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 i 

Abstract 
 

 

 Formyl peptide receptors (FPRs) belong to the family of G protein-coupled receptors 

(GPCRs) and play crucial roles in the regulation of innate immunity and host defence. FPRs 

include three family members; FPR1, FPR2/ALX and FPR3. They bind a wide variety of 

structurally and chemically diverse ligands that can exert various functions. Despite a plethora 

of research focusing on the role of FPRs in the regulation of immunity, there is a paucity of 

studies on their roles on the regulation of platelet haemostatic function. Here, we demonstrate 

the impact of both FPR1 and FPR2/ALX on the modulation of platelet reactivity, haemostasis 

and thrombosis.  By using selective pharmacological inhibitors for FPR1 and FPR2/ALX, and 

Fpr1- and Fpr2/3-deficient mice, we were able to establish instrumental roles for these 

receptors in the regulation of the normal platelet haemostatic function. Additionally, we report 

a crucial role for fMLF in the regulation of platelet function through FPR1 signalling. fMLF 

exerted a priming effect on platelet activation through inducing distinct functions and enhances 

thrombus formation under arterial flow conditions. These effects were diminished in the 

presence of FPR1-selective pharmacological inhibitors and in platelets obtained from Fpr1-

deficient mice. In addition, we investigated the role of LL37 in the regulation of platelet 

function and its modulation on platelet reactivity under pathological conditions, such as 

psoriasis, via acting through FPR2/ALX. We demonstrate that LL37 activates a range of 

platelet functions, enhances thrombus formation, and shortens the tail-bleeding time in mice. 

Moreover, we report the overexpression of mCRAMP (an LL37 murine orthologue) in affected 

skin and plasma of a murine [imiquimod (IMQ)-induced] model of human psoriasis and its 

ability to enhance platelet responses via Fpr2/3. We also report a role for Annexin A1 and its 

N-terminal peptide, Ac2-26, in the regulation of platelet function through FPR2/ALX. Ac2-26 

induced the activation of various platelet functions. Moreover, AnxA1-deficient mice 

demonstrate enhanced functional responses towards Ac2-26, which may be attributable to the 

overexpression of Fpr2/3 in these mice. Since both FPR1 and FPR2/ALX and their ligands 

play critical roles in various pathological conditions, their influence on the modulation of 

platelet activation and thrombus formation will provide novel insights into the mechanisms 

that control platelet-mediated complications under various disease settings. 
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1 – Introduction



 

 

1 

1.1 Platelets 
 

 Platelets are small circulating blood cells that play indispensable roles in the regulation 

of haemostasis to prevent excessive bleeding upon vascular injury. However, their unwarranted 

activation under pathological conditions leads to the formation of blood clots (thrombi) within 

the circulation
1
. This results in reduced blood supply to vital organs including the heart and 

brain, which can trigger heart attacks or strokes, respectively
2
. Moreover, certain pathological 

conditions such as inflammation and infection results in the activation of platelets, leading to 

aggregation, thrombus formation in the microvasculature and in later stages, sequestration of 

platelets in organs such as the lungs, instigating thrombocytopenia and bleeding 

complications
3
. Aside from their role in haemostasis, platelets also play pivotal roles in the 

regulation of innate immunity, inflammatory responses and clearance of microbial infection
4-

6
. In general, platelets act as sentinels

7
 due to their high number in the circulation, and they 

play critical roles in host defence against invading pathogenic microbes such as bacteria
8
. 

Platelets are also known to possess direct microbicidal activities against various bacterial 

species
4, 7-9

. They contain different types of intracellular granules and a wide range of receptors 

on their surface that aid in the modulation of haemostatic responses upon vascular injury. In 

addition, platelets express a wide range of inflammatory receptors and mediators that enable 

them to recognise to a broad spectrum of molecules. Here, we describe the role of different 

molecules released upon inflammation and/or infection in the regulation of platelet function. 

 

  

1.2 Platelet production  
 

Platelets are small anucleate circulating blood cells that range from 1 to 3 µm in 

diameter and are known to play a pivotal role in haemostasis and thrombosis
10

. They are 

produced from the fragmentation of the cytoplasm of the megakaryocytes (MKs) in the bone 

marrow. This process is regulated by the cytokine thrombopoietin (TPO), a hormone produced 

in the kidneys and liver
11, 12

, and its receptor c-Mpl
13, 14

. MKs are bone marrow cells that 



 

 

2 

originate from hematopietic stem cells and can also be found in the lungs and in the blood 

circulation
15, 16

. In order to produce platelets, MKs undergo endomitosis, which is DNA 

replication without cell division, that is stimulated by TPO and render MKs polypoid. This is 

followed by the maturation of MKs, wherein the nucleus is extruded, and the majority of the 

cytoplasm is packaged into several elongated processes known as proplatelets
17-19

. Each MK 

may extend 10 to 20 proplatelets, which elongates over time while thinning and branching
20

. 

At the tip of these proplatelets, the platelets develop and form while receiving organelles and 

granules transported from MKs
21

. The production of platelets can also occur in the lungs
22

, 

where it has been demonstrated recently that MKs in the bone marrow can migrate into the 

lungs, and back, and produce a significant number of platelets under thrombocytopenic 

conditions in mice
23

. Each megakaryocyte produces around 1000-3000 platelets
24

, and this 

process is usually completed in 5 days in human and 2-3 days in mice
25-27

. The platelet lifespan 

in human peripheral blood circulation is averaged between 7-10 days, while lasting 4-5 days 

in mouse circulation
24, 28-30

. The normal range for platelets produced by healthy individuals in 

the circulation is 150-400×10
9
 per litre 

31, 32
.  
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 1.3 Platelet ultrastructure 
 

 The structure of platelets aids in the implementation of its haemostatic function, and it 

contains the following zones: peripheral, sol-gel, organelle and membranous zone
33

. The 

peripheral zone of the platelets contains receptors and glycoproteins that aid in the adhesion, 

activation and aggregation of platelets. The Sol-gel zone allows the platelets to maintain their 

discoid shape via the microtubules and microfilaments and also contains the actin cytoskeleton 

which allows shape changes upon platelet activation. Platelets contain three distinct types of 

granules, which comprise the organelle zone
34-40

. Alpha granules (a) which mainly contain 

proteins that mediate the secondary platelet activation including fibrinogen, P-selectin and von 

Willebrand factor, and are the largest (200-400 nm) and most numerous (50-60 per platelet) 

platelet granules
35

. Conversely, dense granules (δ) contain non-proteinous molecules including 

serotonin, calcium, phosphate, ADP and ATP, and are smaller (∼150 nm) and less numerous 

(3-8 per platelet) than a-granules. Moreover, platelets contain lysosomal granules (") which 

contain degrading enzymes that aid in the resolution of thrombi
37

. A diagram of the platelet 

structure is presented in Figure 1-1. Platelets also contain receptors that aid in their activation 

upon ligation with various agonists; a diagram of the different receptors expressed in platelets 

is presented in Figure 1-2. For example, collagen activates platelets via GPVI and the integrin 

α2β1, ADP activates platelets via acting through P2Y1 and P2Y12, while thromboxane A2 

(TXA2) activates the thromboxane prostanoid (TP) receptor on platelets. Another potent 

platelet agonist is thrombin, which acts on protease activated receptors (PAR1 and PAR4 in 

humans). Finally, the membranous zone which is related to the open canalicular system (OCS) 

and dense tubular system (DTS), is responsible for the synthesis and release of  TXA2, which 

aids the aggregation of platelets
41

.  
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Figure 1-1: Platelet structure. Diagram of the structure of platelets demonstrating the 

different platelet zones including: sol-gel, organelle and membranous zone. The Sol-gel zone 

contains microtubules and microfilaments that allow the platelets to maintain their discoid 

shape, and the actin cytoskeleton that allows shape change. Additionally, platelets contain an 

organelle zone comprising three distinct types of granules, including a-granules, dense δ-

granules "-granules. In addition to the membranous components of the platelets (plasma 

membrane, canalicular system, and dense tubular system), platelets contain mitochondria, 

microtubules, and glycogen. Adapted from (Li et al., 2017)
42

. 
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Figure 1-2: Diverse receptors expressed in platelets. Diagram of platelet receptors 

categorised by their major functions that are exerted in platelets. Platelets play crucial roles in 

the regulation of haemostasis (blue colour), immunity (red colour) or both (pink), whereas 

receptors of unknown functional roles are shown in grey. Adapted from (Li et al., 2017)
43

. 
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 1.4 Platelet function in health and disease 
 

 
1.4.1 Role of platelets in haemostasis 

 

 

Under normal physiological conditions, platelets circulate in a resting state. This state 

is regulated by molecules that inhibit the activation of platelets and are released from the intact 

endothelium. These molecules include nitric oxide (NO), prostacyclin (PGI2) and apyrase 

(which degrades ADP). The dysregulation of such molecules may lead to inappropriate 

platelets activation and contribute to pathological conditions
44

. Upon vascular injury however, 

platelets become activated and contribute to their physiological process, haemostasis, in which 

they are known to play a central role
45

. 

 

The haemostatic function of platelets can be categorised into the following stages: 

adhesion, activation, aggregation and contraction of platelets. Upon vascular injury, the 

subendothelial collagen is exposed, enabling the binding of von Willebrand factor (vWF), 

facilitating the binding to platelets and thus their adhesion to the injured vascular site. This 

binding is mainly facilitated by glycoprotein (GP) receptors on the surface of platelets, leading 

to the formation of a monolayer over the injured site to arrest the bleeding
46-48

. Notably, GPVI-

mediated binding of platelets to collagen leads to a reduced production of prostacyclins and 

increases the production of TXA2. Another potent platelet agonist is a synthetic peptide known 

as crosslinked collagen receptor peptide (CRP-XL), which is selective for GPVI only, and aids 

in the mechanistic investigation of signalling pathways in platelets. The binding and activation 

of platelets leads to initiation of various responses including, calcium mobilisation, granule 

secretion, tyrosine kinase signalling pathways and activation of platelet integrins. The release 

of platelet granules aids in the secondary platelet activation and release of chemotactic agents, 

attracting more platelets to the site of vascular injury. This allows the bridging of activated 

platelets via receptor-bound fibrinogen mediated through integrin αIIbβ3 and thus aggregation 
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of platelets and development of a stable platelet aggregate
49, 50

.  The aforementioned responses 

including platelet adhesion, activation and aggregation comprise the first wave of haemostasis, 

and are followed by the coagulation cascade (otherwise known as the second wave of 

haemostasis), that leads to the development of a stable thrombus.  

 

The activation of platelets can also lead to the exposure of phosphatidylserine on their 

surface, which induces a negatively charged phospholipid surface that harbours coagulation 

factors, rendering platelets procoagulant
51-53

. The coagulation cascade leads to the generation 

of thrombin, which is known as a strong platelet activator, that initiates signalling through 

protease activated receptor 1 (PAR1), 2 (PAR2) and GPIbα
54, 55

. In addition, thrombin 

facilitates the conversion of fibrinogen to fibrin, which aids in the development of a blood clot 

56, 57
. In order to facilitate the repair the vascular wall damage, the platelet undergoes 

contraction, driving the retraction and stiffening of clots
58

. This aids in several responses, 

including the reinforcement of haemostasis, restoring the blood flow and promotes wound 

healing
59-61

. 
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1.4.2 Function of platelets in thrombosis and cardiovascular disease 
 

 

 Although platelets play a central role in the regulation of haemostasis, this 

process, if poorly regulated, leads to inadvertent thrombus formation and the occlusion 

of blood vessels, a process otherwise known as thrombosis. Thrombosis is one the 

leading causes of death worldwide
62

 and constitutes a major underlying pathology in 

multiple cardiovascular diseases, including strokes, ischemic heart disease and 

venous thromboembolism
63

. Additionally, thrombosis also occurs in atherosclerosis, 

wherein platelets may promote atherogenesis and augment vascular inflammation and 

remodelling of the arterial wall, resulting in formation of atherosclerotic plaques. The 

rupture of these plaques is implicated in coronary thrombosis. Various antiplatelet 

agents that target platelet activatory pathways have been proposed
64

. However, these 

agents could also target pathways that are involved in haemostasis. Therefore, their 

administration may lead to an increased risk of bleeding. 
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1.4.3 Role of platelets in innate immunity  

 

 In addition to their widely characterised role in haemostasis, platelets play an integral 

role in the regulation of immune and inflammatory responses and are essential in host defence, 

wound healing and pathogen surveillance
65-67

. A diagram of the various roles of platelets in 

haemostasis and immunity is presented in Figure 1-3. These roles were emphasised by the 

discovery of a plethora of immune receptors in platelets, including Toll-like receptors (TLRs), 

such as TLR2, TLR4 and TLR9, immunoglobulin receptors, Siglecs and complement 

receptors
68-70

. Additionally, platelets express formyl peptide receptors (FPRs), notably, FPR1 

was reported to add a chemotactic function to platelets
71

. Moreover, platelet granules contain 

immune and inflammatory modulators that are released upon the activation of platelets and 

translocated to the plasma membrane. Platelets contain cytokines, such as CD40L and 

chemokines (CCL5), which are mainly compartmentalised in alpha-granules and aid in the 

recruitment and activation of other immune cells or induction of endothelial cell-mediated 

inflammation
72

. Platelets can also play a protective role during microbial infections. Platelets 

are known to contain several antimicrobial peptides including platelet factor 4 (PF4), platelet 

basic protein (PBP) and its derivatives, connective tissue activating peptide 3 (CTAP-3), 

thymosin B-4 (TB-4), CAMP and fibrinopeptides A and B (FPA and FPB), and release them 

upon activation in order to control microbial infection
73

. In this study we were also able to 

report the expression of an antimicrobial peptide (AMP), LL37, in platelets which is the sole 

human cathelicidin. Platelets can also directly interact with and kill pathogens. For instance, 

platelets may bind and wrap bacteria
74

 or induce their aggregation
75

, leading to degranulation. 

In addition to AMPs, platelets contain other inflammatory mediators, including CD40 ligands 

(CD40L), Interleukin 1β (IL1β) and Regulated on Activation, Normal T Cell Expressed and 

Secreted (RANTES)
76-80

. Additionally, platelets interact with other inflammatory leukocytes 

to regulate inflammation and immunological responses by releasing chemokines and cytokines 
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that activate and recruit them to the site of infection
81, 82

. These interactions are also crucial for 

the clearance of bacterial, viral, and parasitic infections
43

. For instance, platelets interact with 

neutrophils to facilitate the release of reactive oxygen species (ROS), proteases and 

myeloperoxidase
81

. Moreover, prothrombotic and inflammatory gene expression can result 

from the interaction of platelets with monocytes
83

. Platelets also interact with lymphocytes to 

increase cytotoxic T-cell activity and mediate class-switching on B-cells
84

. 

 

 The activation of platelets is typically associated with eliciting pro-inflammatory 

responses. However, platelets have been shown to interact with anti-inflammatory and pro-

resolution responses as well, which is controversial, and the underlying mechanisms are not 

entirely clear
85

. Notably, it has been shown that Maresin-1 interacts with FPR2/ALX on 

platelets and enhances their aggregation and spreading, while suppressing the release of pro-

inflammatory mediators
86

. In line with this, another study has reported that the activation of 

platelets induces unforeseen anti-inflammatory properties
87

. 

 

 Although several of these effects are beneficial to the host to aid in resolving 

inflammation, their dysregulation can be detrimental and may lead tissue damage and vascular 

injury
88

. Moreover, it may contribute to disease and exacerbation of adverse effects in various 

inflammatory conditions including atherosclerosis, inflammatory lung, bowel, and skin 

diseases, ischemic and inflammatory hepatitis, cancer, arthritis, glomerulonephritis and 

sepsis
89-93

. While these mediators and receptors establish a role for platelets in immunity, there 

is a paucity of studies on the role of these receptors and mediators in the haemostatic platelet 

function. Exploring such roles can lead to novel mechanisms to eliminate adverse effects in 

diseases associated with platelets dysfunction. 
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Figure 1-3: Major roles of platelets in haemostasis and immunity.  Platelets are known to 

play pivotal roles in the regulation of haemostasis (A) and immunity (B). Upon vascular injury, 

platelets bind to collagen in the exposed endothelium layer (A1). Additionally, they detect 

molecules that are released from activated endothelium such as those released from the Weibel-

Palade (WP) bodies (A2), which also contribute to the activation of platelets, and the initiation 

of thrombosis (A3).  Meanwhile, platelets also regulate the permeability of blood vessels (A4) 

and prevent the loss of erythrocytes by sealing the vessels (A5). Moreover, platelets regulate 

the lymphovenous junction (A6). In addition to their role in haemostasis, platelets are able to 

detect pathogens directly (B1) or indirectly via interacting with leukocytes (B2). Platelets have 

the ability to directly bind to pathogens to initiate their killing (B3), or indirectly by recruiting 

leukocytes (B4). The interaction of platelets with leukocytes aids in the exchange of molecules, 

and thus initiates inflammatory responses. For example, platelets can synthesize thromboxane 

A2 (TXA2) from arachidonic acid (AA) supplemented from neutrophils (B5). Adapted from 

(Li et al., 2017)
43

.   
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 1.4.4 Platelet-associated inflammatory diseases 
 

 

While platelets play indispensable functions, both haemostatic and immune, that are 

essential for haemostasis, vascular integrity and systemic homeostasis, the dysregulation of 

such functions can have detrimental consequences, including thrombosis and bleeding. 

Uncontrolled platelet function leads to the formation of blood clots within the blood vessel 

(thrombosis), obstructing the blood flow through the circulatory system
94

. This is considered 

as a key factor in several cardiovascular diseases such as myocardial infarction, strokes, 

atherosclerosis, and venous and arterial thrombosis
95

. Moreover, platelets have been implicated 

in the development of cancer, inflammatory disease such as multiple sclerosis, inflammatory 

bowel disease (IBD), rheumatoid arthritis and psoriasis, and in infectious disease such as 

sepsis, malaria and dengue, whereby they contribute to unwarranted adverse effects 
88, 96-100

. 

The inhibition of platelet function and/or the decrease in the number of platelets 

(thrombocytopenia) leads to bleeding. Many treatment modalities for several chronic diseases 

have been associated with bleeding, including anticoagulant, antitumour, and anti-

inflammatory therapy
101-103

.  

 

Since platelets interact with endothelial cells and leukocytes to induce their function, 

the dysregulation of such interactions can drive pathological processes. Activated platelets can 

interact with and adhere to leukocytes, leading to the formation of platelet-leukocyte 

aggregates, which can exacerbate inflammatory conditions
104

. Moreover, platelets have been 

shown to be implicated in the formation of neutrophil extracellular traps (NETs), which can 

promote the activation of platelets and trigger a procoagulant state
105, 106

. NETs can also 

promote thrombosis by providing a scaffold that can stimulate platelet adhesion and 

aggregation
107-109

. Platelets can also interact with other cell types by the production of 

microparticles, which can aid in cancer metastasis
110

. A diagram of the various receptors that 
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are present on platelets to aid the interaction with other cells types, and thus the regulation of 

host defence is presented in Figure 1-4.   
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Figure 1-4: Interaction of platelets with other cell types via various receptors to initiate 
host defence. Platelets are able to interact with a variety of cell types in order to regulate host 

defence. The activation of platelets results in shape change and the formation of pseudopodia, 

facilitating the interaction with injured tissues and pathogens. Additionally, platelets can 

release host defense peptides (HDPs) that can kill pathogens. Platelets can induce the formation 

of neutrophil extracellular traps (NETs), which can trap pathogens. Additionally, platelets 

interact with antigen-presenting cells (APCs), such as monocytes and dendritic cells. Platelets 

also interact with T cells and B cells for the generation of cytokines and antibodies.  

Meanwhile, platelets also interact with the endothelium to initiate the formation of clots and 

regulate haemostasis. Adapted from (Yeaman, 2014)
111

.  
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1.4.5 Platelet-associated inflammatory disease; psoriasis  
 

  Psoriasis is a chronic inflammatory cutaneous disease affecting 2-4% of the worldwide 

population and is characterised by hyperproliferation and abnormal differentiation of 

keratinocytes
112-114

. Psoriatic vulgaris (otherwise known as plaque-like psoriasis) is the most 

common phenotype of psoriasis and is characterised by increased redness, thickness and 

scaling of the skin in affected areas throughout the body, all of which are used to assess the 

activity and severity of psoriasis in clinical practice
115

. The most commonly used tool to assess 

psoriasis is the Psoriasis Area and Severity Index (PASI) scoring system, which determines 

therapeutic efficacy
116

. The PASI scoring system is a five-point scale (0-4) that provides a 

grade of the average erythema (redness), induration (thickness) and desquamation (scaling) of 

psoriatic plaques in four body regions including head, upper extremities, trunk and lower 

extremities
117

.  

 

 Psoriasis fits under the umbrella of autoimmune diseases; it is triggered by an activated 

cellular immune system in the absence of infection or other stimuli
118

. It was previously 

believed that the pathomechanisms of psoriasis are limited to keratinocytes hyperplasia. 

However, the involvement of the immune system was later demonstrated by the accidental 

observation in 1979, which reported the therapeutic potential of cyclosporin A (CsA) in 

psoriasis, mainly by inhibiting the production of IL-2 by T-cells, which can stimulate 

keratinocytes
119

. CsA is an immunosuppressive agent derived from fungus that inhibits the 

activation and proliferation of T-cells. It acts by binding to cyclophilin, an immunosuppressant-

binding protein. This binding inhibits the enzyme calcineurin, which leads to the inhibition of 

signal transduction pathways that are dependent on the transcription factor, NF-AT (nuclear 

factor of activated T cells). This ultimately inhibits the production of cytokines such as IL-2 

and IFN-γ120
. The hyperproliferation of keratinocytes in psoriasis is accompanied with the 

infiltration of inflammatory cells and mediators. Several effector cells were reported to 
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implicate psoriasis including T-helper cells, dendritic cells (DCs), neutrophils and 

macrophages. These cells contribute to the exacerbation of disease by releasing inflammatory 

mediators such as interferon (IFN)-γ, tumour necrosis factor (TNF)-α, interleukin (IL)-12, IL-

17A, IL-20, IL-22 and IL-23
112

. This can in turn trigger the production of proinflammatory 

cytokines (IL-1, IL-6, and TNF-α) and chemokines (IL-8 [CXCL8], CXCL10, and CCL20) 

from keratinocytes
121

.  

 In addition to the role of inflammatory cells and mediators, AMPs have been shown to 

play an integral role on the pathogenesis of psoriasis
122

. Keratinocytes are known to provide a 

rich source of AMPs while expressing more than 20 different types
123

, including: cathelicidins, 

defensins, S100 proteins, lysozyme, RNase 7, elafin, neutrophil gelatinase-associated lipocalin 

with several others
124, 125

. Among these, the cathelicidin LL-37, human β-defensin (HBD) 2 & 

3, and S100A7 protein (otherwise known as psoriasin) have been shown to be widely 

implicated in the development of psoriasis and highly up-regulated in psoriatic lesions
126

. 

Notably, LL37 has been highlighted as an immune modulatory peptide in psoriasis
127

 and has 

been shown to be overexpressed with concentrations reaching up to 300 μM in affected skin 

tissues
128

. HBD2 and HBD3 were demonstrated to be highly expressed in psoriatic lesions. 

Moreover, high HBD copy numbers were reported in psoriasis
129-131

. This increased expression 

is induced by inflammatory mediators that are highly expressed in psoriatic lesions, including 

TNF-α, IFN-γ, IL-17A and IL-22
132, 133

. Similarly, the S100A7 protein is expressed in response 

to TNF-α, IL-17A, IL-22 and IL-28, and have been thought to play a chemotactic role in 

psoriasis
134

. Although the overexpression of HBDs has been reported by many groups, their 

mechanisms of action in psoriasis are not fully understood
128

.  

 

 Psoriasis has been associated with complications and comorbidities that are related to 

systemic inflammation and cardiovascular diseases, mainly induced by the inflammatory 

milieu
135

. Psoriasis patients have increased risk for occlusive vascular disease, such as 

atherosclerosis, coronary artery disease and cerebrovascular diseases
136-139

. Psoriasis has been 
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suggested to be an independent risk factor for cardiovascular disease
140

. In 2006, the risk of MI 

and atherosclerosis has been reported in psoriasis
141-143

. This is mainly due to the activation 

and hypercoagulability of platelets, which has been shown to contribute to the pathogenesis of 

psoriasis
144

. Moreover, platelets have been shown to contribute to cutaneous inflammation and 

consequently atherosclerosis plaques
137, 145, 146

.   

 

 Platelet indices has been demonstrated as useful indicators for the activation of platelets 

during psoriasis. In addition to the platelet distribution width (PDW), the mean platelet volume 

(MPV) have been reported to be increased in psoriasis
147, 148

. This is indicative of the presence 

of larger platelets, which are associated with increased reactivity, granule release, and GPIb 

expression. Moreover, these platelets demonstrate augmented collagen-, ADP- or thrombin-

induced aggregation
149

. Additionally, the platelet mass index (PMI), formulated as MPV 

multiplied by platelet count, is elevated in psoriasis
141

. Unlike the MPV and PDW, the PMI not 

only has been shown to be a useful marker for the activation of platelets but is also indicative 

of the functionality of platelets; especially that associated with their capability of the formation 

of atherosclerotic plaques. Because the PMI was shown to be correlated with erythrocyte 

sedimentation rate (ESR), a marker for inflammation, it is considered as a better predictor of 

inflammation and atherosclerotic plaque formation in psoriasis compared to the MPV
141, 150, 

151
. In addition to the platelet indices, the in vitro platelet aggregation was shown to be a useful 

predictor of platelet activation and was increased in psoriatic patients, wherein thrombin- or 

ADP-induced platelet aggregation was potentiated compared to the controls
152, 153

.  

 

 In addition to the aforementioned markers, the elevated plasma levels of platelet 

inflammatory mediators have been reported in psoriasis. These mediators were shown to 

exacerbate the disease by mediating the activation and the recruitment of leukocytes to the site 

of cutaneous inflammation
154, 155

. Moreover, they mediate the leukocyte adhesion to platelets 

and the endothelium, all of which can contribute to the development of atherosclerosis
72

. These 
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mediators include soluble P-selectin (sP-selectin) and platelet-derived microparticles 

(PDMPs), which are also increased in psoriatic patients
96, 138, 156-159

. PDMPs were also shown 

to facilitate thrombus formation, endothelial dysfunction and atherosclerosis
154, 155

. 

Furthermore, the plasma levels of chemokines released from platelets, such as platelet factor 4 

(PF4) and β-thromboglobulin (β-TG) were increased in psoriasis
160

. The elevated levels of 

these mediators positively correlated with the PASI scoring and thus disease severity, and their 

levels were reduced after treatment
96, 137, 161

.  

 

 In addition to platelet indices and activation, markers of systemic inflammation were 

also increased, and these include: serum high sensitivity C-reactive protein (hs-CRP)
162

 and 

IL-6
163

, which has been shown to induce thrombocytosis and platelet activation
163, 164

. 

Moreover, IL-6 can perpetuate inflammation by inhibiting the functions of regulatory T 

cells
164

. These findings indicate that platelet activation and inflammation may perpetuate each 

other and facilitate the development of cardiovascular risks.  

 

 

 The use of antiplatelet agents for the treatment of psoriasis has not been explored 

previously. However, several biological drugs including infliximab, adalimumab and 

etanercept (TNF-α inhibitors), and ustekinumab (IL-12/23 inhibitor)  have been associated with 

a reduction in PASI scoring and P-selectin expression 
165

. This suggests a link between 

inflammation and platelet activation in psoriasis. Conversely, in a case report of cardiovascular 

and psoriasis comorbidity, the use of clopidogrel (an irreversible P2Y12 inhibitor) was 

plausibly regarded ineffective as its re-challenge in patients exacerbated and perpetuated 

psoriasis
166

. Moreover, re-challenge of ticlopidine or aspirin are also known to exacerbate 

psoriasis. However, dipyridamole, a platelet aggregation inhibitor that causes dilated blood 

vessels was suggested as an alternative. 
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1.4.6 Platelet-associated infectious disease; sepsis 
 

 Sepsis or septic shocks are characterised by life-threatening organ dysfunction 

stemming from dysregulated host responses to infection
167, 168

. It is the leading cause of death 

in intensive care units (ICUs) 
169

. Cardiac arrest and organ failure are among the leading causes 

of death in septic shocks
170, 171

. Reported incidences of sepsis are increasing with age and as a 

complication of other diseases including diabetes mellitus, cancer, immunosuppression and 

chronic organ failure
169, 171, 172

.  

 

 Platelets play a significant role in the pathophysiology of sepsis, and several modes of 

action have been proposed
173, 174

. Firstly, the activation of platelets
175

, which may result in 

thrombus formation in the vasculature and hypercoagulability of blood
176

, which can result in 

acute disseminated intravascular coagulation (DIC) and localised venous 

thromboembolism
177

. This consequently leads to the consumption of platelets and coagulation 

proteins, manifesting a bleeding diathesis in most cases of sepsis
178

. Additionally, it has been 

shown that systemic microvascular dysfunction due to thrombosis comprises the hallmark of 

organ damage in sepsis
173

. In addition to thrombosis, infection-related endothelial activation 

and dysfunction may also contribute to the microvascular dysfunction and leakage of blood
179, 

180
. Another mode of action in which platelets may affect the clinical outcomes of sepsis is 

through the destabilisation of the endothelial barrier. Platelets are a major source of 

angiopoietin 1 (Ang-1), which stabilises the endothelium and prevents microvascular leakage. 

In severe cases of sepsis, the plasma and serum levels of Ang-1 are significantly declined
3, 181

. 

Thus, thrombocytopenia can contribute to the adverse outcomes by decreasing the delivery of 

Ang-1 to the endothelium.  

 

 Secondly, platelets can contribute to the pathophysiology of sepsis by interacting with 

other immune cells and regulating immune and inflammatory responses. As detailed 
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previously, platelets can elicit innate immune responses and contribute to clearance of 

pathogens and tissue repair
66, 68, 76, 182-184

. Additionally, platelets contribute to acute and chronic 

inflammatory responses, which can result in tissue and vascular injury
66, 185, 186

. All of which, 

can be mediated by activated platelets and exacerbated in sepsis. 

 

 Thirdly, thrombocytopenia is implicated in the pathophysiology of sepsis and can 

contribute to unwarranted complications and can serve as a prognostic factor for disease 

severity
187

. Sharma et al. reported a strong association between mortality and 

thrombocytopenia in 69 patients suffering from septic shock
188

. In addition, Claushuis et al. 

reported this association in a large cohort consisting of 931 septic patients
3
. The low platelet 

count in these patients upon their admission to ICUs is associated with elevated plasma levels 

of cytokines such as interleukin (IL)-6
189

, IL-8
190

 and IL-10
191

, intercellular adhesion molecule 

1 (ICAM-1)
192

 and the chemokine fractalkine
193

. Additionally, coagulation activity is increased 

as evidenced by decreased antithrombin
194

, and the vascular integrity is reduced as evident by 

the increased ration of angiopoietin Ang-2 to Ang-1
181

. It has been also shown that 

thrombocytopenia, independent of disease severity, is associated with increased mortality in 

sepsis. Thus, identifying the causes of thrombocytopenia is crucial for the management of 

septic patients
195

. Several causes of thrombocytopenia in sepsis, acting individually or in 

combination, have been previously reported
174

, and include the reduced production of platelets 

in the bone marrow. This can be due to pre-existing conditions or the inhibition of 

haematopoiesis in response to drugs, inflammatory mediators or pathogenic toxins.  In addition 

to bone marrow, the platelet count can be compromised in the periphery circulation. The 

increased consumption of platelets can occur by the activation of platelets and the reduction of 

their half-life can be triggered by pathogens or pathogenic products.  Moreover, pathogen-

induced apoptosis, lysis and increased phagocytic clearance of platelets can contribute to their 

consumption. Platelet consumption and activation can also occur by their sequestration by 



 

 

21 

leukocytes and inflammatory cells in the vascular bed. Additionally, thrombosis and 

coagulopathy of blood, such as in DIC, can contribute to thrombocytopenia
174, 196-200

. In 

addition to the aforementioned causes, the administration of drugs can induce 

thrombocytopenia, bleeding, hemophagocytosis and hemodilution
195

, and can cause defective 

platelet function
201, 202

. 

