in particular, NDVI has been shown to relate to aspects of space use, including 

presence-absence (Hien et al., 2007; de Boer et al., 2013), densities (Chamaillé-Jammes and Valeix, 

2007; Young, Ferreira and van Aarde, 2009; Duffy and Pettorelli, 2012) and habitat selection (Young, 

Ferreira and van Aarde, 2009; Marshal et al., 2011; Matawa, Murwira and Schmidt, 2012; Wall et al., 

2013; Bohrer et al., 2014), and at a range of scales from local forage site selection (Young, Ferreira and 

Van Aarde, 2009; Marshal et al., 2011) to continental distribution (Duffy and Pettorelli, 2012; de Boer 

et al., 2013). The influence of NDVI on movement behaviours has also been reported, including home 

range size (Young, Ferreira and Van Aarde, 2009), randomness (Wittemyer et al., 2008) and distance 

(Young and Van Aarde, 2010) of daily movements, and timings of seasonal migrations (Bohrer et al., 

2014). Vital demographic rates of elephants are also well predicted by NDVI time series, including 

oestrus and conception rates and timing (Rasmussen, Wittemyer and Douglas-Hamilton, 2006; 

Wittemyer, Ganswindt and Hodges, 2007; Wittemyer, Rasmussen and Douglas-Hamilton, 2007), and 

juvenile mortality (Wittemyer, 2011). In addition, NDVI has predictive ability regarding elephant diet 

composition and the switch from dry season browsing to wet season grazing (Cerling et al., 2006, 

2009; Wittemyer, Cerling and Douglas-Hamilton, 2009). 

Given the growing body of support for the relationship between NDVI and animal, especially elephant, 

space use and demographic rates, NDVI was utilised here to drive individual-based models of elephant 

movement and population dynamics in the Amboseli ecosystem, Kenya. Critical to this is 

understanding how NDVI relates to the mechanistic drivers determining elephant abundance and 

distribution, which requires an understanding of the relationship between NDVI and food available to 
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elephants. This chapter therefore aimed to establish the relationship between satellite-derived NDVI 

and on-the-ground measures of vegetative biomass in order to map the food available to the Amboseli 

elephants through time and space. The results inform models described in subsequent chapters of this 

thesis, which will ultimately act to provide improved insight into the factors determining elephant 

movements and population dynamics and may in turn aid conservation planning for elephants. 

2.2 Methods 

On-the-ground biomass 

The Amboseli Elephant Research Project (AERP) has been collecting data on the herb-layer biomass of 

vegetation in the Amboseli National Park (ANP) since 1982 (Moss, Croze and Lee, 2011a). All surveying 

methods were designed by W.K. Lindsay and are further documented in (Lindsay, 1982).  

Twelve vegetation plots were established in areas representative of the six major habitat types found 

in ANP (outlined in Table 2.1). Swamp edge habitats (SEG, PAX and YAX) are fed by ground water from 

the slopes of Kilimanjaro in the south and so have year-round potential for primary productivity, whilst 

dry woodland habitats (SS, TW and XW) rely on seasonal rainfall for plant growth. Where possible, plot 

locations were kept consistent over the years of the study but were relocated if the habitat type was 

deemed to have changed beyond its definition or if the area became inaccessible due to, for example, 

flooding, cattle grazing or fencing. If plots were relocated, they were moved within the minimum 

possible distance from the previous location to an area representing the intended habitat type.  

Plots were surveyed biannually to coincide with the extremes of vegetative biomass: shortly following 

the onset of the long rains (roughly May) and the end of the long dry season (roughly October) each 

year. A slanting pin-frame with 10 pins was placed 50 times at two meter intervals along a 100 meter 

transect (McNaughton, 1979). The number of pins intercepting vegetation (out of a possible 10) and 

height of vegetation closest to the central pins was measured at each point to derive mean percent 

vegetation cover and height for the transect.  

Predictive equations linking mean vegetation height and percent cover to dry biomass (g m-2) were 

developed through calibration experiments (Lindsay, 1982) for swamp edge and dry woodland 

habitats: 

 

ln(𝐻𝐿𝐵) =  −0.899 + 0.81 × ln(ℎ𝑡) + 1.120 × ln(𝑐𝑜𝑣)                          eqn 2a 

and 

ln(𝐻𝐿𝐵) =  2.504 + 0.393 × ln(ℎ𝑡) + 0.459 × ln(𝑐𝑜𝑣)              eqn 2b 
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where 𝐻𝐿𝐵 is the herb layer biomass of swamp edge (eqn 2a) or dry woodland (eqn 2b) habitats in g 

m-2, ℎ𝑡 is the mean height of vegetation in cm and 𝑐𝑜𝑣 is the mean percent cover of vegetation along 

the transect. 

We assumed that herb-layer biomass represented the food available to elephants in the Amboseli 

ecosystem since these elephants are predominantly grazers with woody vegetation, bark, fruit and 

flowers only constituting a small portion of their diet (Lee pers. comm.).  
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Table 2.1. The habitat types of Amboseli National Park - as described in (Lindsay, 1982). 

Habitat Code Habitat type Description 

Date palm and 

fever tree 

swamp edge 

woodland 

 

PAX Swamp edge Occurs in a small, isolated area around the central swamp in ANP. 

Woody layer comprised of low-growing date palms (Phoenix 

reclinata) and fever trees (Acacia xanthophloea). Canopy cover 

averages roughly 20%. Prolific growth of large, woody herbs 

(including Aubutilon mauritianum), with a grass and herb layer 

typical of SEG (see below).  

 

Swamp edge 

grassland 

SEG Swamp edge Occurs along edges of the permanent swamps, where water flows 

beneath the soil for much of the year. Herb layer dominated by 

dense layer of Bermuda grass (Cynodon dactylon) with few 

creeping herbs at ground level. Woody herbs and shrubs sparse 

but develop localised thickets where soil moisture is highest. 

 

Young fever tree 

swamp edge 

woodland 

YAX Swamp edge Occurs in scattered patches along swamp margins. Basically, SEG 

with fairly dense (about 15%) cover of young and maturing fever 

trees, which flourish in these areas of low soil salinity and 

permanent water. 

  

Salvadora and 

Suaeda 

woodland 

SS Dry 

woodland 

Formerly XW (see below), but now devoid of all but a few fever 

tree seedlings. Dominated by shrubs Salvadora persica and Suaeda 

monoica. Herb layer similar to that of YAX although species 

composition and biomass changed since disappearance of canopy. 

 

Umbrella tree 

woodland 

TW Dry 

woodland 

Occurs on volcanic and lacustrine soils of southern ANP. Woody 

layer dominated by umbrella tress (Acacia tortilis) with a variety of, 

mostly evergreen, woody shrubs and herbs in understory. Canopy 

cover variable but averages 4-5%. Herb layer dominated by 

palatable, productive grasses (Cynodon plectostachyus and 

Sporobolus spp). 

 

Fever tree 

woodland 

XW Dry 

woodland 

Survives on the deeper alkaline soils in isolated patches. Similar to 

TW but with fewer herb and shrub species, a Sporobolus 

dominated herb layer, and an exclusively A. xanthophloea tree 

layer in various states of size and health creating a canopy cover of 

about 2%. Suaeda monoica occurs as a major understory species. 

 

 

Remotely-sensed vegetation indices 

Remotely-sensed measures of vegetation were obtained from the Moderate Resolution 

Spectroradiometer (MODIS) mission launched on the Terra satellite in 1999. The satellite has a near 

polar orbit at an altitude of 705km to achieve daily global coverage with a repeat cycle taking 16 days, 

during which each area of the Earth’s surface is viewed from a range of angles (NASA, 2018).   

NDVI is derived from the MODIS reflectance data as 16-day composites. Composites are composed of 

the best daily, atmospherically-corrected, bidirectional surface reflectance on a pixel-by-pixel basis in 
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the 16-day period, chosen to minimise cloud cover, optimise the solar and view angles, and have the 

best atmospheric correction (Huete, Justice and Van Leeuwen, 1999).  

We obtained 250m resolution 16-day composites of Terra-MODIS NDVI from the Oak Ridge National 

Laboratory Web Service (Vannan et al., 2011). Specifically we used the MOD13Q1 product (Didan, 

2015). Data were filtered using QA flags so that only ‘good’ quality pixels were used in our 

calculations. Terra-MODIS was used rather than Aqua-MODIS because of the longer NDVI time-series 

available (Terra operational since 2000, Aqua since 2002). 

Calibration 

NDVI was obtained for dates and locations corresponding to vegetation surveys. Instances where 

‘good’ quality NDVI values could not be obtained were excluded from analysis. Linear regression was 

used to determine the strength of correlations for each vegetation plot and habitat classification. The 

full NDVI time series (2000-2017) for each vegetation plot location was also obtained to further 

investigate the relationship between vegetative biomass and NDVI. 

2.3 Results  

Correlation between Biomass and NDVI 

In all cases, biomass was positively correlated with NDVI. However, the strength and significance of 

the relationship varied with habitat type and plot. When all plots were grouped together biomass was 

positively associated with NDVI (r = 0.56, df = 206, p < 0.001). Association was maintained when 

dividing plots by habitat type (i.e. swamp edge and dry woodland habitats) but varied when plots were 

grouped by habitat with only PAX, SEG and SS correlated (Figure 2.1).  
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Detailed Comparison of Biomass and NDVI Time-series 

The biomass time-series derived from vegetation surveys is shown in Figure 2.2. Swamp edge habitats 

consistently had a higher biomass than dry woodland habitats. The biomass time-series shows peaks 

and troughs in vegetation biomass corresponding to wet and dry seasons respectively; wet season 

biomass was higher than previous and subsequent dry seasons except in 2008, 2009 and 2011 for 

both habitat types and 2002 for dry woodland. There was a significant drought beginning with poor 

rainfall in 2008 and continuing through 2009, when biomass was low in both habitat types. 

 

Figure 2.2. Mean herb-layer biomass time-series of swamp edge (blue) and dry woodland habitats 

(green). Measures recorded biannually to correspond to peak wet (triangles) and peak dry (circles) 

seasons. Years are calendar years. Grey shading indicates drought year. 

Normalised NDVI and biomass time-series were compared on a plot-by-plot basis in order to identify 

reasons behind the variable correlation coefficients (Figure 2.3). The number of vegetation surveys 

varied by plot. Whilst some had a near-full time-series of biannual biomass from 2000 to 2017, the 

time-series of others was limited to just a few years (TW2, XW1 and XW2), reducing the ability to 

derive robust linear models.  

Also notable were marked disparities between normalised NDVI and biomass values of plots SEG2, 

YAX1 and YAX2 throughout, and of plots TW1 and XW2 during wet seasons. Differences in normalised 

values suggests that either canopy interference or scale mismatch influenced results. Canopy 

interference arises when the canopy layer intercepts reflected radiation from the herb-layer. Here, 

this means that NDVI responded to canopy biomass rather than that of the herb-layer. Scale mismatch 

occurs when the spatial resolution of the RS data does not match the spatial extent of the ground-
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based measure (Kerr and Ostrovsky, 2003). In this case, the 250m resolution MODIS pixel considers a 

much wider spatial extent than that of the 100m biomass transect. Both canopy interference and scale 

mismatch can result in disparities between RS and ground-based data. Put simply, the RS data and 

vegetation transect recorded different things; ground-based surveys only measured herb-layer 

biomass along a 100m transect, whilst RS data recorded all vegetation within the 250m pixel. If the 

canopy layer or surrounding vegetation differed from vegetation on the transect, this variation would 

have been observed by the RS instrument but not reflected in the ground-based data. This was likely 

responsible for the limited correlations between RS and ground-based data. 

The obvious step-change in NDVI values around 2013 for plots SEG2, YAX1, YAX2 and XW1 (i.e. the 

previous mean NDVI is markedly different to the subsequent mean NDVI) corresponds to the 

relocation of these plots (for reasons earlier described), which either reduced or increased the effects 

of canopy interference or scale mismatch. 

On this basis, plots with insufficient biomass data (TW2, XW1 and XW2) and those suffering issues of 

canopy interference or scale mismatch (SEG2, YAX1, YAX2, TW1) were removed from the analysis. We 

also chose to remove both PAX plots (PAX1 and PAX3) due to high canopy cover, and both SS plots 

(SS1 and SS2) due to the prevalence of shrubs. The remaining plot (SEG3) had no canopy cover and 

was in a fairly homogeneous location thus minimising canopy interference and scale mismatch. The 

linear equation relating SEG3 herb-layer biomass (g m-2) to satellite-derived NDVI showed a strong 

positive correlation (r = 0.72, df = 18, p < 0.05): 

𝐵𝑖𝑜𝑚𝑎𝑠𝑠 = 2666 × 𝑁𝐷𝑉𝐼 − 270 ,                   eqn 3  

where 𝐵𝑖𝑜𝑚𝑎𝑠𝑠 is the herb-layer biomass of SEG3 vegetation and 𝑁𝐷𝑉𝐼 is the Terra-MODIS NDVI 

value for the corresponding date and location. This equation is used to estimate biomass, and thus 

food available to elephants, across the Amboseli ecosystem in subsequent chapters of this thesis. 

  



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3. Normalised NDVI (coloured lines: blue = SE habitats, green = DW habitats) and biomass (black) time-series. 
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2.4 Discussion 

Most vegetation plots proved unsuitable for the calibration of satellite-derived data to herb-layer 

biomass. Detailed investigation of NDVI and biomass time-series data revealed that insufficient 

biomass measures, scale mismatch and canopy interference were likely responsible for poor 

correlations. Few ground-based measures of biomass in some habitats prevented the derivation of 

robust linear models. In addition, the difference in the scale of ground-based surveys and RS data 

meant fluctuations in vegetation not accounted for by transects (i.e. trees, shrubs and surrounding 

vegetation) influenced NDVI. The two measures were thus reflecting different vegetation dynamics 

and caused poor correlations. 

When unsuitable plots were removed, the herb-layer biomass of the single remaining plot (SEG3) was 

positively correlated to MODIS-NDVI. Whilst this relationship provides a strong basis for predicting SEG 

herb-layer biomass using NDVI, its ability to predict herb-layer biomass more widely must be carefully 

considered.  

The application of this calibration exercise in subsequent modelling requires estimates of the relative 

herb-layer biomass rather than absolute values. The movement model presented in Chapter 3, 

predicts elephant movement decisions based on the relative food available in seasonal home ranges 

of elephant family groups. In Chapter 4, an energy budget model is driven by biomass over a 17-year 

period. Though the amount of biomass available in the environment determines the rates of survival 

and reproduction, calibration of model parameters means that relative food availability through time 

is enough to accurately predict elephant population dynamics after parameterisation. Absolute 

measures of biomass are therefore unnecessary in these models. Rather the relative availability of 

food through space and time determines movement decisions and population dynamics.  

All swamp edge habitats in Amboseli (PAX, SEG and YAX) share a similar herb-layer, dominated by a 

dense layer of Bermuda grass (Cynodon dactylon) and few creeping herbs at ground-level (see Table 

2.1 and Lindsay, 1982). Hence, it was expected that the herb-layer of these habitats relates similarly to 

NDVI but this relationship could not be established due to 15-20% cover of the date palm (Phoenix 

reclinata) and fever tree (Acacia xanthophloea) canopy. The herb-layer of dry woodland habitats (SS, 

TW and XW) differs from SEG3 in terms of species composition and biomass. The lower herb-layer 

biomass of dry woodland habitats is reflected in the lower mean NDVI when compared with swamp 

edge habitats (Figure 2.3). In the following chapters we therefore apply equation 3 to predict the 

herb-layer biomass – and thus food available to elephants – across the Amboseli ecosystem without 

concern for the propagation of error introduced in ground-truthing through this calibration exercise. 

We acknowledge however, that further work is required to produce precise estimates of herb-layer 

biomass using satellite data. 

Biomass estimates are of increasing interest due to growing awareness of climate warming and the 

role that vegetative biomass plays in carbon sequestration (Kumar and Mutanga, 2017). Whilst direct 
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ground-based measures of biomass are most accurate, the value of RS in estimating biomass over 

large spatial scales, in inaccessible locations and with reduced user effort has long been 

acknowledged. RS now presents the primary source for biomass estimation and there are a huge array 

of methods available (Lu, 2006). Briefly, these consist of optical, radar and LiDAR RS. Optical RS, relies 

on a range of techniques depending on the spatial scale of the RS product, including photo 

interpretation of vegetation characteristics at fine scales and vegetation indices at coarser scales. 

Photo interpretation of parameters including tree height, crown diameter and density, and stand area 

can provide accurate estimates of biomass but require extensive user effort and expensive high 

resolution datasets, which prevents the application of this method over larger areas (Lu, 2006). 

Vegetation indices have the advantage of removing variability in images caused by canopy geometry, 

soil backgrounds, atmospheric conditions and solar view angles, but the common occurrence of mixed 

pixels and the mismatch in the scale of RS and ground-based data means that not all indices correlate 

with biomass (Mutanga and Skidmore, 2004). Optical sensing offers long-term global coverage, 

repetitiveness and relative cost-effectiveness, but can be inhibited by cloud cover in some parts of the 

world. Radar RS presents the benefit of penetrating cloud cover and can detect properties of surface 

roughness, structure, moisture and geometry. Several radar RS parameters have shown correlations 

with measures of tree age, height, diameter at breast height, basal area and above ground biomass 

(Kasischke, Melack and Dobson, 1997). LiDAR RS uses pulsed lasers to measure the distance to the 

Earth surface and can generate precise three-dimensional information on the structure of the Earth’s 

surface. Its application in estimating biomass relies on precise measures of the vertical structure of 

vegetation and due to large current interest in this approach, LiDAR RS is increasingly applied in 

studies of vegetation dynamics (Lim et al., 2003). The application of the various RS methods in 

estimating above-ground biomass is the focus of a special issue of Remote Sensing (Remote Sens., 

Volume 9, Issue 9, September 2017). In general, the chosen method for estimating biomass will 

depend on the user’s needs, the spatial extent of the study area, the characteristics of the RS data and 

economic support. 

The process of calibrating satellite-derived NDVI to provide measures of food availability presented 

here may be applied to other herbivores and study systems where the aspects of vegetation that 

constitute food for a species are known and biomass of this vegetation can be quantified on-the-

ground. As illustrated here, efforts should be made to minimise canopy interference and scale 

mismatch. Canopy interference is a common problem suffered by RS data especially under high 

biomass conditions where there are multiple layers of vegetation. Scale mismatch too regularly arises 

when calibrating RS data, caused by differing spatial extents of the RS and ground-based measures 

(Kerr and Ostrovsky, 2003). In highly heterogeneous habitats variation within a RS pixel (250x250m for 

MODIS) may not be identified by a single transect or smaller quadrat when measuring vegetation on-

the-ground. The effects of both scale mismatch and canopy interference can be minimised by carefully 
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designing ground-based data collection methods to suit the desired RS product (Hoffer, 1971): 

ground-based measures must be collected over an area comparable to the spatial resolution of the RS 

data and should ensure higher canopy layers do not cover the desired biomass metric. However, when 

using historically collected data as we did here, ground-based data are unlikely to have been designed 

for calibration of RS data and so a degree of ‘retrofitting’ is required: careful examination of both RS 

and ground-based data should reveal non-conformities which may then be removed from subsequent 

analyses.  

Additional technological advances may improve the calibration of RS data. Satellites with increasingly 

high spatial resolution, such as the European Space Agency’s Sentinel missions (Drusch et al., 2012), 

may reduce the required spatial coverage of ground-based measures and minimise the influence of 

scale mismatch in heterogeneous habitats. Alternatively, unmanned aerial vehicles, or drones, are 

increasingly equipped with sensors able to collect the same information as those deployed on 

satellites. Drones also provide high resolution images and have the advantage of being programmable 

by the operator to observe only an area of interest.   

The issue of too few ground-based biomass measures could obviously be addressed by increasing 

sampling efforts, but more importantly serves as a reminder as to the strengths of RS in collecting 

regular consistent measures of the Earth’s surface with minimal user effort (Pettorelli et al., 2014). 

Obtaining appropriate RS data is unlikely to be the limiting factor in these exercises given the 

increasing availability of freely available resources (Aroma and Raimond, 2015). Using the methods 

presented here, spatially and temporally consistent measures of food availability may be used to 

better understand aspects of animal energetics, movement behaviour and population dynamics over 

long time periods and large spatial extents. 

Calibration of RS data more generally, is an important step in identifying and applying a suitable proxy 

for its intended purpose or question (Hoffer, 1971). Often RS measures are used as a proxy without 

fully understanding the mechanisms underlying the relationship (or lack of) between the RS measure 

and the response variable, limiting the value of these interpretations. Although calibration is not 

always possible due to inaccessibility of study areas (because of political instability, terrain or 

legislative issues for example), limited time and funding, or lack of appropriate methods for measure 

the desired variable, where possible ground-based data should correspond closely to the objectives of 

the research and problems involved. Given a good understanding of how RS measures relate to 

biophysical characteristics of the Earth’s surface, RS can be widely applied to answer many questions 

and challenges faced in ecology and biodiversity conservation.  

The calibration of satellite NDVI presented in this chapter allows the use of satellite NDVI to estimate 

food availability in the subsequent chapters of the thesis. 
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Chapter 3. Modelling large herbivore movement decisions: beyond 

food availability as a predictor of ranging patterns1 

3.0 Abstract 

The ability of animals to adapt to their changing environment will depend in part on shifts in their 

ranging patterns, but when and why individuals choose to move requires detailed understanding of 

their decision-making processes. We develop a simple decision-making model accounting for resource 

availability in habitually used ranges. We suggest that disparities between model predictions and 

animal tracking data indicate additional factors influencing movement decisions, which may be 

identified given detailed system-specific knowledge. The model was evaluated using movement data 

from satellite-tracked elephants (Loxodonta africana) inhabiting the Amboseli ecosystem in Kenya, 

moving from savannah areas with low quality but constant resource availability, to areas with 

temporally-constrained higher nutrient availability. Overall the model predictions represented the 

data well: there was a good correlation between predicted and observed locations for the combined 

data from all elephants, but variation between individuals in how well the model fitted. For those 

elephants where model predictions were less successful, additional factors likely to affect movement 

decisions, such as reproduction, anthropogenic threats, memory and perception, are suggested. This 

protocol for building and testing decision-making models should contribute to success in attempts to 

preserve sufficient space for large herbivores in their increasingly human-dominated ecosystems. 

3.1 Introduction 

In the face of a changing climate and the rapid conversion of natural habitats to human-dominated 

landscapes, the future of many species will depend on their ability to adapt to new circumstances. 

Adaptation may involve behavioural changes or innovations (Sol et al., 2005), but geographical shifts in 

a species range (Laidre et al., 2018) or in how a species moves through its existing range (Olden et al., 

2004; Tucker et al., 2018) may allow it to cope with novel environmental conditions or constraints. 

Range shifts require animals to make the decision to relocate from one site to another and have often 

been predicted through the use of simple decision models (Bastille-Rousseau et al., 2018). Whilst 

these shifts are largely guided by suitable climatic conditions and the provision of sufficient food and 

water, movement decisions are also likely mediated by other factors. The predicted shifts can be 

incorporated into conservation and management strategies for species of concern, but are unlikely to 

be accurate unless the full range of factors influencing movement can be taken into account.  

                                                           
1 This chapter has been published as follows: Boult, V.L., Sibly, R.M., Quaife, T., Fishlock, V., Moss, C. & Lee, P.C., 

2018. Modelling large herbivore movement decisions: Beyond food availability as a predictor of ranging 

patterns. African Journal of Ecology, 57(1), 10–19.  
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Here we present a means of identifying factors other than simple resource-requirements which 

mediate movement decisions for large herbivores negotiating heterogeneous landscapes. Our method 

uses disparities between a simple model of resource-driven decision-making and animal tracking data 

to indicate the need to incorporate other factors that affect movement decisions. Given a detailed 

understanding of the study system, these factors can be identified using local knowledge (see also 

Bastille-Rousseau et al., 2018). Models were developed and evaluated using elephants (Loxodonta 

africana) inhabiting the Amboseli ecosystem in Kenya as a case study. Ensuring a future for elephants 

in this increasingly human-dominated landscape hinges on understanding how and why elephants use 

the landscape through space and over time. 

Long-term monitoring of elephant populations and remote tracking studies have greatly improved our 

understanding of general patterns in elephant ranging behaviour (e.g. Wall et al. 2013). Elephants 

show large-scale, purposeful space use (Polansky, Kilian and Wittemyer, 2015) and so require large 

areas over which to roam to access heterogeneously distributed resources (e.g. Leuthold 1977; 

Lindeque & Lindeque 1991; Thouless 1996; Blake et al. 2003; Birkett et al. 2012). It is clear that 

elephants do not use the space available to them at random. Instead, elephants generally shift ranges 

seasonally (Western and Lindsay, 1984; Leggett, 2006; Loarie, Van Aarde and Pimm, 2009), searching 

for water (Chamaillé-Jammes and Valeix, 2007; de Beer and van Aarde, 2008; Redfern et al., 2015) and 

the highest quality vegetation (Loarie, Van Aarde and Pimm, 2009; Bohrer et al., 2014). This results in 

dynamic habitat and food type preferences (Cerling et al., 2006; Shannon, Page, Slotow, et al., 2006; 

Loarie, Van Aarde and Pimm, 2009). 

