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Particle filters contain the promise of fully nonlinear data assimilation. They have been

applied in numerous science areas, including the geosciences, but their application to

high-dimensional geoscience systems has been limited due to their inefficiency in high-

dimensional systems in standard settings. However, huge progress has been made, and

this limitation is disappearing fast due to recent developments in proposal densities,

the use of ideas from (optimal) transportation, the use of localisation and intelligent

adaptive resampling strategies. Furthermore, powerful hybrids between particle filters

and ensemble Kalman filters and variational methods have been developed. We present

a state of the art discussion of present efforts of developing particle filters for high-

dimensional nonlinear geoscience state-estimation problems with an emphasis on

atmospheric and oceanic applications, including many new ideas, derivations, and

unifications, highlighting hidden connections, including pseudo code, and generating

a valuable tool and guide for the community. Initial experiments show that particle

filters can be competitive with present-day methods for numerical weather prediction

suggesting that they will become mainstream soon.
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1. Introduction

Data assimilation for geoscience applications, such as weather

or ocean prediction, is a slowly maturing field. Even the

linear data-assimilation problem cannot be solved adequately

because of the size of the problem. Typically, global-scale

numerical weather prediction needs estimation of over 109 state

variables, assimilating over 107 observations every 6-12 hours.

Existing methods like 4DVar do not provide accurate uncertainty

estimates and need efficient pre-conditioners, while Ensemble

Kalman Filters heavily rely on somewhat ad-hoc fixes like

localisation and inflation to find accurate estimates. Hybrids

of variational and ensemble Kalman filter methods are a step

forward, although localisation and inflation are still needed in

realistic applications. An extra complication is localisation over

time needed in ensemble smoothers like the Ensemble Kalman

Smoother and 4DEnsVar when the fluid flow is strong: what

is local at observation time is not necessary local at the start

of the assimilation window because the observation influence is

advected with the flow. Furthermore, the recent surge of papers on

accurate treatment of observation errors shows that a long way is

still ahead of us to solve even the (close to) linear data-assimilation

problem.

Although these problems are formidable, another difficulty

arises from the fact that the problem is typically nonlinear, and,

with increasing model resolution and more complex observation

operators, increasingly so. Both variational and Kalman-filter-like

methods have difficulty handling nonlinear problems. Variational

methods can easily fail when the cost function is multimodal,

and are hampered by the assumption that the prior probability

density function (pdf) of the state is assumed to be Gaussian.

Ensemble Kalman filters make the explicit assumption that the

prior pdf and the likelihood of the observations as function of

the state are Gaussian, or, somewhat equivalently, assume that the

analysis is a linear combination of prior state and observations.

Both methods have been shown to fail for nonlinear data-

assimilation problems in low-dimensional systems, and both have

been reported to have serious difficulties in numerical weather

†Please ensure that you use the most up to date class file, available from the QJRMS
Home Page at
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1477-870X

prediction at the convective scale where the model resolution is

only a few km. Particle filters hold the promise of fully nonlinear

data assimilation without any assumption on prior or likelihood,

and recent text books like Reich and Cotter (2015), Nakamura

and Potthast (2015), and van Leeuwen et al. (2015) provide useful

introductions to data-assimilation in general, and particle filters in

particular.

Other fully nonlinear data-assimilation methods are Markov-

Chain Monte-Carlo methods that draw directly from the posterior

in a sequential way, so one sample after the other, after a burn-

in period, see e.g. Robert and Cassela (2004), or van Leeuwen

et al. (2015) for a geophysics-friendly introduction. The samples

are correlated, often 100% when the new sample is not accepted,

making them very inefficient in high-dimensional systems. This is

why we concentrate on particle filtering here.

The standard or bootstrap particle filter can be described

as follows. The starting point is an ensemble of size N of

model states xni ∈ <
Nx , called particles, that represent the prior

probability density function (pdf) p(xn), as:

p(xn) ≈
N∑
i=1

1

N
δ(xn − xni ) (1)

Between observations, each of these particles is propagated

forward from time n− 1 to time n with the typically nonlinear

model equations

xn = f(xn−1) + βn (2)

in which f(..) denotes the deterministic model, and βn is

a random forcing representing missing physics, discretisation

errors, etc. In this paper we assume this model noise to be additive,

but one could also consider multiplicative noise in which βn is a

function of the state of the system. We assume that the pdf from

which the βn are drawn is known; typically a Gaussian N(0,Q).

At observation times the true system is observed via:

yn = H(xntrue) + εn (3)

in which the observation errors εn are random vectors

representing measurement errors and possibly representation

errors. Again we assume that these errors have known

c© 2017 Royal Meteorological Society Prepared using qjrms4.cls
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characteristics, often Gaussian, so e.g. εn ∼ N(0,R). These

observations yn ∈ <Ny are assimilated by multiplying the prior

pdf above with the likelihood of each possible state, i.e. the

probability density p(yn|xn) of the observation vector given each

possible model state, following Bayes Theorem:

p(xn|yn) =
p(yn|xn)

p(yn)
p(xn) (4)

in which p(xn|yn) is the posterior pdf, the holy grail of data

assimilation. To avoid confusion, it is good to realise that the true

state is not a random variable when we apply Bayes Theorem. It is

a realisation of a process, which could be random or deterministic,

from which we then take noisy observations. Instead, Bayes

Theorem is a statement of what we think the true state might be.

Since the pdf of the εn is known and Bayes Theorem is a statement

for each possible state xn to be the true state, p(yn|xn) is the pdf

of yn given that the true state vector would be xn. In general, since

for a given state xn the observation yn is equal to the observation

error ε shifted by H(xn), we find (see e.g. van Leeuwen (2015)):

p(yn|xn) = pε(yn −H(xn)) (5)

If we insert our particle representation of the prior into this

theorem we find:

p(xn|yn) ≈
N∑
i=1

wiδ(x
n − xni ) (6)

in which the particle weights wi are given by:

wni =
p(yn|xni )

Np(yn)
=

p(yn|xni )

N
∫
p(yn|xn)p(xn) dxn

≈ p(yn|xni )∑
j p(y

n|xnj )

(7)

Since all terms are known explicitly we can just calculate this as a

number. The self-normalisation in the last part of (7) is consistent

with the notion that for a proper representation of a pdf the sum

of the weights should be equal to one, so that the integral over the

whole state space of the particle representation of the pdf is equal

to one. Figure 1 depicts the working of this filter.

Propagating the particles xni to the next observation time n+

1 gives a weighted representation of the prior at time n+ 1.

Assimilating the observation at time n+ 1 by Bayes Theorem

x x

Figure 1. The standard particle filter. Left: the prior particles (dots), with one
observation, denoted with the red cross. Right: the posterior particles, the larger
the dot the larger its weight. Note that the particles don’t move in state space, they
are just reweighted.

leads to a modification of the weights (see e.g. Doucet et al. (2001)

or van Leeuwen (2009)):

wn+1
i = wni

p(yn+1|xn+1
i )∑

j p(y
n+1|xn+1

j )
(8)

Even in low-dimensional applications, the variation of the weights

increases with the number of assimilation steps. Eventually

one particle has a much higher weight than all the others. To

prevent this, resampling can be used before propagation to obtain

equally weighted particles. This duplicates high-weight particles

and abandons low-weight particles. After resampling, some of

the particles have identical values, but if the model contains a

stochastic component and independent random forcings are used

for different particles, diversity is restored. See e.g. Doucet et al.

(2001) or van Leeuwen (2009) for details. Algorithm 1 illustrates

the steps.

Algorithm 1 Standard Particle Filter
for i = 1, .., N do

wi ← p(y|xni )

end for
w← w/wT1

Resample

A simple resampling scheme using only one draw from a

uniform distribution U is presented in Algorithm 2.

In high-dimensional problems the weights vary enormously

even at one observation time, and typically one particle obtains a

much higher weight than all the others. Snyder et al. (2008, 2015)

have shown that the number of particles needed to avoid weights

collapse, in which one particle gets weight 1 and the rest weights

very close to zero, has to grow exponentially with the dimension

of the observations y for a large class of particle filters. If the

weights collapse, all particles are identical after resampling, and

c© 2017 Royal Meteorological Society Prepared using qjrms4.cls



4 Peter Jan van Leeuwen, et al.

Algorithm 2 Simple Resampling Scheme
ŵ1 ← w1

for j = 2, .., N do
ŵj =

∑j
i=1 wj

end for
u ∼ U [0, 1/N ]

m← 1

for j = 2, .., N do
while u > ŵm do

m← m+ 1

xnewm = xj
end while
u← u+ 1/N

end for

all diversity is lost. From this discussion it becomes clear that for

particle filters to work we need to ensure that their weights remain

similar.

In this review we will discuss four basic ways to make

progress on this fundamental problem of weight degeneracy. In

the first one, we explore the so-called proposal-density freedom

to steer particles through state space such that they obtain very

similar weights, see e.g. Doucet et al. (2001). As pointed out by

e.g. Snyder et al. (2008) there are fundamental problems when

applying these techniques to the high-dimensional geoscience

applications. We will examine the issue in detail and discuss so-

called equal-weight particle filters, which point towards new ways

to formulate and attack the degeneracy problem.

The second approach transform the prior particles into particles

from the posterior, either in one go, or via a more smooth

transformation process, see Reich (2013). While the one-step

approaches can be shown to fail in high-dimensional settings,

they do lend themselves very naturally to localisation. The more

smooth multi-step transition variants seem to be able to avoid the

degeneracy problem without localisation, and are an interesting

new development.

The third, more straightforward from the geoscience experi-

ence, approach is to introduce localisation in particle filters. While

initial implementations were discouraging (e.g. Van Leeuwen,

2009), new formulations have shown remarkable successes, such

that localised particle filters are now tested in global operational

numerical weather prediction systems (e.g. Potthast et al. 2019).

The fourth approach is to abandon the idea of using pure

particle filters and combine them with Ensemble Kalman Filters.

This should not be confused with using Ensemble Kalman Filters

in proposal densities. Several variants exist, such as second-order

exact filters, in which only the first two moments are estimated,

sequential versions in which first an EnKF is used and the

posterior EnKF ensemble is used as input for the particle filter,

or vice versa, and combinations in which localised weights are

calculated and dependent on the effective ensemble size a full

particle filter, an EnKF, or a combination of both is used.

These four variants form the basis of the following four

chapters. Each chapter contains a critical discussion of the

approximations and remaining major issues. It should be noted

that the pseudo code provided does not give the most efficient

implementation of the different particle filters, but is rather an

illustration of the computational steps involved. Efficient pseudo

code for some of the more complex schemes can be found

in Vetra-Carvalho et al. (2018). The paper is closed with a

concluding section and an outlook of what possible next steps

could be.

2. Proposal density particle filters

Ideally we draw independent samples directly from the

posterior pdf because the samples would all have equal weight

automatically. This can only be done, however, when the shape

of the posterior pdf is known and when it is easy to draw from

the posterior. An example of this is a Gaussian prior combined

with a linear Gaussian likelihood. Under these assumptions the

posterior is also Gaussian and the mean and covariance can

be calculated directly from the prior using the Kalman update

equations. Ensemble Kalman filters make use of this result and

draw directly from that pdf, which is why all posterior particles

have equal weights in an Ensemble Kalman Filter.

The standard particle filter draws particles from the prior. These

then have to be modified to become particles of the posterior via

the weighting with the likelihood. This is a general procedure

in statistics called importance sampling: one draws from an

approximation of the pdf one is interested in, and corrects for this

via so-called importance weights.

In the introduction we argued that drawing from the prior leads

to weights that vary too much: typically, in high-dimensional

problems with numerous independent observations one particle

gets weight 1, and all other particles have a weight very close to

c© 2017 Royal Meteorological Society Prepared using qjrms4.cls



Particle Filters for Applications in Geosciences 5

zero. However, we could explore the idea of importance sampling

on the transition from one time to the next. When the numerical

model is not deterministic but stochastic we have the freedom to

change the model equations to move the particles to those parts of

state space where we want them to be, for instance closer to the

observations.

Mathematically this works as follows. Assume we have

observations at time n, so Bayes Theorem at time n is given by

(4). If the model is stochastic, we can write the prior as

p(xn) =

∫
p(xn|xn−1)p(xn−1) dxn−1 (9)

where p(xn|xn−1) is the transition density, the pdf of the state at

time n when the state at time n− 1 is known. For instance, if the

model error is additive and the model equation is given by (2), it

holds that

p(xn|xn−1) = pβ

(
xn − f(xn−1)

)
. (10)

Often the model errors are assumed to be Gaussian β ∼ N(0,Q),

and we find

p(xn|xn−1) = N(f(xn−1),Q). (11)

but the method is more general than that.

Assume now that at time n− 1 we have a set of weighted

particles as in (1), but with weights wn−1
i instead of 1/N . We

can evaluate the expression (9) for the prior as a weighted mixture

of transition densities

p(xn) ≈
N∑
i=1

wn−1
i p(xn|xn−1

i ) (12)

In the following we neglect the approximation error at time

n− 1 and assume that (12) is exact. This is not necessarily a

good approximation, especially when the number of particles is

small. On the other hand, it is consistent with the particle filter

approximation in the first place, and one of the few things one can

do. By Bayes formula (4), the posterior can then be written as:

p(xn|yn) ≈
N∑
i=1

wn−1
i

p(yn|xn)

p(yn)
p(xn|xn−1

i ) (13)

In the standard particle filter one makes one draw from

p(xn|xn−1
i ) for each i, and we know that this leads to ensemble

collapse for high-dimensional systems. However, now the prior

particles at time n are allowed to arise from following a different

model equation. This works as follows. We can multiply and

divide equations (12) and (13) by a so-called proposal density

q(xn|xn−1,yn), leading to:

p(xn) ≈
N∑
i=1

wn−1
i

p(xn|xn−1
i )

q(xn|xn−1
i ,yn)

q(xn|xn−1
i ,yn) (14)

and

p(xn|yn) ≈
N∑
i=1

wn−1
i

p(yn|xn)

p(yn)

p(xn|xn−1
i )

q(xn|xn−1
i ,yn)

q(xn|xn−1
i ,yn)

(15)

where q(xn|xn−1
i ,yn) should be non-zero whenever p(xn|xn−1

i )

is. This step is completely general.

Now realise that drawing from p(xn|xn−1
i ) corresponds to

running the original stochastic model. We could instead draw from

q(xn|xn−1
i ,yn), which would correspond to a model equation

from our choosing. Figure 2 illustrates the basic idea.

