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A data-driven approach for studying the role of body mass in 
multiple diseases: a phenome-wide registry-based 
case-control study in the UK Biobank
Elina Hyppönen, Anwar Mulugeta, Ang Zhou, Vimaleswaran Karani Santhanakrishnan

Summary
Background Mendelian randomisation allows for the testing of causal effects in situations where clinical trials are 
challenging to do. In this hypothesis-free, data-driven phenome-wide association study (PheWAS), we sought to 
assess possible associations of high body-mass index (BMI) with multiple disease outcomes.

Methods For this registry-based case-control PheWAS, we used genome-wide data available from the UK Biobank to 
construct a genetic risk score of 76 variants related to BMI. Eligible UK Biobank participants were aged 37–73 years 
during recruitment, were white British, were unrelated to each other, and had available genetic information. Disease 
outcomes from these participants were mapped to a phenotype code (phecode). Participants with a phecode of interest 
were recoded as cases, whereas participants without a phecode of interest or any codes under a parent phecode were 
classified as controls. We did a PheWAS to analyse possible associations between the BMI genetic risk score and a range 
of disease outcomes. Disease associations passing stringent correction for multiple testing (Bonferroni corrected 
threshold p<5·4 × 10–⁵, false discovery rate corrected p<0·0074) were assessed for causal association with use of inverse-
variance weighted mendelian randomisation. We did sensitivity analyses to assess pleiotropy and stability of estimation 
with use of weighted median, weighted mode, Egger regression, and mendelian randomisation pleiotropy residual sum 
and outlier methods.

Findings Our study population comprised 337 536 UK Biobank participants, and analyses were done for 925 unique 
phecodes from 17 different disease categories. After Bonferroni correction, PheWAS identified that BMI genetic risk 
score was associated with hospital-diagnosed obesity and 58 other outcomes; 30 distinct disease associations were 
supported by the mendelian randomisation analyses. 30 distinct disease associations were supported by the mendelian 
randomisation analyses. In inverse-variance weighted mendelian randomisation, genetically determined BMI was 
associated with endocrine disorders (odds ratio per one SD or 4·1 kg/m² higher BMI 2·72, 95% CI 2·33–3·29 for type 2 
diabetes; 2·11, 1·62–2·76 for type 1 diabetes; and 1·46, 1·25–1·70 for hypothyroidism), circulatory diseases 
(1·96, 1·53–2·51 for phlebitis and thrombophlebitis; 1·89, 1·39–2·57 for cardiomegaly; 1·68, 1·35–2·09 for congestive 
heart failure; 1·55, 1·37–1·76 for hypertension; 1·31, 1·13–1·52 for ischaemic heart disease; and 1·25, 1·14–1·37 for 
cardiac dysrhythmias), and inflammatory or dermatological conditions (2·00, 1·72–2·23 for superficial cellulitis and 
abscess; 3·37, 2·17–5·25 for chronic ulcers of leg and foot; 4·99, 2·54–9·82 for gangrene; and 2·24, 1·53–3·28 for 
atopy). Mendelian randomisation analyses provided further support for a causal effect of BMI on renal failure, 
osteoarthrosis, neurological (insomnia and peripheral nerve disorders) and respiratory diseases (asthma and chronic 
bronchitis), structural problems (hernias and knee derangement), and chemotherapy treatment. Mendelian 
randomisation with Egger regression produced consistently wider CIs compared with those of other methods. 26 of 
72 distinct diseases detected under false discovery rate correction produced consistent estimates across at least four 
mendelian randomisation methods, and consistent evidence across all five approaches was obtained for 14 diseases.

Interpretation Our data-driven approach identified a range of diseases as possibly affected by high BMI. This 
population-level screening approximated the accumulated consequences of high BMI, whereas the true effects might 
be more complex and vary by life stage. Our results highlight the importance of obesity prevention and effective 
management of obesity-related comorbidities.

Funding National Health and Medical Research Council of Australia.

Copyright © The Author(s) 2019. Published by Elsevier Ltd. This is an open access article under the CC BY 4.0 license.