 

 Since platelets play an integral role in the pathophysiology of sepsis, platelet-targeted 

therapeutic intervention has been proposed
174

. The transfusion of platelets has been proposed 

to restore the platelet blood count and has been mostly used to prevent or treat bleeding in 

sepsis
203

, whereas it was demonstrated to be ineffective in non-bleeding ICU patients
204, 205

. 

However, transfused platelets can present detrimental effects to the host by contributing to the 

inflammation, intravascular platelet activation and coagulopathy effects in sepsis
195, 204, 206

. 

Moreover, data collected recently from a large transfusion registry identifies platelet 

transfusion in sepsis as ineffectual since its association with platelet count elevation is 

inadequate
207

. Hence, the transfusion of platelets can be either deleterious or ineffectual, 

consequently, presenting a challenge in platelet-targeted therapeutic interventions in sepsis.  

An otherwise effective alternative strategy for restoring the blood count in sepsis that has been 

demonstrated recently is the clinical administration of human thrombopoietin, the main 

regulator of platelet production
208-211

. Conversely, TPO blockade by a chimeric (mTPOR-

MBP) has been demonstrated to reduce organ damage severity in two murine experimental 

models; acute endotoxemia and a polymicrobial sepsis model induced by cecal ligation and 

puncture (CLP)
210

. Targeting platelet-associated inflammatory modulatory responses, 

including the inhibition of cytokines such as TNF-α and IL-1
212

, platelet activating factors
213, 

214
, cyclooxygenase (COX)

215
 and bradykinins

216
 has been shown to be an ineffective 

therapeutic strategy in sepsis. However, activated protein C (APC) has been shown to be 
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effective and is approved by the Food and Drug Administration (FDA) for the treatment of 

human sepsis
217

. 

 

 In addition to the aforementioned therapeutic strategies, the administration of 

antiplatelet agents has been proposed for targeting several platelet defects and deleterious 

pathways in sepsis
174, 218

. In mouse experimental models of acute kidney injury (AKI) and acute 

lung injury (ALI), the depletion of platelets or the inhibition of platelet function by 

administration of antiplatelet drugs has demonstrated protective roles
219

. Notably, antiplatelet 

therapy exhibited a reduced risk of ICU mortality, and such impact has been demonstrated over 

several cohorts. Notably, the blockade of P2Y12 reduced the pro-inflammatory and pro-

thrombotic mechanisms in humans
220

. Additionally, the administration of acetylsalicylic acid 

(ASA) and GPIIb/IIIa antagonists demonstrated reduced complications and mortality in 

patients
221

. However, the administration of antiplatelet drugs has its drawbacks and can 

contribute to resistance in patients and undesirable side effects such as bleeding
222-224

. 

Moreover, it has been shown that antiplatelet agents demonstrate differential effects in 

platelets; aspirin-treated platelets can still be activated by potent platelet agonists such as 

thrombin
174

.  
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1.5 Formyl peptide receptors (FPRs) 
 

 

1.5.1 FPR family members 
 

 Formyl peptide receptors (FPRs) are a group of chemoattractant receptors that belong 

to a family of G protein-coupled receptors (GPCRs) that are mainly expressed in phagocytic 

leukocytes and are known to play a pivotal role in the regulation of host defence and 

inflammation
225

. The expression of these receptors in platelets has been demonstrated 

previously; the expression of FPR1 at protein level in platelets, and at transcript level in 

megakaryocytes
71

, and the expression of FPR2/ALX in megakaryocytes, and human and 

mouse platelets at transcript level has been reported previously
71,226

.  FPRs are so called 

because they were originally discovered by their ability to recognise peptides bearing N-formyl 

methionine (fMet), such as those derived from mitochondrial or bacterial proteins. Hence, these 

receptors are known as pattern recognition receptors with the ability to bind pathogen-

associated molecular patterns (PAMPs) derived from bacteria, or damage-associated molecular 

patterns (DAMPs) derived from the mitochondria of damaged cells
227-229

. Nonetheless, it was 

later discovered that FPR ligands are not only limited to N-formyl peptides, but they bind 

numerous chemically- and structurally-diverse ligands, including non-formyl peptides, 

synthetic peptides, non-peptides including glycoproteins, lipids and eicosanoids such as lipoxin 

A4 (LXA4).  

 

1.5.1.1 Human FPRs 

 The FPRs family is encoded by three genes in humans and comprises three members; 

FPR1, FPR2/ALX and FPR3
230

. FPR2/ALX is called so to convey its ability to interact with 

Lipoxin A4 and aspirin-triggered lipoxins
231

. FPR1 and FPR2/ALX share overlapping 

functions and significant sequence homology (69 % amino acid identity)
232

, whereas FPR3 

shares 58 % and 72 % identity with FPR1 and FPR2, respectively
233

. Unlike FPR1 and 
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FPR2/ALX which are expressed in both neutrophils and monocytes, FPR3 is only expressed 

in monocytes. Besides myeloid cells, FPR1 is expressed in astrocytes, microglial cells, 

hepatocytes and immature dendritic cells. In contrast to FPR1, FPR2/ALX displays a broader 

expression pattern and is found in non-myeloid cells including epithelial cells, hepatocytes, 

microvascular endothelial cells, astrocytoma cells, neuroblastoma cells, in addition to 

phagocytic leukocytes. The expression of these receptors in a variety of cells other 

than phagocytic cells implies their ability to activate functions beyond that of host defence. 

While FPR1 binds to bacterial-derived N-formyl peptides with high affinity, 

FPR2/ALX displays low affinity to these peptides and largely binds to mitochondrial-derived 

formyl peptides
234, 235

. Whereas FPR3 does not bind N-formyl peptides
233

. Moreover, studies 

have shown that long amphipathic α-helical N-formyl peptides favour FPR2/ALX over FPR1 

binding
236, 237

. The ligation of N-formyl peptides to FPRs in immune cells triggers a range of 

signalling cascades resulting in numerous biological responses including chemotaxis, 

degranulation, production of superoxide anions
225, 238

, calcium mobilisation
239

, lysosomal 

enzyme
240

 and cytokine release, and expression of various surface markers
241, 242

. Due to their 

ubiquitous expression and their interaction with a wide variety of ligands, FPRs have been 

implicated in various pathological conditions. Notably, FPR1 is largely implicated in infectious 

inflammation and metastasis, while FPR2/ALX has been implicated in chronic inflammatory 

conditions including atherosclerosis, systemic lupus erythematous and cancer metastasis
243-246

.   

 

1.5.1.2 Mouse FPRs 

 Several orthologs of the human FPR1 gene (FPR1) have been identified in other 

mammalian species including mice, rabbits, horses and guinea pigs
234

. Although they share an 

overall sequence homology, the genes between humans and other mammalian species vary 

significantly in their number and sequences. Notably, the murine FPR gene family comprises 

at least eight members including Fpr1, Fpr2 (also known as formyl peptide receptor, related 
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sequence 2 [Fpr-rs2]), Fpr3 (also known as Fpr-rs1), Fpr-rs3, Fpr-rs4, Fpr-rs5, Fpr-rs6, Fpr-

rs7 and Fpr-rs8. The Fpr1, Fpr2 and Fpr3 genes code for receptors expressed in phagocytic 

leukocytes and display similarity to their human counterparts
247

. The gene product of Fpr1 is 

the mouse ortholog of human FPR1. The human FPR2/ALX corresponds to two genes; Fpr2 

and Fpr3 in mice, thus Fpr2/3 is the mouse ortholog to human FPR2/ALX
234, 247-249

. 

 

While Fpr1 displays low-affinity binding to the tri-peptide N-formyl-methionyl-leucyl-

phenylalanine (fMLF)
248, 250

, it shows higher affinity to several other N-formyl peptides, 

including bacterial fMIFL, fMIVIL and fMIVTLF, and mitochondrial fMMYALF
247, 250

. In 

contrast, Fpr2 has been found to be less responsive to fMLF and fMIFL
247

,  but serves as a 

receptor for endogenous peptide agonists for FPR2/ALX, including amyloidogenic proteins 

SAA (serum amyloid A)
251

  and Aβ42
252

, as well as F2l, which is a highly potent agonist for 

human FPR3
253

. Both Fpr2 and Fpr3 respond to Lipoxin A4 (LXA4) and aspirin-triggered 

lipoxin A4 (ALX)
254, 255

.  

 

The targeted deletion of Fpr1 or Fpr2 renders mice more susceptible to bacterial 

infection. Notably, neutrophils obtained from Fpr1-deficient mice displayed increased 

susceptibility to Listeria infection, suggesting a pivotal role for FPRs in host defence against 

bacterial infection
256, 257

. Moreover, Fpr1- and Fpr2-deficient mice displayed increased 

inflammatory responses and severe liver injury after stimulation with LPS
258, 259

. These mice 

were shown to behave normally under unstimulated settings. However, in several models of 

human diseases, both Fpr1−/−
 and Fpr2−/−

 mice respond differently compared with wildtype 

mice, demonstrating a regulatory role for these receptors in host defence and inflammation. 

The deletion of Fpr2/3 has been associated with dysregulated responses. Fpr2/3-deficient mice 

displayed exacerbated inflammatory responses following cerebral ischaemia/reperfusion (I/R) 

injury, where it has been shown to mediate neutrophil-platelet aggregation
260, 261

. Furthermore, 
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in an experimental polymicrobial sepsis model, Fpr2/3-deficient mice displayed aggravated 

host responses, exacerbated disease severity, and myocardial dysfunction
249

. 

 

1.5.2 FPR signalling 

 

The activation of FPRs induces a variety of responses, including chemotaxis, 

degranulation, and production of superoxide anion
225, 238

 and lysosomal enzyme release
240

.  

FPRs belong to the Gi subfamily of heterotrimeric GPCRs. This was evidenced by their ability 

to mediate cellular responses in a pertussin toxin (PTX)-sensitive manner, where the major 

fMLF-stimulated functions in neutrophils were largely inhibited following the treatment of 

cells with PTX
262-264

.  Upon agonist binding, Gi protein coupled to FPRs undergo conversion 

of guanosine diphosphate (GDP) to guanosine triphosphate (GTP)
65

. This induces their 

dissociation into α and βγ subunits, which leads to a series of signal transduction cascades
263

. 

This leads to the activation of the phospholipase Cβ2 (PLCβ2)
265

 and the phosphoinositide 3-

kinase γ (PI3Kγ)
266

 signalling cascades. PLCβ2 hydrolyses plasma membrane-bound 

phosphoinositol-4,5-bisphosphate (PIP2) into diacylglycerol (DAG) and inositol trisphosphate 

(IP3). This mediates the release of calcium from the intracellular calcium stores, mainly from 

the endoplasmic reticulum. The interplay of calcium and DAG subsequently leads to the 

activation of protein kinase C (PKC) and is crucial for the regulation of reactive oxygen species 

(ROS) production and NADPH oxidase.
54

 Meanwhile, PI3Kγ triggers protein kinase B (PKB, 

also known as Akt) signalling and facilitates the conversion of PIP2  to phosphoinositol-3,4,5-

trisphosphate (PIP3), which mediates superoxide generation
267

, cytoskeletal reorganization, 

oxidative burst and chemotaxis in neutrophils
10,

 
47268, 269

. The subsequent activation of several 

kinases occurs, including extracellular signal-regulated kinases (ERK) and p38 mitogen-

activated protein kinase (MAPK) signalling pathways. 
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 Many cellular functions, including chemotactic responses in neutrophils, require a 

transient rise in intracellular calcium
270

. Recent studies indicate that chemotaxis and calcium 

responses in FPRs are mediated by CD38, a transmembrane glycoprotein, which catalyses the 

production of cyclic ADP-ribose (cADPR) from its substrate NAD
+ 271

. cADPR has been 

described as a regulator of calcium signalling and acts at ryanodine receptors to release calcium 

ions (Ca
2+

) from intracellular stores and results in a sustained influx of extracellular 

Ca
2+

 required for fMLF-induced neutrophil migration
272-274

. This was evidenced by the failure 

of  neutrophils obtained from CD38-deficient mice to migrate in response to fMLF in vitro and 

fail to accumulate at sites of Streptococcus pneumoniae infection in vivo 274
. Moreover, the 

ability of fMLF to induce calcium mobilisation through FPR1 in platelets has been previously 

reported
71

. The mobilisation of calcium in platelets is implicated with activatory responses, 

including the activation of integrin αIIbβ3 and granule release
275

.  

 

The activation of Gi protein-coupled receptors are known to inhibit adenylate cyclase 

276
 and thus, reduce the levels of  cyclic adenosine monophosphate (cAMP). In addition to the 

aforementioned signalling pathways, the production of cAMP is involved in the regulation of 

chemotaxis
277

.  Several studies have shown that elevation of cAMP levels inhibits chemotaxis 

in neutrophils
278-281

. The main target for cAMP is protein kinase A (PKA), which can regulate 

various signalling components, including Rho and vasodilator-stimulated 

phosphoprotein (VASP)
282

. cAMP signalling in platelets play a crucial role in the regulation of 

their function and is associated with the inhibition of platelet aggregation
283

.  

 

 

 

 



 

 

28 

1.5.3 FPR ligands 

 

 FPRs are known to recognise a wide variety of ligands with diverse chemical and 

structural properties and can exert both pro- and anti-inflammatory responses. These ligands 

include formyl and non-formyl peptides, and nonpeptides such as proteins and lipids. The 

peptides can be categorised into three subtypes; pathogen-derived, host-derived and synthetic. 

The nonpeptides can either be synthetic or host derived
234

.  

 

  1.5.3.1 Agonists 

Bacterial-derived N-formyl peptides are considered as a class of pathogen-associated 

molecular patterns (PAMPs) as the bacterial protein synthesis is initiated with N-formyl 

methionine (fMet)
284

. These PAMPs are recognised by specialised receptors on the innate 

immune cells, including TLRs and FPRs
229

. The E. coli-derived tripeptide fMLF was one of 

the first characterised chemotactic formyl peptide and is the most frequently used to study 

neutrophil functions. It is the smallest N-formyl peptide that displays potent agonistic activities 

towards FPRs. In addition to its chemotactic responses in leukocytes, fMLF can induce 

intestinal epithelial cell migration and can regulate epithelial restitution and wound healing. 

These responses are mediated through FRP1. N-formyl peptides that derived from other 

bacterial strains have been identified, and these include pentapeptide fMIVIL from Listeria 

monocytogenes and a tetrapeptide fMIFL derived from Staphylococcus aureus and 

Mycobacterium avium-derived peptide fMFEDAVAWF
285

. Several other pathogen-derived 

nonformyl peptides have been identified to act upon FPRs. For instance, Hp (2–20), a peptide 

derived from Helicobacter pylori, has been shown to induce proliferation and the expression 

of vascular endothelial growth factor (VEGF) in gastric epithelial cells, suggesting that this H. 

pylori peptide may promote gastric mucosal healing
234

. Furthermore, it has been shown that 

HIV-1 envelope proteins can interact with FPRs
286

. Other peptides from viral strains have been 
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identified to interact with FPRs, including gG-2p20, which is derived from Herpes simplex 

virus type 2 (HSV-2)
234

.  

 

In addition to pathogen-derived peptides, FPRs can bind a variety of host-derived 

peptides. These include mitochondria-derived N-formyl peptides that can attract leukocytes to 

sites of inflammation and tissue damage. Among these, the N-formylated hexapeptides 

corresponding to the N terminus of mitochondrial NADH dehydrogenase subunits 4 

(fMLKLIV) and 6 (fMMYALF), and cytochrome c oxidase subunit I (fMFADRW).  All of 

which can act on both FPR1 and FPR2/ALX while fMMYALF can also act on FPR3
235

. 

Moreover, fMYFINILTL and its nonformylated fragment (MYFINILTL) that derived from 

mouse NADH dehydrogenase subunit 1 act on FPR2/ALX
287

.  

 

Another class of host-derived peptides that act on FPRs includes endogenous peptides 

associated with inflammatory and bacterial responses. These include the human cathelicidin 

antimicrobial peptide LL37 (LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES), 

which is expressed in human neutrophils and derived from the enzymatic cleavage of its pro-

form the human cationic antibacterial protein of 18 kDa (hCAP-18). In addition to its 

bactericidal activities, LL37 activates FPR2/ALX to promote chemotaxis in leukocytes and 

angiogenesis on endothelial cells
234

. This was evidenced by studies using CRAMP-deficient 

mice, wherein neovascularization was compromised during wound repair. Another 

antibacterial protein involved with FPR1 signalling is cathepsin G, which is a serine protease 

found in neutrophil granules and mediates wound healing
234

. These antimicrobial peptides are 

released upon cellular stimulation and aid in the recruitment of phagocytic leukocytes to the 

sites of infection and mediate the killing and clearance of the invading bacteria. In addition to 

these antimicrobial peptides, FPRs can bind peptides that play a role in the resolution of 

inflammation. Namely, annexin A1 (Anx A1, also called lipocortin I) and its terminal peptides 
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are also known to act through FPRs. Anx A1 is a glucocorticoid-regulated protein known to 

exert both pro- and anti-inflammatory activities through FPRs. It is abundantly expressed in 

neutrophils and plays a prominent role in the resolution of inflammation as it has been shown 

to induce neutrophil detachment and apoptosis
288

. 

 

Several other host-derived peptides have been shown to act through FPR2/ALX, some 

of which are associated with amyloidogenic diseases and chronic inflammation, including 

serum amyloid A (SAA), β amyloid peptide Aβ42, and PrP106–126. SAA is an acute-phase 

protein and its increase has been associated with inflammatory disease such as rheumatoid 

arthritis. Aβ42 is a 42-amino acid cleavage product of the amyloid precursor protein in the 

brain and is implicated in Alzheimer’s disease. PrP106–126 is a protein fragment produced in 

the brain during prion disease, which can activate leukocytes through FPR2/ALX and thus 

contribute to inflammatory response during disease. Another endogenous host-derived peptide 

that can act upon FPRs is humanin (MAPRGFSCLLLLTSEIDLPVKRRA) which  exerts 

neuroprotective activity
289

 and binds to FPR2/ALX and FPR3
290

. It has been shown that the N-

formylated humanin is more potent than the nonformylated form, demonstrating the 

significance of N-formylation in enhancing agonistic activity
291

.  

 

 Several synthetic peptides that are potent chemotactic agents for leukocytes have been 

identified to act through FPRs. Although physiologically-irrelevant, these peptides comprise 

beneficial pharmacological agents for the characterization of FPRs, the investigation of their 

signalling pathways, and for the development of potential therapeutic agents.  Among these, a 

hexapeptide Trp-Lys-Tyr-Met-Val-d-Met-NH2  (WKYMVm)
292

, which has been shown to 

stimulate lymphocytes, monocytes and neutrophils and can act on FPR1 and FPR2/ALX to a 

higher affinity, rendering it its most potent agonist
293

. In addition, MMK-1 

(LESIFRSLLFRVM) peptide exerts potent agonistic activity towards FPR2/ALX 
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selectively
294, 295

. The peptide MMWLL (Met-Met-Trp-Leu-Leu) is also identified as a potent 

FPR1 agonist, which is 1000-fold more potent upon N-formylation
296

. This demonstrates the 

preferential recognition of N-formylmethionine-containing peptides by FPR1. Several 

synthetic nonpeptide compounds that act through FPRs have been identified. Among these, is 

a quinazolinone derivative known as Quin-C1 (4-butoxy-N-[2-(4-methoxy-phenyl)-4-oxo-1,4-

dihydro-2H-quinazolin-3-yl]-benzamide) is a highly selective agonist for FPR2/ALX and 

induces chemotaxis and calcium mobilization in neutrophils
297

. Additionally, a series of 

compounds were shown to exert anti-inflammatory properties through FPR2/ALX, including 

the two pyrazolones (Compound 24 and 43)
298

. Other synthetic nonpeptide compounds that act 

through FPR2/ALX include Compounds 1 and 2, and arylcarboxylic acid hydrazide 

derivatives, which were shown to induce the production of TNFα by macrophages
299

. 

Nonpeptides that act through FPR1 have been also identified including AG-14, which has been 

shown to activate neutrophils at nanomolar concentration
300

.  

 

  One of the first described lipid ligands for FPR2/ALX is the endogenous lipoxin A4 

(LXA4) (5S,6R,15S-trihydroxy-7,9,13-trans-11-eicosatetraenoic acid) which is biosynthesised 

from arachidonic acid and is shown to exert anti-inflammatory and pro-resolving activities in 

various inflammatory cells
301

. LXA4 acts through FPR2/ALX to induce apoptosis and 

phagocytosis
302

, attenuate neutrophil activity
303

, inhibit production of pro-inflammatory 

cytokines
304

, promote detachment of adherent leukocytes
305

 and inhibits neutrophil infiltration 

255, 306, 307
. Furthermore, LXA4 has been shown to reduce inflammation-induced pain in various 

pathological conditions, including ischaemia/reperfusion injury, dermal cystic fibrosis, 

inflammation, infections and colitis
308

.  
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  1.5.3.2 Antagonists for FPRs 

The pivotal roles of FPRs in the regulation of microbial infections, host immune 

defence and inflammatory responses suggest that targeting such receptors may attenuate 

complications associated with diseases where FPRs play critical roles. Several antagonists for 

FPRs have been identified and include pathogen-derived, host-derived and synthetic 

compounds. Among these is the fungus-derived inverse agonists cyclosporin H (CsH) and A 

(CsA), which were shown to suppress fMLF-induced neutrophil stimulation activities through 

FPR1
225, 309, 310

. Additionally, FPR2/ALX-inhibitory protein (FLIPr) derived from 

Staphylococcus aureus directly binds both FPR1 and FPR2/ALX and inhibits fMLF-induced 

cell activation
274

. Additional pathogen-derived peptides that exert antagonistic activity for 

FPR1 include bacteria-derived chemotaxis inhibitory protein of S. aureus (CHIPS), and 

retrovirus-derived immunosuppressive hexapeptide LDLLDL
311

. The release of peptides by 

pathogens that exhibits antagonistic activities reveals mechanisms by which these pathogens 

may invade host defence. Host-derived endogenous antagonists for FPR1 have been identified 

and these include the bile acids deoxycholic acid (DCA) and chenodeoxycholic acid (CDCA) 

and the opioid spinorphin (LVVYPWT)
312-315

.  

 

 In addition to pathogen- and host-derived antagonists for FPRs, several synthetic 

compounds have been identified. Previous studies have indicated that the replacement of the 

N-formyl group of fMLF with tertiary butyloxycarbonyl group (t-Boc) converts the peptide 

into an antagonist
316

. Both t-Boc-Met-Leu-Phe (Boc-1) and t-Boc-Phe-d-Leu-Phe-d-Leu-Phe 

(Boc-2) were originally demonstrated as  selective antagonists for FPR1 when used at low 

concentrations
316

. However, several studies have demonstrated an inhibitory response of Boc-

2 to FPR2/ALX when used at high concentrations (100 μM)
305, 317-320

.  It was later demonstrated 

that Boc-2 is a pan-antagonist that partially inhibits FPR2/ALX at high micromolar 

concentrations in addition to FPR1
321

. A more selective antagonist for FPR2/ALX was later 
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identified, this includes the peptide WRWWWW (WRW4)
321, 322

. In addition to WRW4, the 

cell-permeable antagonist PBP10, which is derived from a PIP2-binding domain of the 

cytoskeleton protein gelsolin, demonstrates FPR2/ALX antagonistic activity by acting on the 

intracellular domains in the receptor. Quin-C7, which is developed through chemical 

modification of the FPR2/ALX agonist Quin-C1, is also identified as a highly selective 

FPR2/ALX antagonist
323

.  

 

1.5.4 Role of FPRs in health and disease 
 

 Given the ubiquitous expression of FPRs and their interaction with a wide variety of 

ligands, they have been associated in various pathological conditions, including acute and 

chronic inflammation, ischaemia–reperfusion injury
324

, atherosclerosis
325

, inflammatory bowel 

disease
326

, neurodegenerative disease
327

, diabetes and cancer
244, 328, 329

.  

 

 FPRs play indispensable roles in the regulation of inflammation and resolution. This is 

evidenced by findings on Fpr1-deficient mice, wherein exacerbated infection and increased 

mortality were observed in these mice upon bacterial infection
256, 257

. Moreover, Fpr2/3 

deficiency caused an increase in inflammatory responses in multiple mouse inflammation 

models
259

. During acute inflammation, several inflammatory responses including adhesion and 

cellular transmigration are regulated by FPRs
330, 331

. FPR1 exerts antimicrobial responses upon 

binding with pathogen-derived peptides, such as the bacterial chemotactic peptide fMLF
240, 332

. 

Moreover, the endogenous antimicrobial peptide, LL37, is released from host cells and can 

interact with FPR2/ALX
333

. The dysregulated expression of these peptides has been associated 

with many pathological conditions, including the overexpression of LL37 in chronic skin 

inflammatory disease, such as psoriasis and the overexpression of fMLF in inflammatory 

bowel disease and metabolic diseases. Additionally, annexin A1 (ANXA1), which can exhibit 

both pro- and anti-inflammatory roles can interact with both FPR1 and FPR2/ALX to exert its 
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functions and has been associated with chronic inflammation
334, 335

. Another class of ligands 

that can interact with FPR2/ALX are lipoxins and resolvins, which play indispensable roles in 

the resolution of inflammation and anti-inflammatory responses
336

. Taken together, these 

demonstrate the critical role of FPRs in the regulation of inflammation and resolution, which 

can progress into pathophysiological responses if not regulated properly. 

 

FPRs are also associated with neurodegenerative diseases and amyloidosis. FPR2/ALX 

interacts with amyloid-related peptides such as SAA, Aβ42, and PrP106–126. These peptides 

are elevated in inflammatory settings and can exacerbate inflammation and lead to organ 

damage. This may also contribute to the progression of Alzheimer's disease. Additionally, 

humanin has been shown to interact with FPR2/ALX to exert neuroprotective roles by 

competing with Aβ42 for binding to FPRs and inhibiting their effects
290, 291

. Moreover, 

FPR2/ALX has been associated with the progression of inflammation in prion disease
337

. 

 

FPRs were also shown to be implicated in acquired immune deficiency 

syndrome (AIDS), wherein the recombinant HIV-1 gp120 and gp41 have been shown to 

suppress the expression and function of FPRs
338, 339

. It has been shown that FPR ligands such 

as SAA and fMLF can significantly reduce the fusion and infection of HIV-1
340

. Thus, it has 

been suggested that FPR ligands may be useful for the development of anti-HIV-1 agents. In 

addition, FPRs have been implicated in metabolic disorders, including diabetes and obesity. It 

has been shown that the elevated levels of fMLF can contribute to glucose intolerance and 

insulin resistance via FPR1
341

. On the other hand, it has been shown that RvD1 via FPR2/ALX 

can enhances glucose tolerance, restore systemic insulin sensitivity and prevent macrophage 

accumulation in adipose tissue in obesity-induced diabetes animal model
342

. 
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Inflammation is closely associated with cancer. Many inflammatory cells are involved 

in the regulation of tumour cell proliferation, metastasis and survival
343

. FPRs have been shown 

to play a role in the tumour growth and the progression of angiogenesis
225, 344

. In particular, 

ANXA1 was found to promote the growth of glioblastoma via the activation of FPR1
345

. 

Additionally, acute-phase reactant SAA and antimicrobial LL37
346

  have been implicated in 

tumourigenesis
347-349

. On the contrary, LXA4 and its analogue, BML-111, have been shown to 

exert anti-tumour effects
350-352

. Studies have found that these compounds can inhibit VEGF 

accumulation, tumour growth and angiogenesis and promoted apoptosis of tumours in vivo353, 

354
. Collectively, these findings uncover novel therapeutic strategies for the treatment of a broad 

spectrum of diseases associated with FPRs. 

 

1.6 Bacterial peptide fMLF 

1.6.1 Definition and function  
 

 

N-formyl peptides are produced from the degradation of bacterial or mitochondrial 

proteins
355

. While FPR1 binds with high affinity to bacterial-derived N-formyl peptides, 

FPR2/ALX binds those derived from mitochondria
234, 235

. The ligation of N-formyl peptides to 

FPRs in immune cells triggers a cascade of signalling pathways, resulting in a number of 

biological activities. Escherichia coli-derived fMLF is one of the most potent chemotactic 

peptides that facilitates innate immune responses against bacteria via FPR1 signalling
241, 242, 

356
. During infection, invading bacteria produce N-formyl peptides that facilitate the 

recruitment of immune cells to the site of bacterial infection and tissue damage, expediting 

rapid clearance of microbial infection and tissue damage repair
357

. fMLF is known to act 

mainly through FPR1 in immune cells
234

. The stimulation of neutrophils with fMLF induces a 

wide variety of cellular responses leading to cell migration and chemotaxis, superoxide anion 

generation and granule secretion
358, 359

. This triggers the release of inflammatory mediators 
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including the platelet-activating factor (PAF) Acetyl-glyceryl-ether-phosphoryl-

choline (AGEPC)
360

, proteases such as cathepsin G
361

 and ROS 
362

, which mediate pathogen 

killing but can ultimately cause severe tissue injury at the site of infection
363

. Apart from its 

stimulatory role in neutrophils, fMLF has been shown to induce platelet chemotaxis through 

FPR1 to mediate innate immune responses
71

.  

1.6.2 Role of fMLF in disease 
 

Despite the ability of fMLF to mediate innate immune responses, it has been associated 

with the pathogenesis of microbial infection and inflammatory conditions. It has been 

implicated in bacterial cystitis
364

, pneumococcal pneumonia
365

, inflammatory bowel diseases 

(IBDs)
366

, pouchitis, colitis
367

 and juvenile peridontitis
368

. Furthermore, it has been shown that 

the inhalation or injection of fMLF may cause bronchial inflammation
369

, and induce rapid 

neutropenia, increasing susceptibility to infections
370

. Since the intestinal microbiota is a major 

source of enteric E.coli, and the disruption of its homeostasis has been widely implicated in the 

pathogenesis of IBDs, where the effect of fMLF in exacerbating the progression of this disease 

has been reported
356

. Moreover, fMLF (at concentrations of 1 nM to 1 µM) induced 

spasmogenic effects, which can contribute to abdominal cramps. The concentrations of fMLF 

in intestinal milieu has been reported to be at least in the micromolar range
371

. The implication 

of fMLF in glucose intolerance was also observed, wherein high-fat diet-fed mice displayed 

elevated plasma levels of circulating fMLF, sourced from enteric bacteria, which impaired 

glucose tolerance and insulin secretion
341

. Many of these infectious and inflammatory 

conditions are associated with a risk for platelet reactivity and thrombotic events that can 

contribute to cardiovascular complications
372-374

.  
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1.6.3 Emerging role for fMLF in platelet function 
 

A role for fMLF, albeit indirect, on the regulation of the haemostatic platelet function 

has been previously explored. fMLF has been shown to induce the upregulation of adhesion 

molecules
375

 and severe cell aggregation in neutrophils
376

.  This in turn may activate platelets 

and facilitates their adhesion to leukocytes and the endothelium within the blood vessel wall. 