Time n-1 Time n

Figure 2. The proposal density. At time n− 1 we have a set of particles denoted
by the filled circles. When we use the original model, they are propagated along
the blue lines to time n. Because their distance to the observation (the box) varies
significantly, so will their weights. When a proposed model is used the particles
at time n− 1 propagate along the green dashed lines and end up much closer to
the observations. This leads to much more similar likelihood weights. However,
because we have changed the model equations the particles now also have proposal
weights.

For instance when the original model is given by (2), we can

use

xn = g(xn−1,yn) + β̂
n

(16)

c© 2017 Royal Meteorological Society Prepared using qjrms4.cls



6 Peter Jan van Leeuwen, et al.

in which g(., .) is now the deterministic part and β̂
n

is the

stochastic part. These can be freely chosen, and examples of

these will be given below. Note that we allowed g(..) to depend

on the observations at the future time. This means that we

generate the prior particles at time n by making one draw from

q(xn|xn−1
i ,yn) for each i where

q(xn|xn−1,yn) = p
β̂

(
xn − g(xn−1,yn)

)
(17)

In general, we draw the particles at time n from the alternative

model q(xn|xn−1,yn) and account for this by changing the

weights of the particles. Equations (14) and (15) can be written

as

p(xn) =

N∑
i=1

ŵn−1
i q(xn|xn−1

i ,yn) (18)

and

p(xn|yn) =

N∑
i=1

ŵni q(x
n|xn−1

i ,yn) (19)

where the weights are given by:

ŵn−1
i ∝ wn−1

i

p(xni |x
n−1
i )

q(xni |x
n−1
i ,yn)

. (20)

and

ŵni ∝ ŵ
n−1
i

p(yn|xni )

p(yn)
∝ wn−1

i p(yn|xni )
p(xni |x

n−1
i )

q(xni |x
n−1
i ,yn)

.

(21)

Here the coefficients of proportionality ensure that the weights

sum to 1. In a reinterpretation of these equations, if xni is drawn

from the alternative model q(xn|xn−1
i ,yn) we can also write

p(xn) ≈
N∑
i=1

ŵn−1
i δ(xn − xni ) (22)

and

p(xn|yn) ≈
N∑
i=1

ŵni δ(x
n − xni ). (23)

We see that the weights now contain two factors, the likelihood

weight, which also appears in the standard particle filter, and a

proposal weight. These two weights have opposing effects. If we

use a proposal density that strongly pushes the model towards

the observations, the likelihood weight will be large because

the difference between observations and model states becomes

smaller, but the proposal weight becomes smaller because the

model is pushed away from where it wants to go, so p(xn|xn−1
i )

will be small. On the other hand, a weak pushing towards the

observations keeps the proposal weight high, but leads to a small

likelihood weight. This suggests that there is an optimum weight

related to an optimal position xni for each particle as function of

its position at time n− 1. This will be explored in equal-weight

formulations of the particle filter. Figure 3 shows how typical

proposal-density particle filters work. Equal-weight particle filters

are discussed later.

x x

Figure 3. The typical proposal-density particle filter. Left: the prior particles at time
n− 1 (dots), with one observation, denoted with the red cross. Right: the posterior
particles at time n, the larger the dot the larger its weight. Note that the particles do
move in state space compared to a pure model propagation over one time step, and
their weight contains contributions from the likelihood and from that movement.

2.1. A simple relaxation scheme

To illustrate the idea of a proposal density we consider the

following simple example. We could add a relaxation or nudging

term to the original equation to steer the particles towards the

observations and make their weights more similar, as pioneered

by van Leeuwen (2010) for geoscience applications. The model

equation is written as:

xm = f(xm−1) + T(yn −H(xm−1)) + β̂
m

(24)

where we used time index m for the state vector to emphasise

that there are several model time steps between observation times.

T is a relaxation matrix of our choice. In this example, the

deterministic part consists of the first two terms on the right-hand

side of the equation, while the third term denotes the random part.

Let’s assume the pdf of the random forcing is Gaussian with mean

zero and covariance Q̂. Then we can immediately write for the

c© 2017 Royal Meteorological Society Prepared using qjrms4.cls
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proposal density

q(xm|xm−1,yn) = N
(
f(xm−1) + T(yn −H(xm−1)), Q̂

)
(25)

since the pdf of xm is just a shift in the mean of the pdf of β̂
m

. For

the original model, we assume that the random part is Gaussian

with zero mean and covariance Q, so that

p(xm|xm−1) = N
(
f(xm−1),Q

)
(26)

The change in the model equations is compensated for in

particle filters by a change in the relative weight of each particle,

and the expression for this change in weight for this case is:

wmi = wm−1
i

p(xmi |x
m−1
i )

q(xmi |x
m−1
i ,yn)

∝ wm−1
i

exp [−Jp]

exp [−Jq]
(27)

in which, for Gaussian model errors,

Jp =
1

2

(
xmi − f(xm−1

i )
)T

Q−1
(
xmi − f(xm−1

i )
)

(28)

and

Jq =
1

2

(
xmi − f(xm−1

i )−T(yn −H(xm−1))
)T
·

Q̂−1
(
xmi − f(xm−1

i )−T(yn −H(xm−1))
)

=
1

2
(β̂
m
i )T Q̂−1β̂

m
i (29)

Note that the normalisation factors of the Gaussians do not have

to be calculated explicitly if we use that the sum of the weights

has to be equal to one. The scheme is depicted by Algorithm 3.

Algorithm 3 Relaxation Proposal Density
for j = 1, ..., N do

dj ← y −H
(
xfj

)
fj ← Tdj
ξj ∼ N(0,Q)

xmj ← f
(
xm−1
j

)
+ fj + ξj

logwmj ← logwm−1
j + 1

2ξjQ̂
−1ξj

logwmj ← logwmj − 1
2 (fj + ξj)

TQ−1(fj + ξj)

end for

Simple as the scheme is, it does not solve the degeneracy

problem. However, it can be used as a simple scheme when several

model time steps are used between observation times, because the

proposal is independent of the proposal at other time steps. This

scheme an easily be used in combination with other schemes that

work at observation time, to be discussed next.

2.2. Weighted Ensemble Kalman Filter

One could also use other existing data-assimilation methods in

proposal densities, like Ensemble Kalman filters or variational

methods. In the Weighted Ensemble Kalman filter (Papadakis

et al. 2010) the stochastic EnKF of Burgers et al. (1998) is used

as follows. The Ensemble Kalman Filter update can be written as:

xni = xfi + K(yn −Hxfi − εi) (30)

in which xfi = f(xn−1
i ) + βni , the matrix K is the ensemble

Kalman gain and εi ∼ N(0,R), with R the observational error

covariance. Using the expression for the forecast xfi in the Kalman

filter update equation we find:

xni = f(xn−1
i ) + K

(
yn −Hf(xn−1

i )
)

+ (I−KH)βni −Kεi

(31)

which we can rewrite as the sum of a deterministic and a stochastic

part as:

xn = g(xn−1,yn) + β̂
n
i (32)

identifying g(xn−1) = f(xn−1
i ) + K

(
yn −Hf(xn−1

i )
)

and

β̂
n
i = (I−KH)βni −Kεi. Therefore, we find for the proposal

density:

q(xn|xn−1
i ,yn) = N

(
f(xn−1) + K(yn −Hf(xn−1), Q̂

)
(33)

with

Q̂ = (I−KH)Q(I−KH)T + KRKT . (34)

Strictly speaking, this is correct only if the Kalman gain is

calculated using the ensemble covariance of f(xn−1), so without

the model errors βn, otherwise the proposal is not Gaussian. We

can calculate the weights of the particles in a similar way as in the

previous example. Algorithm 4 shows the algorithmic steps.

The behaviour of this filter has been studied extensively in

Morzfeld et al. (2017). In high-dimensional systems this filter will
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Algorithm 4 WEKF

Q̂← (I−KH)Q(I−KH)T + KRKT

for i = 1, ..., N do
β̂i ∼ N(0, Q̂)

xni ← f(xn−1
i ) + K

(
yn −Hf(xn−1

i )
)

+ β̂
n
i

wi ← 1
2

(
xni − f(xn−1

i )
)
Q−1

(
xni − f(xn−1

i )
)

wi ← wi + 1
2 β̂iQ̂

−1β̂i
wi ← wi + 1

2 (y −H(xni ))TR−1(y −H(xni ))

wi ← exp[−wi]
end for
w← w/wT1

Resample

be degenerate, consistent with the theory of Snyder et al. (2015),

and as proven in the next section. The only way to make this work

is to include localisation, not only at the EnKF level, but also at

the level of the particle filter, see e.g. Morzfeld et al. (2017).

2.3. Optimal proposal density

In the class of particle filters in which the proposal density of each

particle is dependent on only that particle, an optimal proposal

density can be derived, as e.g. shown in Doucet et al. (2001). They

defined optimality as the proposal density that gives a minimal

variance of the weights, and Snyder et al. (2015) provide an

elegant proof of this optimality. In this section we generalise this

result and show that the optimal proposal density is optimal even

when each particle has its own proposal density which is allowed

to depend on all previous particles, so a proposal of the form

q(xn|i,xn−1
1:N ,yn).

Snyder et al. (2015) concentrate on the case that one is

interested in an optimal representation of p(xn, xn−1|yn) in a

sequential algorithm, so in a sequential smoother. To this end they

introduce the random variable

w∗(xn,xn−1) =
p(xn,xn−1|yn)

q(xn,xn−1|yn)
(35)

and determine that proposal density q that minimises the variance

in the weights w∗, with the expectation taken over the density

from which we draw the particles, so the proposal q.

Here we show that the optimal proposal density is also

optimal for the strict filtering case, so when we are interested

in minimal variance of the weights at time n only. Specifically,

the question is: given the set of particles at t = n− 1 drawn

from p(xn−1|y1:n−1), which proposal density of the form

q(xn|i,xn−1
1:N ,yn) gives minimal variance of the weights at time

n?

Using Bayes formula, we can write the expression for the

weight of particle i as function of the state at time n as:

wni = wi(x
n
i ) =

p(yn|xni )

Np(yn)

p(xni |x
n−1
i )

q(xni |i,x
n−1
1:N ,yn)

=
p(yn|xn−1

i )

Np(yn)

p(xni |x
n−1
i ,yn)

q(xni |i,x
n−1
1:N ,yn)

(36)

where we assume, without loss of generality, an equally weighted

ensemble at time n− 1. Note that the second equality follows

from Bayes Theorem, as follows:

p(xni |x
n−1
i ,yn) =

p(yn|xni ,x
n−1
i )

p(yn|xn−1
i )

p(xni |x
n−1
i )

=
p(yn|xni )

p(yn|xn−1
i )

p(xni |x
n−1
i ) (37)

Consider the pair of random variables (I,Xn) where Prob(I =

i) = 1
N and, conditionally on I = i, Xn ∼ q(xn|i,xn−1

1:N ,yn).

Furthermore, define the associated random variable

W = wI(Xn) =
p(yn|xn−1

I )

Np(yn)

p(Xn|xn−1
I ,yn)

q(Xn|I,xn−1
1:N ,yn)

(38)

where

p(yn) =
1

N

N∑
j=1

p(yn|xn−1
j ) (39)

In order to find the proposal q that minimizes the variance of

W , we use the well-known law of total variance (derived in the

appendix for completeness):

varW (W ) = varI(EXn|I(W )) + EI(varXn|I(W )). (40)

First, we see that, under the proposal q:

EXn|I(W ) =
p(yn|xn−1

I )

Np(yn)

∫
p(xn|xn−1

I ,yn)dxn =
p(yn|xn−1

I )

Np(yn)

(41)

is independent of q. Moreover, EW (W ) = EI(EXn|I(W )) =

1/N and thus the first term in varW (W ) is

1

N

∑
i

p(yn|xn−1
i )2

N2p(yn)2
− 1

N2
=

1

N

∑
i

(
p(yn|xn−1

i )

Np(yn)
− 1

N

)2

≥ 0.

(42)
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For the second term we use that varXn|I(W ) ≥ 0 with equality if

and only if W is almost surely constant in Xn, that is if and only

if
p(xn|xn−1

i ,yn)

q(xn|i,xn−1
1:N ,yn)

= cst(i,xn−1
1:N ,yn). (43)

in which cst(..) is this constant which can depend on other

variables than xn. Because both p and q are densities (in xn),

cst = 1. Combining these results, we have a lower bound for

var(W ) that is determined by the variance of p(yn|xn−1
i ) over

i, with equality if and only if

q(xn|i,xn−1
1:N ,yn) = p(xn|xn−1

i ,yn) (44)

Note that this is a new result as previous proofs only considered

proposal densities of the form q(xn|xn−1
i ,yn), and we extended it

to more general proposal densities of the form q(xn|i,xn−1
1:N ,yn).

This remarkable result shows that firstly the optimal proposal

density, so p(xn|xn−1
i ,yn), does indeed lead to the lowest

variance in the weights for the class of particle filters in

which the transition density is of the form q(xn|i,xn−1
1:N ,yn).

Secondly, it shows that we can predict the variance in the weights

without doing the actual experiment, for any number of particles,

provided we can compute p(yn|xn−1
i ), and thirdly the weights are

independent of the position of the particles xn. Unfortunately, this

variance is zero only when the observations are not dependent on

the state at time n− 1, which is never the case in the geosciences.

A simple case where we can compute both the optimal proposal

density and the weights p(yn|xn−1
i ) is when p(xn|xn−1

i ) is given

by (11) and the observation operatorH = H is linear. By the same

argument that is used to derive the Kalman filter update, we find

p(xn|xn−1
i ,yn) =

= N
(
f(xn−1

i ) + T(yn −Hf(xn−1
i )), (I−THT )Q

)
, (45)

where T = QHT (HQHT + R)−1 is the Kalman-like gain with

the background covariance Q, and the weights are proportional to:

p(yn|xn−1
i ) = N(Hf(xn−1

i ),HQHT + R) (46)

This shows two things: First, in this special case, the simple

relaxation scheme of Section 2.1 is equal to the optimal proposal

when the relaxation matrix T is chosen as above. Second,

comparing the weights of the optimal proposal with the weights

of the standard filter, they both depend on the squared distance

||yn −Hf(xn−1
i )||2, and ||yn −Hxni ||

2, respectively, but in the

standard particle filter the distance is defined w.r. to R and in the

optimal proposal the distance it is defined is w.r. to HQHT + R.

Hence the weights with the optimal proposal are more similar, but

the improvement is substantial only if Q is large, and the analysis

of weight collapse by Snyder et al. (2008) still applies.

One can extend the optimal proposal density idea to more than

one time step. Snyder et al. (2015) show that the optimal proposal

is the proposal of this form with minimal variance in the weights

in this case too, which can also easily be seen by applying the

above to

W = wi(x
n) =

p(yn|xm−1
i )

Np(yn)

p(xn|xm−1
i ,yn)

q(xn|xm−1
i ,yn)

for m < n.

