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Abstract: This paper focuses on multi-attribute group decision-making (MAGDM) course in which 

attributes are evaluated in terms of interval-valued intuitionistic fuzzy (IVIF) information. More 

explicitly, this paper introduces new aggregation operators for IVIF information and further 

proposes a new IVIF MAGDM method. The power average (PA) operator and the Muirhead mean 

(MM) are two powerful and effective information aggregation technologies. The most attractive 

advantage of the PA operator is its power to combat the adverse effects of ultra-evaluation values 

on the information aggregation results. The prominent characteristic of the MM operator is that it is 

flexible to capture the interrelationship among any numbers of arguments, making it more powerful 

than Bonferroni mean (BM), Heronian mean (HM), and Maclaurin symmetric mean (MSM). To 

absorb the virtues of both PA and MM, it is necessary to combine them to aggregate IVIF 

information and propose IVIF power Muirhead mean (IVIFPMM) operator and the IVIF weighted 

power Muirhead mean (IVIFWPMM) operator. We investigate their properties to show the 

strongness and flexibility. Furthermore, a novel approach to MAGDM problems with IVIF decision-

making information is introduced. Finally, a numerical example is provided to show the 

performance of the proposed method. 

Keywords: multi-attribute group decision-making; interval-valued intuitionistic fuzzy sets; power 

average operator; Muirhead mean; interval-valued intuitionistic fuzzy power Muirhead mean 

 

1. Introduction 

There are quite a few decision-making (DM) activities in real life. For example, when buying a 

car, we usually have to comprehensively take into consideration the various indicators of the 

alternatives of potential candidates. When considering a good supplier globally, a company usually 

evaluates alternatives from multiple aspects. It is not difficult to find out that the essence of quite a 

few actual DM problems is multi-attribute decision-making or multi-attribute group decision-

making (MAGDM) [1–5]. When using MAGDM theory framework to solve practical DM problems, 

we always need to consider four basic elements, all possible alternatives, multiple attributes, 

evaluation information, and best choice determining methods, among which the latter two are the 

most important and complicated. In other words, there are two fundamental issues in MAGDM, (1) 

how decision makers express their preference information in a proper way; (2) how the best candidate 

is determined. Thanks to Prof. Zadeh [6] who provided an efficient methodology, called fuzzy set 

theory (FST), to describe fuzzy information. Hence, FST-based MAGDM has sooner become a new 
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hot research topic [7–10] and attracted attention from scholars and scientists all around the world. 

Although FST has achieved great success in MAGDM, many scholars have noticed its shortcomings 

and started to study new tools. A landmark discovery was the intuitionistic fuzzy sets (IFSs) 

proposed by Atanassov [11] in 1986. The IFSs are powerful for their membership grades (MGs) and 

non-membership grades (NMGs), which not only describe the degree of an element to a given fixed 

set but also contain the grade that the element does not belong to the fixed set. Due to this feature, 

IFSs received great attention from scholars in operational research and DM sciences. Xu [12] was the 

founding father of intuitionistic fuzzy aggregation operator theory. Afterward, quite a few 

intuitionistic fuzzy aggregation operators have been proposed based on Bonferroni mean (BM), 

Heronian mean (HM), and Maclaurin symmetric mean (MSM) [13–15], as scholars started to realize 

the relationship among attributes. Although IFSs have been proposed as early as 1986, they are still 

widely applied in the field of MAGDM until now. For example, Meng et al. [16] investigated group 

DM methods in which decision makers’ evaluations are expressed by linguistic intuitionistic 

preference relations. Tao et al. [17] studied operations and aggregation operators for intuitionistic 

fuzzy numbers (IFNs) based on Archimedean copulas. Garg and Arora [18] focused on the 

combination of IFSs with soft sets and the corresponding DM methods. Cali and Balaman [19] 

proposed a new intuitionistic fuzzy MAGDM method by integrating ELECTRE and VIKOR. Garg 

and Rani [20] developed a new distinctive correlation coefficient measure of complex IFSs and 

illustrated its robustness.  

Although the powerfulness of IFSs in dealing with MAGDM has been widely investigated, the 

limitations of IFS are also obvious. In IFSs, MG and NMG are denoted by two single certain values. 

Nevertheless, decision makers sometimes would like to use interval values rather than crisp numbers 

to express their preferences. Obviously, compared with crisp numbers, interval values contain more 

information and can express decision makers’ evaluation information more comprehensively. Hence, 

Atanassov and Gargov [21] generalized the traditional IFSs and proposed the interval-valued 

intuitionistic fuzzy (IVIF) sets (IVIFSs). As known, aggregation operators are an efficient 

methodology in solving MAGDM problems. Hence, more and more scholars started to investigate 

aggregation operators for IVIF information. The most representative is the IVIF ordered weighted 

average operator developed by Xu [22]. Besides, more and more scientists began to notice that there 

is often strong interrelationship among attributes in MAGDM problems in reality. Hence, some 

aggregation operators, such as IVIF Bonferroni means (IVIFBMs) [23], IVIF Heronian means 

(IVIFHMs) [24], and IVIF Maclaurin symmetric means (IVIFMSMs) [25], were proposed to take such 

relationship into account. Recently, IVIF aggregation operator theory has achieved important 

development. To deal with complicated IVIF DM systems, some scholars introduced hybrid 

aggregation operators, such as the IVIF power Bonferroni mean (IVIFPBM) operator [26], the IVIF 

power Heronian mean (IVIFPHM) operator [27], and the IVIF power Maclaurin symmetric mean 

(IVIFPMSM) [28] operator. Take the IVIFPBM operator as an example; it is a combination of IVIF 

power average (IVIFPA) [29] operator and the IVIFBM operator. Hence, IVIFPBM operators have the 

advantages of both IVIFPA and IVIFBM operators. Similarly, IVIFPHM and IVIFPMSM have the 

merits as IVIFPBM. The recently proposed Muirhead mean (MM) [30] has similar advantages as BM, 

HM, and MSM, as all of them can capture the interrelationship among attributes. However, MM is 

believed to be more flexible due to its skill of considering the interrelationship among arbitrary 

numbers of attributes [31–34]. Hence, it is very necessary to compound power average (PA) [35] with 

MM to integrate IVIF information and propose IVIF power MM (IVIFPMM) operators. Furthermore, 

we utilize the proposed operators to propose a new method to handle IVIF MAGDM problems.  

This paper is constructed as follows. Section 2 reviews basic knowledge that is used in the 

following sections. Section 3 introduces the IVIFPMM operator and its weighted form by taking the 

weight vector of attributes into account. Section 4 presents the main steps of a new algorithm of 

addressing MAGDM with IVIF information. Section 5 applies the new approach to real-life DM 

problems. Additionally, we also prove why our method is more powerful and flexible than others. 

Conclusions remarks can be found in Section 6.  