Introduction
The global obesity epidemic is a major public health 
concern. Each year, obesity leads to 2·8 million preventable 
deaths, making it the second most important modifiable 
risk factor after smoking.1 Obesity-related comorbidities 

lead to a notable loss in disease-free years of life,2 incurring 
a major economic burden to health services. A global, 
rising trend is evident in health-care costs related to 
obesity and, in the USA alone, the annual costs have been 
estimated to exceed US$342 billion.3

http://crossmark.crossref.org/dialog/?doi=10.1016/S2589-7500(19)30028-7&domain=pdf
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Globally, nearly 2 billion adults are overweight or 
obese.4 Obesity is associated with increased risks of 
major chronic conditions including diabetes, 
cardiovascular diseases, and cancer.5 However, the 
estimation of causal effects is challenging, due to the 
scarcity of efficient, evidence-based, well defined, and 
applicable interventions to prevent obesity.6 In the 
absence of robust randomised controlled trials, 
mendelian randomisation provides an alternative 
approach for assessing evidence on causality, because it 
is less affected by reverse causation and confounding, 
which can lead to bias in other types of observational 
studies.7 Body-mass index (BMI) is a simple measure to 
assess weight for height, commonly used to define 
overweight and obesity.4 Genome-wide association 
studies (GWAS) have led to major advances in the 
understanding of the genetic architecture of obesity 
through the discovery of BMI-associated loci,8 provid
ing opportunities to use these variants in mendelian 
randomisation studies to disentangle the causal health 
effects of obesity. However, although excess body fat 
and obesity are likely to affect a broad range of disease 
outcomes, the mendelian randomisation studies done 

to date have been largely hypothesis driven, typically 
focusing on assessing the causal link with one disease or 
outcome at a time. By contrast, a hypothesis-free 
approach covering a broader range of disease outcomes 
can help to approximate the total burden of comorbidity 
and, because it is not constrained by pre-existing 
expectations of disease-outcome associations, this 
approach might also lead to novel insights on disease 
risk factors.

In this data-driven phenome-wide association study 
(PheWAS), we used registry-based information from 
individuals from the UK Biobank to explore the range of 
comorbidities associated with high BMI. By contrast with 
GWAS, which test several genetic loci for their association 
with one phenotype, our PheWAS used a genetic risk 
score to approximate high BMI when testing for its associ
ations with multiple disease outcomes. The diseases 
included in our PheWAS cover all major causes of death 
and morbidity in this population and, for all associations 
passing a stringent multiple testing correction, we 
used several complementary mendelian randomisation 
approaches to examine evidence supporting a causal role 
for high BMI.

Research in context

Evidence before this study
We searched the MEDLINE database using a combination of 
search terms that included alternative spellings and synonyms: 
“body mass index OR BMI OR obes*” AND “phenome-wide OR 
phenomewide OR phewas OR Mendelian randomization OR 
Mendelian randomisation”. We included studies published up to 
April 11, 2019, and the review was restricted to studies with 
information on disease outcomes and published in English. The 
search identified 343 papers, 95 of which were considered 
relevant on the basis of the title and were reviewed for further 
information. We identified 80 mendelian randomisation studies. 
We obtained convincing evidence of a probable causal effect of 
high BMI for type 2 diabetes and cardiovascular diseases, which 
were the most commonly studied outcomes. Evidence supported 
an association between high BMI and a lower risk of breast cancer 
(but reduced survival), whereas positive associations were 
suggested for lung cancer (squamous cell and small cell cancer, 
but not adenocarcinoma), meningioma, and colorectal, 
oesophageal, renal, pancreatic, ovarian, and endometrial cancer; 
no evidence of association was seen for prostate cancer, glioma, 
or multiple myeloma. Mendelian randomisation studies also 
supported adverse effects on asthma, psoriasis, osteoarthritis, 
depression, gout, multiple sclerosis, and type 1 diabetes and a 
possible protection in patients with Parkinson’s disease, but no 
effect on Alzheimer’s disease. To date, three phenome-wide 
association studies (PheWAS) have been published, one in 
children and two in adults. The only PheWAS focusing on disease 
outcomes that we found used FTO variants (n=24 198) and had 
evidence supporting the adverse associations of high BMI with 
type 2 diabetes, sleep apnoea, and non-alcoholic fatty liver 

disease, whereas an inverse association was seen of high BMI with 
fibrocystic breast disease. A PheWAS published in 2019, using 
PHESANT software, tested for associations of high BMI with all 
continuous, categorical, and binary outcomes in the UK Biobank, 
proposing adverse effects on type 2 diabetes, cardiovascular 
diseases, and multiple other diseases and traits, and suggesting 
protection from various psychosocial traits.

Added value of this study
Our data-driven analyses provided some evidence for a 
possible causal effect of high BMI in 30 distinct diseases under 
Bonferroni correction (72 under false discovery rate 
correction) including circulatory, endocrine and metabolic, 
digestive, neurological, dermatological, musculoskeletal, 
respiratory, and genitourinary disorders, in addition to overall 
cancer risk, injuries and poisonings (postoperative shock and 
internal knee derangement), and other symptoms such as 
gangrene. All associations reflected adverse effects of high 
BMI, except for a suggested protection from inguinal hernias, 
cystitis, and breast cancer.