We developed a simple decision-making model which tracked the food available within habitually-

used ranges to satellite-tracked individuals from five family groups (representing the movements of 

over 220 elephants in the Amboseli population), whilst taking into account the daily need of 

individuals for water. The individuals had complete perceptual knowledge of resource availability in 

their home range and the model assumed that, when water availability allowed, individuals moved to 

maximise their nutrient intake rate and subsequent fitness (Okello et al., 2015), as in optimal foraging 

theory (Stephens and Krebs, 1986; Roever, van Aarde and Chase, 2013; Bastille-Rousseau et al., 2017; 

Vasconcelos, Fortes and Kacelnik, 2017). We assumed that individuals make daily choices whether to 

relocate to an alternative location or to stay in the current location (Petit and Bon, 2010). Where 

model predictions did not match those of tracking data, we used detailed knowledge of the elephants 

and ecosystem to identify additional factors, such as physiological or social needs, which depend inter 

alia on an individual’s sex, age, reproductive status and body condition (Lindsay, 2011). 
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3.2 Materials and methods 

Case study site information 

The study was carried out in the Amboseli ecosystem (bounding coordinates: -2.02N, -3.28S, 38.03E, 

36.67W), an area of approximately 8000km2 straddling the border of southern Kenya and northern 

Tanzania, comprising the central Amboseli National Park (392km2; ANP hereafter) and surrounding 

landscape (Croze & Lindsay, 2011; see Appendix A: Figure A.1). The habitat consists of semi-arid 

savannah that responds seasonally to highly variable rainfall. Rain predominantly occurs in two 

seasons; a short wet season (November and December) and the long rainy season (March through 

May; Altmann, Alberts, Altmann, & Roy, 2002). During dry seasons a series of swamps in the central 

basin provide the primary source of water, fed by groundwater flow from the slopes of Kilimanjaro in 

the south (Croze and Lindsay, 2011), though other perennial sources occur in the Selenkay 

Conservancy and in Kitenden, in the form of a borehole and two natural springs. Wildlife concentrates 

in the central basin during dry seasons and disperses following rain (Western, 1975). The Amboseli 

ecosystem is home to around 1700 individually known and monitored elephants (Lee et al., 2013). 

Unlike most other African populations, the Amboseli elephants have been relatively undisturbed by 

human activities. However recent human population growth in Kenya and a lifestyle shift from 

nomadic pastoralism to sedentary farming (Western, Groom and Worden, 2009) presents growing 

challenges for the persistence of Amboseli’s wildlife, especially for elephants. 

Animal tracking data 

GPS-GSM collars (@ Savannah Tracking) were fitted in July 2011 to five adult female elephants (Ida, 

Lobelia, Maureen, Vicky and Willow) from different family groups, representing locations of over 220 

individuals (because families forage as units). Habitat heterogeneity around the central protected area 

affects ranging strategies and reproductive success, so not all dispersal directions are equal for 

Amboseli elephants. Target females were selected based on more than 40 years of observations to 

represent the known diversity in dispersal areas and foraging opportunities in Amboseli (which are 

largely inherited through generations unless disrupted by human disturbance; Croze & Moss, 2011; 

Moss, 1988) and to minimise risks to target elephants, family members and staff. Individual females 

were selected according to ethical and safety criteria, minimising the disturbance of each intervention. 

Target females were 1) not matriarchs, 2) without a calf aged <2 years and 3) closely bonded to 

matriarchs so shared the matriarch’s movement patterns and therefore represented the maximum 

part of the family. Matriarchs were not collared due to the drastic potential impact of matriarch loss 

on families given the small but inherent risks of immobilisation, and the greater ease of managing non-

target family members during immobilisations when they had a safe rallying point around their 

matriarch. Collars were fitted under the authority of the Kenya Wildlife Service, the Kenyan body 

regulating interactions with elephants, and with research clearance to Amboseli Trust for Elephants 

from the National Commission for Science, Technology and Innovation (NACOSTI/P/15/9605/5732).  



 

40 
 

GPS fixes were recorded at hourly intervals for roughly 12 months, giving in sum 43,728 location fixes. 

Collar data were summarised into daily presence or absence from ANP. Given the reliance of elephant 

families on water, an elephant was considered present in ANP on any day in which distance from the 

swamp was zero at any time during that day. Conversely if the distance from the swamp was never 

zero, the elephant was considered that day to have dispersed from ANP. The dispersal area of each 

female was identified as the 95% kernel density estimates of her locations outside the park boundary. 

Resource-driven movement model 

We developed a profitability index to indicate the resource availability of each dispersal area and of 

ANP, while taking into account the daily need of female elephants for water (Figure 3.1). Water was 

considered essential and elephants were only able to move to areas where water was available. The 

swamp edge habitat alone was used to indicate profitability for ANP, as elephants consistently return 

to the park to feed on the reliable and abundant swamp edge vegetation, as well as drink. Swamp 

edge was therefore used as representative of the resources drawing elephants back to ANP from their 

dispersal areas. 

 

Figure 3.1. Profitability of each dispersal area and ANP, calculated daily. See 3.2 for definitions of 

vegetation quantity and quality. Water availability is a binary variable taking values of 1 or 0 depending 

on whether or not water is available in the specified area. 

Vegetation quantity 

Data on vegetation quantity were acquired using the Normalised Difference Vegetation Index (NDVI), 

which exploits the marked difference in reflectance in red and near infra-red wavelengths 

characteristic of healthy green vegetation (Huete et al., 2002). We used 16-day composite values of 

NDVI retrieved from Terra-MODIS (Moderate Resolution Imaging Spectroradiometer) to infer time-

specific values of vegetation quantity. Specifically we used the MOD13Q1 product accessed via the 

Oak Ridge National Laboratory Web Service (Vannan et al., 2011). Median NDVI values were calculated 

for each individual’s dispersal area (i.e. 95% kernel density estimates outside ANP) and swamp edge 

for each 16-day interval. Data were filtered using the MOD13Q1 QA flags such that only ‘good’ quality 

NDVI observations were used in our calculations. For extended remote sensing methodology, see 

Appendix A.2. 

Vegetation quality 

Crude protein is an important limiting factor for herbivores inhabiting savannah ecosystems (Sinclair, 

1975) and we therefore assessed vegetation quality by its protein content (%). The diet of Amboseli 

elephants is dominated by grasses, so we used grass protein content as our measure of vegetation 
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quality. Protein content varies seasonally, peaking during the green-up of vegetation following the 

onset of rains (Georgiadis and McNaughton, 1990; Lindsay, 1994). Here we estimate protein content 

depending on whether or not it rained in the previous month. Lindsay (1994) measured the protein 

content of Amboseli swamp edge vegetation and rainfall throughout the course of a year. From these 

data, we assigned protein content of swamp edge vegetation as 11.8% or 8.4% depending on whether 

or not it rained in the preceding month. Georgiadis & McNaughton (1990) collected similar 

measurements in the broader Amboseli ecosystem outside the Amboseli swamps and found protein 

contents of 23.0% during the green-up following rains and 10.0% in the subsequent drying phases. We 

used the figure of 23.0% if the change in NDVI was positive, indicating green-up in the month after 

rains, at all other times 10.0%. 

Water availability 

Permanent water sources were available in ANP and in the dispersal areas of Vicky (Selenkay), and Ida 

and Lobelia (Kitenden). We deemed water available year-round in these areas. We used daily 

measures of rainfall from the rainfall gauge in the Amboseli Elephant Research Camp (-2.679S, 

37.267E) to indicate rainfall across the entire Amboseli ecosystem since NDVI fluctuations across the 

ecosystem are generally synchronous. Rainfall contributed to surface water availability in all areas and 

so water was considered available across the entire basin for seven days following rain. 

Movement-decision model fit  

We assumed that if individual movement behaviour was governed by resource availability, individuals 

should move to maximise profitability throughout the year. Therefore when ANP profitability was 

greater than that of the dispersal area, the individual should be present in ANP on that day, and vice 

versa. If profitability for the two locations was very close (difference < 0.3) no prediction was made as 

to which provided the optimal foraging location. 

The daily absence or presence of the elephants as predicted by profitability was compared to actual 

absence or presence indicated by the collar data. The correlation between predicted and observed 

presences and absences was calculated as a φ statistic (Conover, 1971). φ is the equivalent of 

Pearson’s correlation that is applicable to binary data. φ values were tested for significance using chi-

square with 1 degree of freedom. 
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Figure 3.2. Tracks of five collared elephants displaying use of Amboseli National Park and dispersal 

areas (coloured lines: different colour for each female). Protected areas are indicated by grey 

boundaries, the international border between Kenya and Tanzania by the white line, and the central 

Amboseli swamps in blue. Scale bar represents 10km (divisions of 5km). Two females used the same 

dispersal area (Kitenden, southeast); other females ranged to the north, northwest and southwest 

when leaving ANP. 

3.3 Results 

Ranging behaviour 

The ranging behaviour of the five collared elephants over a 12-month period is illustrated in Figure 

3.2. Ida and Lobelia spent most of their time (~85%) in ANP, primarily in the southeast around the 

southern tip of the eastern swamp (Longinye; see Appendix A: Figure A.1 for detailed park map). From 
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there both elephants regularly moved southwest into the Kitenden region and occasionally east to the 

Kimana Sanctuary. Maureen, Vicky and Willow spent about half their time in the park. Maureen used 

the eastern swamp and the area around and including the western swamp (Longolong). From there 

she dispersed south through the Kitirua Conservancy and then southwest across the foothills of 

Kilimanjaro into Tanzania. Vicky and Willow also used the eastern swamp, but additionally used the 

northern tip of the central swamp (Enkongo Narok). Within the park Vicky frequented the north and 

dispersed north to spend much time in the Selenkay Conservancy. Willow by contrast used the west of 

the park from which she dispersed northwest to the Meshanani region. 

Profitability 

Profitabilities calculated for the swamp edge and dispersal areas (Kitenden, Kitirua-Tanzania, Selenkay 

and Meshanani) captured spatial and temporal variation (Figure 3.3). Temporally, profitability 

generally increased following the onset of the rains and declined as the rains subsided. Spatially, areas 

differed in the precise timing and extent of increases and decreases in profitability. ANP profitability 

varied less than the profitability of the dispersal areas because in the dry seasons the swamps retained 

abundant green vegetation but did not experience the dramatic increase in protein content seen in 

dispersal area vegetation following rain. As a result, there was temporal variation in whether 

profitability was higher in ANP or in the dispersal area, predicting switches in the optimal foraging 

location between ANP and the dispersal areas. Generally, profitability indices predicted that elephants 

should be present in the national park during August, September and October 2011, January and 

February 2012 and from May 2012 onwards. At other times they were predicted to move out to their 

family dispersal areas. 
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Figure 3.3. Response of profitability (lines: black = swamp edge, coloured = dispersal areas), the 

product of the quantity and quality of vegetation, and water availability, to monthly rainfall (bar: blue).  

Movement-decision model fit 

Overall the model predictions replicated the location data well: there was good correlation between 

predicted and observed presences and absences for the combined data from all five elephants (ф = 0. 

37, p<0.001), but there was variation between elephants in how well the model fitted (Breslow-Day 

test, χ2
4 = 67.4, p<0.001, Figure 3.4). The locations of Vicky were well predicted by the model (ф = 

0.60, p< 0.001, Figure 3.4) though the model was unable to predict Vicky’s brief excursions between 

August and October 2011, nor her absence from the park in May to June 2012. The model was 

moderately successful in predicting the locations of Ida, Lobelia, Maureen and Willow (ф = 0.42, 0.27, 

0.39 and 0.46 respectively, p< 0.001 for each), but failed to predict the regular presence of Ida and 

Lobelia in ANP throughout both wet seasons. Maureen was regularly absent between August and 

October 2011 and in June and July 2012 when the model assumed presence throughout. The timings 

of Maureen’s major excursions from the park were also slightly ahead of those predicted by the 

model. Willow’s movements were well predicted with the exception of brief excursions during August 

and September 2011 and of her continued absence from the park during June and July 2012. 

 



  

 
 

 

Figure 3.4. Profitabilities of swamp edge (black curve) and dispersal area (green curve) for each collared individual. Horizontal lines at bottom of each panel indicate model 

predictions (black, A = Amboseli National Park; green, D = dispersal area) and collar data (red). No predictions were made if profitabilities were within 0.3 of each other. 

Arrows indicate parturition events for Ida and Lobelia. Phi coefficients (ф) indicate correlation between model predictions and collar data; * indicates significance of this 

relationship (Chi-squared: p < 0.001). 
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3.4 Discussion 

By modelling the profitability of the traditional foraging areas of each of the five elephant families 

while taking account of their daily need for water, we predicted the timings of their shifts in optimal 

locations. The shift timings were similar despite the different dispersal areas used by the collared 

elephants (Figure 3.3). In general, ANP offered the highest rate of nutrient intake during the dry 

seasons until the onset of rains, at which point the dispersal areas provided better foraging locations 

provided that water was available. While the model fitted the data well overall, there was variation 

among elephants in the ability of the model to correctly predict park absence and presence. 

Predictions and observations were correlated for all five individuals, but while the correlation was 

good for Vicky and Willow, it is likely that other factors also influenced the movement decisions of Ida, 

Lobelia and Maureen. Given an in-depth knowledge of the study system (AERP long term data), we 

now attempt to identify these factors and suggest how they can be incorporated into future 

movement models for elephants. 

The sustained residency of Ida and Lobelia in ANP is likely due to the fact that both females gave birth 

during the 2012 short wet season (January-February). Elephants usually seek safe areas as parturition 

approaches and for some time after as new-born calves are vulnerable to disturbance and predation 

(Ruggiero, 1991) and limited in their travel capacity. For family units experiencing recent parturition 

events, the motivation to remain in ANP increases because it is perceived as a relatively safe area. 

During the period of sampling, Ida and Lobelia’s dispersal areas of Kitenden and Kimana were 

relatively high risk because a number of elephants were killed or injured as a result of human 

interactions (Big Life Foundation/AERP long term data). In elephants, risks in the form of 

anthropogenic threats are known to deter long-term elephant habitat use (Roever, van Aarde and 

Chase, 2013) and alter the daily locations of resting sites (Wittemyer et al., 2017). Risks affect animal 

decision-making more widely when animals sacrifice optimum nutrient intake to minimise the risks of 

predation (Barnier et al., 2014; Bastille-Rousseau et al., 2017). Including the risks associated with 

human-elephant interactions should improve the model fit. Relative risk could be measured in terms 

of the number of negative human-elephant interactions (injuries or mortalities) over a specified 

period, land use type (pastoralist vs. agricultural vs. wildlife zones) or human density in an area (which 

is also a function of land use type). Over the longer-term, periods of drought could also be used as an 

indirect predictor of human-associated risk, because competition for water sources and high-quality 

food patches increases contact between humans and elephants (Chiyo et al., 2005) and the economic 

threats of livestock loss erode tolerance for wildlife (Western, Nightingale, Sipitiek, Mose, & Kamiti, 

pers. comm.).  

Behavioural differences between conspecifics can be viewed as evidence of personality; consistent 

differences in the behavioural responses of individuals across various spatial and temporal contexts 

(Beekman and Jordan, 2017). Here therefore, we may alternatively consider the residency of Ida and 
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Lobelia could be to be due to their ‘wary’ personalities, whilst Vicky is more ‘bold’ (Jolles et al., 2017). 

Personality has been reliably demonstrated for elephants (Lee and Moss, 2012; Seltmann et al., 2018) 

but has yet to be systematically sampled across the subject families and is only speculative at this 

point. However, AERP’s long-term observations suggest that personality is shaped by family members 

(particularly the matriarch) and by experiences, especially those early in life. It can be proposed that, 

as seen in many other bird, fish and mammal species (Weiss, 2018), personality may both shape and 

be shaped by exposure to risk. 

Maureen displayed much lower use of ANP than predicted by the model, suggesting she was less 

reliant on the swamps for dry season water as she had access to an alternative water source in the 

Kitirua Conservancy. Elephants share this water point with livestock and people, often at high 

concentrations, but this area also showed high tolerance for wildlife during the study period. The 

model was also unable to predict the timing of Maureen’s location shift, consistently predicting a later 

dispersal than seen in the collar data. The dispersal area used by Maureen in Tanzania is characterised 

by mature Acacia woodlands rather than the open bushed savannah associated with the majority of 

the ecosystem. Acacia flower ahead of the onset of rains and Maureen’s early excursions may coincide 

with this phenological event, rather than the NDVI observed green-up. Flowering in bushlands might 

be associated with higher sugar and other nutrient transport in Acacia stems, which are desirable 

elephant foods (Lindsay, 1994). Incorporating nutrient fluxes that are independent of vegetation 

green-up will require both phenological monitoring of the timing of flowering and quantifying the 

associated nutrient benefits. The remotely sensed measures of greenness used here are insensitive to 

the spectral changes associated with flowering, thus suitable alternative remote sensing techniques 

are needed for a more comprehensive accounting for foraging movements. 

While we can suggest other factors that operate in combination with nutrient intake to affect 

movement decisions, the behavioural mechanisms underlying movement patterns remain poorly 

understood (Bolger et al., 2008); indeed whether movement decisions are guided by animals’ 

perceptions of current environmental conditions or predictions based on memory is uncertain. The 

capacity of elephants to remember the spatial locations of out-of-sight individuals (Bates et al., 2008) 

and the purposeful movement to water resources beyond the senses of sight or smell (Polansky, Kilian 

and Wittemyer, 2015) shows that elephants have a keen spatial memory. Despite this, data show that 

decision points (Polansky, Kilian and Wittemyer, 2015) coincide with the onset of the rains, suggesting 

that the onset of rains may be used as a key environmental cue to instigate range shifts (Prins, 1996; 

Holdo, Holt and Fryxell, 2009). Also relevant to this question are several brief excursions by Vicky and 

Willow to their respective dispersal areas prior to their longer-term range shifts. This ‘scouting’ 

behaviour (Bracis and Mueller, 2017) suggests sampling of the conditions at their destination before 

committing to the final range shift. Both of these factors suggest perception-guided movement. 

However, rainfall across the Amboseli ecosystem is perhaps more temporally and spatially variable 



 

48 
 

than accounted for here, meaning elephants cannot rely on the same rules each year. Memory alone 

is likely to be less effective in such a patchy environment, and so individuals will use both immediate 

perception and memory when making movement decisions. Although memory is important in defining 

the destination of movements based on previous experiences of improved nutrient intake rate, 

perception is crucial in remaining flexible to local environmental changes in climatic conditions and 

risk. 

We have introduced a simple decision-making model of the resource-driven factors affecting key 

decisions of where individuals go and when. Where the model predictions replicated individual 

locations well, a key benefit of movement over an ecosystem is indicated, which is to maximise 

nutrient intake rates. That the model does not perfectly fit the locations of elephants suggests that 

other factors need to be included in combination with nutrient intake rates. High residency of 

elephants that disperse to the eastern part of the ecosystem suggests that individuals and families 

make movement decisions based on trade-offs between the resource-related benefits of dispersal and 

the associated risks (see also Chiyo et al., 2014). For Ida and Lobelia, it is hard to determine whether 

perceived risks resulted from human-elephant interactions, the dangers involved with moving new-

born calves over long distances, or the limited travel speed of those vulnerable calves. More data 

characterising risks and associated movements are important (Nielsen, Stenhouse and Boyce, 2006; 

Roever, van Aarde and Chase, 2013) and necessary before these factors can be reliably included in an 

enhanced model of movement decision-making. Male elephants were not considered here due to 

differences in resource requirements. Males are less reliant on water than females and forage less 

selectively, prioritising quantity over quality (Shannon, Page, Duffy, et al., 2006b). When in musth, 

male elephant movement is largely focused on the pursuit of oestrous females, with little 

consideration for food (Poole, 1987). Previous work in Amboseli has demonstrated the importance of 

both food (NDVI) and social needs (Chiyo et al., 2014; Fishlock, Caldwell and Lee, 2016) on male 

ranging, so it is expected that this model could be extended to non-musth males but would need 

further modification to take into account the energy demands of musth, which is a topic for future 

study. Further development of the model will ultimately provide a basis for robust prediction of 

elephant movements under a variety of environmental and physiological conditions. 

Here, it is argued that simple resource-driven movement models based on easily accessible resource 

availability data in combination with animal tracking studies will be useful in identifying additional 

features influencing movements in well-studied systems, where additional supporting data types can 

add to understanding movement decisions. This will allow conservationists and wildlife managers to 

better understand how large herbivore movements might respond to management scenarios (e.g. 

fences, new roads) and future environmental changes (e.g. shifting rainfall patterns), and in this way 

can help challenges for human-wildlife coexistence. 
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Chapter 4. Individual-based modelling of elephant population 

dynamics using remote sensing to estimate food availability2 

4.0 Abstract 

Strategies for the conservation and management of many wild species requires an improved 

understanding of how population dynamics respond to changes in environmental conditions, including 

key drivers such as food availability. The development of mechanistic predictive models, in which the 

underlying processes of a system are modelled, enables a robust understanding of these demographic 

responses to dynamic environmental conditions.  We present an individual-based energy budget 

model for a mega-herbivore, the African elephant (Loxodonta africana), which relates remotely 

measured changes in food availability to vital demographic rates of birth and mortality. Elephants 

require large spaces over which to roam in search of seasonal food and thus are vulnerable to 

environmental changes which limit space use or alter food availability. The model is constructed using 

principles of physiological ecology; uncertain parameter values are calibrated using approximate 

Bayesian computation. The resulting model replicates observed population dynamics data well. The 

model has critical value in being able to project elephant population size under future environmental 

conditions and is applicable to other mammalian herbivores with appropriate parameterisation. 

4.1 Introduction 

Elephants are simultaneously a species of conservation concern and problem for coexisting humans 

(Hoare, 2000; Evans and Adams, 2018). The recent spike in elephant poaching fuelled by the ivory 

trade continues to threaten the persistence of elephant populations (Blanc, 2008; Chase et al., 2016), 

whilst the rapid growth of the human population and associated conversion of elephant habitat to 

human dominated landscapes increases interactions between humans and elephants, where elephant 

behaviours (e.g. crop foraging and infrastructure damage) may compromise coexistence (Wittemyer, 

2011; Browne-Nunez, Jacobson and Vaske, 2013). Although poaching and human-elephant 

interactions (HEI) can alter elephant demographics and cohort survival (Jones et al., 2018), it is widely 

accepted the population dynamics are governed by the distribution and abundance of food and water 

(Rasmussen, Wittemyer and Douglas-Hamilton, 2006; Wittemyer, Rasmussen and Douglas-Hamilton, 

2007); when resources are limited, animal draw on their energy reserves, female reproductive capacity 

is reduced, animals starve and eventually die (Sinclair, 1975). Changes in habitats and vegetation – and 

thus food available to elephants – owing to climate change and land use strategies, will have large 

scale implications for the future of elephant populations, which may act to counter or to exacerbate 

                                                           
2 This article has been published as follows: Boult, V.L., Quaife, T., Fishlock, V., Moss, C.J., Lee, P.C. & Sibly, R.M, 

2018. Individual-based modelling of elephant population dynamics using remote sensing to estimate food 

availability. Ecological Modelling, 387, 187-195.  
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the effects of poaching and HEI. Ensuring a future for elephants will therefore rely on understanding 

how elephant population dynamics respond to food availability.  

To incorporate this heterogeneity into a model requires an individual-based approach (Grimm and 

Railsback, 2005), in which responses to food availability vary between individuals depending on their 

age, sex and reproductive state. Such models can combine known and projected patterns of food 

availability with the cohort dynamics apparent in age-structured populations to improve our 

mechanistic understanding of the processes underlying population dynamics as well as predicting 

responses to future environmental change (Evans et al., 2013; Stillman et al., 2015; Wood, Stillman 

and Hilton, 2018). Individual-based models (IBMs) have been widely used to model population 

dynamics in spatiotemporally heterogeneous environments; individual responses to a spatially explicit 

environment and interactions with other individuals are modelled in detail, allowing population 

dynamics to emerge from the sum of individual characteristics (DeAngelis and Mooij, 2005; Grimm 

and Railsback, 2005; Railsback and Grimm, 2012).  

The inclusion of energy budgets in IBMs aiming to capture population dynamics is essential if 

populations are to respond accurately to food availability; this inclusion allows reproductive 

opportunities and deaths from starvation to be properly related to the energy available in the 

environment (Sibly et al., 2013). Energy budgets rely on equations describing the process of energy 

intake and allocation to energy-expending processes. These equations are broadly applicable to a wide 

variety of taxa, but parameters controlling these relationships vary interspecifically. Occasionally, 

these parameters have been empirically determined for a species, but more often than not this 

information is lacking. Empirical studies to estimate values are not always feasible due to funding and 

time constraints, lack of appropriate methods and equipment, or ethical considerations. Elephants, 

like many mega-herbivores, are a species for which empirical determination of some physiological 

parameters is intrinsically difficult: elephant physiology does not lend itself to laboratory studies nor 

can physiological parameters be readily determined in the field. Estimation of parameter values is 

however possible using inverse modelling if, as here, data to hand include records of key drivers (food 

availability) and resulting population dynamics.  

Here we construct a model of individual energy budgets based on current understanding of 

physiological ecology, with parameters specifying energy allocation between the vital life processes of 

maintenance, growth and reproduction. Each individual in the IBM has its own energy budget and lives 

in a population in an environment for which food availability is known from remotely-sensed 

measurements. Emergent population dynamics are compared to observed rates of reproduction and 

mortality, and parameter values are obtained through calibration using approximate Bayesian 

computation (ABC; Van Der Vaart et al., 2015) – an example of inverse modelling. Our aim is to 

develop a mechanistic model with good predictive qualities that can serve to forecast future 

population dynamics in response to climate change and alternative management scenarios.  
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4.2 Materials and methods 

Study system 

The Amboseli ecosystem (bounding coordinates: -2.02N, -3.28S, 38.03E, 36.67W) covers an area of 

approximately 8000km2, straddling the southern border of Kenya and the northern border of 

Tanzania. It comprises the central Amboseli National Park (ANP; 392km2) and surrounding landscape 

(Croze and Lindsay, 2011).The habitat consists of semi-arid savannah and bush, with permanent 

swamp vegetation present within ANP (Figure 4.1). Fluctuations in vegetation availability and quality 

are driven by two wet seasons: the short-rains (November-December) and the long-rains (March 

through May; Croze & Lindsay, 2011). The basin is home to ~1700 individually-known and monitored 

elephants (Lee et al., 2013). The population has remained largely undisturbed by poaching, although 

human population growth and a shift from nomadic pastoralism to sedentary farming poses a 

significant threat to the future of Amboseli elephants (Western, Groom and Worden, 2009), as 

elephant habitats become increasingly human-dominated and human responses to elephants become 

shaped by local political and cultural dynamics (Okello, 2005).    