2. Preliminaries 
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2.1. The Power Average and Muirhead Mean Operators 

Considering that the unduly high and unduly low assessments provided by decision makers 

may have bad effects on the final results, Yager [35] introduced the PA operator in which the weight 

vector depends on the input data.  

Definition 1 [35]. Let  1,2,...,
i

a i n  be a collection of positive real numbers, then the power 

average (PA) operator is defined as  

 
  

  














1
1 2

1

1

, ,...,

1

n

i i
i

n n

i
i

T a a

PA a a a

T a

, (1)

where    
 

 
1,

,
n

i i j
j j i

T a Sup a a  and  ,
i j

Sup a a  denotes the support degree for
i

a  from j
a ,  

satisfying the following conditions: 1)     , 0,1
i j

Sup a a ; 2)    , ,
i j j i

Sup a a Sup a a ; 3) 

   , ,Sup a b Sup c d , if   a b c d .  

The MM was introduced by Muirhead [30] for crisp numbers. Its flexibility is reflected in its 

ability to capture the interrelationship among arbitrary numbers of input variables.  

Definition 2 [30]. Let   1,2,...,
j

a j n  be a set of real numbers and  
1 2
, ,...,

n
S s s s be a collection 

of parameters, where   1,2,...,
j

s j n is a non-negative real number. If  

   




 

    
 

 1

1

1 2
1

1
, , ...,

!

n

j j
j

n

n
s sS

n j
T j

MM a a a a
n

, (2)

then SMM is the Muirhead mean (MM) operator, where     1,2,...,j j n denotes any 

permutation of  and
n

T represents all possible permutations of . 

2.2. Interval-Valued Intuitionistic Fuzzy Sets 

Definition 3 [21]. Let X be a universe of discourse, an interval-valued intuitionistic fuzzy set 

(IVIFS). A  over X is defined as  

     , ,
A A

A x x v x x X , (3)

where        , 0,1
A A

x v x are two intervals numbers, representing the membership and non-

membership degree, respectively, satisfying        0 sup sup 1
A A

x v x  for all x X . For 

convenience, let       ,
A

x a b  and      ,
A

v x c d , so that          , , ,a b c d , which can be called an 

interval-valued intuitionistic fuzzy number (IVIFN). 

Then, Xu [22] introduced some operations of IVIFNs. 

Definition 4 [22]. Let         
1 1 1 1 1

, , ,a b c d ,         
2 2 2 2 2

, , ,a b c d ,          , , ,a b c d  be any 

three IVIFNs and  be a positive real number, then 

1.              
1 2 1 2 1 2 1 2 1 2 1 2 1 2

, , ,a a a a b b b b c c d d  

2.              
1 2 1 2 1 2 1 2 1 2 1 2 1 2

, , ,a a b b c c c c d d d d  

3.                

    1 1 ,1 1 , ,a b c d  

4.               

    = , , 1 1 ,1 1a b c d  
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To compare two IVIFNs, Hung and Wu [36] gave the definitions of the score function and the 

accuracy function of IVIFNs. 

Definition 5 [36]. Let          , , ,a b c d  be an IVIFN, then a score function S and an accuracy 

function H can be defined as follows 

       2S a c b d , (4)

       2H a b c d , (5)

Based on the score function and the accuracy function, Hung and Wu [36] introduced the 

comparison rule for two IVIFNs. 

Definition 6 [36]. Let         
1 1 1 1 1

, , ,a b c d  and         
2 2 2 2 2

, , ,a b c d  be any two IVIFNs, 

 
1

S and  
2

S  be the scores of 
1

 and 
2
, respectively;  

1
H  and  

2
H  be the accuracy 

of 
1

 and 
2
, respectively. Then, the comparison law of two IVIFNs can be defined as 

1. If     
1 2

S S , then  
1 2

; 

2. If     
1 2

S S , then 

           if     
1 2

H H , then  
1 2

; 

           if    
1 2

H H  , then 
1 2

  . 

Xu [37] gave the definition of Hamming distance between any two IVIFNs. 

Definition 7 [37]. Let         
1 1 1 1 1

, , ,a b c d and         
2 2 2 2 2

, , ,a b c d be any two IVIFNs, then the 

Hamming distance between
1

 and
2

 is defined as 

          
1 2 1 2 1 2 1 2 1 2

1
,

4
d a a b b c c d d  , (6)

3. Power Muirhead Mean Operators for Interval-Valued Intuitionistic Fuzzy Sets 

In this section, we combine PA with MM within an IVIF environment and propose some 

interval-valued intuitionistic fuzzy power Muirhead mean operators.  

3.1. The Interval-Valued Intuitionistic Fuzzy Power Muirhead Mean (IVIFPMM) Operator 

Definition 8. Let   1,2,...,
j

i n  be a collection of IVIFNs and  
1 2
, ,...,

n
S s s s be a collection of 

parameters, where   1, 2,...,
j

s j n is a non-negative real number. Then, the interval-valued 

intuitionistic fuzzy power Muirhead mean (IVIFPMM) operator is given as  

 
   
  

 






   





 



     
      
  
   



1

1

1 2 1

1

11
, ,...,

1

n
j

j
j

n

s
s

n j
S

n jnT j

j
j

T
IVIFPMM n

n
T

, (7)

where 

   
 

   
1,

,
n

j i j
i i j

T Sup , (8)

and 
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       , 1 ,
i j i j

Sup d , (9)

where      1, 2,...,j j n denotes any permutation of , 
n

T represents all possible 

permutations of , and n is the balancing coefficient.   ,
i j

d represents the Hamming 

distance between
i
andj , and   ,

i j
Sup  is the support for

i
from

j , satisfying the following 

conditions: 

(1)      , 0,1
i j

Sup ; 

(2)       , ,
i j j i

Sup Sup ; 

(3)       , ,Sup Sup , if       , ,d d . 

To simplify Eq. (7), let 

  
  







1

1

1

j

j n

j
j

T

T






, 
(10)

then, Eq. (7) can be written as 

       
    

 

    
 

1

1

1 2 1

1
, ,...,

!

n
j

j
j

n

n s
S s

n j jT j
IVIFPMM n

n
, (11)

For convenience, we call     
1 2
, ,...,

T

n
the power weight vector, satisfying 


 1

1
n

jj
  

and     0,1 1, 2,...,
j

j n . 

According to the operational rules of IVIFNs given in Definition 4, the following theorem can be 

obtained. 

Theorem 1. Let   1,2,...,
j

j n  be a collection of IVIFNs and  
1 2
, ,...,

n
S s s s be a collection of 

parameters, where   1, 2,...,
j

s j n is a non-negative real number. The aggregated value by the 

IVIFPMM operator is also an IVIFN and 

    
1 2
, ,...,S

n
IVIFPMM  

    

      

 
 

 

   

  
                                                                         
      

   
1 1

1 1
1 1

! !