The interaction between platelets and leukocytes can lead to the formation of heterotypic 

aggregates with leukocytes, known as platelet-leukocyte aggregates (PLAs), and may modulate 

their functions
81

. PLAs are mainly driven by the ligation of P-selectin on the surface of 

activated platelets with P-selectin glycoprotein ligand-1 (PSGL-1) on the leukocyte surface
377

. 

Other modes of interaction between platelets and leukocytes have been suggested and include 

platelet integrin αIIbβ3 binding to the neutrophil Mac-1 via fibrinogen as well as direct binding 

of Mac-1 on neutrophils to platelet GPIbα. These interactions consequently trigger signals that 

amplify prothrombotic and proinflammatory responses
378

. In line with this, fMLF has been 

shown to induce PLA formation
379

, and several reports indicate that this is driven by linking 

via fibrinogen (as evidenced by the blockade of αIIbβ3
380

) and P-selectin
381

. Moreover, 

previous studies have reported the aggregation of platelets in response to fMLF-induced 

neutrophil stimulation
382-384

. These findings were attributed to the release of mediators such as 

platelet-activating factors (PAFs)
385

 and cathepsin G
361, 386

, consequential to fMLF-induced 

neutrophil stimulation, that can directly activate platelets and subsequently induce their 

aggregation
380, 384

.  
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1.7 Antimicrobial peptide LL37 
 

1.7.1 Definition and function  
 

 Cathelicidins are a group of endogenous cationic peptides ranging from 12-97 amino 

acids. They are also referred to as host defence peptides (HDPs) or AMPs, and play a crucial 

role in innate immune defence. They exhibit various functions including direct antimicrobial 

activity against bacteria, viruses, fungi, and parasites. In addition to anti-inflammatory 

activities, they exert immunomodulatory responses. Cathelicidins are widely distributed in 

both invertebrates and vertebrates, and are characterised by their pre-pro peptide sequences. 

All cathelicidins have a highly homologous prosequence at their N-terminus (a cathelin-like 

domain) followed by a highly variable C-terminal mature peptide. They are paradoxically 

termed so because their N-terminal signal peptide (a highly conserved prosequence) is 

homologous to that of cathelin, a 96-amino acid isolated from porcine neutrophils that acts as 

a cathepsin L protease inhibitor
387-389

. It was later shown that cathelidicins do not exert protease 

inhibitory roles but display anti-infective roles
390

.  

 

In order to be biologically active, cathelicidins need to undergo proteolytic processing 

that leads to the liberation of the mature peptide. They are initially synthetized as pre-

propeptides containing the signal sequence, cathelin domain and the mature peptide. The signal 

sequence transports the propeptide to the granules or cell membranes. In neutrophils, the pre-

propeptides are inactive and are stored at high concentrations in the azurophilic granules. Upon 

the activation of neutrophils, it undergoes proteolytic processing by appropriate proteases to 

liberate a biologically active, mature peptide
391

. This proteolytic cleavage is processed by 

serine proteases such as elastases, proteinase 3 and kallikreins
392

. Once the mature peptide is 

released, it becomes resistant to proteolytic degradation
391

. Cathelicidins are widely distributed 

in a variety of tissues and cells including skin, intestine, lungs, mucosa and oral cavity. They 
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are also largely found in the unprocessed form (pre-pro) in the granules of neutrophils as well 

as epithelial cells, mast cells, keratinocyte and lymphocytes. In their processed forms, they are 

found in various body fluids, including plasma, saliva, sweat, gastric juice, breast milk, semen 

and airway surface liquid
393, 394

. 

 

1.7.2 Human Cathelicidins  

The only cathelicidin expressed by humans is the human cationic antimicrobial peptide 

of 18 kDa (hCAP18), which is encoded by the CAMP gene (chromosome 3p21.3)
388, 395

. The 

expression of hCAP18 is transcriptionally controlled by inflammation, Vitamin D metabolites, 

and endoplasmic reticulum stress via NF-κB activation
396

. Once the pre-propeptide is 

translated, it undergoes cleavage of the signaling sequence, resulting in the mature hCAP18 

form. This form is then further processed by proteolytic enzymes (by proteinase 3 in 

neutrophils and kallikreins in keratinocytes) to liberate the mature, biologically active peptide 

LL37 (LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES), which is named to its 37 

amino acid length and two leading leucine residues
397-399

. The α-helical structure of the peptide 

assembles into dimers or trimers, thus avoiding peptide degradation
400

. It facilitates the 

penetration and destabilisation of bacterial membranes, and generation of transmembrane 

pores
401-404

. Moreover, LL37 neutralises endotoxin by direct binding, and exhibits chemotactic 

activity for human neutrophils, monocytes, and resting T cells mediated by FPR2/ALX
333

.   

 

LL37 is expressed in various immune cells, including neutrophils, macrophages, 

dendritic cells, NK cells and epithelial cells. It is secreted in response to infection, pro-

inflammatory stimuli and/or injury in keratinocytes
126

. The dysregulated expression of LL37 

has been implicated in various pathological conditions. For instance, LL37 is upregulated in 

chronic inflammatory diseases, including Crohn’s disease
405, 406

, rheumatoid arthritis
407

, 

psoriasis
408

 and eczema
409

. Its downregulation has been implicated in enteric infection
410

, acute 
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myeloid leukaemia
411, 412

, atopic dermatitis
128, 413

 and chronic epithelial ulcers
414

. Additionally, 

patients suffering from Kostmann disease, an autosomal recessive disorder characterized by 

severe neutropenia and early onset of bacterial infections, report deficiency in LL37
415

. 

 

1.7.3 Mouse Cathelicidins 

Similar to humans, mice solely express one cathelicidin, which is encoded by the Camp 

gene (chromosome 9) and shares 80% sequence homology with its human orthologue hCAP18. 

The mouse cathelin-related antimicrobial peptide (mCRAMP), a 34 amino acid 

(GLLRKGGEKIGEKLKKIGQKIKNFFQKLVPQPEQ)
415

, is processed to release an active 5 

kDa amphipathic peptide compromised of two α-helices that are joined by a flexible region. 

Unlike hCAP18, mCRAMP is not transcriptionally regulated by vitamin D metabolites. 

Despite differences in peptide sequence, mCRAMP exhibits significant similarities to human 

LL37, which renders it a useful model to investigate the function and regulation of human 

cathelicidins
416

. 

Several studies supported by CRAMP-deficient mice demonstrate the pivotal role of 

cathelicidins in bacterial defence
417-420

. These mice were more susceptible to bacterial and viral 

infection, including P.aeruginosa, E.coli, Citobacter rodentium, Klebsiella pneumonia, 

vaccinia virus (VV) and influenza (IAV), and are prone to increased disease severity
419, 421-425

. 

Similarly, these mice have increased colonisation and invasion of pathogenic bacteria in the 

colon
421

  and are more susceptible to urinary tract infections
419

. Moreover, these mice display 

decreased vascularisation during wound repair, this indicates that cathelicidin-mediated 

angiogenesis is important for cutaneous wound neovascularisation in vivo 
426

. 
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1.7.4 Role of LL37 in disease   
 

 LL37 has been implicated in various pathological conditions, including inflammatory 

bowel disease, infectious and sterile inflammation, inflammatory skin disease, autoimmune 

disease, atherosclerosis
427

. Given the recent advances in understanding their role in multiple 

pathological conditions, cathelicidins can act as potential targets for the development of 

therapeutic strategies. The therapeutic potential of cathelicidins against infections have been 

explored
428

. LL37 demonstrates a promising target for the development of therapeutic agents 

as a substitute to systemic antibiotics
429

. Additionally, cathelicidin derivates were shown to not 

only provide improved therapeutic potential, but also eliminate the undesirable cytotoxic 

effects associated with natural cathelicidins. For instance, Omiganan, a bovine cathelicidin 

derivative, has been found greatly effective against pathological inflammatory conditions and 

infections in clinical trials
394

. In addition to infections, the utilisation of cathelicidins in wound 

healing has been explored. The application of cathelicidins have been shown to promote 

angiogenesis and re-epithelialisation and angiogenesis in gastrointestinal disorders
430

.  In 

addition, a novel use of cathelicidin as vaccine adjuvants has been proposed
394

. LL37 fragments 

has also been proposed for the development of anticancer drugs since it can suppress tumour 

growth in gastric cancers
431

. The evolving role of LL37 in multiple autoimmune diseases, 

renders it a potential target for the modulation of immune responses. Given the roles of LL37 

on TLR signalling, it may provide a therapeutic strategy in pathological conditions associated 

with such signalling pathways. In particular, the neutralisation of TLR signalling was an 

effective strategy in diseases such as sepsis, colitis, psoriasis and chronic pain
432

. In addition 

to the development of therapeutic agents, cathelicidins can act as biomarkers for disease. LL37 

may serve as a biomarker for inflammatory conditions such as inflammatory skin disease and 

chronic pulmonary disease
409, 433

.  
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1.7.5 Role of LL37 in psoriasis 
 

 As described previously, psoriasis is associated with the hyperproliferation of 

keratinocytes, inflammation of skin, increased cytokine production including type I interferons 

and the overexpression of AMPs including LL37
112, 434

. The upregulation of LL37 expression 

was first reported in 1997, wherein it was suggested that this induction is associated with a 

protective role in disease and that it plays a role in antimicrobial defence
435

. Contrasting to 

normal skin or skin from other inflammatory skin diseases, psoriatic lesions express 

cathelicidin in the form of LL37 exclusively
436

. Moreover, the level of LL37 in normal skin 

was minimal compared of that to inflamed skin from rosacea patients
437

. The normal skin 

mostly expresses cathelicidins (not in the form of LL37) at low levels.  In inflammatory skin 

disease such as rosacea, the level of cathelicidin increases and is usually associated with 

different forms of cathelicidin
437

. Whereas in psoriasis, cathelicidins are upregulated and are 

expressed exclusively in the form of LL37.  Another study has suggested that the increased 

upregulation of LL37 in psoriatic lesions is associated with low rate infection, where patients 

were found to be more susceptible to bacterial and viral infections due to the dysregulated 

expression of AMPs
128

. It was later proposed that LL37 plays an immune-modulatory role in 

psoriasis, where it was shown to modulate inflammation by directly activating plasmacytoid 

dendritic cells (pDCs) and myeloid dendritic cells (mDCs) and forming self-DNA and -RNA 

complexes, which leads to the activation of TLR8 in mDCs, and TLR7 and TLR9 in pDMs
127, 

438
 . The activation of TLR9 in turn leads to the overproduction of type I interferons (IFN-α 

and IFN-β)
112

. Moreover, it has been shown that LL37 reduces apoptosis in keratinocytes, 

which may also contribute to their hyperproliferation in psoriasis and exacerbation of 

inflammatory responses
439

. Serum levels of LL37 are also shown to be higher than normal in 

psoriatic patients and were reduced upon treatment with CsA
440

. 
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1.7.6 Role of LL37 in atherosclerosis 
 

In addition to psoriasis, the role of LL37 has been implicated in atherosclerosis, which 

is associated with innate immune responses including upregulation of type I interferons, which 

contribute to the development of atherosclerotic plaques and disease pathogenesis
441-444

. 

Similar to psoriasis, the upregulation of LL37 contributes to the development of atherosclerotic 

lesions in atherosclerosis
445

. It has been shown that LL37 plays a key role in the modulation of 

cytokines and the recruitment of inflammatory cells to atherosclerotic plaques. Notably, LL37 

promotes the production of type I interferon
445

. Furthermore, atherosclerotic aortas in humans 

demonstrate increased transcription of LL37
446

. This was also associated with increased 

apoptosis of vascular smooth muscle cells in humans
447

. The association of cathelicidins with 

atherosclerosis has also been demonstrated in mice. In studies using pro-atherosclerotic 

apolipoprotein E (apoE)-deficient mice, the levels of neutrophil-associated mCRAMP were 

elevated in the carotid arteries of mice fed with high-fat chow. Moreover, these mice 

demonstrate significant protection in plaque size and recruitment of macrophages upon 

crossing to mice strains deficient in mCRAMP
448

. LL37 also contributes to the recruitment of 

inflammatory cells by activating endothelial cells and the upregulation of ICAM-1 in 

atherosclerosis, this in turn leads to the recruitment of inflammatory cells to the site if 

inflammation and may cause prothrombotic responses
426

. 
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1.7.7 Emerging role for LL37 in platelet function 
  

Only three studies have explored the direct role of LL37 in the regulation of platelet 

function. In 2006, Bucki and Janmey demonstrated the role of lipopolysaccharides (LPS) and 

lipoteichoic acid (LTA) on several endogenous antimicrobial peptides, including PBP 10, 

mellitin, magainin II and LL37
402

. In an effort to demonstrate the mechanisms by which PBP 

10 triggers bacterial killing, it was compared to the aforementioned AMPs. In this study, the 

cytotoxic activity of such peptides on circulating blood cells including red blood cells (RBCs) 

and platelets was investigated. Only mellitin (5 uM) demonstrated cytotoxicity towards 

platelets; LL37 (5 uM) failed to exert any cytotoxicity towards platelets. Additionally, LL37 

(5 uM) failed to aggregate platelets on its own and demonstrates no effects on thrombin-

induced aggregation of gel-filtered platelets. LL37 (1 or 5 uM) also failed to exert any effect 

on calcium mobilisation using Fura-2-labelled platelets.  

 

In 2016, Su et al. suggested an inhibitory role for LL37 in the regulation of platelet 

function
449

. The study shows that LL37 inhibits the aggregation of gel-filtered human platelets 

upon stimulation with ADP (10 μM), collagen (2 μg/mL), thrombin (0.26 U/mL) or U46619 

(3 μM). Moreover, the study demonstrates that LL37 inhibits alpha-granule secretion induced 

by the aforementioned platelet agonists. Additionally, LL37 demonstrated antithrombotic 

effects in an arterio-venous shunt thrombosis model in mice. In addition, platelet spreading on 

immobilized fibrinogen was inhibited by pretreatment with LL37 (0.3, 0.6 and 1.2 mM). The 

study suggested the involvement of Src/PI3K/Akt signalling as evidenced by changes in 

phosphorylation upon pretreatment with LL37 (0.6 mM).  The findings in this study are likely 

to be improbable; as the concentration of LL37 are exceptionally high and are not 

physiologically-relevant and even more so have been reported to exert cytotoxicity towards 

various eukaryotic cells
401

.   
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On the contrary, a recently published study by Pircher et al. in 2018 demonstrated the role 

of LL37 in thrombo-inflammation
450

.  This study demonstrates a priming role for LL37 in 

platelets, which was evidenced by reduced platelet activation and arterial thrombosis in 

CRAMP-deficient mouse models. Moreover, LL37 induced alpha-granule secretion evident by 

P-selectin expression. However, LL37 failed to exert a direct effect on platelet aggregation, 

and did not affect collagen- ADP-, or thrombin receptor activating peptide (TRAP)-induced 

platelet aggregation in platelet-rich plasma (PRP). In addition, LL37 failed to induce fibrinogen 

binding or platelet spreading on immobilized fibrinogen. In an attempt to explore the signalling 

mechanisms underlying such effects, the FPR2/ALX signalling was explored amongst other 

pathways. Notably, the inhibition of such signalling by an FPR2/ALX-selective inhibitor, 

WRW4, did not affect LL37 effects. It is worth noting that none of the studies mentioned above 

explored the effects of LL37 on FPR2/ALX signalling on platelets except for Pircher et al., 

wherein a very low concentration (1 uM) of WRW4 was used. 
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1.8 Resolving protein Annexin A1  
 

1.8.1 Definition and function 
 

Annexin A1 (AnxA1) is a 37 kDa pro-resolving protein that belongs to the annexin 

superfamily
451

. Annexins are calcium-dependent phospholipid binding proteins that share two 

distinctive regions; the core and the amino (N)-terminus. The core region is highly conserved 

between the annexin subfamilies, while the N-terminal sequence is unique to each protein
452

.  

It is a glucocorticoid-regulated protein that is known to play a role in the regulation of 

inflammation, and cell proliferation, differentiation and apoptosis
453

.  It is expressed in the 

cytosol of various resting cells including neutrophils, monocytes, macrophages and epithelial 

cells
288

. Furthermore, a limited number of studies have reported its expression in platelets
454, 

455
. The activation of such cells leads to the externalisation of AnxA1 on the cell membrane 

and/or its secretion
456

. The extracellular AnxA1 then undergoes conformational changes, 

exposing its active form, the N-terminal region that mediates the binding to FPR2/ALX
335, 457

. 

The externalisation and secretion of AnxA1 is typically accompanied by a proteolytic cleavage 

of its N-terminal region
458-460

, such cleavage is implicated with the down-regulation of AnxA1, 

rather than the release of bioactive peptides. This was validated in a study whereby a cleavage-

resistant AnxA1, termed Super Annexin A1 (SAnxA1), retained a prolonged function in the 

microvasculature
461

. While the full-length N-terminus has been shown to be inactive, a 

synthetic peptide containing the first 26 amino acids of its sequence displayed functionality
462

. 

The N-Acetyl 2–26 (Ac2-26) has been shown to act as a pharmacophore
463

  and plausibly 

maintain the properties of the full-length protein
305, 461, 464-467

. Nonetheless, a limited number 

of studies reported an opposing effect
334, 468, 469

. Both full-length and cleaved forms of the 

protein have been found in inflammatory exudates and other extracellular biological fluids
470-

473
. 

  



 

 

47 

1.8.2 Role of Annexin A1 in disease 
 

AnxA1 has been shown to play a protective role in various inflammatory diseases that 

are associated with platelet reactivity
474

, including atherosclerosis
475-479

, myocardial 

infarctions
480, 481

 and strokes
260, 261, 465, 478, 482

. Furthermore, the dysregulation of AnxA1 

expression has been implicated in various pathological conditions; its up-regulation is 

reported in cancer
483

, melanoma
484

, breast cancer
485-487

, periods of remission in ulcerative 

colitis
488

, and its downregulation in Crohn’s disease
489

, thyroid cancer
490

,  signifying its 

prognostic significance and therapeutic efficacy. Conversely, a pathogenic role of Ac2-26 has 

been previously described in cancer, wherein it facilitated metastasis/pro-invasiveness
491

, and 

in rheumatoid arthritis, where it facilitated the secretion of matrix metalloproteinases 

(MMPs)
468

.  
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1.9  Hypothesis  

 

Formyl peptide receptors regulate haemostasis in platelets through the modulation of 

thrombus formation and haemostasis. The chemotactic bacterial peptide fMLF primes platelet 

activation and modulates thrombus formation through FPR1. The antimicrobial peptide LL37 

exhibits prothrombotic effects and thus may implicate the pathogenesis of cutaneous 

inflammatory diseases such as psoriasis through interaction with platelets via FPR2/ALX. The 

Annexin A1 N-terminal peptide, Ac2-26, affects platelet haemostasis through FPR2/ALX. 

 

1.10  Research objectives  

 

The aim of this study is to determine the role of formyl peptide receptors in the 

regulation of platelet function. Thus, the main objectives of this study: 

• Investigate the role of a range of FPR ligands in the activation of platelets, and 

analyse the signalling mechanisms that regulate these effects 

• Determine the role of bacterial formyl peptide fMLF in the regulation of platelet 

function via FPR1 

• Determine the role of antimicrobial peptide LL37 in the regulation of platelet 

function via FPR2/ALX, and its role in modulating platelet function during inflammatory 

disease such as psoriasis 

• Determine the role of resolving protein Annexin A1 in the regulation of platelet 

function via FPR2/ALX 
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2 – The formyl peptide fMLF primes platelets and 26 

augments thrombus formation selectively via formyl 27 

peptide receptor 1 28 
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2.1 Abstract 15 

 Formyl peptide receptors (FPRs) are a group of G protein-coupled receptors that play pivotal 16 

roles in the regulation of innate immunity and host defence. FPRs include three family members; 17 

FPR1, FPR2/ALX and FPR3. The activation of FPR1 by its high affinity ligand, N-formyl-methionyl- 18 

leucyl-phenylalanine (fMLF) (a bacterial chemoattractant peptide), triggers intracellular signalling in 19 

immune cells such as neutrophils and exacerbates inflammatory responses to accelerate the clearance 20 

of microbial infection. Notably, fMLF has been demonstrated to induce intracellular calcium 21 

mobilisation and chemotaxis in platelets that are known to play significant roles in the regulation of 22 

innate immunity and inflammatory responses. Despite a plethora of research focused on the roles of 23 

FPR1 and its ligands such as fMLF on the modulation of immune responses, their impact on the 24 

regulation of haemostasis and thrombosis remains unexplored. Here, we demonstrate the effect of 25 

fMLF on the modulation of platelet reactivity, haemostasis and thrombus formation. fMLF primes 26 

platelet activation through inducing distinctive function and enhances thrombus formation under 27 

arterial flow conditions. By using selective inhibitors for FPR1 and Fpr1-deficient mice, we have 28 

established a fundamental role for FPR1 in the regulation of fMLF-mediated effects in platelets. 29 

Moreover, FPR1 regulates normal platelet function as its deficiency in mouse or blockade in human 30 

platelets using a pharmacological inhibitor resulted in diminished agonist-induced platelet activation. 31 

Since FPR1 plays critical roles in numerous disease conditions, its influence on the modulation of 32 
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platelet activation and thrombus formation will provide insights into the mechanisms that control 1 

platelet-mediated complications under diverse pathological settings.  2 

2.2 Introduction 3 

Platelets are small circulating blood cells that play indispensable roles in the regulation of 4 

haemostasis to prevent excessive bleeding upon vascular injury. However, their unwarranted 5 

activation under pathological conditions leads to the formation of blood clots (thrombi) within the 6 

circulation
1
. This results in reduced/retarded blood supply to vital organs including the heart and 7 

brain, which leads to heart attacks or strokes, respectively
2
. Moreover, platelet activation during 8 

microbial infection results in their aggregation, thrombus formation in the microvasculature and in 9 

later stages, sequestration of platelets in organs such as the lungs, instigating thrombocytopenia and 10 

bleeding complications
3
. In addition to their prominent roles in haemostasis and thrombosis, platelets 11 

play a crucial role in the regulation of innate immunity, inflammatory responses and clearance of 12 

microbial infection
4-6

. Platelets contain a broad spectrum of receptors that induce inflammatory 13 

responses during microbial infection and other pathological conditions. In addition, platelets secrete 14 

various inflammatory and immunomodulatory molecules from their granules upon activation. They 15 

also possess antimicrobial proteins including thrombocidins, cathelicidins and human β-defensins 16 

that trigger direct microbicidal activities
4
. Furthermore, platelets can directly bind and internalise 17 

invading microbes
7
. The presence of major inflammatory molecules such as formyl peptide (FPRs) 18 

and toll-like receptors (TLRs) facilitates platelets to recognise a diverse array of endogenous damage- 19 

associated molecular patterns (DAMPs) and exogenous pathogen-associated molecular patterns 20 

(PAMPs). Collectively, these properties render platelets effector and sentinel cells in primary host 21 

defence against invading pathogenic microbes
7, 8

. 22 

FPRs belong to a family of G protein-coupled receptors (GPCRs) and are predominantly 23 

expressed in immune cells, where they play a prominent role in the regulation of inflammatory 24 

responses and host defence. In humans, three FPR family members were identified; FPR1, 25 

FPR2/ALX and FPR3
9
. Although they were originally identified by their capability to recognise N- 26 
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formyl peptides produced from bacteria or mitochondria of damaged cells, FPRs can bind a wide 1 

variety of structurally and functionally diverse ligands. These include bacterial and mitochondrial 2 

formyl peptides, non-formylated peptides/proteins, and small lipid molecules
10

. While FPR1 binds to 3 

bacterial-derived N-formyl peptides with high affinity, FPR2/ALX largely binds to mitochondrial 4 

formyl peptides
9, 11

. The ligation of N-formyl peptides to FPRs in immune cells triggers a range of 5 

signalling cascades resulting in numerous biological activities. For example, the stimulation of FPR1 6 

by N-formyl-methionyl-leucyl-phenylalanine (fMLF) in neutrophils induces degranulation, 7 

chemotaxis, production of superoxide anions, calcium mobilisation, cytokine release and expression 8 

of various surface markers
12, 13

. During microbial infection, invading bacteria release N-formyl 9 

peptides that facilitate the recruitment of immune cells to the site of infection and accelerate the 10 

clearance of microbial infection and repair of tissue damage
14

.  11 

Czapiga et al.
15

 reported the presence of FPR1 in platelets and its ability to induce chemotactic 12 

and migratory responses upon ligation with N-formyl peptides, which emphasise a crucial role for 13 

FPR1 in platelet-mediated immune responses. Notably, bacterial or synthetic fMLF has been shown 14 

to act as a potent chemotactic agent through FPR1 in platelets. Despite numerous reports on the 15 

immune functions of FPR1, its impact upon ligation with fMLF on the modulation of haemostasis 16 

and thrombosis remains uncharacterised. Here, we report the ability of fMLF to prime platelets and 17 

augment thrombus formation, and the significance of FPR1 in the regulation of platelet function in 18 

the presence and absence of fMLF.  19 

 20 

  21 
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2.3 Results 1 

 2.3.1 Platelets express FPR1 2 

The expression of FPR1 in human platelets at protein level, and in megakaryocytes at 3 

transcript level has been previously reported
15

. Furthermore, the presence of FPR1 transcripts in 4 

human and mouse platelets was demonstrated
16

. In line with these findings, here we confirmed the 5 

presence of FPR1 on the surface of human platelets by flow cytometry (Figure 2-1Ai) and in platelet 6 

lysates using immunoblot analysis (Figure 2-1Aii). Notably, the activation of platelets using 1 µg/mL 7 

cross-linked collagen-related peptide (CRP-XL) increased the level of FPR1 on the surface as 8 

determined by flow cytometry, while the level of proteins identified by immunoblots remained 9 

unchanged. These data confirm the presence of FPR1 in platelets, possibly in granules or the open 10 

canalicular system (OCS) or both, and their increase on the surface upon activation.  11 

 12 

 2.3.2 fMLF selectively binds to FPR1 on the platelet surface 13 

A fluorescently-labelled fMLF (FITC-fMLF) was used to investigate its binding to FPR1 on 14 

the surface of platelets by flow cytometry. To ascertain the selective binding of fMLF to FPR1, 15 

platelets obtained from Fpr1-/-
 and Fpr2/3-/- 

(an orthologue of human FPR2/ALX) mice along with 16 

their controls were used in this assay. The absence of Fpr1 in platelets obtained from Fpr1-/- 
mice 17 

was confirmed by immunoblot analysis (Figure 2-1Bi). The level of Fpr1 identified in Fpr2/3-/- 
mouse 18 

platelets was found to be same as the controls. The binding of FITC-fMLF (5 µM) was significantly 19 

reduced in Fpr1-/-
 mouse platelets compared to the control and Fpr2/3-/- 

mice platelets (Figure 2- 20 

1Bii). These data confirm the selective binding of fMLF to Fpr1 in mouse platelets.  21 
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 1 

Figure 2-1: Expression of FPR1 in platelets. A, the expression of FPR1 on the surface of resting or 2 

CRP-XL(1 μg/mL)- activated human platelets was analysed using FPR1-selective and fluorescent- 3 

labelled secondary antibodies by flow cytometry (i). Data represent mean ± SEM (n=8). Similarly, 4 

the presence of FPR1 in human platelet lysates was confirmed by immunoblot analysis using selective 5 

antibodies (ii). B, the absence of Fpr1 was confirmed in platelet lysates obtained from Fpr1-/- 
in 6 

comparison to the control and Fpr2/3-/- 
mice by immunoblot analysis using selective antibodies (i). 7 

Platelets obtained from control, Fpr1-/- 
and Fpr2/3-/- 

mice were pre-incubated with 10 μM FITC- 8 

conjugated fMLF and their level of binding to platelet surface was measured by flow cytometry (ii). 9 

Data represent mean ± SEM (n=5). The blots shown are representative of three separate experiments. 10 

The statistical significance was calculated by two-tailed unpaired Student’s t test in data shown in 11 

panel A and by one-way ANOVA followed by Bonferroni’s correction in data shown in panel B 12 

(*p<0.01 and **p<0.001). 13 

 14 
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 2.3.3 fMLF stimulates platelet activation  1 

To determine whether fMLF is able to stimulate platelet activation upon binding to FPR1, a 2 

range of platelet functional assays were performed. Platelet activation triggers inside-out signalling 3 

to integrin aIIbb3 on the platelet surface and converts it to a high affinity state to allow fibrinogen 4 

binding and subsequent platelet aggregation
17

. To examine whether fMLF influences the inside-out 5 

signalling to integrin aIIbb3 platelets, the level of fibrinogen binding on the platelet surface was 6 

measured as a marker for inside-out signalling to integrin aIIbb3. Indeed, fMLF has increased the 7 

level of fibrinogen binding in human platelets [platelet-rich plasma (PRP)] in a concentration- 8 

dependent manner (Figure 2-2i). A minimum concentration of 1 µM fMLF has shown significant 9 

increase in fibrinogen binding compared to the resting platelets. Similarly, the level of P-selectin 10 

exposure on the platelet surface was measured as a marker for a-granule secretion by flow cytometry. 11 

The results indicate that fMLF has induced a-granule secretion in human platelets (PRP) in a 12 

concentration-dependent manner (Figure 2-2ii). Together, these data confirm the impact of fMLF on 13 

the modulation of platelet activation. 14 

  15 
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 1 

 2 

Figure 2-2: The impact of fMLF on platelet activation. Different concentrations of fMLF were 3 

used to determine their impact on platelet activation in human PRP by quantifying the level of 4 

fibrinogen binding (i) and P-selectin exposure (ii) using flow cytometry. Data represent mean ± SEM 5 

(n=10). The statistical significance was calculated by one-way ANOVA followed by Bonferroni’s 6 

correction (*p<0.01. **p<0.001 and ***p<0.0001). 7 

 8 

  9 



56 

 

 2.3.4 fMLF augments thrombus formation  1 

Microbial infection and various inflammatory diseases including sepsis are associated with 2 

the risk of disseminated intravascular coagulation or thrombosis in the microvasculature
18

. To 3 

investigate whether fMLF has a direct impact on thrombosis, its effect on thrombus formation under 4 

arterial flow conditions was analysed. Human DiOC6-labelled whole blood was pre-incubated with a 5 

control (non-formylated peptide, MLF) or fMLF (5 µM) for 10 minutes prior to perfusion over 6 

collagen-coated Vena8™ biochips. Thrombus formation was monitored for 10 minutes by acquiring 7 

fluorescent images at every 30 seconds. The images were analysed by calculating the mean 8 

fluorescence intensity. Indeed, fMLF has increased the mean fluorescence intensity of thrombi by 9 

approximately 122% compared to the controls (Figure 2-3). These data demonstrate the direct impact 10 

of fMLF on thrombus formation under arterial flow conditions in human whole blood. The effect of 11 

fMLF on other blood cells mainly leukocytes and their subsequent influence on thrombus formation 12 

cannot be ruled out under these circumstances.  13 
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 1 