 

Figure 4.1. The home ranges (coloured polygons) of elephant family groups (IB, LB, VA and WA) 

included in the model. This represents the spatial extent of NDVI used to calculate time-specific food 

availability. Protected areas are indicated by dark grey boundaries, the international border between 

Kenya and Tanzania by the dashed white line, and the central Amboseli swamps in blue. Scale bar 

represents 10km (divisions of 5km). 
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Elephant population dynamics 

The Amboseli Elephant Research Project (AERP) has monitored more than 3,300 individually-known 

elephants from over 60 family groups in the Amboseli ecosystem since 1972. Elephants are identified 

by means of a photo recognition file illustrating unique identifying features; calves are identified 

through association with their known mothers (Moss, Croze and Lee, 2011b). Censuses are attempted 

on a monthly basis for all family groups noting individuals present and those missing. By tracking 

individuals in this manner throughout their lives, birth and death dates are recorded. 

Births: New-born and young calves are aged based on body size and proportions, skin colouration, 

motor coordination, and behaviour of both mother and calf (Moss, 1988). Since 1978, when the last 

family unit was identified, age estimates are mostly within 1 month (see Appendix B.3). The age of 

individuals born prior to start of the study was estimated using techniques including hind foot length 

(Western, Moss and Georgiadis, 1983; Lee and Moss, 1986, 1995), tooth eruption and wear (Laws, 

1966), tusk length (Moss, 1988, 1996) and circumference at the lip (Pilgram and Western, 1986), and 

shoulder height and back length (Croze, 1972; Laws, Parker and Johnstone, 1975; Lee and Moss, 1995; 

Moss, 1996; Shrader et al., 2006; Trimble et al., 2011). Age was backdated to give an estimate of birth 

date for all individuals and has been validated by collection of lower jaws post-mortem whenever 

possible (Lee et al., 2012).  

Deaths: Determining date of death for individual elephants has proven more difficult. In family groups, 

if an adult female was absent but her youngest calves present, the family was monitored closely. If her 

absence was prolonged for more than a week, while the rest of the family were sighted with her 

youngest offspring, she was assumed dead. For calves under three years old, absence whilst their 

mother was present suggested the calf had died. If a juvenile female or an adult female with her calves 

was missing, these individuals were assumed dead if not sighted for a month with their family. Once it 

was concluded an individual had died, the death date was recorded as the midpoint between when 

the individual was last seen alive and when they were first noted as missing. Rarely (<5% of records), 

mortalities were more directly monitored due to illness or injury, or when carcasses were found and 

identified. For the purposes of model analysis, we defined ‘calf’ mortality as deaths occurring in 

individuals less than two years of age and ‘adult and juvenile’ mortality as deaths occurring in 

individuals two years or older. This reflects the differing energetic thresholds controlling mortality in 

these groups: calf mortality occurs when mothers' stores (fat) reaches zero; adult and juvenile 

mortality occurs beyond this point, when all non-essential structural tissues (muscles) have also been 

depleted. 

For the purposes of model development and calibration, we modelled the population dynamics of four 

family groups (IBs, LBs, VAs and WAs). These families were chosen due to regular monitoring providing 

good confidence in birth and death dates, and good understanding of movement patterns owing to 

GPS collars fitted to females in these families (Boult, Sibly, et al., 2018). Individual demographic 
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records were used to initiate the model elephant population (n = 126 on 1st March 2000; see Appendix 

B: Table B.5) and provided annual records of elephant population dynamics for model calibration (on 

1st October 2000-2016; see Calibration below).  

Estimating food availability 

We estimated food availability using 16-day composite values of the Normalised Difference Vegetation 

Index (NDVI; MOD13Q1 product; Didan, 2015). NDVI is a general measure of the greenness of the top 

layer of the Earth’s surface and generally correlates well with ground-based measures of vegetation 

biomass, primary productivity and leaf area index, and has been widely used in models of animal 

performance and movement (reviewed in Pettorelli et al., 2011, 2005). We obtained measures of 

NDVI from the NASA Terra-MODIS (Moderate Resolution Imaging Spectroradiometer) mission 

accessed via the Oak Ridge National Laboratory web service (Vannan et al., 2011). Terra-MODIS was 

used rather than Aqua-MODIS because of the longer NDVI time-series available (Terra operational 

since 2000, Aqua since 2002). We chose not to combine the two MODIS sensors given that cloud 

cover was not a particular issue for satellite observation of Amboseli. Data were filtered using the 

MOD13Q1 QA flags so that only ‘good’ quality NDVI observations were considered in our calculations. 

NDVI values were calibrated using on-the-ground measures of herb-layer biomass, collected 

biannually in ANP since 1982 (Lindsay, 1982, 1994, 2011; see Appendix B.3). A single median NDVI 

value was calculated for the combined home ranges of family groups (95% kernel density estimates; 

Figure 4.1; Shannon et al., 2006a) for each 16-day composite and converted to biomass (kg m-2) in the 

model. The decision to use a single median NDVI value at each time step was taken firstly, because of 

uncertainty as to where each family was in its range and secondly, to reduce model run time.  

Model description 

The model relates spatiotemporal variation in food availability to changes in vital demographic rates 

through individual energy budgets. Individuals forage on locally available food and the assimilated 

energy is allocated to the energy-expending processes of life; from this population dynamics emerge 

(Railsback and Grimm, 2012; Sibly et al., 2013; Johnston et al., 2014). In the future the model may be 

applied as a tool for predicting the response of elephant populations to projected variation in food 

availability resulting from climate change or land use management strategies. 

In Appendix B, we provide a TRACE document (“TRAnsparent and Comprehensive model Evaludation”; 

Augusiak and Van den Brink, 2014; Grimm et al., 2014, 2010; Schmolke et al., 2010) containing 

evidence that our model was thoughtfully designed, correctly implemented, thoroughly tested, well 

understood, and appropriately used for its intended purpose. This includes a complete model 

description in the standard Overview, Design concepts and Details format (ODD; Grimm et al., 2010). 
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State variables and scales 

The modelled environment represents the combined home ranges of the four family groups as a 

single patch (Figure 4.1), characterised by the time-specific median NDVI, resulting biomass, and 

energy content of its vegetation. The elephant population in the model comprises the individuals in 

four family groups – adult females and their immature offspring of both sexes (males become 

independent of their natal group at 12 years old). These four families comprised 126 individuals at the 

time of model initiation (1st March 2000). Elephants are characterised by variables describing their 

physiology in terms of age, sex, mass, energetic processes and reproductive states. Each individual 

experiences life through its own energy budget, the details of which depend on its age and sex. The 

model runs in daily time steps from the 1st March 2000 until the 20th November 2016 – the time 

period for which Terra-MODIS NDVI data were available.  

Model schedule 

Elephants in the model execute procedures to update their energy budget once a day. The energy 

budget model follows that described by Sibly et al. (2013; Figure 4.2). Each individual begins with the 

intake of energy if food is available in the environment. The assimilated energy along with energy in 

storage tissues (fat) make up the ‘energy reserves’, and are available for use in energy expending 

processes: maintenance takes priority, after which come growth and/or reproduction depending on 

age, sex and energy reserves. Following maintenance, if energy reserves remain, sexually immature 

individuals (females <9 years old and males <19) grow. Growth in elephants is prolonged (Karkach, 

2006; Shrader et al., 2006; Hollister-Smith et al., 2007), and individuals continue to grow beyond 

sexual maturity if energy is available after paying the costs of reproduction. Only females reproduce in 

the model as males disperse prior to sexual maturity. If energy remains following maintenance, 

sexually mature females proceed through the reproductive cycle.  Assimilated energy is always utilised 

first and energy from stores is used only if required. If maintenance costs cannot be met by reserves, 

individuals enter starvation and metabolise non-essential structural tissues (muscles). If these tissues 

are depleted, an individual dies. Background mortality accounts for stochastic mortality events. 
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Figure 4.2. Overview of the daily updating of each individual's energy budget. If energy is available 

through reserves, an individual will utilise this energy in maintenance, growth and reproduction. If 

insufficient energy remains to cover costs of maintenance, individuals enter starvation. These energy 

budgets cause births and deaths from which over time the population dynamics emerge. 

The energy budget of an individual therefore responds to the energy available from food in the 

environment. When food is abundant, as in wet seasons, energy intake exceeds energy-expenditure, 

and individuals may allocate energy maximally to all processes and accumulate stores. When food is 

limited, as in dry seasons or dry years (droughts), energy expenditure may outweigh energy intake, 

and individuals must utilise stores in order to maintain growth and reproduction. Thus, as food 

availability cycles through abundance and limitation, an individual’s energy balance fluctuates 

between positive and negative, and body composition (see Appendix B.4) responds accordingly (Figure 

4.3). 
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Figure 4.3. Energy balance and resulting body composition of adult female elephant, Ilka, throughout 

the model period 2000-2016. The top plot shows the NDVI experienced by Ilka. NDVI is used here as a 

proxy for food availability, peaking during the biannual wet seasons and declining as the dry seasons 

progress. The energy balance plot compares energy expenditure with energy assimilated (red and grey 

lines, respectively). The resulting energy balance indicates whether energy intake was greater or less 

than energy expenditure (grey and red shading, respectively), and broadly coincides with peaks and 

troughs in NDVI. The energy expenditure plot further breaks down expenditure into BMR, gestation, 

growth and lactation. Lactation is energetically costly and results in a period of net negative energy 

balance. Due to the fluctuating energy balance, body composition changes: storage tissues increase 

when the balance is positive but are depleted during times of negative balance. Structural tissues may 

be depleted during starvation, as seen here in 2009-2010. 
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Sub-models 

Full details of each procedure, including equations and parameter derivation, are described in the 

TRACE document.  

Energy intake: Ingestion rate (IR; kg day-1) depends on body size (scales to the ¾ power; Brown et al. 

2004), age, food density (biomass) and consumer (elephant) density. In terms of age, elephants less 

than a year old obtain all energy through the ingestion of milk; individuals are milk-dependent until 

two years of age but begin supplementing milk intake with vegetation after a year; between the ages 

of one and four, decreasing milk ingestion is supplemented with increasing vegetation intake; at four 

years old elephants are weaned and feed entirely on vegetation. Suckling individuals first ingest milk 

from their mother then, if over a year old, will ingest vegetation. The maximum vegetation IR is 

reduced by the rate of ingestion already achieved through suckling. Food density (kg m-2) also 

influences vegetation ingestion, following a Holling type II functional response (Holling 1959; Lindsay 

1994). This is adjusted according to a Beddington-DeAngelis functional response to account for 

consumer-density dependent ingestion rate (Beddington, 1975; DeAngelis, Goldstein and O’Neill, 

1975). If no food is available, IR is zero. IR is converted to energy given the energy content of food (KJ 

kg-1). Only a proportion of energy ingested in milk or vegetation is available for energy expending 

processes following assimilation efficiencies.  

Maintenance: Basal metabolic rate (BMR; KJ day-1) scales allometrically to the ¾ power with total body 

mass and accounts for the standard costs of maintenance essential for survival, so has first call on 

energy reserves (Sibly et al., 2013). If insufficient reserves remain to cover BMR, an individual enters 

starvation and non-essential structural tissues (muscles) may be metabolised to cover these costs 

(Atkinson, Nelson and Ramsay, 1996). If all non-essential structural tissue is depleted, an individual 

dies. 

Growth: After birth male and female elephants follow von Bertalanffy growth curves (Lindeque and 

van Jaarsveld, 1993) resulting in the sexual dimorphism in stature observed in elephants. Parameters 

of the von Bertalanffy growth curve fitted to shoulder height in the Amboseli elephants were taken 

from Lee and Moss (1995) and the equation adapted to describe growth in mass rather than length 

(Sibly et al., 2013). Daily growth rates depend on current structural mass and energy available. The 

energy required to fuel maximum growth fuels both the synthesis and the energy content of new 

tissue (KJ day-1). If insufficient energy is available to grow maximally, growth may continue more 

slowly. Any growth achieved is added to structural mass (kg). 

Reproduction: Only female reproductive processes are represented in the model as males disperse 

prior to sexual maturity. If energy remains following maintenance, sexually mature females proceed 

through the reproductive cycle: oestrus, conception, gestation, parturition and lactation. Sexually 

mature females experience oestrus and conceive if not already pregnant or lactating a milk-dependent 
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calf (<2 years), provided they have sufficient storage tissue (Bronson and Manning, 1991; Wittemyer, 

Rasmussen and Douglas-Hamilton, 2007). Gestation typically lasts ~660 days (Poole et al., 2011) 

during which time a female commits energy to foetal growth. If insufficient reserves remain to cover 

the energetic costs of foetal growth (the synthesis and energy content of new tissue) the mother 

miscarries. Parturition occurs at the end of gestation. Mother and calf are linked to relate the energy 

budget of a calf to that of its mother. The sex of the calf is determined at random with equal 

probability of becoming a female or male. The new-born calf has age zero and no energetic reserves. 

The mother lactates until the calf is weaned at four years old, but the energy required for lactation 

varies throughout this period (Oftedal 1985). Before the calf is a year old, milk forms the sole 

energetic intake so fully covers the costs of maintenance and growth. Lactation peaks when the calf is 

a year old. For the first two years of life, the calf is milk-dependent and so dies if its mother does, but 

after peak lactation, the amount of milk supplied by the mother decreases at a constant daily rate as 

the calf increasingly supplements this diet with vegetation. From two to four years of age the calf 

suckles at a decreasing rate and is no longer dependent on milk, and can survive without its mother. 

The mother lactates maximally if her energy reserves allow, but otherwise provides as much milk as 

her reserves allow. Calves over a year of age may make up for this deficit by consuming more 

vegetation. If a mother dies or enters starvation, lactation stops and the fate of the calf depends on its 

age and food availability. If a calf dies, the mother stops lactating. 

Energy reserves: If assimilated energy remains following all expenditure it is stored as fat until a 

maximum is reached.  

Mortality: In addition to mortality events described above, background mortality is included to 

account for deaths arising from stochastic events such as poaching, predation, disease or injury. When 

storage tissues remain, background mortality occurs at a constant rate for all individuals. This rate 

increases during starvation to account for the increased susceptibility of starving individuals to disease 

and risk-taking behaviour (Foley, Papageorge and Wasser, 2001).  

Analysis 

Calibration 

Eleven parameters were deemed uncertain and thus required calibration to accurately predict 

population dynamics (see Appendix B.6). We calibrated these parameters using rejection approximate 

Bayesian computation (ABC; Van Der Vaart et al. 2015): parameter values were sampled randomly 

from uniform prior distributions ranging from roughly half to double the reference values; the model 

was simulated 100,000 times; the 30 simulations which best fitted the data (annual population size, 

birth and mortality rates on 1st October 2000-2017) were accepted. We chose to accept the 30 best 

fitting runs as a compromise between including only well-fitting runs and the need to produce 
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posterior distributions (van der Vaart et al., 2015). Simulations were run in parallel through R 3.3.1 

using the R package RNetLogo (Thiele, Kurth and Grimm, 2012; Thiele, 2014). 

Local sensitivity analysis 

Local sensitivity analysis identified relative sensitivities of population size, birth rates, adult and 

juvenile mortality, and calf mortality rates to changes in calibrated parameter values. Changes in 

outputs were averaged over a 10% increase and decrease in each parameter, and over ten repeated 

simulations to account for stochasticity in the model. While one parameter was tested all others were 

kept at their calibrated values. 

Validation 

To validate the model we compared model outputs to independent data from families not used in 

model calibration for the time period 2000 - 2016. We used the 30 parameter sets accepted in the ABC 

to simulate the population dynamics of six intensively recorded Amboseli elephant family groups (AAs, 

FBs, GBs, JAs, KB2s and OBs; n = 105 initially on 1st March 2000). These families spend more time in 

Amboseli National Park and thus use a different area to that used in model calibration (Remelgado et 

al., 2017). However, the ranging patterns of these families have only been recorded within ANP. 

Therefore, median NDVI was extracted from the 95% density kernels of known ranging within ANP and 

the model was used to estimate the total area used by these families (see Appendix B.4). The model 

was initialised for these individuals (population on 1st March 2000; see Appendix B: Table B.6) and run 

with the adjusted NDVI input data.  

Hypothetical range loss scenarios 

To demonstrate the potential of the model to estimate elephant population size under environmental 

change scenarios, we implemented two hypothetical range loss scenarios representing a 10% and 50% 

reduction in home ranges. We assumed that the median NDVI was unaffected by range loss. Increasing 

human populations in the Amboseli ecosystem could result in elephant range loss through the 

conversion of elephant habitats to cropland, over-grazing by livestock, the installation of fences or 

transport links which may prevent movement across the ecosystem, or increasing HEI and resulting 

avoidance of these areas by elephants. We ran each scenario with the 30 parameter sets accepted in 

the ABC. 

4.3. Results 

Calibration 

We determined goodness of model fit to data using R2 coefficient of determination. Model fits to the 

population dynamic data are shown in Figure 4.4. Adult and juvenile mortality rates were well 

predicted by the model, which accurately replicated low levels of background mortality and captured 

the high mortality rate associated with a drought in 2009. Modelled calf mortality also matched 

observations well, again capturing background and drought-related rates, although the prediction for 
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2005 was too high. Birth rates were well replicated throughout the simulation period, including low 

birth rates following the 2009 drought and the subsequent ‘baby-boom’ in 2012, with the exception of 

under-prediction in 2014 and 2015.  As a result of model fit to birth and death rates, overall 

predictions of population size were good, with slight under-prediction from 2014 onwards owing to 

the lower than observed birth rates. 

 

Figure 4.4. Population size, births and deaths for modelled families in Amboseli years 2000 – 2016. 

Black lines and points show the data, the thick grey line is the best fitting simulation. Light grey lines 

show the 30 best fitting simulations indicating the uncertainty in model outputs that result from 

uncertainty in the values of parameters. Amboseli years run October to September. R2 of best fitting 

simulation presented on plot. * indicates significance with p < 0.05. 

Sensitivity analysis 

Sensitivities of key variables to model parameters are shown in Table 4.1 as the % change in the 

variable relative to 10% changes in parameter values. Adult and juvenile mortality was the least and 

calf mortality the most sensitive variable. Calf mortality was especially sensitive to parameters 

controlling energy intake from milk (AEmilk and E0) as expected given that milk provides the primary 

source of energy for calves, and to B0 which controls metabolic rate, the main source of energetic 

expenditure for elephant calves. All population variables were relatively sensitive to parameters 

controlling energy intake (hsc, maxIRscaling and AEveg). 
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Table 4.1. Sensitivities of population size, total number of births and mortalities, presented as % 

change in output for a 10% change in parameter (mean and standard error over ten repeated 

simulations and for changes above and below parameter value). 

Parameter Pop. size Births Adult and Juv. Mort. Calf Mort. 

storscaling -0.07  ±  3.02 0.02  ±  2.14 -0.14  ±  9.83 -0.31  ±  2.26 

Hsc -2.30  ±  3.19 -1.30  ±  2.81 0.70  ±  12.39 0.94  ±  1.66 

maxIRscaling 4.76  ±  4.09 2.69  ±  3.26 -0.63  ±  15.91 -3.98  ±  1.68 

AEveg 4.34  ±  4.87 2.38  ±  3.38 -0.38  ±  15.88 -4.28  ±  2.16 

AEmilk -0.42  ±  2.82 -3.39  ±  4.57 0.70  ±  13.33 -14.93  ±  3.9 

B0 -3.71  ±  3.59 0.63  ±  3.9 0.18  ±  17.13 15.95  ±  2.83 

E0 -0.52  ±  3.37 -3.48  ±  5.71 0.74  ±  11.5 -15.00  ±  4.32 

EPL -1.82  ±  2.59 -0.89  ±  2.64 0.86  ±  12.34 0.88  ±  2.14 

MRback -0.15  ±  2.65 -0.14  ±  2.16 -0.05  ±  11.06 0.02  ±  1.09 

MRscaling 0.08  ±  1.95 0.05  ±  1.97 0.09  ±  10.38 -0.12  ±  2.36 

DD -1.19  ±  3.07 -0.67  ±  3.21 0.32  ±  10.88 0.65 ±  1.92 

 

Validation 

The model with its calibrated parameter values was validated by comparing its predictions with 

independent data from a different family groups utilising a different area (Figure 4.5). Model 

predictions match these data well though the peak in birth rates was predicted a year late following 

the 2009 drought.  

 

Figure 4.5. Validation of model fit. Population size, births and deaths for families not used in model 

calibration. Black lines and open points show the data, light grey lines show the 30 simulations 

indicating the uncertainty in model outputs that results from uncertainty in the values of parameters. 

R2 of mean simulation presented on plot. * indicates significance with p < 0.05. 

Hypothetical range loss scenarios 

To demonstrate the model’s potential application, we modelled the population size of the four family 

groups (IBs, LBs, VAs, and WAs) given hypothetical reductions of 10% and 50% of their home ranges 

(Figure 4.6). Over the time period for which the model was calibrated, a 10% reduction in range had 
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little impact on the population size predictions throughout, whilst a 50% range loss predicts the end 

population size was generally below 100 individuals, compared to 151 in reality. 

 

Figure 4.6. Population size for modelled families in Amboseli years 2000 – 2016 given hypothetical 

scenarios of 10% and 50% range loss. Black lines and open points show the observed population size 

data, light grey lines show the 30 simulations indicating the uncertainty in model outputs that result 

from uncertainty in the values of parameters. 

4.4 Discussion 

Following calibration, the model predictions generally replicate the data well and in particular predicts 

the critical events induced by the 2009 drought. The Amboseli elephant population as a whole 

declined by 25% during the drought; in our modelled families 16 adults and 15 calves died. Starving 

adult females struggled to meet the demands of reproduction, resulting in the deaths of young calves 

and failure of pregnancies. Despite the drought breaking at the end of 2009, the 22-month gestation 

period of elephants meant there was a two-year lag in births with low numbers of births occurring in 

2010 and 2011, but since drought acts to synchronise female reproduction there was a ‘baby-boom’ in 

2012. Such drought-induced population dynamics are critical in the natural regulation of population 

size and are captured by the model, as indicated by the high R2 values. 

Elevated calf mortality predicted by the model in 2005 was the result of low median NDVI during this 

period. In contrast to the 2009 drought, we believe elephants were able to buffer this period of low 

productivity in 2005 by being more selective in their foraging locations and retreating to the fairly 

constant source of food in the ANP swamps, hence mortality rates are low. This was not possible 

during the 2009 drought, which began with a prolonged period of low rainfall in 2008, meaning ‘fall-

back’ resources such as the swamps were already depleted by the time the official drought occurred in 

2009. This resulted in the high mortality rates of both adults and calves in 2009. The under-prediction 

of birth rates in 2014-2015 in both the calibration and validation of the model is possibly because 

densities of other grazers are not considered in the model. The number of grazers in the Amboseli 

ecosystem remained low for a prolonged period following the drought, limiting competition for food 

for elephants. Incorporation of interspecific competitor density would be expected to improve model 
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fit to birth rates post-2009, as elephants access more food and reproduce more readily. The under-

prediction of population size from 2014 onwards results from under-prediction of birth rates in this 

period. 

The sensitivity analysis provided further support that the model was working accurately. The 

robustness of adult and juvenile mortality to changes in parameter values reflects generally low 

mortality rates in adult elephants whose large body size and substantial energy reserves allow them to 

buffer fluctuations in energy intake and expenditure. Calf mortality on the other hand is extremely 

sensitive, indicative of the vulnerability of young elephants to environmental changes (Foley, Pettorelli 

and Foley, 2008; Woolley, 2008; Wato et al., 2016). The overall sensitivity of all model outputs to 

parameters controlling energy intake confirms that food availability is the key driver of elephant 

population dynamics. This endorses the use of mechanistic approaches in modelling the bottom-up 

processes controlling population dynamics. 

Given the success of the model in predicting observed elephant population dynamics, we 

demonstrated how this model may be applied to predict the response of elephant population size to 

changes in their range. A range reduction of 50% caused the population size of modelled families to 

decline, indicating that less absolute space would support fewer elephants. Whilst these scenarios 

were hypothetical, the model may be easily adapted to simulate range reduction resulting from 

specific land-management strategies such as the installation of fences or conversion of elephant 

habitats into human-dominated landscapes, both of which are possible scenarios for the elephants of 

Amboseli and elsewhere in Africa. The food availability input data may also be altered to simulate 

changes in median NDVI resulting from, for example, climate change, provided the relationship 

between NDVI and climatic variables is known. The use of NDVI here to represent herb-layer biomass 

could be replicated in other open, grass-dominated ecosystems following calibration. Calibration is 

crucial in order to exclude unintended land-cover types and identify any features which may influence 

satellite-derived observations. By these means the model may also be readily applied to other 

elephant populations whose ranging patterns are known, or to other mammalian herbivores inhabiting 

grass-dominated ecosystems following re-parameterisation of the model. When considering 

application to species with finer-scale movements, it may be necessary to utilise a remote sensing 

product with higher spatial resolution, such as Landsat or Sentinel. Improvements in the estimation of 

biomass or food availability may perhaps be possible using alternative sensors, such as LiDAR, or 

alternative variables, such as the enhanced vegetation index (EVI) or net primary productivity (NPP). 