1 1

1 1 1 1 , 1 1 1 1 ,

n n

j j
j j

j jj j

n n

s sn ns sn n n nn n

j j
T j T j

a b

 
    

    

 
 

 

   

 
                                                     

  

   
1 1

1 1
1 1

! !

1 1

1 1 1 1 ,1 1 1 1

n n

j j
j j

j jj j

n n

s sn nn n n ns s
n n

j j
T j T j

c d  

(12)

Proof. According to Definition 4 and Eq. (11), we can obtain 

        

    

 
 

 
  

 
   

     
 

               
1 1 ,1 1 , ,

j j
j j

n n n n

j j j j j j
n a b c d , 

and 
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         

    

 
    

     
   

     
 

       
                        

1 1 , 1 1 , 1 1 ,1 1
j j

j jj j j
j j

s s s ss n n n n

j j j j j j
n a b c d . 

Therefore, 

     
 


 

1

j
n s

j jj
n  

    

    

 
    

   
 

   

   
   

       
                       
   

1 1 1 1

1 1 , 1 1 , 1 1 ,1 1
j j

j jj j
j j

s sn n n ns sn n n n

j j j j
j j j j

a b c d . 

Further, 

     
 

 
  

1

j

n

n s

j jT j
n  

    

     
 

 
    

                                               
   

1 1

1 1 1 1 ,1 1 1 1 ,
j j

j j

n n

s sn n n nn n

j j
T j T j

a b  

 
    

    

 
    

    
              

   
1 1

1 1 , 1 1
j j

j j

n n

n n n ns s
n n

j j
T j T j

c d . 

Then, 

     
 

 
  

1

1

!

j

n

n s

j jT j
n

n
 

    

      

 
    

  
                                                          

 

   

1 1

! !

1 1

1 1 1 1 ,1 1 1 1 , ,
j j

j j

n n

n ns sn n n nn n

j j
T j T j

a b  

 
    

    

 
    

 
        

              
        

 

   

1 1

! !

1 1

1 1 , 1 1
j j

j j

n n

n nn n n ns s
n n

j j
T j T j

c d . 

Thus, 

     
 

 

    
 

1

1

1

1

!

n
j

j
j

n

n s
s

j jT j
n

n
 

    

      

 
 

 

   

  
                                                                         
      

   
1 1

1 1
1 1

! !

1 1

1 1 1 1 , 1 1 1 1 ,

n n

j j
j j

j jj j

n n

s sn ns sn n n nn n

j j
T j T j

a b  

 
    

    

 
 

 

   

 
                                                     

  

   
1 1

1 1
1 1

! !

1 1

1 1 1 1 ,1 1 1 1

n n

j j
j j

j jj j

n n

s sn nn n n ns s
n n

j j
T j T j

c d .  

Example 1. There are three IVIFNs, that is,         1
0.1,0.2 , 0.3,0.4 ,         2

0.2,0.3 , 0.4,0.5

, and         3
0.3,0.5 , 0.2,0.3 . We utilize the IVIFPMM operator to aggregate them. 
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Step 1. Calculate the support degrees    , , 1, 2,3
i j

Sup i j  . We can obtain  

  1 2
, 0.8323Sup      1 3

, 0.8697Sup      2 1
, 0.8323Sup      2 3

, 0.9626Sup  

  3 1
, 0.8697Sup      3 2

, 0.9626Sup   ; 

Step 2. Calculate the power weight vector. We have 

         
1 1 2 1 3

, , 0.8323 0.8697 1.7020T Sup Sup     ; 

         
2 2 1 2 3

, , 0.8323 0.9626 1.7949T Sup Sup     ; 

         
3 3 1 3 2

, , 0.8697 0.9626 1.8323T Sup Sup     . 

Then, 

 
              

 
  

        

1

1

1 2 3

1 1 1.7020
0.3244

1 1.7020 1 1.7949 1 1.83231 1 1

T

T T T




  
. 

Similarly, we can get  

 
2

0.3356 ,  
3

0.3400 . 

Step 3. Calculate the overall value         , , ,a b c d  by the IVIFPMM operator. Suppose

  2, 3, 4S , then we have 

         


      

 

     
 

 1

1

3
2,3,4

1 2 3
1

1
, ,

3!

n
j

j
j

n

s
s

j j
T j

IVIFPMM n

 , 

        

        

        

        

  

  

  

  

  



 
          

 

 
          

 

 
          

 
 

 
          

 

     

1 2 3

1 2 3

1 2 3

1 2 3

1

2 3 4
4 4 4

2 3 4
4 4 4

2 3 4
4 4 4

2 3 4
4 4 4

2
4

1 1 1 0.1 1 1 0.2 1 1 0.3

1 1 1 0.1 1 1 0.3 1 1 0.2

1 1 1 0.2 1 1 0.1 1 1 0.3

1

1 1 1 0.2 1 1 0.3 1 1 0.1

1 1 1 0.3 1 1 0.

a

     

        

 

  

  
  
  
  
  
  
  
  
  
     
  
  
            
                  

 

2 3

1 2 3

1
1 2 3 4
3!

3 4
4 4

2 3 4
4 4 4

0.2417

2 1 1 0.1

1 1 1 0.3 1 1 0.1 1 1 0.2

 

Similarly, we can get  0.3957b ,  0.3828c , and  0.4989d . Thus, we have 

     2,3,4

1 2 3
, , 0.2417,0.3957 , 0.3828,0.4989IVIFPMM             

Moreover, the IVIFPMM operator has the following properties.  

Theorem 2. (Idempotency) Let   1,2,...,
j

j n  be a collection of IVIFNs, if

         , , ,
j

a b c d   holds for all j, then, 

    
1 2
, ,...,S

n
IVIFPMM .                         (13) 
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Proof. Since          , , ,
j

a b c d   holds for  1, 2, ...,j n , we can get   , 1
i j

Sup    for 

, 1, 2, ...,i j n . Thus,   1 1, 2,...,
j

n j n  holds for  1, 2, ...,j n . Therefore, 

   
 

     

   

                  
 1 1

1 1

1 2
1 1

1 1 1
, ,...,

! !

n nj
jj j

j j

n n

s
n n ss sS

n j j
T j T j

IVIFPMM n
n n n

 

   


    



            
   

 1 11 1

1 1

1 1
    = !

! !

n nn n

j jj j
j jj j

n

s ss s

T

n
n n

. 

Theorem 3. (Boundedness).  Let   1,2,...,
j

j n  be a collection of IVIFNs,

               1 2
min , ,..., , , ,

n
a b c d , and                1 2

max , ,..., , , ,
n

e f p q . Then,    

    
1 2
, , ...,S

n
x IVIFPMM y                           (14) 

where   


  



 

    
 

 1

1

1

1

!

n
j

j
j

n

n s
s

j
T j

x n
n

 and   


  



 

    
 

 1

1

1

1

!

n
j

j
j

n

n s
s

j
T j

y n
n

. 