Implications of all the available evidence
Data-driven approaches are of increasing value in informing 
public health. Large-scale genetic studies provide consistent 
evidence of the widespread implications of a high BMI, 
highlighting the importance of obesity prevention and careful 
management of related comorbidities. Our population-level 
screening implicated an extensive range of diseases as 
potentially affected by high BMI. True causal effects of obesity 
are likely to differ by life stage and might be more complex than 
what can be captured by this type of genetic design. 
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Methods
Study design and participants
We did a registry-based case-control PheWAS using 
the UK Biobank, which comprised more than 
500 000 participants aged 37–73 years during recruitment, 
done between March 13, 2006, and Oct 1, 2010.9 The 
analyses in this study were restricted to white British 
individuals (confirmed by self-report and genetic data) 
who were unrelated (no first-degree, second-degree, or 
third-degree relatives) and for whom genetic information 
was available.

We identified disease outcomes on the basis of hospital 
episode statistics and causes of death from mortality 
registrations up to March 1, 2016. We extracted 
International Classification of Diseases (ICD; ninth and 
tenth editions) codes from the hospital admissions and 
mortality registrations and mapped them to a phenotype 
code (phecode) using a previously published method.10 
Compared with ICD coding, phecodes have been shown 
to provide a grouping of disease codes that are closely 
aligned with diseases commonly mentioned in clinical 
practice and genomic studies.10 We recoded participants 
with a phecode of interest as cases, whereas participants 
without a parent phecode or any phecodes under a parent 
phecode were classified as controls. We excluded all 
phecodes with fewer than 200 cases.11

This research has been done with the UK Biobank, 
under application 20175. The UK Biobank study was 
approved by the National Information Governance Board 
for Health and Social Care and North West Multicentre 
Research Ethics Committee (11/NW/0382). Participants 
provided electronic consent to use their anonymised data 
and samples for health-related research, to be recontacted 
for further substudies, and for the UK Biobank to access 
their health-related records.9

Genetic risk score
Using genome-wide data available from the UK Biobank,12 
we constructed a genetic risk score consisting of 76 BMI-
related genetic variants identified by GWAS in populations 
of European ancestry (appendix pp 3–7).8 Weighted genetic 
risk scores were calculated as the sum of the number of 
risk increasing alleles weighted by the coefficients from 
variant-exposure associations taken from the discovery 
GWAS.8 The weighted genetic risk scores were rescaled to 
express the associations per BMI-increasing allele.

Statistical analysis
The main analyses involved two stages: phenome-
wide association and mendelian randomisation analyses. 
Power calculations for each disease outcome were done 
with a previously established method (appendix p 5).13 
Among the 925 diseases tested for causal association 
with BMI, our study was powered to detect at least a 
20% increase in risk per each SD increase for 108 diseases 
and at least a 50% increase for 467 diseases (α=5%, 
power 80%, r²=2·7%;8 appendix pp 17–26).

We did a PheWAS to obtain evidence for an association 
between the BMI genetic risk score and a range of 
diseases. We used the R package titled phewas to run a 
logistic regression of each disease outcome against the 
genetic risk score, adjusting for age, sex, assessment 
centre, type of genotyping array, and top 15 principal 
components. Comparisons with models adjusting for 
40 principal components and birth location are shown in 
the appendix (p 27). We examined associations between 
BMI genetic risk score and confounders (appendix p 8). 
Because of suggested non-linear association in smokers,14 
we repeated the PheWAS, restricting the sample to 
participants who never smoked (appendix pp 4, 28). We 
corrected for multiple testing using Bonferroni correction 
(p<5·4 × 10–⁵; based on α=0·05 divided by the number of 
outcomes tested) and false discovery rate (p<0·0074).

For all outcomes that passed multiple testing correction 
in the PheWAS, we did two-sample mendelian 
randomisation analyses. These analyses used estimates 
for associations between genetic risk score and BMI from 
the original GWAS,8 while the associations between 
genetic risk score and phecode were tested in the UK 
Biobank. We did these main analyses using inverse-
variance weighted mendelian randomisation (IVWMR), 
which produces reliable causal estimates in the absence of 
directional pleiotropy.15 For sensitivity analyses to assess 
the stability of estimation, we used several complementary 
mendelian randomisation methods that operate in differ
ing ways and rely on different assumptions. Although the 
stability of estimation across methods improves our 
confidence on the association, no single method exists 
that outperforms all others across scenarios.16 The 
weighted median mendelian randomisation method gives 
consistent estimates when variants contributing 50% or 
more of the total weight are valid instruments.15 The 
weighted mode method is flexible regarding any variants 
that violate pleiotropy assumption, assuming the largest 
weights are contributed by valid instruments.17 An 
adaptation of the Egger regression for mendelian 
randomisation analyses (MR-Egger) allows for the testing 
of directional pleiotropy, but it produces conservative 
estimates and will be biased if the “instrument strength 
independent of direct effect”16 assumption is violated—for 
example, by a pleiotropic association with a confounder or 
residual confounding.

