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ABSTRACT 

 

Glutamic acid-rich peptides are crucial to a variety of biological processes, including 

glutamatergic neurotransmission and immunological defense. Glutamic acid sequences often 

exhibit unusual organization into 2-type sheets, where bifurcated H-bonds formed between 

glutamic acid side-chains and NH in amide bonds on adjacent strands play a paramount role 

for stabilizing the molecular assembly. Herein, we investigate the self-assembly and 

supramolecular structure of simplified models consisting of alternating glutamic 

acid/phenylalanine residues. Small-angle X-ray scattering and atomic force microscopy show 

that the aggregation pathway is characterized by the formation of small oligomers, followed by 

coalescence into nanofibrils and nanotapes. Amyloidogenic features are further demonstrated 

through fiber X-ray diffraction, which reveal molecular packing according to cross- patterns, 

where strands appear perpendicularly-oriented to the long axis of nanofibrils and nanotapes. 

Nanoscale infrared spectroscopy from individual nanoparticles on dried samples shows a 

remarkable decrease of 2-sheet content, accompanied by growth of standard -sheet fractions, 

indicating a 2-to-1 transition as a consequence of the release of solvent from the interstices of 

peptide assemblies. Our findings highlight the key role played by water molecules in mediating 

H-bond formation in 2-sheets commonly found in amyloidogenic glutamic acid-rich aggregates  
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INTRODUCTION 

 Self-assembling oligopeptides have been identified as promising candidates in the 

development of the next generation of biomaterials.1-3  Since they are based on a limited number 

of building blocks, these systems reduce the complexity of intra- and inter- molecular 

interactions, providing interesting models for the investigation of biological phenomena closely 

related to protein aggregation.4-7 Furthermore, rationally-designed sequences are easy to 

synthesize through standard solid-phase approaches and exhibit higher stability and lower cost 

in comparison with longer peptides, proteins and enzymes.2, 8 Obviously, this versatility attracts 

the interest of scientists from a broad range of disciplines, from chemistry and materials science 

to condensed matter physics and pharmacology. The ultimate goal of these efforts has been to 

discriminate the role of specific amino acids on the formation of oligomers appearing upon 

protein misfolding, which are often associated with degenerative diseases.9, 10 Emblematic 

examples of this are amyloid structures formed by the so-called Tjernberg peptide,11, 12, 13, 14 a 

pentameric fragment (16-20) of the amyloid beta () peptide with composition K-L-V-F-F. 

Studies involving charged sequences have focused on cationic species,15, 16, 17 most likely due to 

the extensive presence of these amino acids in bioactive segments such as cell-penetrating and 

antimicrobial peptides, neuropeptides, tumor-homing peptides and peptide hormones.18 Their 

anionic counterparts, namely glutamic and aspartic acid-based sequences, are less studied, 

leading to a lack of information on this significant peptide class.19  

In the current work, we present a detailed investigation on the self-assembly and 

structure of glutamic acid-based octapeptides with general sequence E-F-E-F-E-F-E-F (E: 

glutamic acid, F: phenylalanine). An ancillary issue arising from N-terminal glutamic acid (Glu) 

is the condensation of carboxylic side-chains and amino group into pyroglutamic acid upon loss 

of a water molecule18, 20-22 and here we explore the co-assembly with species containing 

pyroglutamic acid at the N-terminus. In recent years, Glu-rich peptides have gained more 

attention mainly due to the ability of carboxylic side-chains to form certain types of H-bond 

networks.23 Particularly, it has been demonstrated that Glu-enriched sequences stack into anti-
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parallel sheets, forming 2-type structures held together by bifurcated H-bonds between amide 

carbonyls and carboxylic acid side-chains in neighboring sheets.24-27 These structural insights 

have been derived mainly from Fourier-transform infrared absorption (FTIR), circular and 

vibrational circular dichroism (CD and VCD).24 The highly simplified sequence, containing 

only two different amino acid species, contains an E residue at the N-terminus. This feature 

mimics a class of peptide sequences found in nature, whose aggregation is yet to be explored in 

depth. For instance, a large fraction of recombinant antibodies possess an N-terminal Glu in 

light and heavy chains20, 28, 29 and many compounds of biomedical interest, including T-

lymphocyte vaccines,30 have a Glu residue at the amide terminal. In addition, the link between 

amyloid oligomers and glutamatergic proteins has been the subject of intensive research in the 

last years.31-34 The model peptides investigated here were carefully designed to take advantage 

of self-assembling properties exhibited by phenylalanine residues intercalated along the 

sequences. Particularly, benzene side chains enable aromatic interactions such as  stacking 

and ion- interactions.35,36 These features have been found to be crucial for directionality of 

self-assembly in amyloid aggregates, favoring growth of anisotropic arrays along a preferential 

axis, and giving raise to fibrils and tapes.35 In addition, the presence of aromatic residues in 

amyloidogenic oligopeptides has been demonstrated to favor the formation of sheets, a 

keystone characteristic in the present study. 

