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Highlights 

 Phytoestrogens in milk from three management systems were measured 

 Organic milk contained more lignans, isoflavones and coumestants  

 Phytoestrogen composition did not vary between free-range and conventional milk 

 Summer milk contained more lignans and less isoflavones than winter milk 

 Milk from different production systems may alter consumer phytoestrogen intake  
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Abstract 

The effect of dairy management system (conventional, CNV; organic, ORG; free-range, 

FRG) and month on retail milk phytoestrogen composition was assessed for 12 consecutive 

months. ORG milk contained more secoisolariciresinol, matairesinol, lariciresinol, sum of 

plant lignans, daidzein, genistein, formononetin, naringenin, equol, sum of isoflavones and 

coumestrol, than CNV and FRG milk. This may be explained by the higher supply of pasture, 

and grazed or ensiled clover, in ORG dairy diets. Seasonal variation in milk phytoestrogen 

concentrations was higher for ORG than CNV and FRG systems. Phytoestrogen composition 

did not vary between FRG and CNV milk. Consuming organic milk can increase intake of 

potentially beneficial lignans and isoflavonoids, and in particular equol; but, any effects on 

human health from such milk compositional differences cannot be implied. 
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1. Introduction 1 

Milk is an important part of healthy and balanced diets, because it contains high 2 

biological value proteins, bioactive peptides, fatty acids, minerals, vitamins, and carotenoids, 3 

with multiple benefits in human health (Thorning, Raben, Tholstrup, Soedamah-Muthu, 4 

Givens, & Astrup, 2016). Previous work has shown that milk also contains phytoestrogens, 5 

such as isoflavones, lignans and coumestans (Kuhnle, Delcaqulla, Aspinall, Runswick, 6 

Mulligan, & Bingham, 2008), of which the potential effect in human health is not extensively 7 

investigated and nutritional recommendations are not available (Leitzmann, 2016). 8 

Phytoestrogens are plant secondary metabolites and involved in plant development and survival 9 

(Crozier, 2009). Lignans are bound to cell wall macromolecules, because they are formed 10 

during lignin synthesis and strengthening of the plant cell wall (Kuhnle, Dell'Aquila, Aspinall, 11 

Runswick, Mulligan, & Bingham, 2009b). Linseed and grains, especially wheat and rye, are 12 

rich in lignans, which are located in the aleurone layer of the bran (Fardet, 2010; Kuhnle, et al., 13 

2009b; Smeds, et al., 2007). In lower amounts, lignans also exist in fruits, vegetables, grasses 14 

and legumes (Adler, Purup, Hansen-Moller, Thuen, Gustavsson, & Steinshamn, 2014; Kuhnle, 15 

et al., 2009a). Isoflavones are produced by Fabaceae Leguminosae plants, and perform various 16 

functions, providing mainly defense against pathogens (Adler, et al., 2014). Soybeans are the 17 

richest source of the isoflavones daidzein and genistein, whereas red clover is rich in 18 

formononetin and biochanin A, but has low daidzein and genistein concentrations (Mustonen, 19 

et al., 2009). White clover contains less total isoflavones than red clover, but more lignans and 20 

coumestans (Adler, et al., 2014; Andersen, Weisbjerg, Hansen-Moller, & Sejrsen, 2009; Hojer, 21 

et al., 2012; Mustonen, et al., 2009; Steinshamn, Purup, Thuen, & Hansen-Moller, 2008). The 22 

concentration of coumestans in plants increases in response to stress or diseases (Reed, 2016) 23 

and coumestrol has been found in 58 plants, being in high amounts in legumes, such as white 24 

clover, lucerne and peas (Reed, 2016). 25 
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In cows, phytoestrogens are mostly metabolized in the rumen, and therefore the transfer 26 

rates from feed to milk are small (Gagnon, et al., 2009; Njastad, Adler, Hansen-Moller, Thuen, 27 

Gustavsson, & Steinshamn, 2014). The rumen metabolism of lignans, isoflavones and 28 

coumestans is complex and their degree of conversion varies among different phytoestrogens 29 

(Adler, et al., 2014; Heinonen, et al., 2001; Njastad, et al., 2014). Njastad et al. (2014) showed 30 

that plant isoflavones were extensively metabolized in the rumen (70% and 90% of biochanin 31 

A and genistein, respectively) into intermediary compounds. Most of the formononetin and 32 

daidzein was also transformed in the rumen into the mammalian isoflavone equol (Njastad, et 33 

al., 2014). Rumen microorganisms also extensively metabolise plant lignans into the 34 

mammalian lignans enterodiol and enterolactone (Heinonen, et al., 2001; Njastad, et al., 2014), 35 

while animal studies and experiments with human fecal inoculum showed that 36 

secoisolariciresinol and matairesinol are also precursors to mammalian lignans (Heinonen, et 37 

al., 2001; Njastad, et al., 2014). Other plant lignans may be converted to secoisolariciresinol 38 

and matairesinol through intermediate reactions and thereby contribute to enterodiol and 39 

enterolactone synthesis (Heinonen, et al., 2001; Njastad, et al., 2014). There is a scarce 40 

information about coumestrol metabolism but its transformation in the rumen is rather limited 41 

(Njastad, et al., 2014). Further to their metabolism in the rumen, and during intestinal 42 

absorption, phytoestrogens are conjugated mainly with glucuronic and sulfonic acids and 43 

transferred to blood and milk as conjugates (Njastad, et al., 2014).  44 

Phytoestrogens are found both in forages and concentrates of cows’ diets. The 45 

phytoestrogens content in forage depends mainly on the botanical composition, but also plant 46 

part, maturity stage, season (Booth, et al., 2006; Hojer, et al., 2012; Kallela, Saastamoinen, & 47 

Huokuna, 1987; Tsao, Papadopoulos, Yang, Young, & McRae, 2006). Therefore, the milk 48 

phytoestrogen concentrations may be influenced by grassland management and dairy 49 

management system (Adler, et al., 2014; Adler, Purup, Hansen-Moller, Thuen, & Steinshamn, 50 
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2015; Hojer, et al., 2012). The concentration of isoflavones was higher in cow diets that 51 

contained red clover than other species (Andersen, et al., 2009; Hojer, et al., 2012; Njastad, et 52 

al., 2014). This may affect organic milk isoflavone concentrations because, in the absence of 53 

nitrogen fertilization of organic swards, UK organic dairy systems extansively rely on clover 54 

inclusion in pastures and silages to achieve high sward productivity (AHDB, 2012; Soil 55 

Association, 2018; Stergiadis, et al., 2015; Stergiadis, et al., 2012). The effect of dairy 56 

management system on milk phytoestrogens concentrations has been observed in Finland, 57 