Figure 2-3: The impact of fMLF on thrombus formation. The effect of fMLF on the modulation 2 

of thrombus formation was analysed by using human DiOC6-labelled whole blood that pre-incubated 3 

with a vehicle control or fMLF (5 μM) for 10 minutes prior to perfusion over collagen-coated (400 4 

μg/mL) Vena8
TM

 Biochips. Data represent mean ± SEM (n=3). Images shown are representative of 5 

three separate experiments (10x magnification; scale bar - 10 μm). The statistical significance was 6 

calculated by two-tailed unpaired Student’s t test (**p<0.001). 7 
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 2.3.5 Agonist-induced platelet aggregation is amplified by fMLF 1 

 Following the determination of the effects of fMLF on thrombus formation and platelet 2 

activation, aggregation assays were performed to establish its effects on isolated platelets. Human 3 

isolated platelets were incubated with various concentrations of fMLF (1, 5, 10 and 20 µM) prior to 4 

stimulation with different platelet agonists such as CRP-XL (0.25 µg/mL), collagen (0.5 µg/mL) and 5 

thrombin (0.05 U/mL), and the level of aggregation was monitored for 5 minutes by optical 6 

aggregometry. Notably, fMLF has failed to induce platelet aggregation on its own (Figure 2-4A) 7 

although the pre-incubation of platelets with fMLF markedly enhanced agonists-induced platelet 8 

aggregation. Maximum aggregation (100%) was obtained in human isolated platelets that treated with 9 

20 µM fMLF and 0.25 µg/mL CRP-XL for 5 minutes (Figure 2-4A). Similar results were obtained 10 

with collagen- (Figure 2-4B) and thrombin- (Figure 2-4C) induced platelet aggregation. These data 11 

confirm the ability of fMLF to prime platelets and amplify their aggregation upon stimulation with 12 

different agonists although it was unable to aggregate platelets on its own. 13 

  14 
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 1 

 2 

Figure 2-4: The impact of fMLF on platelet aggregation. The effects of fMLF on CRP-XL (A), 3 

collagen (B) or thrombin (C)- induced platelet activation were measured using isolated human 4 

platelets by optical aggregometry. Data represent mean ± SEM (n=5). The statistical significance was 5 

calculated by one-way ANOVA followed by Bonferroni’s correction ( **p<0.001 and ***p<0.0001).  6 
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 2.3.6 fMLF selectively acts through FPR1 in platelets 1 

A large number of studies indicate that fMLF binds primarily to FPR1 and exert its effects in 2 

immune cells
19-21

. The functional dependence of fMLF on FPR1 in platelets was determined using a 3 

pharmacological inhibitor for FPR1, Boc-MLF in human platelets and platelets obtained from Fpr1-
4 

/-
 mice through measuring the levels of fibrinogen binding and P-selectin exposure by flow cytometry. 5 

Similar to human platelets, fMLF increased the level of fibrinogen binding [Figure 2-5Ai (isolated 6 

platelets) and 2-5Aii (whole blood)] and P-selectin exposure [Figure 2-5Bi (isolated platelets) and 2- 7 

5Bii (whole blood)] on platelets obtained from control mice. However, the level of platelet activation 8 

by fMLF was significantly reduced in Fpr1-/-
 mouse platelets, which demonstrates its functional 9 

dependence on FPR1. Notably, the characterisation of platelets obtained from Fpr1-/-
 mice failed to 10 

display any defects in the size and number of platelets or the levels of major platelet receptors such 11 

as GPVI (Figure S1i), GPIbα (Figure S1ii), αIIbβ3 (Figure S1iii) and ɑ2β1 (Figure S1iv) in 12 

comparison to the control mouse platelets. To establish the functional dependence of fMLF on FPR1 13 

in human platelets, similar assays were performed in the presence or absence of Boc-MLF. The pre- 14 

incubation of human isolated platelets with different concentrations of Boc-MLF diminished fMLF- 15 

induced (5 µM) platelet activation as measured by the levels of fibrinogen binding (Figure 2-5Ci) and 16 

P-selectin exposure (Figure 2-5Cii). These data emphasise the involvement of FPR1 in the regulation 17 

of fMLF-mediated effects in platelets.  18 

  19 
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 1 

 2 

Figure 2-5: The effects of fMLF on platelet activation are mediated through FPR1. The platelet 3 

activation upon stimulation with various concentrations of fMLF was quantified by measuring the 4 

level of fibrinogen binding (A) using FITC-conjugated fibrinogen antibodies and P-selectin exposure 5 

(B) using PECy5-conjugated P-selectin antibodies in isolated platelets (i) or whole blood (ii) obtained 6 

from control and Fpr1-/-
 mice by flow cytometry. Data represent mean ± SEM (n=6 for isolated 7 

platelets & n=5 for whole blood). C, human isolated platelets were stimulated with fMLF (5 μM) in 8 

the presence or absence of different concentrations of Boc-MLF (1, 5, 10 and 20 μM), and the levels 9 

of fibrinogen binding (Ci) and P-selectin exposure (Cii) were analysed by flow cytometry. Data 10 

represent mean ± SEM (n=5). * Represents the significant difference between the various 11 

concentrations of fMLF within the Fpr1+/+ group. # Represents the significant difference between 12 

Fpr1+/+ and Fpr1−/−
 groups. The statistical significance was calculated by two-way ANOVA followed 13 

by Bonferroni’s correction in most of the experiments except the data shown in panel C, which were 14 

analysed by one-way ANOVA followed by Bonferroni’s correction (*p<0.01. **p<0.001 and 15 

***p<0.0001).  16 
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 1 

 2 

Supplementary Figure 2-1: Characterisation of platelets obtained from Fpr1-/- mice. The 3 

expression levels of major platelet receptors such as GPVI (i), GPIbα (ii), αIIbβ3 (iii) and ɑ2β1 (iv) 4 

in platelets obtained from control and Fpr1-/- 
mice were analysed by flow cytometry using selective 5 

fluorescent-labelled antibodies.  Data represent mean ± SEM (n=8). The statistical significance was 6 

analysed by a two-tailed unpaired Student’s t test. 7 
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 2.3.7 Inhibition of FPR1 reduces the agonists-induced platelet activation 1 

In order to study the importance of FPR1 in the regulation of normal platelet activation, further 2 

experiments were performed using human isolated platelets in the presence or absence of Boc-MLF. 3 

CRP-XL (0.25 µg/mL)-induced platelet aggregation was significantly reduced in the presence of 4 

different concentrations of Boc-MLF (1, 5, 10 and 20 μM). For example, the addition of Boc-MLF 5 

(20 µM) reduced the platelet aggregation by around 98% (Figure 2-6A). Similar results were obtained 6 

with ADP-induced platelet aggregation, wherein Boc-MLF (20 µM) reduced aggregation by 7 

approximately 70% (Figure 2-6B). Moreover, CRP-XL (0.25 µg/mL)- induced dense granule 8 

secretion as evidenced by the ATP release was significantly reduced by Boc-MLF (Figure 2-6C). 9 

Similarly, to determine if FPR1 has any influence on the outside-in signalling triggered by integrin 10 

aIIbb3, platelet spreading assay was performed on fibrinogen-coated glass surfaces and analysed 11 

using confocal microscopy. The pre-incubation of platelets with Boc-MLF (1, 5, 10 and 20 μM) 12 

significantly decreased the number of adhered (Figure 2-7i) and spread (Figure 2-7ii) platelets, and 13 

the relative surface area of spreading on fibrinogen-coated surfaces (Figure 2-7iii) indicating a role 14 

for FPR1 in the modulation of integrin aIIbb3-mediated outside-in signalling in platelets. In order to 15 

corroborate the involvement of FPR1 in the regulation of platelet function, cyclosporin H (CsH), an 16 

inverse agonist for FPR1 was employed. CsH inhibited CRP-XL (0.5 µg/ml)-induced platelet 17 

activation as measured by the levels of fibrinogen binding (Figure 2-8i) and P-selectin exposure 18 

(Figure 2-8ii). Furthermore, CsH decreased the mean fluorescence intensity of thrombi under arterial 19 

flow conditions by approximately 60% compared to the controls (Figure 2-9). These results highlight 20 

the prominent roles of FPR1 in the regulation of normal platelet function. 21 

  22 
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 1 

Figure 2-6: Blockade of FPR1 using a pharmacological inhibitor reduces agonists-induced 2 

platelet activation. The effect of different concentrations of Boc-MLF on CRP-XL (0.25 μg/mL) 3 

(A) or ADP (2 μM) (B)- induced aggregation using human isolated platelets was analysed by optical 4 

aggregometry. The level of aggregation obtained with the vehicle control was taken as 100% to 5 

calculate the extent of inhibition with Boc-MLF treated-samples. Data represent mean ± SEM (n=3). 6 

Similarly, the level of ATP secretion in human platelets upon activation with CRP-XL (0.25 μg/mL) 7 

in the presence and absence of different concentrations of Boc-MLF was measured by lumi- 8 

aggregometry (C). Data represent mean ± SEM (n=3). P values shown are as calculated by one-way 9 

ANOVA followed by Bonferroni's correction (*p<0.01, **p<0.001 and ***p<0.0001). 10 
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 1 

Figure 2-7: Effect of FPR1-selective inhibitor, Boc-MLF, on platelet adhesion and spreading. 2 

The platelet adhesion and spreading on fibrinogen-coated glass surface was analysed in the absence 3 

or presence of Boc-MLF (1, 5, 10 and 20 μM) by confocal microscopy (60x magnification; scale bar 4 

- 10 μm). The number of adhered (i) and spread platelets (ii), and the relative surface area of spread 5 

platelets (iii) were determined by analysing the images using ImageJ. Ten random fields of view were 6 

recorded for each sample. Data represent mean ± SEM (n=3). Data represent mean ± SEM (n=3). P 7 

values shown are as calculated by one-way ANOVA followed by Bonferroni's correction (**p<0.001 8 

and ***p<0.0001). 9 
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 1 

Figure 2-8: Effect of FPR1-selective inhibitor, CsH, on platelet activation. The levels of 2 

fibrinogen binding (i) and P-selectin exposure (ii) were analysed in human PRP by flow cytometry 3 

upon stimulation with CRP-XL (0.5 μg/mL), in the presence and absence of different concentrations 4 

of CsH (1, 5, 10, 20 and 30 μM). Data represent mean ± SEM (n=3). P values shown are as calculated 5 

by one-way ANOVA followed by Bonferroni's correction (*p<0.01, **p<0.001 and ***p<0.0001). 6 
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 1 

Figure 2-9: Effect of FPR1-selective inhibitor, CsH, on thrombus formation. The impact of CsH 2 

on the modulation of thrombus formation was analysed using human DiOC6-labelled whole blood 3 

that pre-incubated with a vehicle control or 10 μM CsH for 10 minutes prior to perfusion over 4 

collagen-coated (400 μg/mL) Vena8
TM

 Biochips. Images shown are representative of three separate 5 

experiments (10x magnification; scale bar - 10 μm). Data represent mean ± SEM (n=3). P values 6 

shown are as calculated by two-tailed unpaired Student’s t test, respectively. (***p<0.0001). 7 
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 2.3.8 Deletion of Fpr1 affects mouse platelet activation 1 

To further examine the impact of FPR1 in platelets, the whole blood obtained from control 2 

and Fpr1−/− mice was used to assess the platelet activation upon stimulation with a range of 3 

conventional platelet agonists by measuring the levels of fibrinogen binding and P-selectin exposure 4 

using flow cytometry. Similar to the results obtained with human platelets (Figure 2-10), the level of 5 

fibrinogen binding (i) and P-selectin exposure (ii) in platelets obtained from Fpr1−/− mice upon 6 

stimulation with CRP-XL (Figure 2-10A), ADP (Figure 2-10B), AY-NH2 (a PAR4 agonist) (Figure 7 

2-10C) and U46619, an analogue of TXA2 (Figure 2-10D) was largely reduced compared to their 8 

controls. To determine the influence of FPR1 on the modulation of haemostasis, tail bleeding assay 9 

was performed in control and Fpr1-deficient mice. A mean bleeding time of 429 seconds was 10 

observed in the control group, however Fpr1-/-
 mice significantly increased the bleeding time to a 11 

mean of 1128 seconds (Figure 2-11). These data indicate the importance of FPR1 in the modulation 12 

of platelet function and the maintenance of haemostasis under physiological conditions. 13 
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 1 

Figure 2-10: Deletion of Fpr1 in mice reduces the agonists-induced platelet activation. The levels 2 

of fibrinogen binding (i) and P-selectin exposure (ii) were analysed in isolated platelets obtained from 3 

control or Fpr1-/- 
mice upon stimulation with various concentrations agonists such as CRP-XL (A), 4 

ADP (B), AY-NH2 (C) or U46691 (D) by flow cytometry. Data represent mean ± SEM (n=4). * 5 

Represents the significant difference between the various concentrations of agonists within the 6 

Fpr1+/+ group. # Represents the significant difference between Fpr1+/+ and Fpr1−/−
 groups. Data 7 

represent mean ± SEM (n=4). The statistical significance was calculated by two-way ANOVA 8 

followed by Bonferroni’s correction (*p<0.01. **p<0.001 and ***p<0.0001). 9 
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 1 

Figure 2-11: Deletion of Fpr1 in mice affects haemostasis. The impact of FPR1 on the modulation 2 

of haemostasis was analysed by tail bleeding assay in control or Fpr1-/- 
mice. Data represent mean ± 3 

SEM (n=8). The statistical significance was calculated by non-parametric Mann-Whitney test. 4 
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 2.3.9 FPR1 exerts its effects through cyclic AMP (cAMP)  1 

 cAMP is a potent inhibitor of platelet function and its level is generally reduced upon platelet 2 

activation. Stimulants of cAMP generation are known to inhibit platelet activation
22

. FPRs are Gi 3 

protein-coupled receptors
23

, which are known to inhibit adenylate cyclase and thus, lead to a reduction 4 

in cAMP levels. Therefore, the deletion of genes for Gi-coupled receptors in mice generally increases 5 

the basal levels of cAMP in target cells
24, 25

. To investigate whether the effects of FPR1 in platelets 6 

are driven through cAMP-dependent signalling, the level of cAMP was quantified in platelets using 7 

a cAMP assay kit. The inhibition of FPR1 in human platelets with Boc-MLF (20μM) significantly 8 

elevated the level of cAMP compared to the controls (Figure 2-12i). Similarly, Fpr1−/− mouse 9 

platelets exhibited elevated basal levels of cAMP compared to the control mouse platelets at resting 10 

conditions (Figure 2-12ii). These data illustrate that the level of cAMP plays a key role in the 11 

regulation of FPR1-mediated function in platelets. 12 

  13 
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 1 

Figure 2-12: Deletion of Fpr1 in mice affects cAMP levels. The level of cAMP in human isolated 2 

platelets in the presence or absence of Boc-MLF (i), and in control and Fpr1-/- 
mouse platelets (ii) 3 

was analysed using a cAMP assay kit. The statistical significance was calculated by two-tailed 4 

unpaired Student’s t test (***p<0.0001). 5 

 6 

  7 
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2.4 Discussion 1 

N-formyl peptides are released from bacteria or mitochondria of damaged cells
26, 27

. They 2 

have been demonstrated to play substantial roles in the initiation of chemotaxis and subsequent 3 

inflammatory responses in immune cells including monocytes, mast cells, eosinophils and neutrophils 4 

via FPRs
9
.  Despite their ability to mediate innate immune responses, they have been associated with 5 

the pathogenesis of microbial infection and inflammatory diseases. Notably, E. coli-derived fMLF
28

 6 

has been implicated in bacterial cystitis
29

, pneumococcal pneumonia
30

, inflammatory bowel disease
31

, 7 

pouchitis, colitis
32

 and juvenile peridontitis
33

. It has been shown that inhalation or injection of fMLF 8 

can cause bronchial inflammation
34

, and induce rapid neutropenia, thereby increasing susceptibility 9 

to infection
35

. The plasma levels of fMLF were increased in these conditions, and also in high fat diet 10 

treated mice due to altered microbiome where it impaired the glucose tolerance and insulin 11 

secretion
36

. Many of these infectious and inflammatory conditions are associated with a risk for 12 

thrombosis and other platelet-mediated complications
37-39

. The concentrations of fMLF in the 13 

intestinal milieu have been reported to be at least in micromolar ranges
40

. In this study, we 14 

demonstrate that fMLF is able to prime platelets and augment thrombus formation in micromolar 15 

concentrations. Therefore, the increased levels of fMLF under the aforementioned pathological 16 

conditions may lead to platelet activation and contribute towards thrombotic complications.  17 

The activation of platelets facilitates their adhesion to leukocytes and leads to the formation 18 

of platelet-leukocyte aggregates (PLAs)
41

. P-selectin on the surface of activated platelets drives the 19 

formation of PLAs via binding to P-selectin glycoprotein ligand-1 (PSGL-1) on the surface of 20 

leukocytes
42

. In addition, the fibrinogen binding to integrin αIIbβ3 in platelets and Mac-1 in 21 

neutrophils was suggested to play an important role in the formation of PLAs
43

. PLAs are known to 22 

amplify thrombotic and proinflammatory responses in diverse inflammatory settings
44

. Indeed, fMLF 23 

has been reported to induce PLA formation
45

 through fibrinogen binding in platelets and 24 

neutrophils
43

. Moreover, previous studies have reported the aggregation of platelets in response to 25 

fMLF-induced neutrophil stimulation
46-48

 through release of platelet-activating factor (PAF)
49

 and 26 

cathepsin G
50, 51,

. In line with these, we demonstrate that fMLF has failed to induce aggregation of 27 
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isolated platelets although the pre-treatment of platelets with fMLF augmented agonist-induced 1 

aggregation. Furthermore, fMLF (but not MLF) augmented thrombus formation under arterial flow 2 

conditions in whole blood. Given that fMLF is able to upregulate the expression of adhesion 3 

molecules
52, 53

 and aggregate neutrophils
43, 48

, its effects on thrombus formation may be partly 4 

attributed to its interactions with leukocytes. Therefore, fMLF-induced fibrinogen binding and P- 5 

selectin exposure in platelets may directly trigger PLA formation as detailed above
54

. Although in 6 

this study, the direct impact of fMLF on platelet-mediated inflammatory responses was not analysed, 7 

the role of fMLF cannot be excluded in such responses. Together, these data demonstrate a prominent 8 

priming role for fMLF in platelets, which may augment thrombotic and proinflammatory responses 9 

through interactions with leukocytes in pathological settings. 10 

 FPR1 is a chemoattractant receptor that is widely expressed in various cell types including 11 

neutrophils, macrophages, and platelets
15

. Despite its well-characterised role in the modulation of 12 

inflammatory responses, the role of FPR1 in the regulation of platelet function is poorly studied. 13 

Here, we report a crucial role for FPR1 on the regulation of the platelet activation, haemostasis and 14 

thrombosis. In line with a previous study
15

, we confirm the presence of this receptor in human 15 

platelets by immunoblot analysis, and its upregulation upon activation of platelets with an agonist. 16 

By using selective pharmacological inhibitor, Boc-MLF and an inverse agonist, cyclosporin H (CsH), 17 

the significance of FPR1 in the regulation of fMLF- and agonist -induced (such as CRP-XL and ADP) 18 

platelet activation was established. The blockade of FPR1 resulted in reduced ATP release upon 19 

activation with CRP-XL, which not only affects secondary platelet activation but may also influence 20 

the modulation of inflammatory responses
55

. Similarly, the inhibition of FPR1 impaired the ability of 21 

platelet spreading on fibrinogen, which is essential for thrombosis and subsequent wound repair
56

. 22 

The prominent role of FPR1 on the regulation of platelet activation was also corroborated using 23 

platelets obtained from Fpr1-deficient mice, wherein the effects of fMLF and platelet agonists were 24 

largely diminished. The selective binding of fMLF to Fpr1 was confirmed using platelets obtained 25 

from Fpr1-deficient mice. In addition, the haemostasis in Fpr1-deficient mice was affected further 26 

emphasising its significance in the regulation of platelet function.  Fpr1-deficient mice displayed 27 
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severe inflammation, higher mortality during pneumococcal meningitis
57

, increased susceptibility 1 

to Listeria monocytogenes infection and impaired antibacterial host defence
58, 59

. In addition, Fpr1- 2 

deficient mice demonstrate major roles in sterile inflammation triggered by mitochondrial N-formyl 3 

peptides as demonstrated by the attenuation of inflammation in response to sterile acute lung injury 4 

in these mice
60

. In line with these studies, here we demonstrate the dysfunction of platelets and 5 

affected haemostasis in Fpr1-deficient mice, which may also substantiate the reduced inflammatory 6 

responses due to significant contribution of platelets in inflammation and innate immunity.  7 

As a Gi protein-coupled receptor, FPR1 triggers downstream signalling via various molecules 8 

such as phospholipase C (PLC), PI3K/AKT and MAPK, and modulates calcium mobilisation in 9 

neutrophils
13

. The ability of fMLF to induce calcium mobilisation in platelets has been previously 10 

reported
15

. Here, we report the impact of FPR1 on cAMP-mediated signalling in platelets using Boc- 11 

MLF and platelets obtained from Fpr1-deficient mice. Indeed, the inhibition of FPR1 in human or its 12 

deletion in mouse platelets resulted in elevated levels of cAMP, which is a potent inhibitor for platelet 13 

activation. This confirmed the involvement of cAMP-dependent signalling in the regulation of FPR1- 14 

mediated effects in platelets. 15 

Given the significance of FPRs and their ligands under various clinical settings, the 16 

therapeutic potential of these are being largely investigated. Notably, honokiol, a plant-derived 17 

bioactive agent has been recently demonstrated to reduce the proinflammatory responses induced by 18 

fMLF in neutrophils through inhibiting FPR1
61

. In conclusion, this study demonstrates a prominent 19 

role for fMLF for priming platelet activation and augmenting thrombus formation under arterial flow 20 

conditions. Using an FPR1 selective inhibitor and Fpr1-deficient mice, the functional dependence of 21 

fMLF on this receptor was established. Therefore, the priming effects of fMLF on platelets may 22 

significantly contribute towards the development of thrombotic and proinflammatory diatheses 23 

during pathological settings. Hence, FPR1 may act as a potential therapeutic target and its ligands 24 

may provide a powerful platform to develop novel therapeutic agents in order to treat and prevent 25 

thrombotic and inflammatory complications during diverse pathophysiological settings.  26 

 27 

28 
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2.5 Methods 1 

Preparation of human platelet-rich plasma and isolated platelets 2 

The University of Reading Research Ethics Committee approved all the experimental 3 

procedures using human blood from healthy volunteers. The blood samples were collected from 4 

healthy, aspirin-free volunteers after obtaining written informed consent. The blood was collected 5 

into VACUETTE
®

 blood collection tubes containing 3.2% (w/v) sodium citrate. The blood samples 6 

were then centrifuged at 102g for 20 minutes at room temperature to obtain platelet-rich plasma 7 

(PRP). The PRP was rested at 30°C for 30 minutes prior to use. For the preparation of isolated 8 

platelets, the blood was mixed with ACD [2.5% (w/v) sodium citrate, 2% (w/v) D-glucose and 1.5% 9 

(w/v) citric acid] at 1 (ACD): 9 (blood) ratio and centrifuged at 102g for 20 minutes. The PRP was 10 

collected, mixed with appropriate volume of ACD, and centrifuged at 1413g for 10 minutes at room 11 

temperature. The resultant platelet pellet was resuspended in modified Tyrodes-HEPES buffer 12 

(134mM NaCl, 2.9mM KCl, 0.34mM Na2HPO4, 12mM NaHCO3, 20mM HEPES and 1mM MgCl2, 13 

pH 7.3) with appropriate volume of ACD, and centrifuged once again at 1413g for 10 minutes at 14 

room temperature. The resultant platelet pellet was resuspended to a final density of 4×10
8
 cells/mL 15 

in modified Tyrode’s-HEPES buffer and allowed to rest for 30 minutes at 30ºC prior to use. 16 

 17 

Mouse blood collection and platelet preparation 18 

The mouse strains of Fpr1−/−1 and Fpr2/3−/−2
 on a C57BL/6 background obtained from 19 

William Harvey Research Institute, London, UK and wild type C57BL/6 mice from Envigo, UK were 20 

used in this study. The mice were sacrificed with CO2 and the blood was directly collected by cardiac 21 

puncture into a syringe containing 3.2% (w/v) sodium citrate at 1 (citrate):9 (blood) ratio. The blood 22 

was then centrifuged at 203g for 8 minutes at room temperature and the PRP was collected. The 23 

remaining blood was resuspended in 500 µL of modified Tyrode’s-HEPES buffer and centrifuged 24 

once again at 203g for 5 minutes. The resultant PRP then centrifuged at 1028g for 5 minutes. The 25 
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resultant platelet pellet was resuspended in modified Tyrode’s-HEPES buffer at a density of 2x10
8
 1 

cells/mL. 2 

In vitro thrombus formation assay 3 

In vitro thrombus formation was performed as described previously
3, 4

. In brief, human 4 

DiOC6-labelled (Sigma Aldrich, UK) human whole blood was pre-incubated with a vehicle, fMLF 5 

(5 µM) or CsH (10 µM) for 10 minutes before perfusion over collagen (400µg/mL)-coated Vena8™ 6 

Biochips (Cellix Ltd, Ireland) at a shear rate of 20 dynes/cm
2
. Z-stack fluorescence images of thrombi 7 

were obtained every 30 seconds for up to 10 minutes using a Nikon eclipse (TE2000-U) microscope 8 

(Nikon Instruments, UK). The fluorescence intensity was calculated by analysing the data using 9 

ImageJ software (National Institutes of Health, USA). 10 

 11 

Tail bleeding assay 12 

Tail bleeding assay was performed as described previously
5
. The British Home Office 13 

approved the experimental procedures. In brief, C57BL/6 (10-12 weeks old; Envigo, UK) or Fpr1−/− 
14 

mice were anaesthetised using ketamine (80 mg/kg) and xylazine (5 mg/kg) administered via the 15 

intraperitoneal route and placed on a heated mat (37°C). The tail tip (1mm) was dissected, and 16 

immersed in sterile saline. The time to cessation of bleeding was measured and the assay was 17 

terminated at 20 minutes. 18 

 19 

Platelet aggregation assay 20 

In vitro platelet aggregation assays were performed by optical aggregometry using a two- 21 

channel platelet aggregometer (Chrono-Log Corporation, USA). Platelets obtained from human PRP 22 

(270 µL) were added into a siliconised cuvette and pre-warmed at 37°C for 90 seconds. Upon the 23 

addition of an agonist, the platelets were allowed to aggregate under continuous stirring at 1200rpm 24 

for 5 minutes at 37ºC and the level of aggregation was monitored. The platelets were pre-treated with 25 

different concentrations of fMLF (1, 5, 10 and 20 µM) for 5 minutes before the addition of CRP-XL 26 



82 

 

(0.25 μg/mL), collagen (0.5 μg/mL) or thrombin (0.05 U/mL) and the level of aggregation was 1 

monitored. Data were analysed by calculating the percentage of maximum platelet aggregation 2 

obtained at 5 minutes. 3 

 4 

ATP secretion assay   5 

To assess the level of dense granule secretion in platelets, ATP secretion was measured using 6 

a luciferin–luciferase luminescence substrate by lumi-aggregometry (Chrono-log, USA). The level 7 

of ATP released from platelets upon stimulation with a platelet agonist, CRP-XL (0.25 µg/mL), in 8 

the presence and absence of different concentrations of Boc-MLF was measured by observing the 9 

level of luminescence released. 10 

 11 

Flow cytometry-based assays 12 

 In order to measure the level of fibrinogen binding and P-selectin exposure on the platelet 13 

surface, flow cytometry-based assays were performed. Five microliters of PRP or isolated platelets 14 

or whole blood were incubated with 1 μl of FITC-conjugated fibrinogen antibody (1:50) and 1 μl of 15 

PECy
5
-conjugated anti-CD62P (P-selectin) (1:50) antibody in the presence and absence of various 16 

concentrations of fMLF or platelet agonists. The final volume was made up to 50 μl using HEPES- 17 

buffered saline (HBS) (150mM NaCl, 5mM KCl, 1mM MgSO4 and 10mM HEPES, pH 7.4) and the 18 

samples were incubated for 20 minutes at room temperature. Following fixation in 0.2% formyl 19 

saline, the samples were analysed using an Accuri C6 flow cytometer (BD Biosciences, UK) by 20 

counting 5000 events within the gated population for platelets. The median fluorescence intensity 21 

was calculated using Accuri C6 software to quantify the levels of fibrinogen binding and P-selectin 22 

exposure on the surface of platelets. Similarly, for the analysis of FPR1 expression on platelets, five 23 

microliters of PRP were incubated with 1 μl of anti-FPR1 (5 μg/mL) and 2 μl of Cy5-conjugated anti- 24 

mouse IgG (80 μg/mL) with or without 1 μg/mL CRP-XL. Following 20 minutes incubation at room 25 

temperature, the platelets were fixed in 0.2% formyl saline and analysed by flow cytometry. For the 26 
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fMLF binding assay, following the incubation of isolated platelets with FITC-conjugated fMLF (5 1 

μM) or vehicle control for 20 minutes, the platelets were fixed in 0.2% formyl saline and analysed by 2 

flow cytometry.  3 

 4 

SDS-PAGE and immunoblotting analysis 5 

Immunoblot analysis was performed using platelet lysates that prepared under reducing 6 

conditions. The samples were heated to 90°C for 10 minutes and subjected to SDS-PAGE using 10% 7 

resolving gels. The gels were then transferred to polyvinylidene difluoride (PVDF) membranes and 8 

blocked by incubation in 5% bovine serum albumin (BSA) in TBS-T (20mM Tris, 140mM NaCl and 9 

Tween-20, pH 7.6). Following an overnight incubation with primary anti-FPR1 antibody (1:500) 10 

(Abcam, UK), the blots were washed with TBS-T and incubated with secondary Cy5-conjugated goat 11 

anti-rabbit IgG antibodies (1:1000) (Invitrogen, UK) in TBS-T containing 5% BSA for one hour at 12 

room temperature. Following washing in TBS-T for one hour at room temperature, the blots were 13 

analysed using a Typhoon 9400 Variable Mode Imager system (GE Healthcare, UK). Equal loading 14 

of proteins in each lane was determined using anti-human 14-3-3# antibodies (1:1000) (Santa Cruz 15 

Biotechnology, USA). 16 

 17 

Cyclic nucleotide assay  18 

A cAMP ELISA kit (Cambridge Bioscience, UK) was used for the detection of the total 19 

cellular levels of cAMP in human and mouse platelets. Human isolated platelets were pre-incubated 20 

for 10 minutes with a selective inhibitor for FPR1, Boc-MLF. Similarly, platelets obtained from 21 

control or Fpr1−/− mice were also used. The platelets were incubated with 0.1M HCl and the levels 22 

of cAMP were calculated according to the manufacturer’s protocol. 23 

Platelet adhesion and spreading on fibrinogen  24 

 Isolated human platelets were treated with different concentrations of an FPR1-selective 25 

inhibitor, Boc-MLF, prior to loading onto fibrinogen (100 µg/mL)-coated coverslips and incubation 26 
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for 30 minutes. The coverslips were then washed with PBS to remove non-adhered platelets. Adhered 1 

platelets were fixed with 0.2% formyl saline for 10 minutes prior to permeabilisation with 0.2% 2 