 

Herein, we explore both the self-assembly and the structure of glutamic acid-based 

peptides through different approaches by combining small-angle X-ray scattering (SAXS), fiber 

diffraction (fXRD) and atomic force infrared spectroscopy (AFM-IR). SAXS reveals multi-level 

self-assembly into polymorphs with internal structure built up throughout a hierarchical process, 

with aggregation ranging from fractal-like oligomers to fibrillar subunits associated into 

nanotapes and nanofibers. X-ray diffraction shows unequivocal amyloid-like features of the 

resulting self-assemblies, with the formation of cross- structures, whereas AFM-IR reveals the 

spatial distribution of different types of -structures with nanometer resolution.  
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METHODS  

Peptide synthesis and sample preparation: The alternating glutamic acid/phenylalanine [EF]4 

peptide (E-F-E-F-E-F-E-F) was custom synthesized by Peptide Protein Research Ltd. (Fareham, 

UK). Synthesis was performed using solid phase methods, with Fmoc protected amino acids. 

Cleavage of the Fmoc group was carried out using piperidine, whilst cleavage from the resin 

and removal of the side chain protecting groups from the glutamic acid residues was achieved 

with TFA. The product was purified in acetonitrile and water containing 0.1 % NH4OH prior to 

lyophilization. The ammonium salt form of N-terminal glutamic acid peptides is more prone to 

conversion into pyroglutamic acid upon cyclization between the N-terminus and the adjacent 

glutamic acid side chain.20, 37 HPLC and electron spray mass spectrometry assessment showed 

the presence of populations with molar masses Mw = 1124.2 g/mol, corresponding to the [EF]4 

sequence, and Mw = 1106.1 g/mol, resulting from loss of a H2O molecule upon conversion of 

the N-terminal glutamic acid residue into pyroglutamic acid (see SI file, Fig. S1). LC data 

obtained from solutions prepared in the same conditions used for the structural assays presented 

in this work (see below), indicated that the fraction of [EF]4 was 68%, whereas the 

pyroglutamic-containing moiety - i.e., X-F-E-F-E-F-E-F (X = pyroglutamic acid residue, 

henceforth denoted p[EF]4) – remained at 32%. Degradation tests such as heating of peptide 

solutions and exposure to environmental conditions, including contact with atmosphere and 

maintenance at room temperature for a period of weeks, did not increase the pyroglutamic 

fraction in the batches, suggesting that 68/32 is the equilibrium [EF]4/p[EF]4 ratio. No further 

impurities were identified by LC assays and the fraction of glutamic acid-rich octamers ([EF]4 + 

p[EF]4) was > 99%. Samples for SAXS and topography AFM assays were prepared using 20 

mM NaOH (sodium hydroxide) in H2O as a solvent. Samples for FTIR and Nano-IR 

experiments were prepared using 20 mM NaOD in D2O (sodium deuteroxide) as a solvent. The 

peptide is not soluble in water at neutral pH due to the low pKa (= 4.1) of the glutamic acid 

side-chains.19 To overcome this problem, sample preparation was carried out by dissolving the 
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peptide powder in 20 mM NaOH (or NaOD) solutions, adjusting to the desired concentrations. 

To assist solubilization, samples were heated to 60 °C and sonicated for 30 minutes immediately 

after dissolution. Samples at concentrations of 0.1 wt% and 1 wt% were in the form of 

transparent solutions. After this procedure, solutions were kept in the fridge (4 °C) before 

further assays and incubation times were about 24 hours prior to fluorescence experiments and 

about one week prior to SAXS, AFM and other spectroscopy assays. Highly-concentrated 

samples (i.e., 10 wt%) required longer sonication times to reach homogenization, typically a 

couple of hours, and transitioned to a gel state over the course of a few days in the fridge. 

Measurements indicated that solutions prepared at 0.1 wt% and 1 wt% had pH = 11.3 and 7.8, 

respectively. In the case of gelled samples (containing peptide at 10 wt%), pH was estimated at 

~5 by using indicator paper. 

Fourier-transform infrared Spectroscopy: FTIR spectroscopy was performed using a Nicolet 

Nexus spectrophotometer. Samples were prepared using D2O as a solvent and NaOD to alkalize 

the medium. Droplets from a solution prepared at 1 wt% peptide were loaded between KBr 

windows, separated by 12 m mica spacers. Spectra were recorded in the interval corresponding 

to the amide region, at a resolution of 4 cm-1. Averages from 128 accumulations were 

background-subtracted and noise reduction was performed using FFT filters with smoothing 

windows of 6 data points.  

Small-angle X-rays Scattering: Small-angle X-ray Scattering measurements were carried out 

on the SAXS-1 beamline at LNLS (Campinas, Brazil). For liquid samples, about 300 l were 

loaded with a syringe into a 1 mm cell between mica windows. In the case of gels, a small 

amount of sample was sandwiched between Kapton films separated by a 0.5 mm path length. 