Proof. From Definition 4, we can obtain  

       
   

j j j
n n

 

, 

and 

         
   

j js s

j j j
n n .

 
Therefore, 

         
   

 
  

1 1

j j
n ns s

j j jj j
n n . 

Further, 

          
    

   
    

1 1

j j

n n

n ns s

j j jT j T j
n n , 

and 

          
   

   
    

1 1

1 1

! !

j j

n n

n ns s

j j jT j T j
n n

n n
. 

Thus, 

          
   

 



   

            
   

1 1

1 1

1 1

1 1

! !

n n
j j

j j
j j

n n

n ns s
s s

j j jT j T j
n n x

n n
, 

which means that    
1 2
, , ...,S

n
x IVIFPMM . 

Similarly, we can also prove     
1 2
, ,...,S

n
IVIFPMM y . Thus, the proof of Theorem 3 is 

completed.  

The most important feature of IVIFPMM operator is that it not only reduces or eliminates the 

negative effects of decision makers’ unreasonable evaluations on final decision results but also 

reflects the interrelationship among any aggregated IVIFNs. In addition, we can obtain some special 

operators of IVIFPMM with respect to the change of the parameters. In the following, we discuss 

some special cases of the IVIFPMM operator.  
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Case 1. If   1,0,...,0S , then the IVIFPMM operator reduces to the IVIFPA [29] operator. That 

is, 

   
  

  
 

 
    


 



 
 
    
 

 
 


1,0,...,0

1 2 1 1

1

1
, ,...,

1

n n
j j

n j jnj j

j
j

T
IVIFPMM

T

 

   
   

   

    
         

    
   

1 1 1 1

1 1 ,1 1 , ,
j j j j

n n n n

j j j j
j j j j

a b c d . (15) 

In this case, if    ,
i j

Sup t for all i j , then  1
j

n , then the IVIFPMM operator reduces to the 

interval-valued intuitionistic fuzzy average (IVIFA) operator [22], that is, 

         
   

       
                    

   
1 1

1,0,...,0 1 1

1 2
1 1 1 1

, , ..., 1 1 ,1 1 , ,

n n
n n n n

n n

n i i i i
i i i i

IVIFPMM a b c d  

   
1 2
, , ...,

n
IVIFA . (16) 

Case 2. If   1,1,0,0,..., 0S , then the IVIFPMM operator reduces to the IVIFPBM operator 

proposed by Liu and Li [26], that is,  

   
 

          




 
   
 
 

1

2
1,1,0,0,...,0

1 2 , 1

1
, ,...,

1

n

n i i j ji j
i j

IVIFPMM
n n

 

         
 

 
 

  
                                                              

              

 

1 1
1 12 2

( 1) ( 1)

, 1 , 1

1 1 1 1 1 1 , 1 1 1 1 1 1 ,
j ji i

n n n n
n n

i j i j
i j i j
i j i j

a a b b
  

           

 

 
 

 
                                         

               

 

1 1
1 12 2

( 1) ( 1)

, 1 , 1

1 1 1 1 1 ,1 1 1 1 1j ji i

n n n n
n n

i j i j
i j i j
i j i j

c c d d . (17) 

In this case, if    ,
i j

Sup t for all i j , then  1
j

n , then the IVIFPMM operator reduces to the 

IVIFBM operator [23] (when s = t = 1), that is, 

               

 
 

     
              
          

 

1 2 1 2

1 1
1,1,0,0,...,0 1 1

1 2
, 1 , 1

, ,..., 1 1 , 1 1 ,
n n

n n n n
n i j i j

i j i j
i j i j

IVIFPMM a a b b  

              

 
 

    
                  

           

 

1 2 1 2

1 1

1 1

, 1 , 1

1 1 1 1 1 ,1 1 1 1 1
n n

n n n n
i j i j

i j i j
i j i j

c c d d . (18) 

Case 3. If  


 1,1,...,1,0,0,...,0

k n k

S


, then the IVIFPMM operator reduces to the IVIFPMSM operator 

proposed by Liu et al. [28], that is,  
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         



    

 
   

 1 2

1

1,1,...,1,0,0,...,0

1 2 1 ... 1

1
, ,..., =

k n k

j j
k

k
n

n i ik i i i j
n

IVIFPMM
C



 

   
 

         

  
     

                                              

   

1 1

1 2 1 2

1 1

1 ... 1 1 ... 1

1 1 1 1 , 1 1 1 1 ,

k k

k k
i in nj j

j j

k k

k kC C

i i
i i i n j i i i n j

a b

 

    

         

 
    

                       
              

   

1 1

1 2 1 2

1 1

1 ... 1 1 ... 1

1 1 1 1 ,1 1 1 1

k k

k k
n ni ij j

j j

k k

k kC C

i i
i i i n j i i i n j

c d . (19)
 

In this case, if    ,
i j

Sup t for all i j , then  1
j

n , then the IVIFPMM operator reduces to the 

IVIFMSM operator [25], that is, 

     




1,1,...,1,0,0,...,0

1 2
, ,...,

k n k

n
IVIFPMM



 

         

                                                

   
1 1

1 1

1 ... 1 1 ... 1

1 1 , 1 1 ,

k k
n n

j j

k k

k k
C C

k k

i i
i i n j i i n j

a b  

   
         

                                                    

   
1 1

1 1

1 ... 1 1 ... 1

1 1 1 1 ,1 1 1 1

k k
n n

j j

k k

k k
C C

k k

i i
i i n j i i n j

c d . (20) 

Case 4. If   1,1,...,1S or   1 ,1 ,...,1S n n n , then the IVIFPMM operator reduces to the 

following:  

     
  

  
 

 
    


 



 
 
   
 

 
 


1

11,1,...,1 1 ,1 ,...,1

1 2 1 1

1

1
, , ..., =

1

n

n n nj jor n n n

n j jnj j

j
j

T
IVIFPMM n n

T

 

         
   

   

                              
   

1 1 1 1

1 1 1 1

1 1 , 1 1 , 1 1 ,1 1
j j j j

n nn n n nn nn n n n

j j j j
j j j j

a b c d . (21) 

In this case, if    ,
i j

Sup t for all i j , then  1
j

n , then the IVIFPMM operator reduces to the 

interval-valued intuitionistic fuzzy geometric (IVIFG) operator [22], that is, 

           
   

       
                   
   

1 1

1,1,...,1 1 ,1 ,...,1 1 1

1 2
1 1 1 1

, , ..., , , 1 1 ,1 1

n n
n n n n

or n n n n n

n i i i i
i i i i

IVIFPMM a b c d . 