Triton X-100 for five minutes at room temperature. Adhered platelets were stained with Alexa Fluor 3 

488-conjugated phalloidin for 30 minutes at room temperature. The coverslips were then mounted 4 

onto slides and scanned using a Nikon A1-R confocal microscope (60x objective).  Ten random fields 5 

of view were recorded for each sample. The data were analysed to quantify the number of adhered 6 

and spread platelets, and the relative area of spread platelets using ImageJ. The relative surface area 7 

of spread platelets was obtained by subtracting the surface area of resting platelets.  8 

 9 

Statistical analysis 10 

Data obtained in this study are represented as mean ± SEM. The statistical significance was 11 

analysed using two-tailed unpaired Student’s t test for two-sample comparisons for the data obtained 12 

from the flow cytometric assay for FPR1 expression and platelet receptor characterisation and cAMP 13 

assay. For multiple comparisons, statistical significance was established using one-way or two-way 14 

ANOVA followed by Bonferroni's correction for data obtained from in vitro thrombus formation, 15 

fMLF binding, ATP release, platelet aggregation and activation. Data obtained from the tail bleeding 16 

assay were analysed using a non-parametric Mann-Whitney test. All statistical analyses were 17 

performed using Graphpad Prism 7 software (GraphPad Software Inc., USA). 18 

 19 

 20 

 21 

 22 

 23 

 24 
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 17 

3.1 Abstract 18 

Platelet-associated complications including thrombosis, thrombocytopenia and haemorrhage 19 

are commonly observed during various inflammatory diseases such as psoriasis, sepsis and 20 

inflammatory bowel disease. Despite the reported evidence on numerous mechanisms/molecules that 21 

may contribute to the dysfunction of platelets, the primary mechanisms that underpin the platelet- 22 

associated complications during inflammatory diseases are yet to be determined. Here, we report the 23 

discovery of a formyl peptide receptor, FPR2/ALX in platelets, and its primary role in the 24 

development of platelet-associated complications via ligation with its ligand, LL37. LL37 acts as a 25 

powerful endogenous antimicrobial peptide but it also regulates innate immune responses. We 26 

demonstrate the impact of LL37 on the modulation of platelet reactivity, haemostasis, and thrombosis 27 

under pathophysiological conditions. LL37 activates a range of platelet functions, enhances thrombus 28 

formation, and shortens the tail-bleeding time in mice. By utilising a pharmacological inhibitor and 29 

Fpr2/3 (an orthologue of human FPR2/ALX)-deficient mice, the functional dependence of LL37 on 30 
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FPR2/ALX was determined. Our data demonstrate the overexpression of mCRAMP (an LL37 murine 1 

orthologue) in affected skin and plasma of a murine [imiquimod(IMQ)-induced] model of human 2 

psoriasis and its ability to enhance platelet responses via Fpr2/3. Since the level of LL37 is increased 3 

in numerous inflammatory diseases, these results point towards a critical role for LL37 and 4 

FPR2/ALX in the development of platelet-related complications in such diseases. Hence, a better 5 

understanding of the clinical relevance of LL37 and FPR2/ALX in diverse pathophysiological 6 

settings will pave the way for the development of improved therapeutic strategies for a range of 7 

inflammatory diseases. 8 

 9 

 10 

 11 

 12 

 13 

  14 
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3.2 Introduction 1 

Platelets (small circulating blood cells) play pivotal roles in the regulation of haemostasis. 2 

However, their inappropriate activation under pathological conditions leads to the formation of blood 3 

clots (thrombosis) within the circulation, which is a major cause of premature death
1, 2

. Platelets also 4 

play significant roles in the regulation of innate immunity, inflammatory responses and microbial 5 

infection
3, 4

. Activation of platelets during inflammatory diseases such as psoriasis induces the 6 

formation of blood clots or disseminated intravascular coagulation in capillaries, resulting in the 7 

blockage of blood supply to tissues
5, 6

. Moreover, platelet activation results in the aggregation and 8 

sequestration of platelets, thus instigating thrombocytopenia
7, 8

. Several mechanisms have been 9 

reported to be contributing to the dysfunction of platelets under inflammatory diseases, however, the 10 

primary mechanisms that underpin the platelet activation are not yet established. In this study, we 11 

discovered the presence of FPR2/ALX in platelets and its ability to activate platelets via its ligand, 12 

the human antimicrobial cathelicidin, LL37.  13 

Cathelicidins are a group of antimicrobial peptides produced by numerous mammalian cells 14 

in response to microbial infections
9-11

. Among these, the human cationic antimicrobial peptide 18 15 

(hCAP18) is the only cathelicidin known to be expressed in human cells
12

. The expression of hCAP18 16 

has been reported in cell types that remain in contact with the external environment, including 17 

epithelial cells in airways, intestine and skin, and innate immune system cells such as neutrophils, 18 

natural killer cells and monocytes
11, 13

. Normally, hCAP18 is synthesised as an inactive precursor and 19 

stored in the granules of immune cells
14, 15

; higher levels of hCAP18 have been found in neutrophils
16

. 20 

During microbial infection, the activation of immune cells releases hCAP18 to the external milieu, 21 

where it is processed by proteolytic enzymes (e.g. proteinase 3) to liberate the short, active 37 amino 22 

acid peptide LL37 (so called as it has two N-terminal leucine residues)
15, 17

. LL37 acts as a powerful 23 

antimicrobial peptide against bacteria
18

, fungi
19

 and viral particles
20

. Additionally, it modulates innate 24 

and adaptive immune responses by stimulating specific receptor-mediated signalling within the 25 

immune cells
21

. LL37 modulates these responses predominantly through formyl peptide receptor 2 26 

(FPR2/ALX)
22

. Other receptors such as CXCR2
23

, P2Y11
24

 and P2X7
25

 have also been reported to 27 
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bind LL37. The binding of LL37 activates immune cells and thus exacerbates inflammatory responses 1 

to accelerate the clearance of infection
11, 13

. Despite detailed research on the roles of LL37 in the 2 

modulation of inflammatory responses in various pathological settings, specifically psoriasis
26, 27

, the 3 

effects of LL37 in the regulation of thrombosis and other platelet-related complications remained 4 

unknown for a long time. During the preparation of this manuscript, we have identified a very recent 5 

article describing a role for cathelicidins in the regulation of thrombo-inflammation, confirming some 6 

of our findings
28

.  7 

Since the level of LL37 released during inflammation is significantly higher than normal
15, 16

, 8 

understanding its critical functions in the modulation of platelet reactivity will pave the way for the 9 

determination of the fundamental mechanisms underlying platelet-related complications in various 10 

inflammatory diseases and offer the potential for the development of improved therapeutic strategies 11 

for such diseases. In this study, we investigated the effects of LL37 at concentrations (≤ 50 μM) that 12 

are relevant to several pathological conditions (including psoriasis
29

) on a range of platelet functional 13 

assays, and established its roles in the modulation of platelet reactivity, thrombosis and haemostasis 14 

under physiological and pathological conditions such as psoriasis using an appropriate disease model. 15 

 16 

  17 
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3.3 Results 1 

 3.3.1 Platelets store LL37 and release it upon activation 2 

The expression of LL37 has been reported in several cell types including neutrophils where it 3 

is mainly stored in granules
30, 31

. Notably, the expression of cathelicidin antimicrobial peptide 4 

(CAMP) has been reported in human and mouse platelets at the transcript level
32

. Hence, to determine 5 

whether LL37 is present in platelets, a range of experiments were performed. The presence of LL37 6 

in platelets was confirmed by immunofluorescence microscopy. Human isolated platelets were 7 

stained with antibodies against LL37 and phalloidin (a marker for actin), wherein LL37 appeared to 8 

be dispersed in the cytoplasm (Figure 3-1A). In order to further determine whether platelets possess 9 

LL37 and release it upon activation, an enzyme-linked immunosorbent assay (ELISA) was performed 10 

using selective antibodies for LL37. Resting and activated [by 1µg/mL cross-linked collagen-related 11 

peptide (CRP-XL)] human platelets were centrifuged, and the supernatant and platelet pellet were 12 

separated to analyse the level of LL37 by ELISA. In the resting state, the presence of LL37 was 13 

significantly higher in the lysed platelet pellet (1559±433 pM) compared to the supernatant (41±12 14 

pM) (Figure 3-1B). However, upon activation of platelets with CRP-XL, the presence of LL37 was 15 

significantly increased in the supernatant (1490±581.7 pM) in comparison to the lysed platelet pellet 16 

(59±7.6 pM). In order to corroborate these results, the release of LL37 in human plasma (in the 17 

presence or absence of platelets) was investigated over a two-hour period by mass spectrometry. The 18 

level of LL37 was stable and significantly increased in platelet-rich plasma (PRP) over two hours 19 

compared to platelet-poor plasma (PPP), indicating its release from platelets; by contrast the level of 20 

LL37 was significantly reduced in PPP over two hours (Figure 3-1C). Together, these data confirm 21 

the presence of LL37 in platelets (between pM and nM concentrations), and its release upon agonist- 22 

induced platelet activation. Although the main source of LL37 may be neutrophils and other cells, 23 

platelets may also contribute to the elevation of LL37 upon activation within the local environment.  24 

  25 
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 1 

Figure 3-1: Presence of LL37 in platelets. A, Human platelets were stained with antibodies against 2 

LL37 (purple) and phalloidin (green) and analysed by confocal microscopy (100x magnification; 3 

scale bar - 10 µm). Images shown are representative of three independent experiments. B, the level 4 

of LL37 in resting and activated (1 µg/mL CRP-XL) platelet pellets and supernatants (SN) was 5 

measured by an ELISA using LL37-selective antibodies. Data represent mean ± SEM (n=5). C, the 6 

stability/release of LL37 in plasma was analysed by mass spectrometry (LC-MS). Graph indicates 7 

LL37 intensities (100μg/mL) spiked in platelet-rich plasma (PRP) and platelet-poor plasma (PPP) at 8 

different time points over 120 minutes. Control represents the intensity of LL37 at 100 μg/mL 9 

(unspiked). Data represents mean ± SEM (n=3). The statistical significance was established by one-way 10 

ANOVA followed by Bonferroni’s correction except for the data shown in panel B, which was analysed 11 

by two-tailed unpaired Student’s t test (*p<0.05 and **p<0.01). 12 
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 3.3.2 LL37 augments thrombus formation under arterial flow conditions 1 

Disseminated intravascular coagulation or thrombosis in microvasculature is a common 2 

phenomenon during inflammatory diseases such as psoriasis
33

. Therefore, to determine whether LL37 3 

has a direct influence on thrombotic complications during inflammatory diseases, its effects on 4 

thrombus formation under arterial flow conditions were investigated using a microfluidics system by 5 

fluorescence microscopy. Human DiOC6-labelled whole blood was pre-incubated with a scrambled 6 

peptide or different concentrations of LL37 (10, 20 and 50 µM) for 10 minutes prior to perfusion over 7 

collagen-coated Vena8™ biochips. Thrombus formation was monitored for 10 minutes by acquiring 8 

fluorescent images every 30 seconds (Figure 3-2i). LL37 significantly increased the mean 9 

fluorescence intensity of thrombi in a concentration dependent manner (Figure 3-2ii); the highest 10 

concentration of LL37 used (50 µM) increased the thrombus intensity by approximately 70% 11 

compared to the vehicle-treated samples (Figure 3-2iii). These data demonstrate a direct role for LL37 12 

in the augmentation of thrombus formation under arterial flow conditions in human whole blood. 13 

  14 
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 1 

Figure 3-2: The impact of LL37 on thrombus formation. The effects of LL37 in the modulation of 2 

thrombus formation. Human DiOC6-labelled whole blood was pre-incubated with a scrambled 3 

peptide or LL37 (10, 20 and 50 µM) for 10 minutes prior to perfusion over collagen-coated (400 4 

µg/mL) Vena8™ Biochips. Images (i) (at 10 minutes) shown are representative of three separate 5 

experiments (10x magnification; scale bar - 10 µm). Data represent mean ± SEM (n=3). The statistical 6 

significance was established by one-way ANOVA followed by Bonferroni’s (*p<0.05 and **p<0.01).  7 

  8 
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 3.3.3 Role of LL37 in the modulation of haemostasis in mice 1 

 Since LL37 directly influenced the thrombus formation under arterial flow conditions, its 2 

effects in the modulation of haemostasis in mice under physiological conditions were determined by 3 

tail bleeding assay. Following the administration of anaesthetics to C57BL/6 mice, 20 µM of 4 

scrambled peptide or LL37 was infused via the femoral artery five minutes prior to the dissection of 5 

1mm tail tip and the measurement of bleeding time. A mean bleeding time of 371±47 seconds was 6 

observed in the vehicle-treated group, however the infusion of LL37 significantly shortened the 7 

bleeding time in mice to a mean of 225±19 seconds (Figure 3-3). These data demonstrate the effects 8 

of LL37 in the modulation of haemostasis in mice under physiological settings, and reflect its 9 

probable function in the modification of haemostatic responses during inflammatory diseases. 10 

  11 
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 1 

 2 

Figure 3-3: The impact of LL37 on haemostasis. The impact of LL37 (20 µM) on the modulation 3 

of haemostasis. C57BL/6 mice (10-12 weeks old) were anaesthetised 20 minutes before the infusion 4 

of a scrambled peptide or LL37 (20 µM) via femoral artery 5 minutes before the dissection of 1 mm 5 

of tail tip, and monitoring of time to cessation of bleeding. Data represent mean ± SEM (n=6 per 6 

group). The statistical significance was established by non-parametric Mann-Whitney test.  7 

  8 
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 3.3.4 LL37 induces platelet activation 1 

Following the confirmation of the effects of LL37 in the modulation of thrombus formation 2 

and haemostasis, a range of platelet functional assays were performed to determine the role of LL37 3 

in the regulation of distinctive platelet functions. To examine the effects of LL37 on platelet 4 

activation, aggregation assays were performed using human isolated platelets. The platelets were 5 

treated with a vehicle control or different concentrations of LL37 (5, 10 and 20 µM) and the platelet 6 

aggregation was monitored for 5 minutes by optical aggregometry. The addition of LL37 directly 7 

induced platelet aggregation in a concentration-dependent manner. Maximum aggregation (100%) 8 

was obtained with 20 µM LL37 at 5 minutes in isolated human platelets (Figure 3-4). These data 9 

confirm the activatory effects of LL37 in platelets.  10 

  11 
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 1 

 2 

Figure 3-4: The impact of LL37 on platelet aggregation. The effects of LL37 on platelet activation 3 

was measured by optical aggregometry using human isolated platelets. Data represent mean ± SEM (n=6). 4 

The statistical significance was established by one-way ANOVA followed by Bonferroni’s correction 5 

(*p<0.05. **p<0.01 and ***p<0.001).  6 

  7 
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 3.3.5 Effect of LL37 on inside-out signalling to integrin aIIbb3 and a-granule 1 

secretion in platelets 2 

Platelet activation triggers inside-out signalling to integrin aIIbb3 on the platelet surface and 3 

converts it to a high affinity state to allow fibrinogen binding and subsequent platelet aggregation
34

. 4 

To determine whether LL37 influences the inside-out signalling in platelets, the level of fibrinogen 5 

binding was measured on the platelet surface (as a marker for inside-out signalling to integrin aIIbb3) 6 

using FITC-conjugated fibrinogen antibodies by flow cytometry. Indeed, LL37 increased the level of 7 

fibrinogen binding in a concentration-dependent manner in human isolated platelets (Figure 3-5Ai). 8 

A minimum concentration of 5 μM LL37 significantly increased fibrinogen binding compared to the 9 

resting platelets, and the highest response was obtained at 50 μM LL37. Furthermore, to determine 10 

whether the presence of plasma proteins intercedes with the response of LL37 on platelets, the effect 11 

of LL37 on platelet activation was analysed using PRP by measuring the level of fibrinogen binding. 12 

Similar to the findings observed in isolated platelets, LL37 increased the level of fibrinogen binding 13 

in a concentration-dependent manner in PRP (Figure 3-5Aii). Together, these data suggest that LL37 14 

stimulates inside-out signalling to integrin aIIbb3, and thus increases fibrinogen binding upon platelet 15 

activation, and its function is unaffected by the presence of plasma proteins.  16 

Platelets contain three distinct types of granules and upon activation of platelets, the contents 17 

of such granules are released in order to enhance the secondary activation of additional platelets and 18 

recruit them to the developing thrombus. To determine the impact of LL37 on granule secretion, the 19 

level of P-selectin exposure (as a marker for α-granule secretion) was measured by flow cytometry. 20 

The results indicate that LL37 induced a-granule secretion in human isolated platelets (Figure 3-5Bi) 21 

and PRP (Figure 3-5Bii) in a concentration-dependent manner. These data confirm the impact of 22 

LL37 in the modulation of a-granule secretion.   23 

24 
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 1 

 2 

Figure 3-5: The impact of LL37 on platelet activation. A, the level of fibrinogen binding was 3 

analysed using FITC-conjugated fibrinogen antibodies by flow cytometry in human isolated platelets 4 

(Ai) or PRP (Aii). B, the level of P-selectin exposure was measured in human isolated platelets (Bi) 5 

or PRP (Bii) using PECy5-labelled P-selectin antibodies by flow cytometry. Data represent mean ± 6 

SEM (n=3). The statistical significance was established by one-way ANOVA followed by Bonferroni’s 7 

correction (*p<0.05 and **p<0.01).  8 

 9 

  10 



100  

 

 3.3.6 Impact of LL37 on integrin aIIbb3-mediated outside-in signalling to 1 

platelets 2 

Following fibrinogen binding, the integrin aIIbb3 transduces signalling responses into 3 

platelets to allow their spreading and clot retraction. The potential of LL37 to mediate such signalling 4 

responses was measured by their ability to induce adhesion and spreading of platelets on immobilised 5 

fibrinogen under static conditions (Figure 3-6). Upon stimulation of platelets with different 6 

concentrations of LL37 (5, 10 and 20 µM), a significant increase in the number of adhered platelets 7 

to fibrinogen was observed compared to the controls (Figure 3-6i). Furthermore, LL37 displayed a 8 

marked increase in the number (Figure 3-6ii) and the relative surface area (Figure 3-6iii) of spread 9 

platelets compared to the controls. These data demonstrate the role of LL37 in the modulation of 10 

integrin aIIbb3-mediated outside-in signalling to platelets.  11 

  12 
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 1 

Figure 3-6: The impact of LL37 on platelet spreading. Platelet adhesion and spreading on 2 

immobilised fibrinogen was analysed by using platelets treated with LL37 (5, 10 and 20 µM) by 3 

confocal microscopy (60x magnification; scale bar - 10 µm). The number of adhered (i) and spread 4 

platelets (ii), and the relative surface area of spread platelets (iii) was determined via analysing the 5 

images using ImageJ. Ten random fields of view were recorded and analysed for each sample. Data 6 

represent mean ± SEM (n=3). The statistical significance was established by one-way ANOVA followed 7 

by Bonferroni’s correction (*p<0.05, **p<0.01 and ***p<0.001.  8 

 9 

 10 

 11 

  12 
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 3.3.7 Intracellular calcium levels were elevated by LL37 in human platelets 1 

The activation of platelets results in the mobilisation of Ca
2+

 stored in the dense tubular system 2 

in platelets and the influx of extracellular Ca
2+

 across the plasma membrane
35

. Such elevation of 3 

intracellular Ca
2+

 levels plays a pivotal role in the regulation of platelet function including shape 4 

change, degranulation, aggregation and ultimately thrombus formation
36

. To assess the effects of 5 

LL37 in the modulation of calcium mobilisation, intracellular calcium levels were measured in Fluo- 6 

4 AM dye-loaded human isolated platelets. LL37 induced calcium mobilisation in a concentration- 7 

dependent manner with a maximum effect achieved with 50 µM. The level of calcium release 8 

obtained with 50 µM LL37 is similar to the level obtained with a GPVI-selective agonist, CRP-XL 9 

(1 µg/mL), although the initial kinetics of calcium release appeared to be faster for LL37 (Figure 3- 10 

7). These data suggest that LL37 is involved in the elevation of intracellular calcium levels upon 11 

platelet activation. 12 

13 
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 1 

 2 

Figure 3-7: The impact of LL37 on calcium mobilisation. Ca
2+

 mobilisation was measured using 3 

Fluo-4 AM dye-loaded human isolated platelets upon stimulation with LL37 by spectrofluorimetry. 4 

Data represent mean ± SEM (n=4). The statistical significance was established by one-way ANOVA 5 

followed by Bonferroni’s correction (*p<0.05 and **p<0.01).  6 

 7 

  8 
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 3.3.8 LL37 does not exhibit cytotoxic effects in platelets at lower 1 

concentrations 2 

A previous study
37

 reported the inhibitory effects of LL37 in platelets at exceptionally high 3 

concentrations including 0.1, 0.3, 0.6 and 1.2 mM. From the literature
38

, it is apparent that such 4 

concentrations are not relevant to pathological conditions except in psoriasis, where the levels of 5 

LL37 can reach up to 300 µM in affected skin tissues
39

. In addition, it has been shown previously 6 

that LL37 exhibits cytotoxic effects in eukaryotic cells, such as neutrophils and monocytes at 7 

concentrations of higher than 50 µM
40

. Such toxic effects may well be the reason behind the inhibitory 8 

effects of LL37 demonstrated in the previous study
37

. In order to determine whether the 9 

concentrations of LL37 used in the present study (≤50 µM) exhibit any cytotoxic effects in platelets, 10 

lactate dehydrogenase (LDH) cytotoxicity assay was performed. Human isolated platelets were 11 

pretreated with different concentrations of LL37. The level of LDH released was measured using a 12 

LDH cytotoxicity assay kit. The various concentrations of LL37 used in this study (1, 5, 10, 20 and 13 

50 µM) failed to exert any significant cytotoxic effects in human isolated platelets, although 100 µM 14 

LL37 displayed significant toxicity in platelets (Figure 3-8). These results confirm that LL37 at 15 

concentrations up to 50 µM do not display any toxic effects in platelets, although higher 16 

concentrations can exhibit cytotoxic effects and thus reduction in platelet function. Such a reduction 17 

in platelet function through cytotoxicity may lead to bleeding at conditions where the level of LL37 18 

is increased (100 µM or more).  19 

  20 
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 1 

 2 

Figure 3-8: The effect of LL37 on platelet cytotoxicity. The cytotoxic effects of LL37 were measured 3 

in human isolated platelets using a LDH cytotoxicity assay kit. Data represent mean±SEM (n=4). The 4 

statistical significance was established by one-way ANOVA followed by Bonferroni’s correction 5 

(*p<0.05).  6 

 7 

  8 
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 3.3.9 Expression of FPR2/ALX in platelets 1 

A large number of studies indicate that LL37 acts primarily through FPR2/ALX to exert its 2 

effects in immune cells
22, 41, 42

. The expression of FPR2/ALX in megakaryocytes and human and 3 

mouse platelets at transcript level has been reported previously
43,32

. Here, we confirmed the presence 4 

of FPR2/ALX in human platelet lysates using immunoblotting analysis (Figure 3-9i) and on their 5 

surface by flow cytometry (Figure 3-9ii). Notably, the activation of platelets with 1 µg/mL CRP-XL 6 

increased the level of FPR2/ALX on the platelet surface as determined by flow cytometry although 7 

the level of protein identified by immunoblots remained unchanged. Additionally, we were able to 8 

confirm the presence of FPR2/ALX in mouse platelet lysates, and its absence in Fpr2/3-/-
 (Fpr2/3 is 9 

an orthologue to human FPR2/ALX) mice that were utilised in this study (Figure 3-9iii). These data 10 

confirm the presence of FPR2/ALX in platelets at protein level, and their increase on the platelet 11 

surface upon activation, which may be due to their presence in granules and/or the open canalicular 12 

system (OCS).  13 

14 
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 1 

Figure 3-9: Expression of FPR2/ALX in platelets. The presence of FPR2/ALX was confirmed in 2 

human (i) and mouse (iii) platelet lysates by immunoblot analysis using selective antibodies. The 3 

blots are representative of three separate experiments. The expression of FPR2/ALX on the surface 4 

of resting or activated (1 µg/mL CRP-XL) human platelets was analysed using FPR2/ALX-selective 5 

and fluorescent-labelled secondary antibodies by flow cytometry (ii). Data represent mean ± SEM 6 

(n=4). The statistical significance was calculated using a two-tailed unpaired Student’s t test was used 7 

(*p<0.05).  8 

 9 

  10 
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 3.3.10 LL37 activates platelets through FPR2/ALX  1 

In order to determine the functional dependence of LL37 on FPR2/ALX, the binding of LL37 2 

to the platelet surface was confirmed using a fluorescent-labelled LL37 (5-FAM-LC-conjugated 3 

LL37) by flow cytometry. 20 μM 5-FAM-LL37 displayed marked binding to the surface of human 4 

platelets compared to a fluorescence-labelled scrambled LL37 (5-FAM-conjugated sc-LL37) (Figure 5 

3-10i). Similarly, LL37 (20 μM) binding was analysed using platelets obtained from control, Fpr1- 6 

or Fpr2/3-deficient mouse platelets. The platelets obtained from control and Fpr1−/− mice exhibited 7 

marked binding to 5-FAM-LL37 compared to Fpr2/3−/− mouse platelets (Figure 3-10ii). 8 

Furthermore, the interactions between LL37 and FPR2/ALX was examined by molecular docking 9 

analysis using a homology model of human FPR2/ALX, which was generated based on the structural 10 

template of human delta opioid 7 transmembrane receptor (PDB code- 4N6H; 1.8 Å) using 11 

MODELLER-ModWeb server
44

. The docking analysis using PatchDock server predicted that the 12 

LL37 peptide forms prominent hydrogen bonds with key residues such as Gln-89, Ser-182, Asn-285 13 

and Gly-275 of FPR2/ALX, that are identified to be crucial for receptor activation (Figure 3-10iii and 14 

Table 1). Together, these data confirm the binding of LL37 primarily to FPR2/ALX in human and 15 

mouse platelets. 16 

Following the corroboration of LL37 binding to FPR2/ALX, the functional dependence of 17 

LL37 on this receptor was analysed by using a range of platelet functional assays. The activatory 18 

effects of LL37 (5, 10, 20 and 50 µM) were substantially reduced in Fpr2/3−/− mouse platelets both 19 

in isolation (Figure 3-11Ai) or whole blood (Figure 3-11Aii) compared to the controls as analysed by 20 

fibrinogen binding using flow cytometry. Similar results were obtained by analysing P-selectin 21 

exposure levels in mouse platelets in isolation (Figure 3-11Bi) or whole blood (Figure 3-11Bii). 22 

Notably, the characterisation of platelets obtained from Fpr2/3−/− mice failed to display any defects 23 

in the size and number of platelets or the levels of major platelet receptors such as GPVI (Figure 3- 24 

12i), GPIbα (Figure 3-12ii), αIIbβ3 (Figure 3-12iii) and ɑ2β1 (Figure 3-12iv) in comparison to the 25 

control mouse platelets.  26 



109  

 

To further analyse the functional dependence of LL37 on FPR2/ALX, specific platelet 1 

functional assays were performed in the presence of a selective antagonist to FPR2/ALX 2 

(WRWWWW [WRW4]) in human and mouse platelets. The addition of WRW4 (5 µM) in human 3 

isolated platelets prior to activation with 20 µM LL37 inhibited platelet aggregation by approximately 4 

40% (Figure 3-13). Similarly, the effects of LL37 (20 µM) on fibrinogen binding (Figure 3-14i) and 5 

P-selectin exposure (Figure 3-14ii) were significantly reduced in WRW4-treated (5 µM) control 6 

platelets. These data demonstrate the involvement of FPR2/ALX in the regulation of LL37-mediated 7 

effects in platelets. 8 

  9 
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 1 

 2 

Figure 3-10: Binding of LL37 to FPR2/ALX in platelets. The binding of LL37 to platelets was 3 

analysed by flow cytometry. Human isolated platelets were incubated with 20μM 5-FAM-LC- 4 

conjugated LL37 or scrambled LL37, and the level of binding was analysed by flow cytometry (i). 5 

Data represent mean ± SEM (n=4). Similarly, platelets obtained from control, Fpr2/3-/-
 and Fpr1-/-

 6 

mice were analysed with 20 μM 5-FAM-LC-conjugated LL37 or scrambled LL37 (ii). Data represent 7 

mean ± SEM (n=7). The interactions between LL37 and FPR2/ALX was analysed through structural 8 

modelling and molecular docking analysis (iii). The statistical significance was calculated using one- 9 

way ANOVA followed by a two-tailed unpaired Student’s t test was used (*p<0.05).  10 

11 



111  

 

Table 1. Summary of polar contacts between LL37 and FPR2/ALX  1 

 

Hydrogen bond interactions 

Interacting 

LL37 residues  

Interacting 

FPR2/ALX residues 

Average 

distance (Å) 

 

Gly-3 (N) Arg-26 (NH2) 2.76 

Ser-9 (OG) Glu-89 (OE1) 3.12 

Ser-9 (O) Glu-89 (OE2) 2.61 

Lys-10 (N) Glu-89 (OE2) 2.81 

Ser-9 (OG) Asn-171 (ND2) 3.00 

Gln-22 (NE2) Ser-182 (N) 3.20 

Gln-22 (OE1) Ser-182 (OG) 2.91 

Gln-22 (NE2) Ser-182 (OG) 3.14 

Gln-22 (NE2) Ser-182 (OG) 3.18 

Glu-11 (OE2) Gly-275 (N) 3.23 

Lys-8 (NZ) Lys-276 (O) 2.53 

Arg-7 (NH1) Asn-285 (OD1) 3.08 

Arg-7 (NE) Asn-285 (OD1) 3.29 

 2 

N, amide nitrogen; O, carbonyl oxygen; OG, gamma oxygen; NE2, epsilon nitrogen 2; OE1, epsilon 3 

oxygen 1; OE2, epsilon oxygen 2; NZ, zeta nitrogen; NH1, eta nitrogen 1; NE, epsilon nitrogen; NH2, 4 

eta nitrogen 2; ND2, delta nitrogen 2; OG, gamma oxygen; OD1, delta oxygen 1. 5 

 6 
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 3 

 4 

 5 

Figure 3-11: FPR2/ALX-mediated platelet activation by LL37. A, the level of fibrinogen binding 6 

upon stimulation with LL37 in isolated platelets (Ai) or whole blood (Aii) obtained from Fpr2/3-/-
 or 7 

control mice was analysed by flow cytometry.  Data represent mean ± SEM (n=10 for Ai; n= 8 for 8 

Aii). B, Similarly, the level of P-selectin exposure was analysed using isolated platelets (Bi) or whole 9 

blood (Bii) from these mice. Data represent mean ± SEM (n=10 for Bi; n= 13 for Bii). The statistical 10 

significance was calculated using one-way ANOVA followed by Bonferroni’s correction (*p<0.05, 11 