Ten frames, 30 s each, were grabbed per sample. The different frames were compared, in the 

absence of radiation damage, they were averaged, and background subtracted. The X-ray 

wavelength was  = 1.54 Å and the sample-to-detector distance was 1000 mm leading to a q-

range 0.12 nm-1  q  4.5 nm-1. Data were acquired using a Pilatus 1M detector and were 
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radially averaged with Fit2D using calibration parameters obtained from silver behenate 

patterns. Model fitting was carried by using the SASFit program.38  

Fiber X-ray diffraction (fXRD): Oriented stalks were prepared by suspending droplets from a 

10 wt% peptide solution placed between the ends of wax-coated capillaries. The capillaries were 

covered with Petri dishes, sealed with Parafilm and left to dry in the fridge for a few days. This 

procedure provided very slow drying and provided more oriented samples, leading to well-

resolved XRD patterns. Stalks were vertically positioned in a RAXIS IV++X-ray diffractometer 

(Rigaku) endowed with a rotating anode generator and a Saturn 992 CCD camera (pixel size 

89.8 m²) was used to register the pattern. The sample-to-detector distance was fixed at 50 mm. 

Data reduction was carried out using Fit2D and unit-cell optimization was performed using the 

CLEARER software.39 

Atomic Force Microscopy (AFM): AFM topography images were obtained on a Park NX10 

instrument operating in tapping mode with tip frequencies of the order of 250 kHz. Droplets 

from peptide solutions were deposited onto freshly-cleaved mica substrates, left to rest for about 

3-5 minutes and then rinsed with Milli-Q water. In the case of gel samples, dilutions with the 

corresponding NaOH solutions followed by vortexing steps were made just prior to casting onto 

mica surfaces. Scans across areas with 5 x 5 m2 or 1 x 1 m² were performed to produce 

images with 512 x 512 pixels. Scan frequency was 0.5 Hz and relative humidity of the set up 

was kept below 3% using a flushing nitrogen stream prior to measurements. All measurements 

were carried out at room temperature. Data correction and analysis were performed with the 

software Gwyddion. 

Nanoscale Infrared measurements (AFM-IR): Nanospectroscopy measurements were carried 

out on an Anasys NanoIR2-s microscope installed at the Laboratory for Surface Science of the 

Brazilian Nanotechnology National Laboratory (Campinas, SP). Samples were prepared by 

casting droplets from peptide solutions onto Au-coated silica substrates, letting them rest for a 

few minutes and then removing the excess of water with filter paper. The instrument operates in 

contact mode, using the thermal response of the sample to excite the resonance vibration of the 

cantilever.40,41 Samples are illuminated by an infrared tunable laser whose electromagnetic field 
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is trapped between the Au-coated substrate and the AFM tip, forming a resonant nanocavity, 

which enhances signal-to-noise ratio. This set up allows measurements of IR absorption profiles 

as a function of the wavenumber, at spatial resolutions limited by the tip radius (~ 30 nm). In 

this case, the AFM tip was positioned on regions of interest corresponding to different 

nanostructures and infrared profiles were obtained in the range 1550 – 1800 cm-1. All data were 

baseline subtracted (Au profile) and smoothed using an FFT filter (5 points of window). A 

second kind of experiment conducted on the NanoIR2-s microscope was the collection of 

“chemical images”, using fixed wavenumber IR radiation and scanning the surface with the 

AFM tip. In such assays, z-axis expansion was observed as a consequence of thermal response 

due to local infrared absorption, and IR mapping of the surface could be obtained at nanoscopic 

resolution. The pulse repetition frequency of the laser - i.e., the frequency of the tip-substrate 

resonator - was typically around 250 kHz and images were collected in 5 × 5 m² areas (512 × 

512 pixels), with scanning speed of 1 line per second. Preliminary image treatment was 

performed using the AnalysisStudio software provided by Anasys and further visualization 

enhancement was carried out with the software Gwyddion. 

 

 

RESULTS 

 

X-ray Scattering and Fiber Diffraction Assays: 

Preliminary assays using the pyrene fluorescence probe method42 were carried out to 

determine the critical aggregation concentration (CAC) as reported elsewhere.15, 43 These 

experiments are detailed in the SI file (Figure S2) and they indicated the appearance of 

aggregates in solution at a CAC ~ 0.1 wt%. Therefore, further experiments for structural 

characterization of nanoscopic aggregates were performed in samples at concentrations  0.1 

wt%.  

The in-situ nanostructure of the particles was probed using synchrotron SAXS. In 

Figure 1, SAXS data in the Porod representation (log-log plots) reveal that the structure depends 
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on concentration across the nanometer size scale. The small-angle region of scattering profiles 

from solutions containing lower peptide amounts (0.1 wt% and 1 wt% peptide) is characterized 

by a steep descent scaling with q~-2.7, consistent with the presence of fractal aggregates.44 On the 

other hand, the high-q range (q > ~ 1.5 nm-1) features intensity decaying as q~-1.6, suggesting that 

the local structure of aggregates comprises geometries between elongated and planar-like 

objects.45 These two power-law regimes are separated by a plateau-like zone in the intermediate 

q-range. These features reveal that the data are complex, with multilevel structural information 

appearing in the profiles, and proper data fitting could not be carried by using standard shape 

models. In this case, to extract quantitative information, we performed model fitting adopting 

the unified exponential/power-law approach proposed by Beaucage,46, 47 which is widely used to 

describe scattering from fractal structures with multiple structural levels. This model provides 

shape-independent parameters such as the radii of gyration and scaling exponents which are 

associated to the fractal dimension.47 Further details on the model and the corresponding 

equations may be found in the SI file.   