 (22) 

3.2. The Interval-Valued Intuitionistic Fuzzy Weighted Power Muirhead Mean (IVIFWPMM) Operator 

Definition 9. Let   1,2,...,
j

j n be a collection of IVIFNs and  
1 2
, ,...,

n
S s s s be a collection of 

parameters, where   1, 2,...,
j

s j n is a non-negative real number. Let  
1 2
, ,...,

T

n
w w w w be the 



Symmetry 2019, 11, 441 11 of 20 

 

weight vector of   1,2,...,
j

j n , satisfying the condition that


 1
1

n

jj
w and    0 1 1,2,...,

j
w j n . 

Then, the interval-valued intuitionistic fuzzy weighted power Muirhead mean (IVIFWPMM) 

operator is defined as, 

 
     

  
 

 




   





 



     
      
  
   



1

1

1 2 1

1

11
, ,...,

!
1

n
j

j
j

n

s
s

n j j
S

n jnT j

j j
j

w T
IVIFWPMM n

n
w T

, (23)

Where 

   
 

   
1,

,
n

j i j
i i j

T Sup , (24)

And 

       , 1 ,
i j i j

Sup d , (25)

where      1, 2,...,j j n denotes any permutation of , 
n

T represents all possible 

permutations of , and n is the balancing coefficient.   ,
i j

d represents the distance 

between
i
andj , and   ,

i j
Sup  is the support for

i
from

j , satisfying the following conditions 

in Definition 8.  

For convenience, let 

  
  







1

1

1

j j

j n

j j
j

w T

w T






,         (26) 

then, we call  
1 2
, , ...,

T

n
    the power weight vector, satisfying 


 1

1
n

jj
  and

    0,1 1, 2,...,
j

j n . Hence, Eq. (23) can be simplified as, 

       
    

 

    
 

1

1

1 2 1

1
, ,...,

!

n
j

j
j

n

n s
S s

n j jT j
IVIFWPMM n

n
 ,    (27) 

Based on the operations shown in Definition 4, the following theorem can be derived. 

Theorem 4. Let   1,2,...,
j

j n be a collection of IVIFNs and  
1 2
, ,...,

n
S s s s be a collection of 

parameters, where   1, 2,...,
j

s j n is a non-negative real number, then the aggregated value by the 

IVIFWPMM operator is also an IVIFN and 

    
1 2
, ,...,S

n
IVIFWPMM  
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    

     
 

 
 

 

   

  
                                                                         
      

   
1 1

1 1
1 1

! !

1 1

1 1 1 1 , 1 1 1 1 ,

n n

j j
j j

j jj j

n n

s sn ns sn n n nn n

j j
T j T j

a b

 
    

    

 
 

 

   

 
                                                     

  

   
1 1

1 1
1 1

! !

1 1

1 1 1 1 ,1 1 1 1

n n

j j
j j

j jj j

n n

s sn nn n n ns s
n n

j j
T j T j

c d , 

(28)

The proof of Theorem 4 is similar to the poof of that of Theorem 1.  

4. A Method to MAGDM in the Interval-Valued Intuitionistic Fuzzy Context 

In the present section, we propose a novel approach to MAGDM based on proposed operators. 

A typical MAGDM problem in IVIF context can be described as follows. Let  
1 2
, ,...,

m
X x x x be m 

alternatives,  
1 2
, ,...,

n
G G G G  be n attributes,  

1 2
, ,...,

T

n
w w w w be the weight vector, satisfying 


 1

1
n

ii
w  and  0, 1,2,...,

i
w i n . Let  

1 2
, ,...,

t
D D D D  be a set of decision makers with the 

weight vector being     
1 2
, , ...,

T

t
the weight vector, satisfying  , 1,2,...,

k
k t  and 


 1

1
t

kk
. 

For a decision maker k
D , he/she is required to express his/her preference information by an IVIFN

        , , ,k k k k k

ij ij ij ij ij
a b c d  for an alternative i

x  with respect to attribute j
G . In the following steps, we 

propose a novel method to MAGDM in which attribute values take the form of IVIFNs based on the 

proposed operators.  

Step 1. Standardize the decision matrices according to the following equation, 

 
 

    
    

 
       

, , ,

, , ,

k k k k

ij ij ij ij jk

ij k k k k

ij ij ij ij j

a b c d where G is positive type
r

c d a b where G is negative type
, (29)

Step 2. Calculate the supports  ,k d

ij ij
Sup   according to the following equation, 

          , 1 , , 1, 2,..., ; ; 1, 2..., ; 1, 2,...,k d k d

ij ij ij ij
Sup d k d t k d i m j n    , (30)

where  ,k d

ij ij
d   is the Hamming distance between k

ij
 and k

ij
 . 

Step 3. Calculate  k

ij
T  by 

     
 

    1,
, , 1, 2, ..., ; 1, 2..., ; 1, 2, ...,

nk k d

ij ij ijk k d
T Sup k d t i m j n   , (31)

Step 4. Compute the power weights k

ij
 associated with the IVIFN k

ij
 by 

  
  




 1

1

1

k

k ijk

ij t k

k ijk

T

T

 


 
, (32)

where   1, 2, ..., , 1, 2..., , 1, 2, ...,k t i m j n ,
 0k

ij


and 
 1

1
t k

ijk


. 

Step 5. Utilized the interval-valued intuitionistic fuzzy power weighted average (IVIFPWA) 

operator proposed by He et al. [29] to aggregate individual decision matrix, that is, 
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         
   

   
   

    
         

    
   1 2

1 1 1 1

, ,..., 1 1 ,1 1 , ,
k k k k
ij ij ij ij

t t t t
t k k k k

ij ij ij ij ij ij ij ij
k k k k

IVIFPWA a b c d , (33)

Thus, a collective decision matrix can be obtained. 

Step 6. Calculate the supports   ,
il if

Sup by 

       , 1 ,
il if il if

Sup d , (34)

where   1, 2,..., ; , 1, 2,..., ;i n l f n l f and   ,
il if

d is the Hamming distance between
il

 and if
a . 

Step 7. Compute  ij
T  by 

    
  , 1,

,
n

ij il iff l f l
T Sup   , (35)

where  1, 2,..., ; , 1, 2,...,i m l f n .  

Step 8. Calculate the power weight ij
 associated with the IVIFN ij

 according to the following 

formula, 

  
  




 1

1

1

j ij

ij n

j ijj

w T

w T





, (36)

where  1, 2,..., ; 12, ...,i m j n . 

Step 9. For alternative   1,2,...,
i

x i n , utilize the IVIFWPMM operator  

    
1 2
, ,...,S

i i i in
IVIFWPMM , (37)

to aggregate attributes, and an overall evaluation value can be obtained. 

Step 10. Rank the overall evaluation values   1,2...,
i

i n  according to Definition 3. 

Step 11. Rank alternatives according to the rank of the overall values, and choose the best 

alternative. 