With the increasing demand for predictive modelling of population responses to environmental 

change (Wood, Stillman and Hilton, 2018), we believe mechanistic models which relate key drivers to 

population dynamics are appropriate for improving understanding of the processes underlying 

demographics and for providing robust predictions under novel environmental conditions. We have 

presented a model which relates elephant population dynamics to food availability and may be applied 
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to understanding how elephants will cope given projected climate change scenarios, land use change 

and management strategies. We hope that this will be used as a tool to aid the conservation and 

management of elephant populations and the ecosystems they inhabit, and may be applied to other 

species of interest to wildlife managers.  

The individual-based model linking food availability to population dynamics developed here is applied 

in the next chapter to identify key threats facing the Amboseli elephants. 
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Chapter 5. Human-driven habitat conversion is a more immediate 

threat to Amboseli elephants than climate change 

5.0 Abstract  

Global change presents a major challenge to biodiversity conservation, which must identify and 

prioritise the most critical threats to species persistence given limited available funding. Mechanistic 

models enable robust predictions under future conditions and can consider multiple stressors in 

combination. Here we use an individual-based model (IBM) to predict elephant population size in 

Amboseli under a range of environmental scenarios incorporating climate change and anthropogenic 

habitat loss. Conversion of natural habitats to human-dominated landscapes reduces the food 

available to wildlife, while climate change is expected to alter the quality of food in remaining habitats. 

The IBM uses estimates of food availability under future environmental scenarios as a key driver of 

elephant population dynamics and relates variation in food availability to changes in vital demographic 

rates through an energy budget. Habitat loss, rather than climate change, represents the most 

significant threat to the persistence of the Amboseli elephant population. Our study highlights the 

importance of collaborations and agreements that preserve space for Amboseli elephants to ensure 

the population remains resilient to environmental stochasticity. 

5.1 Introduction 

African elephants (Loxodonta africana) face an array of threats, from ivory poaching to negative 

human-elephant interactions, habitat loss and climate change. Poaching has been responsible for the 

drastic reduction of elephant populations across Africa, from an estimated one million in 1970 

(Douglas-Hamilton, 1987) to around 400,000 in 2016 (Chase et al., 2016). Although poaching 

continues to pose a threat, the sharing of space between people and elephants in the face of 

environmental change is of growing concern.  

In 2009 Africa’s human population hit one billion, having doubled since 1982, and it is expected to 

double again by 2050 (UNDESA 2017). The associated conversion of natural habitats into human-

dominated landscapes squeezes wildlife into smaller and increasingly isolated pockets of land, where 

resource availability is reduced and dispersal is limited. Habitat fragmentation due to human 

encroachment also increases interactions between humans and wildlife (Hoare, 1999), where 

undesirable elephant behaviours reduce tolerance by people (Dickman, 2010; Browne-Nunez, 

Jacobson and Vaske, 2013). As the absolute space available to wildlife declines, climate change may 

alter the quality of remaining habitats: rising global temperatures and shifts in the amount, 

distribution and timing of rainfall are expected to alter vegetative communities, with implications 

cascading up the trophic web (Walther, 2010). Given elephants’ large body size and range 

requirements, elephants are expected to be amongst the hardest hit by these environmental changes 

(Martínez-Freiría et al., 2016). 
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Food availability is a key bottom-up driver of elephant population dynamics (Rasmussen, Wittemyer 

and Douglas-Hamilton, 2006; Wittemyer, Rasmussen and Douglas-Hamilton, 2007; Boult, Quaife, et 

al., 2018) and movement behaviour (Loarie, Van Aarde and Pimm, 2009; Bohrer et al., 2014; Boult, 

Sibly, et al., 2018), but is expected to change as environmental conditions shift. Here we estimate the 

food available to elephants inhabiting the Amboseli ecosystem in Kenya under projected climate 

change and anthropogenic habitat loss scenarios. Projected food availability is used to drive an 

individual-based model (IBM) which predicts vital elephant demographic rates through an energy 

budget. IBMs present a powerful tool for future scenario modelling as their process-based approach 

maintains the predictive ability of IBMs under novel environmental conditions (Stillman et al., 2015) 

and can capture the cumulative impacts of multiple environmental changes (Nabe-Nielsen et al., 

2018). Projected elephant population size emerges from IBM simulations, providing vital information 

on the potential outcomes of environmental change scenarios. Results are used to identify scenarios 

which pose the greatest threat to the Amboseli elephants and will aid in prioritising land management 

policy and conservation efforts. 

5.2 Methods 

The individual-based model 

We previously developed an IBM relating temporal variation in food availability to elephant life 

histories through individuals’ energy budgets (Boult, Quaife, et al., 2018). The model incorporates 

females of all ages and males prior to dispersal from their natal family at 12 years old. Elephants were 

assumed to use the area available to them evenly. Food available to elephants was estimated as a 

single mean value across the ecosystem using remotely-sensed measures of vegetation (normalised 

difference vegetation index; NDVI). Energy is taken from food available in the environment and 

allocated by each individual in the model to the energy expending processes of life (Sibly et al., 2013). 

When food is abundant, energy is allocated maximally to maintenance, growth and reproduction, and 

storage tissues are accumulated. When food is limited, maintenance takes priority and growth and 

reproductive rates reduce. If the costs of maintenance cannot be met, individuals die. In this way birth 

and death rates, and ultimately population size, emerge. 

The model was re-calibrated by fitting to historic (2000-2016) data of Amboseli elephant demographic 

rates, using approximate Bayesian computation (ABC; van der Vaart, Beaumont, Johnston, & Sibly, 

2015) to describe the uncertainty in parameter values (Appendix C: Figure C.1). The uncertainty arising 

from unknown parameters in the IBM was propagated to population projections in scenarios below by 

running the model for each of the 30 parameter sets that best fitted historic data. Full details of the 

IBM development, parameterisation and validation are presented in Boult, Quaife et al. (2018). 
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Habitat loss scenarios 

The risk of loss of a habitat is not equal across ecosystems and some areas are more susceptible to 

anthropogenic conversion than others. We developed six possible scenarios of habitat loss for 

Amboseli based on empirical data and stakeholder opinion (Figure 5.1). We divided the ecosystem into 

administrative units and ranked each unit based on change in human population density (from 1989 

and 2009 Kenyan censuses; CBS 1994; KNBS 2013; Figure 5.1b), incidences of negative human-

elephant interactions (HEI; 2014-2018; Big Life Foundation data; Figure 5.1c), stakeholder opinion 

ranking administrative units based on the likelihood that elephants would have continued access to 

the area (Figure 5.1d; stakeholders listed in Appendix C: Table C.1) and conservation area status 

(KWCA 2017; Figure 5.1e and 5.1f). We believe these metrics give a good indication of possible habitat 

loss: change in human population density is closely related to habitat conversion and infrastructural 

development; in conservation areas people are committed to protecting wildlife, supported by 

economic benefits; frequency of non-crop-foraging HEI affects (and predicts) human tolerance for 

wildlife and may align with areas that, although not physically lost to elephants, are avoided due to 

perceived risks (Roever et al. 2013; Wittemyer et al. 2017). We excluded crop-foraging because 

occurrence coincides with crop areas near areas of high human population growth, which is covered in 

figure 5.1b, and which is geographically fairly limited in the ecosystem. 
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Figure 5.1. Predicted Amboseli habitat loss scenarios. Scenarios were based on empirical data and 

stakeholder opinion. In each scenario, the red and orange areas are lost. A) The full-area scenario: 

elephants have access to the full extent of the ecosystem. B) Areas which have experienced the 

greatest increase in human population density (additional number of people per km2) could be 

converted to non-habitat and become inaccessible to elephants. C) Areas with the highest frequency 

of non-crop-raiding human-elephant interactions (black points) may be avoided by elephants due to 

perceived risks. D) Habitats thought by stakeholders to be unlikely or very unlikely to remain suitable 

elephant habitats are lost. E) Only existing and proposed conservation areas remain suitable, 

accessible habitats for elephants. F) Only existing conservation areas remain suitable, accessible 

habitats for elephants. We assumed that elephants could move through lost habitats, but that these 

areas no longer represented forging opportunities. Arrow = north. Scale bar represents 20km 

(divisions of 10km). 
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Climate change scenarios 

We used climate change simulations supplied by the ISI-MIP 2b project, developed to provide 

information about the impacts of different greenhouse gas (GHG) emissions scenarios in different 

sectors on different scales (Warszawski et al., 2014). The ISI-MIP 2b simulations incorporate four 

general circulation models (GCMs; GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR and MIROC-ESM-

CHEM) and two representative GHG concentration pathways (RCP2.6 and RCP6.0). The RCP2.6 

pathway is designed to be broadly consistent with the United Nations Paris Agreement targets to limit 

global temperature rise, and RCP6.0 produces a roughly 3°C rise in global temperatures above pre-

industrial levels by 2100. The ISI-MIP dataset covers 2006-2099 at a 0.5° × 0.5° resolution. The 

projected data are bias-corrected to provide long-term agreement with observed historic data 

(Hempel et al., 2013). 

Combined stressor scenarios 

Since aspects of environmental change interact and may have additive or antagonistic effects on 

elephant demographics, we also considered the impacts of climate change and habitat loss in 

combination. We simulated the IBM under both HadGEM2-ES emissions scenarios (RCP2.6 and 

RCP6.0) for each habitat loss scenario. We chose to only use HadGEM2-ES as all GCMs showed good 

agreement in elephant population projections, but HadGEM2-ES projected the largest difference 

between RCPs and thus represented the greatest uncertainty. 

NDVI projections 

To determine future food available to elephants, we projected NDVI under our climate and habitat 

scenarios. We first established the historic relationship between NDVI and rainfall in Amboseli. We 

classified historic Amboseli years 2000-2016 by rainfall collected at the Amboseli Elephant Research 

Camp gauge (coordinates: 2.68S, 37.27E) using the standard precipitation index (SPI; Mckee, Doesken, 

& Kleist, 1993). Amboseli years run from October to September to align with the annual rainfall cycle 

(i.e. Amboseli year 2000 runs October 1999 to September 2000; Croze & Lindsay 2011). Each Amboseli 

year was classified by its SPI as follows: ≥2 = very wet, (1, 2) = wet, (-1, 1) = normal, (-2, -1) = dry and < 

-2 = drought. 

Historic NDVI values were obtained for the area available to elephants under each habitat loss 

scenario from the Terra-MODIS (Moderate Resolution Imaging Spectroradiometer) mission (Didan, 

2015), using the MOD13Q1 product accessed via the Oak Ridge National Laboratory web service 

(Vannan et al., 2011). For each SPI class, we calculated a median NDVI value per month for each area 

available to elephants. These values were used to construct monthly NDVI time series for the 

projected period (2007-2099) under scenarios of habitat loss only, climate change only and their 

combined effects. 
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For habitat loss scenarios, we assumed a stable average climate throughout and used monthly NDVI 

values from ‘normal’ SPI years only. For climate scenarios, we first calculated the SPI of Amboseli years 

for the projected period using monthly precipitation totals from the eight ISI-MIP climate scenarios 

(four GCMs and two RCPs). Using monthly NDVI values from habitat scenario A assuming no habitat 

loss, we arranged monthly NDVI values by projected SPI. In combined scenarios, monthly NDVI was 

projected according to HadGEM2-ES RCPs and all habitat loss scenarios. 

Model simulations 

For all simulations, we assumed the Amboseli elephant population used the area available to them 

evenly. Under scenarios of habitat loss, we assumed that elephants could move through lost habitats, 

but that these areas no longer represented foraging opportunities for elephants. Therefore, where our 

scenarios include habitats only accessible via converted habitats, our projections may be conservative. 

For all scenarios, the IBM was simulated from 2007 until 2099 for each of the 30 best calibrated 

parameter sets to indicate uncertainty arising from parameter uncertainty in the IBM. The IBM was 

initiated with the known elephant population on the 1st January 2007. Under habitat loss and 

combined scenarios, the area parameter in the IBM was adjusted at model initiation to indicate the 

habitat remaining (Appendix C: Table C.2) and population size was recorded at the end of 2099. In 

climate simulations, elephant population size was recorded at the end of each Amboseli year (30th 

September). 

5.3 Results 

Habitat loss projections 

Scenario A, in which current ecosystem limits remain unchanged, shows the elephant population 

remains stable around its current size. Habitat loss inevitably reduces the number of elephants 

supported by the ecosystem, as seen in Figure 5.2, though elephant numbers are not directly 

proportional to the amount of area lost (Appendix C: Table C.2). Scenario B, where habitat is lost to 

human population growth, supports fewer elephants than scenario C, where areas become avoided 

due to risks associated with HEI, despite the amount of area lost being similar. In scenario F, where 

only existing conservation areas remain accessible, the model predicts a ~80% reduction in elephant 

numbers. 
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Figure 5.2. Projected elephant population size in 2099 and percent change from the 2017 population 

for habitat loss scenarios (A-F) assuming ‘normal’ climates (see Methods). Boxplots (median and 

interquartile ranges) indicate uncertainty arising from parameters used in the IBM. Points show 

outliers. Dashed line = elephant population size in 2017 (n =1247). Maps: black polygons = remaining 

elephant habitats; grey polygons = lost habitats. 

Climate change projections 

The four GCMs agreed closely on projected precipitation changes throughout the simulation period 

although the timing and frequency of projected droughts varied (Appendix C: Figure C.2). Overall, 

RCP2.6 GHG scenarios project constant or slight declining trends in absolute precipitation whilst the 

higher emissions scenario RCP6.0 projected an increase in precipitation (Appendix C: Figure C.3). 

‘Drought’ years as defined by SPI were more frequently projected in the first half of the 21st century in 

RCP6.0 scenarios, but this trend was reversed for RCP2.6 scenarios with droughts mostly occurring in 

the latter half of the century (Figure 5.3: arrows).   

In all climate scenarios, the IBM projected an increase in the initial elephant population of 1099 

individuals in 2007, with early growth (2007-2015) slowing and stabilising around 1250 elephants. The 
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elephant population is thus not expected to deviate much from the current population size under any 

climate scenario. Droughts intersperse the time-series and generate population crashes as vegetation 

availability limits survival and reproduction. Interquartile ranges for projections indicate that some 

uncertainty arises due to parameter values used in the IBM. 

 

Figure 5.3. Elephant population projections given expected scenarios of climate change. Four GCMs 

(GFDL, HadGEM, IPSL and MIROC) and two GHG emissions scenarios (RCP2.6 and RCP6.0; blue and red 

lines, respectively) are included to account for uncertainty in climate projections. Lines = median, 

shading = interquartile range indicating uncertainty arising from parameters in the IBM, arrows = 

drought years. The dashed line shows elephant population size in 2017 (n = 1247). 

Combined stressor projections 

The combined effects of habitat loss and climate change (HadGEM2-ES) are shown in Figure 5.4. In all 

habitat scenarios, the higher emission climate scenario (RCP6.0) projected a larger elephant 

population than the low emission scenario but these differences were smaller than the differences 

between habitat scenarios. Even in habitat scenario A and RCP 6.0, the elephant population does not 

deviate dramatically from the current population size.  
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Figure 5.4. Elephant population size in 2099 and percent change from 2017 under combined climate 

change and habitat loss scenarios. For each habitat scenario (A-F), the IBM was simulated with RCPs 

2.6 (blue) and 6.0 (red). Boxplots (median and interquartile ranges) indicate uncertainty arising from 

parameter uncertainty in the IBM. Points show outliers.  The dashed line shows elephant population 

size in 2017 (n = 1247). Maps: black polygons = remaining elephant habitats; grey polygons = lost 

habitats. 

5.4 Discussion 

Models suggest that habitat loss, rather than climate change, is the most significant immediate threat 

to the Amboseli elephants. The elephant population declines under all scenarios of habitat loss, 

though declines are not directly proportional to the amount of area lost since areas vary in vegetation 

quantity and quality, and so in importance to elephants. Despite the areas lost due to human 

population growth and HEI (scenarios B and C) representing roughly the same total space, our IBM 

predicted bigger losses of elephants resulting from human population growth rather than HEI. This is 

likely because HEI generally occurs where people and livestock share space with elephants. Livestock 

grazing tends to occur on drier land where crop production is difficult; in contrast, human population 
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growth is usually concentrated around highly productive areas. This underscores the problems posed 

by agricultural encroachment into key foraging areas for the Amboseli elephants and highlights the 

need for landscape-scale planning of human development.   

Like many areas, Amboseli faces increasing pressure on the space and resources available to people 

and wildlife. With growing competition for space, the government has encouraged people to settle 

and farm, resulting in the widespread subdivision of land, the expansion of irrigated and rain-fed 

agriculture, and the emergence of many unplanned developments (Croze, Moss and Lindsay, 2011; 

Schüßler, Lee and Stadtmann, 2018). Community choices and human tolerance will shape Amboseli’s 

conservation success, and our model has begun to identify how these choices would impact 

elephants. Scenario E, representing the accessibility of only existing and proposed conservation areas, 

suggests that conversations to promote human-elephant coexistence beyond the boundaries of 

conservation areas may be worth ~800 elephants, or ~60% of the current population. Models predict 

a ~80% decline, to ~300 elephants supported by the ecosystem if elephants were confined to existing 

conservation areas alone (scenario F). Such small elephant populations are vulnerable to stochastic 

perturbations including demographic and environmental stochasticity, and natural disasters (Shaffer, 

1981). Fewer elephants may also decrease tourism revenues (Naidoo et al., 2016) which represent a 

key component of successful balance between biodiversity conservation and socio-economic 

development in many African landscapes.  

Local community decisions are hugely important for the future of Amboseli’s elephants, limiting 

habitat conversion and mitigating HEI to ensure continued accessibility of the ecosystem for all 

wildlife. Amboseli stakeholders are already well aware of these needs. Land management planning is a 

new part of the Kenyan constitution, and Amboseli’s ecosystem management plan was the first to be 

formally gazetted (but is already due for renewal). Amboseli has several projects in place to ease HEI, 

including Amboseli Elephant Research Project’s livestock loss consolation scheme (Sayialel and Moss, 

2011) and Big Life Foundation’s elephant-proof fence to prevent crop foraging by elephants and the 

further expansion of agriculture (Big Life Foundation, 2017). More broadly, Amboseli is developing 

community-led multi-stakeholder initiatives under the Amboseli Ecosystem Trust, to promote 

evidence-based and transparent landscape planning in order to balance human and wildlife needs.  

Whilst variation in food availability resulting from climate change does not appear to present a 

significant direct threat to the Amboseli elephants, we advise caution based on potential interactions 

between climate change and human behaviour which may indirectly impact elephants. For example, 

more rainfall in the area may draw more people seeking to expand and intensify agriculture to the 

region. In addition, we have only considered the four GCMs which participated in the ISI-MIP 2b 

experiments, and these may not be fully representative of the broader set of more than 40 different 

GCMs which participated in the underlying Coupled Model Intercomparison Project, phase 5 (CMIP5) 

from which the ISI-MIP simulations were selected (Appendix C: Figure C.3). We note that if these 
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simulations under-represent the frequency of droughts then the assessed effect of climate change on 

Amboseli elephants would be too small. Another issue not addressed here is the impact of rising 

atmospheric CO2; it is well established that increased CO2 makes vegetation more tolerant to 

droughts, and hence the impact of low rainfall on available food may be less than suggested here. It is 

also important to note that the impacts of climate change on elephant populations will vary by 

location given disparities in projected rainfall across African elephant range states. In southern Africa 

in particular, climate projections suggest rainfall will decline (Serdeczny et al., 2016), resulting in 

reduced vegetation productivity and potential food limitations for elephant populations. 

We also acknowledge limitations with the IBM used in these projections. Firstly, the IBM considers 

only food limitation as a stressor impacting elephant energetics and demography. Rather, additional 

stressors are likely to emerge from environmental changes. Warming climates are expected to 

increase physiological stress in elephants (Mumby et al., 2015). More directly, the expansion of human 

activities will bring people and elephants into closer contact, likely competing for the same resources, 

potentially increasing elephant mortality rates as a result of negative human-elephant interactions. 

Alternatively, elephants may access additional high-quality food sources in the form of crops. Second, 

the IBM assumes elephants use the ecosystem evenly. In reality, some areas are used more heavily by 

elephants than others. Inclusion of more explicit elephant space use may alter results if areas lost to 

habitat conversion are more or less heavily used than assumed in our model. While these factors are 

likely to be important in determining the response of elephants to future environmental change and 

thus may influence our model predictions, the mechanisms by which these stressors act, and the 

quantification of their impacts are yet to be determined. Future modelling efforts should attempt to 

include a wider suite of stressors to improve the accuracy of predictions in uncertain future 

conditions. 

Our results suggest that while most of the uncertainty about the future stems from different potential 

scenarios of habitat loss, there is significant uncertainty stemming from unknown parameters in the 

IBM. The latter will hopefully reduce as improved methods are developed in data assimilation, an 

active area of research (see, e.g., Van Der Vaart et al. 2018). Further improvements to the model may 

be made by addressing the assumption that elephants use the space available to them evenly. Rather, 

elephants utilise established home ranges and move seasonally to maximise resource availability. 

Inclusion of spatially explicit ecosystem use may allow our model to identify elephant families most at 

risk from change and further pinpoint critical areas for elephants. Future efforts should also consider 

adult males, who occupy different ecological niches that vary their needs and interactions with 

humans (Shannon, Page, Duffy, et al., 2006a), and the impacts of other global change scenarios, such 

as variation in livestock density or demand for ivory, which may act to exacerbate or alleviate the 

impacts of habitat loss and climate change.  



 

76 
 

The approach used here relies on the general mechanistic relationship between food availability and 

demographic rates. How food availability is influenced by environmental change is estimated and 

underlies IBM predictions of elephant population size. We believe IBMs present a strong solution for 

improving our ability to predict the responses of animal populations to combined stressors and novel 

environmental conditions (Stillman et al., 2015; Nabe-Nielsen et al., 2018). The IBM employed here 

uses a general energy budget framework, calibrated to the Amboseli elephants, and could be readily 

adapted for other elephant, or mammalian herbivore, populations. We therefore see that this 

approach provides the basis for the development of a broader toolkit for use by stakeholders in 

assessing the relative importance of different policy decisions for animal populations.  
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Chapter 6. Discussion 

In the face of rapid global change, the need for predictive models which can identify current and 

future threats facing species and ecosystems is becoming ever more evident (Wood, Stillman and 

Hilton, 2018). Realistic models which remain robust under novel conditions and can incorporate the 

combined effects of multiple stressors in combination are required to simulate predicted global 

change and its impacts on biodiversity so that limited available resources can be targeted at tackling 

the most critical threats (Evans, 2012). The aim of this thesis was to develop such models, which are 

here applied to identify the major threats facing the elephants of Amboseli. Food availability was 

considered a key driver of animal population dynamics and fitness-maximising behaviours were 

assumed throughout (Sibly et al., 2013). The ability of models based on these fundamental principles 

alone to fit the observed demographic rates and movement patterns of Amboseli elephants has 

confirmed the importance of food availability in driving animal populations, whilst deviation of 

observations from predicted responses has illuminated additional factors mediating the ability of 

elephant to maximise fitness. The culmination of this thesis was the identification of key threats facing 

the Amboseli elephants in the 21st century and recommendations for the management of the 

ecosystem.  

In this final chapter, I summarise the findings of each chapter in turn, then discuss the implications of 

the work for the management of the Amboseli ecosystem. I also emphasize the generality of the 

approach adopted and thus its potential application to a broad range of study species and systems. I 

hope that the work presented here will generate further use of individual-based models (IBMs) in 

conservation biology and in turn contribute to biodiversity conservation.  

6.1. Thesis overview 

The need for predictive modelling in ecology and conservation is addressed in Chapter 1, with 

particular attention paid to the opportunities offered by IBMs (Grimm and Railsback, 2005). 

Importantly, the challenges presented by the added complexity of IBMs are introduced, including the 

difficulties in developing, analysing and communicating IBMs, and the data required to inform the 

increasing number of parameters, leading to greater uncertainty in predictions (Grimm and Railsback, 

2005). These challenges have been tackled throughout the thesis. The potential for remote sensing to 

provide data on key environmental drivers at across large scales with spatial and temporal consistency 

is introduced. Here, RS has provided information on the dynamics of food available to elephants 

through space and time (Chapter 2), which is used to drive the models presented in Chapters 3 and 4. 

Through collaboration with the Amboseli Elephant Research Project (AERP), data to calibrate and 

validate the IBM has been readily available, highlighting part of the value of long-term individual-

based field studies. In later chapters, the IBM is calibrated using approximate Bayesian computation 

with the number of runs maximised to minimise the uncertainty in parameter values and model 
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predictions (van der Vaart et al. 2016; Chapter 4). Remaining uncertainty is carried forward to scenario 

simulations to acknowledge the uncertainty in projections made in Chapter 5. Finally, efforts were 

made to document the development, calibration and analysis of the IBM in line with current best-

practise in the field (Grimm et al., 2014).  

In Chapter 1, the system which has provided the focus of modelling efforts is also introduced. The 

Amboseli elephants are world renowned, but their future is increasingly uncertain due to the 

pressures of human population growth, changing human behaviours and resulting environmental 

change. Questions surrounding the future of Amboseli elephants have guided the design and 

application of models presented here, and have highlighted the potential value of process-based 

approaches for informing biodiversity conservation. 