 

 

 

 

 

 

 

 

 

 

 

Figure 1: SAXS data from samples containing peptides at different concentrations. Solid red 

lines are fits performed with the models indicated in text. The black arrow in the upper curve 

indicates an interference peak arising from interparticle correlations whereas the gray region 

provides information on the inner structure of peptide fibers. 
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The data reveal that the large-scale objects have characteristic radii of gyration of 42.8 

and 63.0 nm, respectively, for solutions containing 0.1 wt% and 1 wt% peptide. The 

dimensionality of the objects appears to be not strongly affected at this concentration range 

since the Porod exponent P values remain close to 3, consistent with rough surface fractals.46 

The more interesting results are related to the inner structure of the aggregates, with radii of 

gyration equal to 4.0 and 5.5 nm for sub-particles in samples with 0.1 wt% and 1 wt% peptide. 

The dimensionalities of these subunits were found to be 0.37 and 0.22, respectively, and their 

proximity to a Porod exponent equal to 0 suggests the presence of globular shapes in the inner 

structure of the aggregates.44 

Data from samples prepared at the highest concentration investigated (10 wt%) exhibit 

SAXS profiles quite different in comparison with their more diluted counterparts. The 

macroscopic behavior of these samples is peculiar, with appearance of a gel phase over the 

course of a few days, and such contrast is also observed at the nanometer scale. Polarizing 

optical microscopy images from samples at this concentration reveal the presence of large 

birrefringent domains, also indicating local ordering of anisotropic particles (SI Fig.S3). The 

most remarkable feature in the scattering curves from these formulations is the presence of an 

interference peak at the intermediate q-range, close to q = 0.5 nm-1, arising from correlation 

between particles in the medium. Also, the high-q range, q > 2 nm-1, exhibits a diffuse peak at q 

~ 4 nm-1 which arises from the inner structure of the particles in the gel (see fXRD discussion 

below). In addition, the scaling exponents either at low-q or at intermediate-to-high-q regions 

are clearly distinct than those observed previously, also suggesting modifications in the shape of 

the particles. The complicated SAXS profile, with appearance of an interference peak in the 

middle of the data and the presence of different structural levels in the profiles, makes it very 

complex to perform full-range fitting using analytical models.49 Thus, to describe structural 

features of the samples, we adopted an empirical approach combining a simple power-law decay 

and the Teubner-Strey model.49, 50 This model is often used for describing scattering from 

micro-emulsions and it provides quantitative information on average distances and correlation 

lengths between scattering domains within bi-continuous networks.50 Further details on the 
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model appear in the SI file. The fitting procedure (see SI file) shows the presence of a scaling 

exponent ~ 2.66, indicating that the local structure of the aggregates – i.e., the inner part of the 

peptide fibers sustaining the gel (see AFM imaging below) - is composed of mass-fractal 

objects, in agreement with morphology of the particles found in more diluted solutions. On the 

other hand, the average separation between scattering domains is found to be d = 13.0 nm, with 

correlation lengths = 3.66 nm, suggesting weakly-correlated domains across the sample.  

To get further insights into the structure of the self-assemblies, fiber X-ray diffraction 

(fXRD) was carried out on aligned stalks prepared from dried 10 wt% samples. An oriented 

pattern is shown in Figure 2A, revealing clear cross--like features. The pattern is characterized 

by a set of sharp diffraction peaks along the equator with repeat distances appearing at dexp = 

2.21, 1.55, 1.11 and 0.40 nm. The reduced pattern, with the angular positions of the peaks is 

shown in Figure 2B. 

The first and second peaks on the equator are consistent with broad Bragg reflections in 

the SAXS profiles from 10 wt% solutions (see upper curve in Figure 1), indicating that they are 

associated with highly-ordered structures with repeat distances observed under hydrated 

conditions. A diffuse arc at dexp = 0.66 nm completes the series of equatorial reflections. In the 

perpendicular direction, along the meridian, the pattern is marked by very strong arcs located at 

dexp = 0.48 nm. This repeat distance arises from the spacing between strands held together by 

H-bonds within sheets running along the fibril axis.51, 52 These features are classical 

crosssignatures of molecular packing of aggregates and makes these assemblies structurally 

similar to the organization often found in amyloidogenic peptides.53 A shallow diffraction ring 

is also found at dexp = 0.56 nm, bringing a total of seven observable reflections in the pattern.  
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Figure 2: (A) fXRD pattern from an oriented stalk dried from a 10 wt% peptide solution. (B) 

Radial average of the diffraction pattern showing the corresponding peak positions in terms of 

scattering vectors. (C) Schematic model showing molecular packing within the unit cell.  