5. Case Analysis 

In Section 3, we proposed the IVIFWPMM operator, which is a powerful and useful information 

aggregation tool for interval-valued intuitionistic fuzzy information. Additionally, Section 4 

introduced a new approach for interval-valued intuitionistic fuzzy MAGDM. To validate the newly 

developed MAGDM method, this section applies it to a real decision-making problem. Talent 

strategy is a major, macroscopic, and overall conception and arrangement for the cultivation. In June 

2010, the Central Committee of the Communist Party of China and the State Council issued the 

“National Medium and Long Term Talent Development Plan (2010–2020)” and issued a notice 

requesting all localities and departments to conscientiously implement the reality. In order to train 

more talents for the country and society, domestic universities generally increase the proportion of 

admissions. So, the number of college students is increasing. Considering that the size of the existing 

library is no longer sufficient for all teachers and students, a university is preparing to build a new 

library. After the initial bidding, the university decides to take the seat of the new library from the 

four listed builders ( , 1, 2, 3, 4
i

x i ). In order to choose the most suitable builder, the four alternatives 

are evaluated from four perspectives. They are, G1: social influence, G2: quality, G3: reputation, and 

G4: service attitude. Weight vector of the four attributes is  (0.3,0.4,0.1,0.2)T

i
w . Three experts

  1, 2,3
t

D t in civil engineering and project management are invited to evaluate the four builders. 

Weight vector of decision makers is    0.32, 0.45, 0.23
T

. The three experts are required to utilize 
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IVIFNs to express their preference information over alternatives, and three interval-valued 

intuitionistic fuzzy decision matrices  


 
4 4

( ) 1, 2, 3t t

ij
R t are constructed. (See Tables 1–3). 

Table 1. The IVIF decision matrix 1R given by
1

D . 

 G1 G2 G3 G4 

x1 ([0.5, 0.6],[0.3, 0.4]) ([0.4, 0.6],[0.2, 0.3]) ([0.6, 0.8],[0.1, 0.2]) ([0.6, 0.7],[0.1, 0.3]) 

x2 ([0.7, 0.8],[0.1, 0.2]) ([0.5, 0.6],[0.1, 0.2]) ([0.3, 0.5],[0.3, 0.4]) ([0.7, 0.8],[0.1, 0.2]) 

x3 ([0.4, 0.6],[0.2, 0.3]) ([0.5, 0.7],[0.1, 0.2]) ([0.4, 0.6],[0.3, 0.4]) ([0.5, 0.6],[0.2, 0.3]) 

x4 ([0.6, 0.7],[0.1, 0.3]) ([0.5, 0.6],[0.2, 0.3]) ([0.4, 0.5],[0.2, 0.4]) ([0.4, 0.7],[0.2, 0.3]) 

Table 2. The IVIF decision matrix 2R given by
2

D . 

 G1 G2 G3 G4 

x1 ([0.7, 0.8],[0.1, 0.2]) ([0.5, 0.6],[0.1, 0.3]) ([0.4, 0.5],[0.2, 0.4]) ([0.5, 0.8],[0.1, 0.2]) 

x2 ([0.5, 0.6],[0.2, 0.3]) ([0.6, 0.7],[0.2, 0.3]) ([0.5, 0.5],[0.2, 0.3]) ([0.6, 0.7],[0.1, 0.2]) 

x3 ([0.4, 0.5],[0.1, 0.2]) ([0.6, 0.8],[0.1, 0.2]) ([0.5, 0.7],[0.2, 0.3]) ([0.6, 0.7],[0.1, 0.3]) 

x4 ([0.5, 0.6],[0.2, 0.3]) ([0.4, 0.5],[0.3, 0.4]) ([0.6, 0.8],[0.1, 0.2]) ([0.5, 0.8],[0.1, 0.2]) 

Table 3. The IVIF decision matrix 3R given by
3

D . 

 G1 G2 G3 G4 

x1 ([0.6, 0.6],[0.2, 0.3]) ([0.5, 0.8],[0.1, 0.2]) ([0.5, 0.7],[0.1, 0.2]) ([0.6, 0.7],[0.2, 0.3]) 

x2 ([0.7, 0.8],[0.1, 0.2]) ([0.4, 0.5],[0.3,0.4]) ([0.6, 0.7],[0.1, 0.2]) ([0.5, 0.6],[0.2, 0.3]) 

x3 ([0.6 ,0.6],[0.2, 0.3]) ([0.5, 0.7],[0.2, 0.3]) ([0.6, 0.8],[0.1, 0.2]) ([0.5, 0.6],[0.3, 0.4]) 

x4 ([0.4, 0.5],[0.3, 0.4]) ([0.6, 0.8],[0.1, 0.2]) ([0.5, 0.6],[0.2, 0.3]) ([0.7, 0.8],[0.1, 0.2]) 

Table 4. The collective IVIF decision matrix R. 

 G1 G2 

x1 ([0.6217, 0.7057],[0.1676, 0.2749]) ([0.4701, 0.6581],[0.1247, 0.2737]) 

x2 ([0.6250, 0.7293],[0.1354, 0.2387]) ([0.5289, 0.6305],[0.1755, 0.2811]) 

x3 ([0.4533, 0.5582],[0.1469, 0.2504]) ([0.5475, 0.7498],[0.1172, 0.2194]) 

x4 ([0.5146, 0.6160],[0.1760, 0.3201]) ([0.4843, 0.6221],[0.2049, 0.3112]) 

 G1 G2 

x1 ([0.4961, 0.6708],[0.1356, 0.2711]) ([0.5583, 0.7495],[0.1174, 0.2505]) 

x2 ([0.4712, 0.5542],[0.1945, 0.2999]) ([0.6163, 0.7187],[0.1169, 0.2191]) 

x3 ([0.4965, 0.7004],[0.1942, 0.2996]) ([0.5473, 0.6481],[0.1612, 0.3205]) 

x4 ([0.5198, 0.6838],[0.1472, 0.2749]) ([0.5291, 0.7729],[0.1243, 0.2271]) 

5.1. The decision-making process 

In this subsection, we use the method introduced in Section 4 to determine the optimal 

alternative. The decision-making steps are presented as follows. 

Step 1. As all attributes are benefit type, the original decision matrices do not need to be 

normalized.  

Step 2. Calculate the  ,k d

ij ij
Sup   according to Eq. (30). For convenience, we utilize the symbol

k

d
S to represent the support between k

ij
and d

ij
( , 1, 2, 3, 4i j ; , 1, 2, 3k d ; k d ). Hence, we obtain 

the following results 
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 
 
  
 
 
 

1 2

2 1

0.800 0.950 0.800 0.925

0.850 0.900 0.900 0.950

0.925 0.950 0.900 0.925

0.925 0.900 0.800 0.900

S S         

 
 
  
 
 
 

1 3

3 1

0.925 0.875 0.950 0.975

1.000 0.850 0.775 0.850

0.950 0.950 0.800 0.950

0.825 0.875 0.925 0.850

S S   

 
 
  
 
 
 

2 3

3 2

0.875 0.925 0.850 0.900

0.850 0.850 0.875 0.900

0.875 0.900 0.900 0.875

0.900 0.775 0.875 0.950

S S . 