The overall estimation in the mendelian randomisa
tion pleiotropy residual sum and outlier (MR-PRESSO)18 
method produces results similar to IVWMR, but the 
method does three informative tests: a global test to 
detect the presence of pleiotropy, an outlier test to detect 
potentially pleiotropic outlier variants for each 
genetically determined exposure–outcome association, 
and a distortion test to identify changes in the causal 
estimates of mendelian randomisation after exclusion 
of the pleiotropic outlier variant (or variants).18 
MR-PRESSO was re-run with the exclusion of detected 
outliers. In the presence of pleiotropy (indicated by 

See Online for appendix
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MR-Egger pintercept <0·050) we re-ran the analyses 
excluding all variants with greater estimates for variant–
disease association than those for variant–obesity 
associations.19 Finally, for all associations between BMI 
genetic risk score and phenotype that passed the 
multiple testing correction, we searched MR-Base20 for 
related variant–outcome association estimates from 
analyses that did not include the UK Biobank. All statistical 
analyses were done with R package (version 3.3.1).

Role of the funding source
The funder of the study had no role in study design, data 
collection, data analysis, data interpretation, or writing of 
the report. AM, AZ, and EH had full access to all the data 
in the study. The corresponding author had final 
responsibility for the decision to submit for publication.

Results
Of the more than 500 000 participants in the UK Biobank, 
our study population comprised 337 536 participants, 
181 268 (53·7%) of whom were women (table). The 
prevalence of obesity (defined as BMI ≥30 kg/m²) was 
higher in men than in women and more common in 
older participants than in younger ones (table). Analyses 

were done for 925 unique phecodes from 17 different 
disease categories (appendix p 9).

BMI genetic risk score explained 1·32% of the 
variation in obesity, and 1·89% of the variation in BMI 
in participants. The strongest association in PheWAS 
was between the risk score and hospital-diagnosed 
obesity (p=2·3 × 10–¹¹⁵), whereas associations with 
58 other phecodes passed Bonferroni correction for 
multiple testing (p<5·4 × 10–⁵; appendix pp 10–11). BMI 
genetic risk score showed the strongest signals for type 2 
diabetes (p=9·6 × 10–⁷¹), hypertension (p=3·7 × 10–⁴⁷), 
and osteoarthrosis (p=2·5 × 10–²⁹; figure 1), but evidence 
for an association was also seen for multiple other 
diseases, covering the spectrum of disease categories 
(figure 1; appendix pp 10–11). Associations between BMI 
genetic risk score with outcomes including breast 
cancer, depression, gout, and psoriasis passed false 
discovery rate correction (p<0·0074 for all), but did not 
pass the more stringent Bonferroni threshold (appendix 
pp 10–11).

After removing overlapping phecodes, the two-sample 
mendelian randomisation analysis provided evidence for 
associations between BMI and 30 distinct conditions that 
passed the initial PheWAS screening under the Bonferroni 
correction (figure 2; appendix pp 10–11). The IVWMR 
method supported the role of high BMI in endocrine 
diseases, circulatory diseases, and inflammatory or 
dermatological conditions (figure 2). We found genetic 
evidence for BMI-related increases in the risk of peripheral 
nerve disorders, osteoarthrosis, renal failure, bronchitis, 
asthma, insomnia, and internal derangement of the knee. 
The only evidence for a potential protective role of higher 
BMI was observed for inguinal hernia, whereas the risks 
of umbilical hernia and cholelithiasis were increased. 
Association results were similar with the IVWMR, 
weighed median, weighed mode, and MR-PRESSO 
approaches, whereas evidence for an association was less 
strong when we used the MR-Egger method (figure 2, 
appendix pp 29–33). 11 of 30 associations were significant 
across all mendelian randomisation analysis approaches 
(type 2 diabetes, type 1 diabetes, hypothyroidism, 
superficial cellulitis and abscess, chronic ulcer of leg or 
foot, inguinal hernia, cholelithiasis, osteoarthrosis, 
insomnia, other peripheral nerve disorders, and hereditary 
retinal dystrophies). Another nine associations 
(hypertension, ischaemic heart disease, phlebitis and 
thrombophlebitis of lower extremities, renal failure, 
umbilical hernia, other arthropathies, gangrene, 
chemotherapy, and non-rheumatic aortic valve disorders) 
were significant with four of the five methods. The associ
ations for four outcomes (congestive heart failure, 
obstructive chronic bronchitis, internal knee derangement, 
and oedema) were significant with IVWMR, weighed 
median mendelian randomisation, and MR-PRESSO, 
whereas the remaining associations were supported 
only by IVWMR and MR-PRESSO (figure 2; appendix 
pp 10–11). MR-Egger pleiotropy test suggested the 