Norway and Denmark (Adler, et al., 2015; Hoikkala, et al., 2007; Purup, 2005). Finnish organic 58 

retail milk contained more equol that conventional milk (Hoikkala, et al., 2007). In Norway, 59 

organic milk collected from farms’ bulk-tanks had higher concentrations of formononetin, 60 

daidzein, equol, genistein, secoisolariciresinol, enterodiol and enterolactone, than conventional 61 

milk; moreover, milk produced during the indoor period contained more equol than milk from 62 

the outdoor period, whereas the opposite was observed for enterolactone (Adler, et al., 2015). 63 

In Denmark, the concentration of isoflavonoids in milk from organic dairy farms was higher 64 

than milk from conventional farms; presumably because of the higher contribution of legumes 65 

in organic dairy diets; notably, the content of equol in organic milk was approximately five 66 

times higher (Purup, 2005).  67 

Although results from Finland, Norway and Denmark demonstrate strong management 68 

system and seasonal effects on isoflavone and lignan concentrations in milk, a similar 69 

assessment in the UK has not been performed. Previous work on milk fatty acid profiles 70 

demonstrates that composition of organic and conventional milk, may differ significantly 71 

between countries, thus highlighting the necessity for milk composition assessments in 72 

different countries separately (Butler, et al., 2011). The aim of the present work was (i) to 73 

investigate, for the first time, the effect of, and interactions between, dairy management system 74 

(including conventional, organic and free-range) and month, on the concentrations of lignans, 75 
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isoflavones and coumestans in milk purchased from retail outlets in the United Kingdom, and 76 

(ii) assess the potential impact of consuming milk from different dairy management systems 77 

on phytoestrogen intake of consumers. 78 

2. Materials and methods 79 

2.1 Experiment/survey design 80 

Milk samples (n=120) representing four brands of conventional (CNV; n=48) milk and 81 

four brands of organic (ORG; n=48) milk were collected monthly, over 12 months (March 82 

2016 and February 2017), within an 8-km radius from the Whiteknights campus of the 83 

University of Reading. Brands were selected to represent suppliers that offer both CNV and 84 

ORG milk and have as high as possible market share. Two brands of milk certified as free-85 

range (FRG; n=24), which were the only two brands available when the survey took place, 86 

were also monthly collected during the same sampling dates from dairies in Lancashire and 87 

Gloucestershire. ORG milk was certified by Soil Association and FRG milk by the Free Range 88 

Dairy Pasture Promise. Only whole, pasteurized and homogenized milk was collected; CON 89 

and ORG milk was purchased from supermarkets while retail free-range milk was posted, in 90 

cold conditions, from the Free Range Network to the University of Reading. Milk from CNV 91 

and FRG systems were fat-standardised at approximately 35 and 37 g/kg milk, respectively; 92 

this is a standard practice in the conventional UK dairy plants while standardization is not 93 

performed in the organic UK dairy supply chain. At the day of collection, the commercial bottle 94 

(typically made of high-density polyethylene) with the furthest “best before” date (hence the 95 

most recent on the shelf) was purchased to maximize freshness of the collected sample. This 96 

has been immediately transferred in cold conditions at the laboratories of the University of 97 

Reading and was aliquoted in several 30-ml sterile, screw-top, leak-free polypropylene 98 

containes and frozen at -20oC until analysis.  99 
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2.2 Milk analysis 100 

One aliquote of 30-ml of each sample, packed with several ice packs into polysterene 101 

boxes and by using next day delivery in order to ensure samples remained frozen throughout 102 

transport, was sent to Aarhus University. Upon delivery, samples were immediately stored at -103 

20oC and were analysed in the laboratory between January and May 2018. Quantitative 104 

measurements were performed using the following lignans and isoflavones standards: 105 

enterolactone, enterodiol, matairesinol, hydroxymatairesinol, secoisolariciresinol, lariciresinol, 106 

isolariciresinol, syringaresinol, medioresinol, pinoresinol, equol, naringenin, formononetin, 107 

chrysin, genistein, daidzein, glycitein, coumestrol, purchased from Plantech (Berksher, UK). 108 

The following isotope-labeled and deuterium-labeled internal standards were used: 13C3-109 

enterolactone, 13C3-enterodiol, equol D4 from Toronto Research Chemicals (Toronto, Canada) 110 

and genistein-d4 and daidzein-d3 from Cambridge Isotop Laboratories, Inc. (Andover, MA, 111 

USA). For the enzymatic hydrolysis, β-glucuronidase type H-1 from Helix pomatia was 112 

purchased from Sigma-Aldrich (St. Louis, MO, USA). All solvents used were of HPLC grade. 113 

2.2.1 Preparation and storage of standards 114 

All lignan standards were dissolved in pure acetonitrile and all isoflavones standards 115 

were dissolved in pure methanol in concentration of 1 mg/mL and kept at -80 ˚C, except for 116 

genistein-D4 and daidzein-d3 internal standards, which were dissolved in acetonitrile in 117 

concentration 100 µg/mL and 60 µg/mL respectively. The working solutions of lignan internal 118 

standards were prepared in concentration of 10 µg/mL of 13C3-enterolactone, 5 µg/mL of 13C3-119 

enterodiol and 50 µg/mL of equol-d4. For non-labeled standards, one working solution 120 

contained all lignan and equol standards and another working solution contained other 121 

isoflavones in the concentration of 400 ng/mL. These working solutions were used for 122 

preparation of standard curves and spiking of milk samples. The working solution and the 123 

standard curves were kept at -80 ˚C at all times. 124 
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2.2.2 Milk sample preparation 125 

The milk samples (kept at -20 ˚C before the analyses) were incubated in water bath at 126 

30 ˚C for 60 min and afterwards immediately shaken for 10 min. Five ml of milk sample was 127 

transferred to 15 mL tube and 10 µL of the internal standards, 13C3-enterolactone, 13C3-128 

enterodiol, genistein-d4, daidzein-d3 and equol-d4 were added and mixed for 5 min. The 129 

samples were then centrifuged for 20 min at 4 ⁰ C at 3,500 × g. One ml of the supernatant was 130 

transferred to a new tube to which 0.5 mL of enzymes were added. Further sample hydrolyses 131 

and clean-up were performed according to Norskov, Olsen, Tjonneland, Bolvig, Laerke, & 132 

Knudsen (2015) with minor modification. Lignans and isoflavones were eluted with 200 µL of 133 

acetonitrile from C18 plates and diluted with 600 µL of MilliQ water and analyzed using LC-134 

MS/MS. 135 

2.2.3 LC-MS/MS equipment and method 136 

The LC-MS/MS measurements were performed on microLC 200 series from 137 

Eksigent/AB Sciex (Redwood City, CA, USA) and QTrap 5500 mass spectrometer from AB 138 

Sciex (Framingham, MA, USA) according to Norskov et al. (2015). The compound dependent 139 

parameters were optimized for each compound by syringe infusion of pure standard and shown 140 

in Appendix (Table A1). The data analysis was performed in Analyst software 1.6.2 from AB 141 

Sciex (Framingham, MA, USA). 142 

2.2.4 Calibration curves and quantification 143 

Calibration curves had 7-12 points depending on the analyte. The mixture of pure 144 

standards were prepared in 25% acetonitrile in the range of 0.0244 – 100 ng/mL for lignans, 145 