Step 3. Calculate  k

ij
T  according to Eq. (31). For convenience, we use the symbol kT to represent 

the values      , 1, 2,3, 4; 1, 2,3k

ij
T i j k  

 
 
 
 
 
 

1

1.725 1.825 1.750 1.900

1.850 1.750 1.675 1.800

1.875 1.900 1.700 1.875

1.750 1.775 1.725 1.750

T

 
 
 
 
 
 

2

1.675 1.875 1.650 1.825

1.700 1.750 1.775 1.850

1.800 1.850 1.800 1.800

1.825 1.675 1.675 1.850

T  

 
 
 
 
 
 

3

1.800 1.800 1.800 1.875

1.850 1.700 1.650 1.750

1.825 1.850 1.700 1.825

1.725 1.650 1.800 1.800

T . 

Step 4. For a decision maker
k

D , calculate his/her power weight associated with the IVIFN k

ij
 on 

the basis of his/her weight 
k

, according to Eq. (32). For convenience, we use the symbol  k to 

represent the values    , 1,2,3, 4; 1, 2,3k

ij
i j k . Therefore, we can obtain the following 



 
 
 
 
 
 

1

0.3206 0.3181 0.3239 0.3244

0.3278 0.3213 0.3154 0.3187

0.3251 0.3238 0.3148 0.3251

0.3168 0.3287 0.3206 0.3136

       

 
 
 
 
 
 

2

0.4426 0.4553 0.4390 0.4444

0.4367 0.4519 0.4601 0.4562

0.4453 0.4475 0.4590 0.4453

0.4576 0.4456 0.4426 0.4570

 



 
 
 
 
 
 

3

0.2368 0.2266 0.2371 0.2312

0.2355 0.2268 0.2245 0.2251

0.2296 0.2287 0.2262 0.2296

0.2256 0.2257 0.2368 0.2294

. 

Step 5. Utilize the IVIF weighted PA (IVIFWPA) operator to aggregate individual decision 

matrices into a collective one, as shown in Table 4. The calculation process of the IVIFPWA operator 

can be found as Eq. (33).  

Step 6. Calculate the support between
il

andif , that is,   ,
il if

Sup , according to Eq. (34). For 

convenience, we use the symbol lfS to represent the value       , , , 1, 2,3, 4;
il if

Sup i l f l f . Hence, 

we can obtain the following results: 

  12 21 0.9392,0.9306,0.9134,0.9814S S     13 31 0.9509,0.8877,0.9295,0.9632S S  

  14 41 0.9545,0.9856,0.9329,0.9210S S      23 32 0.9870,0.9570,0.9356,0.9522S S  

  24 42 0.9475,0.9260,0.9382,0.9099S S     34 43 0.9551,0.8830,0.9608,0.9577S S . 
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Step 7. Calculate the support  
ij

T according to Eq. (35). Similarly, we use the symbol ij
T to 

denote the value  
ij

T for simplicity, and we can obtain the following matrix: 

 
 
 
 
 
 

2.8446 2.8737 2.8930 2.8572

2.8040 2.8136 2.7277 2.7946

2.7759 2.7872 2.8259 2.8320

2.8656 2.8436 2.8732 2.7886

T . 

Step 8. Calculate the power weight ij
 associated with the IVIFN ij

 according to Eq. (36), and we 

have 



 
 
 
 
 
 

0.2985 0.4010 0.1008 0.1997

0.3004 0.4016 0.0982 0.1998

0.2983 0.3990 0.1008 0.2019

0.3018 0.4001 0.1009 0.1972

. 

Step 9. For alternative   1, 2, 3, 4
i

x i , utilize the IVIFWPMM operator to calculate the overall 

evaluation    1, 2,3, 4
i

i  . Without the loss of generality, let S = (1, 1, 1, 1), and the overall evaluation 

values are shown as follows: 

       1
0.8819,0.9343 , 0.0237,0.0563          2

0.8917,0.9249 , 0.0272,0.0531  

       3
0.8712,0.9259 , 0.0276,0.0570          4

0.8726,0.9300 , 0.0286,0.0590 . 

Step 10. Calculate the score values      1, 2, 3, 4
i

S i of the overall evaluation values, and we 

can get 

  
1

0.8680S     
2

0.8682S   
3

0.8563S    
4

0.8575S . 

Step 11. According to the score values      1, 2, 3, 4
i

S i , the ranking orders of the alternatives 

can be determined, that is, 
2 1 4 3

A A A A   .Therefore, 
2

A is the best alternative. 

5.2. Sensitivity analysis 

As we know, the vector of parameter S has a significant role in the decision results. In the 

following section, we investigate the influence of the parameters on the score function and the final 

decision results. As shown above, the IVIFWPMM operators are used to calculate the comprehensive 

evaluation values in step 9. Therefore, we assign different vectors of parameters in the IVIFWPMM 

operator and present the scores and ranking orders in Table 5.  

Table 5. Scores and ranking orders with different S in the IVIFWPMM operator. 

S Score function      1, 2, 3, 4
i

S i  Ranking orders 

S = (1, 0, 0, 0) 
  

1
0.5340S    

2
0.5318S  

  
3

0.4980S    
4

0.5011S  
1 2 4 3

A A A A     

S = (1, 1, 0, 0) 
  

1
0.7471S    

2
0.7468S  

  
3

0.7256S    
4

0.7277S  
1 2 4 3

A A A A    

S = (1, 1, 1, 0) 
  

1
0.8265S    

2
0.8266S  

  
3

0.8113S    
4

0.8129S  
2 1 4 3

A A A A    

S = (1, 1, 1, 1)   
1

0.8680S   
2

0.8682S  
2 1 4 3

A A A A    
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  
3

0.8563S   
4

0.8575S  

From Table 5, we can find out that with different S in the IVIFWPMM, the scores of 

comprehensive evaluation values and ranking orders are also different. In addition, when the 

interrelationship among more numbers of attributes is taken into consideration, the scores of 

comprehensive evaluation values increase. Therefore, the parameter vector S can be viewed as 

decision makers’ attitude to pessimism and optimism. Decision makers can choose proper S 

according to reality and actual needs. 