 

 

We performed dozens of trials using the unit cell optimization module available within 

the software CLEARER39 to provide peak indexation for assemblies; however, unequivocal 

assignment was not possible since many solutions with very different lattice parameters led to 

reasonable predictions of the seven reflections appearing in the pattern. The unit cell providing 

the minimum difference between predicted (dcalc) and experimental (dexp) peaks was an 

orthorhombic cell with lattice parameters a = 2.24, b = 1.55 and c = 0.96 nm. In this case, the 

average error was found at 2 × 10-3 %, and a comparison between theoretical and experimental 

data is presented in Table S2, along with the corresponding Miller indices. The orthorhombic 

symmetry and the cross organization are in agreement with previous results on alternating 

arginine/phenylalanine octapeptides.15 Based on this least-error unit cell, we were able to 

propose a simplified structural model sketched in Figure 2C. The parameter c = 0.96 nm 

accounts for repeat distances across the fibril axis and it is twice the separation between anti-

parallel strands. The distance between sheets is given by the lattice parameter b = 1.55 nm and it 

is consistent with extended glutamic acid chains intercalating Na+ counter-ions layers that 

presumably screen electrostatic repulsions in the interstice of the structure. Finally, the 
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parameter a = 2.24 nm is parallel to the axis of the strands and it is consistent with slightly 

folded backbones. Indeed, the size of an extended octameric peptide chain adopting an 

antiparallel -sheet structure is ca. 8 × 0.34 = 2.72 nm and accommodation into a 2.24 nm long 

unit cell requires a compression of about 18% or a certain extent of interdigitation. 

 

AFM: Topography Investigations 

Ultrastructural characterization of peptide aggregates was carried out through AFM 

imaging on samples dried from solutions prepared at concentrations used in SAXS experiments. 

In Figure 3A, the topography of a sample obtained from a 0.1 wt% solution deposited onto 

freshly-cleaved mica reveals the dominant presence of small aggregates with irregular shapes. 

Typical lateral sizes are found in the range 30 - 60 nm, consistent with the macrostructural 

gyration radius derived from the Beaucage model used to fit SAXS data (see Table 1), whereas 

heights appear to be much smaller with dimensions close to ~1.5 nm, similar to the b direction 

of the unit cell revealed by fXRD assays. These findings suggest that these small aggregates are 

made from a few peptide chains laterally-associated to form oligomeric species.  

In samples prepared from more concentrated solutions, morphology changes 

dramatically and new levels of organization appear in the aggregates. For 1 wt% peptide 

solutions, Figure 3B, nanostructures are characterized by long fibrils with lengths easily 

reaching the micrometer scale. The diameters of the fibrils have been estimated to be ~ 35 nm, 

consistent with lateral dimensions measured in particles found in low-concentration samples. 

Therefore, our AFM data are consistent with fibrils made up from subunits of coalesced 

oligomers. It is important to highlight that SAXS data from solutions containing peptides at this 

same concentration are consistent with the presence of larger oligomers, suggesting that fibrils 

appear in the AFM images as a consequence of the drying process during sample preparation. 

The fibrils appear associated into bundles, forming long flat tapes with cross-section sizes easily 

reaching a few hundred nanometers (see inset in Figure 3B) suggesting that self-assembly 

follows a hierarchical framework. Figure 3C shows the topography of a sample prepared from a 

gelled solution containing 10 wt% peptide. An intricate network is evident, which is composed 
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of thicker fibers forming a cross-linked matrix able to host the aqueous phase in the interstices. 

At such a high concentration, fiber bundles appear consolidated into mature structures with 

diameters of the order of ~300 nm, consistent with the presence of highly-intertwined 

assemblies. Additional AFM images are shown in Figures S4-S6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Left and centre columns: Topography images from peptide samples dried from 

solutions prepared at different concentrations: (A) 0.1 wt%; (B) 1 wt% and (C) 10 wt%. Right 

column: height profiles across the lines shown in the left-hand topography images. 
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FTIR: probing the presence of 2-sheets 

A major characteristic of glutamic acid-rich oligopeptides is the formation of amyloid-

like self-assemblies organized into the so-called 2-type structure.27 This structure is 

characterized by crossed H-bonds formed between carboxyl groups in glutamic acid side-chains 

and NH in amide bonds along the backbones of strands in adjacent sheets.26, 27 In this section, 

we provide further information on the secondary structure of the assemblies in order to assess 

the presence of 2-structures at play in the maintenance of aggregates described here. For this, 

we have combined information from FTIR assays carried out in bulk liquid samples and 

nanoscale IR spectroscopy performed directly on discrete nanostructures deposited onto dried 

substrates.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4: FTIR spectra from peptide solutions at concentrations indicated. Dotted lines are 

guides for the eyes indicating the positions of main peaks appearing in the spectra. The mode at 

1600 cm-1, associated to 2-sheets,24-27 is highlighted in bold. 