0.39 – 200 ng/mL for equol (see Appendix, Figure A1), and 0.00977 – 5 ng/mL for all other 146 

isoflavones (see Appendix, Figure A2). The final concentrations were 25 ng/mL for 13C3-147 

enterolactone was, 12.5 ng/mL for 13C3-enterodiol, 60 ng/mL for daidzein D3, 30 ng/mL for 148 



 10 

genistein-d4 and 200 ng/mL for equol-d4. The analyte/internal standard concentration ratio 149 

was plotted against the analyte/internal standard peak area ratio as a linear regression curve 150 

with 1/x weighting. The quantification of the lignans, enterolactone, matairesinol and 151 

pinoresinol was performed using 13C3-enterolactone as internal standard; and that of enterodiol, 152 

hydroxymatairesinol, secoisolariciresinol, lariciresinol, isolariciresinol, syringaresinol and 153 

medioresinol using 13C3-enterodiol as internal standard. The quantification of isoflavones, 154 

daidzein and glycitein was performed using daidzein-d3 as internal standard; and that of 155 

genistein, naringenin, formononetin, chrysin and coumestrol using genistein-d4 as intenal 156 

standard. Equol was quantified using equol-d4 as internal standard. The lower limit of 157 

quantitation (LLOQ) was accepted as the lowest standard on the calibration curve if the analyte 158 

response was at least 5 times the response of the blank sample. The highest standard defined 159 

the upper limit of quantitation (ULOQ). All calibration curves showed good linearity 160 

throughout the used range of concentration with LLOQ accuracy varying from 88 to 110 % 161 

and precision below 20%, and ULOQ accuracy from 90 to 105% and precision below 15%. 162 

The LLOQ and ULOQ and the corresponding regression coefficients for each isoflavone is 163 

listed in the Appendix (Table A2), and for lignans in (Norskov, et al., 2015). The representative 164 

chromatogram of the milk sample, as well the extracted ion chromatograms of each lignan and 165 

isoflavone, are shown in the Appendix (Figure A3 and A4, respectively). 166 

2.2.5 Method validation 167 

Method was validated by spiking internal standards and lignan and isoflavone standards 168 

in the beginning of the sample preparation procedure (addition of standards to 5 mL of milk 169 

sample) to the experimental milk samples containing the lowest possible concentration of 170 

lignans and isoflavones; recovery was then calculated using the internal standard procedure, as 171 

described above. The recovery of enterolactone and enterodiol was 105 % ± 3% and that of 172 

plant lignans (matairesinol, hydroxymatairesinol, secoisolariciresinol, lariciresinol, 173 



 11 

isolariciresinol, syringaresinol, medioresinol and pinoresinol) was 75 % ± 6%. The recovery 174 

of equol was 112 % ±3% and the recovery of other isoflavones were 95 % ± 10%. Precision 175 

and intra-batch variation (based on 5 replicated measurements) were within 15%. Further, the 176 

validation included the detection of possible lignans and isoflavones of interest in the enzyme 177 

mixture used for hydrolyses. Only trace amounts of formononetin (0.004 ng/mL), glycitein 178 

(0.006 ng/mL), naringenin (0.04 ng/mL), genistein (0.05 ng/mL), daidzein (0.009 ng/mL), 179 

enterolactone (0.001 ng/mL), secoisolariciresinol (0.002 ng/mL) and lariciresinol (0.03 ng/mL) 180 

were detected, and no coumestrol, equol, chrysin, isolariciresinol, enterodiol, matairesinol, 181 

hydroxymatairesinol, syringaresinol, medioresinol and pinoresinol were detected.  182 

2.3 Statistical analysis 183 

Linear mixed effects models in GenStat 17th Edition (VSN International, UK) were 184 

used for the Analysis of Variance (ANOVA) (Residual maximum likelihood analysis; REML; 185 

(Gilmour, Thompson, & Cullis, 1995)). Fixed factors were the management system 186 

(Conventional, CNV; Organic, ORG; Free-Range, FRG) and month (March 2016 - February 187 

2017). To investigate the effect of the interaction between management system and month, a 188 

sub-set including only ORG and CNV milk has been created (excluding FRG milk) and a 189 

REML analysis was carried out using management system, month and their interaction as fixed 190 

factors. Every milk sample was given a unique milk ID (representing the combination of 191 

brand/retailer and management) and this was used as random factor in both REML analyses. 192 

The analysis derived and P-value and the effect of the main treatments was declared significant 193 

at P < 0.05; tendencies were declared at 0.05 < P < 0.10. Normality plots were used for 194 

performing the residual diagnostics of the model and data did not deviate from normality. 195 

Follow up pairwise comparison of means (P < 0.05) in cases that the effect of a fixed factors 196 

showing a significant effect were performed using Fisher’s Least Significant Difference test. 197 

 198 
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3. Results 199 

3.1 Overall milk concentrations of phytoestrogens 200 

The concentration of plant isoflavones in milk was 5-8 times higher compared with 201 

plant lignans and coumestrol, averaging 5.95 ng/mL (ranging 1.21-12.85 ng/mL) across the 202 

management systems; whereas the average plant lignan concentration was 0.90 ng/mL (ranging 203 

0.51-1.64 ng/mL). The average equol and enterolactone concentrations was 203.1 ng/mL 204 

(ranging 4.3-794.4 ng/mL), and 61.9 ng/mL (ranging 32.9-138.9 ng/mL), respectively, across 205 

the management systems. 206 

3.2 Dairy management system and milk phytoestrogens composition 207 

The effect of dairy management system was significant for secoisolariciresinol, 208 

matairesinol, lariciresinol, total plant lignans, daidzein, genistein, formononetin, naringenin, 209 

total plant isoflavones, equol, total isoflavones and coumestrol (Table 1). ORG milk contained 210 

more secoisolariciresinol (+0.06 and +0.04 ng/ml milk), matairesinol (+0.05 and +0.03 ng/ml 211 

milk), lariciresinol (+0.14 and +0.14 ng/ml milk), total plant lignans (+0.26 and +0.16 ng/ml 212 

milk), daidzein (+1.74 and +1.72 ng/ml milk), genistein (+1.49 and +1.47 ng/ml milk), 213 

formononetin (+1.01 and +1.01 ng/ml milk), naringenin (+0.13 and +0.12 ng/ml milk), total 214 

plant isoflavones (+4.64 and +4.69 ng/ml milk), equol (+347 and +345 ng/ml milk), total 215 

isoflavones (+352 and +349 ng/ml milk) and coumestrol (+0.35 and +0.37 ng/ml milk), than 216 