Having established the need for information on key drivers of animal population dynamics and 

behaviours, in Chapter 2 the potential of RS data to estimate food available to elephants was 

examined. NDVI was selected as an appropriate proxy for vegetative biomass (Pettorelli, Vik and 

Mysterud, 2005) and thus food available to elephants. To understand how NDVI relates to vegetation 

dynamics in Amboseli, measures of on-the-ground biomass were compared to NDVI values across the 

habitats of ANP and over time. Results were hindered by common limitations of RS, including 

mismatches between the scale of satellite and ground-based measures, and interference from non-

food vegetation types (Kerr and Ostrovsky, 2003). However, a relationship was established, confirming 

NDVI as a proxy for vegetative biomass, and proved useful in subsequent chapters for estimating the 

relative food available to elephants, accurately predicting movement patterns and demographic 

variation.  

The full potential for the integration of RS data in IBMs has yet to be achieved. RS presents 

opportunities to not only drive IBMs as here, but also the potential to calibrate and validate model 

predictions. RS can provide information on key environmental variables such as climate, vegetation 

dynamics and land cover, and can monitor changes in these variables over time (Kerr and Ostrovsky, 

2003; Turner et al., 2003). Such variables could be incorporated as drivers of processes, allowing some 

pattern of interest to emerge, or could themselves be the emergent property of a model, meaning RS 

could provide data to test model predictions.  As RS data become increasingly accessible (Turner et al., 

2015), software and expertise for its use develop, and the need for consistent data over large 

spatiotemporal scales grows, the integration of RS in IBMs will likely increase, encouraged by 

successful examples like that presented here. 

In Chapter 3, a simple decision-making model using resource availability to predict the seasonal range 

shifts of elephants was developed and tested using satellite tracking data for five individuals. Resource 

availability was considered to be a combination of water and food availability, and was estimated in 

the seasonal home ranges of elephants over the course of a year. Based on relative resource 
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availability in seasonal home ranges, the model predicted whether elephants would be located in ANP 

or their respective dispersal areas. Predictions were based on fundamental fitness-maximising 

behaviour, that is, elephants would move to maximise the resources available to them. The model 

predicted shifts in the locations of all individuals, but the ability of model predictions to replicate 

tracking data varied. Where the model matched individual data well, they highlighted a key benefit of 

seasonal range shifts, which is to maximise resource availability. Where individual locations differed 

from model predictions, detailed knowledge of the study individuals and ecosystem was used to 

identify additional factors, such as reproductive state and perceived risk (Ruggiero, 1991; Roever, van 

Aarde and Chase, 2013; Wittemyer et al., 2017), for consideration in predicting elephant movement 

patterns. It was argued that the combination of a simple decision-making model based on 

fundamental principles of fitness-maximising behaviour, animal tracking data and detailed local 

knowledge can be used to identify factors guiding movement decisions of individuals. 

Such an approach would be appropriate for a wide number of applications. As earlier discussed, data 

on key environmental drivers are now readily available via RS and can be used to model expected 

patterns of animal space use assuming fitness-maximising behaviours. The availability of animal 

movement datasets is also increasing in terms of the number of studies, locations and taxa, with much 

data becoming freely accessible through platforms such as Movebank (Wikelski and Kays, 2018). 

Utilising such data and the mechanistic approach employed here, an improved understanding of the 

factors influencing animal movement decisions can be gained. This understanding will aid 

conservation practitioners in identifying the potential responses of animal space use to environmental 

change and management decisions.  

An IBM relating food availability to the population dynamics of elephant family groups through an 

energy budget was developed in Chapter 4. Again, the model assumed that individuals would act to 

maximise fitness: energy intake from the environment was maximised and energy expenditure was 

prioritised to improve survival and reproductive rates. The energy budget was based on a general 

framework described in Sibly et al. (2013). Parameters controlling the processes of energy intake and 

expenditure were derived from the literature and uncertain parameters were calibrated using 

approximate Bayesian computation (van der Vaart et al., 2015) to fit the vital demographic rates 

(births and deaths) underlying population dynamics. The ability of the model to replicate both 

calibration and validation data of elephant population dynamics highlighted the importance of food 

availability as a key driver of elephant populations.  

The fundamental fitness-maximising principle upon which the IBM is based, and the use of a general 

energy budget framework and freely available estimates of food availability, allows this approach to be 

widely applied to a range of taxa and ecosystems. Already this approach has been applied in marine 

systems, utilising RS of phytoplankton to drive the population dynamics of mackerel (Scomber 

scombrus; Boyd et al. 2018), and models are currently being developed following this approach for red 
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deer on the Isle of Rum (Cervus elaphus) and sea bass in UK waters (Dicentrarchus labrax) by members 

of the University of Reading. Further applications of this modelling framework are examined below 

(see 6.3). 

The IBM developed in Chapter 4 was applied to simulate the effects of environmental change 

scenarios on Amboseli elephants in Chapter 5. Continuing with the general principle that food 

availability drives animal population dynamics, NDVI (our proxy for food available to elephants) was 

projected under scenarios of climate change and habitat loss in the Amboseli ecosystem. Relationships 

between NDVI and rainfall, and how this varied across different spatial aspects of the ecosystem were 

established using historical observations. Standardised scenarios of climate change (Warszawski et al., 

2014) predicted stable or slight increases in the amount of rainfall, and therefore had no real impact 

on the number of elephants supported by the ecosystem. There is currently little consensus on the 

best means to quantify the likelihood of habitat conversion, though the field of predictive ecology and 

conservation would benefit from a standardised approach to allow for comparison across studies. 

Here, habitat loss scenarios were developed using empirical data and stakeholder opinion and 

predicted significant losses in Amboseli’s elephant population size. Declines were not however directly 

proportional to the amount of area lost owing to the spatial heterogeneity in NDVI and food 

availability. Projections identified habitat lost to human population growth as disproportionately 

important foraging resources for elephants and has highlighted the need to manage human 

development and expansion in highly productive areas. More importantly, loss of all but protected 

habitats resulted in an 80% loss of elephants in Amboseli. There is an urgent need to find solutions 

guaranteeing continued elephant access to the ecosystem beyond the boundaries of protected areas. 

The ecosystem stakeholders are well aware of this, but require tools, like this model, to evaluate 

alternative land use choices and community decisions. Human-wildlife coexistence strategies will thus 

be key to the successful conservation of the Amboseli elephant population in the 21st century.  

In summary, models based on the fundamental principles of fitness-maximisation and food availability 

as a key driver (Sibly et al., 2013) have accurately predicted the population dynamics and movement 

decisions  of elephants inhabiting the Amboseli ecosystem (Boult, Quaife, et al., 2018; Boult, Sibly, et 

al., 2018). The process-based approach used in these models has allowed for the robust predictions 

(Stillman et al., 2015) of the implications of potential environmental change scenarios for Amboseli 

elephants and in doing so has highlighted the value of these approaches in informing conservation and 

management decisions (Wood, Stillman and Hilton, 2018). By adopting an individual-based approach 

throughout, models have accounted for, rather than ignored, individual variation and in doing so, have 

identified intraspecific differences in responses to environmental drivers which will be important to 

consider when predicting the impacts of global change on species more generally.  

Whilst emphasising the values of a process-based approach, the challenges in adopting such 

approaches have been acknowledged and addressed. The need for measures of key drivers 
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(Uchmański and Grimm, 1996) was addressed through the integration of RS data and made relevant 

through calibration with ground-based measures of biomass. Uncertain parameters controlling the 

energy budget model were calibrated using recent advances in approximate Bayesian computation to 

minimise uncertainty in model predictions (Grimm and Railsback, 2005). The large datasets required 

to calibrate and validate IBMs (Grimm and Railsback, 2005) were provided through collaboration with 

the Amboseli Elephant Research Project, who have collected valuable data on the life histories of 

Amboseli’s individual elephants since 1972 (Moss, Croze and Lee, 2011a).  

Here, models focused on Amboseli elephants, in part due to the practicalities addressed by the rich 

dataset and in part because of the interest in elephants as a species of conservation concern, 

highlighting the value of the approach to answer real-world questions. However, the fundamental 

principles guiding model development mean that methods employed here may be easily applied to 

study the impacts of future environmental change on other species and study systems. I now go on to 

explain the implications of this research for Amboseli elephants and their ecosystem, then discuss the 

potential application of this approach to other study systems. 

6.2. Implications for Amboseli  

The results presented here have shown that: 1) it is possible to construct IBMs which accurately 

reflect population dynamics for female African elephants and 2) this generates the possibility of data-

driven discussions about Amboseli’s future for non-technical specialists and policy-makers who are 

charged with decisions.  

Amboseli is not unique in its mosaic of protected and non-protected areas (Newmark, 2008), nor in 

the sharing of these spaces between wildlife and people. In the past, designation of protected areas 

for the sole use of wildlife and the exclusion of human activity was considered the only way to 

effectively conserve species (Pimbert and Pretty, 1995). However, with controversies over the 

exclusion of local people from areas upon which they relied (Brockington, Igoe and Schmidt-Soltau, 

2006) and growing concerns that protected areas are not ‘future-proof’ (Hannah et al., 2007), focus 

has turned towards community-based conservation (Hackel, 1999), in which land is managed for the 

mutual benefit of people and wildlife. 

In Amboseli, roughly 80% of the ecosystem falls beyond the boundaries of conservation areas. In these 

areas human and livestock populations have grown, agriculture has proliferated around key water 

sources and on productive soils, and infrastructure has been developed with no planning or ecological 

risk assessments (Croze, Moss and Lindsay, 2011; Schüßler, Lee and Stadtmann, 2018). In conjunction, 

there is high unemployment – especially of young people – around Amboseli, livelihoods are unstable 

and rely heavily on climatic conditions, so poverty is common (World Bank Group, 2018). The need to 

develop strategies which ensure human-wildlife coexistence is well understood by Amboseli’s 
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stakeholders, forming a central part of the existing ecosystem management plan (Kenya Wildlife 

Service, 2008) and ongoing discussions for renewal of the plan.  

Historically, efforts to aid coexistence have been largely reactive and were criticised for being too slow 

and inconsiderate of social intricacies, leading to distrust between local people and the conservation 

sector. In response, Kenya Wildlife Service (KWS) and the Amboseli Ecosystem Trust (AET) established 

the Human Wildlife Coexistence Committee (HWCC) in 2016 to coordinate the efforts of the 

conservation community operating in Amboseli with the aim of increasing the rapidity of responses to 

incidents of HEI and becoming more proactive. At present, operational coexistence strategies in 

Amboseli include, but are not limited to: Amboseli Trust for Elephants’ consolation scheme for 

livestock killed by elephants; Big Life Foundation’s compensation scheme for livestock killed by 

predators; the installation of lion-proof bomas by Born Free Foundation; Lion Guardians’ lion tracking 

scheme to monitor the movements of lions and advise communities about lion presence and 

measures to avoid lion interactions; the installation of 80km of elephant-proof fencing to protect 

smallholders from elephant crop foraging; scholarships for local children to attend school and 

university (probably more than 100 scholarships are provided by the numerous organisations 

operating in the ecosystem); the International Fund for Animal Welfare’s livelihood support initiatives, 

especially for women, to improve literacy and income stabilisation. Further, the HWCC is establishing 

standardised response protocols for dealing with HEI incidences, outlining the steps to be taken and 

the intersection between stakeholder responsibilities. The implementation of such initiatives requires 

cooperation between community leaders, numerous NGOs and KWS, who actively participate in 

developing and approving protocols. These initiatives and protocols will also form part of the 

conservancy management plans and the 2018-2028 Ecosystem Management Plan, which is to be 

gazetted under both wildlife and environmental laws providing the power to prevent further land 

conversion in Amboseli.  

The combination of better legislation to prevent further land conversion, active management of the 

human-wildlife interface and sustainable livelihood diversification presents a promising outlook for 

future coexistence between people and wildlife in Amboseli. Results presented here will contribute to 

an existing knowledge base to inform data-driven protocols and the IBM could be incorporated into 

decision-making structures (see 6.3) to assess how individual livelihood choices will affect elephants 

and the ecosystem services they provide. 

6.3. Further development and future applications 

As introduced in Chapter 1, there is a growing need for predictive models in conservation and ecology 

to identify future changes to the abundance and distribution of species. Here, the approach is 

developed and applied to inform conservation priorities for Amboseli elephants, but could be easily 

adapted to provide insight for other species of interest. Such species may be those of conservation 
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concern, those of important economic or functional value to humans, or those which threaten human 

livelihoods. This thesis has demonstrated the use of process-based approaches based on general 

principles and freely accessible data to answer questions of importance biodiversity conservation and 

ecosystem management. 

Adaptation for alternative applications 

Models presented here have assumed fitness-maximising behaviour throughout (Sibly, 2002). That is, 

individuals act to maximise their reproduction, growth and survival by moving to maximise resource 

availability and energy intake. Energy is obtained from food available in the environment. An energy 

budget links variation in food availability to vital demographic rates (Sibly et al., 2013). These 

principles apply not only to elephants, but across the spectrum of taxa. 

Model inputs largely consisted of freely accessible data. The availability of food was estimated using 

RS data and made relevant to Amboseli through a simple calibration exercise (Chapter 2). RS proxies 

can even been related to the population dynamics of higher trophic levels (Pettorelli et al., 2011), and 

so application is not limited to herbivores. Parameters controlling the energy budget model were 

derived where possible from published literature, whilst uncertain parameters were estimated using 

allometric equations or through parameter sharing with similar species, then calibrated using 

approximate Bayesian computation (Chapter 4). Climate models were accessed through the freely 

accessible ISI-MIP platform and had already undergone required pre-processing (Chapter 5; 

Warszawski et al. 2014). These input data are freely available for other study systems or species, 

allowing relative ease of model adaptation. All model programming and analysis presented in this 

thesis was also carried out using freely available software (NetLogo and R) and all scripts have been 

provided: https://github.com/vlboult93. The only data used here which is not freely accessible was the 

longitudinal demographic data used in model initiation and analysis. Studies boasting such rich 

datasets are established globally for a wide range of taxa (Hayes and Schradin, 2017). Collaboration 

with these studies may allow access to such valuable data, though research using such data should 

seek to answer questions of interest to the study. The partnership with AERP which underpinned the 

success of this project should act to encourage collaborations between long-term studies and 

researchers developing novel approaches to conservation.  

Given the general principles underlying model design and the use of freely accessible model input 

data, the approach presented here could be easily adapted to provide information on the responses of 

other elephant or species population dynamics to environmental change scenarios. Those wishing to 

do so would simply need to adjust the RS measure of food availability, change the energy budget 

parameters to suit the species of interest, and extract climate projections for the desired area. 

Additional scenarios of environmental change or management plans may be developed and 

incorporated into the IBM depending on the needs of the user. In this way, the process-based 
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approach developed here can be applied broadly to answer questions of conservation and 

management significance. 

Future developments 

There is potential to not only adapt the models constructed here for other animal populations, but 

also to further develop them to include more realism. In this case, the models presented here should 

act as first, null models, assuming elephant movement decisions and population dynamics are only 

driven by food availability. Future modelling efforts can then compare outputs to null model results 

and identify developments which improve the models’ predictive ability. 

The first potential improvement will likely come from the incorporation of spatially explicit foraging. 

Whilst the IBM used spatially explicit estimates of food availability and climate change, the space use 

of elephants was assumed to be equal across the ecosystem. Rather, elephant family groups use 

specific home ranges and some aspects of the ecosystem host more elephants than others (Croze and 

Moss, 2011). This means that whilst current model predictions replicate population-level 

demographics well, disparities may emerge when considering demographics on a family-by-family 

basis, as family groups have access to different foraging resources. The effects of different food 

availability to families is most evident in times of food limitation, when families with access to more 

abundant or better-quality resources survive and reproduce more readily than others. Space-use also 

has important implications when considering the impacts of environmental change. Where habitats 

support more elephants than assumed by the IBM, loss of these habitats will have a greater impact on 

the elephant population as a whole than projected by the IBM. On the other hand, where habitats are 

less utilised by elephants, projections may exaggerate impacts on elephants. To incorporate spatially 

explicit ranging into the model would require either data on the distribution of Amboseli’s elephants 

through time or a better mechanistic understanding of the factors driving elephant distributions. 

Distribution data is not currently available for the wider Amboseli elephant population beyond the 

boundaries of the national park, but in Chapter 3 we started to identify the mechanisms driving 

elephant movements using GPS tracking data for five families. Food availability was one of many 

factors determining seasonal elephant movements and suggested the inclusion of additional factors to 

improve predicted elephant locations. Future integration of spatially explicit space-use or mechanistic 

movement processes will provide more accurate projections of elephant population dynamics and will 

be important in determining the impacts of environmental change.  

The IBM also excluded independent males. Male elephants are larger, tend to be less reliant on water 

and high quality vegetation (Stokke and du Toit, 2000, 2002), engage in ‘risky’ behaviours (Chiyo, Lee, 

et al., 2011) and may be disproportionately targeted by poachers due to their larger tusks (Jones et al., 

2018). Males may therefore respond differently to environmental change and future inclusion of 

males in the model could prove enlightening.  
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If adding model complexities through spatially explicit ranging behaviour or inclusion of independent 

males, exploration of more efficient model calibration techniques may be worthwhile. Rejection-ABC 

was used here (van der Vaart et al., 2015), but advances in ABC techniques, such as SMC-ABC (Sisson, 

Fan and Tanaka, 2007) and error-calibrated-ABC (van der Vaart, Prangle and Sibly, 2018), offer the 

ability to further reduce uncertainty in parameter values while requiring fewer model simulations.  

The IBM in its current form has provided information of interest to stakeholders. However, 

stakeholders increasingly appreciate the availability of software and app-based tools for use in their 

work (Chapron, 2015). There is thus potential and demand to develop the IBM into a software 

application. This should be an interactive tool which allows the user to ‘implement’ potential scenarios 

of habitat conversion based on current discussions of land management, run the model and receive 

results quickly. Such a tool would be of great value to discussions and workshops, and may guide land 

management planning in the ecosystem. 

6.4. Concluding remarks 

With the current rate of global change threatening species persistence and ecosystem function, 

ecology and conservation must foresee arising challenges in order to move from reactive 

management strategies, where we begin ‘on-the-back-foot’, towards a more pre-emptive approach. 

The ability of traditional methods to remain robust under novel conditions and when considering 

multiple stressors in combination has long been questioned, resulting in calls for more process-based 

approaches. Research presented here has demonstrated the value of process-based models based on 

general principles and freely available data to answer real-world questions. This framework presents a 

useful toolkit for predictive modelling in ecology and conservation, and readily adaptable to address 

concerns facing other animal populations. Standardised climate scenarios make model predictions 

comparable to other climate impact studies, and standardised approaches to predicting other aspects 

of global change – such as habitat loss, species invasions and human behaviour change – would be of 

great value to practitioners. Focusing modelling efforts on the elephants of Amboseli has proved 

fruitful is establishing robust methods, but has also provided information to guide land management 

practises in the ecosystem. Further development of the IBM into an interactive tool for use by 

Amboseli’s stakeholders will aid local communities in making evidence-based choices about land 

management and will confirm the role that human choices play in the conservation of Africa’s 

elephants. 



 

86 
 

  



 

87 
 

Appendices 

A. Supplementary material for chapter 3 

Figure A.1. Map of Amboseli ecosystem A) in context of Kenya (Amboseli ecosystem in pale red and 

Amboseli National Park, darker red) and B) showing spatial distribution of protected areas (dark grey 

polygons), swamps (in blue) and international border between Kenya and Tanzania (dashed line). 

A) 
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A.2 Extended remote sensing methodology. 

The Terra-MODIS NDVI dataset was chosen for use in this manuscript for several reasons. Firstly, 

MODIS provides near-daily coverage of the entire Earth’s surface and so presents a high temporal 

resolution which we deemed important for monitoring in real-time, changes in vegetation which may 

influence the movement choices made by elephants. The 250m spatial resolution of the MODIS NDVI 

dataset also provided sufficient spatial accuracy. The Terra-MODIS mission was chosen over the Aqua-

MODIS mission (which provides the same dataset but is retrieved from a different satellite) because in 

a previous analysis by VLB not presented here, Terra-MODIS NDVI was found to relate more closely to 

ground-based measures on vegetative biomass in the Amboseli Ecosystem. 

Terra-MODIS NDVI data were accessed via the Oak Ridge National Laboratory Web Service (Vannan et 

al., 2011) and retrieved as 16-day composites (MOD13Q1). Composite images represented the ‘best’ 

daily image retrieved by the instrument within the given 16-day time period, taking into account 

quality, cloud and viewing geometry. Thus, a cloud-free, nadir view pixel with no residual atmospheric 

contamination, where available, represents the best image. NDVI pixels were further filtered using the 

MOD13Q1 QA flags so that only those marked as ‘good’ quality NDVI values were used in our 

calculations. 

We retrieved NDVI values from across the Amboseli ecosystem every 16 days throughout the collaring 

period (July 2011 – August 2012) for location -2.651S, 37.359E and a spatial extent of 100km around 

this, meaning that each NDVI image covered just over 40,000km2 and encompassed the entire extent 

of the Amboseli ecosystem.  

From these NDVI images of the whole ecosystem, shapefiles of the swamp edge and dispersal areas 

(defined as the 95% kernel density estimates of elephant location fixes outside Amboseli National 

Park) were used to define the region within which to extract median NDVI values for each 16-day 

period. Occasionally due to cloud cover or QA filtering, no NDVI values were obtained for a given area. 

Where this was the case, missing daily NDVI values were filled with that of their nearest temporal 

neighbour. The script for this procedure is publicly available on GitHub 

(https://github.com/vlboult93/EleMovement.git). 

  

https://github.com/vlboult93/EleMovement.git
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B. Supplementary material for chapter 4: TRACE document 

This is a TRACE document (“TRAnsparent and Comprehensive model Evaludation”) which provides 

supporting evidence that our model presented in: 

Boult, V.L., Quaife, T., Fishlock, V., Moss, C.J., Lee, P.C. & Sibly, R.M, 2018. Individual-based modelling 

of elephant population dynamics using remote sensing to estimate food availability. Ecological 

Modelling, 387, pp. 187-195.  

was thoughtfully designed, correctly implemented, thoroughly tested, well understood, and 

appropriately used for its intended purpose.  

The rationale of this document follows:  

Schmolke A, Thorbek P, DeAngelis DL, Grimm V. 2010. Ecological modelling supporting environmental 

decision making: a strategy for the future. Trends in Ecology and Evolution 25: 479-486. 

and uses the updated standard terminology and document structure in: 

Grimm V, Augusiak J, Focks A, Frank B, Gabsi F, Johnston ASA, Kułakowska K, Liu C, Martin BT, Meli M, 

Radchuk V, Schmolke A, Thorbek P, Railsback SF. 2014. Towards better modelling and decision support: 

documenting model development, testing, and analysis using TRACE. Ecological Modelling   

and 

Augusiak J, Van den Brink PJ, Grimm V. 2014. Merging validation and evaluation of ecological models to 

‘evaludation’: a review of terminology and a practical approach. Ecological Modelling.  
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B.1. Problem formulation 

This TRACE element provides supporting information on: The decision-making context in which the model will be used; the 

types of model clients or stakeholders addressed; a precise specification of the question(s) that should be answered with the 

model, including a specification of necessary model outputs; and a statement of the domain of applicability of the model, 

including the extent of acceptable extrapolations.  

Summary: 

▪ Elephant populations are threatened by poaching and human-elephant conflict, but environmental 

change affecting food available to elephants arguably presents a greater concern for their long-

term persistence  

▪ Understanding the relationship between food availability and elephant population dynamics is 

therefore vital 

▪ The model presented here relates vital demographic rates to changes in food availability via an 

energy budget 

▪ Application of the model will predict elephant populations respond to projected environmental 

change and will aid stakeholders in effectively managing elephant populations 

 

Elephants are simultaneously considered a species of conservation concern and problem for coexisting 

humans (Hoare, 2000; Lee and Graham, 2006). The recent spike in elephant poaching fuelled by the 

ivory trade continues to threaten the persistence of elephant populations (Blanc, 2008; Chase et al., 

2016), whilst the rapid growth of the human population and associated conversion of elephant habitat 

to human dominated landscapes increases interactions between humans and elephants, where 

elephant behaviours (e.g. crop raiding and infrastructure damage) may compromise coexistence 

(Wittemyer, 2011; Browne-Nunez, Jacobson and Vaske, 2013).  

Whilst poaching and human-elephant conflict (HEC) can alter elephant demographics (Jones et al., 

2018), elephant population dynamics are naturally governed by the distribution and abundance of 

their food (Rasmussen, Wittemyer and Douglas-Hamilton, 2006; Wittemyer, Rasmussen and Douglas-

Hamilton, 2007). Changes in habitats and vegetation - and thus food available to elephants - owing to 

climate change and land management strategies, will have large scale implications for elephant 

populations, which may act to counter or add to the effects of poaching and HEC. Ensuring a future for 

elephants will therefore rely on understanding how elephant population dynamics respond to food 

availability.  

The model presented here relates variation in food availability to changes in vital demographic rates 

through an energy budget. Food available to elephants is estimated using remotely sensed measures 

of vegetation. Energy is taken from the environment and allocated to the energy expending processes 

of life, allowing population dynamics and structure to emerge (Railsback and Grimm, 2012; Sibly et al., 
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2013; Johnston et al., 2014). This TRACE document provides details of model development and 

calibration.  

The model is intended to accurately relate food availability to elephant population dynamics, and may 

be applied to predict the response of elephant populations to future environmental scenarios and 

allow stakeholders - including government officials who design policy regarding wildlife and natural 

resources, to reserve managers and charitable organisations who implement and fund management 

procedures - to effectively conserve and manage elephant populations. 

B.2. Model description  

This TRACE element provides supporting information on: The model. Provide a detailed written model description. For 

individual/agent-based and other simulation models, the ODD protocol is recommended as standard format. For complex 

submodels it should include concise explanations of the underlying rationale. Model users should learn what the model is, 

how it works, and what guided its design. 