Looking back at the filters described in the previous sections we

find the following. The relaxation scheme uses a simple proposal

density that is of the form q(xn|xn−1
i ,yn), so the theory holds,

and that proposal will lead to degenerate results. This is indeed

the finding of van Leeuwen (2010). The Weighted Ensemble

Kalman Filter has a proposal that depends on all particles at

time n− 1 through the Kalman gain K, so the proposal is of the

form q(xn|i,xn−1
1:N ,yn). Hence also this filter will perform worse

than the optimal proposal and hence will be degenerate for high-

dimensional systems. This was first explored in detail by Morzfeld

et al. (2017).

2.4. Implicit Particle filter

The Implicit Particle Filter is an indirect way to draw from

the optimal proposal, even over several time steps. Often the

assumption is made that the model errors of both original model

and proposal density are Gaussian, and the observation operator

H is linear. In this case, a draw from the optimal proposal is a

draw from a multivariate Gaussian, and we know how to do that.
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However, when H is nonlinear, or when the proposal is used

over several model time steps the density to draw from is not

Gaussian anymore. Chorin et al. (2010) realised that one could

still draw from a Gaussian and then apply a transformation to

that draw to find samples from the optimal proposal density. The

method is explained here for one time step, but the extension to

multiple time steps is straightforward. Figure 4 illustrates the basic

idea.

Figure 4. The Implicit Particle Filter. Samples (red bars in left pdf) are drawn from
the standard multivariate Gaussian and transformed via equation (49) to weighted
samples from the posterior (red bars in right pdf).

As mentioned in Sec. 2 on the proposal density the posterior

pdf can be written as:

p(xn|yn) =

N∑
i=1

wn−1
i

p(yn|xn)

p(yn)

p(xn|xn−1
i )

q(xn|xn−1
i ,yn)

q(xn|xn−1
i ,yn)

(47)

The scheme draws from a Gaussian proposal q(ξ) = N(0, I), and

we can write the transformation as q(xn|xn−1
i ,yn) = q(ξ)J−1

i in

which Ji is the Jacobian of the transformation from xn to ξ. That

transformation is found implicitly, hence the name of the filter, by

defining

Fi(x
n) = − log

[
p(yn|xn)p(xn|xn−1

i )
]

(48)

and, after drawing ξi for each particle, solving for xn in

Fi(x
n) =

1

2
ξTi ξi + φi (49)

for each particle, in which φi = minxn Fi(x
n) ∝ p(yn|xn−1

i ).

The weights of the particles become:

wni = wn−1
i

p(yn|xni )

p(yn)

p(xni |x
n−1
i )

q(xni |x
n−1
i yn)

= wn−1
i

exp [−Fi(xni )]

exp
[
− 1

2ξ
T
i ξi
]Ji

= wn−1
i

exp [−Fi(xni )]

exp [−Fi(xn) + φi]
Ji

= wn−1
i exp [−φi] Ji (50)

Interestingly, while the optimal proposal density shows that the

weights are only dependent on the position of the particles at the

previous time, so on xn−1
i via φi, the implicit map makes the

weights also dependent on the positions at the current time n, so

on xni via the Jacobian of the transformation between ξ and x.

Only when the Jacobian is a constant, so when Fi is quadratic in

xi, this dependence disappears.

Solving (49) is not straightforward in general. Morzfeld et al.

(2012) suggest a random map of the form

xni = xai + λi(ξi)P
1/2ξi (51)

in which P is a chosen covariance matrix, ideally the covariance

of the posterior pdf, xai = arg minFi(x
n) and λi is a scalar. This

transforms the problem into solving a highly nonlinear scalar

equation for λi, which is a much simpler problem than finding xni

directly. This map can be shown to be a bijection when Fi(xni ) has

only closed contours in the high-probability regions; otherwise

one would have to first choose a closed contour area and then

perform the map. In general, when the optimal proposal (over

several time steps if needed) is multimodal, the transformation

from the state variable to a Gaussian is not monotonic, and the

Implicit Particle Filter needs to be adapted, e.g. by using a separate

Gaussian for each mode. The algorithm is given in Algorithm 5.

Of further interest is that xai is the same as the solution to a

4DVar problem well known in meteorology. But it is a special

4DVar as the initial position of each particle is fixed and it has

to be a weak-constraint 4DVar. The latter condition is needed as

a strong-constraint 4Dvar would have no possibility to move a

particle in state space as its initial condition is fixed.
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Algorithm 5 Implicit Particle Filter
for i = 1, ..., N do

ξi ∼ N(0, I)

φi ← minxn{− log
[
p(yn|xn)p(xn|xn−1

i )
]
}

Solve − log
[
p(yn|xn)p(xn|xn−1

i )
]

= 1
2ξ
T
i ξi + φi for xn

Ji =
∣∣∣∂xn

∂ξi

∣∣∣
wi ← exp [−φi] Ji

end for
w← w/wT1

Resample

However, also this filter will suffer from weight collapse in

high-dimensional applications as it is still a sampling scheme for

the optimal proposal density. The following sections will discuss

ways to improve on the optimal proposal.

2.5. Equal weights by resampling at time n− 1

As noted already in equation (36), we can write equation (13) as

p(xn|yn) =

N∑
i=1

wn−1
i p(yn|xn−1

i )

p(yn)
p(xn|xn−1

i ,yn)

=

N∑
i=1

αip(x
n|xn−1

i ,yn) (52)

where

αi =
wn−1
i p(yn|xn−1

i )

p(yn)
(53)

This says that, assuming the pdf at the previous time can be

approximated by a set of N particles, the analysis distribution

is a mixture of the optimal proposal pdf’s p(xn|xn−1
i ,yn) with

mixture weights αi.

If we can compute the optimal proposal density and the weights

αi in closed form, we can also draw samples directly from this

mixture density. For this, we first draw an index I from the discrete

distribution with weights αi, Prob(I = j) = αj , followed by a

draw from the corresponding pdf p(xn|xn−1
I ,yn). Doing this N

times will lead toN different particles with equal weights because

each of them is an independent draw directly from the posterior.

If the index I is equal to a value j more than once, the particle

xn−1
j is propagated from time n− 1 to time n with independent

random forcing for each of these draws. This simple scheme

provides better samples than the optimal proposal density because

all particles are different at time n by construction.

However, this does not solve the problem of weight collapse

because drawing the index I is nothing else than resampling

the particles at time n− 1 with weights proportional to

wn−1
i p(yn|xn−1

i ). If wn−1
i = 1

N , the variance of these weights is

exactly equal to the lower bound that we found in Section 2.3. The

main difference is that the collapse now happens at time n− 1.

The only advantage is that all particles will be different at time n.

If we cannot compute the optimal proposal density and the

weights αi in closed form, we can still use the importance

sampling idea to draw from the mixture p(xn|yn) by drawing

pairs (I,Xn) consisting of an index I and a state Xn at time

n. We choose a proposal distribution βi = βi(y
n) for the index

and proposal distributions q(xn|xn−1
i ,yn) for the state. Then we

draw the index Ii with Prob(Ii = j) = βj(y
n) and conditionally

on Ii = j we draw xni from q(xn|xn−1
j ,yn). Finally, we compute

weights wni by

wni ∝
wn−1
j p(xni |x

n−1
j )p(y|xni )

βj(yn)q(xn|xn−1
j ,yn)

if Ii = j

The particles xni with weights wni provide the desired

approximation of p(xn|yn) whereas the indices Ii can

be discarded after the weights have been computed. We

could produce an evenly-weighted approximation by a further

resampling step, or take the weights wni into account during the

next iteration.

In this approach we can obtain equal weights wni by choosing

q(xn|xn−1
j ,yn) = p(xn|xn−1

j ,yn)

and

βi(y
n) ∝ wn−1

i p(yn|xn−1
i ).

With this choice, we draw directly from the mixture (52). As

mentioned before, although the weights wni are then equal to 1
N ,

the algorithm contains a hidden weighting and resampling step

of particles at time n− 1. It thus remains susceptible to weight

collapse in high dimensions.

This approach of using importance sampling for the joint

distribution of (I,Xn) is due to Pitt and Shephard (1999) who

called it “Auxiliary Particle Filter” (the index I is an auxiliary

variable that is discarded at the end). They discuss, in addition,

approximations of the optimal proposal density and the optimal
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weights αi. One of their suggestions is to use for the index I the

proposal with weights

βi ∝ wn−1
i p(yn|µni )

where µni is a likely value of the distribution p(xn|xn−1
i ), e.g.

the mean or median or simply a draw from it. Typically, µni is

found by a probing step where particles at time n are propagated

by a simplified model, e.g. by omitting stochastic terms or with

simplified subgrid-scale parameterisations or thermodynamics. If

Ii = j and the state xni at time n is proposed from p(xn|xn−1
j ),

the weights become

wni ∝
p(y|xni )

p(yn|µnj )

They will vary less provided xni is close to µnj , i.e. provided the

simplified model is a good approximation to the full model and

the stochastic part of the full model is small.

2.6. The Equivalent-Weights Particle Filter (EWPF)

The EWPF (van Leeuwen 2010; Ades and van Leeuwen 2013)

uses the idea to obtain a more evenly weighted set of particles

by not sampling from the exact posterior, but allowing for a

small error. It starts with determining the weight of each particle

at the mode of p(xn|xn−1
i ,yn) for each particle i, wmaxi ∝

p(yn|xn−1
i ). Note that these weights are equal to the weights

obtained in the optimal proposal density. In the optimal proposal

density case the weights do not depend on the position xn of the

particle, but note that the proposal used here will be different.

The particles are not moved to these modes, but the weights

are used to define a target weight. This target weight wtarget is

chosen such that a certain fraction ρ of particles can reach that

weight. To this end we sort the weights in magnitude from high

to low in an array w∗i , i = {1, 2, ..., N ]} and set wtarget = w∗N∗ρ.

For instance, with 100 particles and a fraction of ρ = 0.8 we would

find wtarget = w∗80.

The next step is to find a position in state space for each particle

that can reach this weight such that its weight is exactly equal to

the target weight. This means we solve for xn in

wi(x
n) = wtarget (54)

for each particle i that can reach this weight. There are many

solutions of this equation, but we choose the one which is on the

line through xai and f(xn−1
i ) and is closest to f(xn−1

i ). Denote

this position as x∗i . Note that this is purely deterministic move,

so a stochastic part still has to be added. The final position of

these particles is then determined by adding a very small random

perturbation ξ from a chosen density, so

xni = x∗i + ξni (55)

This stochastic move ensures that the proposal has full support

and is not a delta function centred at x∗i . The density of ξi should

on the one hand have most of its mass concentrated around 0 in

order not to change the weights of the particles too much, and

on the other hand it should be relatively constant since we divide

by the value of the proposal density. Both requirements cannot be

fulfilled exactly, but we can take some error in the sampling into

account and choose a narrow uniform distribution. The scheme

is depicted in Algorithm 6 for the special case that of Gaussian

model errors and a linear observation operator. If these conditions

do not hold, one will typically need iterations to solve for ai and

bi.

It is common knowledge, see e.g. Doucet et al. (2001), that the

proposal should be wider or at least as wide as the target, while

the width of the stochastic part of the proposal is chosen very

small here. The reason that we can do this is that the position of

the centres of these proposal densities are typically further away

from the observations than e.g. in the optimal proposal because the

target weight forces particles away from their optimal positions,

so away from the observations. This means that the deterministic

moves of the particles ensure a large spread in the full proposal.

A formal way to avoid such an error has been described by

Ades and van Leeuwen (2015b). They choose the proposal to be

a mixture of a uniform density and a Gaussian which is also used

in Alg. 6. Both have small variance, and the mixture coefficient of

the uniform density is chosen to be much larger than that of the
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Algorithm 6 EWPF

ε← 0.0001/N

γU ← 10−6

γN ←
2Nx/2εγNx

U

πNx/2(1−ε)
Nk ← Nρ

for j = 1, ..., N do
dj ← y −H

(
f(xm−1

j )
)

cj ← − log wm−1 + 0.5dTj

(
HQHT + R

)−1
dj

end for
(ĉ, idx)← sort(c)

Cmax ← ĉ(Nk)

for j = 1, ..., Nk do
i← idx(j)

ai ← 1
2dTi R−1HQHT

(
HQHT + R

)−1
dj

bi ← 1
2dTi R−1di − Cmax − log wm−1

αi ← 1 +
√

1− bi/ai
βi ∼ (1− ε)Q1/2U (−γU I,+γU I) + εN

(
γ2
NQ

)
xaj ← f

(
xm−1
i

)
+ αiQHT

(
HQHT + R

)−1
dj + βi

if βi was from uniform distribution then
c̃j ← − log wm−1

i + (α2
i − 2αi)ai + 1

2dTi R−1di
else

v1 ← − log wm−1
i + (α2

i − 2αi)ai

v2 ← v1 + 1
2dTi R−1di

(
2−Nx/2

)(
πNx/2

)
v3 ← v2γNγ

−Nx

U ( 1−ε
ε )

c̃j ← v3 exp
(
0.5β2

i

)
end if

end for
w = exp(−c̃)

w← w/wT1

Resample to have full ensemble, Xa, of N particles from Nk
particles xa.

Gaussian. This means that drawing from the Gaussian and also

drawing from its tails becomes highly unlikely. In practice, since

we always work with small ensemble sizes the chance of filter

degeneracy by drawing from the Gaussian, and then drawing from

the tail of the Gaussian is indeed highly unlikely.

Finally, the full weights for the new particles are calculated

and the whole ensemble is resampled, including those particles

that were unable to reach the target weight. Because of the target-

weight construction the weights of the particles are very similar,

and filter degeneracy is avoided. This filter has been used in a

reduced-gravity ocean model by Ades and van Leeuwen (2015b),

and in the same system studied for the gravity-wave production

by the scheme in Ades and van Leeuwen (2015a). It has also been

applied in a climate model by Browne and van Leeuwen (2015).

To analyse the scheme further, we can again look at the variance

of the weights. For this it is important to note that this scheme

does not see the weight of a particle as a function of the state X

and particle index I, but rather the state as function of the weight

W and index I, so X(W, I). Specifically, W |I has values in two

ranges. For the particles with I = i that can reach the target weight

we find w|I = wtarget + εi in which εi is a small perturbation

from the target weight due to the small stochastic move discussed

above. For those particles that cannot reach the target weight their

weights are very close to zero. So we find:

EI [W ] ≈ ρ(wtarget + ε̄) + (1− ρ)0 = ρ(wtarget + ε̄) (56)

in which ε̄ = EI [ε]. IfH is linear and the errors in the observations

and the model equations are Gaussian we find ε̄ = 0, but if any

of these three conditions does not hold this is not necessarily so.