FRG and CNV milk (Table 1). The differences in individual lignan or isoflavonoid 217 

concentrations between CNV and FRG milk was not significant (Table 1).  218 

3.3 Sampling month and milk phytoestrogens composition 219 

The effect of month was significant for secoisolariciresinol, matairesinol, lariciresinol, 220 

hydroxymatairesinol, total plant lignans, enterolactone, enterodiol, total mammalian lignans, 221 

daidzein, genistein, formononetin, total plant isoflavones and total isoflavones (Table 2). Milk 222 

concentrations of secoisolariciresinol, matairesinol, lariciresinol and total plant lignans were 223 
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increased during May-October than during March-April and November-February, with 224 

differences between individual months not always being statistically significant (Table 2). In 225 

contrast, concentrations of hydroxymatairesinol in milk were higher in March and December-226 

February, when compared with the period April-November, but differences between individual 227 

months were not always statistically significant (Table 2). Milk concentrations of 228 

enterolactone, total mammalian lignans and total lignans were increased during May-August, 229 

than during March and December-February and had intermediate values during the other 230 

months (Table 2). Milk concentrations of enterodiol in milk were increased during May and 231 

July-October, than during April, November and February and had intermediate values during 232 

the other months (Table 2). Milk concentrations of daidzein in milk were increased during 233 

August and October, although this was only statistically significant when compared with June 234 

and Jan-Feb (Table 2). Milk concentrations of genistein in milk were increased during March-235 

April and October-November, when compared with the period May-June; their values were 236 

intermediate during the other months (Table 2). Milk concentrations of glycitein were higher 237 

during March-May, than during the period of June-July and November and had intermediate 238 

values during the other months (Table 2). Concentrations of milk total plant isoflavones had 239 

highest values during March, lowest values in June and intermediate values during the other 240 

months, but differences between individual months was not always statistically significant. 241 

Milk concentrations of formononetin were increased during March, August and November, 242 

when compared with May-June; while its values were intermediate during the other months 243 

(Table 2). Milk equol and total isoflavone concentrations were increased during March and 244 

October-February than during April-September; but differences between individual months 245 

were not always statistically significant (Table 2). 246 

3.4 Interactions between management system and sampling month on milk phytoestrogens 247 

composition 248 
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The effects of management system × month interaction was significant for daidzein, 249 

genistein, formononetin, equol and total isoflavones (Figure 1), secoisolariciresinol, 250 

matairesinol, lariciresinol, total plant lignans, enterolactone, enterodiol, total mammalian 251 

lignans and total lignans (Figure 2). Milk daidzein, genistein, formononetin, equol and total 252 

isoflavone concentrations were higher in ORG than in CNV milk, throughout the year, but the 253 

extent of the differences was fluctuating throughout the season; the highest differences were 254 

observed in November-February, for equol and total isoflavones; in August-October, for 255 

daidzein; August-November for Genistein; and November and March for formononetin  256 

(Figure 1). The management system × month interaction did not have a significant effect on 257 

milk concentrations of hydroxymatairesinol, glycitein, naringengin and coumestrol. Milk 258 

concentrations of secoisolariciresinol and lariciresinol were higher in ORG than in CNV milk 259 

in June-October (Figure 2). Milk concentrations of matairesinol increased in ORG milk during 260 

May-September, when compared with CNV milk, while the same was observed for total plant 261 

lignans, by also extending this significant difference to April (Figure 2). Concentrations of 262 

enterolactone, mammalian lignans and total lignans were increased in ORG milk, when 263 

compared with CNV milk, during June, August and December-February (Figure 2). Milk 264 

concentrations of enterodiol were higher in ORG than CNV milk during March, May-August 265 

and January (Figure 2).  266 

4. Discussion 267 

4.1 Overall milk concentrations of phytoestrogens 268 

In line with previous studies, equol and enterolactone were the main phytoestrogens in 269 

bovine milk (Adler, et al., 2014; Adler, et al., 2015; Andersen, et al., 2009; Hojer, et al., 2012; 270 

Njastad, et al., 2014; Steinshamn, et al., 2008), possibly because these are the end products of 271 

mammalian metabolism of plant isoflavones and lignans, and in particular formononetin, 272 

daidzein, secoisolariciresinol and matairesinol (Njastad, et al., 2014). Enterodiol (another 273 
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mammalian lignan) was found in lower concentrations, as this is an intermediate in the process 274 

of enterolactone synthesis from plant lignans (Njastad, et al., 2014). The concentration of plant 275 

lignans secoisolariciresinol and matairesinol was lower compared with other studies (Adler, et 276 

al., 2014; Adler, et al., 2015; Steinshamn, et al., 2008), whereas the concentration of plant 277 

isoflavones, genistein, daidzein and formononetin was comparable (Adler, et al., 2015; 278 

Steinshamn, et al., 2008). Milk coumestrol concentration was low, but similar to previous work 279 

(Adler, et al., 2014; Adler, et al., 2015). The high variation in the concentration of equol and 280 

enterolactone between different studies imply that milk phytoestrogen concentrations may be 281 

influenced by a combination of genetics, diets and/or other management practices. Differences 282 

between studies are also because milk samples are collected at contrasting stages of the dairy 283 

supply chain, e.g. retail milk in the current work and milk from individual cows or farm bulk-284 

tank in other studies (Adler, et al., 2014; Adler, et al., 2015; Steinshamn, et al., 2008). Milk 285 

chemical composition, including phytoestrogens, is strongly influenced by animal genetics and 286 

farm diets, when milk is collected from individual cows or farms. In contrast, milk collected at 287 

retail level represents the average composition of milk from each management system, 288 

resulting from mixing milk from a large numbers of farms prior to processing and packaging. 289 

This dilutes any extreme values from individual cows or herds that may be fed diets with strong 290 

effect on milk phytoestrogens concentrations. To our knowledge, this is the first study to 291 

measure lariciresinol, hydroxymatairesinol, glycitein and naringenin in bovine retail milk. 292 

4.2 Dairy management system and milk phytoestrogens composition 293 

4.2.1 Organic milk 294 

Differences in the concentrations of individual lignans and isoflavones between ORG 295 

and CNV milk might be caused by the contrasting diets in these management systems. The 296 

higher concentrations of secoisolariciresinol in ORG milk are in agreement with Adler et al. 297 

(2015), who compared organic and conventional milk under short- or long- term access to 298 
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pasture. White and red clover are commonly used in ORG dairy diets in the UK (AHDB, 2012; 299 

Soil Association, 2018; Stergiadis, et al., 2015; Stergiadis, et al., 2012). Fresh or ensiled dietary 300 

clover increases feed transfer rates from the rumen (Dewhurst, Evans, Scollan, Moorby, Merry, 301 

& Wilkins, 2003; Stergiadis, et al., 2018), thus subsequently reducing the time feed is available 302 

to rumen microbes and the conversion of secoisolariciresinol (and other plant lignans) to 303 

enterolactone and enterodiol. 304 

The higher concentration of secoisolariciresinol in ORG compared to CNV and FRG 305 

milk is in agreement with Adler et al. (2015). However, management system did not affect 306 

concentrations of enterodiol and enterolactone (mammalian lignans), as previously reported 307 

(Njastad, et al., 2014), nor the sum of lignans, in the present work. This is in contrast with 308 