 

Figure 4 shows FTIR data from solutions containing peptides at the concentrations 

previously investigated by SAXS and AFM. These samples have been prepared using 

deuterated water to minimize overlapping between the intense mode due to water bending 

vibration near 1640 cm-1 and peptide peaks in the middle of the amide I band.55-57 A clear 
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concentration-dependent behavior is found in the data as indicated by remarkable contrast 

observed between the spectral signature from samples prepared at 0.1 wt% and those from their 

more concentrated counterparts. Profiles from dilute solutions (upper curve in Figure 4) are 

characterized by strong vibrations at 1556 and 1566 cm-1, which are assigned to antisymmetric 

stretching of COO- groups at glutamic acid side chains.56,57 A doublet at positions 1591 and 

1607 cm-1 is ascribed to stretching of C-C bonds in phenylalanine aromatic rings,57 whereas 

another intense band at 1760 cm-1 accounts for stretching of C=O bonds in glutamic acid side 

chains. In the amide I region, minor peaks appear at 1645 and 1670 cm-1, being tentatively 

ascribed to small fractions of random coil and turn conformations.56  

In the case of samples prepared at higher peptide concentrations, 1 and 10 wt%, the 

profiles are strongly different, and spectra are clearly dominated by amide I vibrations 

consistent with the presence of higher degree of order and the formation of stable secondary 

structures. Infrared spectra from these samples are featured by a very strong peak centered at 

1600 cm-1 that is recognized as a signature of 2-sheet structures.25, 27 This vibration is usually 

interpreted as a red-shifted amide I peak involving the stretching of carbonyl groups where the 

oxygen behaves as an acceptor center in two (bifurcated) H-bonds simultaneously.27, 54 Unlike 

conditions usually adopted elsewhere, with self-assembly occurring in acidic medium under 

severe heating (up to 90 °C),24, 25 samples herein have been prepared in alkaline medium and 

have only undergone moderate heating for a short time period, demonstrating that our [EF]4 

sequences are capable of forming 2-type structures even under mild conditions. The presence 

of a sharp peak at 1617 cm-1 indicates that 1 structure – i.e., -sheets held together by 

“standard” H-bonds between carbonyl and amide NH groups at adjacent sheets – is also present 

in a lower fraction. The presence of some unordered structures is indicated by a noticeable 

vibration at 1650 cm-1, and -turn conformations are suggested shallow band at 1673 cm-1. A 

resonance at 1682 cm-1 is indicative of anti-parallel strands, in agreement with XRD data shown 

above. Other peaks appearing at 1722, 1732 and 1742 cm-1 are related to the acid glutamic side-

chains and are associated to vibrations in the carbonyl group.55 
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AFM-IR: infrared spectra from individual nanoparticles 

Infrared nanospectroscopy was combined with AFM on dried samples to provide 

spatially-resolved data of the assemblies at the nanoscale. The advantage of this approach is that 

it yields single-particle spectra,41 in contrast to average information derived from bulk FTIR 

spectra discussed above. Figure 5 shows AFM images from nanoparticles obtained from 

solutions prepared at 0.1 wt% and 10 wt% peptide, alongside with infrared data collected on the 

from individual assemblies. The size of the region probed during infrared scans was limited by 

the AFM tip diameter, here ~ 30 nm.40 From the data, it is evident that vibrational profiles on 

dried assemblies are quite different from infrared signatures observed in peptide solutions 

suggesting that dehydration followed by loss of solvent molecules mediating H-bonds in the 

interstice of the assemblies are associated to changes in the secondary structure.  

In Figures 5A and B, nanospectroscopy data from globular particles obtained from a 0.1 

wt% peptide solution are shown. Spectra from different aggregates in the sample exhibit the 

same general feature, with a strong vibration at 1628 cm-1 revealing the presence of standard 

sheet conformers. In some particles (curves 1-4, in Figure 5B), it is possible to identify 

shallow peaks at 1560 and 1608 cm-1, which are tentatively assigned to COO- and C-C 

stretching, respectively, of glutamic acid and phenylalanine side chains.39 These findings 

contrast with data from hydrated samples, which are characterized by low-intensity peaks across 

the amide I region (see Figure 4, upper curve), suggesting that more organized superstructures 

appear in the aggregates upon release of solvent.   

Figures 5C and 5D show nanospectroscopy data from self-assemblies on samples 

prepared using a 10 wt% peptide solution. The data are more complex and spectra from 

nanostructures with different morphologies show distinct infrared signatures. A spectrum 

collected on a round polymorph (curve 1 in 5D) is characterized by strong peaks at 1564 and 