Number of 
participants

Participants with 
BMI ≥30 kg/m²

p value Number of 
comorbidities

p value

Total 336 442 81 163 (24·1%) ·· 3 (1–6) ··

Sex ·· ·· p<1·5 × 10⁻⁴⁷ ·· p<1·4 × 10⁻⁸

Women 181 268 (53·7%) 41 763 (23·1%) ·· 3 (1–6) ··

Men 156 268 (46·3%) 39 400 (25·3%) ·· 3 (0–6) ··

Age (years) ·· ·· p<1·6 × 10⁻³⁸ ·· p<1·0 × 10⁻³⁰⁰

39·0–44·9 31 721 (9·4%) 6573 (20·8%) ·· 1 (0–4) ··

45·0–49·9 42 136 (12·5%) 9328 (22·2%) ·· 2 (0–4) ··

50·0–54·9 50 249 (14·9%) 12 460 (24·9%) ·· 2 (0–5) ··

55·0–59·9 61 042 (18·1%) 15 404 (25·3%) ·· 2 (0–6) ··

60·0–64·5 85 447 (25·3%) 21 197 (24·9%) ·· 3 (1–7) ··

65·0–73·0 66 941 (19·8%) 16 201 (24·3%) ·· 5 (2–9) ··

History of 
comorbidity

·· ·· p<1·0 × 10⁻³⁰⁰ ·· p<1·0 × 10⁻³⁰⁰

No history 82 337 (24·4%) 15 079 (18·3%) ·· 0 (0–0) ··

1 44 564 (13·2%) 8279 (18·6%) ·· 1 (1–1) ··

2 to 3 68 845 (20·4%) 14 542 (21·2%) ·· 2 (2–3) ··

4 to 5 45 582 (13·5%) 11 247 (24·7%) ·· 4 (4–5) ··

6 or more 96 208 (28·5%) 32 016 (33·5%) ·· 9 (7–13) ··

General health ·· ·· p<1·0 × 10⁻³⁰⁰ ·· p<1·0 × 10⁻³⁰⁰

Excellent 56 541 (16·8%) 5658 (10·0%) ·· 1 (0–3) ··

Good 197 195 (58·4%) 41 835 (21·2%) ·· 2 (0–5) ··

Fair 68 634 (20·3%) 26 479 (38·8%) ·· 5 (2–10) ··

Poor 13 984 (4·1%) 6762 (49·2%) ·· 10 (5–18) ··

Not known 1182 (0·4%) 429 (36·3%) ·· 6 (2–12) ··

Data are n (%) or median (IQR). p values from logistic regression from models adjusted for age, sex and assessment 
centre. 1·32% of variance in participants with body-mass index (BMI) 30 kg/m² or higher and 0·52% of variance in the 
number of comorbidities were explained by the genetic risk score of 76 BMI-related variants from models further 
adjusted for genotyping array and 15 principal components.

Table: Distribution of obesity and number of comorbidities across population characteristics
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Figure 1: Manhattan plot showing the phenome-wide association between BMI genetic risk score and disease outcomes
Bonferroni corrected threshold (p<0·0001) is represented by the red line and false discovery rate-corrected threshold (p<0·0074) by the dashed line. The direction of 
the arrow reflects whether variants increasing body-mass index (BMI) were associated with increased (up arrow) or decreased (down arrow) odds of disease. 
(A) Global view with all disease outcomes. (B) Zoomed view, showing signals within the range of p>1 × 10⁻²⁰ to p<5·4 × 10⁻⁵. 
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Neoplasms
Chemotherapy
(36 386/291 481)

Endocrine or metabolic
Hypothyroidism
(11 933/316 133)

Type 1 diabetes
(2258/316 133)

Type 2 diabetes
(14 643/316 133)

Hypercholesterolaemia
(26 794/303 437)

Neurological
Insomnia
(3798/328 080)

Other peripheral nerve disorders
(10 175/318 037)

Sense organs
Hereditary retinal dystrophies
(1079/322 649)

Circulatory system
Non-rheumatic aortic valve disorders
(2085/326 264)

Hypertension
(62 802/269 580)

Ischaemic heart disease
(25 537/306 662)

Cardiomegaly
2169/326 638)

Cardiac dysrhythmias
(19 939/308 225)

Congestive heart failure
(4522/327 735)

Phlebitis and thrombophlebitis
(3253/300 471)

1·28 (1·19–1·38)
1·26 (1·13–1·40)
1·19 (1·03–1·37)
1·08 (0·91–1·29)
1·28 (1·20–1·37)