Adler et al. (2015), who found higher concentrations of enterolactone and enterodiol and 309 

lignans in ORG milk. The higher presence of secoisolariciresinol and matairesinol, precursors 310 

to enterolactone, in ORG milk in this study, may indicate a higher secoisolariciresinol dietary 311 

supply from the clover-based ORG dairy diets (AHDB, 2012; Soil Association, 2018). In 312 

addition, grain lignans are bound to cell wall macromolecules of the bran (Fardet, 2010) and 313 

have low bioavailability, thus potentially reducing their conversion to enterolactone. Therefore, 314 

the bioavailability of secoisolariciresinol may be lower in high-grain CNV diets, typical in the 315 

UK CNV dairy systems (Stergiadis, et al., 2012), and this reduces their concentrations in milk. 316 

In contrast to the present work, Njastad er al. (2014) found similar concentrations of 317 

secoisolariciresinol, and matairesinol in ORG and CNV milk. The contrasting effects between 318 

studies may result from the variant composition of concentrates in CNV diets, e.g. made up of 319 

different grains and thereby altering supply of plant lignans, which are precursors to 320 

enterolactone. For example, plant lignans in wheat, which is the main grain used in UK dairy 321 

diets, is higher than in oat and barley (Smeds, et al., 2007), which are also used but in lesser 322 
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extent. However, background information of grain contribution and composition in the dairy 323 

diets of different management systems was not available in the current work. 324 

The concentration of hydromatairesinol and glycitein was similar between the 325 

management systems, potentially because hydroxymatairesinol is predominant lignan in oats 326 

and barley (Smeds, et al., 2007); feeds that contribute less in cow diets than other grains (e.g. 327 

wheat, maize) and only minor differences are expected between diets in the different 328 

management systems. Given that hydroxymatairesinol in milk may originate from dietary 329 

hydroxymatairesinol, that has been transferred to milk, or synthesized from matairesinol 330 

through phase I metabolism (Niemeyer, Honig, Kulling, & Metzler, 2003).  331 

Similar to the present work, Adler et al. (2015) showed higher concentration of 332 

isoflavones, daidzein, genistein, and formononetin in ORG, than CNV, milk. Legumes, 333 

including white and red clover which are extensively used in ORG dairy diets (AHDB, 2012; 334 

Soil Association, 2018; Stergiadis, et al., 2015; Stergiadis, et al., 2012), are richer in 335 

isoflavones (including daidzein, genistein and formononetin) and coumestrol, than grass and 336 

grains (Adler, et al., 2014; Kuhnle, et al., 2008). This increases their dietary intakes and the 337 

subsequent amounts that are absorbed and transferred into milk (Njastad, et al., 2014). Previous 338 

studies in Finland, France and Norway demonstrated that the high concentration of isoflavones, 339 

and especially equol, in ORG milk were because of higher intakes of ensiled or fresh red clover 340 

(Adler, et al., 2014; Adler, et al., 2015; Andersen, et al., 2009; Antignac, Cariou, Le Bizec, & 341 

Andre, 2004; Hoikkala, et al., 2007; Hojer, et al., 2012; Steinshamn, et al., 2008). Red clover 342 

is rich in daidzein, formononetin, and biochanin A, which are precursors of equol (Mustonen, 343 

et al., 2009), and the most common legume for silage making in the ORG dairy farms in the 344 

UK (AHDB, 2012). Equol concentrations in ORG and CNV milk in the study of Hoikalla et 345 

al. (2007) were very similar (411 and 62 ng/ml, respectively) to those measured in the current 346 
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work (411 and 64 ng/ml, respectively), although those in retail milk in the study of Antignac 347 

et al. (2004) were lower (191 and 36 ng/mL, respectively).  348 

ORG dairy cow diets also have a higher forage:concentrate ratio than CNV diets 349 

throughout the year (Soil Association, 2018; Stergiadis, et al., 2012). Steinshamn et al. (2008) 350 

found that concentrate supplementation reduces the intake of most phytoestrogens, including 351 

equol, biochanin A and daidzein. This may be an additional reason for their lower concentration 352 

in CNV milk, as the lower intakes would reduce their outputs in milk, as well as the amounts 353 

of in vivo synthesised equol (Njastad, et al., 2014).  354 

4.2.2 Free-range milk 355 

In the present work, the phytoestrogen concentrations did not differ between CNV and 356 

FRG milk, which is probably due to small feeding differences between these two management 357 

systems. Similar findings, and extensive potential explanations, have been recently published 358 

for milk fatty acids, which are also strongly influenced by cow diet (Stergiadis, Berlitz, Hunt, 359 

Garg, Givens, & Kliem, 2019). Farm management practices have not been recorded in the 360 

present work, and there is limited information available to describe FRG management, but 361 

similar diets, in terms of forage:concentrate ratio and forage species used, between CNV and 362 

FRG farms may explain the similar milk concentrations of lignans and isoflavonoids. 363 

4.3 Seasonal effect on milk phytoestrogens composition 364 

In UK farms that use grazing as a feeding practice, cows would typically turnout to 365 

pasture around late March-beginning of April and access will be provided until approximately 366 

late-October, with grazing intake being maximum between May and August (AHDB, 2011). 367 

In late October-early November, cows would be taken indoors, and fed with conserved forages 368 

and concentrates (AHDB, 2011). 369 

In the present work, milk lignan concentrations (including enterolactone, 370 

secoisolariciresinol, and matairesinol and lariciresinol), were higher during the 371 
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outdoors/grazing period, as previously shown in Norway for enterolactone, secoisolariciresinol 372 

and matairesinol (Adler, et al., 2015). This may result from the higher concentrations and 373 

bioavailability of lignans in the pastures, which contribute more in cow diets during the grazing 374 

season. In the present work, 40% of samples were ORG and cows were expected to graze 375 

pastures rich in legumes, and in particular clover (AHDB, 2012; Soil Association, 2018; 376 

Stergiadis, et al., 2015; Stergiadis, et al., 2012). In contrast, the higher concentration of 377 

hydroxymatairesinol was higher during indoor period, which is expected as the main source of 378 

hydroxymatairesinol in cow diets are the concentrates rather than the forages.  379 

Milk concentrations of sum of and individual isoflavones (including daidzein, 380 

genistein, formononetin, naringenin and equol) were higher during the typical indoor season, 381 

thus aligning with previous results for equol, daidzein, formononetin and the sum of 382 

isoflavones, although previous findings were not always statistically significant (Adler, et al., 383 

2015). It is possible that the contribution of clover, which is rich in isoflavones (Steinshamn, 384 

et al., 2008), is higher in silages than in pasture because silage swards are harvested when 385 

clover biomass contribution is relatively high. Milk isoflavone concentration is strongly 386 

influenced by silage botanical composition (Hojer, et al., 2012), something that might have 387 

contributed to seasonal differences in the present work. Red clover is richer in formononetin, 388 

a precursor to equol, than other legumes such as white clover, timothy, meadow fescue and 389 

birdsfoot trefoil (Hojer, et al., 2012). Given that red clover is a typical legume for silage making 390 

in the UK, while pastures contain substantial amounts of white clover (AHDB, 2012; Soil 391 