However, we do know that by construction |ε̄| << 1. Since the

sum of the weights should be equal to 1, we find that wtarget ≈

1/(Nρ), and hence EI [W ] = 1/N , as expected. Furthermore

varI(W ) = ρ

ρN∑
i=1

(wtarget + εi)
2 − (ρwtarget)

2

≈ 1

N2

1− ρ
ρ

(57)

This expression shows that the variance in the weights ranges

between 0 for ρ = 1, so when all particles are kept, to (N −

1)/N2 ≈ 1/N for ρ = 1/N , so when one particle is kept. We

can compare this with the optimal proposal when the number of

independent observations is large. In that case one particle will

have a weight very close to one, and the rest will have weights very

close to zero. The variance in the weights is then (N − 1)/N2 ≈

1/N , indeed equal to the ρ = 1/N case in the EWPF scheme, as

expected. The EWPF can, however, reduce that variance, even to

zero, depending on the choice of the tuning parameter ρ.

When this tuning parameter is chosen close to one, the target

weight will be low, and hence particles will be moved further away

from the mode of the optimal proposal density. In practise this

means that the particles are pushed further away from each other,

leading to a wider posterior pdf. A small value for the fraction will

have the opposite effect. Since we do not know a-priori what the

width of the posterior should be, this is a clear drawback of this

method. We will come back to this later.
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2.7. The Implicit Equal-Weights Particle Filter

In the Implicit Equal Weights Particle Filter (IEWPF) we set

the target weight equal to the minimum of the optimal proposal

weights for all particles. Then, the position of each particle is set

to the mode of the optimal proposal density plus a scaled random

perturbation. The scale factor is chosen such that the weight of

each particle is equal to the target weight. Note that in the standard

setting no resampling is needed, but see Zhu et al. (2016) for other

possibilities.

The implicit part of the scheme follows from drawing samples

implicitly from a standard Gaussian distributed proposal density

q(ξ) instead of the original q(xn|xn−1,yn), following the same

procedure as in the Implicit Particle Filter. We define a relation

xni = xai + α
1/2
i P1/2ξni (58)

where xai is the mode of p(xn|xn−1
i ,yn), P is a measure of the

width of that pdf, ξni ∈ <
Nx is a standard Gaussian-distributed

random vector, and αi is a scalar.

The IEWPF scheme is different from the Implicit Particle Filter

in that it chooses the αi such that all particles get the same weight

wtarget, so the scalar αi is determined for each particle from:

wi(αi) =
p(xni |x

n−1
i ,yn)p(yn|xn−1

i )

Np(yn)q(xn|i,xn−1
1:N ,yn)

= wtarget (59)

This target weight is equal to the lowest weight over all particles in

an optimal proposal. This ensures that the filter is not degenerate

in systems with arbitrary dimensions and an arbitrary number of

independent observations. The resulting equation for each αi is

nonlinear and complex because it will contain the Jacobian of

the transformation from ξn to xn, similar to the Implicit Particle

Filter. The Jacobian will contain the derivative of αi to ξi, which

is the main source of the complexity in this scheme. Algorithm 7

depicts the scheme for the case of a linear observation operator.

A nonlinear observation operator will lead to more complicated

equations for the α’s.

The scheme is similar to the optimal proposal density using

the Implicit Particle Filter by first determining the mode of the

proposal and then adding a random vector. The difference is that in

Algorithm 7 IEWPF
for j = 1, ..., N do

dj ← y −H
(
f(xm−1

j )
)

cj ← −logwm−1 + 0.5dTj

(
HQHT + R

)−1
dj

end for
ctarget ← min (c)

P← (Q−1 + HTR−1H)−1

ξi ∼ N(0,P)

for j = 1, ..., N do

xaj ← f
(
xm−1
j

)
+ QHT

(
HQHT + R

)−1
dj

γj ← ξTj ξj

aj ← dTj

(
HQHT + R

)−1
dj + log wm−1 + ctarget

Solve (αj − 1)γj −Nx logαj + aj = 0 for αj
xnj ← xaj + αjξj

end for

the IEWPF the size of the vector is determined such that the each

particle reaches the target weight. It turns out that this construction

excludes part of state space for all but one particle. For each

particle the excluded part is different, so the ensemble samples

the whole space, but the individual particles do not. Details of the

method can be found in Zhu et al. (2016).

Analysing the scheme in more detail, the proposal density

used in this scheme is of one dimension lower than that of the

state itself. The direction of the random vector in state space is

determined by the proposal density, but the size of the random

vector is then determined deterministically, dependent on that

direction. So the proposal density misses one degree of freedom

for all but one particle, the particle with the lowest weight that

has αi = 1. Although missing one degree of freedom in a very

high dimensional system might seem acceptable it does lead to a

bias. Figure 5 shows how the implicit equal-weights particle filter

works.

x x

Figure 5. The implicit equal-weights particle filter. Left: the prior particles at time
n− 1(dots), with one observation, denoted with the red cross. Right: the posterior
particles. Note that the weights are equal, but some particles have moved away from
the observations to ensure equal weights.
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2.8. Discussion

We first note that the optimal proposal is only optimal in a very

limited sense, as has been known a long time with the invention of

the auxiliary particle filter. We have seen that it is not difficult

to generate particle filters that even have zero variance in the

weights. In the optimal proposal setting one forces Prob(I = i) =

1/N , while the simple choice Prob(I = i) ∝ p(yn|xn−1
i ) leads to

an equal-weight particle filter. Furthermore, schemes have been

introduced that consider the state as function of the state at the

previous time and the weight the state at the current time should

obtain, so instead of working with W (X, I) we choose X(W, I),

which opens up a whole new range of efficient particle filters in

high dimensional systems.

The EWPF and the IEWPF are by construction particle filters

that are not degenerate in high-dimensional systems and that do

not rely on localisation. However, it is easy to see that both filters

are biased, or inconsistent. In the limit of an infinite number of

particles the target-weight constructions will prevent the schemes

to converge to the full posterior pdf. The schemes are only of

interest when the ensemble size is limited. As long as the bias from

the target-weight construction is smaller than the Monte-Carlo

error this bias is of no direct consequence. It will be clear that the

number of possible methods that have this property is huge, and

much more research is needed to explore the best possibilities.

3. Transportation Particle Filters

In resampling particle filters the prior particles are first

weighted to represent the posterior and then transformed to

unweighted particles simply by duplicating high-weight particles

and abandoning low-weight particles. In transformation particle

filters one tries to find a transformation that moves particles from

the prior to particles of the posterior in a deterministic manner.

A related approach, which uses random transformation steps, is

based on tempering the likelihood, which we also discuss in this

section.

3.1. One-step transportation

In one-step transportation one tries to transform samples from

the prior into samples from the posterior in one transformation

step. An example is the Ensemble Transform Particle Filter

(ETPF, Reich 2013), in which the unweighted particles are linear

combinations of the weighted particles, so one writes:

Xa = XfD (60)

in which the matrix Xf = (xf1 , · · · ,x
f
N ) and similar for Xa, and

in which D is a transformation matrix. The only conditions on

D are that dij ≥ 0,
∑
i dij = 1 and

∑
j dij = wiN . These three

conditions leave a lot of freedom for all N2 elements of D, and

a useful way to determine them is to ensure minimal overall

movement in state space of the particles from prior to posterior.

This leads to an optimal transportation problem and is typically

solved by minimizing a cost function that penalises movement of

particles.

We can see immediately that this method will not work when

the weights are degenerate as the solution will be degenerate and

all particles have no other choice than move to the prior particle

with weight (close to) one. However, the strength of this filter is

that it allows for localisation in a very natural way by making the

weights, and hence the matrix D, space dependent. The method

will be discussed in more detail in Section 4 on localisation. Here

we provide the basic algorithm in Algorithm 8.

Algorithm 8 ETPF

wi = p(y|xfi )

J(T )←
∑N
i,j tij ||x

f
i − xfj ||

2

Solve minT J(T ) with tij ≥ 0 ,
∑N
i tij = 1

N and
∑N
j = wi

xaj ← N
∑
i x
f
i t
∗
ij

The ETPF provides a direct map from prior to posterior

particles without explicitly constructing a transformation map.

An alternative approach has been suggested in Moselhy and

Marzouk (2012), where an approximate transportation map T̃ is

constructed such that T̃ belongs to certain family of maps and T̃ is

chosen such that the Kullbeck-Leibler divergence between the pdf

generated by T̃ and the posterior pdf is minimized. See Spantini

et al. (2017) for an efficient implementation in the context of

filtering and smoothing for low-dimensional systems.
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3.2. Tempering of the likelihood

Instead of trying to transform the particles from the prior to

particles from the posterior in one step one can also make this a

smoother transition. In tempering (Neal (1996), see also DelMoral

et al. (2006) and Beskos et al. (2014)) one factorises the likelihood

as follows:

p(y|x) = p(y|x)γ1 ...p(y|x)γm (61)

with 0 < γi < 1 and ensuring that the sum of the γ’s is equal to 1.

Then the weighting of the particle filter is first done with the first

factor, so

p1(x|y) =
p(y|x)γ1

p(y)γ1
p(x) (62)

The reason for this is that the likelihood is much less peaked, and

hence the degeneracy can be avoided when γ1 is small enough.

Figure 6 illustrates the basic idea.
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Figure 6. Tempering. The left hand side shows the tempered likelihood functions
used in every iteration of the tempering scheme, so every particle filter update. We
have chosen γi = 1/4 in this example. The right hand side illustrates how the full
likelihood is build up during the tempering process.

The particles are resampled, and now the weighting is

performed using the second factor, followed by resampling, etc. In

this way the scheme slowly moves all particles towards the high-

probability regions of the posterior. Of course, after resampling

several particles will be identical, so one needs to jitter the

particles, so perturb them slightly, to regain diversity.

This jittering should be a move of the particles that preserves

the posterior pdf. It could be implemented as a Markov-Chain

Monte-Carlo method with the posterior as the target density, e.g.

exploring resample-move strategies, see e.g. Doucet et al. (2001).

A problem is, however, that in sequential filtering we only have

a representation of the posterior density in terms of the present

particles, and this representation is very poor due to the small

number of particles. Possible avenues are to fit a pdf of a certain

shape to the present particles, e.g. a Gaussian mixture model, and

use that as target density.

A problem in the geosciences is that this posterior fit needs to

preserve the delicate balances between the model variables that

are present in each particle, and an extra complication is that

these balances can even be nonlinear. Also the transition kernel

of the Markov Chain should somehow preserve these balances.

An example of its use in the geosciences is the Multiple Data

Assimilations (MDA) method of Emerick and Reynolds (2013), in

which the intermediate pdf’s are assumed to be Gaussian. See also

Evensen (2018) for a comparison of this method to other iterative

implementations of the Ensemble Kalman Filter/Smoother.

If, however, one allows for model error in the model equations,

the following scheme proposed by Beskos et al. (2014) does not

have this problem. In that case the prior at observation time can

be written as (see equation 9):

p(xn) ≈ 1

N

N∑
i=1

p(xn|xn−1
i ) (63)

in which we assume equal-weight particles at time n− 1 for

ease of presentation. In this case the MCMC method that has

the posterior as invariant density is easy to find as the transition

densities defined above, followed by an accept/reject step.

When several model time steps are performed between

observation times one can also perform tempering in the time

domain, as explored in van Leeuwen (2003) and van Leeuwen

(2009) in the Guided Particle Filter. The idea is to assimilate the

observations ahead of time, with using as likelihood p(y∗|xm)γ),

in which y∗ is taken equal to the value yn, and γ << 1. Here

m < n is the present time of the model. This is then followed by

a resampling step. The procedure can be followed over several

time instances during the forward integration of the particles,

increasing γi each time. At the observation time γ = 1 is used.

This will force the particles towards the observations and does not

need extra jittering because each particle will see a different model

noise realisation β in the model integration after the resampling

steps.
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Of course one has to compensate for the fact that the transition

density has been changed, and the way to do that is to realise

that we have used importance sampling. Instead of sampling

from p(xm|xm−1
i ), we sample from a pdf q(xm|xm−1

i ,yn) ∝

p(xm|xm−1
i )p(yn|xm)γ , in which y∗ is equal to yn taken at

time m, and with larger observation uncertainty related to γ. This

means that we have to compensate for the weights created by

this sampling, so we need to introduce particle weights wmi =

p(xmi |x
m−1
i )/q(xmi |x

m−1
i ,y∗) ∝ 1/p(y∗|xmi )γ at each model

time step we use this scheme.

The scheme generates extra weights during the model

integration, but corrects for them at each new time when we

resample, ensuring much better positioned particles at the actual

observation time n. It has been used in a reduced-gravity

primitive equation model in van Leeuwen (2003), but not in high-

dimensional settings.

3.3. Particle flow filters

There is a recent surge in methods that dynamically move the

particles in state space from equal-weight particles representing

the prior, p(x), to equal-weight particles representing the

posterior, p(x|y). In other words, one seeks a differential equation

d

ds
x = fs(x) (64)

in artificial time s ≥ 0 with the flow map defining the desired

transformation. If the initial conditions of the differential equation

(64) are chosen from a pdf p0(x), then the solutions follow a

distribution characterized by the Liouville equation

∂sps = −∇x · (psfs) . (65)

with initial condition p0(x) = p(x) and final condition

psfinal(x) = p(x|y).

Two classes of particle flow filters arise. In the first we start

from the tempering approach, such that sfinal = 1. We now take

the limit of more and more tempering steps by choosing γi =

1/n = ∆swith limn→∞, so limγi→0, or lim∆s→0, see Daum and

Huang (2011, 2013); Reich (2011). This leads to:

lim
∆s→0

ps+∆s(x) = ps(x)

(
p(y|x)

p(y)

)∆s

= ps(x) exp [∆s (log p(y|x)− log p(y))]

≈ ps(x) [1−∆s log p(y|x)−∆s log p(y)](66)

Hence we find:

∂sps(x) = −∇x · (psfs) = ps(x)(log p(y|x)− cs) (67)

with cs =
∫
ps(x) log p(y|x)dx. Explicit expression for fs are

available for certain pdfs such as Gaussians and Gaussian

mixtures (Reich 2012). These particle flow filters can be viewed

as a continuous limit of the tempering methods described in

the previous subsection, avoiding the need for resampling and

jittering. Note that the elliptic partial differential equation (67)

does not determine fs uniquely. Optimal choices in the sense of

minimizing the L2(ps)–norm of fs lead to the theory of optimal

transportation, see Villani (2008) and Reich and Cotter (2015).