IVWMR
W-Med
W-Mod
MR-Egger
MR-PRESSO

IVWMR
W-Med
W-Mod
MR-Egger
MR-PRESSO

IVWMR
W-Med
W-Mod
MR-Egger
MR-PRESSO

IVWMR
W-Med
W-Mod
MR-Egger
MR-PRESSO

IVWMR
W-Med
W-Mod
MR-Egger
MR-PRESSO

IVWMR
W-Med
W-Mod
MR-Egger
MR-PRESSO

IVWMR
W-Med
W-Mod
MR-Egger
MR-PRESSO

IVWMR
W-Med
W-Mod
MR-Egger
MR-PRESSO

IVWMR
W-Med
W-Mod
MR-Egger
MR-PRESSO

IVWMR
W-Med
W-Mod
MR-Egger
MR-PRESSO

IVWMR
W-Med
W-Mod
MR-Egger
MR-PRESSO

IVWMR
W-Med
W-Mod
MR-Egger
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Figure 2: Mendelian 
randomisation analyses on 
the top 30 distinct 
BMI–disease associations
Analyses were done with 
inverse-variance weighted 
mendelian randomisation 
(IVWMR), weighted median 
mendelian randomisation 
(W-Med), weighted mode 
mendelian randomisation 
(W-Mod), adapted Egger 
regression for mendelian 
randomisation (MR-Egger), 
and mendelian randomisation 
pleiotropy residual sum and 
outlier (MR-PRESSO) method. 
Estimates are odds ratios (OR; 
95% CI) per SD (4·1 kg/m²) 
higher body-mass index (BMI).
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presence of directional pleiotropy for seven of the 30 BMI–
disease associations (appendix pp 12–13, 34–63), including 
for hypertension, ischaemic heart diseases, non-rheumatic 
aortic valve disorders, cardiac dysrhythmias, other 
symptoms of respiratory system, other peripheral nerve 
disorders, and chemotherapy (a proxy phecode indicating 
all cancer types). Of the 30 diseases associated with BMI, 
MR-PRESSO identified outlying variants for type 2 
diabetes, hypercholesterolaemia, hypertension, ischaemic 
heart diseases, inguinal hernia, osteoarthrosis, and 
chronic bronchitis (appendix pp 12–13). However, the 
exclusion of these potentially pleiotropic outlier variants 
did not notably affect the effect estimates (for all, 
pdistortion>0·25; appendix pp 10–11).

There were 42 additional distinct disease associations 
that were detected under false discovery rate correction 
(appendix pp 10–11, 29–33). The analyses on outcomes 
under false discovery rate correction provided consistent 
support across mendelian randomisation methods for 
BMI association with nephritis, cystitis, and inflammatory 
neuropathy, whereas associations with autonomic nervous 
system disorders, respiratory failure, and ulcer of the 
oesophagus were supported by all but MR-Egger (appendix 
pp 34–63).

We ran individual PheWAS analyses for all 76 variants 
included in the BMI genetic risk score to identify 
pleiotropic variants with strong individual associations 
with disease risk (appendix pp 14–15, 64–79). To reduce 
the risk of bias due to pleiotropy, we re-ran the mendelian 
randomisation analysis excluding the 17 pleiotropic 
single nucleotide polymorphisms identified in the 
individual variant PheWAS. In these mendelian 
randomisation analyses using 59 variants, we observed 
no evidence for pleiotropy in the BMI associations with 
hypertension and chemotherapy (appendix pp 10–11). 
Evidence for pleiotropy remained for ischaemic heart 
diseases, non-rheumatic aortic valve disorders, cardiac 
dysrhythmias, other peripheral nerve disorders, and 
other symptoms of respiratory system, after excluding 
the pleiotropic variants.

We used the available consortia-based studies 
identified from MR-Base20 or elsewhere to replicate the 
association between BMI and multiple disease outcomes. 
In IVWMR, BMI was associated with type 2 diabetes 
(p=1·2 × 10–¹⁴), ischaemic heart disease (p=6·1 × 10–⁹), 
knee and hip osteoarthritis (p=6·4 × 10–⁴), asthma 
(p=0·046), gout (p=1·9 × 10–⁶), and breast cancer 
(p=1·7 × 10–⁷; appendix p 16). We also observed 
associations for relevant continuous traits including 
high-density lipoprotein (HDL) cholesterol (p=1·4 × 10–⁶, 
related to hypercholesterolaemia) and renal function-
related measures such as microalbuminuria 
(p=9·7 × 10–⁴) and urinary albumin-to-creatinine ratio 
(p<0·025). MR-Egger and weighted median mendelian 
randomisation methods supported these associations 
(p<0·010 for all comparisons), except for HDL-
cholesterol (p=0·089).