Association, 2018), the grass/red-clover silage (fed during the indoor period) would provide 392 

more dietary daidzein, genistein, formononetin and biochanin A than grass/white-clover 393 

pastures (Steinshamn, et al., 2008). In addition, the pasture and silage concentrations of 394 

daidzein, genistein, formononetin and biochanin A are influenced by plant growth stage, and 395 

the biomass leaf:stem ratio (Booth, et al., 2006; Hojer, et al., 2012; Tsao, et al., 2006). 396 
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Isoflavones are in higher concentrations in leaves than in stems (Tsao, et al., 2006) and, given 397 

that clover is harvested for silage making at strategic times when leaf:stem ratio is higher than 398 

the typical leaf:stem ratio when cows are grazing, clover-based silages would provide more 399 

dietary isoflavones than grass-clover pastures. The higher contribution of soybean meal, which 400 

is rich in daidzein and genistein, in cow diets during the indoor period in the CNV and FRG 401 

systems may explain the increase in milk isoflavone concentrations. Genistein, glycitein, 402 

daidzein showed similar, but not as strong, seasonal patterns as equol. This indicates that equol 403 

concentrations represent the combined effect of clover silage and soybean supplementation, 404 

while one of these factors may have less impact in the other isoflavones.  405 

4.4 Interaction between management system and season on milk phytoestrogens composition 406 

Seasonal variation of phytoestrogens was stronger in the ORG, than in CNV, milk. This 407 

is because the main driver for milk phytoestrogen concentrations is cow diet (Adler, et al., 408 

2014; Njastad, et al., 2014), and dairy diets are more diverse throughout the year in ORG than 409 

in CNV systems. In ORG herds, cows ought to graze at least 60% of their dry matter intake 410 

during the grazing season, and the typical grass/clover swards have variant contribution of 411 

clover between different months (AHDB, 2012; Soil Association, 2018). Cows in CNV herds 412 

also typically graze between April-October, but the intakes of grazed forage would be lower 413 

than in ORG cows (Stergiadis, et al., 2012), while clover is not commonly used, and the relative 414 

impact on seasonal variation will be less pronounced. In addition, highly-intensive dairy farms 415 

(Stergiadis, et al., 2012), which also contribute to the CNV retail milk pool, do not allow cows 416 

to graze and offer similar diets throughout the year (based on conserved forage and 417 

concentrates), thus further reducing the seasonal effect (Stergiadis, et al., 2012). 418 

The concentrations of secoisolariciresinol, matairesinol and lariciresinol were higher in 419 

ORG, than in CNV milk, during parts of the grazing season, but not during the indoor season. 420 

The main driver of the concentrations of these lignans in milk is their dietary intake (Adler, et 421 
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al., 2015). Clover-containing pasture can be a main source (Adler, et al., 2014), and the higher 422 

pasture intakes of ORG cows during the grazing season may explain this finding. This 423 

difference is reduced in winter, when both ORG and CNV cows are housed indoors and receive 424 

conserved forages and concentrates; although ORG silage may still supply more clover than 425 

CNV silage. 426 

Concentrations of daidzein, genistein, formononetin, equol and sum of isoflavones 427 

were higher in the ORG, than in CNV, throughout the year, and in particular during the indoor 428 

season. Provided that red clover is the main driver for milk equol concentrations, and ORG 429 

silages are made mainly using red clover, while ORG grazing swards may also contain 430 

substantial amounts of white clover (AHDB, 2012), it is expected that winter diets may contain 431 

more red clover. This increases the supply of daidzein, formononetin and biochanin A 432 

(Steinshamn, et al., 2008) for equol synthesis in the rumen during the indoor period. In addition, 433 

a higher contribution of overall clover and leaf:stem ratio, both factors known to increase 434 

isoflavones supply (Adler, et al., 2014; Tsao, et al., 2006), is expected in the ensiled forage 435 

than in grazed sward, because harvest for silage takes place when there is a higher clover 436 

biomass and leaf:stem ratio, compared to that grazed by cows in grass-clover pastures.   437 

Enterolactone concentrations were not influenced by the management system but ORG 438 

milk contained more enterolactone during summer, similarly to other plant lignans, but less 439 

enterolactone during winter, when compared with CNV milk. The intakes of plant lignans, 440 

which are precursors to enterolactone, potentially decrease at higher rates during winter period 441 

in ORG dietsp; while rumen microbes may become more efficient in metabolising feed 442 

phytoestrogens over time (Njastad, et al., 2014).  443 

4.5 Potential impact of consuming milk from different dairy management systems on 444 

phytoestrogen intakes of UK consumers 445 
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In the most recent National Diet and Nutrition Survey in the UK (Bates, et al., 2014), 446 

liquid milk consumption (average; including whole, semi-skimmed and skimmed milk) for 447 

males and females was 275 g/day for children 1.5-3.0 years, 187 g/day for children 4-10 years, 448 

110 g/day for teenagers 11-18 years, 125 g/day for adults 19-64 years, and 181 g/day for adults 449 

over 65 years. Antignac et al. (2004) showed that whole and skim milk have similar 450 

phytoestrogen concentrations in France, and we assume that phytoestrogen profile measured 451 

in whole milk in the present work will represent the profiles of other available retail liquid milk 452 

in the UK (semi-skimmed, skimmed). Therefore, under the current intakes of liquid milk 453 

(Bates, et al., 2014), a change from CNV to ORG milk will increase the intakes of equol by 454 

95.3 μg/day in children 1.5-3.0 years (from 17.5 to 112.8 μg/day), 68.7 μg/day in children 4-455 

10 years (from 12.6 to 81.3 μg/day), 49.3 μg/day in teenagers 11-18 years (from 9.0 to 58.3 456 

μg/day), 47.3 μg/day in adults 19-64 years (from 8.7 to 56.0 μg/day), and 64.0 μg/day in adults 457 

over 65 years (from 11.7 to 75.7 μg/day). Across all ages and genders, a change from CNV to 458 

ORG liquid milk would also increase the intakes of secoisolariciresinol by 0.01 μg/day (from 459 

0.03 to 0.04 μg/day); matairesinol by 0.01 μg/day (from 0.02 to 0.03 μg/day); lariciresinol by 460 

0.03 μg/day (from 0.06 to 0.09 μg/day); daidzein by 0.32 μg/day (from 0.18 to 0.50 μg/day); 461 

genistein by 0.27 μg/day (from 0.16 to 0.43 μg/day); formononetin by 0.18 μg/day (from 0.02 462 

to 0.20 μg/day); naringenin by 0.03 μg/day (from 0.03 to 0.06 μg/day) and coumestrol by 0.06 463 