1580 cm-1. A shoulder at 1600 cm-1 is consistent with the presence of some 2 content and a 

noticeable band at 1642 cm-1 indicates that considerable fractions of 1 conformations are also 

present in the aggregate.55 On the other hand, spectra collected along peptide fibers (curves 2-7 
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in 5D) display a larger number of resonances across the amide I range, with appearance of 

intense peaks at 1648 and 1672 cm-1. This information indicates that the secondary structure in 

fibers exhibits higher levels of organization compared to oligomer species self-assembled into 

round aggregates, in agreement with previous findings on amyloidogenic assemblies.53 The 

band at 1648 cm-1 is ambiguous and it could be interpreted either as an evidence for helix or 

an indication for random coil structures; however, since our peptides are short and comprise 

alternate hydrophobic and polar residues along the backbone, -helices are not favored and 

random coil conformations are more likely in the assemblies. The infrared signature of TFA 

counterion is characterized by a sharp peak centered at 1673 cm-1 due to the strong vibration of 

COO- groups.58,59 Peptides used here were provided in the ammonium salt form; thus, residual 

TFA from synthesis is not an issue in our samples. By examining FTIR data from our solutions, 

Figure 4, one observes that strong peaks at 1673 cm-1 are absent and vibrations at ~ 1670 cm-1 

are marginally found in the spectra. In this case, we ascribe the peak at 1672 cm-1 to anti-parallel 

-sheets organized into 1-type conformations in the fibers,59 corroborating our previous XRD 

data which revealed the presence of sheets on dried fibers. Putting the findings above 

together, comparison between infrared nanospectroscopy and FTIR information from peptide 

solutions indicates destabilization of 2 structures upon drying, accompanied by growth of  

and disordered content. In fact, since bifurcated H-bonds are energetically weaker than regular 

H-bonds,54 appearance of standard -sheets is likely favored upon dehydration. Chemical maps 

from samples shown in Figure 5 are presented in Figures S7 and S8 (SI file) and they show that 

absorption related to 2 structures is weaker in comparison to vibrations related to 1 

conformers.  
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Figure 5: Infrared nanospectroscopy images and spectra from self-assemblies obtained from 

solutions prepared at 0.1 wt% (A and B) and 10 wt% peptide (C and D). Numbered circles are 

placed closer to the nanoparticle on the top of which individual spectra were collected.  

 

To further investigate changes introduced by dehydration on infrared profiles of 

glutamic acid-rich self-assemblies, we performed single-particle nanospectroscopy in self-

assemblies obtained from a 1 wt% peptide solution. As revealed by AFM imaging above, 

nanostructures in samples at this concentration exhibit tape-like morphologies (Figure 6) and 

they are composed of fibrillar subunits. Infrared spectra shown in Figure 6A reveal that, 

although peaks at ~ 1600 cm-1 are still visible, bands at 1630 cm-1 are stronger for most of the 

spectra collection points, similar to the behavior observed in globules found in more diluted 

samples (Figure 5A and B). This observation suggests that higher fractions of standard 1 

species are present in the tapes, also contrasting with predominance of 2-structures observed in 

peptide solutions. The spectra also exhibit a peak at 1562 cm-1, which is assigned to 

antisymmetric stretching of –COOH- groups,27 and the diffuse band centered at 1690 cm-1 is 

consistent with anti-parallel -sheets.56 Comparing spectra from nanotapes in Figure 6A and 

fibers in Figure 5D, one observes that infrared profiles from tape-like structure exhibit a lower 
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number of resonances, indicating that a lower degree of supramolecular ordering is present in 

these assembles.   

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Nanospectroscopy from a 1 wt% dried peptide solution originally dissolved in D2O. 

(A) infrared spectra from different regions of individual peptide nanotapes; (B) lateral deflection 

image showing morphology of nanotapes on the top of an amorphous film. Numbered circles 

indicate the location where spectra shown in (A) were collected. (C), (D) and (E) Infrared 

adsorption maps collected, respectively, at 1600 cm-1, 1630 cm-1 and 1690 cm-1.      

 

 

Another powerful feature of nanoscale IR spectroscopy is providing chemical images 

with nanoscopic resolution through collection of infrared absorption maps.38, 60, 61 The unique 

morphology of the tapes, where flat structures exhibit distinguishable subunits, allows chemical 

images with a finer level of spatial detail to be obtained. In our experiments, we have collected 

infrared images at 1600 cm-1, 1630 cm-1 and 1690 cm-1. These absorption wavenumbers have 

been chosen because they are correlated to 2 (1600 cm-1) and common -sheet structures (1630 

and 1690 cm-1);27, 56 thus, by inspecting chemical maps obtained at these characteristic bands, 

we have been able to qualitatively examine the spatial distribution of different types of -sheets 

across the nanotapes. In Figures 6C-E, absorption maps at different wavenumbers are exhibited 

to provide direct comparison between different spectral bands and they reveal that infrared 
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intensities are clearly weaker in maps collected at 1600 cm-1 (Figure 6C). In addition, at this 

wavenumber, absorption is homogeneously distributed across the nanotapes, indicating 2 

structures uniformly spread along the nanoparticles. In Figure 6D, maps collected at 1630 cm-1, 

correlated to -sheet conformations formed between carbonyl and amide NH groups at adjacent 

sheets, show stronger absorption than that associated to 2-type structures, corroborating that 1 

organization is predominant in dried nanotapes. A similar behavior is found for images 