Figure 7 shows the basic idea behind particle flow filters.

x xx

Particle flow Particle flow

Figure 7. A typical particle flow filter. Left: the prior particles (dots), with one
observation, denoted with the red cross. Middle: the particles have moved over
several artificial time steps towards the posterior. Note that the weights do not
change. Right: the posterior particles after convergence of the filter, sampling the
posterior directly.

Alternatively, one can explore ideas from Markov-Chain Monte

Carlo (MCMC). One MCMC method that generates samples from

the posterior is the Langevin Monte-Carlo sampling, in which a

sequence of samples is generated by

xj+1 = xj −∆s∇x log p(x|y) +
√

2∆sβj (68)

in which βj a random forcing term drawn from N(0, I). One can

show that in the limit of j →∞ these samples will be samples

from the posterior. The corresponding Fokker-Planck equation for

this stochastic PDE reads (see, for example, Reich and Cotter
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(2015)):

∂sps = ∇x · (ps∇x(− log p(x|y))) +∇x · ∇xps

= −∇x · (ps {∇x. log p(x|y)−∇x log ps})

This equation corresponds to the deterministic PDE (64) in which

fs(x) is given by:

fs(x) := ∇x log p(x|y)−∇x log ps(x) = −∇x log
ps(x)

p(x|y)

(69)

Many other choices are possible that use

lim
s→∞

ps = p(x|y) (70)

in (65). An alternative approach, called Stein variational descent,

has recently been proposed by Liu and Wang (2016). Stein

variational descent can be viewed as a numerical approximation

to a particle flow (64) with vector field

fs(x) := ps (∇x log p(x|by)−∇x log ps(x)) (71)

(Lu et al. 2018). We come back to this method below.

In general, to use any of these methods we need to be able to

evaluate ps(xi), which is typically unknown as we only know the

particle representation of ps(x). One way to solve this issue is

to explore kernel embedding. A numerical implementation of the

two formulations (69) and (71) can be based on a reproducing-

kernel Hilbert space (RKHS) F with reproducing kernel K(., .),

typically taken as a Gaussian. In the sequel, we will therefore

assume that the kernel is symmetricK(x, z) = K(z,x). The inner

product 〈g, f〉F in F satisfies the reproducing property

g(x) = 〈K(x, ·), g〉F . (72)

A computational approximation to (69) can now be obtained

as follows (Russo 1990; Degond and Mustieles 1990). One

approximates the pdf ps by

ps(x) =
1

N

N∑
j=1

K(xj ,x) , (73)

the vector field fs by

fs(x) =

∑N
j=1K(xj ,x)ujs

ps(x)
, (74)

and the N particles xj move under the differential equations

d

ds
xj = ujs . (75)

Since the drift term (69) gives rise to a gradient flow in the

space of pdfs with respect to the Kullback–Leibler divergence

KL = KL(ps||p(·|y)) between ps and the posterior pdf (Reich

and Cotter 2015), it is natural to introduce the following particle

approximation of the Kullback–Leibler divergence:

V({xl}) :=

〈
ps, log

ps
p(·|y)

〉
F
. (76)

in the RKHS F and to set

ujs := −N∇xjV({xl}) (77)

in (75), which leads to a gradient flow in the particles {xl}

minimising V . Details on the numerical implementation of this

approach can be found in Pathiraja and Reich (2019).

The above formulation restricts the pdf ps, and hence the prior

and the posterior, to be of the form (73). Alternatively, one can

embed the vector field of the flow in an appropriate reproducing

kernel Hilbert space and not the density itself. With that we

can derive a practical implementation of the Stein variational

formulation (71) as follows. First, note that the change in KL due

to the flow field fs can easily be found as:

dKL = lim
ε→0

KL(ps+ε)−KL(ps)

ε

= −
∫
ps(x)

[
fs(x)T∇x log p(x|y) +∇x · fs(x)

]
dx.

= 〈∇KL, fs〉F . (78)

where ∇KL is the gradient of KL, the maximal functional

derivative of KL at every state vector x in the RKHS. Note that F

here is different from the Hilbert space used earlier. Maximising

this change in KL as function of the flow field fs is not trivial in

general. However, with the reproducing kernel property of fs we
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have

fs(x) = 〈K(·,x), fs(·)〉 (79)

in which K is a vector-valued kernel, typically taken as K = IK.

Using this in (78), the gradient of the KL divergence is found as

∇KL(x) = −
∫
ps(z) [K(z,x)∇z log p(z|y) +∇zK(z,x)] dz .

(80)

The important point is that this gradient is independent from fs.

One now chooses fs along this direction, which gives the steepest

descent, as

fs(x) = −ε∇KL(x) (81)

Finally, one replaces the integral in (80) by its empirical

approximation, to obtain

fs(xj) = ε
1

N

N∑
l=1

[
K(xl,xj)∇x log p(xl|y) +∇xK(xl,xj)

]
(82)

for the dynamics (64) of the N particles xj .

The intuition behind Stein variational descent is that the first

term in (82) pulls the particles towards the mode of the posterior,

while the second term acts as a repulsive force that allows for

particle diversity. Liu and Wang (2016) derived this formulation

for a steady-state problem, and Pulido and van Leeuwen (2018)

have extended the method to sequential particle filters. The

scheme is given in Algorithm 9.

Algorithm 9 Mapping Particle Filter
for j = 1, N do

xk,0j ← f(xk−1
j , βk)

end for
i = 1

repeat
for j = 1, N do
∇KL(x)← − 1

N

∑N
l=1

[
K(xk,i−1

l ,x)∇ log p(xk,i−1
l |y)

+∇xK(xk,i−1
l ,x)

]
xk,ij ← xk,i−1

j − ε∇KL(xk,i−1
j )

end for
i← i+ 1

until Stopping criterion met

The free parameter of these methods is the reproducing kernel

K(., .), which needs to be chosen such that the particles sample

the posterior and that physical (and potentially other) balances are

retained. One also needs to select a proper time stepping scheme,

typically chosen as a forward Euler scheme with variable time

step ε, which can now be viewed as the step length in a gradient

descent optimisation algorithm.

3.4. Discussion

Viewing particle filters as a transportation problem from equal-

weight particles of the prior to equal-weight particles of the

posterior has led to an interesting set of filters. None of them have

been implemented yet in high-dimensional settings, but some of

them are ready to do so. The strong involvement of the machine

learning community in problems of this kind also suggests rapid

progress here. Finally we mention that the equal-weight particle

filters from section 2 can be viewed as one-step transportation

filters that explore the proposal density freedom, and in fact

transform equal-weight prior particles at time n− 1 to equal-

weight posterior particles at observation time n.

4. Localisation in Particle Filters

Localisation is a standard technique in Ensemble Kalman filtering

to increase the rank of the ensemble perturbation matrix, allowing

for more observations to be assimilated, and to suppress spurious

correlations where real correlations are very small, but ensemble

correlations are larger because of sampling noise. Localisation

limits the influence of each observation to a localisation area that

is much smaller than the full model domain. This idea can easily

be incorporated when calculating the particle weights locally, as

pioneered by Bengtsson et al. (2003), and van Leeuwen (2003),

and used in a high-dimensional parameter estimation problem in

Vossepoel and van Leeuwen (2006). The difficulty, as we shall

see, lies in the resampling step: how does one generate ’smooth’

global particles from locally resampled particles. Smooth is not

well defined here, but it is related to the particles having realistic

physical relations (balances) between the model variables. For

example, if geostrophic balance is dominant, the resampling

procedure should not generate particles that are completely out

of geostrophic balance as that would lead to spurious adjustment

processes via spurious gravity waves. Up to now localisation is

mainly used in connection with the standard particle filter, while

more advanced proposals, apart from the optimal proposal, have

not been explored. Farchi and Bocquet (2018) provide an excellent

review of localisation in particle filtering, treating a subset of the
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methods presented here, but including interesting extensions of

the methods they describe.

The formal way localisation can be introduced in particle

filtering is as follows. Let us denote the state at grid point k as

xk. Hence in contrast to other sections a superscript here denotes

not the time index, but the grid point. Note that in geoscience

applications each grid point typically has several model variables,

so xk is a vector in general. Physically it makes sense to assume

that the posterior of the state at this grid point depends only on a

subset of the observations. Let us denote that subset as y[k]. We

can then write:

p(xk|y) ≈ p(xk|y[k]) (83)

In turn, these observations do not depend on the whole state vector

but only on part of it, denoted by x(k):

p(y[k]|x) = p(y[k]|x(k)) (84)

Introduce the notation x(k)\k to denote all those grid points in that

part of the state vector excluding grid point k. Then we can rewrite

the above as an integral over the joint pdf:

p(xk|y[k]) =

∫
p(x(k)|y[k]) dx(k)\k (85)

Exploring Bayes Theorem we find:

p(x(k)|y[k]) =
p(y[k]|x(k))

p(y[k])
p(x(k))

≈ 1

N

N∑
i

p(y[k]|x(k)
i )

p(y[k])
δ(x(k) − x

(k)
i )

=

N∑
i

w
(k)
i δ(x(k) − x

(k)
i ) (86)

Taken together, this shows that

p(xk|y[k]) ≈
N∑
i

w
(k)
i δ(xk − xki ) (87)

The weights wki thus depend only on the local observations y[k]

and the local prior particles x
(k)
i , so that the variance of the

weights will be much smaller. Figure 8 illustrates how this local

weighting could look for two different particles.

0.5

0.1

0.01
0.50.1

0.01

Figure 8. Illustration of a possible local weight distribution in a two-dimensional
domain, for two different particles. The particle on the left is close to observations
in the central upper part of the domain, leading to high weights there, while the
particle on the right is closer to observations in the central lower part of the domain,
and hence higher weights there.

The approximation (83) is not unrealistic: a temperature

observation in New York is not expected to change our pdf of the

temperature in London at the moment of the observation. There

will be, of course, an effect at later times, but that is not relevant

here. The same assumption underlies the use of localisation in

Ensemble Kalman Filters, and in variational methods when the

background error covariance is constructed.

However, mathematically it does not follow from the

assumption that under the prior the values of the state at grid points

separated by more than a certain distance are independent. There

can be an indirect flow of information from observations far apart

over observations between neigboring grid points. In Ensemble

Kalman Filters, the Kalman gain is generally a dense matrix even

if HPbHT + R is sparse, because its inverse (HPbHT + R)−1

can be dense. On the other hand, if HPbHT + R is diagonally

dominant, then often its inverse is too.

Repeating the localisation procedure for all grid points, we

obtain all marginals of the posterior pdf. However, because the

weights w(k)
i change from one grid point to the next, it is non-

trivial to obtain a consistent posterior for pairs of state values

(xk,x`) (and similarly for triplets etc.). This can easily be seen

using Fig. 5: we would like to retain the left particle in the central

upper half of the domain, and abandon elsewhere. That would

mean that where ever it is abandoned we need to replace it with

another particle, perhaps partly with the particle in the right part

of the figure. At the boundary between particles a discontinuity

c© 2017 Royal Meteorological Society Prepared using qjrms4.cls



Particle Filters for Applications in Geosciences 21

will exist, which will lead to unphysical behaviour when this new

particle is propagated forward in time.

This means that to obtain global particles that can be

forwarded with the model equations one would need to somehow

smoothly glue different particles together. This is a major problem

and has hampered localisation in particle filtering since the

early 2000’s. However, recently clever smoothing schemes have

been constructed that seem to work well in high-dimensional

geophysical applications. We will report on those below.

Another issue is that the localisation area cannot be too large

to avoid filter collapse. As a rule of thumb, when there are

more than say 10 independent observations inside a local area,

the particle filter will still tend to be degenerate for the number

of O(10− 1000) particles one can typically afford. This means

that when the observation density is high the localisation areas

have to become unphysically small, or observations have to be

discarded. This issue might be solved using tempering techniques

as discussed earlier, but is often avoided by artificially enforcing a

minimal weight of the particles, or by changing the observations,

for instance by projecting them on a lower dimensional space

favoured by the prior.

Setting a minimal weight or projecting observations to a lower

dimensional space favoured by the prior has as consequence that

not all information will be extracted from the observations, as

observations that are very different from the existing particles

will be largely ignored. This is not directly equivalent to the

standard quality control measures used by operational weather

forecasting centres, in which observations that are a few standard

deviations away from the forecast are ignored. The issue here

is that a distance of less then one standard deviation for a few

observations can already lead to weight collapse, and artificially

setting minimum values for the weights avoids that.

4.1. Localisation based on resampling

Several localisation schemes have been proposed and discussed in

the review by van Leeuwen (2009) and those will not be repeated

here. The most obvious thing to do is to weight and resample

locally, and somehow glue the resampled particles together via

averaging at the edges between resampled local particles (van

Leeuwen 2003). In the following, several schemes in this category

are discussed.

4.1.1. The Localized Particle Filter

Recently, Penny and Miyoshi (2016) used this idea with more

extensive averaging, and their scheme runs as follows. First, for

each grid point j the observations close to that grid point are

found and the weight of each particle i is calculated based on the

likelihood of only those observations:

wi,j =
p(yj |xi,j)∑N
k=1 p(yj |xk,j)

(88)

in which yj denotes the set of observations within the

localisation area. Note the change of notation from the previous

section, related to the explicit use of the particle index in all

the following. This is followed by resampling via Stochastic

Universal Resampling to provide ensemble members xai,j with

i = 1, ..., N for each grid point j.

Farchi and Bocquet (2018) extended this methodology by

updating blocks of grid points locally, and introduce a smoothing

operator in the weights (similar to Poterjoy (2016)), as:

wi,j =

∑Nj

k=1G(dj,k/h)(p(yk|xi,k)∑N
m=1

∑Nj

k=1G(dj,k/h)p(yk|xm,k)
(89)

in which G(..) is a distance weighting function, e.g. a Gaussian

or an approximation of that, dj,k is the distance between grid

points j and k, for each observation yk at grid point k in the

neighbourhood of grid point j. The parameter h is a distance

radius, another tuning parameter. This formulation can be used

for each grid point j, but also for each block of grid points j. They

note that G can also be a Gaussian of a Gaussian, such that it

works directly on − log p(yk|xi,k).

As mentioned before, the issue is that two neighbouring grid

points can have different sets of particles, and smoothing is needed

to ensure that the posterior ensemble consists of smooth particles.

This smoothing is performed by Penny and Miyoshi (2016) for

each grid point j for each particle i by averaging over the Np

neighbouring points within the localisation area around grid point

j:

xai,j =
1

2
xai,j +

1

2Np

Np∑
k=1

xai,jk (90)
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in which jk for k = 1, ..., Np denotes the grid point index for those

points in the localisation area around grid point j. The resampling

via Stochastic Universal Resampling is done such that the weights

are sorted before the resampling, so that high-weight particles are

joined up to reduce spurious gradients.