μg/day (from 0.02 to 0.08 μg/day).  464 

The most substantial effect of switching to ORG milk on phytoestrogen intakes is 465 

therefore observed for equol, while differences in intakes of other phytoestrogens are rather 466 

low (<32 μg/day). Potential health benefits from equol and other phytoestrogen intake, 467 

including lower risk for type-2 diabetes, cardiovascular disease, and hormone-dependent 468 

cancers, action against osteoporosis and metabolic syndrome and reduction of menopausal 469 

symptoms have been discussed in systematic reviews (Adlercreutz, 2007; Fardet, 2010; 470 
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Jungbauer & Medjakovic, 2014; Leitzmann, 2016). A meta-analysis of prospective cohort 471 

studies, and a systematic review, established that for every 10 mg/day increase in the intake of 472 

phytoestrogens, there is a 5% decrease on cardiovascular disease risk (Leitzmann, 2016; Wang, 473 

Ouyang, Liu, & Zhao, 2014). However, the effects of phytoestrogens on human health have 474 

not been sufficienctly studied for the development of nutritional recommendations (Leitzmann, 475 

2016). Although ORG milk contained more of the individual isoflavones and lignans, 476 

nutritional recommendations and larger cohort and epidemiological studies to enlighten the 477 

potential effects of phytoestrogens in human health (and the relative amounts required) are not 478 

available. Therefore, in the present work it is not possible to conclude on any potential 479 

implications of these differences on human health. 480 

5. Conclusion 481 

Organic retail milk had higher concentrations of the lignans secoisolariciresinol, 482 

matairesinol, and lariciresinol, the isoflavones daidzein, genistein, formononetin, naringenin 483 

and equol, and the coumestant coumestrol, when compared with milk from conventional or 484 

free-range systems. There was a significant effect of management system on isoflavones and 485 

coumestrol throughout the year but the effect on lignans was significant only during the typical 486 

UK grazing season. In the present work, milk was collected at retail outlets and collecting 487 

detailed information on dairy practices at farm level was not possible (beyond the label 488 

certification). However, differences in phytoestrogen composition may be a consequence of 489 

differing cow diets, and most likely and effect of the higher pasture and clover intakes in cow 490 

diets in organic systems. The phytoestrogen composition did not differ between free-range and 491 

conventional milk, but free-range milk had more secoisolariciresinol in August. Consuming 492 

organic milk would increase intakes of lignans, isoflavones and coumestants but any influence 493 

on human health as a result of these differences cannot be concluded from the results of the 494 

present work. 495 
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Table 1 

Effect of dairy management system on the concentrations of lignans and isoflavones 

(means and SE) in retail milk samples collected monthly over 12 months. 

 Management Systema   ANOVA 

Phytoestrogens (ng/ml) CNV ORG FRG SE  P-valuesb 

Plant lignans       

Secoisolariciresinol 0.14B 0.20A 0.16B 0.011  *** 

Matairesinol 0.12B 0.17A 0.14AB 0.009  * 

Lariciresinol 0.34B 0.49A 0.34B 0.016  ** 

Hydroxymatairesinol 0.18 0.18 0.23 0.012  ns 

Sum of plant lignans 0.78B 1.03A 0.87B 0.030  ** 

Mammalian lignans       

Enterolactone 61.8 62.4 59.2 2.43  ns 

Enterodiol 0.33 0.35 0.33 0.017  ns 

Sum mammalian lignans 62.2 62.7 59.5 2.44  ns 

Sum of lignans 63.0 63.7 60.4 2.45  ns 

Plant isoflavones       

Daidzein 0.95B 2.69A 0.96B 0.070  *** 

Genistein 0.83B 2.32A 0.85B 0.078  *** 

Glycitein 2.07 2.34 1.97 0.118  ns 

Formononetin 0.08B 1.10A 0.09B 0.029  *** 

Naringenin 0.17B 0.30A 0.18B 0.015  ** 

Sum of plant isoflavones 4.11B 8.74A 4.05B 0.251  *** 

Mammalian isoflavones       

Equol 63.6B 411.1A 66.4B 12.96  *** 

Sum of isoflavones 67.7B 419.8A 70.4B 13.12  *** 

Plant coumestants       

Coumestrol 0.10B 0.45A 0.08B 0.017  *** 
a CNV = conventional (n=48), ORG = organic (n=48), FRG = free-range (n=24) 
b ***, P < 0.001; **, P < 0.01; *, P < 0.05; †, 0.05 < P < 0.10 (trend); ns, P > 0.10. 

Different upper case letters within a row indicate significant differences between 

management system means (Fisher's Least Significant Difference test; P < 0.05) 
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Table 2 

Effect of sampling month on the concentrations of lignans and isoflavones (means and SE) in retail milk samples collected monthly over 12 months 

 Montha   ANOVA 

Phytoestrogens (ng/ml) March April May June July August September October November December January February SE  P-valuesb 

Plant lignans                

Secoisolariciresinol 0.11E 0.12E 0.22AB 0.17C 0.26A 0.24A 0.20BC 0.17CD 0.11E 0.13E 0.13DE 0.12E 0.016  *** 

Matairesinol 0.10D 0.12CD 0.23A 0.18B 0.19B 0.18B 0.17B 0.14C 0.10CD 0.12CD 0.10D 0.11CD 0.013  *** 

Lariciresinol 0.34DEF 0.32EF 0.41BC 0.39CD 0.50A 0.48A 0.50A 0.47AB 0.39CD 0.38CDE 0.33EF 0.30F 0.033  *** 

Hydroxymatairesinol 0.24A 0.16CD 0.19BCD 0.16D 0.16D 0.16D 0.15D 0.18BCD 0.18BCD 0.23AB 0.23A 0.21ABC 0.020  ** 

Sum of plant lignans 0.79DEF 0.72F 1.05AB 0.91CD 1.11A 1.06A 1.02AB 0.96BC 0.78EF 0.86CDE 0.79DEF 0.72F 0.059  *** 

Mammalian lignans                

Enterolactone 54.4CDE 58.1BCD 80.6A 78.5A 75.0A 65.7B 59.8BC 59.7BC 55.7BCD 54.9CDE 49.2DE 46.7E 3.96  *** 

Enterodiol 0.32CDE 0.28EF 0.44A 0.33DE 0.38BCD 0.37BCD 0.40AB 0.37BC 0.29EF 0.32CDE 0.31CDE 0.26F 0.029  *** 

Sum of mammalian lignans 54.7CDE 58.4BCD 81.0A 78.8A 75.3A 66.0B 60.2BC 60.1BC 56.0BCD 55.2CDE 49.6DE 47.0E 3.978  *** 

Sum of lignans 55.5CDE 59.2CD 82.1A 79.7A 76.5A 67.1B 61.2BC 61.0BC 56.8BCD 56.0CDE 50.3DE 47.7E 3.994  *** 

Plant isoflavones                

Daidzein 1.84AB 1.51ABC 1.53ABC 1.11D 1.62ABC 1.93A 1.92AB 2.04A 1.72ABC 1.61ABC 1.52BCD 1.45CD 0.308  *** 