Discussion
Our data-driven, mendelian randomisation PheWAS 
done in 337 536 participants from the UK Biobank 
suggests wide-ranging implications for excess bodyweight 
and obesity on health. Our analyses, using multiple 
mendelian randomisation methods, supported the well 
known effects of high BMI on cardiovascular diseases and 
showed that, in addition to ischaemic heart disease 
and hypertension, the downstream consequences of high 
BMI include increases in the risks of cardiomegaly, 
dysrhythmias, and heart failure. We also showed evidence 
supporting not only the well known association between 
high BMI and type 2 diabetes, but also the less well 
established association with type 1 diabetes, and we 
provided novel evidence for the role of high BMI as a 
risk factor for—rather than a consequence of21—hypo
thyroidism. Furthermore, although clinical evidence 
supports associations between obesity and many out
comes identified in our analyses, our study also provides 
causal evidence regarding inflammatory conditions 
(eg, cellulitis and bronchitis), retinal dystrophies, 
hypothyroidism, chronic ulcers of leg and foot, gang
rene, and structural problems such as hernias and knee 
derangement.

The burden of excess weight on cardiovascular health is 
well known,5 and the range of diseases that are adversely 
affected by weight is extensive. Our hypothesis-free 
approach picked up adverse associations of genetically 
determined high BMI with ischaemic heart disease 
(eg, angina pectoris and atherosclerosis), cardiomegaly, 
dysrhythmias (atrial fibrillation), heart failure, 
hypertension, phlebitis and thrombophlebitis, and 
hypercholesterolaemia. High BMI was associated with 
both type 2 and type 1 diabetes, as well as with peripheral 
nerve disorders, chronic leg or foot ulcers, and gangrene, 
which can all occur as diabetic complications. Our 
reported association of high BMI with renal failure is 
relevant, supporting findings from an earlier mendelian 
randomisation study22 that showed a link between obesity 
and end-stage renal disease in type 1 diabetes, highlighting 
the importance of managing obesity as a way of reducing 
the risk of complications.

Obesity is a strong predictor for the incidence and 
progression of musculoskeletal diseases, including osteo
arthritis, a leading cause of disability worldwide.23 
Evidence suggests that the risk of osteoarthritis increases 
with long exposure to high BMI, leading obese individuals 
to have more severe joint degeneration in the knees 
compared with that of non-obese people.24 A causative role 
for high BMI on osteoarthritis is supported by an earlier 
mendelian randomisation study25 and, in our analyses, the 
association identified with use of the UK Biobank was 
further supported by look-up data from the MR-Base.13 We 
also observed evidence for an effect of high BMI on 
structural problems, including knee derangement and 
hernias. Obesity is a risk factor for umbilical hernias,26 
and this adverse association was supported by our 
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analyses. By contrast, our findings and those of previous 
observational studies27 suggest a protective effect of high 
BMI on the risk of inguinal hernia. The development of 
hernias, and the location where this occurs in a susceptible 
individual, depends on the strength of the supporting 
tissues and might be affected by the presence and location 
of excess fat, differentially increasing internal pressure on 
the tissue, according to location.

Obesity is a well known risk factor for cancer, and our 
primary PheWAS picked up the association of high BMI 
with chemotherapy treatment, used as a proxy indicator 
for any type of cancer, while little evidence for association 
was seen with specific types of cancer. However, one of 
the rare protective associations of high BMI was with 
breast cancer, which was detected in our PheWAS under 
the false discovery rate and was supported by independent 
replication.28 This proposed protective association is in 
line with studies29 on the lower risk of premenopausal 
breast cancer in obese women compared with that of non-
obese women, reported for oestrogen receptor-positive 
breast cancer. More work is required to establish causality 
and underlying mechanisms, because the association 
between obesity and breast cancer is likely to be complex, 
and might depend upon the timing of obesity, oestrogen 
receptor positivity, and menopausal status.

We observed an association between high BMI and 
insomnia, whereas a previous PheWAS30 using FTO 
variants to approximate BMI (n=24 198) found an 
association of high BMI with sleep apnoea, another sleep 
disorder linked to insomnia. Obesity can affect aspects of 
mental health and, in our study, we observed an 
association between high BMI and depression, which 
passed false discovery rate correction. We have previously 
reported19 evidence of a causal association between 
obesity and depression in women, but not in men. 
Indeed, because of societal and other differences in the 
perception of body image, some mental health 
consequences of obesity can differ between genders. 
However, we did not do sex-stratified analyses, because 
this would have markedly reduced the statistical power 
and increased the burden of multiple testing.