**p<0.001 and ***p<0.0001).  12 

  13 
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 1 

Figure 3-12: Expression of major platelet receptors in Fpr2/3-deficient mouse platelets. The 2 

expression levels of major platelet receptors such as GPVI (i), GPIbα (ii), αIIbβ3 (iii) and ɑ2β1 (iv) in 3 

platelets obtained from Fpr2/3−/− and control mice were analysed by flow cytometry using selective 4 

fluorescent-labelled antibodies. Data represents mean ± SEM (n=8 per group). The statistical 5 

significance was calculated a two-tailed unpaired Student’s t test was used.  6 

  7 
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 1 

Figure 3-13: Inhibition of LL37-mediated platelet aggregation by WRW4. The effect of a 2 

selective inhibitor for FPR2/ALX, WRW4 (5 µM) upon LL37-induced platelet activation was 3 

measured by optical aggregometry. Data represent mean ± SEM (n=3). The statistical significance 4 

was calculated using a two-tailed unpaired Student’s t test was used (*p<0.05).  5 

 6 

  7 
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 1 

Figure 3-14: Inhibition of LL37-mediated platelet activation by WRW4. Mouse isolated platelets 2 

were stimulated with LL37 (20 μM) in the presence or absence WRW4 (5 μM), and the level of 3 

fibrinogen binding (i) and P-selectin exposure (ii) were analysed by flow cytometry. Data represent 4 

mean ± SEM (n=4). The statistical significance was calculated using a two-tailed unpaired Student’s 5 

t test was used (*p<0.05).  6 

  7 
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 3.3.11 FPR2/ALX regulates platelet activation in general  1 

In order to validate the importance of FPR2/ALX in the regulation of platelet activation in 2 

general, further experiments were performed using human isolated platelets in the presence or 3 

absence of WRW4. CRP-XL (0.25 µg/mL)-induced platelet aggregation was significantly reduced in 4 

the presence of different concentrations of WRW4 (2.5, 5 and 20 μM). For example, the inhibition of 5 

FPR2/ALX with WRW4 (20 µM) reduced the platelet aggregation by around 89% (Figure 3-15A). 6 

Similar results were obtained with ADP-induced platelet aggregation, wherein WRW4 (20 µM) 7 

reduced aggregation by approximately 82% (Figure 3-15B). Moreover, dense granule secretion 8 

(evidenced by ATP release) was significantly reduced in the presence of WRW4 (Figure 3-15C). 9 

Furthermore, the platelet activation was also assessed using whole blood obtained from control and 10 

Fpr2/3−/− mice upon stimulation with conventional platelet agonists such as CRP-XL, ADP, AY- 11 

NH2 (activates protease activated receptor, PAR4) and U46619, an analogue of thromboxane A2 12 

(TXA2) [activates thromboxane prostanoid (TP) receptor] by measuring the level of fibrinogen 13 

binding and P-selectin exposure. Similar to human platelets, the activation of platelets obtained from 14 

Fpr2/3−/− mice upon stimulation with CRP-XL (Figure 3-16A), ADP (Figure 3-16B), AY-NH2 15 

(Figure 3-16C) and U46619 (Figure 3-16D) was significantly reduced compared to the controls. 16 

Additionally, pre-incubation of human platelets with WRW4 (1.25, 2.5, 5 and 20 μM) significantly 17 

decreased the number of adhered (Figure 3-17i) and spread (Figure 3-17ii) platelets, and the relative 18 

surface area of spreading on fibrinogen-coated surfaces (Figure 3-17iii), indicating the involvement 19 

of FPR2/ALX in the regulation of integrin aIIbb3–mediated outside-in signalling to platelets. The 20 

impact of Fpr2/3 on the modulation of haemostasis in mice was determined by tail bleeding assay. A 21 

mean bleeding time of 428.5±64.8 seconds was observed in the control group, however Fpr2/3- 22 

deficient mice significantly increased the bleeding time to a mean of 1128±71.9 seconds (Figure 3- 23 

18). These results indicate the prominence of this receptor in the maintenance of haemostasis under 24 

physiological conditions. Together, these data emphasise the impact of FPR2/ALX on the regulation 25 

of normal platelet function through a positive feedback mechanism, and thus the inhibition or deletion 26 

of this receptor results in diminished platelet function in general. This positive feedback may occur 27 
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mainly through LL37 that is released from platelets upon activation within the local environment 1 

where their concentration might be sufficient to inhibit platelet function. The presence of other 2 

FPR2/ALX ligands for platelet activation is also inevitable under these circumstances.  3 

4 
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 1 

Figure 3-15: The effect of FPR2/ALX blockade by WRW4 on platelet aggregation and ATP 2 

release. The effects of different concentrations of WRW4 on CRP-XL (0.25 µg/mL) (A) or ADP (2 µM) 3 

(B) -induced human isolated platelet aggregation was analysed by optical aggregometry. C, the level of 4 

ATP secretion in platelets treated with WRW4 prior to activation with CRP-XL (0.25 µg/mL) was 5 

measured by lumi-aggregometry. Data represent mean ± SEM (n=3). P values shown are calculated by 6 

one-way ANOVA followed by Bonferroni's correction (*p<0.05 and **p<0.01).   7 

8 
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 1 

Figure 3-16: Deletion of Fpr2/3 in mice reduces agonist-induced platelet activation. The levels of 2 

fibrinogen binding (i) and P-selectin exposure (ii) were analysed in platelets obtained from control or 3 

Fpr2/3−/− mice upon stimulation with various concentrations of CRP-XL (A), ADP (B), AY-NH2 (C) 4 

or U46691 (D) by flow cytometry. Data represent mean ± SEM (n=3). P values shown are calculated 5 

by two-way ANOVA followed by Bonferroni's correction (*p<0.05).   6 

 7 
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 2 

Figure 3-17: Effect of FPR2-selective inhibitor, WRW4, on platelet adhesion and spreading. 3 

Platelet adhesion and spreading on fibrinogen-coated glass surface was analysed in the absence and 4 

presence of WRW4 (1.25, 2.5, 5 and 20 µM) by confocal microscopy (60x magnification; scale bar – 5 

10 µm). The number of adhered (i) and spread platelets (ii), and the relative surface area of spread 6 

platelets (iii) was determined by analysing the images using ImageJ. Ten random fields of view were 7 

recorded for each sample. Data represent mean ± SEM (n=3). P values shown are calculated by one- 8 

way ANOVA followed by Bonferroni's correction (*p<0.05 and **p<0.01). 9 

 10 

  11 
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 1 

Figure 3-18: Deletion of Fpr2/3 in mice affects haemostasis. The impact of FPR2/ALX in the 2 

modulation of haemostasis was analysed using tail bleeding assay in control or Fpr2/3−/− mice. Data 3 

represent mean ± SEM (n=8 per group). P values shown are calculated non-parametric Mann- 4 

Whitney test. 5 

  6 
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 3.3.12 FPR2/ALX exerts its effects through cyclic AMP-dependent signalling  1 

 Cyclic AMP (cAMP) is a potent inhibitor of platelet function, and its generation is reduced 2 

upon platelet activation. Moreover, stimulants of cAMP generation are known to reverse platelet 3 

activation
45

. FPRs are Gi-coupled receptors
46

, which are known to inhibit adenylate cyclase, leading 4 

to the reduction of cAMP levels. Therefore, the deletion of Gi-coupled receptor genes in mice 5 

increases the basal cAMP levels in target cells
47, 48

. In order to investigate whether the inhibition of 6 

FPR2/ALX in human or deletion of Fpr2/3 in mouse platelets is influenced by the cAMP-dependent 7 

signalling pathways, the level of cAMP was quantified in platelets using a cAMP assay kit. The 8 

inhibition of FPR2/ALX with WRW4 (20 μM) significantly elevated the cAMP levels compared to 9 

the vehicle control in human platelets (Figure 3-19i). Similarly, resting Fpr2/3−/− platelets exhibited 10 

elevated levels of cAMP compared to control mouse platelets (Figure 3-19ii). These data suggest that 11 

the level of cAMP plays a key role in the regulation of FPR2/ALX-mediated functions in platelets 12 

and explain the inhibition of platelet function in general upon blocking or deletion of this receptor in 13 

platelets. 14 

15 
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 1 

 2 

Figure 3-19: Deletion of Fpr2/3 in mice affects cAMP levels. The level of cAMP in human isolated 3 

platelets in the presence or absence of WRW4 (i), and control and Fpr2/3-/-
 mouse platelets (ii) was 4 

analysed using a cAMP assay kit. Data represent mean ± SEM (n=4). P values shown are calculated 5 

by two-tailed unpaired Student’s t test (*p<0.05 and ***p<0.001).   6 

 7 

  8 
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 3.3.13  Impact of LL37 in the modulation of platelet activation and haemostasis 1 

during psoriasis  2 

  3.3.13.1 Characterisation of a psoriasis mouse model  3 

 The level of LL37 is known to be overexpressed during psoriasis with concentrations up to 300 4 

μM in affected skin tissues
39

. In order to determine the impact of LL37 in the modulation of platelet 5 

function and haemostasis during psoriasis, we used an animal model with psoriasis-like symptoms. 6 

Psoriasis vulgaris (plaque-type), the most common phenotype of psoriasis, is a skin inflammatory disease 7 

characterised by skin thickening along with red plaques and dry scales. In order to study the effects of 8 

LL37 under this inflammatory condition, a psoriasis mouse model was utilised.
49

 To mimic human 9 

plaque-type psoriasis, mice were treated topically with a Vaseline cream containing 5% imiquimod 10 

(IMQ), an immunomodulatory agent that ligates toll-like receptor 7 (TLR7)
50

. IMQ-treated mice 11 

displayed psoriatic symptoms compared to control vaseline-treated mice. For example, IMQ-treated mice 12 

displayed significant differences in the body (Figure 3-20i) and spleen (Figure 3-20ii) weight, and skin 13 

thickness (Figure 3-20iii) compared to the control mice over five days. Moreover, based on the Psoriasis 14 

Area and Severity Index (PASI) scoring system, the clinical manifestations of psoriasis including 15 

erythema (Figure 3-20iv) and desquamation (Figure 3-20v) were significantly altered in IMQ-treated 16 

mice compared to vaseline-treated mice. Figure 3-20vi depicts the lesions on the back skin of IMQ-treated 17 

mice compared to the controls. Together, these data confirm the development of psoriasis-like symptoms 18 

in the IMQ-treated mice, rendering them an appropriate model to study human plaque-like psoriasis. 19 

  20 
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 1 

Figure 3-20: Characterisation of a psoriasis mouse model. Characterisation of a psoriasis mouse 2 

model was performed by measuring the body weight (i), spleen weight (ii) and skin thickness (iii) in 3 

IMQ-treated mice compared to the controls (Vaseline-treated mice). The PASI scoring was used to 4 

rank erythema (iv) and desquamation (v). Representative images display the lesions on the skin of 5 

IMQ-treated mice compared to the controls (vi). Data represent mean ± SEM (n=12 per group). P 6 

values shown are calculated by one-way ANOVA followed by Bonferroni’s correction (*p<0.05, 7 

**p<0.001 and ***p<0.0001).  8 

 9 

  10 
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  3.3.13.2 The effect of haemostasis in IMQ-treated mice 1 

 In order to determine whether the IMQ-treated mice exhibit a direct impact on haemostasis, a tail 2 

bleeding assay was performed. Notably, IMQ-treated mice did not exhibit significant difference in the 3 

bleeding time compared to the control group (Figure 3-21). These data demonstrate that despite the 4 

alteration of platelet function during psoriasis, the elevation of LL37 was not sufficient to impact 5 

haemostasis in these mice. Moreover, there may be a range of modulatory factors at play influencing 6 

haemostasis in these psoriatic mice.  7 

8 
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 1 

Figure 3-21: The impact of psoriasis in the modulation of haemostasis. The impact of psoriasis in 2 

the modulation of haemostasis was analysed in the control or IMQ-treated mice using tail bleeding 3 

assay. Data represent mean ± SEM (n=6 for IMQ-treated, and n=5 for Vaseline-treated mice). P 4 

values shown are calculated by non-parametric Mann-Whitney test. 5 

 6 

  7 
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  3.3.13.3 mCRAMP is elevated in the skin and plasma of IMQ-treated 1 

mice 2 

 Recent studies have reported the overexpression of LL37 during psoriasis in humans mainly 3 

at local sites of inflammation and lesions
29, 51

, and in the circulation
52

. In order to determine whether 4 

the LL37 murine orthologue, mCRAMP, is overexpressed both locally in the skin and plasma of 5 

IMQ-treated mice, the level of mCRAMP was measured in skin homogenates and plasma using an 6 

ELISA. The level of mCRAMP was markedly increased in the skin samples (150±2.4 pg/mL) 7 

obtained from IMQ-treated mice compared to the controls (23.1±2.7 pg/mL) (Figure 3-22i). 8 

Moreover, the level of mCRAMP was markedly increased in plasma samples (139.5±7 pg/mL) 9 

obtained from IMQ-treated mice compared to the control (35.4±1.5 pg/mL) (Figure 3-22ii). These 10 

data demonstrate the elevation of mCRAMP levels during the progression of psoriasis both locally 11 

in lesional skin and systemically in plasma.  12 

  13 
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 1 

Figure 3-22: The expression of mCRAMP in psoriatic lesions and plasma. The level of mCRAMP 2 

in skin homogenates (i) or plasma (ii) samples obtained from IMQ-treated and control mice was 3 

analysed using mCRAMP antibodies by an ELISA. Data represent mean ± SEM (n=6 for skin; n=19 4 

for plasma). P values shown are calculated by a two-tailed unpaired Student’s t test (***p<0.0001).  5 

  6 
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  3.3.13.4 Platelet activation is augmented during psoriasis  1 

 In order to determine whether the pathogenesis of psoriasis affects the regulation of platelet 2 

function, whole blood obtained from IMQ-treated mice was used to study platelet activation by flow 3 

cytometry. The effects of various concentrations of different platelet agonists such as, CRP-XL, ADP 4 

and U46619 were analysed in whole blood obtained from IMQ-treated and control mice. The level 5 

of fibrinogen binding and P-selectin exposure upon treatment with CRP-XL (Figure 3-23Ai and 3- 6 

23ii), ADP (Figure 3-23Bi and 3-23Bii) and U46619 (Figure 3-23Ci and 3-23Cii) was significantly 7 

increased in IMQ-treated mice compared to the controls. These data validate the impact of psoriasis 8 

pathogenesis in the modulation of platelet-mediated responses during the progression of this disease.   9 

  10 
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 1 

Figure 3-23: The activation of platelets in psoriatic mice. The activation of platelets upon 2 

stimulation with CRP-XL (n=3) (A), ADP (n=4) (B), or U46619 (n=3) (C) in whole blood obtained 3 

from IMQ-treated and control mice was analysed by measuring the level of fibrinogen binding (i) 4 

and P-selectin exposure (ii) by flow cytometry. P values shown are calculated by two-way ANOVA 5 

followed by Bonferroni’s correction (*p<0.05, **p<0.001 and ***p<0.0001).  6 

 7 
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  3.3.13.5 Effect of psoriatic plasma on healthy platelets  1 

 In order to determine the direct impact of psoriatic plasma samples on healthy platelets, the 2 

levels of fibrinogen binding and P-selectin exposure were measured using healthy mouse and human 3 

platelets in the presence and absence of IMQ-treated mouse plasma. The treatment of healthy human 4 

platelets (PRP) with psoriatic plasma markedly increased the levels of fibrinogen binding and P- 5 

selectin exposure in the absence (Figure 3-24i and 2-24ii) or presence (Figure 3-24iii and 3-24iv) of 6 

CRP-XL compared to the controls. Similar results were obtained upon the treatment of normal mouse 7 

isolated platelets, wherein psoriatic plasma markedly increased platelet activation in the absence 8 

(Figure 3-25Ai and 3-25Aii) or presence (Figure 3-25Aiii and 3-25Aiv) of a CRP-XL compared to 9 

the controls. Furthermore, psoriatic plasma also increased platelet activation in mouse PRP in the 10 

absence (Figure 3-25Bi and 3-25Bii) or presence (Figure 3-25Biii and 3-25Biv) of CRP-XL 11 

compared to the controls.  12 

 In order to investigate whether the augmentation of platelet function in IMQ-treated mice are 13 

mediated through FPR2/ALX, the effect of psoriatic plasma was investigated in the presence of 14 

WRW4 or in Fpr2/3-/-
 mouse platelets. The treatment of control mouse platelets (PRP) with psoriatic 15 

plasma significantly reduced platelet activation in the presence of WRW4 (Figure 3-26Ai and 3- 16 

26Aii). Similarly, the treatment of Fpr2/3-/-
 mouse platelets displayed significantly reduced platelet 17 

activation compared to the controls (Figure 3-26Bi and Figure 3-26Bii). Together, these data 18 

demonstrate the direct impact of psoriasis on platelet function and its involvement in the modulation 19 

of platelet reactivity (mainly through FPR2/ALX), which could exacerbate the pathogenesis and 20 

thrombotic complications during psoriasis at local inflammatory sites and in circulation. 21 

 22 

  23 
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 1 

 2 

Figure 3-24: The impact of psoriatic plasma on human platelets. The impact of IMQ-treated 3 

mouse plasma on healthy human platelets (PRP) was analysed by measuring the level of fibrinogen 4 

binding in the absence (i) or presence (iii) of CRP-XL (0.25µg/mL) (n=18). Similarly, the level of P- 5 

selectin exposure was measured in the absence (ii) or presence (iv) of CRP-XL (0.25µg/mL) (n=18). 6 

P values shown are calculated by a two-tailed unpaired Student’s t test (*p<0.05).  7 

  8 
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 1 

 2 

Figure 3-25: The impact of psoriatic plasma on mouse platelets. A, the impact of IMQ-treated 3 

mouse plasma on control mouse isolated platelets was analysed by measuring the levels of fibrinogen 4 

binding in the absence (Ai) or presence (Aiii) of CRP-XL (0.25µg/mL) (n=7). Similarly, P-selectin 5 

exposure was measured in the absence (Aii) or presence (Aiv) of CRP-XL (0.25µg/mL) (n=7). B, the 6 

impact of IMQ-treated plasma on control mouse PRP was analysed by measuring the levels of 7 

fibrinogen binding in the absence (Bi) or presence (Biii) of CRP-XL (0.25µg/mL) (n=6). P-selectin 8 

exposure was also measured in the absence (Bii) or presence (Biv) of CRP-XL (0.25µg/mL) (n=4). 9 

Data represent mean ± SEM. P values shown are calculated by a two-tailed unpaired Student’s t test 10 

(*p<0.05, **p<0.001 and ***p<0.0001).  11 

  12 
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 1 

 2 

Figure 3-26: FPR2/ALX-mediated effects of psoriatic plasma. A, the impact of IMQ-treated 3 

plasma on healthy mouse PRP in the presence of WRW4 was analysed by measuring the levels of 4 

fibrinogen binding (Ai) or P-selectin exposure (Aii) (n=5). B, the impact of IMQ-treated plasma on 5 

control and Fpr2/3-/-
 mouse PRP was analysed by measuring the levels of fibrinogen binding (Bi) or 6 

P-selectin exposure (Bii) (n=6). P values shown are calculated by a two-tailed unpaired Student’s t 7 

test (*p<0.05, **p<0.001 and ***p<0.0001).   8 
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3.4 Discussion 1 

LL37 is a powerful antimicrobial peptide that plays substantial roles in the initiation of 2 

chemotaxis and subsequent inflammatory responses in immune cells including monocytes
22

, mast 3 

cells
53

, eosinophils and neutrophils
54

. Moreover, the involvement of LL37 in the development of 4 

pathological conditions such as psoriasis, sepsis, inflammatory bowel disease and cystic fibrosis has 5 

been previously reported, and hence, its therapeutic potential has been analysed in detail
38

. LL37 has 6 

also been found to play a role in the pathogenesis of atherosclerosis
55, 56

, wherein it leads to the 7 

development of lesions and recruitment of inflammatory cells at the site of injury
27

. In addition, LL37 8 

has been found to play a role in wound healing
57

, where the LL37 analogue, Cys-LC-LL37, has been 9 

incorporated in cotton gauzes to produce antimicrobial wound dressings
58

. However, the role of LL37 10 

in the modulation of platelet reactivity, thrombosis and haemostasis has not been investigated 11 

previously in detail. Platelets play pivotal roles during inflammatory diseases, specifically in psoriasis 12 

where the modulation of platelet function leads to disseminated intravascular coagulation, thrombus 13 

formation in the microvasculature that culminates in thrombocytopenia. Henceforth, the impact of 14 

LL37 in the modulation of platelet reactivity, thrombosis and haemostasis under physiological and 15 

pathological conditions, such as psoriasis, was investigated in this study.  16 

The expression of LL37 has been reported in numerous cell types including epithelial cells 17 

and immune cells such as neutrophils and monocytes
13

. Since platelets are also derived from the 18 

myeloid lineage
59

, we hypothesised that platelets may possess LL37, and indeed the presence of LL37 19 

in platelets and its release to the external milieu upon activation was confirmed. Similar to 20 

neutrophils, platelets may also contain LL37 in their granules and release it upon stimulation to 21 

enhance the secondary platelet activation. Platelets are also known to contain several other 22 

antimicrobial peptides including platelet factor 4 (PF4), platelet basic protein (PBP) and its 23 

derivatives, connective tissue activating peptide 3 (CTAP-3), thymosin B-4 (TB-4), CAMP and 24 

fibrinopeptides A and B (FPA and FPB), and release them upon activation in order to control 25 

microbial infection
60

. Similarly, they may also contribute to the elevation of LL37, the only 26 

cathelicidin in humans, upon activation to support the microbial clearance, activation of inflammatory 27 
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responses, and modulation of thrombosis and haemostasis during pathological settings. The activation 1 

of platelets during inflammatory diseases is inevitable due to the presence of several molecules that 2 

activate platelets
61

. However, here we demonstrate LL37 as a major contributor to thrombosis and 3 

other platelet-related complications during inflammatory diseases.  4 

Thrombosis and subsequent bleeding are associated with psoriasis
62

. Similarly, disseminated 5 

intravascular coagulation, thrombosis in the microvasculature and sequestration of platelets are some 6 

of the common clinical manifestations in sepsis
63

. The level of LL37 is significantly higher in 7 

psoriasis
39

 and sepsis
64

 patients compared to healthy individuals. In line with thrombosis in 8 

vasculature, LL37 augmented in vitro thrombus formation under arterial flow conditions and 9 

shortened the bleeding time in mice. These data demonstrate a fundamental function for LL37 in the 10 

modulation of thrombosis and haemostasis under pathological settings. Similarly, LL37 induced 11 

platelet aggregation, fibrinogen binding, granule secretion, adhesion, spreading and intracellular 12 

calcium mobilisation in platelets.  13 

The concentrations used in the present study (up to 50 µM) revealed activatory roles of LL37 14 

in platelets. A recent study reported the inhibitory effects of LL37 in platelets at concentrations 15 

between 0.1 and 1.2 mM
37

. These concentrations are not only substantially greater than the achievable 16 

levels under a range of pathological conditions, but also exert toxic effects in several cell types
40

 17 

including platelets  at 100 µM. However, in pathological conditions such as severe psoriasis, a median 18 

concentration of 304 µM LL37 in psoriatic lesions has been reported
39

, which can exert cytotoxicity 19 

towards platelets at the local sites and reduce the number of functional platelets in the circulation. In 20 

other conditions such as pulmonary infections, a concentration of 5 µM LL37 has been detected
65

. 21 

Notably, the normal plasma concentration of LL37 in healthy individuals is suggested to be 22 

approximately 1.2 µM
66

, which did not exert any effects on platelets. The concentrations of LL37 23 

used in the present study are similar to those achievable during pathological conditions, such as 24 

sepsis
64

, and early stages of other inflammatory diseases including psoriasis. Hence, the inhibitory 25 

effects of LL37 that were previously reported in platelets may be due to the cytotoxic effects of LL37, 26 

although additional causes cannot be excluded. Together with the previous report, our data 27 
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demonstrate that LL37 induces platelet activation at the early stages of inflammatory diseases 1 

resulting in the initiation of thrombosis and modulation of haemostasis. However, at concentrations 2 

of 100 µM and above (such as in local psoriatic lesions), LL37 may exert cytotoxic effects that can 3 

result in the reduction of platelet function and decrease the circulating platelet number, which 4 

subsequently leads to bleeding complications. We were able to demonstrate the involvement of LL37 5 

in platelet-related complications in inflammatory diseases, psoriasis is the case in point. Furthermore, 6 

we displayed the direct impact of disease (psoriasis) pathogenesis in the dysregulation of platelet 7 

function. Together with the modulation of thrombosis and haemostasis, LL37 may also induce other 8 

platelet-related complications (e.g. thrombocytopenia and inflammation) during various 9 

inflammatory diseases where its level is elevated. 10 

LL37 has been reported to act mainly through FPR2/ALX in other cell types
22, 30, 

although 11 

additional receptors such as toll-like receptors (TLRs), receptor tyrosine kinases (RTKs), ligand- 12 

gated ion channel (LGIC), CCR3, P2Y11 and P2X7 have shown to bind this peptide
67

. To investigate 13 

the underlying molecular mechanisms through which LL37 modulates platelet function, the effects 14 

of LL37 in human platelets treated with WRW4 and platelets obtained from Fpr2/3−/−
 mice were 15 

analysed. LL37-mediated activation was largely reduced by WRW4 and in platelets obtained from 16 

Fpr2/3−/− mice compared to the controls, verifying the functional dependence of LL37 primarily on 17 

FPR2/ALX. LL37 binding assays that were performed using platelets obtained from Fpr2/3−/− 
mice 18 

confirmed the substantial reduction in the binding of LL37 to Fpr2/3−/−
 platelet surface compared to 19 

Fpr1−/− and control mouse platelets. Additionally, we were able to demonstrate that FPR2/ALX 20 

inhibition in human platelets or deletion of Fpr2/3 gene in mice lead to the elevation of cAMP levels, 21 

which is a major inhibitory molecule for platelet activation. This indicates the involvement of cAMP- 22 

dependent signalling pathways in the regulation of FPR2/ALX in platelets. Nevertheless, the 23 

activation of platelets by LL37 through receptors other than FPRs cannot be excluded and further 24 

investigations will be needed to explore the contributions of such receptors in the modulation of 25 

platelet function upon ligation with LL37. 26 
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In conclusion, this study demonstrates that LL37 is stored in platelets and secreted upon 1 

platelet activation. Moreover, LL37 promotes thrombus formation and altered haemostasis in mice. 2 

In line with these results, LL37 induced platelet activation in a range of platelet functional assays 3 

such as platelet aggregation, inside-out signalling to integrin ɑIIbβ3 and outside-in signalling by the 4 

same integrin, granule secretion and intracellular calcium mobilisation. These activatory roles of 5 

LL37 were diminished in the presence of a FPR2/ALX pharmacological inhibitor, and in platelets 6 

obtained from Fpr2/3−/− mice confirming the functional dependence of LL37 primarily via this 7 

receptor in platelets. Additionally, we demonstrate an instrumental role for FPR2/ALX in the positive 8 

feedback regulation of platelet function, in which the deficiency or blockade of this receptor impaired 9 

haemostasis and the activation of platelets in general. The significant roles of LL37 and FPR2/ALX 10 

in the modulation of thrombosis and haemostasis renders them as potential candidates for the 11 

exacerbation of platelet-related complications and immune responses in numerous inflammatory 12 

diseases where platelets play essential roles. Notably, the presence of FPRs in platelets opens up new 13 

avenues to investigate the involvement of a multiplicity of FPR ligands in the modulation of 14 

thrombosis, haemostasis, and other platelet-related complications during inflammatory responses. 15 

Based on the data presented in this study, both LL37 and FPRs can act as potential therapeutic targets 16 

for cardiovascular and a range of inflammatory diseases.  17 

 18 

 19 

 20 

 21 
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 24 
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3.5 Methods 1 

Preparation of human platelet-rich plasma and isolated platelets 2 

The University of Reading Research Ethics Committee approved all the experimental 3 

procedures using human blood from healthy volunteers. The blood samples were collected from 4 

healthy, aspirin-free volunteers after obtaining written informed consent. The blood was collected 5 

into VACUETTE
®

 blood collection tubes containing 3.2% (w/v) sodium citrate. The blood samples 6 

were then centrifuged at 102g for 20 minutes at room temperature to obtain platelet-rich plasma 7 

(PRP). The PRP was rested at 30°C for 30 minutes prior to use. For the preparation of isolated 8 

platelets, the blood was mixed with ACD (2.5% sodium citrate, 2% D-glucose and 1.5% citric acid) 9 

at 1 (ACD): 9 (blood) ratio and centrifuged at 102g for 20 minutes. The PRP was collected, mixed 10 

with appropriate volume of ACD, and centrifuged at 1413g for 10 minutes at room temperature. The 11 

resultant platelet pellet was resuspended in modified Tyrodes-HEPES buffer (134mM NaCl, 2.9mM 12 

KCl, 0.34mM Na2HPO4.12H2O, 12mM NaHCO3, 20mM HEPES and 1mM MgCl2, pH 7.3) with 13 

appropriate volume of ACD, and centrifuged once again at 1413g for 10 minutes at room temperature. 14 

The resultant platelet pellet was resuspended to a final density of 4×10
8
 cells/mL in modified 15 

Tyrode’s-HEPES buffer and allowed to rest for 30 minutes at 30ºC prior to use. 16 

Mouse blood collection and platelet preparation 17 

The mouse strains of Fpr1−/−1 and Fpr2/3−/−2
 on a C57BL/6 background obtained from 18 

William Harvey Research Institute, London, UK and wild type C57BL/6 mice from Envigo, UK were 19 

used in this study. The mice were sacrificed with CO2 and the blood was directly collected by cardiac 20 

puncture into a syringe containing 3.2% (w/v) sodium citrate at 1 (citrate):9 (blood) ratio. The blood 21 

was then centrifuged at 203g for 8 minutes at room temperature and the PRP was collected. The 22 

remaining blood was resuspended in 500 µL of modified Tyrode’s-HEPES buffer and centrifuged 23 

once again at 203g for 5 minutes. The resultant PRP then centrifuged at 1028g for 5 minutes. The 24 

resultant platelet pellet was resuspended in modified Tyrode’s-HEPES buffer at a density of 2x10
8
 25 

cells/mL. 26 
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Enzyme-linked immunosorbent assay (ELISA) for the detection of LL37 1 

 To investigate the presence of LL37 in platelets, a direct ELISA was performed using LL37- 2 

selective antibody (sc-166770, Santa Cruz Biotechnology, USA). Human isolated platelets were 3 

treated with a vehicle (modified Tyrode’s-HEPES buffer) or CRP-XL (1 μg/mL) for five minutes 4 

under stirring conditions to obtain resting or activated platelets, respectively. The platelets were 5 

centrifuged at 1413g for 10 minutes at room temperature. The supernatant was collected, stored at - 6 

80°C, lyophilised, and resuspended in Nonidet P40 (NP40) buffer. The resultant pellet was also 7 

resuspended in NP40 buffer. Briefly, a 96 well plate was coated with 50 µL of various concentrations 8 

of LL37 (for the standard curve), or the resting or activated platelet samples (pellets or supernatants), 9 

and incubated at 4ºC overnight. The plate was blocked with 150 µL of assay buffer (0.5% BSA in 10 