Genistein 1.95A 1.47B 1.01CD 0.94D 1.37BCD 1.46BC 1.48BC 1.60AB 1.71AB 1.37BCD 1.32BCD 1.51BC 0.283  *** 

Glycitein 2.55A 2.41AB 2.52ABC 1.62F 1.81EF 2.25BCD 2.09CDEF 2.17BCDE 2.01DEF 2.03DEF 2.24BCDE 2.17BCDE 0.194  *** 

Formononetin 0.65A 0.47ABC 0.29BC 0.26C 0.43ABC 0.57A 0.53ABC 0.53AB 0.64A 0.49ABC 0.49ABC 0.51ABC 0.182  * 

Naringenin 0.35 0.25 0.25 0.20 0.25 0.22 0.21 0.19 0.18 0.19 0.21 0.20 0.032  † 

Sum of plant isoflavones 7.33A 6.11AB 5.59B 4.13C 5.48B 6.43AB 6.22AB 6.53AB 6.25B 5.70B 5.78B 5.85B 0.863  *** 

Mammalian isoflavones                

Equol 252.0AB 195.4BCD 85.7F 111.8EF 103.4EF 149.7DE 183.3CD 236.1ABC 297.4A  274.9AB 264.8AB 283.1A 61.09  *** 

Sum of isoflavones 259.4AB 201.5BCD 91.3F 115.9EF 108.8EF 156.1DE 189.5CD 242.7ABC 303.7A 280.6AB 270.5AB 288.9A 61.88  *** 

Plant coumestants                

Coumestrol 0.26 0.22 0.35 0.18 0.23 0.17 0.18 0.22 0.26 0.27 0.23 0.25 0.069  ns 
a n=10, for each month 
b ***, P < 0.001; **, P < 0.01; *, P < 0.05; †, 0.05 < P < 0.10 (trend); ns, P > 0.10. Different upper case letters within a row indicate significant differences between 

sampling month means (Fisher's Least Significant Difference test; P < 0.05) 
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Figure 1. Effect (P represents the ANOVA P-value) for the 

management system × month interaction on the concentrations of 

isoflavonoids in retail milk samples collected monthly over 12 

months. Letters M to F, in Axis X, represent months between 

March 2016 and February 2017. Different upper case letters within 

a month indicate significant differences between means for the 

different management system within this month (Fisher's Least 

Significant Difference test; P < 0.05) 
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Figure 2. Effect (P represents the ANOVA P-value) for the management system × month interaction on the concentrations of lignans in 

retail milk samples collected monthly over 12 months. Letters M to F, in Axis X, represent months between March 2016 and February 

2017. Different upper case letters within a month indicate significant differences between means for the different management system 

within this month (Fisher's Least Significant Difference test; P < 0.05) 

 

 

  



 33 

 

APPENDIX 

Table A1. Compound-Dependent LC-MS/MS Parameter, Declustering Potential 

(DP), Entrance Potential (EP), Collision Energy (CE) and Cell Exit Potential (CEP). 

Parameter assessed 
Q1 mass 

(m/z) 

Q3 mass 

(m/z) 

DP 

(V) 

EP 

(V) 

CE 

(eV) 

CEP 

(V) 
13C3-enterolactone 300.0 191.9 -128 -10 -30 -14 
13C3-enterodiol 304.1 255.1 -140 -10 -32 -17 

Enterolactone 297.1 189.1 -140 -10 -26 -21 

Enterodiol 301.1 253.1 -140 -10 -32 -19 

Matairesinol 357.2 82.9 -145 -10 -26 -7 

Hydroxymatairesinol 373.1 217.1 -115 -10 -32 -13 

Secoisolariciresinol 361.2 165.0 -150 -10 -34 -11 

Lariciresinol 359.1 329.0 -40 -10 -16 -21 

Isolariciresinol 359.2 344.0 -165 -10 -26 -31 

Pinoresinol 357.2 151.0 -155 -10 -24 -11 

Syringaresinol 417.1 181.0 -170 -10 -26 -13 

Medioresinol 387.2 151.0 -15 -10 -26 -25 

Equol-d4 245.1 122.9 -75 -10 -20 -15 

Daidzein-d3 256.0 225.9 -165 -10 -42 -13 

Genistein-d4 273.1 135.1 -150 -10 -43 -11 

Equol 241.1 119.0 -70 -10 -26 -8 

Equol qualifier 241.1 134.9 -70 -10 -25 -8 

Daidzein 253.0 223.0 -171 -10 -42 -15 

Genistein 269.0 132.8 -160 -10 -42 -16 

Glycitein 283.0 267.9 -75 -10 -25 -16 

Naringenin 271.1 150.9 -121 -10 -25 -18 

Formononetin 267.0 251.9 -147 -10 -28 -15 

Chrysin 253.1 142.9 -128 -10 -30 -14 

Coumestrol 267.0 211.0 -176 -10 -40 -11 

Coumestrol qualifier 267.0 134.9 -176 -10 -39 -12 

 

  



 34 

 

Table A2. Low Limit of Quantitation (LLOQ) and Upper Limit of 

Quantitation (ULOQ) and their Corresponding Regression Coefficients (r). 

Parameter assessed 
LLOQ Nm 

(ng/mL) 

ULOQ Nm 

(ng/mL) r 

Equol 1.6 (0.39) 412.8 (100) 0.9958 

Daidzein 0.038 (0.00977) 39.3 (10) 0.9991 

Genistein 0.072 (0.0195) 37.0 (10) 0.9997 

Glycitein 0.034 (0.00977) 35.2 (10) 0.9964 

Naringenin 0.036 (0.00977) 36.6 (10) 0.9998 

Formononetin 0.0089 (0.0024) 9.3 (2.5) 0.9998 

Chrysin 0.049 (0.00195) 39.3 (10) 0.9996 

Coumestrol 0.036 (0.00977) 37.2 (10) 0.9996 
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Figure A1. Total Ion Chromatogram of equol and internal standard equol-d4 in concentration of 100 ng/mL and 

200 ng/mL respectively. Retention time of equol quantifier/qualifier 3.73 and equol-d4 3.72 min. 
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Figure A2. Total Ion Chromatogram of isoflavones standards in concentration of 1.25 ng/mL. The concentration 

of internal standards Daidzein-d3 and Genistein-d4 were 60 and 30 ng/mL respectively. Retention time in 

minutes for the standards were: Daidzein 3.28, Daidzein d4 3.28, Glycitein 3.32, Coumestrol quantifier/qualifier 

3.67, Genistein 3.69, Genistein-d4 3.69, Naringenin 3.70, Formononetin 4.04 and Chrysin 4.42 
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Figure A3. Total Ion Chromatogram of a milk sample for lignans and isoflavones and their corresponding 

internal standards. 
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Figure A4. Extracted Ion Chromatograms of lignans and isovlavones and their corresponding internal 

standards in a milk sample. 

 

 

 

 