Farchi and Bocquet (2018) also suggest to smooth this

operation, as follows:

xai,j = αxai,j + (1− α)

Np∑
k=1

G(dj,jk/h)xai,jk (91)

with α a tuning parameter. Note that choosing α = 1/2 and

G(dj,jk/h) = 1/Np we recover the scheme by Penny and Miyoshi

(2016).

While these schemes have been shown to solve the degeneracy

problem in intermediate dimensional systems with fixed balances,

like the barotropic vorticity model, it is unclear how they will

perform in complex systems such as the atmosphere in which

fronts can easily be smoothed out, and nonlinear balances broken,

see e.g. the discussion in van Leeuwen (2009).

4.1.2. The Local Particle Filter

A different scheme that involves a very careful process of ensuring

smooth posterior particles and retaining nonlinear relations

has recently been proposed by Poterjoy (2016). An important

difference with the state-space localisation methods discussed

above is that observations are assimilated sequentially to avoid the

discontinuity issues of the state-space localisation. This makes the

algorithm non-parallel, so slower than the state-space localisation

methods, but Farchi and Bocquet (2018) demonstrate that a lower

root-mean square error (RMSE) can be achieved.

The scheme proceeds as follows. First, adapted weights are

calculated for the first element y1 of the observation vector, as

w̃i = αp(y1|xi) + 1− α (92)

These weights are then normalised by their sum W̃ . Then the

ensemble is resampled according to these normalised weights to

form particles xki .

The scalar α is an important parameter is this scheme, with

α = 1 leading to standard weighting, and α = 0 leading to all

weights being equal to 1 (before normalisation). Its importance

lies in the fact that the weights are always larger than 1− α, so

even a value close to 1, say α = 0.99, leads to a minimum weight

of 0.01 that might seem small, but it means that particles that are

more then 1.7 observational standard deviations away from the

observations have their weights cut off to a value close to 1− α.

This limits the influence the observation can have on the ensemble.

Furthermore, the influence of α does depend on the size of the

observational error, which is perhaps not what one would like. It

is included to avoid loosing any particle.

Now the following is done for each grid point j. For each

member i a weight is calculated as

ω̃i = αρ(1, j, r)p(y1|xi) + 1− αρ(1, j, r) (93)

in which ρ(..) is the localisation function with localisation radius

r. These weights are normalised with their sum over the particles,

so a normalised weight ωi for this grid point is obtained. Note,

again, the role played by α. Then the posterior mean for this

observation at this grid point is calculated as

x̄j =

N∑
i=1

ωixi,j (94)

in which xi,j is the state at grid point j of particle i. Next a

number of scalars are calculated that ensure smooth posterior

fields (Poterjoy 2016) as detailed in Algorithm 10.

The final estimate becomes:

xai,j = x̄j + r1j(xki,j − x̄j) + r2j(xi,j − x̄j) (95)

where ki is the index of the i’s sampled particle. This procedure

is followed for each grid point so that at the end an updated set of

particles is obtained that have incorporated the first observation.

As a next step the whole process is repeated for the next

observation, with the small change that ω̃i is multiplied by ω̃i

from the previous observation, until all observations have been

assimilated. In this way, the full weight of all observations is

accumulated in the algorithm. Now the importance of α comes

to full light: without α the ensemble would collapse because the

ω̃’s would be degenerate when observations are accumulated.
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The final estimate shows that each particle at grid point j

is the posterior mean at that point plus a contribution from the

deviation of the posterior resampled particle from that mean and

a contribution from the deviation of the prior particle from that

mean. So each particle is a mixture of posterior and prior particles,

and departures from the prior are suppressed. When α = 1, so for

a full particle filter, we find for grid points at the observation

location, for which ρ(1, j, r) = 1, that cj = 0, so r2j = 0, and

r1j ≈ 1, so indeed the scheme gives back the full particle filter.

The basic elements of the scheme are depicted in Algorithm 10.

Algorithm 10 Local Particle Filter
for Each observation l do

for Each particle i do
w̃i ← αp(yl|xi) + 1− α

end for
W̃ ←

∑
w̃i

Resample xki
for Each grid point j do

for Each particle i do
ωi ← αρ(l, j, r)p(yl|xi) + 1− αρ(l, j, r)

end for
x←

∑
ωixi,j

σ2 ←
∑
ωi(xi,j − x)2

c← N(1−αρ(xj ,yl,r))

αρ(xj ,yl,r)W̃

r1 ←
√

σ2
j

1
N−1

∑N
i=1(xki,j

−x̄+c(xi,j−x̄))2

r2 ← cr1
for Each particle i do

xai,j ← x̄+ r1(xki,j − x̄) + r2(xi,j − x̄)

end for
end for

end for

At grid points between observations it can be shown that the

particles have the correct first and second order moments, but

higher-order moments are not conserved. (Farchi and Bocquet

(2018) generate a scheme that is quite similar, but they ensure

correct first and second moment by exploring the localised

covariances between observed and unobserved grid points directly

in a regression step.) To remedy this a probabilistic correction

is applied at each grid point, as follows. The prior particles

are dressed by Gaussians with width 1 and weighted by the

likelihood weights to generate the correct posterior pdf. The

posterior particles are dressed in the same way, each with weight

1/N . Then, the cumulative density functions (cdf’s) for the two

densities are calculated using a trapezoidal rule integration. A

cubic spline is used to find the prior cdf values at each prior

particle i, denoted by cdfi. Then a cubic spline is fitted to the other

cdf, and the posterior particle i is found as the inverse of its cdf

at value cdfi. See Poterjoy (2016) for details. The result of this

procedure is that higher-order moments are brought back into the

ensemble between observation points.

This scheme, although rather complicated, is one of the two

local particle filter scheme that has been applied to a high-

dimensional geophysical system based on primitive equations

in Poterjoy and Anderson (2016). The other is the Localised

Adaptive Particle Filter discussed below. (van Leeuwen (2003)

applied a local particle filter to a high-dimensional quasi-

geostrophic system, but that system is quite robust to sharp

gradients as it does not allow for gravity waves.)

4.1.3. The Localised Adaptive Particle Filter

The localized adaptive particle filter (LAPF) is based on the

localized version of the ensemble transform (60) following the

LETKF described in Hunt et al. (2007), see also Reich (2013),

with localization in observation space, and resampling in the spirit

of Gaussian Mixture filters (Stordal et al. 2011). Localization is

carried out around each grid point, and a transform matrix D

is calculated for each localization box. We note that, as for the

LETKF, the weights given by (7) depend continuously on the box

location and the observations.

In a first step, the observations are projected into the space

spanned by the prior particles. As mentioned above, this will

reduce the information extracted from the observations, but is

perhaps less ad-hoc than setting a lower bound on the weights,

as for instance used in the LPF. The LAPF carries out local

resampling using universal resampling (see e.g. van Leeuwen

(2009)).

In a second step, a careful adaptive sampling is carried out in

ensemble space around each of the N temporary particles. This

scheme runs as follows:

(a) Resampling is carried out based on a (radial) basis function

centered at each particle. A simple case would be a Gaussian

mixture, where the covariance of each of the centered Gaussians

is taken as a scaled version cP of the local dynamical ensemble

covariance P.

(b) The scaling factor c is individually calculated for each

box based on the local observation minus background error
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statistics. For details we refer to Potthast et al. (2019). By this,

the LAPF guarantees to obtain a spread of the analysis ensemble

which is consistent with the local dynamical observation minus

background (o-b) statistics and the observation error covariance

R. Further standard tools from the LETKF literature to control

ensemble spread can be employed if needed.

(c) To obtain sufficient smoothness of the fields in physical

space, the LAPF uses N global random draws to generate the

resampling vectors around each particle in the space of ensemble

coefficients. In combination with the fact that the LAPF draws in

each box around each particle only – in a globally uniform way

modulated by the ensemble covariance P and the factor c only –,

consistency and balance of the fields is achieved with sufficient

precision. The scheme is depicted in Algorithm 11.

Algorithm 11 Local Adaptive Particle Filter
for Each grid point j, and local grid points k do

Project local yk onto space {H(xn1,k), ..., H(xnN,k)}
for i = 1, .., N do

wi ← p(yk|xi,k)

end for
w← w/wT1

Resample
end for
P← Localized(XXT )

c < 1 (depends on o-b statistics, see text)
for i = 1, .., N do

β ∼ N(0, cP)

xi ← xi + β

end for

The LAPF is the first particle filter that has been implemented

and tested in an operational numerical weather prediction

context, and we provide a short description of the procedure.

The method has been implemented in the data assimilation

system DACE (Data Assimilation Coding Environment) of

Deutscher Wetterdienst (DWD) Potthast et al. (2019). The DACE

environment includes a Local Ensemble Transform Kalman Filter

(LETKF) based on Hunt et al. (2007) both for the global ICON

model system and the convection permitting COSMO model

system of DWD, see Schraff et al. (2016)), both of which are

run operationally at DWD∗ and build a basis, framework and

reference for the LAPF particle filter implementation.

∗since January 20, 2016 for the global ICON model with 40km global ensemble
resolution including a 20km resolved two-way nest over Europe; and since March
21, 2017 for the COSMO model with 2.8km resolution over central Europe

The ensemble data assimilation system is equipped with a

variety of tools to control the spread of the ensemble, such as

multiplicative inflation and additive inflation, relaxation to prior

spread (RTPS), relaxation to prior perturbations (RTPP) and

stochastic schemes to add spread to soil moisture and sea surface

temperature (SST) when needed (details are described in Schraff

et al. (2016)).

Tests with the LAPF for the global ICON model with 40

particles of 40km global resolution have been successfully and

stably run over a duration of one month. Extensive tests on how

many particles form the basis for resampling in each localization

box have been carried out, the numbers vary strongly over the

globe and all heights of the atmosphere, ranging from 1 toN , with

relatively flat distribution. Diagnostics and tuning of the system

is under development and discussed in Potthast et al. (2019).

Results show that the quality of the LAPF does not yet reach the

scores of the operational global LETKF-EnVAR system, but the

system runs stably and forecast scores are about 10-15% behind

the current operational system.

4.2. The Local Ensemble Transform Particle Filter

This filter uses a classic sequential importance resampling particle

filter from a set of forecast particles xf
i, which can be obtained

employing either the standard or the optimal proposals (or any

other) and their associated importance weights wf
i . The particles

are then resampled in a statistically consistent manner, which can

be characterized by an N ×N stochastic transition matrix D with

the following properties: (i) all entries dij of D are non-negative

and
N∑
i=1

dij = 1 ,
1

N

N∑
j=1

dij = wf
i . (96)

Let us denote the set of all such matrices by D. Then any

D ∈ D leads to a resampling scheme by randomly drawing an

element j∗ ∈ {1, . . . , N} according to the probability vector pj =

(p1j , . . . , pNj) ∈ RN for each j = 1, . . . , N . The jth forecast

particle xf
j is then replaced by xf

j∗ and the new particles xnj =

xf
j∗ , j = 1, . . . , N , provide an equally weighted set of particles

from the posterior distribution. Note that multinomial resampling
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corresponds to the simple choice

dij = wf
i . (97)

The ensemble transform particle filter (ETPF) (Reich 2013;

Reich and Cotter 2015) is based on the particular choice D̂ ∈ D

that minimizes the expected squared Euclidian distance between

forecast particles, i.e.,

D̂ = arg min
D∈D

N∑
i,j=1

dij‖xf
i − xf

j‖
2 . (98)

It has been shown under appropriate conditions that the variance

of a resampling step based on D̂ vanishes as N →∞ (McCann

1995; Reich 2013). This fact is utilized by the ETPF and one

defines

xnj =

N∑
i=1

xf
id̂ij (99)

even for finite particles numbers. Of course, by its very

construction, the ETPF underestimates the posterior covariance.

However, there are corrections available that lead to second-order

accurate implementations (de Wiljes et al. 2017). See Section 5.3

for more details.

Following previously introduced notations, localization can

now be implemented into the ETPF as follows. For each grid point

k, we extract the values of the forecast particle xf
i at that grid point

and denote them by xki . Using the observations local to this grid

point, we calculate localized importance weights wki for xki . Then

(98) gives rise to a localized transformation matrix

D̂k = arg min
D∈Dk

N∑
i,j=1

dij‖xki − xkj ‖
2 (100)

at grid point k with the set Dk defined by

Dk =

D ∈ RN×N+ :

N∑
i=1

dij = 1,

N∑
j=1

dij = wki N

 . (101)

Note that the transport cost (distance) tij = ‖xki − xkj ‖
2 can be

replaced by any other localized cost function. See Chen and

Reich (2015) for more details. The transport problem (100) at

each grid point can be computationally expensive. Less expensive

approximations, such as the Sinkhorn approximation, and their

implementation into the localized ETPF (LETPF) are discussed in

de Wiljes et al. (2017). Farchi and Bocquet (2018) have extended

this algorithm to block weighting, similar to their extension of the

Local Particle Filter.

The latter authors also defined a local transform particle filter

in state space. This involves a transformation, at each grid point,

from prior to posterior particles by a transformation, which

essentially becomes an anamorphosis step. The prior and posterior

probability densities need to be known as continuous densities,

and Farchi and Bocquet (2018) use kernel density estimation with

the particles as basis. The interesting suggestion is that since

the transformation is deterministic and expected to be smooth

over the space coordinates, no specific smoothing is needed after

the transformation. We refer to their paper for details on this

methodology.

4.3. Space-Time Particle Filters

The idea to run a particle filter over the spatial domain was

introduced by van Leeuwen (2009), and the first algorithm, the

Location Bootstrap Filter, was published by Briggs et al. (2013).

The Space-Time Particle Filter by Beskos et al. (2017) improves

on this algorithm by removing the jitter step, as explained below.

In the following we assume observations at every grid point,

but the algorithms can easily be adapted to other observation

networks.

The Location Particle Filter of Briggs et al. (2013) runs as

follows. The grid points are ordered 1, ..., L, such that points l and

l + 1 are neighbouring grid points for each l ∈ 1, ..., L. In each

grid point l we have a sample xi,l for i ∈ 1, ..., N , and l denotes

the grid point number. We start the spatial particle filter at location

l = 1 by calculating the weight p(y1|xi,1) (where the time index

is suppressed) for each prior particle i, and perform resampling

using these weights over the whole spatial domain. This means

that the resampled particles are now samples of p(x1:L|y1). A

small amount of jitter is added to avoid identical particles. The

choice of this jitter density is again not clear for geophysical

applications, more research is needed on this issue.

Then, the algorithm moves to the next grid point, calculates

the weights p(y2|xi,2), and resamples the full state particles using

this weight, generating samples from p(x1:L|y1,y2). Again some
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jitter is needed to avoid ensemble collapse, and the algorithm

moves to the next grid point, until all grid points are treated this

way. Algorithm 12 describes the computational steps.