PBS) for one hour at room temperate. Following washing three times with a wash buffer (0.1% Triton 11 

X-100 in PBS), 50 µL of anti-LL37 antibody was added and the plate was then incubated for 4 hours 12 

at room temperature. Following incubation, the plates were washed with the wash buffer before the 13 

addition of goat anti-mouse horseradish peroxidase-conjugated IgG (Life Technologies, UK) and 14 

incubation for one hour at room temperate. The plates were then washed three times, and 100 µl 15 

3,3’,5,5’-tetramethylbenzidine (TMB) substrate was added and allowed to incubate at room 16 

temperature until the development of a colour. The reaction was stopped by the addition of 100 µL 17 

stop solution (0.5M HCl). The level of absorbance was measured at 450nm using an ELISA 18 

microplate reader (EMax precision plate reader, Molecular Devices, UK). 19 

Immunofluorescence microscopy 20 

 Human platelets were stimulated with modified Tyrode’s-HEPES buffer (resting platelets) or 21 

3 µM U46619 (activated platelets) and were left to settle on poly-L-lysine coverslips for 1 hour at 22 

37ºC. The platelets were then fixed with 0.2% formyl saline and then permeablised with 0.2% Triton 23 

in PBS. Following washing with PBS, the coverslips were incubated with primary antibodies for 24 

LL37 (Novus Biological, UK) and phalloidin (Invitrogen, UK) overnight at 4ºC and washed with 25 

PBS prior to staining with Alexa 488 and Alexa 647-conjugated secondary antibodies for phalloidin 26 

and LL37, respectively, and incubated for one hour at room temperature in the dark. Coverslips were 27 
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extensively washed and mounted onto slides. Platelets were imaged with a magnification of 100x 1 

using a Nikon A1-R confocal microscope (Nikon Instruments, UK). 2 

In vitro thrombus formation assay 3 

In vitro thrombus formation was performed as described previously
3, 4

. In brief, human 4 

DiOC6-labelled (Sigma Aldrich, UK) human whole blood was pre-incubated with a vehicle or 5 

different concentrations of LL37 (10, 20 and 50 µM) for 10 minutes before perfusion over collagen 6 

(400µg/mL)-coated Vena8™ Biochips (Cellix Ltd, Ireland) at a shear rate of 20 dynes/cm
2
. Z-stack 7 

fluorescence images of thrombi were obtained every 30 seconds for up to 10 minutes using a Nikon 8 

eclipse (TE2000-U) microscope (Nikon Instruments, UK). The fluorescence intensity was calculated 9 

by analysing the data using ImageJ software (National Institutes of Health, USA). 10 

Tail bleeding assay 11 

Tail bleeding assay was performed as described previously
5
. The British Home Office 12 

approved the experimental procedures. In brief, C57BL/6 mice (10-12 weeks old; Envigo, UK) were 13 

anaesthetised using ketamine (80 mg/kg) and xylazine (5 mg/kg) administered via the intraperitoneal 14 

route for 20 minutes before the experiment and were then placed on a heated mat (37°C). Vehicle or 15 

LL37 (20 µM) was infused via femoral artery 5 minutes before the dissection of 1mm of tail tip, and 16 

the tail was immersed in sterile saline. The time to cessation of bleeding was measured and the assay 17 

was terminated at 20 minutes. 18 

Platelet aggregation assay 19 

In vitro platelet aggregation assays were performed by optical aggregometry using a two- 20 

channel platelet aggregometer (Chrono-Log Corporation, USA). Isolated platelets (270 µL) were 21 

added into a siliconised cuvette and pre-warmed at 37°C for 90 seconds. Upon the addition of an 22 

agonist, the platelets were allowed to aggregate under continuous stirring at 1200rpm for 5 minutes 23 

at 37ºC and the level of aggregation was monitored. To analyse the effects of FPR2/ALX on LL37- 24 

induced platelet aggregation, FPR2/ALX-selective inhibitor, WRW4, used. The platelets were pre- 25 

treated with WRW4 (5 µM) for 5 minutes before the addition of LL37 (20 µM) and the level of 26 
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aggregation was monitored. Data were analysed by calculating the percentage of maximum platelet 1 

aggregation obtained at 5 minutes. 2 

ATP secretion assay   3 

To assess the level of dense granule secretion in platelets, ATP secretion assays were 4 

performed using a luciferin–luciferase luminescence substrate by lumi-aggregometry (Chrono-log, 5 

USA). The level of ATP released from platelets upon stimulation with a platelet agonist, CRP-XL 6 

(0.25 µg/mL), in the presence and absence of different concentrations of WRW4 was measured by 7 

observing the level of luminescence released. 8 

Flow cytometry based assays 9 

 In order to measure the level of fibrinogen binding and P-selectin exposure on the platelet 10 

surface, flow cytometry based assays were performed. Five microliters of PRP or isolated platelets 11 

were incubated with 1 μl of FITC-conjugated fibrinogen antibody (1:50) and 1 μl of PECy
5
- 12 

conjugated anti-CD62P (P-selectin) (1:50) antibody in the presence and absence of various 13 

concentrations of LL37 or platelet agonists. The final volume was made up to 50 μl using HEPES- 14 

buffered saline (HBS) (150mM NaCl, 5mM KCl, 1mM MgSO4.7H2O and 10mM HEPES, pH 7.4) 15 

and the samples were incubated for 20 minutes at room temperature. Following fixation in 0.2% 16 

formyl saline, the samples were analysed using an Accuri C6 flow cytometer (BD Biosciences, UK) 17 

by counting 5000 events within the gated population for platelets. The median fluorescence intensity 18 

was calculated using Accuri C6 software to quantify the levels of fibrinogen binding and P-selectin 19 

exposure on the surface of platelets. Similarly, for the analysis of FPR2/ALX expression on platelets, 20 

five microliters of PRP were incubated with 1 μl of anti-FPR2/ALX (5μg/mL) and 2 μl of Cy5- 21 

conjugated anti-mouse IgG (80 μg/mL) with or without 1 μg/mL CRP-XL. Following 20 minutes 22 

incubation at room temperature, the platelets were fixed in 0.2% formyl saline and analysed by flow 23 

cytometry. For the LL37 binding assay, following the incubation of isolated platelets with 5-FAM- 24 

LC-conjugated LL37 or 5-FAM-conjugated scrambled LL37 (20 μM) for 20 minutes, the platelets 25 

were fixed in 0.2% formyl saline and analysed by flow cytometry.  26 
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Intracellular calcium mobilisation assay 1 

PRP (2mL) was mixed with 2 µL of Fluo-4 AM dye (1 µM) (Life technologies, UK) and 2 

incubated for 20 minutes at 30ºC in dark. The PRP was then centrifuged at 1413g for 10 minutes at 3 

20ºC. The resultant platelet pellet was suspended in 500 µL modified Tyrode’s-HEPES buffer and 4 

maintained at 30ºC in dark. The platelets were stimulated with different concentrations of LL37 or 5 

platelet agonists and the level of fluorescence intensity was measured by FluoStar Optima 6 

Spectrofluorimeter (BMG Labtech, Germany) at 37ºC for 180 seconds using an excitation 7 

wavelength of 485nm and emission at 510nm. Data were analysed by calculating the percentage of 8 

calcium released at 90 seconds. 9 

SDS-PAGE and immunoblotting analysis 10 

Immunoblot analysis was performed using platelet lysates prepared under reducing 11 

conditions. The samples were heated to 90°C for 10 minutes and subjected to SDS-PAGE using 10% 12 

resolving gels. The gels were then transferred to polyvinylidene difluoride (PVDF) membranes and 13 

blocked by incubation in 5% milk in TBS-T (20mM Tris, 140mM NaCl and Tween-20, pH 7.6). 14 

Following an overnight incubation with primary anti-FPR2/ALX antibody (1:500) (Abcam, UK), the 15 

blots were washed with TBS-T and incubated with secondary Cy5-conjugated goat anti-rabbit IgG 16 

antibodies (1:1000) (Invitrogen, UK) in TBS-T containing 5% milk for one hour at room temperature. 17 

Following washing in TBS-T for one hour at room temperature, the blots were analysed using a 18 

Typhoon 9400 Variable Mode Imager system (GE Healthcare, UK). Equal loading of proteins in each 19 

lane was determined using anti-human 14-3-3# antibodies (1:1000) (Santa Cruz Biotechnology, 20 

USA). 21 

Lactate dehydrogenase (LDH) Cytotoxicity assay 22 

To test whether LL37 has cytotoxic effects on platelets, the level of LDH released from LL37- 23 

treated human isolated platelets was determined using LDH Cytotoxicity Assay Kit (Pierce, UK) 24 

according to the manufacturer's instructions. In brief, the platelets were incubated at 37°C under 5% 25 

CO2 for 30 minutes. The vehicle or a range of concentrations of LL37 (1 to 100 µM) was added in 26 
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duplicates to different wells of a 96 well plate and incubated for 10 minutes. One set of wells were 1 

treated with the lysis buffer provided from the kit as a positive control for maximum LDH release, 2 

and another set was treated with modified Tyrode’s-HEPES buffer for the detection of spontaneous 3 

LDH release. Results provided represent mean values from duplicate absorbance measurements, and 4 

are given as fractional LDH release compared to the positive control, which yields maximum LDH 5 

release (i.e. 100% cytotoxicity). 6 

Cyclic nucleotide assay  7 

A cAMP ELISA kit (Cambridge Bioscience, UK) was used for the detection of the total 8 

cellular levels of cAMP in human and mouse platelets. Human isolated platelets were pre-incubated 9 

for 10 minutes with a selective inhibitor for FPR2/ALX, WRW4. Similarly, platelets obtained from 10 

control or Fpr2/3−/− mice were also used. The platelets were lysed with 0.1M HCl and the levels of 11 

cAMP were calculated according to the manufacturer’s protocol. 12 

Mass spectrometry analysis for LL37 stability in plasma 13 

 Plasma stability of LL37 was determined using human plasma from three individual donors. 14 

LL37 was spiked into plasma at a final concentration of 100μg/mL and the solution was subsequently 15 

incubated at 37°C for up to 2 hours. Aliquots were removed at 0, 30, 60 and 120 minutes and diluted 16 

1:4 in ice cold methanol. Samples were centrifuged at 2500rpm for 45 min at 4ºC. The supernatant 17 

was collected and analysed by mass spectrometry (LC-MS) (Orbitrap, C8 column, Solvent system: 18 

0.1% formic acid in water and 0.1% formic acid in acetonitrile). Stability in plasma was calculated 19 

by integrating m/z peak areas of samples using Analyst software (XCalibur, Thermofisher, UK). 20 

Similar experiments were also performed in PRP obtained from three separate donors.  21 

Platelet adhesion and spreading on fibrinogen  22 

 Isolated human platelets were treated with different concentrations of LL37 or an FPR2/ALX- 23 

selective inhibitor, WRW4, prior to loading onto fibrinogen (100 µg/mL)-coated coverslips and 24 

incubation for 30 minutes. The coverslips were then washed with PBS to remove non-adhered 25 

platelets. Adhered platelets were fixed with 0.2% formyl saline for 10 minutes prior to 26 
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permeabilisation with 0.2% Triton X-100 for five minutes at room temperature. Adhered platelets 1 

were stained with Alexa 488-conjugated phalloidin for 30 minutes at room temperature. The 2 

coverslips were then mounted onto slides and scanned using a Nikon A1-R confocal microscope (60x 3 

objective).  Ten random fields of view were recorded for each sample. The data were analysed to 4 

quantify the number of adhered and spread platelets, and the relative area of spread platelets using 5 

ImageJ. The relative surface area of spread platelets was obtained by subtracting the surface area of 6 

resting platelets.  7 

Structural modelling and molecular docking analysis 8 

 The X-ray crystal structures of FPR2/ALX are not available; hence, homology models of this 9 

receptor were developed to determine the plausible interactions between LL37 and this receptor. The 10 

amino acid sequence of FPR2/ALX (accession code: P25090) was retrieved from UniProt
6
 and 11 

submitted to MODELLER-ModWeb server
7
 for protein structural modelling. The top three structural 12 

models generated were analysed for the sequence similarity, identity and orientation of amino acids. 13 

Homology models built on the structural template of human delta opioid 7 transmembrane receptor 14 

(PDB code - 4N6H; 1.8 Å) with which FPR2/ALX was found to share 29% identity and was identified 15 

as the most appropriate model for FPR2/ALX. This homology model was validated by docking with 16 

LL37 using Sybyl-X
8
. The interactions of LL37 with this receptor was identified using PatchDock

9
. 17 

The docking results were visualised using the program, PyMOL
10

 and the molecular interactions of 18 

the docked ligands were analysed by the programme, CONTACTS, as provided in the CCP4 suite of 19 

programs
11, 12

. Potential hydrogen bonds were assigned if the distance between two electronegative 20 

atoms was less than 3.3Å. 21 

Imiquimod-induced “psoriasis-like” skin inflammation  22 

 A 4cm
2
 mouse dorsal skin area was shaved and depilated (Veet, France) prior to daily topical 23 

treatment of 75mg of Aldara™ (Imiquimod, IMQ) cream (Meda Pharma, UK) or Vaseline for 4 24 

consecutive days following a previously published protocol
13

. Sample collection and further assays 25 

were performed on day 5. Daily double fold skin thickness was measured using a micrometer (Farnell, 26 
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UK) with 0.1mm accuracy and the change in thickness was calculated against day 0 skin thickness. 1 

PASI scoring for skin scaling (desquamations) and redness (erythema) was performed by assessors 2 

blinded to the treatments. Spleen weights were normalised to body weights.  3 

Statistical analysis 4 

Data presented in this study are represented as mean ± SEM. The statistical significance was 5 

analysed using two-tailed unpaired Student’s t test for two-sample comparisons for the data obtained 6 

from ELISA for LL37 and mCRAMP quantification, flow cytometric assay for FPR2/ALX 7 

expression and platelet receptor characterisation, cAMP assay, LL37 binding assay and platelet 8 

aggregometry in the presence of a FPR2/ALX-selective inhibitor. For multiple comparisons, 9 

statistical significance was established using one-way or two-way ANOVA followed by Bonferroni's 10 

correction for data obtained from in vitro thrombus formation, LL37 plasma stability, LL37 binding 11 

in mice, ATP release, platelet aggregation and activation, calcium mobilisation, and LDH 12 

cytotoxicity assays. Data obtained from the tail bleeding assay were analysed using a non-parametric 13 

Mann-Whitney test. All statistical analyses were performed using GraphPad Prism 7 software 14 

(GraphPad Software Inc., USA). 15 
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4.1 Abstract 9 

 Annexin A1 (AnxA1) is an endogenous protein that is known to play a role in the resolution 10 

of inflammation. It plays a pivotal role in the modulation of inflammatory responses in order to reach 11 

homeostasis. Annexin A1 is known to bind formyl peptide receptor 2 (FPR2/ALX), which are a group 12 

of G-protein coupled receptors that play a role in host defense and inflammation. Despite the detailed 13 

research in the role of Annexin A1 in the modulation of immunological response in various immune 14 

cells, including neutrophils and monocytes, its effects on the regulation of haemostasis, thrombosis 15 

and platelet-mediated inflammatory responses remain unexplored. Additionally, there is a paucity of 16 

studies to the role of platelets in the regulation of resolution of inflammation. Here, we demonstrate 17 

the role of the AnxA1 N-terminal peptide, Ac2-26, in the regulation of platelet haemostatic function, 18 

where we were able to confirm its activatory role. Ac2-26 activated platelets, evident in its ability to 19 

induce fibrinogen binding and P-selectin exposure. Moreover, it induced calcium mobilisation in a 20 

concentration-dependent manner. All of which were abrogated in the absence of Fpr2/3. Conversely, 21 

the activatory effects of Ac2-26 were exaggerated in AnxA1-deficient mice. This might be attributed 22 

to our findings of the overexpression of FPR2/ALX receptor in these mice. Moreover, these mice 23 

exhibited dysfunctional platelet receptor levels (GPIb), but normal haemostasis (tail bleeding assay). 24 

Understanding the function of AnxA1 and FPR2/ALX in the modulation of platelet function and 25 

platelet-associated inflammation can lead to the development of improved therapeutics that can target 26 

the resolution of inflammation without compromising the immune state of the host. 27 
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 1 

4.2 Introduction 2 

 3 

Platelets are non-nucleated blood cells that play a primary role in haemostasis by arresting 4 

bleeding upon vascular injury. Under pathophysiological conditions, the inappropriate activation of 5 

platelets leads to the formation of blood clots (thrombus) within the circulation
1
. This can reduce or 6 

retard the blood flow to vital organs including the heart and brain, ultimately causing heart attacks 7 

and strokes, respectively
2
. Cancer, type II diabetes, and cardiovascular diseases including coronary 8 

artery disease and atherosclerosis are among diseases associated with platelet reactivity. Conversely, 9 

failure of platelets to become activated leads to excessive bleeding and coagulopathies
3
. Apart from 10 

their haemostatic function, platelets are recognised as immune cells, mediating inflammation and 11 

innate immune responses
4
. This notion was supported by the presence of known immunologic 12 

receptors on platelets, including Toll-like receptors (TLRs)
5
, chemokine receptors

6
 and formyl 13 

peptide receptors (FPRs)
7
. 14 

 15 

Inflammation is a protective, physiological event induced by the body to remove stimulus and 16 

facilitate tissue repair in cases of injury
8
. Under physiological conditions, inflammation is followed 17 

by a process known as ‘resolution’, which limits the inflammatory cell migration, induces apoptosis 18 

and clearance of activated inflammatory cells
9
, regaining/restoring homeostasis. However, failure to 19 

contain such processes contributes to the chronicity of inflammatory diseases
10, 11

. A crucial step in 20 

the resolution is the production of specialized pro-resolving mediators (SPMs), including lipids 21 

(resolvins, protectins, maresins and lipoxins), and proteins such as annexin A1 (AnxA1)
12

. In 22 

particular, AnxA1 (a glucocorticoid-regulated protein) is known to play a role in the regulation of 23 

inflammation, and cell proliferation, differentiation and apoptosis
13

.  It is expressed in the cytosol of 24 

various resting cells, including neutrophils, monocytes, macrophages and epithelial cells
13

. 25 

Furthermore, a limited number of studies have reported its expression in platelets
14, 15

. The activation 26 

of such immune cells leads to the externalization of AnxA1 on the cell membrane surface and/or its 27 

secretion
16

. The extracellular AnxA1 then undergoes conformational changes, exposing its active 28 
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form, the N-terminal region that mediates the binding to its N-formyl peptide receptor, FPR2/ALX
17

. 1 

The externalization and secretion of Anxa1 is typically accompanied by a proteolytic cleavage of its 2 

N-terminal region, such cleavage is implicated with the down-regulation of Anxa1, rather than the 3 

release of bioactive peptides
18-20

. This was validated in a study whereby a cleavage-resistant Anxa1, 4 

termed Super Annexin A1 (SAnxA1), retained a prolonged function in the microvasculature
21

. While 5 

the full-length N-terminus has been shown to be inactive, a synthetic peptide containing the first 26 6 

amino acids of its sequence displayed functionality
22

. The N-Acetyl 2–26 (Ac2-26) is a peptide 7 

sequence derived from this N-terminus form and has been shown to act as a pharmacophore 
23

 and 8 

plausibly maintain the properties of the full-length protein
21, 24-27

. Nonetheless, a limited/small 9 

number of studies reported an opposing effect
28-30

. Both full-length and cleaved forms of the protein 10 

have been found in inflammatory exudates and other extracellular biological fluids
31-34

. 11 

 12 

AnxA1 has been shown to play a role in the regulation of inflammation, albeit an opposing 13 

one, in various cell types
13

. However, its role in the regulation of platelet function; haemostasis and 14 

thrombosis remains unexplored. AnxA1 has been linked to inflammatory diseases associated with 15 

platelet reactivity
35

, including atherosclerosis
36

, myocardial infarctions
37

 and strokes
38

. Furthermore, 16 

the dysregulation of AnxA1 expression has been implicated in various diseases/pathologies; its up- 17 

regulation has been reported in cancer
39

, melanoma
40

, breast cancer
41, 42

, periods of remission in 18 

ulcerative colitis
11

, and its downregulation in Crohn’s disease
43

, thyroid cancer
44

, 19 

signifying/postulating its prognostic significance and therapeutic efficacy. While numerous studies 20 

demonstrated its role in the regulation of inflammation, there is a paucity of studies on its role in the 21 

regulation of platelet function. Hence, in this study, we aimed to demonstrate the direct role of 22 

endogenous AnxA1 and its exogenous, peptidomimetic Ac2-26 in the regulation of the haemostatic 23 

function of platelets via FPR2/ALX-mediated signalling pathways using a range of platelet functional 24 

assays. We were able to confirm the activatory/haemostatic role of Ac2-26 in the regulation of platelet 25 

function. Ac2-26 activated platelets, evident in its ability to induce fibrinogen binding and P-selectin 26 

exposure. Moreover, it induced calcium mobilisation in a concentration-dependent manner. These 27 
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results were abrogated in Fpr2/3-deficient mice. Conversely, the activatory effects of Ac2-26 were 1 

exaggerated in AnxA1-deficient mice, which might be attributed to our findings of the overexpression 2 

of FPR2/ALX receptor in these mice. Moreover, these mice exhibited dysfunctional platelet receptor 3 

levels (GPIb), but normal haemostasis (tail bleeding assay). Together, these findings demonstrate a 4 

central role of FPR2/ALX in the regulation of platelet function out of the scope of haemostasis. 5 

Understanding the function of AnxA1 and FPR2/ALX in the modulation of platelet function and 6 

platelet-associated inflammation might lead to the development of improved treatment modalities. 7 

 8 

4.3 Results 9 

 10 

 4.3.1. Characterization of platelets obtained from Anxa1−/− mice 11 

 In order to assess the effect of Annexin A1 in the regulation of platelet function in this study, 12 

we have utilized Anxa1−/− mice. The AnxA1 protein is encoded by the Anxa1 gene in mice 
45

. Many 13 

studies have reported biological defects associated with such deficiency, including exaggerated 14 

inflammatory responses during myocardial ischaemia and cardiovascular dysfunction (in diabetes)
46-

15 

49
. Thus, to determine whether these mice exhibit any functional defects that might influence platelets 16 

and their haemostatic function, we have investigated the levels of major adhesion platelet receptors, 17 

including GPVI, GPIbα, αIIbβ3 and ɑ2β1, and their expression levels on the surface of platelets by 18 

using flow cytometry. Notably, the characterisation of platelets obtained from Anxa1−/− mice failed 19 

to display any difference in GPVI, αIIbβ3 and ɑ2β1 surface expression, However, a significant 20 

reduction in the levels of GPIbα were observed on the surface of platelets obtained from Anxa1−/− 21 

mice in comparison to the control mouse platelets (Figure 4-1A). This data indicates down-regulation 22 

of GPIbα receptors on the surface of platelets obtained from Anxa1−/− mice.  23 

 24 

 25 

 26 
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 1 

 4.3.2 Systemic haemostasis is intact in Anxa1−/− mice  2 

 3 

 Since one of the major platelet adhesion receptors was down-regulated in Anxa1−/− mice, we 4 

sought to investigate whether the haemostasis is compromised in these mice using a tail bleeding 5 

model. No significant difference was observed in the mean bleeding time Anxa1−/− mice (225.2±3.6 6 

seconds) compared to the control group (217.5±20.4 seconds)  (Figure 4-1B). These data indicate that 7 

the loss of the ANXA1 gene does not interfere with systemic haemostasis, rendering it intact. 8 

 4.3.3 Role of Annexin A1 in platelet activation  9 

 Many studies have reported an “anti-inflammatory” role of Annexin A1 in many cell types 
16, 

10 

22, 23, 26, 50, 51
. However, other studies have reported “pro-inflammatory” properties of such protein. 11 

Presumably, anti-inflammatory molecules lead to an inhibition in platelet function
52-54

, whereas the 12 

activation of platelets mediates pro-inflammatory responses
4
. The activation of platelets results in 13 

inside-out signaling to the integrin aIIbb3 on the surface of platelet, converting it to a high affinity 14 

state that allows fibrinogen binding and subsequent platelet aggregation
55

. Moreover, upon activation, 15 

platelets secrete granules that mediate in the secondary platelet activation, namely, P-selectin is 16 

released from a-granules and then exposed to the surface of platelets
56

. In order to determine the 17 

effect of the “anti-inflammatory” Annexin A1 in the regulation of platelet function, platelet activation 18 

(evident by the levels of fibrinogen binding and P-selectin exposure) induced by CRP-XL (via GPVI 19 

receptor) and ADP (acts via P2Y receptors) was measured by flow cytometry. Upon the activation of 20 

platelets by CRP-XL, the level of both fibrinogen binding (Figure 4-1Ci) and P-selectin exposure 21 

(Figure 4-1Cii) were reduced in platelets obtained from Anxa1−/− compared to the control platelets. 22 

Similarly, these levels were reduced upon activation of platelets by ADP (Figure 4-1Di and 4-1Dii). 23 

Together, these data indicate an activatory/protective role for the endogenous, full-length Annexin 24 

A1 in the regulation of platelet function. 25 

  26 
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 1 

Figure 4-1: Deletion of Anxa1 in mice affects platelet function. The characterisation of platelets 2 

obtained from AnxA1-/- 
mice (A). The expression levels of major platelet receptors such as αIIbβ3, 3 

ɑ2β1, GPVI and GPIbα in platelets obtained from control and AnxA1-/- 
mice were analysed by flow 4 

cytometry using selective fluorescent-labelled antibodies.  Data represent mean ± SEM (n=8). B, the 5 

impact of AnxA1 deletion on the modulation of haemostasis was analysed by tail bleeding assay in 6 

control or AnxA1-/- 
mice. Data represent mean ± SEM (n=7). C, the levels of fibrinogen binding (i) 7 

and P-selectin exposure (ii) were analysed in whole blood obtained from control or AnxA1-/- 
mice 8 

upon stimulation with various concentrations of CRP-XL by flow cytometry. Data represent mean ± 9 

SEM (n=4). D, the levels of fibrinogen binding (i) and P-selectin exposure (ii) were analysed in whole 10 

blood obtained from control or AnxA1-/- 
mice upon stimulation with various concentrations of ADP 11 

by flow cytometry. Data represent mean ± SEM (n=4). The statistical significance was calculated by 12 

two-way ANOVA followed by Bonferroni’s correction in most of the experiments except for the data 13 

shown in panel A and B, which were calculated by two-tailed unpaired Student’s t test, and non- 14 

parametric Mann-Whitney test, respectively (*p<0.01. **p<0.001 and ***p<0.0001).  15 
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 4.3.4 Role of Annexin A1 N-terminal cleavage peptide, Ac2-26, in platelet 1 

function  2 

Many studies have reported “anti-inflammatory” properties of Annexin A1 in various cell 3 

types by utilization of AnxA1 recombinant proteins while others utilized its pharmacophore, the Ac2- 4 

26 N-terminal peptide cleavage molecule, to demonstrate such properties
24, 29, 57-59

. Conversely, a 5 

limited number of studies have reported opposing “pro-inflammatory” properties
29

. Hence, to 6 

investigate the role of this cleavage peptide in the regulation of platelet function, its effect on platelet 7 

activation was measured using flow cytometry. ANXA1Ac2-26 induced platelet activation as evidenced 8 

in its ability to trigger fibrinogen binding (Figure 4-2Ai) and P-selectin exposure (Figure 4-2Aii) in 9 

a concentration-dependent manner. Moreover, these results were exaggerated/pronounced in platelets 10 

obtained from Anxa1−/− mice compared to control mouse platelets. Together, these data indicate an 11 

activatory role of the ANXA1Ac2-26. 12 

 4.3.5 Ac2-26 and acts through FPR2/ALX to induce platelet activation and 13 

platelet-leukocyte aggregation 14 

The Annexin A1 peptide is known to act through FPR2/ALX in various cell types
25, 60, 61

. 15 

Thus, following our findings on the activatory roles of ANXAc2-26 on platelet function, we sought to 16 

investigate whether these effects were mediated through FPR2/ALX in platelets as well. The 17 

activatory effects of ANXAc2-26 were abrogated in the presence of an FPR2/ALX-selective inhibitor, 18 

WRW4, as evidenced in its ability to reduce the level of fibrinogen binding compared to the control 19 

(Figure 4-2Ci). Furthermore, the level of P-selectin exposure was reduced in platelets obtained from 20 

Fpr2/3−/− mice compared to control mouse platelets (Figure 4-2Cii). Notably, the characterization 21 

of platelets obtained from Fpr2/3−/− mice failed to display any defects in the size and number of 22 

platelets or the levels of major platelet receptors including GPVI, GPIbα, αIIbβ3 and ɑ2β1 (Figure 4- 23 

2Ciii) in comparison to the control mouse platelets. 24 
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To corroborate the activatory effects of ANXAc2-26 on platelet function through FPR2/ALX, 1 

its ability to induce calcium mobilization in Fpr2/3−/− mice was investigated. Upon the activation 2 

of platelets, mobilization of Ca
2+

 stored in the dense tubular system in platelets and influx of 3 

extracellular Ca
2+ 

across the plasma membrane occurs, ultimately leading to thrombus formation
62

. 4 

To assess the ability of ANXAc2-26 to induce calcium mobilization in platelets, intracellular calcium 5 

levels were measured in Fluo-4 AM dye-loaded mouse platelets using flow cytometry. Indeed, 6 

ANXAc2-26 induced calcium mobilization in mouse platelets in a concentration-dependent manner. 7 

Furthermore, these effects were abrogated in platelets obtained from Fpr2/3−/− mice compared to 8 

the control platelets (Figure 4-2D). Together, these data confirm the role of FPR2/ALX in mediation 9 

of ANXAc2-26 activatory roles in platelet function.  10 

 11 

 12 

  13 
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 1 
 2 
 3 
Figure 4-2: Ac2-26 effects are mediated through FPR2/ALX in platelets. The activation of platelets (A). The levels of fibrinogen binding (Ai) and 4 
P-selectin exposure (Aii) were analysed in whole blood obtained from control or AnxA1-/- mice upon stimulation with various concentrations of Ac2-26 5 
by flow cytometry. Data represent mean ± SEM (n=4). B, the level of P-selectin exposure upon stimulation with Ac2-26 was measured by flow cytometry 6 
in control or Fpr2/3-/- mice. Data represent mean ± SEM (n=4). C, the level fibrinogen binding was analysed in whole blood obtained from control or 7 
AnxA1-/- mice upon stimulation with Ac2-26 in the presence or absence of WRW4 by flow cytometry (i), and the level of P-selectin exposure (ii) was 8 
analysed in whole blood obtained from control or Fpr2/3-/- mice upon stimulation with Ac2-26 by flow cytometry. Data represent mean ± SEM (n=4). 9 
Ciii, the characterisation of platelets obtained from Fpr2/3-/- mice; expression levels of major platelet receptors such as αIIbβ3, ɑ2β1, GPVI and GPIbα 10 
in platelets obtained from control and AnxA1-/- mice were analysed by flow cytometry using selective fluorescent-labelled antibodies.  Data represent 11 
mean ± SEM (n=8). D, Ca2+ mobilisation was measured using Fluo-4 AM dye-loaded human isolated platelets upon stimulation with Ac2-29 in platelets 12 
obtained from control or Fpr2/3-/- mice by flow cytometry. Data represent mean ± SEM (n=4). The statistical significance was calculated by two-way 13 
ANOVA followed by Bonferroni’s correction in most of the experiments except for the data shown in panel Ciii, which were calculated by two-tailed 14 
unpaired Student’s t test (*p<0.01. **p<0.001 and ***p<0.0001).   15 
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 4.3.6 Fpr2/3 is overexpressed in Anxa1−/− mice 1 