Summary: 

Here we present the model description following the ODD (Overview, Design concepts and Details) 

protocol for describing Individual Based Models (IBMs; Grimm et al., 2006). The model is implemented 

in NetLogo 6.0.2 (Wilensky, 1999). 

Purpose 

The model relates spatiotemporal variation in food availability to changes in vital demographic rates 

through an energy budget and may be applied as a tool for predicting the response of elephant 

populations to future variation in food availability resulting from climate change or land management 

strategies. 

State variables and scales 

The modelled environment represents the combined home ranges of four elephant family groups (IBs, 

LBs, VAs, and WAs) inhabiting the Amboseli ecosystem, Kenya (Figure B.1), as a single patch, 

characterised by the time-specific food availability and energy content of vegetation. The elephant 

population comprises individuals of the four family groups: adult females and their immature offspring 

of both sexes (males become independent of their natal group at 12 years old). These four families 

comprised 126 individuals at the time of model initiation. Elephants are characterised by variables 

describing their physiology in terms of age, sex, mass, energetic processes and reproductive states 

(Table B.1). Each individual experiences life through their own energy budget, the details of which vary 

based on age and sex. The EEB runs from the 1st March 2000 until the 20th November 2016 

(representing the availability of remote sensing data; see B.3) and proceeds in daily time steps. 
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Figure B.1. The home ranges of four elephant family groups inhabiting the Amboseli ecosystem, Kenya 

(coloured polygons; 95% kernel density estimates; see B.4). This represents the spatial extent of the 

model and determines the remotely-sensed measures of vegetation used to calculate time-specific 

food availability (see B.3). 
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Table B.1. All elephants in the model are characterized by state variables describing their physiology 

in terms of age, sex, mass, energetic processes and reproductive states. 

 Variable Units Description 

All 

elephants 

  

ageyears + agedays years + days Age of individual in years and days 

BMR KJ day-1 Basal metabolic rate  

Eassim KJ Energy assimilated from food during the current time 

step 

Emilk KJ day-1 Energy ingested in milk  

Estor KJ Energy available in storage tissues (fat) 

GRmax kg day-1 Maximum growth rate  

GR kg day-1 Growth rate 

IR kg day-1 Achieved ingestion rate  

IRmax kg day-1 Maximum ingestion rate 

mort probability day-1 Per capita mortality rate owing to stochastic events 

Mcore kg Mass of core structural tissues (cannot be depleted for 

energy) 

Mstor kg Mass of storage tissues 

Mstruct kg Mass of structural tissues 

Mtot kg Total mass of structural and storage tissues 

sex  Male or female 

stormax kg Maximum mass of storage tissues 

Female-

only 

Elact kJ day-1 Energetic expenditure through lactation 

FGR kg day-1 Foetal growth rate 

Fmass kg Mass of foetus 

L true or false Lactating? 

Lcount days Days since parturition of calf 

O true or false Oestrus cycling? 

Ocount days Days since individual last became receptive 

P true or false Pregnant? 

Pcount days Days since conception 
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Process overview and scheduling 

Elephants in the model execute procedures to update their energy budget once per time step (Figure 

B.2). The order of updating individuals is randomized by NetLogo at each time step. The energy budget 

model follows that described by Sibly et al. (2013).  

 

Figure B.2. Daily energy budget process overview carried out by each individual at each time step. If 

energy is available through food and/or stores, an individual will utilise this energy in maintenance, 

growth and reproduction. If insufficient energy remains an individual enters starvation during which 

time some non-essential structural tissues may be metabolised to cover the costs of maintenance 

only. If this also proves insufficient, the individual dies. This energy budget causes births and deaths, 

and will ultimately lead to the emergence of population dynamics. 

Each individual begins with the intake of energy if it is available in the environment. The assimilated 

energy, along with energy in storage tissues (fat), make up the energy ‘reserves’, and are then 

available for use in energy expending processes. Maintenance takes priority and is followed by growth 

and/or reproduction depending on age, sex and energy remaining. Following maintenance, if energy 

reserves remain, sexually immature individuals (females <9 years old and males <19) will grow. 

Growth in elephants is prolonged (Karkach, 2006; Shrader et al., 2006; Hollister-Smith et al., 2007), so 

growth in some skeletal and mass components continues beyond sexual maturity if sufficient energy 

reserves remain following the costs of reproduction. Only females reproduce in the model as males 

disperse prior to sexual maturity. If energy remains following maintenance, sexually mature females 

proceed through the reproductive cycle.  Left over energy is incorporated into the individual’s stores 
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at the end of each time step. Assimilated energy is always utilised first and stored energy only if 

needed. If no energy reserves remain, the individual enters starvation and will cease growth and 

reproduction, but may metabolise some structural tissues to cover the costs of maintenance 

(Atkinson, Nelson and Ramsay, 1996). Individuals die at a background rate (accounting for stochastic 

mortality events) or if all non-essential structural tissues are depleted.  

The energy budget of an individual therefore responds to the energy available from food in the 

environment. When food is abundant, such as in wet seasons, energy intake exceeds energy 

expenditure, and individuals may allocate energy maximally to all processes and accumulate stores. 

When food is limited, such as in dry seasons or drought years, energy expenditure may outweigh 

energy intake, and individuals must utilise stores in order to maintain growth and reproduction. Thus, 

as food availability cycles through abundance and limitation, an individual’s energy balance fluctuates 

between positive and negative, and body composition (see B.4) responds accordingly (Figure B.3). 
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Figure B.3. Energy balance and resulting body composition of adult female elephant, Ilka, throughout 

the model period. The top plot shows the NDVI (Normalised Difference Vegetation Index) experienced 

by Ilka. NDVI is used here as a proxy for food availability (see B.3), peaking during the biannual wet 

seasons and declining as the dry seasons progress. The energy balance plot compares energy 

expenditure with energy assimilated (red and grey lines, respectively). The resulting energy balance 

indicates whether energy intake was greater or less than energy expenditure (grey and red shading, 

respectively), and broadly coincides with peaks and troughs in NDVI. The energy expenditure plot 

further breaks down expenditure into BMR, gestation, growth and lactation. Lactation is energetically 

costly and results in a period of net negative energy balance. Due to the fluctuating energy balance, 

body composition changes: during positive balance storage tissues increase, whilst these stores are 

depleted during times of negative balance. Structural tissues may be depleted during starvation, as 

seen here in 2009-2010. 
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Design concepts 

Emergence: The key outputs of the model are births and deaths, which together with population size 

emerge from the ability of individuals to meet their energetic demands given the food available and 

background mortality.  

Fitness: Individuals always intake the maximum possible amount of energy and distribute maximally to 

all energy expending processes in order of priority. By this means, individuals maximise survival and 

reproduction. 

Sensing: To link the energy budgets of mothers and suckling calves (those under 4 years old), mothers 

and calves can detect the deaths of one another so that the death of the mother will result in the 

death of a milk-dependent calf (those under 2 years old) and the death of a calf will cause the mother 

to cease lactation. 

Interaction: Mothers and suckling calves interact to link the energy budget and fate of the calf to that 

of the mother.  

Stochasticity: Stochasticity is introduced into the model in three ways. Firstly, individuals are initialised 

with a random amount of storage tissue within the bounds of maximum storage (see B.4) following a 

uniform distribution, since data measuring storage tissues are lacking. Second, the sex of a new born 

calf is determined at random with equal chances of becoming a male or female. This influences the 

outcome of the model since females contribute more to population growth than males. Background 

mortality from stochastic events such as disease, predation, poaching or human-elephant conflict, 

occurs randomly (see Equation B.5 and Figure B.6).  

Observation: Key outputs from the model are annual numbers of births and deaths, and overall 

population size. These are used as summary statistics in the calibration of the model (see B.6). Outputs 

are extracted annually to coincide with the end of each Amboseli year. Amboseli years run from the 

1st October (Julian day 274) until 30th September (Julian day 273) the following year and relates to 

annual cycles of rainfall and vegetation in the Amboseli ecosystem (Croze and Lindsay, 2011). 

Initialisation 

The model is initiated with 126 individuals comprising the four family groups (IBs, LBs, VAs, and WAs) 

on 1st March 2000. The reproductive states of females at this time were derived from birth dates of 

their previous and subsequent calves (see B.3) and used to link mothers to the relevant calves and 

determine reproductive energy expenditure. The environment is initiated with time-specific food 

availability derived from remotely-sensed measures of vegetation (see B.3). 

Input 

Time-specific food availability is derived from remotely-sensed measures of vegetation (see B.3).  



 

98 
 

Submodels 

The following submodels describe in detail the processes carried out at each time step. Parameter 

definitions and values used in submodels are presented in Table B.2. 

Table B.2. Parameter definitions and values. Parameters were derived initially from the literature (see 

B.3). Uncertain parameters were then calibrated using approximate Bayesian computation (see B.6; 

indicated by *).  

Parameter Definition Value Eqn Source 

Body 

composition 

    

storscaling Storage scaling coefficient = coefficient for 

scaling storage tissue maximum with total 

mass 

0.08* 7 Reference value 0.06 

(Pitts and Bullard, 

1968) 

core_prop Core proportion = core structural mass as 

proportion of structural mass; cannot be 

depleted to cover costs of energy 

expenditure 

0.951  (Atkinson, Nelson and 

Ramsay, 1996) 

Eflesh Energy content of flesh  = energy in 

structural tissues 

7000 KJ kg-1 3b (Sibly and Calow, 

1986a) 

Efat Energy content of fat = energy in storage 

tissues 

39300 KJ kg-1  (Schmidt-Nielsen, 

1997) 

Esyn Energetic costs of synthesis = energetic cost 

of producing structural tissues 

7000 KJ kg-1 3b (Sibly and Calow, 

1986a) 

Energy intake     

Hsc Half saturation coefficient = food density at 

which half maximum ingestion rate is 

achieved 

0.317 kg m-

2* 

1b Reference value 0.21 

kg m-2 (Lindsay, 1994) 

maxIRscaling Max IR scaling coefficient = coefficient for 

scaling maximum ingestion rate with body 

mass 

0.334* 1a Reference value 

0.255 (Lindsay, 1994) 

AEveg Assimilation efficiency of vegetation = 

proportion of ingested vegetation that is 

assimilated as energy 

0.2*  Reference value 0.27 

(Wiegert and Evans, 

1967; Rees, 1982) 

AEmilk Assimilation efficiency of milk = conversion 

efficiency from mother’s energy reserves to 

calf assimilated energy 

0.95*  Reference value 0.84 

(Agricultural 

Research Council, 

1980) 

DD Density dependence coefficient = coefficient 

to adjust ingestion rate depending on 

density of elephants 

710131* 1b  

Maintenance     

B0 Taxon-specific normalisation constant = 

constant used to scale BMR with body size 

351* 2 Reference value 293 

(Peters, 1983) 

Growth     

GRm 

GRf 

Growth constants (male/female) = constant 

used to calculate the maximum daily 

addition of mass  

0.07134 

0.12763 

3a (Lee and Moss, 1995) 

M0_m 

M0_f 

Birth mass (male/female) = average mass at 

birth  

120 kg 

100kg 

 (Lee, 2011) 
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M∞_m 

M∞_f 

Maximum structural mass (male/female) = 

average asymptotic mass of Amboseli 

elephants 

4690 kg 

2740 kg 

3a (Lee, 2011) 

Reproduction     

o_cycle Oestrus cycle = length of single oestrus cycle 112 days  (Moss, 1983) 

r_days Receptive days = length of time receptive 

during single oestrus cycle 

4 days  (Moss, 1983) 

oest_on Oestrogen onset threshold = body fat 

threshold at which female may enter oestrus 

0.2  (Bronson and 

Manning, 1991) 

gest_period Gestation period = length of pregnancy 661 days  (Poole et al., 2011) 

Fg Foetal growth constant = daily addition of 

mass to growing foetus 

0.0069 4a (See B.3; Lee pers. 

comm.) 

E_0 Energetic demand of lactation on day 0 = 

energy required to cover lactation on first 

day following parturition 

11008 KJ 

day-1* 

 Reference value 

11886 KJ day-1 (see 

B.3) 

E_pl Energetic demand of peak lactation = energy 

required to cover lactation at peak (365 days 

following parturition) 

123253 KJ 

day-1* 

 Reference value 

112170 KJ day-1 (see 

B.3; Oftedal 1985) 

Mortality     

MRback Background mortality rate = daily rate of 

mortality owing to stochastic events (e.g. 

disease, injury, poaching etc.) 

2.8 x 10-5 

day-1* 

5 Reference value 2.74 

x 10-5 (see B.3; Lee et 

al. 2011) 

MRscaling Mortality rate coefficient = coefficient for 

relating mortality rate to body condition 

during starvation 

8375* 5 Reference value 

15000 (see B.3) 

Biomass     

Multiple NDVI conversion multiple = multiple used in 

equation to convert NDVI to biomass 

2665.7 6 See B.3 

Intercept NDVI conversion intercept = intercept of 

straight line relationship between NDVI and 

biomass 

-269.9 6 See B.3 

Area Total area of spatial extent = area 

represented by model 

637142163 

m2 

 See B.4 

 

Energy intake: Ingestion rate (IR; kg day-1) depends on body size (Brown et al. 2004), age, food density 

(biomass) and consumer (elephant) density. In terms of age, elephants less than a year old obtain all 

energy through the ingestion of milk; individuals are milk-dependent until two years of age but begin 

supplementing milk intake with vegetation after a year; between the ages of one and four, decreasing 

milk ingestion is supplemented with increasing vegetation intake; at four elephants are weaned and 

feed entirely on vegetation. Suckling individuals first ingest milk from their mother then if over a year 

old, will ingest vegetation. The maximum vegetation IR is reduced by the rate of ingestion already 

achieved through suckling. Food density (kg m-2) also influences vegetation ingestion, following a 

Holling type II functional response (Holling 1959; Lindsay 1994). This is adjusted as per the 

Beddington-DeAngelis functional response to account for consumer-density dependent ingestion rate 

(Beddington, 1975; DeAngelis, Goldstein and O’Neill, 1975). If no food is available, IR is zero. IR is 

converted to energy given the energy content of food (KJ kg-1). Only a proportion of energy ingested in 



 

100 
 

milk or vegetation is available for energy expending processes following assimilation efficiencies (AEveg, 

AEmilk). 

 

Maintenance: Basal metabolic rate (BMR; KJ day-1) accounts for the standard costs of maintenance 

essential for survival, and so has first call on energy reserves (Sibly et al., 2013). BMR scales with body 

mass according to Equation B.2 (note that for homeotherms, the Arrhenius term presented as part of 

this equation in Sibly et al. (2013) is unnecessary since body temperature is constant and its value can 

be subsumed into the normalisation constant; Gillooly et al. 2001; Brown et al. 2004). 

 

If sufficient energy is assimilated (Eassim; KJ) through ingestion, this energy reserve is depleted to cover 

the costs of BMR. If insufficient, energy stores (Estor; KJ) may be utilised to cover the additional costs. If 

both energy reserves (Eassim + Estor) are exhausted, the individual is considered to be in starvation. 

During starvation, non-essential structural tissues (Mstruct; kg; corresponding to muscle depletion 

during starvation) may be metabolised to cover the costs of maintenance only until a point at which 

the individual dies (Mcore). Metabolising these tissues requires energetic expenditure in itself (Sibly et 

al., 2013) so the total required energy is twice BMR. 

Growth: Following maintenance, if energy reserves (Eassim + Estor) remain, sexually immature individuals 

(females under nine years of age and males under 19) grow. Growth in male and female elephants is 

Equation B.1a. 𝐼𝑅𝑚𝑎𝑥 = maxIR𝑠𝑐𝑎𝑙𝑖𝑛𝑔 𝑀𝑠𝑡𝑟𝑢𝑐𝑡
3/4 

 where  maxIR𝑠𝑐𝑎𝑙𝑖𝑛𝑔 = scaling coefficient (see B.3) 

 𝑀𝑠𝑡𝑟𝑢𝑐𝑡  = structural mass (kg) 

 

Equation B.1b. 
𝐼𝑅 = 𝐼𝑅𝑚𝑎𝑥 ×

𝑏𝑖𝑜𝑚𝑎𝑠𝑠

𝑏𝑖𝑜𝑚𝑎𝑠𝑠 + (ℎ𝑠𝑐 ∗ 𝑝) + (𝐷𝐷 ∗ 𝑝𝑜𝑝)
 

 

 where  𝐼𝑅𝑚𝑎𝑥 = maximum ingestion rate (kg) 

𝑏𝑖𝑜𝑚𝑎𝑠𝑠  = biomass (kg patch-1) 

ℎ𝑠𝑐  = half saturation coefficient (kg m-2; see B.3) 

𝑝 = total area of represented in model (m2; see B.4) 

𝐷𝐷 = coefficient of density dependence (see B.3) 

𝑝𝑜𝑝 = total number of individuals in the model 

Equation B.2. 𝐵𝑀𝑅 = 𝐵0𝑀𝑡𝑜𝑡
3/4 

 where  𝐵0 = taxon-specific normalization constant (see B.3) 

𝑀𝑡𝑜𝑡= total mass (kg) 
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prolonged (Karkach, 2006; Shrader et al., 2006; Hollister-Smith et al., 2007), so growth continues 

beyond sexual maturity, but only if sufficient energy remains following the reproduction. 

Both male and female elephants follow the von Bertalanffy growth curve (Lindeque and van Jaarsveld, 

1993) but have different growth constants, birth and maximal masses (see B.3; Lee & Moss 1995). 

Daily maximal growth rates (maxGR; kg day-1) are calculated using Equation B.3a (Sibly et al., 2013) 

and depend on current structural mass. 

 

The energy needed to fuel maximum growth (EGR; KJ day-1) is calculated as per Equation B.3b. If 

insufficient energy is available to cover maximum growth, growth continues at a suboptimal level. Any 

growth achieved is added to structural mass (Mstruct; kg). 

 

Reproduction: Only females reach sexual maturity in the model as males disperse beforehand (at age 

12). Following maintenance, if energy reserves (Eassim + Estor) remain, sexually mature females (those 

nine years or older) will assign energy to reproductive processes.  

The reproductive cycle comprises several components: oestrus cycling, conception, gestation, 

parturition and lactation (Figure B.4). The full oestrus cycle of a female elephant lasts 112 days (about 

16 weeks; Wasser et al., 1996), during which females are only receptive for about four days at the 

beginning of each cycle (Hildebrandt et al., 2011). A female may only cycle through oestrus if she is 

not currently pregnant or lactating to a milk-dependent calf (under 2 two years old), and has sufficient 

energy stores (Estor) to pass a proportional threshold (oeston) and enter oestrus (Bronson and Manning, 

1991; Wittemyer, Rasmussen and Douglas-Hamilton, 2007). If these conditions are met, the female 

will enter oestrus and conceive.  

Equation B.3a. 
𝑚𝑎𝑥𝐺𝑅 =

3𝐺𝑅

365
 ×  (𝑀∞

1
3 𝑀𝑠𝑡𝑟𝑢𝑐𝑡

2
3  −  𝑀𝑠𝑡𝑟𝑢𝑐𝑡) 

 where  𝑀𝑠𝑡𝑟𝑢𝑐𝑡  = structural mass at time t (kg) 

𝑀∞ = maximum structural mass (kg) 

𝐺𝑅 = von Bertalanffy growth constant (kg day-1; see B.3) 

Equation B.3b. 
𝐸𝐺𝑅 =   𝑚𝑎𝑥𝐺𝑅 × (𝐸𝑓𝑙𝑒𝑠ℎ +  𝐸𝑠𝑦𝑛) 

 where  𝑚𝑎𝑥𝐺𝑅   = maximum growth rate (kg) 

𝐸𝑓𝑙𝑒𝑠ℎ  = energy content of structural tissue (KJ kg-1) 

𝐸𝑠𝑦𝑛 = energy costs of synthesis (KJ kg-1) 



 

102 
 

 

Figure B.4. Summary of female reproductive cycle (key: diamonds = conditions, rectangles = 

processes, Y = yes, N = no). 

Gestation in elephants lasts 661 days (Poole et al., 2011) during which time, a female must commit 

energy to the growth of the foetus. Foetal growth is described by Equation B.4a so that daily addition 

of foetal mass (fGR; kg day-1) can be calculated using Equation B.4b.  

 

If energy reserves (Eassim + Estor) are insufficient to cover the costs of maximal foetal growth, the 

mother miscarries and is no longer pregnant. If growth is sufficient and the full term of the pregnancy 

is reached, parturition occurs. Mother and calf are linked at this point to allow the energy budget of 

the mother to relate to that of her calf. The mother is no longer pregnant, but commences lactation. 

Equation B.4a. 
𝐹𝑚𝑎𝑠𝑠 = (𝑓𝑔 𝑃𝑐𝑜𝑢𝑛𝑡)3 

 where  𝐹𝑚𝑎𝑠𝑠 = mass of foetus at time t (kg) 

𝑓𝑔 = foetal growth constant (see B.3) 

𝑃𝑐𝑜𝑢𝑛𝑡 = age of foetus (days since conception) 

  

Equation B.4b. 

𝑓𝐺𝑅 = 3𝑓𝑔3  × (
𝐹𝑚𝑎𝑠𝑠

1
3

𝑓𝑔
 )

2

 

 where  𝑓𝐺𝑅 = foetal growth rate (kg day-1) 

𝑓𝑔 = foetal growth constant (see B.3) 

𝐹𝑚𝑎𝑠𝑠 = mass of foetus (kg)  
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The sex of the calf is determined at random with equal probability of becoming a female or male 

(Amboseli population as of May 2018: 1328 F: 1320 M). The initial parameters of the calf are set: age 

is set to zero; all energetic rates are calculated accordingly; in females all reproductive variables are 

set to false (oestrus, pregnant, lactating in females) and reproductive counts to zero; structural mass 

(Mstruct; kg) is set as birth mass (M0; kg) for males and females accordingly, whilst energetic reserves 

(Eassim + Estor) are set to zero. 

Lactation continues until the calf is weaned at four years old (1460 days), but the amount of energy 

required for lactation varies throughout this period (Oftedal 1985; Figure B.5). Before the calf reaches 

a year old, milk forms the sole energy intake and so the energy provided by lactation must fully cover 

the costs of maintenance and growth. If the mother dies in this phase, so does the calf. Lactation 

peaks (EPL) when the calf is a year old. Between a year and two years of age, the calf remains milk-

dependent, and dies if its mother does, but the amount of milk supplied by the mother decreases at a 

constant rate daily as the calf begins to supplement this diet with vegetation. From two to four years 

of age, the calf is no longer dependent on milk, and could survive without its mother, but will continue 

to suckle at a decreasing rate. As the mother supplies less milk, the calf begins to increase its intake of 

vegetation to cover the costs of energy expenditure. 

 

Figure B.5. The energetic costs of lactation for elephant mothers match the increasing needs of the 

growing calf until it reaches a year of age. Thereafter the amount of milk produced reduces until the 

calf is weaned at four years old. For the first two years of life, the calf is dependent on its mother’s 

milk and thus dies if its mother dies. 
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If the mother has sufficient energy reserves (Eassim + Estor) available, she produces the maximum 

amount of milk given the age of the calf. If not, the mother will provide as much milk as her reserves 

(Estor) allow. Calves over a year of age may be able to make up for this deficit by consuming more 

vegetation. If a calf dies, the mother stops lactating. 

Energy reserves: If assimilated energy (Eassim; KJ) remains following all energy expending processes 

(maintenance, growth and reproduction), this is converted and stored as fat (Mstor; kg) and thus added 

to energy stores (Estor; KJ) up until a maximum is reached (stormax; kg).  

Mortality: Mortality in the model happens for several reasons. Firstly, if the energetic costs of 

maintenance cannot be met by energy reserves nor structural tissues, the individual has utilised all 

possible energy and starves to death. Second, if the mother of a milk-dependent calf dies, the calf too 

dies as it is unable to survive without its mother’s milk. Third, background mortality is included to 

account for deaths arising from stochastic events such as poaching, predation, disease or injury. When 

energy stores remain, background mortality is set at a constant rate for all individuals (MRback). 

However, this rate increases during starvation (when Estor = 0) to account for the increased 

susceptibility of starving individuals to disease and risk-taking behaviour (Equation B.5; Figure B.6; 

Foley et al., 2001). 

Equation B.5. 
𝑚𝑜𝑟𝑡 = 𝑀𝑅𝑏𝑎𝑐𝑘 − 

1

𝑀𝑅
 × ln

𝑀𝑠𝑡𝑟𝑢𝑐𝑡

𝑀𝑜𝑝𝑡
 

 where  𝑀𝑅𝑏𝑎𝑐𝑘 = background mortality rate (day-1; see B.3) 

𝑀𝑅 = scaling coefficient (see B.3) 

𝑀𝑠𝑡𝑟𝑢𝑐𝑡 = structural mass (kg) 

𝑀𝑜𝑝𝑡  = optimum structural mass for age (kg; Equation 

B.3a) 
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Figure B.6. Condition dependent stochastic mortality. When storage tissues remain (stores > 0), daily 

probability of mortality due to stochastic events occurs at a background rate (MRback). When all 

storage tissues are depleted, and an individual enters starvation, mortality rate increases to simulate 

the increasing susceptibility to disease and more risky behaviours causing death. 

Ageing: The age of individuals in days and years is monitored and updated at the end of each time 

step. 

B.3. Data evaluation 

This TRACE element provides supporting information on: The quality and sources of numerical and qualitative data used to 

parameterize the model, both directly and inversely via calibration, and of the observed patterns that were used to design the 

overall model structure. This critical evaluation will allow model users to assess the scope and the uncertainty of the data and 

knowledge on which the model is based. 