collected at 1690 cm-1 related to anti-parallel conformation (see Figure 6E). The maps exhibit 

inhomogeneities identified by different color zones across the aggregates which are interpreted 

as an indication for clusters containing distinct fractions of secondary structures. Particularly, 

intense adsorption zones are observed corresponding to striated lines parallel to the long axis of 

the tapes indicating that the core of fibrillar subunits is richer in 1 structures. A possible 

explanation for the higher uniformity in distribution of zones associated to 2 conformers could 

be that bifurcated H-bonding is driven by carbonyl groups on glutamic acid side-chains. During 

self-assembly in water, these hydrophilic side-chains tend to be located close to the solvent 

interface whereas peptide backbones responsible for -sheet pairing remain buried in the core of 

the structure. Indeed, as indicated by XRD data discussed above, paired -strands form galleries 

running parallel to the long axis of the fibrils, in close agreement with striated marks revealed in 

the infrared adsorption maps.  

 

CONCLUSIONS  

 
 The simplified models investigated here, where acid glutamic residues appear 

intercalated with phenylalanine residues, mimic a class of peptide sequences with prominent 

role in biological processes, including immune and glutamatergic systems. Several 

amyloidogenic features of the self-assemblies were demonstrated and AFM and SAXS 

experiments indicated the formation of small oligomers whose coalescence into nanofibrils 

leads to production of mature fibers and nanotapes. A concentration-dependent polymorphism 

was found, with appearance of fractal-like oligomers in diluted formulations proceeding to 
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development of nanotapes and nanofibers in presence of higher peptide concentrations. Such a 

complex behavior required empirical models to describe the scattering data. In this case, 

Beaucage and Teubner-Strey form factors showed the presence of multi-level organization in 

the self-assemblies with predominance of fractal structures in solution. The presence of 

birrefringent domains in gels showed the local orientation of anisotropic nanostructures and this 

macroscale feature is the result of hierarchical order extending from peptide packing at the 

nanoscopic level.  

A particular feature of glutamic acid-rich sequences is organization into 2-sheets,27 a 

structural pattern characterized by bifurcated H-bonds formed between carboxyl groups at acid 

glutamic side-chains and amide NH along the backbones of strands at adjacent sheets.26, 27 

The presence of 2 conformers in our study was revealed by infrared spectroscopy and this 

conformation was found to be the dominant fraction in hydrated samples, as revealed by a very 

intense red-shifted amide I peak at 1600 cm-1. Single-particle spectroscopy was carried out to 

provide direct IR mapping from individual assemblies. To our knowledge, this is the first study 

using direct nanoscale IR measurements to probe the formation of 2 structures in glutamic 

acid-rich peptide aggregates. A notable result arising from these experiments is a remarkable 

decrease of the fraction of 2-sheets observed upon drying. Destabilization of 2 structures was 

observed for all concentrations and polymorphs in our study and a progressive degree of order 

was found depending on peptide concentration, with globular aggregates exhibiting a lower 

degree of order, followed by nanotapes at an intermediate stage and mature fibers showing the 

highest complexity in their spectra with a larger number of resonances associated to chemical 

bonds across the amide I region. We propose that this 2-to-1 transition is a consequence of the 

release of water from the interstices of peptide assemblies, where solvent molecules mediate H-

bonds. Since energies involved in the stabilization of bifurcated H-bonds are lower in 

comparison to “standard” H-bonds,54 appearance of  conformers is likely favored upon 

dehydration. Chemical maps obtained at wavenumbers corresponding to the spectral signature 

of the different types of -sheets enabled us to examine the spatial distribution of these 
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structures across the nanoparticles. These maps displayed 2-type structures homogeneously 

spread along nanotapes and 1 conformation concentrated in striated patterns parallel to the long 

axis of the tapes, indicating that the core of the fibrillar subunits is likely richer in this kind of 

conformer. It is also important to stress the role of phenylalanine residues in the self-assembly 

presented here. In fact, the propensity of aromatic side chains at adjacent strands to establish 

 interactions likely favors the growth of sheets where peptide strands appear 

perpendicularly to the long axis of the supramolecular arrangement. These characteristics are 

critical for appearance of the cross structure revealed by our diffraction data and they are 

consistent with the organization previously found in intercalating arginine/phenylalanine 

oligopeptides.15,16,62Therefore, the anionic peptides investigated here show amyloidogenic 

features in line with their cationic (argininic) analogs, corroborating the importance of Phe 

residues in the formation of amyloid-like nanostructures. 

Summarizing, we have elucidated the structure of peptide aggregates built up from short 

peptides comprising alternating glutamic acid moieties and phenylalanine. A sophisticated 

combination of techniques unequivocally showed the formation of amyloid species and 

secondary structure was found to present major fractions of 2-sheets. Direct infrared 

measurements carried out on the surface of individual nanoparticles showed that 2-type 

structures are the dominant form only under hydrated conditions, which points to the major role 

of water molecules in the stabilization of 2 conformations. Dehydration leads to disruption of 

bifurcated H-bonds and destabilization of 2-type networks.  
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