 Following confirmation on the role of FPR2/ALX in mediating the functions of ANXAc2-26 on 2 

platelets, and its exaggerated role in Anxa1−/− mice, we sought to investigate whether the levels of 3 

this receptor were altered in Anxa1−/− mice. Interestingly, the levels of Fpr2/3 were significantly 4 

increased in Anxa1−/− mice compared to controls as evidenced in electron microscopy (Figure 4- 5 

3A) and flow cytometry (Figure 4-3B). These data indicate the upregulation/overexpression of Fpr2/3 6 

in Anxa1−/− mice. 7 

  8 
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 1 

Figure 4-3: FPR2/ALX is overexpressed in AnxA1-/-. The presence of FPR2/ALX in overexpressed 2 
in AnxA1-/- mice as analysed by microscopy (A) and by flow cytometry (B). Data represent mean ± 3 
SEM (n=4). The statistical significance was calculated by two-tailed unpaired Student’s t test 4 
(*p<0.01 and ***p<0.0001). 5 
  6 
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4.4 Discussion 1 

 2 

AnxA1 has been shown to induce opposing physiological roles. Albeit a plethora of studies 3 

have reported its ‘anti-inflammatory and pro-resolving’ role in various immune cells47, some have 4 

demonstrated its ‘pro-inflammatory’ capabilities29, 30, 63, 64. Moreover, the dysregulation of AnxA1 5 

has been implicated in various pathological conditions, including cancer61, infections65, inflammatory 6 

bowel disease43. Furthermore, a pathogenic role of Ac2-26 has been previously described in cancer, 7 

wherein it facilitated metastasis/pro-invasiveness66, and in rheumatoid arthritis, where it facilitated 8 

the secretion of matrix metalloproteinases (MMPs)29.  Here, we demonstrate for the first time the role 9 

of AnxA1 and its N-terminal peptide sequence, Ac2-26, in the activation of the haemostatic platelet 10 

function through Fpr2/3 in mice. 11 

The Anxa1−/− mice utilized in this study demonstrated decreased activation of platelets 12 

compared to mice expressing the Anxa1 gene, signifying the positive role of the full-length protein 13 

in the activation of platelet function that is induced by conventional platelet agonists such as CRP- 14 

XL (via GPIV) and ADP (via P2Y1 and P2Y12).  Conversely, the activation of platelets with the N- 15 

terminal AnxA1 peptide sequence, Ac2-26, was exaggerated in Anxa1−/− mice compared to the 16 

control mice, this could be ascribed to a compensatory mechanism implicated with the deficiency of 17 

Anxa1 gene in these mice, buffering its deletion. Notably, the systemic haemostasis was intact and 18 

not impacted by/in the absence of AnxA1, plausibly indicating that AnxA1 may act on the site of 19 

injury, while leaving the physiological haemostasis intact. Furthermore, we observed a significant 20 

reduction in the expression of one of the major adhesion receptors on the platelets of these mice, 21 

GPIbα. Additionally, these mice displayed a marked expression/up-regulation in Fpr2/3, a receptor 22 

that mediates the signaling of both AnxA1 and its N-terminal peptide Ac2-26. This may explain the 23 

exaggerated Ac2-26 response that was observed in Anxa1−/− mice. The altered factors in these mice 24 

may be so in order to maintain a new physiological balance, allowing overall haemostasis. To further 25 

add to this, the dysregulation of other members of the Annexin superfamily has been previously 26 

reported in these mice47. 27 
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Contrasting roles/mechanisms of action between ANXA1 and its N-terminal peptide Ac2-26 1 

were previously reported29, 59. Here, we demonstrate that Ac2-26 evoked both an activatory platelet 2 

haemostatic function and a pro-inflammatory response, while the endogenous full-length Anxa1 3 

limited/controlled such responses, demonstrating possible protective roles. Ac2-26 activated platelets 4 

as evident by its ability to induce calcium mobilization, integrin aIIbb3 conformation and P-selectin 5 

exposure. All of these responses were mediated through Fpr2/3 in platelets. A protective role of 6 

ANXA1 in many pathological conditions implicated with platelet pathogenesis has been reported 7 

previously, including atherosclerosis36, 67-69, myocardial infarctions37, 70 and strokes27, 38, 71, 72.  The 8 

contrasting effects we have observed in this study could be attributed to the ability of Ac2-26 to 9 

heterodimerize FPR2/ALX with FPR1, which can result in the activation of pro-apoptotic signaling 10 

pathways and can elicit distinctive pathways73. Nonetheless, there is a paucity of studies addressing 11 

this phenomenon. Furthermore, Ac2-26 can active all FPRs family members26, 28, whereas Anxa1 12 

binds FPR2/ALX only74. There is a multiplicity of ligands that bind FPRs with diverse functions75. 13 

Notably, pro-inflammatory responses of such ligands are elicited via FPR1, while the majority of the 14 

anti-inflammatory/pro-resolving functions are mediated through FPR2/ALX76. Nonetheless, there are 15 

various ligands that can activate pro-inflammatory signaling mechanisms through FPR2/ALX, such 16 

as the endogenous antimicrobial peptide, LL37, that has been shown to exacerbate inflammatory 17 

responses, promoting atherosclerosis77. 18 

 Deciphering the role of the ANXA1-FPR2/ALX axis in the regulation of platelet function 19 

could open up new avenues toward improved therapeutic strategies for the management of 20 

inflammatory responses, and particularly with those associated with bleeding or thrombotic events. 21 

Furthermore, it could provide insight into the mechanisms underlying platelet-associated 22 

complications in inflammatory diseases. Targeting ANXA1 contributes to immune dysfunction 23 

resolution in infections65. Since many of the pro-resolving mechanisms are mediated through 24 

FPR2/ALX, it could be utilized to suppress exacerbated inflammation without targeting the host 25 

defense78, in contrast to anti-inflammatory mechanisms, minimizing unwarranted side effects and 26 

yielding more effective therapeutic strategies and effectual management of inflammation. 27 
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Additionally, many individuals suffering from autoimmune and inflammatory diseases are prescribed 1 

supraphysiological doses of glucocorticoids (GCs) to ameliorate signs of inflammation/inflammatory 2 

responses79. Nonetheless, GCs are associated with several unwarranted risks, including 3 

immunosuppression, cardiovascular disease79, 80, Cushing’s syndrome and psychiatric disorders81. 4 

Notably, GCs can induce the activation of platelets82, and have been associated with 5 

hypercoagulability of blood83. Moreover, the positive regulation of the secretion, and the expression 6 

of AnxA113, 84-86 and its receptor, FPR2/ALX in monocytes87, 88 and neutrophils89 are implicated in 7 

response to GCs. Thus, targeting this pathway could complement current therapeutic strategies.   8 

In conclusion, this study demonstrates a prominent role of AnxA1 and its N-terminal peptide 9 

(Ac2-26) in the regulation of platelet function, evident in the ability of Ac2-26 to induce inside-out 10 

signalling to integrin ɑIIbβ3 and granule secretion. The activatory roles of Ac2-26 in platelets were 11 

diminished in the presence of FPR2/ALX pharmacological inhibitors or in Fpr2/3-deficient mice, 12 

corroborating the functional dependence of Ac2-26 on this receptor. Moreover, we demonstrate a key 13 

role of AnxA1 in the positive regulation of platelet function.  Together, the significant roles of AnxA1 14 

and Fpr2/3 in the modulation of thrombosis and haemostasis renders them potential attributes for the 15 

exacerbation of thrombotic complications and inflammatory responses in numerous diseases where 16 

platelet function plays essential roles. Notably, the presence of FPRs in platelets opens up new 17 

avenues to investigate the involvement of a multiplicity of FPR ligands in the modulation of 18 

thrombosis, haemostasis, and platelet-mediated inflammatory responses. 19 
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4.5 Methods 
 

Animals 

Animal experiments complied with the University of Reading Research guidelines 

approved by the British Home Office or Federal University of Sao Paulo Animal Care and Use 

Committee. Eight to ten-week-old male or female mice, wild-type (WT) C57BL/6, ANXA1-/- 

and FPR2/3-/- mice were used.  

 

Mouse blood collection and platelet preparation  

The mice were sacrificed with CO2 and the blood was directly collected by cardiac 

puncture into a syringe containing 3.2% (w/v) sodium citrate at 1:9 ratio. The blood was then 

centrifuged at 203g for 8 minutes at room temperature and the PRP was collected. The 

remaining blood was resuspended in 500 µL of modified Tyrode’s-HEPES buffer and 

centrifuged once again at 203g for 5 minutes. The PRP was then mixed and centrifuged at 

1028g for 5 minutes. The resultant platelet pellet was then resuspended in modified Tyrode’s 

buffer at a density of 2x108 cell/mL. 

 

Flow cytometric analysis 

Five microliters of whole blood were incubated with 1 µL of FITC-conjugated 

fibrinogen antibody (1:50) and 1 µL of PECy5-conjugated anti-CD62P (P-selectin) (1:50) 

antibody in the presence and absence of increasing concentrations of ANXA1 mimetic peptide 

Ac2-26 (ANXA1ac2-26: Ac-AMVSEFLKQAWFIENEEQEYVQTVK, Tocris, UK). 

Multiparameter acquisition was performed using a Fortessa analyser device (BD Biosciences), 

and the median fluorescence intensity was calculated using FlowJo software (Tree Star, 

Ashland, USA) to quantify the levels of fibrinogen binding and P-selectin exposure on the 

surface of platelets. Negative controls were set using an appropriate immunoglobulin G1 

(IgG1) k-isotype–matched control for the anti-CD62P antibody, and inclusion of EGTA 
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(10mM) to prevent fibrinogen binding. Similarly, for the analysis of ANXA1 and FPR2/ALX 

expression on platelets, samples were incubated with 1 µL of anti-ANXA1 or anti-FPR2/ALX 

(5 µg mL-1) and 2 µL of Cy5-conjugated anti-mouse IgG (80 µg mL-1). Following 20 minutes 

of incubation at room temperature, samples were fixed in 0.2% formyl saline and analysed by 

flow cytometry. 

 

Intracellular calcium mobilization assay 

PRP (2 mL) derived from WT and FPR2/3-/- mice was mixed with 2 µL of Fluo-4 AM 

dye (1 µM) (Life technologies, UK) and incubated for 20 minutes at 30ºC in the dark. The PRP 

was then centrifuged at 1413g for 10 min at 20ºC. The resultant platelet pellet was suspended 

in 500 µL Tyrode’s-HEPES buffer and maintained at 30ºC in the dark. The platelets were 

stimulated with different concentration of ANXA1 mimetic peptide Ac2-26 and the level of 

fluorescence intensity was measured by FluoStar Optima spectrofluorimeter (BMG Labtech, 

Germany) at 37ºC for 180 seconds using an excitation wavelength of 485nm and emission at 

510nm. Data were analysed by calculating the percentage of calcium released at 90 seconds. 

 

Tail bleeding assay 

The experimental procedures were approved by the British Home Office. In brief, wild-

type (WT) C57BL/6 and ANXA1-/- (8-10 weeks old male or female mice) were anaesthetised 

using ketamine (80 mg Kg-1) and xylazine (5 mg Kg-1) administered via the intraperitoneal 

route for 20 minutes before the experiment and were then placed on a heated mat (37ºC). 1mm 

of tail tip was removed using a scalpel blade and the tail tip was placed in sterile saline at 37ºC. 

The time to cessation of bleeding into warmed saline was measured up to 20 minutes. 
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SDS-PAGE and immunoblotting analysis 

Immunoblot analysis was performed using platelets lysates prepared under reducing 

conditions. The samples were heated to 90ºC for 10 minutes and subjected to SDS-PAGE using 

10% resolving gels. Equal loading of proteins in each lane was determined using anti-human 

14-3-3ζ antibodies (1:1000) (Santa Cruz Biotechnology, USA). The gels were then transferred 

to polyvinylidene difluoride membranes and blocked by incubation in 5% milk in TBS-T 

(20mM Tris, 140mM NaCl, Tween-20, pH 7.6). Following overnight incubation with primary 

anti-FPR2/ALX antibody (1:500) (Abcam, UK), the blots were washed with TBS-T and 

incubated with secondary Cy5 goat anti-rabbit IgG antibody (1:1000) (Invitrogen, UK) in TBS-

T containing 5% milk for 1 hour at room temperature. Following washing in TBS-T for 1 hour 

at room temperature, the blots were analysed using the Typhoon 9400 variable mode imager 

system (GE Healthcare, UK). 

 

Electron microscopy analysis 

Platelets were fixed in a 4% paraformaldehyde, 0.5% glutaraldehyde solution (1:1) in 

sodium cacodylate buffer 0.1 M (pH 7.4) for 24 hours at 4 ° C. The cells were subsequently 

dehydrated through a methanol series and embedded in LRGold (London Resin; Reading, 

Berkshire, UK). To detect the localization of the FPR2, ultrathin sections (70 nm) of cells were 

incubated with the rabbit polyclonal anti-FPR2 (1:100; Santa Cruz Biotechnology, Santa Cruz, 

CA, USA) and goat anti-rabbit IgG antibody (1:50 in PBS containing 1% egg albumin) 

conjugated with 15 nm colloidal gold (British Biocell, Cardiff, UK). These sections were 

stained with uranyl acetate and lead citrate and then examined using a ZEISS EM900 electron 

microscope (Carl Zeiss, Jena, Germany) as described. Randomly photographed sections of 

cells were used for immunocytochemical analysis. The area of the cell compartment was 

determined with AxioVision software. The density of immunogold particles (number of gold 
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particles per μm2) was calculated and expressed for each cell compartment. Values are reported 

as the mean ± SEM of 25-30 electron micrographs analysed per group. 
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5 – General discussion
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Main findings of this study: 

 

• fMLF primes platelets and induces thrombus formation through FPR1 signalling 

 

• LL37 triggers platelet activation through FPR2/ALX signalling  

 

• mCRAMP implicated in pathological conditions such as psoriasis can affect platelet 

function via FPR2/ALX 

 

• AnxA1 N-terminal peptide, Ac2-26, activates the platelet function through FPR2/ALX  
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Formyl peptide receptors are known to play a crucial role in the regulation of innate 

immune responses and host defence. They bind a wide variety of ligands that exhibit 

various functions, thus they mediate numerous biological responses through the modulation 

of inflammatory cells355. Hence, FPRs and their ligands have been implicated in the 

pathogenesis of various diseases, and it has been also shown that the blockade of these 

receptors attenuated pathophysiological responses, especially those associated with 

dysregulated inflammatory responses244, 492. Because of these observations, explorations of 

FPR signalling mechanisms presents an attractive approach for the development of novel 

therapeutic strategies as an adjunct to the treatments of inflammatory and infectious 

diseases, especially those associated with thromboinflammatory responses.  

 

The hypothesis of this study was as follows; formyl peptide receptors regulate the 

haemostatic function of platelets through the modulation of thrombus formation and 

haemostasis. The chemotactic bacterial peptide fMLF primes platelet activation and 

modulates thrombus formation through FPR1. The antimicrobial peptide LL37 exhibits 

prothrombotic effects and thus may implicate the pathogenesis of cutaneous inflammatory 

diseases such as psoriasis through interaction with platelets via FPR2/ALX. The Annexin 

A1 N-terminal peptide, Ac2-26, affects platelet haemostasis through FPR2/ALX.  

 

In order to investigate this hypothesis, the activatory roles of FPR1 and FPR2/ALX 

ligands, such as fMLF, LL37 and AnxA1Ac2-26 were investigated in isolated platelets, 

platelet-rich plasma (PRP) and in whole blood (WB) using several platelet functional 

assays, as well as the mechanisms through which these FPR ligands regulate the function 

of platelets. 
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5.1 fMLF modulates platelet function through FPRl 
 

In this study, we demonstrate the activatory role of the chemotactic bacterial 

peptide, fMLF, in the modulation of platelet function through FPR1. fMLF has been 

previously shown to induce the aggregation of platelets indirectly through neutrophils. In 

this study we sought to demonstrate the direct role of fMLF in the activation of platelets. 

Thus, the direct binding of fMLF to FPR1 in platelets was first confirmed. The ability of 

fMLF to induce the activation of platelets in distinct platelet functions including fibrinogen 

binding to integrin αIIbβ3 and Data α-granule secretion was also confirmed. These effects 

were abrogated in the presence of an FPR1-selective inhibitor, Boc-MLF, and in platelets 

obtained from Fpr1-deficient mice. fMLF also augmented thrombus formation under 

arterial flow conditions. Although this may be due in part to the effects of other mediators 

in whole blood. fMLF failed to aggregate platelets on its own, however, it significantly 

augmented CRP-XL-, collagen- and thrombin-induced aggregation in a concentration-

dependent manner. These findings demonstrate the priming role of fMLF on platelets 

through FPR1. 

 

5.2 LL37 induces platelet activation through FRP2/ALX 

and modulates disease 

 

Following this, we were also able to demonstrate the activatory role of the 

endogenous antimicrobial peptide, LL37, in the modulation of platelet function through 

FPR2/ALX. We first sought to confirm the presence of this peptide in platelets. We 

demonstrate here that LL37 is present in activated platelets using confocal microscopy. 

Using an ELISA assay, we show that it is released from platelets (at nM concentrations) 

upon their activation; it release was significantly increased in activated platelets as opposed 

to resting platelets. In addition, we confirm the stability of LL37 in platelet-rich as opposed 
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to platelet-poor plasma using LC-MS. Collectively, these data demonstrate that LL37 is 

present in platelets and is released upon their activation.  

In order to explore the role of LL37 in the regulation of platelet function, we first 

sought to investigate its broad role in haemostasis and thrombus formation. LL37 (20 µM) 

significantly shortened the bleeding time in mice using the tail bleeding assay in vivo. 

Additionally, the incubation of whole blood with LL37 significantly augmented thrombus 

formation under arterial flow conditions in a concentration-dependent manner (10, 20 and 

50 µM). These two findings rendered LL37 an impactful modulator of platelet function. 

Consequently, we sought to investigate the direct role of LL37 on distinct platelet 

functions. Hence, using isolated platelets, we demonstrate here that LL37 (10 and 20 µM) 

induced immediate aggregation of platelets using light transmission aggregometry. 

Conversely, LL37 failed to aggregate platelets in PRP. This could be attributable to the 

presence of plasma protein that could bind to LL37, reducing its effect on platelet 

aggregation401, 493, 494. Nonetheless, in further distinct platelet functional assays including 

the binding of fibrinogen to integrin aIIbb3 (inside-out signalling) and a-granule secretion, 

we demonstrate that LL37 was able to significantly increase these responses equally in 

platelets both in isolation and in plasma. Following to this, were also able to demonstrate 

that LL37 affects outside-in signalling using the platelet spreading assay, and the calcium 

mobilisation in platelets. These findings clearly demonstrate the ability of LL37 to directly 

modulate an activatory role in platelets. In contrast, a previous study on the role of LL37 

concluded its negative effects on platelets402. The previous study revealed that 5 µM LL37 

failed to aggregate gel-filtered platelets, induce calcium mobilisation and exert any 

cytotoxicity towards platelets. Our study also concludes that 5 µM LL37 failed to exert any 

of these effects although at this concentration LL37 displayed minimal and negligible 

effects in platelet aggregation and calcium mobilisation, and thus were interpreted as 

nonsignificant. Another study reported a contrasting role of LL37 in platelets; suggesting 
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an inhibitory role449. This is highly unlikely since LL37 was used at extremely high 

concentrations (0.3, 0.6 and 1.2 mM) that were previously reported to exert cytotoxicity 

towards eukaryotic cells. Indeed, we were able to confirm here that LL37 was cytotoxic 

towards isolated platelets at a concentration of 100 µM. Additionally, at the lower 

concentration (ranging from 1 to 50 µM), which were utilised in this study, LL37 failed to 

exert any cytotoxicity towards platelets.  A recently published study confirmed some of the 

findings presented here, where they demonstrated that LL37 primes platelets and induces 

prothrombotic properties. In contrast to our findings, they report that LL37 did not induce 

fibrinogen binding or platelet spreading on immobilized fibrinogen, however, LL37 

induced P-selectin expression, similar to our findings. This may be reflective of different 

experimental methods used between the two studies. They report that LL37 failed to exert 

aggregation in PRP, which we also reported and attributed to the presence of plasma 

proteins.  

 

Following the different activatory roles of LL37, the underlying mechanisms 

driving these effects in platelets were investigated. Since LL37 is known to display 

proinflammatory effects through FPR2/ALX, we were able to confirm the dependency of 

this receptor on exerting the effects demonstrated here. Using a pharmacological inhibitor 

for FPR2/ALX, WRW4, and platelets obtained from Fpr2/3-deficient mice, we 

demonstrated that LL37 binds to this receptor and acts through it to modulate platelet 

function. We were the first to demonstrate this, as the recently published study reported 

that WRW4 (1 µM) did not affect LL37 properties in platelets; probably due to the use of 

a lower concentration of WRW4.  

Subsequent to establishing a role of LL37 in platelets through FPR2/ALX, we 

sought to explore its effect in an inflammatory disease that is highly associated with LL37 

and platelet-related complications using an animal model of psoriasis. The haemostasis was 
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not affected in mice of the psoriatic animal model used in this study. However, the level of 

mCRAMP in the psoriatic lesions and plasma obtained from these mice were markedly 

increased compared to normal controls. In addition, psoriatic platelets demonstrated 

prothrombotic properties as the fibrinogen binding to integrin and granule secretion upon 

the stimulation of platelets with CRP-XL, ADP and U46619 were increased compared to 

the controls. Moreover, upon the treatment of control platelets with psoriatic lesions and 

plasma, the fibrinogen binding and granule secretion were significantly increased in the 

presence or absence of CRP-XL. Upon blockade of FPR2/ALX or use of platelets obtained 

from Fpr2/3-deficient mice, the effect of psoriatic plasma on platelet activation was 

significantly reduced. These confirm the association of LL37 and platelet dysregulation, 

and the involvement of FPR2/ALX-mediated signalling in psoriasis. In this work, we 

demonstrate the role of psoriatic plasma obtained from mice on human blood. While the 

mCRAMP peptide sequence differs from that of human LL37, it was shown to be an 

effective model for the investigation of human cathelicidins495. In addition, several studies 

demonstrate the administration of LL37 in mice to exert its function496-498. 

 
5.3 AnxA1 modulates platelet activatory responses through 

FPR2/ALX 
 

Succeeding the pro-thrombotic role of FPR2/ALX via ligation with LL37 in the 

platelets, we sought to investigate the role of AnxA1 (a pro-resolving molecule) in the 

regulation of platelet function. The endogenous AnxA1 is known to exert anti-

inflammatory and cardioprotective properties, and thus its therapeutic potential has been 

previously proposed474. Surprisingly, we demonstrate here that the N-terminal peptide Ac2-

26 exerts prothrombotic and proinflammatory properties in platelets through FPR2/ALX. 

In order to explore the role of AnxA1 in the regulation of platelet function, Anxa1-deficient 

mice were used in this study. Platelets obtained from Anxa1-deficient mice demonstrate a 
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normal expression of major platelet receptors including GPVI, a2 and aIIb, but a marked 

reduction in the expression of the GPIba receptor. Nonetheless, this finding did not impair 

the haemostasis as it was not affected in these mice compared to control mice. Anxa1-

deficient mice demonstrated reduced platelet activatory properties upon stimulation with 

subthreshold concentrations of CRP-XL and ADP as evidenced by fibrinogen binding to 

αIIbβ3 and alpha-granule secretion. This affect however was overcome when higher 

concentrations of these two agonists were used. The exogenous AnxA1 N-terminal peptide, 

Ac2-26, demonstrated increased platelet activation in Anxa1-deficient mice, possibly due 

to compensatory effects. Nonetheless, we later confirmed the overexpression of 

FPR2/ALX in these mice, another plausible explanation for the increased platelet activation 

by Ac2-26 in Anxa1-deficient mice. Ac2-26 displayed increased fibrinogen binding to 

αIIbβ3, which was reversed by an FPR2/ALX-selective inhibitor, WRW4. Ac2-26 also 

induced increased expression of P-selectin on the surface of platelets, which was reduced 

in Fpr2/3-deficient mice. In addition, Ac2-26 induced calcium mobilisation in platelets, 

which was also reduced in Fpr2/3-deficient mice. This indicates that the effects of Ac2-26 

are mediated through FPR2/ALX in platelets. Together, these findings demonstrate a role 

for AnxA1 in the modulation of platelet function.  
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5.4 FPRs regulate platelet function 
 
In this study, we provide evidence that FPRs regulate the haemostatic platelet 

function by the utilisation of FPR pharmacological inhibitors and Fpr-deficient mice. These 

mice display severe inflammation in both sterile and infections inflammation in addition to 

increased susceptibility to infections256, 257, 499, 500. This supported their role in the regulation 

of the innate immune response and host defence. In this study, we demonstrate the 

consequential effect of Fpr-deficiency in the regulation of the platelet function. We 

demonstrate that mouse platelets obtained from Fpr1- or Fpr2/3-deficient mice displayed 

a reduced activation induced by various conventional platelet agonists, including CRP-XL, 

ADP, AY-NH2, and U46619. In addition, the haemostatic function in these mice was 

compromised, indicated by a significantly prolonged tail bleeding time compared to control 

mice. The underlying mechanisms accompanying the genetic deletion of Fpr1 or Fpr2/3 

that might contribute to platelet dysfunction in these mice are beyond the scope of this 

study, and future studies focusing on these underlying mechanisms will provide great 

insight. Nonetheless, it demonstrates a crucial interplay between inflammation and 

thrombosis. Despite the functional abnormalities in these mice, these effects were 

recapitulated in human platelets by utilising FPR1 or FPR2/ALX-selective 

pharmacological inhibitors in several functional assays. These include reduced platelet 

activation (evident by fibrinogen binding and P-selectin exposure), platelet aggregation, 

ATP release, platelet spreading and thrombus formation. All of which were reduced in the 

presence of selective inhibitors for FPR1 or FPR2/ALX. FPRs belong to the family of Gi 

protein-coupled receptors and trigger downstream signalling pathways in neutrophils 

including phospholipase C (PLC), PI3K/AKT and MAPK, and can stimulate rapid calcium 

flux242. We sought to explore additional downstream signalling involved in FPR1- and 

FPR2/ALX-induced platelet responses. We were able to demonstrate here that the 
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inhibition FPR1 or FPR2/ALX, or the deletion of their respective genes in mice leads to 

the elevation of cAMP, which is a major inhibitor for platelet activation. This suggests the 

involvement of cAMP-dependent signalling pathways in the regulation of FPR-mediated 

effects in platelets. 

 
In conclusion, the data presented here demonstrate the role of endogenous peptides, 

such as the bacterial chemotactic peptide fMLF, the antimicrobial peptide LL37 and the 

pro-resolving protein AnxA1 in the regulation of platelet function. These peptides are 

involved in the pathogenesis of various infectious and sterile inflammatory diseases. Thus, 

these peptides can contribute to the amplification of such diseases by the dysregulation of 

platelet function. Understanding the molecular mechanisms involved in such dysregulation 

will provide insight into the development of enhanced therapeutic strategies for various 

inflammatory diseases.  

 

We provide novel findings here that demonstrate the expression of LL37 in platelets 

and its secretion upon their activation. Additionally, we demonstrate that the effects of 

LL37 in platelets are mediated through FPR2/ALX signalling pathways, which previous 

studies have failed to demonstrate402, 449, 450. Using a murine model for psoriasis, we reveal 

the effect of cathelicidins in platelet function through FPR2/ALX signalling during 

pathological conditions. In addition to LL37, we demonstrate a direct role for fMLF in 

distinct platelet functions, such as fibrinogen binding and P-selectin expression. Although 

fMLF failed to aggregate platelets on its own, it induced in vitro thrombus formation in 

whole blood, where the effect of other stimuli can contribute to the such effect. AnxA1 N-

terminal peptide also exerted activatory effects towards platelet functions.  

 

The findings of this study provide strong evidence on the role of FPRs in the 

regulation of the platelet haemostatic function. Moreover, it corroborates the pro-
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thrombotic role of LL37, and confirms the role of FPR2/ALX signalling in mediating such 

responses. A priming role for fMLF and Ac2-2-6 was also demonstrated here. This supports 

the involvement of these peptides in mechanisms that may augment or perpetuate platelet-

related complications in disease, and highlights FPRs and their ligands as potential 

therapeutic agents as an adjunct to the current treatments of infectious and inflammatory 

diseases, especially those associated with thrombo-inflammatory responses. 

 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6 – Future direction



 188 

 
 FPRs are traditionally known to play a role in the regulation of innate immune response 

and host defence. Here, we were able to demonstrate a role for these receptors and some of 

their ligands in the regulation of the platelet function. However, there are several questions 

remaining regarding their role in thrombosis and their implication in pathological conditions 

that are associated with platelet function. Further in vivo work focusing on the role of these 

receptors and their ligands in thrombosis will provide stronger conclusions regarding their role 

in thrombosis. 

 

6.1 Role of fMLF in thromboinflammation 

 The role of fMLF in multiple disorders renders it an attractive target for clinical 

investigations. Examining the level of circulating fMLF in the plasma of patients suffering 

from sepsis and chronic inflammatory conditions such as inflammatory bowel disease, and its 

role in regulating the platelet function through FPR1 would provide insight into whether this 

peptide can exacerbate these inflammatory conditions. 

 

6.2 Role of mCRAMP/ LL37 in thromboinflammation and in the 

pathogenesis of psoriasis 

 Work on human samples obtained from patients suffering from psoriasis would 

complement the work demonstrated here on the psoriatic mouse model. Additionally, by 

depleting the mCRAMP from psoriatic samples, the effect of other stimuli that can affect 

FPR2/ALX signalling can be excluded, and thus corroborating the involvement of this 

pathway. The detection of platelet markers, such as PF4, in these samples would also provide 

more evidence and confirm the involvement of platelets during disease progression.  
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6.3 Role of AnxA1 in the regulation of haemostasis and thrombosis 

 Additional research needs to be conducted to confirm the role of the full-length 

Annexin A1 protein as opposed to its N-terminal peptides, which are not found in the human 

body as is but are rather sequences of larger peptides. Moreover, additional experiments 

utilising Fpr1-deficient mice and FPR1-selective pharmacological inhibitors can be performed 

to confirm whether any of the responses observed in platelets are mediated through FPR1 

signalling in platelets. Since it has been shown that Ac2-26 can elicit pro-inflammatory 

properties upon the heterodimerisation of FPR2/ALX with FPR1501. Moreover, the 

investigation of the heterodimerisation of FPR1 and FPR2/ALX in platelets would further 

provide insight into the underlying mechanisms that could contribute to the elicitation of 

prothrombotic effects of this peptide, since FPR2/ALX can elicit both pro-inflammatory (upon 

the ligation with SAA or LL37) and pro-resolving (upon ligation with AnxA1 or LXA4) 

properties, while FPR1 mainly triggers proinflammatory signalling461. 
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