Algorithm 12 Location Particle Filter
for Each grid point j, and local grid points k do

for i = 1, .., N do
wi ← p(yk|xi,k)

end for
w← w/wT1

Resample
Define jitter covariance S

for i = 1, .., N do
β ∼ N(0,S)

xi,j ← xi,j + β

end for
end for

Note that the algorithm does not suffer from artificial sharp

gradients because all resampled particles are global particles, but

the algorithm will be very sensitive to the choice of the jitter

density used after updating the ensemble in each grid point.

Furthermore, when prior and posterior are very different, the

algorithm will perform poorly, and Briggs et al. (2013) propose

a smoother variant that employs copulas for numerical efficiency.

We will not discuss that variant here.

Beskos et al. (2017) introduce the Space-Time Particle Filter.

Instead of using a jitter density to avoid identical particles they

exploit the spatial transition density p(xnl |x
n,1
l−1,x

n−1
1:L ), in which

n is the time index and l the spatial index. (In fact, Beskos

et al. (2017) allow for a proposal density, but we will explain

the algorithm with using the prior spatial pdf as proposal.) So

they exploit the pdf of the state at time n and grid point l, xnl ,

conditioned on all previous grid points xn1:l−1 at the same time n,

and conditioned on all grid points at time n− 1, denoted xn−1
1:L .

They do this by introducing a set of M local particles j, for each

global particle i, with i ∈ 1, ..., N .

For each of the global particles i they run the following

algorithm over the whole grid:

1 Starting from location l = 1 the M local particle filters

grow in dimension when moving over the grid towards the

final position L. At the first grid point the prior particles at

that grid point are used, weighted with the local likelihood

p(y1|x1) and resampled. Let us call these particles x̂j,1, in

which j is the index of the local particle, and 1 is the index

of the grid point.

2 The mean w̄1 of the unnormalised weights is calculated.

3 For the next grid point each of these M resampled

particles are propagated to that grid point by drawing from

p(x2|x̂j,1,xn−1
j,1:L). Since each of the M particles is drawn

independently they will differ and no jittering is needed.

4 Then the unnormalised weights p(y2|x2) are calculated,

and their mean w̄2, followed by a resampling step.

5 This process is repeated until l = L, so until the whole

space is covered.

6 Finally, the total weightw1 =
∏L
l=1 w̄

l is calculated, which

is the unnormalised weight of the 1st global particle.

Algorithm 13 summarises the scheme.

Algorithm 13 Space-Time Particle Filter
for i = 1, .., N do

for Each grid point j, and local grid points k do
for m = 1, ..,M do

xnm,j ∼ p(x
n
j |x

n
1:l−1,x

n−1
1:L )

w̃m ← p(yk|xi,k)

end for
w̄i,j ← 1

M

∑M
m=1 w̃m

end for
wi ←

∏L
j=1 w̄i,j

end for
w← w/wT1

Resample

This procedure is followed N times for each global particle

i independently. These global particles are then resampled

according to the weight Gi It is still possible that this filter is

degenerate, see Beskos et al. (2017) for details and potential

solutions.

The importance of this filter lies in the fact that there is a formal

proof that it converges to the correct posterior for an increasing

number of particles, unlike any of the other algorithms discussed.

Furthermore, the authors show that degeneracy can be avoided if

the number of particles grows as the square of the dimension of

the system, indeed much faster convergence than e.g. the optimal

proposal density.

4.4. Discussion

Following into the footsteps of Ensemble Kalman Filters,

exploring localisation in particle filters is a rapidly growing
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field. But localisation in particle filters is not trivial as there

is no automatic smoothing via smoothed sample covariances

as in Ensemble Kalman filters. Most local particle filters

impose explicit spatial smoothing, which can affect delicate

balances in the system. Worth mentioning in this context

is the localisation introduced by Robert and Künsch (2017),

who process observations sequentially in their hybrid Ensemble

Kalman Filter-Particle Filter approach such that the second-order

properties of the particle-filter part remain correct. This method is

discussed in the next chapter. The Ensemble Transform Particle

Filter and the Localized Adaptive Particle Filter come closest

to the Ensemble Kalman Filter by using a linear transportation

matrix to transforms the prior ensemble into a posterior ensemble,

and this matrix can be made smoothly varying with space. All of

these smoothing operations rely on forming linear combinations

of particles, so can potentially harm nonlinear balances in the

model. Furthermore, it should be noted that the smoothing

operation does not necessarily follow Bayes Theorem, so it might

result in an extra approximation of the true posterior pdf. When

the ensemble size is small this approximation might be negligible

compared to the Monte-Carlo noise from the finite ensemble size,

however.

The Location Particle Filter and the Space-Time Particle Filter

avoid this smoothing and rely on statistical connections between

different grid points. The former does this via the prior pdf,

defined by the prior particles. When the number of particles is low

this pdf is estimated rather poorly. Furthermore, the method needs

jittering of the global particles to avoid ensemble collapse after

every resampling step after each new observation is assimilated.

This jittering pdf can be chosen arbitrarily, for instance a smooth

Gaussian, but it does violate Bayes Theorem. As mentioned

above, this error might be negligible when the ensemble size

is small. The latter method explores the transition density over

space and time, leading to consistent estimates of the spatial

relations between grid points. Another potential issue of both

methods is that if the spatial field is two or higher dimensional,

as in geoscience applications, it is unclear how to order the grid

points, and potentially large jumps might be created between

neighbouring grid points that are treated as far apart by the

algorithm. This needs further investigation.

5. Hybrids between Particle Filters and Ensemble Kalman

Filters

As mentioned in the previous section, there are two issues with

localisation. Firstly, particle filters that employ resampling need

to ensure smooth updates in space so that the newly formed global

particles do not encounter strong adjustments to physical balances

due to artificial gradients from glueing particles together. Present-

day localised particle schemes concentrate on this issue.

Secondly, the localisation area cannot contain too many

independent observations, and as a rule of thumb 10 independent

observations is often too many, to avoid weight collapse. As

mentioned, this demand can be in strong contrast with physical

considerations of appropriate length scales. This is one of the main

reasons to consider hybrids between particle filters and ensemble

Kalman filters within a localisation scheme. In the following

several recent hybrid methods are presented.

5.1. Adaptive Gaussian Mixture Filter

A bridging formulation allows to smoothly transition between an

ensemble Kalman filter and a particle filter analysis update. One

such formulation is the adaptive Gaussian mixture filter (Stordal

et al. 2011).

In a Gaussian mixture filter, the distribution is approximated by

a combination of normal distributions centered at the values of the

particles. Thus we have

p(xn) =

N∑
i=1

wiN
(
xfi , P̂

f
)

(102)

where N(xfi , P̂
f ) is a Gaussian Kernel with mean xni and

covariance P̂f . This covariance is initialized from the sample

covariance matrix Pf of the ensemble by multiplying with a so-

called bandwidth parameter 0 < h ≤ 1 such that

P̂f = h2Pf . (103)

At the analysis time, the filter computes a two-step update: In

the first step we update the ensemble members and the covariance
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matrix according to the Kalman filter equations given by

Xn = Xf + K̂n
(
yn1T −HXf

)
(104)

K̂n = P̂fHT
(
HP̂fHT + Rn

)−1
(105)

and

Pn =
(
I− K̂nH

)
P̂f . (106)

Note that this is just a short-hand notation for updating each centre

fo the prior Gaussians. For computational efficiency the analysis

equations in the (adaptive) Gaussian mixture filter (Hoteit et al.

2008; Stordal et al. 2011) were proposed to use a factorized

covariance matrix in the form P̂f = LULT as can be obtained

from a singular value decomposition of the ensemble perturbation

matrix and used, e.g. in the SEIK filter (Pham 2001) and error-

subspace transform Kalman filter (ESTKF, Nerger et al. 2012).

However, the particular form of the Kalman filter update equations

is not crucial here.

In the second step we update the weights of the particles

according to

wni ≈ w
n−1
i Nyn|xf

(
Hxfi ,R

n
)

(107)

in which Rn = R + HP̂fHT , and then normalise these so that

the sum of the weights is one.

The bridging is now done by interpolating the analysis weight

with a uniform weight N−1 as

w
(α)
i = αwi + (1− α)N−1, (108)

where α is the bridging parameter. We obtain a transition between

the ensemble Kalman filter and the particle filter by varying both α

and h. For α = 0 and h = 1 we obtain the uniform weights of the

ensemble Kalman filter, while for α = 1 and h = 0 we obtain the

particle filter weights. Stordal et al. (2011) proposed to adaptively

estimate an optimal value of α by setting α = N−1N̂eff where

N̂eff = (
∑
i w

2
i )−1 is the effective sample size.

The update formulation of the adaptive Gaussian mixture filter

reduces the risk of ensemble degeneracy, but cannot fully avoid it.

To this end, we can combine the filter with a resampling step as in

other particle filters.

5.2. Ensemble Kalman Particle Filter

The Ensemble Kalman Particle Filter of Frei and Künsch (2013)

is a hybrid EnKF-PF. It is based on tempering in just two steps,

splitting the likelihood into two factors

p(xn|yn) = p(xn|yn)α p(xn|yn)1−α (109)

with α ∈ (0, 1). In the first step the Stochastic Ensemble Kalman

filter of Burgers et al. (1998) is applied, and in the second step a

particle filter. When the parameter α is close to 0 the scheme is

like a full particle filter, while for α close to 1 it is essentially the

ensemble Kalman filter. Figure 9 illustrates the idea.

xx x

SEnKF PF

Figure 9. The Ensemble Kalman Particle Filter. First a Stochastic EnKF is
performed, followed by a standard Particle Filter.

Two problems with a direct application of the above scheme are

identified by Frei and Künsch (2013): the particle filter weights are

influenced by the random modelled observations in the Stochastic

EnKF (SEnKF), and the resampling step in the particle filter will

lead to identical particles. To avoid both, the algorithm is modified

as follows. Firstly, assuming a Gaussian likelihood, the SEnKF

particles can be written as:

xSEnKFi = xi + Kα(y −Hxi − εi) (110)

with εi ∼ N(0,R/α) and Kα is the normal gain, but with R

divided by α. Thus, the particles can be seen as draws from

xSEnKFi ∼ N(νi,P
EnKF ) (111)

in which

νi = xi + Kα(y −Hxi) (112)
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and

PSEnKF =
1

α
KαRKT

α . (113)

Hence the SEnKF posterior can be written as:

p(x|y)SEnKF =
1

N

N∑
i=1

N(νi,P
SEnKF ) (114)

Instead of performing the standard SEnKF sampling from this

density we delay that sampling and perform the multiplication

with the second likelihood p(y|x)1−α analytically. This is easy

because the EnKF posterior is a Gaussian mixture and the

likelihood is a Gaussian, so the full posterior is a Gaussian mixture

too. This leads to a full posterior

N∑
i=1

γiN(µi,P
PF ) (115)

in which

µi = νi + K̂(y −Hνi) (116)

γi = N
(
y −Hνi,HPSEnKFHT + R/(1− α)

)
(117)

PPF = (I− K̂H)PSEnKF (118)

where

K̂ = PSEnKFHT
(
HPSEnKFHT + R/(1− α)

)−1
(119)

Note that the normalisation constants in γi do not have to be

calculated as we know that they should fulfil
∑
i γi = 1.

The way to sample the particles now becomes a two step

procedure. First draw N samples from the distribution of the

mixture coefficients γi and then draw from the selected Gaussian

mixture components:

xEKPFi = µki + ξi (120)

in which ki denotes the resampled particle index i and ξi ∼

N(0,PPF ). The variables ξi can again be generated in two steps

by

ξi = (I− K̂HT )Kαεi,1 + K̂εi,2 (121)

where ε1.i and εi,2 are independent draws from N(0,R/α) and

N(0,R/(1− α)), respectively.

The scheme is very closely related to a Gaussian mixture

model, as the EnKF step forces the prior for the particle filter to

be a Gaussian mixture. The strong point of this scheme is that

the width of each Gaussian follows naturally from the stochastic

part of the EnKF, while it is ad hoc in standard Gaussian mixture

models. Furthermore, while the standard Gaussian mixture model

uses the observation covariance matrix R this filter uses an

inflated HPSEnKFHT + R/(1− α), which will lead to a better

weight distribution. Finally, the starting points of the centres of the

prior Gaussians will be closer the observations, suggesting more

uniform weights. The pseudocode of the scheme is presented in

Algorithm 14.

Algorithm 14 Ensemble Kalman Particle Filter

Rα ← R/α

Kα ← PHT (HPHT + Rα)−1

PSEnKF ← 1
αKαRKT

α

K̂← PSEnKFHT
(
HPSEnKFHT + R/(1− α)

)−1

for i = 1, .., N do
εi,1 ∼ N(0,Rα)

εi,2 ∼ N(0,R/(1− α))

νi ← xi + Kα(y −Hxi − εi)

µi ← νi + K̂(y −Hνi)

γi ∼ N
(
y −Hνi,HPSEnKFHT + R/(1− α)

)
end for
γ ← γ/γT1

for i = 1, .., N do
ki ∼MultiNomial(γ)

ξi ← (I− K̂HT )Kαεi,1 + K̂εi,2
xEKPFi ← µki + ξi

end for
Resample

In an extension of the scheme, Frei and Künsch (2013) suggest

to form a tempering scheme, alternatively using the ensemble

Kalman filter and the particle filter. The resampling step of the

particle filter is not problematic in this case as the Kalman filter

will diversify identical particles in each next iteration. The paper

also discusses approximate schemes for non-Gaussian observation

errors and nonlinear observation operators.

In Robert et al. (2017), a variant of this method has been

introduced which is based on the LETKF instead of the stochastic

variant and in which the update is in ensemble space:

XPI = XfW (122)
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where the column sums of W equal 1. The matrix W can be split

into

W = WµWα + Wξ (123)

where Wµ corresponds to computing the centers µi, Wα to the

resampling and Wξ to the added noise ξi. In the transform variant

Wξ is deterministic and chosen such that the sample covariance

of XPI is equals the covariance of the Gaussian mixture (115).

It thus belongs also to the class of second-order exact filters

discussed in the next section.

Robert et al. (2017) apply a localized transform Ensemble

Kalman Particle Filter in the KENDA (Kilometer-Scale Ensemble

Data Assimilation) system with a setup similar to the one

used operationally by MeteoSwiss. This system computes the

weight matrices W only on a coarse grid and then interpolates

these matrices to the original grid. Therefore the discontinuities

introduced by resampling are smoothed out, but in a way that is

possibly optimal for the EnKF and not for the EnKPF. In Robert

and Künsch (2017) a different localization method for the EnKPF

was developed which proceeds by sequentially assimilating

observations yk, limiting the state components influenced by yk

to a subset. It smoothes out the discontinuities that occur when a

resampled particle in the region influenced by yk is connected to a

background particle outside of this region. The smoothing is done

in such a way that the second-order properties of the smoothed

particle remain correct.