Summary: 

Empirical data were utilised in design, implementation, calibration and validation of the EEB as follows: 

▪ Remotely-sensed measures of vegetation and ground-based measures of biomass were used to 

estimate the temporal and spatial dynamics of food availability 

▪ Longitudinal demographic data collected by the Amboseli Elephant Research Project provide a 

record of the initial model population and both calibration and validation population dynamics 

data  

▪ Prior parameterisation was achieved via literature searches for model parameters 

Estimating Food Availability 

Elephants are generalist herbivores, meaning almost all standing plant biomass could be considered 

food (Lindsay, 2011). Mapping the food available to an elephant therefore requires quantification of all 
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plant biomass over the spatial and temporal scales at which an elephant lives. Since a single elephant 

may range over hundreds of kilometres (Viljoen, 1989; Thouless, 1996; Leggett, 2006; Wall et al., 

2013) and live for 70 years (Moss, Croze and Lee, 2011a), this presents an infeasible task for traditional 

ecological methods (Kerr and Ostrovsky, 2003; Pfeifer et al., 2012). Remote sensing presents a 

relatively hands-free-low-effort (Nilsen, Herfindal and Linnell, 2005) means of collecting such data 

whilst remaining powerful across space and time (Le Roux et al., 1997; Kerr and Ostrovsky, 2003; 

Nilsen, Herfindal and Linnell, 2005; Willems, Barton and Hill, 2009). 

We obtained remotely sensed measures of vegetation from the NASA Terra-MODIS (Moderate 

Resolution Imaging Spectroradiometer) mission. Specifically, we used 16-day composite values of the 

Normalised Difference Vegetation Index (NDVI; MOD13Q1 product; Didan, 2015) to infer time-specific 

values of vegetation quantity, accessed via the Oak Ridge National Laboratory web service (Vannan et 

al., 2011). Data were filtered using the MOD13Q1 QA flags so that only ‘good’ quality NDVI 

observations were considered in our calculations.  

NDVI values were calibrated using on-the-ground measures of herb-layer biomass, collected biannually 

in the Amboseli National Park since 1982 (Lindsay, 2011). All methods for measuring biomass were 

designed by W.K.Lindsay and are documented in detail in Lindsay 1982 and 1994. Herb-layer biomass 

alone was considered a suitable measure of food available to elephants as the Amboseli ecosystem has 

low tree cover and Amboseli elephants are predominantly grazers. Given the dates and location of on-

the-ground biomass measures (kg m-2), the corresponding NDVI value was determined and compared. 

Locations with high levels of canopy cover were removed from the analysis to ensure NDVI was 

responding to the herb-layer alone. The resulting relationship is described by Equation B.6 and Figure 

B.7. 

Following the calibration of NDVI, we constructed a time-series of NDVI to infer spatiotemporally specific 

food availability from March 1st 2000 to November 20th 2016. For each 16-day composite NDVI image, 

we extracted all NDVI pixel values falling within the model environment (combined home ranges of four 

elephant family groups; see B.4) and calculated a single median NDVI value. Thus, time-specific NDVI 

values are loaded into the model every 16 ticks (using NetLogo’s ‘csv’ extension; Wilensky 1999) and 

converted to biomass using equation B.6. 

Equation B.6. 
𝐵𝑖𝑜𝑚𝑎𝑠𝑠 =

(2666 × 𝑁𝐷𝑉𝐼 − 270)

1000
 × 𝑝 

 where  𝑁𝐷𝑉𝐼 = time and location specific NDVI value 

𝑝  = total area represented by model (m2) 
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Figure B.7. Relationship between NDVI and on-the-ground measures of herb-layer-biomass in the 

Amboseli National Park, 2000-2016.  

Elephant Population Data 

The Amboseli Elephant Research Project (AERP) has monitored more than 3,300 individually-known 

elephants from over 60 family groups in the Amboseli ecosystem since 1972. Elephants are identified 

by means of a photo recognition file illustrating unique identifying features; calves are identified 

through association with their known mothers (Moss, Croze and Lee, 2011b). Censuses are attempted 

on a monthly basis for all family groups noting individuals present and those missing. By tracking 

individuals in this manner throughout their lives, birth and death dates are recorded. 

Births: New-born and young calves are aged based on body size and proportions, skin colouration, 

motor coordination, and behaviour of both mother and calf (Moss, 1988). Since 1978, when the last 

family unit was identified, age estimates are within 1 month for 82.5% of births and within 6 months 

for 15.1% (n = 2601). The age of individuals born prior to start of the study was estimated using 

techniques including hind foot length (Western, Moss and Georgiadis, 1983; Lee and Moss, 1986, 

1995), tooth eruption and wear (Laws, 1966), tusk length (Moss, 1988, 1996) and circumference at the 

lip (Pilgram and Western, 1986), and shoulder height and back length (Croze, 1972; Laws, Parker and 

Johnstone, 1975; Lee and Moss, 1995; Moss, 1996; Shrader et al., 2006; Trimble et al., 2011). Age was 

backdated to give an estimate of birth date for all individuals and has been validated by collection of 

lower jaws post-mortem whenever possible (Lee et al., 2012).  

Deaths: Determining date of death for individual elephants has proven more difficult. In family groups, 

if an adult female was absent but her youngest calves present, the family was monitored closely. If her 

absence was prolonged for more than a week, while the rest of the family were sighted with her 

youngest offspring, she was assumed dead. For calves under three years old, absence whilst their 

mother was present suggested the calf had died. If a juvenile female or an adult female with her calves 
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was missing, these individuals were assumed dead if not sighted for a month with their family. Once it 

was concluded an individual had died, the death date was recorded as the midpoint between when 

the individual was last seen alive and when they were first noted as missing. Rarely (<5% of records), 

mortalities were more directly monitored due to illness or injury, or when carcasses were found and 

identified.  For the purposes of model analysis, we defined ‘calf’ mortality as deaths occurring in 

individuals less than two years of age and ‘adult and juvenile’ mortality as deaths occurring in 

individuals two years or older. This reflects the differing energetic thresholds controlling mortality in 

these groups: calf mortality occurs when mothers' stores (fat) reaches zero; adult and juvenile 

mortality occurs beyond this point, when all non-essential structural tissues (muscles) have also been 

depleted. 

For the purposes of model development and calibration, we modelled the population dynamics of four 

family groups (IBs, LBs, VAs and WAs). These families were chosen due to regular monitoring providing 

good confidence in birth and death dates, and good understanding of movement patterns owing to 

GPS collars fitted to females in these families (Boult, Sibly, et al., 2018).  

Individuals alive on March 1st 2000 were included in model initiation (n = 126; Table B.3). Age and sex 

were assigned, along with reproductive status of females. Reproductive status was determined given 

birth dates of previous and subsequent calves for each female, a gestation period of 661 days (Poole 

et al., 2011) and a lactation period of four years.  

Table B.3. The initial population on 1st March 2000 was derived from longitudinal 

demographic data collected by the AERP. The population consists of members of the IB, LB, VA 

and WA families. 

Name Family Mother Age 

(years) 

Age 

(days) 

Sex Pregnant p_count Lactating l_count 

ION IB ? 30 60 Female FALSE 0 TRUE 121 

ILK IB INE 21 0 Female FALSE 0 TRUE 1065 

ISO IB ISI 20 120 Female FALSE 0 TRUE 335 

IDA IB ING 16 330 Female FALSE 0 TRUE 121 

ILE IB IVY 15 30 Female TRUE 274 FALSE 0 

ISB IB ISI 10 60 Female FALSE 0 FALSE 0 

IPI IB ILK 7 0 Female FALSE 0 FALSE 0 

IVA IB ISI 5 90 Female FALSE 0 FALSE 0 

IDO IB IVY 5 60 Female FALSE 0 FALSE 0 

IDG IB ING 4 0 Female FALSE 0 FALSE 0 

IDY IB ING 0 60 Female FALSE 0 FALSE 0 

ILD IB ION 0 90 Female FALSE 0 FALSE 0 

INE IB ? 51 60 Female FALSE 0 TRUE 609 

ISO99 IB ISO 0 330 Female FALSE 0 FALSE 0 

INE8 IB INE 1 240 Female FALSE 0 FALSE 0 
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ISL9 IB ISL 1 0 Female FALSE 0 FALSE 0 

IDA9 IB IDA 0 90 Female FALSE 0 FALSE 0 

ISI IB ? 64 60 Female FALSE 0 TRUE 91 

ING IB ? 37 60 Female FALSE 0 TRUE 91 

IOL IB ? 32 60 Female FALSE 0 TRUE 91 

IDH IB ILK 2 330 Female FALSE 0 FALSE 0 

ISL IB ING 13 0 Female TRUE 182 TRUE 366 

IVY IB ? 28 60 Female FALSE 0 TRUE 366 

IVY99 IB IVY 1 0 Female FALSE 0 FALSE 0 

494 IB ION 10 60 Male NA NA NA NA 

492 IB IVY 10 0 Male NA NA NA NA 

514 IB ING 8 90 Male NA NA NA NA 

556 IB INE 5 90 Male NA NA NA NA 

557 IB IOL 5 90 Male NA NA NA NA 

676 IB IOL 0 60 Male NA NA NA NA 

675 IB ISI 0 60 Male NA NA NA NA 

493 IB INE 9 90 Male NA NA NA NA 

591 IB ION 5 0 Male NA NA NA NA 

544 IB ISO 6 120 Male NA NA NA NA 

590 IB IDA 4 180 Male NA NA NA NA 

LAM LB LUC 13 0 Female FALSE 0 TRUE 0 

LET LB ? 60 60 Female FALSE 0 FALSE 0 

LEL LB LAN 15 30 Female FALSE 0 TRUE 121 

LATA LB LAN 9 120 Female FALSE 0 FALSE 0 

LTP LB LAN 0 30 Female FALSE 0 FALSE 0 

LUC LB ? 37 60 Female FALSE 0 TRUE 366 

LEA LB ? 35 60 Female FALSE 0 TRUE 274 

LOI LB LEA 20 150 Female FALSE 0 TRUE 121 

LEH LB LEA 16 300 Female TRUE 609 TRUE 1308 

LIT LB LEA 5 90 Female FALSE 0 FALSE 0 

LAN LB LET 31 60 Female FALSE 0 TRUE 60 

LTH LB LOB 0 0 Female FALSE 0 FALSE 0 

LTA LB LOI 8 120 Female FALSE 0 FALSE 0 

LEN LB LOI 4 0 Female FALSE 0 FALSE 0 

LAC LB LOI 0 90 Female FALSE 0 FALSE 0 

LOT LB LEA 13 60 Female FALSE 0 FALSE 0 

LOB LB LUC 20 30 Female FALSE 0 TRUE 0 

LOR LB LET 19 60 Female TRUE 335 FALSE 0 

LLY LB LUC 9 30 Female TRUE 60 FALSE 0 

LAM0 LB LAM 0 0 Male NA NA NA NA 

597 LB LAN 5 0 Male NA NA NA NA 

497 LB LEA 9 90 Male NA NA NA NA 

681 LB LEA 0 270 Male NA NA NA NA 

616 LB LEH 3 210 Male NA NA NA NA 

679 LB LEL 0 90 Male NA NA NA NA 
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596 LB LET 5 60 Male NA NA NA NA 

545 LB LOB 6 240 Male NA NA NA NA 

634 LB LOB 2 330 Male NA NA NA NA 

615 LB LOR 4 60 Male NA NA NA NA 

560 LB LUC 5 90 Male NA NA NA NA 

680 LB LUC 1 0 Male NA NA NA NA 

496 LB LET 10 0 Male NA NA NA NA 

VEG VA VEE 32 60 Female TRUE 182 TRUE 1186 

MAT VA VEA 31 60 Female FALSE 0 TRUE 91 

VEL VA VER 28 60 Female FALSE 0 TRUE 1186 

VES VA VEE 27 60 Female TRUE 639 TRUE 1216 

VAR VA VAN 26 60 Female FALSE 0 TRUE 1065 

VEN VA VEE 21 90 Female TRUE 213 TRUE 547 

VIV VA VIO 20 270 Female TRUE 213 TRUE 1216 

VEV VA VEE 15 120 Female TRUE 335 TRUE 1186 

VLK VA VER 15 30 Female FALSE 0 TRUE 121 

VSK VA VAR 15 30 Female FALSE 0 TRUE 821 

VLR VA VES 14 30 Female FALSE 0 FALSE 0 

VNN VA MAT 13 150 Female FALSE 0 TRUE 121 

VUR VA VIO 13 0 Female TRUE 425 FALSE 0 

VNA VA VEL 9 300 Female FALSE 0 FALSE 0 

VIG VA VEN 9 60 Female FALSE 0 FALSE 0 

VIN VA VAR 8 60 Female FALSE 0 FALSE 0 

VLA VA VIO 5 0 Female FALSE 0 FALSE 0 

VRV VA VEE 4 0 Female FALSE 0 FALSE 0 

VDL VA VER 4 0 Female FALSE 0 FALSE 0 

VTT VA VAR 2 330 Female FALSE 0 FALSE 0 

VGS VA VEG 3 60 Female FALSE 0 FALSE 0 

VTG VA VEV 3 60 Female FALSE 0 FALSE 0 

VVH VA VIV 3 90 Female FALSE 0 FALSE 0 

VXN VA VEL 3 60 Female FALSE 0 FALSE 0 

VIM VA VEN 1 150 Female FALSE 0 FALSE 0 

VGO VA VSK 2 60 Female FALSE 0 FALSE 0 

VID VA VIR 59 60 Female FALSE 0 TRUE 0 

VER VA ? 45 60 Female TRUE 213 FALSE 0 

VEE VA VIC 53 60 Female FALSE 0 FALSE 0 

VIO VA VIC 36 60 Female FALSE 0 TRUE 121 

471 VA VEE 11 330 Male NA NA NA NA 

481 VA VER 11 0 Male NA NA NA NA 

522 VA VIO 9 30 Male NA NA NA NA 

537 VA VEE 8 60 Male NA NA NA NA 

536 VA VEG 7 300 Male NA NA NA NA 

538 VA VER 7 300 Male NA NA NA NA 

535 VA VES 8 60 Male NA NA NA NA 

551 VA VID 6 330 Male NA NA NA NA 
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573 VA MAT 6 0 Male NA NA NA NA 

574 VA VEN 5 90 Male NA NA NA NA 

625 VA VES 3 90 Male NA NA NA NA 

VLK9 VA VLK 0 90 Male NA NA NA NA 

VNN9 VA VNN 0 90 Male NA NA NA NA 

700 VA MAT 0 60 Male NA NA NA NA 

735 VA VID 0 0 Male NA NA NA NA 

699 VA VIO 0 90 Male NA NA NA NA 

WIL WA WEN 42 60 Female FALSE 0 TRUE 578 

WIN WA WEN 30 60 Female FALSE 0 TRUE 91 

WND WA WEN 25 270 Female FALSE 0 TRUE 0 

WNN WA WIL 13 90 Female TRUE 639 FALSE 0 

WLW WA WIN 8 150 Female FALSE 0 FALSE 0 

WIG WA WIN 0 60 Female FALSE 0 FALSE 0 

WOU WA WND 7 120 Female FALSE 0 FALSE 0 

WDA WA WND 2 60 Female FALSE 0 FALSE 0 

503 WA WIL 9 330 Male NA NA NA NA 

575 WA WIL 6 0 Male NA NA NA NA 

655 WA WIL 1 210 Male NA NA NA NA 

626 WA WIN 4 0 Male NA NA NA NA 

736 WA WND 0 0 Male NA NA NA NA 

 

Annual population dynamic data were also used in model calibration (on 1st October 2000-2017; see 

B.6). Records of the number of births, calf (milk-dependent calves less than two years old) and adult / 

juvenile (two years or older) deaths, and population size were calculated at the end of each Amboseli 

year. Amboseli years run from 1st October to 30th September each year and correspond to the annual 

cycle of rain (Croze and Lindsay, 2011). Adult / juvenile and calf mortality were considered separately 

because controls on mortality are different for milk-dependent calves than for those that can survive 

on vegetation alone: milk-dependent calves die when mothers enter starvation (mothers stop 

producing milk at this point), but adults and juveniles may survive starvation through depletion of 

some structural tissues (see B.4). The model parameters were therefore calibrated against 68 data 

points: 17 population sizes, 17 adult and juvenile mortality rates, 17 annual birth rates and 17 annual 

calf mortality rates (Figure B.8).   
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Figure B.8. Population dynamic data used in calibration of model parameters: population size, birth 

rate, adult and calf mortality rates of four elephant families (IBs, LBs, VAs, WAs). 

To validate the model we compared model outputs to independent data from families not used in 

model calibration. We used the 30 parameter sets accepted in the ABC to simulate the population 

dynamics of six intensively recorded Amboseli elephant family groups (AAs, FBs, GBs, JAs, KB2s and 

OBs). These families are resident in Amboseli National Park and thus use a different area to that used 

in model calibration (see B.4). The model was thus adapted to incorporate the different starting 

population on 1st March 2000 (Table B.4), spatial extent and NDVI input data. All model structure and 

parameters remained the same (Figure B.9).  

 

Fig B.9. Population dynamics data used to validate the model: population size, birth rate, adult and 

calf mortality rates of resident elephant families (AAs, FBs, GBs, JAs, KB2s and OBs). 
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Table B.4. Initial population on 1st March 2000 used to initiate the validation of the model. Data 

derived from Amboseli Elephant Research Project individual-based longitudinal demographic data. 

Name Family Mother Age 

(years) 

Age 

(days) 

Sex Pregnant p_count Lactating l_count 

AAN AA AST 2 210 Female FALSE 0 FALSE 0 

ABR AA AUD 5 150 Female FALSE 0 FALSE 0 

AGA AA ANB 32 60 Female FALSE 0 TRUE 1035 

ALC AA AST 7 0 Female FALSE 0 FALSE 0 

ALI AA ANB 38 60 Female FALSE 0 TRUE 759 

ALT AA AGA 18 0 Female FALSE 0 TRUE 60 

ALX AA AGA 6 330 Female FALSE 0 FALSE 0 

AMB AA AMY 18 270 Female FALSE 0 TRUE 121 

AME AA ALY 32 60 Female FALSE 0 TRUE 91 

AMY AA ? 48 60 Female FALSE 0 TRUE 305 

AMY9 AA AMY 0 300 Female FALSE 0 FALSE 0 

ANG AA AMY 15 60 Female FALSE 0 FALSE 0 

ANH AA AME 18 90 Female FALSE 0 TRUE 152 

ANH99 AA ANH 0 120 Female FALSE 0 FALSE 0 

ANN AA AME 9 300 Female FALSE 0 FALSE 0 

ART AA ALI 2 0 Female FALSE 0 FALSE 0 

AST AA ALI 21 60 Female FALSE 0 TRUE 943 

AUD AA AMY 27 330 Female TRUE 630 FALSE 0 

AVA AA AME 0 60 Female FALSE 0 FALSE 0 

FAD FB FEL 1 270 Female FALSE 0 FALSE 0 

FAN FB FRE 31 60 Female TRUE 416 TRUE 974 

FAN7 FB FAN 2 240 Female FALSE 0 FALSE 0 

FAR FB FAN 12 240 Female TRUE 324 FALSE 0 

FAW FB FAY 20 30 Female FALSE 0 TRUE 60 

FAY FB FRE 35 60 Female FALSE 0 TRUE 486 

FCA FB FAW 0 30 Female FALSE 0 FALSE 0 

FEL FB ? 36 60 Female FALSE 0 TRUE 639 

FLM FB FLO 9 0 Female FALSE 0 FALSE 0 

FLS FB FLO 16 270 Female FALSE 0 TRUE 366 

FOR FB FAN 6 210 Female FALSE 0 FALSE 0 

FRE FB ? 65 60 Female FALSE 0 FALSE 0 

FRT FB FAY 8 90 Female FALSE 0 FALSE 0 

GAIL GB GRA 16 330 Female FALSE 0 TRUE 305 

GAM GB GWE 8 0 Female FALSE 0 FALSE 0 

GCA GB GEO 3 0 Female FALSE 0 FALSE 0 

GEE GB GLO 9 240 Female FALSE 0 FALSE 0 

GEN GB GLE 4 0 Female FALSE 0 FALSE 0 

GEO GB GLA 20 300 Female FALSE 0 TRUE 1124 

GER GB ? 52 60 Female TRUE 600 FALSE 0 

GGB GB GLA 0 0 Female FALSE 0 FALSE 0 
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GGR GB GOL 3 90 Female FALSE 0 FALSE 0 

GHT GB ? 3 30 Female FALSE 0 FALSE 0 

GIG GB GLA 12 0 Female TRUE 82 FALSE 0 

GLA GB ? 37 60 Female FALSE 0 TRUE 29 

GLO GB ? 56 60 Female FALSE 0 FALSE 0 

GMB GB GEO 8 0 Female FALSE 0 FALSE 0 

GMM GB GWE 3 0 Female FALSE 0 FALSE 0 

GNA GB GRA 7 120 Female FALSE 0 FALSE 0 

GOL GB GLO 25 330 Female FALSE 0 TRUE 0 

GOL0 GB GOL 0 0 Female FALSE 0 FALSE 0 

GOO GB GLO 20 60 Female TRUE 204 FALSE 0 

GRA GB ? 50 60 Female TRUE 265 TRUE 1065 

GRB GB GER 12 300 Female FALSE 0 TRUE 29 

GSA GB GRA 13 30 Female TRUE 630 FALSE 0 

GTU GB GAIL 0 300 Female FALSE 0 FALSE 0 

GWE GB GRA 20 270 Female TRUE 355 TRUE 1096 

JAM JA JOY 9 330 Female FALSE 0 FALSE 0 

JAN JA JES 17 30 Female FALSE 0 FALSE 0 

JEAN JA JOL 1 240 Female FALSE 0 FALSE 0 

JOD JA JOA 20 120 Female FALSE 0 TRUE 91 

JOL JA JEZ 23 90 Female FALSE 0 TRUE 609 

JOY JA ? 59 60 Female TRUE 477 FALSE 0 

JTT JA JOD 0 60 Female FALSE 0 FALSE 0 

KATE KB2 KAM 15 120 Female TRUE 82 FALSE 0 

KDD KB2 KYR 0 300 Female FALSE 0 FALSE 0 

KDZ KB2 KAM 10 0 Female FALSE 0 FALSE 0 

KIE KB2 KLE 0 300 Female FALSE 0 FALSE 0 

KYR KB2 KLE 15 60 Female FALSE 0 TRUE 305 

ODI OB ? 34 60 Female FALSE 0 TRUE 29 

OKI OB ODI 9 0 Female FALSE 0 FALSE 0 

OLA OB OME 11 120 Female TRUE 112 FALSE 0 

OLV OB OTT 0 300 Female FALSE 0 FALSE 0 

OME OB ? 47 60 Female FALSE 0 TRUE 91 

OME9 OB OME 0 60 Female FALSE 0 FALSE 0 

OPR OB OPH 15 90 Female FALSE 0 TRUE 0 

OPR0 OB OPR 0 0 Female FALSE 0 FALSE 0 

OPR6 OB OPR 4 0 Female FALSE 0 FALSE 0 

ORG OB OMO 8 60 Female FALSE 0 FALSE 0 

ORN OB ODI 5 60 Female FALSE 0 FALSE 0 

OTT OB ODI 17 120 Female FALSE 0 TRUE 305 

OZO OB OME 15 150 Female FALSE 0 TRUE 29 

OZO0 OB OZO 0 0 Female FALSE 0 FALSE 0 

483 AA AMY 10 0 Male NA NA NA NA 

505 AA ALI 8 150 Male NA NA NA NA 

511 GB GLE 8 270 Male NA NA NA NA 
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Prior Parameterisation 

Parameters marked * were deemed uncertain and subjected to inverse parameterisation (storscaling, 

maxIRscaling, hsc, DD, AEveg, AEmilk, B0, E0, EPL, MRback and MRscaling; see B.6).  

Half saturation coefficient (hsc): Ingestion rates were estimated through observations of elephants at 

various food densities in Amboseli National Park to produce a functional response curve (Lindsay, 

1994). The half saturation coefficient is the food density at which half the maximum ingestion rate is 

achieved (Mulder and Hendriks, 2013). Reading from Lindsay’s functional response curves, maximum 

ingestion rates were 159 and 96g min-1 for male and female elephants, respectively, and the food 

density at which half of this was achieved was 0.26 and 0.16 kg m-2. For simplicity, a mean value of 

both sex’s half saturation coefficients was used in the model (0.21 kg m-2)*.  

Maximum ingestion rate scaling coefficient (maxIRscaling): Maximum ingestion rates estimated by 

Lindsay (1994) were converted to kg day-1 assuming elephants feed for 16 hours a day (Lindsay, 2011). 

Given the average asymptotic mass of 4690 and 2740kg for males and females, respectively (Lee and 

Moss, 1995),  the allometric equation describing maximum ingestion rate (Equation B.1a) can be 

rearranged, giving an estimate of the scaling coefficient at 0.27 for males and 0.24 for females. A single 

mean value of 0.255 is used in the model*. 