An important strength of our study was the large sample 
size and the availability of comprehensive information 
on hospitalisations and mortality registrations. Although 
another PheWAS31 using mendelian randomisation, pub
lished in 2019, also examined outcome associations 
related to BMI in the UK Biobank, this study used a 
different approach, implementing the analyses with use 
of the PHESANT open-source phenome scan tool. Both 
the PHESANT study31 and our study were able to find 
expected associations of BMI with outcomes such as 
diabetes and cardiovascular diseases, whereas the 
PHESANT study also highlighted influences of BMI on 
factors such as self-reported psychosocial traits, which 
were not covered by our study. By contrast, our registry-
based case-control study identified associations with a 
broader range of diseases and included extensive analyses 

to assess the robustness of causal evidence for all 
outcomes.

There are several limitations with the type of discovery to 
causal inference approach implemented in our study. 
Although the usefulness of the mendelian randomisation 
approach in the context of BMI is well established, valid 
inferences on causal support for an association can only be 
made conditional on three core assumptions: the genetic 
instrument needs to be associated with the exposure, there 
should be no joint causal influence affecting both 
instrument and outcome, and the instrument should not 
affect the outcome through any mechanism other than 
exposure.7 Despite our extensive modelling strategy, we 
could not fully exclude bias due to pleiotropic effects. 
Although pleiotropy does not discount a causal effect of 
BMI on these outcomes, it suggests a presence of positive 
or negative bias in the estimated effect sizes, with some 
individual variants reflecting a disproportionate effect than 
that expected on the basis of their primary association with 
BMI. Pleiotropy might also introduce reverse causality, 
where the variants included in the BMI genetic risk score 
primarily influence other disease outcomes, and the 
apparent effect on high BMI arises through disease-
inflicted changes on BMI. The GWAS8 that formed the 
basis of our instrument identification was based on an 
adult population, with the discovered variants reflecting 
genetic influences on BMI that were accumulated over the 
life course. This has relevance for the broader interpretation 
of our findings, because estimates derived with use of a 
genetic risk score (in our study or others), might not 
adequately reflect the effects of BMI on disease risk for all 
life stages.

Another methodological limitation was residual 
confounding, which can arise, for example, through 
population stratification and could be aggravated by the 
use of a genetic risk score in the discovery stage.32 Our 
study proceeded from PheWAS discovery to mendelian 
randomisation analyses, where associations that are the 
most affected by residual confounding are, by default, the 
ones most likely to be taken forward to causality testing. 
We were reassured to find that the strongest associations 
of high BMI were with obesity and well established 
conditions such as type 2 diabetes and hypertension and 
that our findings were not sensitive to the strategy to 
control for population stratification. However, future 
studies implementing an approach such as ours should 
consider using prespecified positive or negative controls 
based on a priori statements of expected effects, because 
this would allow the establishment of a reference point 
for the assessment of influences by unmeasured residual 
confounding.

Our study focused on linear increases of BMI and we 
might not have fully captured the effects of high BMI, 
reflecting more severe forms of obesity. A mendelian 
randomisation study,14 published in 2019, reported 
genetic evidence for a J-shaped association between BMI 
and mortality risk, with evidence for increased mortality 
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risk in underweight individuals who smoke regularly. 
Because a high BMI was associated with increases in 
disease risk in our study (with very few exceptions), a 
failure to account for the adverse effects of underweight 
would have led to an underestimation of the BMI–disease 
risk associations. Sensitivity analyses in the subsample 
of participants who never smoked did not strengthen our 
associations; however, the sample size was halved by this 
restriction, and stratification can lead to collider bias.33 
Collider bias might also arise because of selection in the 
UK Biobank, which only had a 5% participation rate; 
however, the effect of collider bias caused by selection on 
mendelian randomisation studies has been suggested to 
be less than that of other biases.33 We used the MR-Base20 
with the aim of further supporting our findings in 
datasets with different confounding structures and 
determinants of selection. However, for most outcomes, 
independent data were not available. Another limitation 
of our study was the inability to provide conclusive 
evidence for an absence of an association. Although a 
simulation study has suggested 200 reported cases as 
a threshold for reasonable power in PheWAS,11 this 
estimation is based on the ability to detect associations of 
single nucleotide polymorphisms and disease risk, and 
our study was not formally powered to detect many of the 
associations in the mendelian randomisation 
framework.13 Inclusion of outcomes with a low case 
threshold also led to our conservative approach to 
multiple testing, which can help to reduce the likelihood 
of type I errors.

In conclusion, although our mendelian randomisation 
PheWAS provides a promising data-driven approach to 
disease risk factor discovery, challenges remain with its 
implementation. Our findings implicate an extensive 
range of diseases as being affected by high BMI. However, 
the true causal effects of excess weight on disease risk are 
likely to vary by life stage and be more complex than 
indicated by our population-level screening.
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