5.3. Second-order exact filters

A second-order exact filter ensures that the posterior ensemble

mean and ensemble covariance matrix are equal to those obtained

from the particle filter weights. Thus, the requirement for the mean

of the analysis ensemble is

xn =
1

N

N∑
i=1

xni =

N∑
i=1

wix
f
i (124)

where the superscript f denotes the forecasted state vector.

Likewise, the posterior ensemble covariance matrix is required to

fulfil

Pa =
1

N

N∑
i=1

(
xni − xn

) (
xni − xn

)T (125)

=

N∑
i=1

wi

(
xfi − xn

)(
xfi − xn

)T
. (126)

5.3.1. Merging Particle Filter

The merging particle filter by Nakano et al. (2007) explores the

sampling aspect of the resampling step. The method draws a set

of q ensembles each of size N from the weighted prior ensemble

at the resampling step. Then these sets are merged via a weighted

average to obtain a new set of particles that has the correct mean

and covariance but is more robust than the standard particle filter.

Define xi,j as ensemble member i in ensemble j. The new merged

ensemble members are generated via

xai =

q∑
j=1

αjxi,j . (127)

To ensure that the new ensemble has the correct mean and

covariance, the coefficients αj have to be real and need to fulfil

the two conditions

q∑
j=1

αj = 1;

q∑
j=1

α2
j = 1, (128)

When q > 3 there is no unique solution for the α’s, while for

q = 3 one finds:

α1 =
3

4

α2 =

√
13 + 1

8

α3 = −
√

13− 1

8
(129)

We can make the weights space-dependent in high-dimensional

systems and since the new particles are merged previous particles

the resulting global particles are expected to be smooth. The

scheme is depicted in Algorithm 15.

5.3.2. Nonlinear Ensemble Transform Filter NETF

A simple formulation of a second-order exact filter can be

obtained by using Eq. (124) to compute the mean of the posterior
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Algorithm 15 Merging Particle Filter
for i = 1, .., N do

wi ← p(yk|xi)
end for
w← w/wT1

(Xa
1 , ...,X

a
q )← q times resampled prior ensemble

Find αi such that
∑
i αi = 1 and

∑
i α

2
i = 1

Xa ←
∑
αiX

a
i

ensemble (Xiong et al. 2006; Tödter and Ahrens 2015). For the

associated ensemble perturbations, we can derive from Eq. (126)

with w = (w1, . . . , wN )T and W = diag(w) that

Pa = Xf
(
W −wwT

)
(Xf )T . (130)

Posterior ensemble perturbations can now be obtained by factor-

izing A = W −wwT , e.g. by a singular value decomposition

as A = VΛVT . This leads to A1/2 = VΛ1/2VT and posterior

perturbations are then given by

X′n =
√
NXfVΛ1/2VT . (131)

Finally, the full posterior particles are given by

xni = Xf
(
w1T +

√
NVΛ1/2VT

)
i
. (132)

The computations of this filter are very similar to those in

ensemble square-root Kalman filters like the ETKF (Hunt et al.

2007) or ESTKF (Nerger et al. 2012). As such, we can can also

localize the filter in the same way. The localized NETF has been

successfully applied to a high-dimensional geophysical system

based on primitive equations in Tödter et al. (2016). In addition,

the filter can be easily extended to a smoother by applying the filter

transform matrix (the term in parenthesis in Eq. 132) to previous

analysis times (Kirchgessner et al. 2017). The scheme is depicted

in Algorithm 16.

Algorithm 16 NETF
for i = 1, .., N do

wi ← p(yk|xi)
end for
w← w/wT1

A← diag(w)−wwT

VΛVT ← A

T←
√
NVΛ1/2VT

T← T + w

Xa ← XfT

5.3.3. Nonlinear Ensemble Adjustment Filter

There is also a stochastic variant of the previous algorithm

(Lei and Bickel 2011), which is motivated from the Stochastic

Ensemble Kalman filter (Burgers et al. 1998; Houtekamer and

Mitchell 1998). In this filter, we generate a set of perturbed model

observations

yi = H(xi) + εi, i = 1, . . . , N, (133)

which represents the observation probability distribution. We now

obtain an analysis mean of each particle analogously to Eq. (124)

by

xn(yk) =

N∑
i=1

wi(yk)xfi (134)

where each weight wi(yk) is computed from the likelihood of

the perturbed measured ensemble member H(xi) . When we now

define

P̂a(yk) =

N∑
i=1

wi(yk)
(
xfi − xn(yk)

)(
xfi − xn(yk)

)T
(135)

we obtain the posterior ensemble members as

xnk = xn + (Pa)1/2P̂a(yk)−1/2(xfk − xn(yk)) (136)

where xn is given by Eq. (124) and Pa is given by Eq. (126). This

update equation only yields the correct first and second moments

of the posterior distribution in the limit of a large ensemble.

5.3.4. Second-order exact ETPF

Also the ETPF (see Sec. 4.2) can be formulated to be second-order

accurate (de Wiljes et al. 2017). For this, we approximate

A = W −wwT ≈ 1

N

(
D̂−w1T

)(
D̂−w1T

)T
(137)

where the matrix D̂ is obtained through (98). To ensure the

second-order accuracy, we introduce a correction term such that

D̃ = D̂ + ∆ (138)
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with ∆ being a symmetric N ×N matrix. Using D̃ in Eq. (137)

and requiring that the result is equal to A leads to the condition

N(W −wwT )− (D̂−W1T )(D̂−W1T )T (139)

= (D̂−W1T )∆ + ∆(D̂−W1T )T + ∆∆, (140)

which is a quadratic equation in ∆ in the form of a continuous-

time algebraic Riccati equation and there are known solution

methods for this type of equation (see, e.g., de Wiljes et al. 2017).

Note that D̃ still satisfies (96). However, d̃ij ≥ 0 does not hold

anymore, in general.

5.4. Hybrid LETPF-LETKF

The hybrid LETPF-LETKF is also based on the simple idea of

splitting the likelihood function into two factors at each grid point

k, i.e.

p(xk|y(k)) = p(xk|y(k))1−α p(xk|y(k))α (141)

with α ∈ (0, 1), but now the particle filter is employed first,

followed by the ensemble Kalman filter. This is similar to

tempering in just two steps. When the likelihood is Gaussian the

posterior is expected to be more Gaussian than the prior. Hence it

makes sense to use a particle filter in the first step, and to try to

use an EnKF in the second step of the tempering procedure.

If the likelihood is Gaussian with localized error covariance

matrix Rk, then the factorization is equivalent to scaling this

matrix by 1/α and 1/(1− α), respectively. Hence, one can, for

example, first apply an LETPF to the forecast particles xf
i with

inflated covariance matrix Rk/α in order to obtain new particle

values

x̃ki =

N∑
j=1

dkij(α)xki (142)

at each grid point k. One then applies the LETKF to

these intermediate particles x̃i with inflated covariance matrix

Rk/(1− α). The choice of α is, of course, crucial. Numerical

experiments indicate (Chustagulprom et al. 2016) that α > 0 can

lead to substantial improvements over a purely LETKF-based

implementation and that the choice of α can be based on the

effective sample size of the associated LETPF. However, more

refined selection criteria for the parameter α are needed to make

the hybrid LETPF-LETKF method widely applicable.

5.5. Hybrid EnVar PF

Based on the localized adaptive particle filter (LAPF) described

in Section 4.1.3, a hybrid particle filter based ensemble variational

data assimilation system (PfVar) can also be constructed. The idea

is to replace the LETKF-based ensemble in an EnVar by an LAPF-

based ensemble.

We briefly discuss a practical numerical weather prediction

example here. Following Buehner et al. (2013), the operational

EnVAR system of DWD for the ICON model with 13km global

resolution and 6.5km resolution of its two-way nested area over

Europe is using the ensemble of the global 40 member LETKF

for its dynamic covariance matrix with a ratio of 70:30 towards the

classical NMC based covariance matrix of the three-dimensional

variational data assimilation system with 3h cycling interval. The

LETKF ensemble is replaced by the LAPF ensemble, where the

quality control of the variational high-resolution run is used for

the ensemble data assimilation system under consideration. In the

current system, no recentering of the ensemble with respect to

the variational mean estimator is carried out, leading to a form

of weak coupling of the systems.

In a quasi-operational setup (without a high-resolution nest),

the hybrid PfVAR is running stably for a period of one month.

The observation minus background statistics show very promising

behaviour in several case studies which are under investigation

at DWD (Walter et al. 2018). In the current state of tuning, the

forecast quality of the PfVAR seems comparable to the forecasts

based on the LETKF-based EnVAR. These new results studied in

combination with Robert et al. (2017) show that today’s particle

filters are approaching the quality of state-of-the-art operational

ensemble data assimilation systems and are already becoming

important tools on all scales of NWP.

5.6. Discussion

Hybrid particle-ensemble Kalman filter schemes, especially when

implemented adaptively, can avoid weight collapse in the particle

filter part of the hybrid in any situation. The price paid is that

not all information from the observations is extracted when the

posterior pdf is severely non-Gaussian, but in many situations

this is not the dominant source of error. The reason why these
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schemes are competitive is that they do take into account some

non-Gaussianity via the particle filter, while the particle filter

alone is very inefficient compared to the Ensemble Kalman Filter

when the posterior is actually close to a Gaussian. So the objective

is not necessarily to make the α as small as possible, but indeed

to find an optimal α to ensure that the Ensemble Kalman Filter is

used whenever we can. The same is true for the bridging parameter

in the Adaptive Gaussian Mixture Filter.

The second-order exact filters are hybrids of a different kind,

focussing on obtaining the posterior mean and the covariance

correct given the limited prior ensemble. These methods are

expected to be quite competitive to the hybrid filters discussed

above, and the relative performance will depend strongly on the

measure used to define what is best. For instance, RMSE are

expected to be better for the second-order exact filters, while full

ensemble measures like rank histograms and continuous ranked

probability scores might benefit from the hybrid schemes.

One question that emerges when comparing the Ensemble

Kalman Particle Filter and the LETPF-LETKF hybrid is what

should one use first, the particle filter or the ensemble Kalman

filter. Different experimental results seem to indicate that both

orderings can be superior to the other. The PF-first methods

have the advantage of a theoretical justification via a two-step

tempering interpretation in which the particle filter step makes the

prior for the EnKF much more Gaussian. Applying the EnKF first

will bring the particles closer to the observations, leading to better

weight balance in the particle filter. At this moment it is unclear

which order is best when, much more research is needed.

6. Conclusions and discussion

The largest issue of standard particle filters was until recently

their degeneracy in high-dimensional settings: when the number

of independent observations is large and the number of particles

is limited (of order 10-1000 for geophysical applications), one

particle gets weight one, and all others get weight zero.

Two developments have revived the interest in particle filters:

efficient proposal densities and localisation, while hybrids with

Ensemble Kalman Filters and recently transportation filters

enhance confidence in the usefulness of particle filters in high-

dimensional settings. The new kid on the block are particle

flow methods. Their popularity in the large machine-learning

community ensures rapid progress here, too. It is unclear at this

moment how competitive these new ideas will be. It is clear

that developments on particle filters have been very fast, and the

first tests of both localised and hybrid particle-EnKF filters in

operational numerical weather prediction have been performed

and show highly encouraging results.

This paper discussed these new developments and demonstrates

that particle filters are useful in even the largest dimensional

geophysical data-assimilation problems and will allow us to

make large steps towards fully nonlinear data assimilation. The

emphasis was here on explaining and connecting existing and

new ideas, including new understanding of the optimality of the

optimal proposal density and equal-weight filters.

From the presentation it has become clear that the field is

too young to provide solid guidance on which method will be

most fruitful for which problem. Given that most data-assimilation

practitioners will have an implementation of a local Ensemble

Kalman Filter in some form, localised particle filters seem to

be the fastest way to make progress. However, one has to keep

in mind that the resampling step needs smoothing that is more

complex than in an Ensemble Kalman Filter, although exciting

new variants like the ETPF and LAPF allow for smooth updates

in a very natural way. Furthermore, with the small ensemble sizes

now practical (10-100), more than 10 independent observations in

a localisation area may already lead to filter degeneracy, forcing

us to look into methods that limit the weights from below. This is

another ad-hoc procedure that limits information extraction from

observations, but it is unclear how severe this issue is.

Even easier are implementations of hybrid PF-EnKF filters,

but it is still unclear what these filters target. At the moment

their value lies in bringing more non-Gaussianity into Ensemble

Kalman Filters, but at the same time ensure that an Ensemble

Kalman Filter is used when that is warranted.

We discussed two main variants that try to avoid localisation

because of the issues discussed above: the equal-weight particle

filters and transportation particle filters. The equal-weight

variants, which avoid weight collapse by construction, do not

have a complete mathematical foundation yet. We know these

schemes are biased, but since they are tailored to high-dimensional
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problems with small ensemble sizes the bias error might be

smaller than the Monte-Carlo error from the small ensemble

size. Transportation particle filters still have to demonstrate their

full potential in geoscience applications, but initial experiments

with e.g. mapping particle filters on low-to-moderate dimensional

systems together with the way they are formulated suggest they

could become mainstream competitive schemes.

All in all, huge progress has been made in particle filtering, and

initial attempts to implement the schemes into full-scale numerical

weather prediction models have succeeded, with promising initial

results. This shows that particle filters can no longer be ignored

for high-dimensional geoscience applications.

Appendices

A. Law of total variance

The law of total variance is an elementary theorem in statistics

and probability. It can be proven as follows. First we need the

Law of total expectation, which reads, using EA[B] as denoting

the expectation of B under pdf p(a):

EY [EX|Y [f(X)]] =

∫ ∫
f(x)p(x|y)p(y) dx dy

=

∫
x

∫
y

f(x)p(x, y) dy dx

=

∫
f(x)p(x) dx

= EX [f(X)] (143)

Using this equality on varX[X] leads to:

varX[X] = EX[X2]− E2
X[X]

= EY

[
EX|Y [X2]

]
− E2

Y [EX|Y [X]]

= EY

[
varX|Y [X] + E2

X|Y [X]
]
− E2

Y [EX|Y [X]]

= EY
[
varX|Y [X]

]
+ EY

[
E2
X|Y [X]

]
− E2

Y [EX|Y [X]]

= EY
[
varX|Y [X]

]
+ varY

[
EX|Y [X]

]
(144)

which proves the theorem.
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