512 GB GLA 8 90 Male NA NA NA NA 

532 GB GOL 8 0 Male NA NA NA NA 

543 FB FEL 7 0 Male NA NA NA NA 

548 OB OME 6 90 Male NA NA NA NA 

559 KB2 KLE 6 60 Male NA NA NA NA 

577 AA AMB 5 0 Male NA NA NA NA 

578 AA ALT 5 60 Male NA NA NA NA 

579 AA AME 5 60 Male NA NA NA NA 

588 FB FLO 5 60 Male NA NA NA NA 

592 JA JOY 5 0 Male NA NA NA NA 

593 JA JOD 5 0 Male NA NA NA NA 

614 GB GER 4 0 Male NA NA NA NA 

629 AA AGA 2 300 Male NA NA NA NA 

633 GB GRA 2 330 Male NA NA NA NA 

670 FB FLS 1 0 Male NA NA NA NA 

718 GB GRB 0 0 Male NA NA NA NA 

ALT0 AA ALT 0 30 Male NA NA NA NA 

AMB9 AA AMB 0 90 Male NA NA NA NA 

FAY8 FB FAY 1 90 Male NA NA NA NA 

ODI0 OB ODI 0 0 Male NA NA NA NA 



 

116 
 

Assimilation efficiency of vegetation (AEveg): The assimilation efficiency has been estimated for 

elephants by both Rees (1982) and Wiegert & Evans (1967) as 22.4% and 32.5%, respectively. The 

mean of these two estimates was used in the model*.  

Taxon-specific normalization constant (B0): Lindsay (2011) presented estimates of elephant daily basal 

metabolic rate (BMR) from various sources. Peters (1983) estimated basal metabolism using equation 

B.2 and found BMR (MJ) to scale with mass to the quarter power using a taxon-specific normalisation 

constant of 0.293. B0 was therefore taken as 293 in the model to calculate BMR in KJ*.  

Growth constants (GRm / GRf): Lindeque & van Jaarsveld (1993) compared logistic, Gompertz and von 

Bertalanffy growth curves to the post-natal growth of elephants in the Etosha National Park, 

concluding that the von Bertalanffy provided the best fit. Using this information, Lee & Moss (1995) 

calculated the von Bertalanffy growth constant for shoulder height for known aged African elephants 

in the Amboseli elephant population as 0.07134 for males and 0.12763 for females. The von 

Bertalanffy equation was adapted to describe growth in mass rather than height (Sibly et al., 2013). 

The resulting growth curves are presented in Figure B.10. 

 

Figure B.10. Growth curves of male (dashed) and female (solid) elephants follow the von Bertalanffy 

growth equation if sufficient forage is available. 

Body fat threshold required for oestrus cycling(oeston): Temporal variation in conceptions of elephants 

suggests that they experience condition-dependent oestrus; few conceptions occurred in years when 

the maximum NDVI value (used as a proxy for vegetation abundance) was low which is suggestive of a 

physiological threshold under which elephants do not enter oestrus and conceive (Wittemyer, 

Rasmussen and Douglas-Hamilton, 2007). Estimates of this physiological threshold are not available for 

elephants but have received some attention in humans, and Bronson & Manning (1991) suggest that 

20% body fat is required for oestrus cycling. The proportion of body fat (Mstor; kg) in relation to total 

mass (Mtot; kg) required for oestrus cycling was therefore taken as 0.2. 
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Foetal growth constant (fg): Non-linear equations were compared to data points of foetal mass 

provided by Lee (pers. comm.). A power equation provided the best fit to the data with a foetal growth 

constant of 0.0069 (Figure B.11).  

 

Figure B.11. Foetal growth curve (dashed line) fitted using unpublished data (points) collected by Lee 

(pers.comm.) 

Maximum storage tissue scaling (stormax): Pitts & Bullard (1968) described the fat content of the body 

of mammals using Equation B.7, where storscaling is 0.06*.  

 

Core proportion of structural tissues (core_prop): Despite several body condition indices developed for 

elephants, quantification of the proportion of structural tissues which can or cannot be metabolised 

are not available. Like elephants, polar bears undergo regular periods of fasting, where energy balance 

is negative (see Figure B.3), when sea-ice melts and they are limited in their ability to catch their usual 

prey of seals. Atkinson et al. (1996) observed a 10% decline in lean body mass (or structural tissues) of 

polar bears during this period, suggesting the core proportion of structural tissues in polar bear in less 

than 0.9. Given the lack of an elephant-specific reference value, we utilised 0.9 as a starting point for 

core_prop. After model testing, we found that a value of 0.951 provided best model fit. This was not 

subjected to further calibration.  

Energy demands of lactation (E0 / EPL): Lactation curves are not available for elephants and there are 

too few data points with which to fit such a curve. However elephants are considered to follow a type I 

Equation B.7. 𝑆𝑡𝑜𝑟𝑚𝑎𝑥 = 𝑠𝑡𝑜𝑟 𝑠𝑐𝑎𝑙𝑖𝑛𝑔 𝑀𝑡𝑜𝑡
0.2 

 where  𝑆𝑡𝑜𝑟𝑚𝑎𝑥 = maximum amount of storage tissue (kg) 

𝑠𝑡𝑜𝑟 𝑠𝑐𝑎𝑙𝑖𝑛𝑔 = coefficient for scaling maximum stores with 

total mass 

𝑀𝑡𝑜𝑡= total mass (kg) 
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curve (Wood, 1967): the energetic demands of lactation increase until peak lactation at which point 

the mother can no longer meet the growing demands of the calf and begins the weaning process. 

Oftedal (1985) described the allometric equation scaling energy demands of peak lactation with a 

mother’s mass (Equation B.8). Energetic demand of peak lactation (EPL) was therefore calculated as 

112,170KJ day-1*. The energy invested in lactation on the first day of the calf’s life (E0) has not been 

measured in elephants. We assume that the mother’s milk production covers the energetic demands 

of metabolism and growth in the calf following conversion efficiencies. The conversion efficiency of the 

mother’s energy reserves to energy available in milk is 0.84 in cows* (AEmilk; Agricultural Research 

Council 1980). E0 was therefore calculated for new-born male and female calves as 12236KJ day-1 and 

11537KJ day-1, respectively. A single mean value of 11886KJ day-1 is used in the model*.  

 

Mortality (MRback / MRscaling): Background mortality accounts for deaths occurring as a result of 

stochastic events such as poaching, predation, human-elephant conflict, disease or injury. A baseline 

background daily mortality rate (MRback) was calculated as 2.74 x 10-5* from life history tables 

presented in Lee et al. (2011). Given that the chances of some causes of stochastic mortality increase 

when elephant body condition is poor, daily mortality rate increased during starvation (MRscaling; 

Equation B.5; Figure B.6). We estimated MRscaling assuming that mortality rate was equal to MRback 

when maximum structural tissues remained (Mstruct) and increased as structural tissues were 

metabolised to cover the costs of maintenance during starvation.  

B.4. Conceptual model evaluation 

This TRACE element provides supporting information on: The simplifying assumptions underlying a model’s design, both with 

regard to empirical knowledge and general, basic principles. This critical evaluation allows model users to understand that 

model design was not ad hoc but based on carefully scrutinized considerations.  

Summary: 

The model relies on several underlying assumptions and conceptual theories: 

▪ The spatial extent of the model has been guided by our previous work in modelling movement 

decisions of these elephant family groups 

▪ The conceptual models of body composition, energy reserves and energy allocation are based on 

current understanding of physiological ecology 

Equation B.8. 𝐸𝑃𝐿 = 44 𝑀𝑠𝑡𝑟𝑢𝑐𝑡
0.7 

 where  𝐸𝑃𝐿 = energetic demand of peak lactation (KJ day-1) 

𝑀𝑠𝑡𝑟𝑢𝑐𝑡= structural mass (kg) 
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Environment 

The Amboseli ecosystem (bounding coordinates: -2.02N, -3.28S, 38.03E, 36.67W) covers an area of 

approximately 8000km2, straddling the southern border of Kenya and the northern border of Tanzania. 

It comprises the central Amboseli National Park (ANP; 392km2) and surrounding landscape (Croze and 

Lindsay, 2011). The habitat consists of semi-arid savannah, with fluctuations in vegetation driven by 

two wet seasons: the short-rains (November-December) and the long-rains (March through May; Croze 

& Lindsay, 2011). 

The home range of each elephant family was identified as the 95% kernel density estimates (Shannon 

et al. 2006; Figure B.1) using location data collected by GPS collars fitted to adult females Ida, Lobelia, 

Vicky and Willow from June 2011 for 12 months (Boult, Sibly, et al., 2018). The total area of the 

combined home ranges covered 637,142,163 m2 (p) and provided the spatial extent across which NDVI 

values were retrieved (see B.3). 

The environment was adapted during model validation to represent the home ranges of the resident 

elephant families. Sightings data, in which the family group and the location based on a grid system 

within the Amboseli National Park, have been recorded since 1972. We used records of the six resident 

family groups from 2000 to 2016 to estimate their home ranges within the park (95% kernel density 

estimates). However, given that this only represents their ranging within ANP, the area of the 

estimated home ranges is too small to provide sufficient forage. We therefore used the model to 

estimate the size of the area which was roughly equal to that of ANP (p = 392,000,000 m2).   

Body Composition 

All body tissue can be characterised as either structural or storage (Kooijman, 2000); total mass is the 

sum of these two tissues. In mammals, storage tissues consist mainly of fat in adipose tissue (Sibly et 

al., 2013) which may be accumulated during times of positive energy balance and drawn from in times 

of food shortages (Figure B.3). The maximum amount of storage tissues an individual can sustain is a 

trade-off between the benefits of having reserves to get through tough times and the additional costs 

of mobility (Sibly et al., 2013), and scales allometrically with structural mass so that larger individuals 

can sustain greater energy stores (Pitts & Bullard 1968; Equation B.7). An individual is considered in 

peak body condition when storage tissues reach maximum. Structural mass is determined by the 

growth curves described in Lee & Moss (1995; Figure B.10), and therefore varies with age, sex and an 

individual’s previous ability to meet the energetic demands of growth. Structural tissues (e.g. skeleton, 

muscles and organs) can be further divided into those essential for survival and those that are not. 

Individuals have the ability to metabolise a non-essential structural tissues (muscle mass) to cover the 

costs of BMR during starvation (Atkinson and Ramsay, 1995). 
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Energy Reserves 

Energy is available to an individual in the form of energy reserves. Reserves comprise assimilated 

energy, storage tissues and non-essential structural tissues (Atkinson, Nelson and Ramsay, 1996). 

Assimilated energy is that which is immediately available through the ingestion of food and forms the 

first port of call for all energy expending processes (maintenance, growth and reproduction). If 

assimilated energy proves insufficient to cover the costs of these processes, storage tissues may be 

depleted. If storage tissues are exhausted, the individual is deemed to be in starvation, at which point 

growth and reproduction stop. The individual may metabolise a small portion of structural tissues 

(Atkinson & Ramsay 1995) with the sole purpose of covering maintenance. This reflects the strategy of 

sacrificing current productivity (growth and reproduction) to improve the chances of future 

production. Should this small proportion of usable structural tissue also be depleted, the individual 

dies.  

Depletion of storage tissue is more efficient than that of structural tissues; storage tissue has a higher 

energy content (39,300 KJ kg-1 compared to 7,000 KJ kg-1 of structural tissue; Peters 1983; Schmidt-

Nielsen 1997; Sibly et al. 2013) and is more easily metabolised (depletion of structural tissue costs an 

additional 7000 KJ kg-1).  

Energy Budget Model 

Food availability is a key driver of population dynamics, and the interaction between the two is 

modelled via an energy budget. There is little consensus regarding how energy budgets should be 

modelled in IBMs and the options vary in their assumptions (Sibly et al., 2013). We have chosen to use 

the energy budget model proposed by Sibly et al. (2013), the key features of which are described 

hereafter (for details see B.2).  

The principles of physiological ecology are grounded in evolutionary theory: organisms aim to optimise 

processes of survival, growth and reproduction to achieve maximum Darwinian fitness. It is generally 

accepted that energetic resources are allocated separately to maintenance, growth, reproduction and 

storage (Peters, 1983; Sibly and Calow, 1986a). Energetic resources are limited by the availability of 

food and how much an animal can intake. Thus, if more resources are allocated to one process, less 

will be available for others: as dictated by conservation of energy and matter (Sibly et al., 2013). When 

food is abundant, resources may be allocated maximally to all energy-expending processes. However, 

when resources are limited, allocation of energy must be prioritised. The first priority is maintenance, 

since energy allocated to maintenance fuels the basic processes of life essential for survival. Following 

maintenance, for individuals not yet sexually mature, energy is then allocated to growth, and any 

remaining to stores. In determinate growers (those which reach maximal mass at sexual maturity), 

once sexually mature, energy is allocated to reproduction following maintenance, and then to stores. 

In indeterminate growers (those that continue to grow following first reproduction; this includes 

elephants), reproduction has priority over growth since reproduction is generally strongly favoured by 
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natural selection (Sibly and Calow, 1986b), and only after reproduction and growth can energy be 

allocated to stores. 

B.5. Implementation verification 

This TRACE element provides supporting information on: (1) whether the computer code implementing the model has been 

thoroughly tested for programming errors, (2) whether the implemented model performs as indicated by the model 

description, and (3) how the software has been designed and documented to provide necessary usability tools (interfaces, 

automation of experiments, etc.) and to facilitate future installation, modification, and maintenance. 

Summary: 

To the best of our ability, we have ensured the model operates as described in this TRACE document, 

having employed various strategies of model checking. The model as described, along with associated 

files, are available to interested parties. For those wanting to use the model, guidelines are provided. 

Model verification 

The model was tested thoroughly to ensure the model performed as described. We made particular 

use of the in-built functionality provided by NetLogo 6.0.2: turtle and patch monitors were utilised to 

confirm energetic equations were calculated correctly; print statements showed the passage of 

individuals through the energy budget processes; the profiler extension ensured ordering proceeded 

as expected; plots monitored allometric scaling, followed individual energy budgets and body 

composition. We also implemented each sub-model individually in unique NetLogo instances. Finally, 

the model was checked by members of the IBM@Reading research group 

(http://ibmreading.wordpress.com).  

How to install and use the model 

The model is implemented in NetLogo 6.0.2, a programmable environment particularly suited to 

modelling complex, individual-based systems evolving over time (Wilensky, 1999). NetLogo is free to 

download and runs on all major operating systems. Version 6.0.2 can be downloaded here: 

https://ccl.northwestern.edu/netlogo/6.0.2/. The model and associated files are available in a 

supplementary zip file (available: https://github.com/vlboult93/EEB_Model.git). For those wishing to 

utilise the model, please begin by reading the enclosed ‘READ_ME’ file. 

B.6. Model output verification 

This TRACE element provides supporting information on: (1) how well model output matches observations and (2) how much 

calibration and effects of environmental drivers were involved in obtaining good fits of model output and data.  

Summary: 

Uncertain parameters in the model were calibrated using rejection approximate Bayesian 

computation. This resulted in good model fits to elephant population dynamic data, most notably, 

fitting the ‘drought year’ shows the importance of food availability as a driver of elephant population 

dynamics. 
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We deemed 11 parameters uncertain and thus requiring calibration (storscaling, maxIRscaling, hsc, AEveg, 

AEmilk, B0, E0, EPL, MRback, MRscaling and DD). We calibrated these parameters using rejection approximate 

Bayesian computation (ABC; Van Der Vaart et al. 2015): parameter values were sampled randomly 

from uniform prior distributions ranging from roughly half to double their reference values (Table B.2 

and see B.3); the model was simulated 100,000 times; the 30 simulations which best fit the empirical 

data (population size, birth and mortality rates) were accepted; posterior distributions were derived 

from the accepted runs (Figure B.12). Parameters B0, E0 and EPL experienced the greatest degree of 

narrowing along with hsc. Given that hsc is responsible for controlling the relationship between food 

density and ingestion rate, and thus energy intake, it is sensible that this parameter was important in 

determining the model outputs. B0, E0 and EPL on the other hand, control the rates of the two most 

energetically expensive processes, maintenance and lactation, hence the narrowing. 

 

Figure B.12. Prior and posterior distributions of parameter values. Grey dashed lines show the priors; 

black lines the posteriors. Circles represent medians, whiskers 95% credible intervals. All parameter 

values were scaled by dividing by the corresponding literature values, so that a value of 1 corresponds 

to the value shown in Table B.2. 

Fits of the model to the data are shown in Figure B.13. Following calibration, we were satisfied that the 

model replicated the data well. Of particular importance to model fit was the demographic impacts of 

a drought in 2009. During this period, the Amboseli elephant population as a whole declined by 25%; 

in our modelled families, 16 adults and 15 calves died. Due to starvation in surviving elephants, 

females struggled to meet the demands of reproduction, resulting in the deaths of young calves and 

failure of pregnancies. Despite the drought breaking at the end of 2009, the 22-month gestation 

period of elephants meant there was a two-year lag in births with low numbers of births occurring in 

2010 and 2011, but since drought acts to synchronise female reproduction by eliminating oestrus, 

there was a ‘baby-boom’ in 2012. These drought-induced population dynamics are critical in naturally 

regulating elephant population size and it is therefore crucial that models capture these dynamics if 

they are to accurately predict elephant population size. The high R2 values indicate that model outputs 

capture drought-dynamics and correspond well with observed elephant population dynamics. 
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Figure B.13. Population size, births and deaths from Amboseli years 2000 – 2016. Black lines and open 

points show the data, the thick grey line is the best fitting simulation. Light grey lines show the 30 best 

fitting simulations indicating the uncertainty in model outputs that result from uncertainty in the 

values of parameters. Amboseli years run October to September. R2 of best fitting simulation 

presented on plot. 

Elevated calf mortality predicted by the model in 2005 was the result of low median NDVI during this 

period. In contrast to the 2009 drought, we believe elephants were able to buffer this period of low 

productivity in 2005 by being more selective in their foraging locations and retreating to the fairly 

constant source of food in the ANP swamps, hence mortality rates are low. This was not possible 

during the 2009 drought, which began with a prolonged period of low rainfall in 2008, meaning ‘fall-

back’ resources such as the swamps were already depleted by the time the official drought occurred in 

2009. This resulted in the high mortality rates of both adults and calves in 2009. The under-prediction 

of birth rates following the 2009 drought is possibly because densities of other grazers are not 

considered in the model. The number of grazers in the Amboseli ecosystem remained in low for a 

prolonged period following the drought, limiting competition for food for elephants. Incorporation of 

interspecific competitor density would be expected to improve model fit to birth rates post-2009, as 

elephants access more food and reproduce more readily.  

B.7. Model analysis 

This TRACE element provides supporting information on: (1) how sensitive model output is to changes in model parameters 

(sensitivity analysis), and (2) how well the emergence of model output has been understood.  

Summary: 

A local sensitivity analysis identified sensitive model outputs and confirmed influential model 

parameters. 

Local sensitivity analysis identified relative sensitivities of population size, birth rates and adult and calf 

mortality rates to changes in calibrated parameter values. Changes in outputs were averaged over a 10% 

increase and decrease in each parameter, and over ten repeated simulations to account for stochasticity 

in the model. While one parameter was tested all others were kept at their calibrated values. Sensitivities 

are presented in Table B.5 as the % change in the variable relative to 10% changes in parameter values. 
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Adult and juvenile mortality was the least sensitive variable and calf mortality the most sensitive. The 

robustness of adult and juvenile mortality to changes in parameter values reflects generally low mortality 

rates in adult elephants whose large body size and substantial energy reserves allow them to buffer 

fluctuations in energy intake and expenditure. Calf mortality on the other hand is extremely sensitive, 

indicative of the vulnerability of young elephants to environmental changes (Foley, Pettorelli and Foley, 

2008; Woolley, 2008; Wato et al., 2016). In particular, calf mortality is highly sensitive to parameters 

controlling energy intake from milk (AEmilk and E0), as expected given that milk provides the primary 

source of energy for calves, and B0 given that this controls metabolic rate, the main source of energetic 

expenditure for elephant calves. All model outputs were somewhat sensitive to parameters controlling 

energy intake (hsc, maxIRscaling and AEveg), which endorses the use of mechanistic approaches in 

modelling the bottom-up processes controlling population dynamics. 

 

B.8. Model output corroboration  

This TRACE element provides supporting information on: How model predictions compare to independent data and patterns 

that were not used, and preferably not even known, while the model was developed, parameterized, and verified. By 

documenting model output corroboration, model users learn about evidence which, in addition to model output verification, 

indicates that the model is structurally realistic so that its predictions can be trusted to some degree.  

Summary: 

The calibrated model was validated with independent population dynamic data for six other elephant 

family groups inhabiting the Amboseli ecosystem.  

Table B.5. Sensitivities of population size, total number of births and mortalities, presented as % 

change in output relative to a 10% change in parameter (mean and standard error over ten 

repeated simulations and for changes above and below parameter value). 

Parameter Pop. size Births Adult Mort. Calf Mort. 

storscaling -0.07  ±  3.02 0.02  ±  2.14 -0.14  ±  9.83 -0.31  ±  2.26 

hsc -2.3  ±  3.19 -1.3  ±  2.81 0.7  ±  12.39 0.94  ±  1.66 

maxIRscaling 4.76  ±  4.09 2.69  ±  3.26 -0.63  ±  15.91 -3.98  ±  1.68 

AEveg 4.34  ±  4.87 2.38  ±  3.38 -0.38  ±  15.88 -4.28  ±  2.16 

AEmilk -0.42  ±  2.82 -3.39  ±  4.57 0.7  ±  13.33 -14.93  ±  3.9 

B0 -3.71  ±  3.59 0.63  ±  3.9 0.18  ±  17.13 15.95  ±  2.83 

E0 -0.52  ±  3.37 -3.48  ±  5.71 0.74  ±  11.5 -15  ±  4.32 

EPL -1.82  ±  2.59 -0.89  ±  2.64 0.86  ±  12.34 0.88  ±  2.14 

MRback -0.15  ±  2.65 -0.14  ±  2.16 -0.05  ±  11.06 0.02  ±  1.09 

MRscaling 0.08  ±  1.95 0.05  ±  1.97 0.09  ±  10.38 -0.12  ±  2.36 

DD -1.19  ±  3.07 -0.67  ±  3.21 0.32  ±  10.88 0.65 ±  1.92 
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To validate the model we compared model outputs to independent data from families not used in model 

calibration. We used the 30 parameter sets accepted in the ABC to simulate the population dynamics of 

six intensively recorded Amboseli elephant family groups (AAs, FBs, GBs, JAs, KB2s and OBs). These 

families are resident in Amboseli National Park and thus use a different area to that used in model 

calibration (see B.3 and B.4). Resulting model fit for validation families is displayed in Figure B.14.  

 

Figure B.14. Validation of model fit. Population size, births and deaths for resident families not used in 

model calibration. Black lines and open points show the data, light grey lines show the 30 simulations 

indicating the uncertainty in model outputs that results from uncertainty in the values of parameters. 

The model and calibrated parameter values gave good predictions for the population dynamics of 

resident family groups, but could not match birth rates following the 2009 drought. The under-prediction 

of birth rates following the 2009 drought in both the calibration and validation of the model is possibly 

because densities of other grazers are not considered in the model. The number of grazers in the 

Amboseli ecosystem remained in low for a prolonged period following the drought, limiting competition 

for food for elephants. Incorporation of interspecific competitor density would be expected to improve 

model fit to birth rates post-2009, as elephants access more food and reproduce more readily. 

  



 

126 
 

C. Supplementary material for chapter 5 

Figure C.1. Re-calibration of the IBM. The IBM presented in Boult, Quaife, et al. (2018) was developed 

and calibrated with just four family groups whereas here the IBM is applied to the whole population: 

the IBM re-calibrated accordingly. Black lines and open points show the data, the thick grey line is the 

best fitting simulation. Light grey lines show the 30 best fitting simulations indicating the uncertainty 

in model outputs that result from uncertainty in the values of parameters. Amboseli years run October 

to September. 

 

Amboseli Year 

Table C.1. Stakeholder names, positions and organisations providing feedback on habitat loss 

scenarios. Stakeholders were asked to rank administrative units based on how likely elephants would 

have continued access to each area in 5-10 years’ time. Feedback was compiled and used to construct 

habitat loss scenario D (see Figure 5.1d). 

 

Table C.2. Habitat loss scenarios by numbers. The area available to elephants in each scenario and the 

percent area lost (compared to scenario A representing the total current extent of elephant ranging) is 

shown alongside the median elephant population size at the end of the projected period (2099) and 

the percent population decline (median compared to 2017 population size of 1247). This 

demonstrates that the number of elephants supported by the ecosystem is not directly proportional 

to the area available: it is also affected by the heterogeneity of vegetation. 

Scenario  Area (km2) % area loss  Median pop. % pop. loss 

A – Full area 7232 - 1237.5 0.8 

B – Human population growth 6330 12.5 1003.5 19.5 

C – HEI 5990 17.2 1101.5 11.7 

D – Stakeholder opinion 4893 32.3 712.5 42.9 

E – Existing and proposed CAs 1833 74.7 469.0 62.4 

F – Existing CAs only 1234 82.9 271.5 78.2 

Name Position Organisation 

Jeremy Goss  Conservation Scientist Big Life Foundation, Kenya 

Jackson Mwato  Executive Director Amboseli Ecosystem Trust, Kenya 

Vicki Fishlock  Resident Scientist Amboseli Elephant Research Project, Kenya 
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Figure C.2. Projected SPI. SPI was calculated for each Amboseli year (October-September) for the 

simulation period (2007-2099) using projected precipitation from the ISI-MIP 2b simulation round for 

four climate models and two RCPs. Shading shows SPI classification: dark blue = very wet, light blue = 

wet, white = normal, orange = dry and red = drought. Annual SPI classifications were used to project 

NDVI and food available to elephants in the model.  
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Figure C.3. ISI-MIP GCMs in comparison to other CMIP5 GCMs. We advise caution when interpreting 

our results because the four GCMs included in the ISI-MIP 2b experiments are not representative of 

the full range of CMIP5 GCM projections. Here thick coloured lines show GCMs included in the ISI-MIP 

2b experiment, whilst thin coloured lines show additional ensemble members of these GCMs. Grey 

lines show all CMIP5 GCMs. Hence, if we had chosen to use alternative GCMs in our simulations, 

variation in projected rainfall between GCMs may have resulted in different elephant population 

projections.  
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