5.3. Comparison analysis 

In subsection 5.1, we utilized the proposed method to solve the above example successfully, 

which has proven the availability of the newly developed method. In addition, we also analyzed the 

impacts of the parameters on the decision results in subsection 5.2. The sensitivity analysis illustrates 

the high flexibility of the proposed method. To further demonstrate its great superiorities, the present 

subsection compares the proposed method with some existing MAGDM methods. More specifically, 

we compare the proposed method with that proposed by Xu [22] based on the IVIF weighted average 

(IVIFWA) operator, that introduced by He et al. [29] based on the IVIFPWA operator, that presented 

by Xu and Chen [23] on the basis of the IVIF weighted BM (IVIFWBM) operator, that developed by 

Yu and Wu [24] based on the generalized IVIF weighted HM (GIVIFWHM) operator, that put 

forward by Sun and Xia [25] based on the IVIF weighted MSM (IVIFWMSM) operator, that proposed 

by Liu and Li [26] based on the IVIF weighted power BM (IVIFWPBM) operator, that introduced by 

Liu [27] based on the IVIF weighted power HM (IVIFWPHM) operator, and that developed by Liu et 

al. [28] based on the IVIF weighted MSM (IVIFWPMSM) operator. We use the above methods to solve 

the following example and compare their ranking orders. The example is revised from reference [25]. 

Example 2: There are five high technological enterprises   1,2,3, 4,5
i

A i . In order to choose the 

enterprises with highest innovation capability, decision-makers are required to evaluate the five 

alternatives from four attributes, that is, innovation resources input ability (G1), research and 

development ability (G2), manufacturing capacity and marketing ability (G3), and innovation output 

capacity (G4). The weight vector of the four attributes is   0.2,0.1,0.3,0.4
T

w . For the attribute

  1,2, 3, 4
j

G j of alternative   1,2,3, 4,5
i

A i , decision makers use an IVIFN          , , ,
ij ij ij ij ij

a b c d  

to express their evaluation values, and an IVIF decision matrix can be obtained as shown in Table 6.  

Table 6. The IVIF decision matrix. 

 G1 G2 G3 G4 

x1 ([0.4, 0.5],[0.3, 0.4]) ([0.4, 0.6],[0.2, 0.4]) ([0.1, 0.3],[0.5, 0.6]) ([0.3, 0.4],[0.3, 0.5]) 

x2 ([0.6, 0.7],[0.2, 0.3]) ([0.6, 0.7],[0.2, 0.3]) ([0.4, 0.7],[0.1, 0.2]) ([0.5, 0.6],[0.1, 0.3]) 

x3 ([0.3 ,0.6],[0.3, 0.4]) ([0.5, 0.6],[0.3, 0.4]) ([0.5, 0.6],[0.1, 0.3]) ([0.4, 0.5],[0.2, 0.4]) 

x4 ([0.7, 0.8],[0.1, 0.2]) ([0.6, 0.7],[0.1, 0.3]) ([0.3, 0.4],[0.1, 0.2]) ([0.3, 0.7],[0.1, 0.2]) 

x5 ([0.3, 0.4],[0.2, 0.3]) ([0.3, 0.5],[0.1, 0.3]) ([0.2, 0.5],[0.4, 0.5]) ([0.3, 0.4],[0.5, 0.6]) 

In the following, we utilize the above-mentioned methods to solve the example and present their 

results in Table 7.  

Table 7. Decision-making results by different methods. 

Method Score function     1,2,3, 4
i

S i  Ranking orders 

Method introduced by Xu 

[22] 

   
1

0.0661S   
2

0.3904S  

  
3

0.2185S   
4

0.3962S    
5

0.0396S  
4 2 3 5 1

A A A A A      
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Method given by He et al. 

[29] (   1 ) 

   
1

0.5178S    
2

0.2335S    
3

0.3945S  

   
4

0.1933S    
5

0.6314S  
   

4 2 3 1 5
A A A A A  

Method presented by Xu and 

Chen [23] (s = t = 1) 

   
1

0.7085S    
2

0.4866S    
3

0.5854S  

   
4

0.4648S    
5

0.6912S  
4 2 3 5 1

A A A A A     

Method put forward by Yu 

and Wu [24] (p = q =1) 

   
1

0.6965S    
2

0.4602S    
3

0.5606S  

   
4

0.4382S    
5

0.6846S  
4 2 3 5 1

A A A A A     

Method proposed by Sun 

and Xia [25] (k = 2) 

   
1

0.7085S    
2

0.4866S    
3

0.5854S  

   
4

0.4648S    
5

0.6912S  
4 2 3 5 1

A A A A A     

Method developed by Liu 

and Li [26] (s = t = 1) 

   
1

0.1075S   
2

0.3037S   
3

0.1401S  

  
4

0.3156S    
5

0.0614S  
4 2 3 5 1

A A A A A     

Method raised by Liu [27] 

(s = t =1) 

   
1

0.0763S   
2

0.3407S   
3

0.1866S  

  
4

0.3604S    
5

0.0443S  
   

4 2 3 1 5
A A A A A  

Method proposed by Liu et 

al. [28] (k = 2) 

   
1

0.1075S   
2

0.3037S   
3

0.1401S  

  
4

0.3156S    
5

0.0614S  
4 2 3 5 1

A A A A A     

The proposed method based 

on the IVIFWPMM operator 

S = (0.5,0.5,0.5,0.5) 

  
1

0.6069S   
2

0.7685S   
3

0.6977S  

  
4

0.7758S   
5

0.6164S  
4 2 3 5 1

A A A A A     

From Table 7, we find that the decision result derived by the proposed method and those 

obtained by others are the same, which proves the effectiveness and validity of the proposed method. 

However, the shortcomings and irrationalities of existing decision-making methods are obvious. Xu’s 

[22] method is based on the IVIFWA operator, which does not consider the interrelationship among 

attributes. Additionally, Xu’s [22] method does not consider to wipe off the bad influence of decision-

makers’ unreasonable evaluation values on the final decision results. In other words, if decision 

makers make unreasonable evaluations, the decision-making results are also unreasonable via Xu’s 

[22] method. Compared with Xu’s [22] method, our method is more flexible and robust. The 

advantages of the proposed approach are reflected in its ability to capture the interrelationship 

among attributes, and its efficiency in eliminating the bad effects of decision makers’ unreasonable 

assessments on the results. Analogously, He et al.’s [29] method considers the power weighting 

vectors but fail to reflect the interrelationship among attributes. Thus, our method is more powerful 

than He et al.’s [29] method. Similarly, Xu and Chen’s [23], Yu and Wu’s [24], and Sun and Xia’s [25] 

methods are based on BM, HM, and MSM, respectively. Thus, all of them have the capacity of 

reflecting the interrelationship among attributes. Nevertheless, they neglect the power weighting 

vectors. Our method takes not only the interrelationship among attributes but also the power 

weighting vectors into consideration. Thus, the newly introduced method has advantages over the 

methods proposed by Xu and Chen’s [23], Yu and Wu’s [24], and Sun and Xia’s [25]. The methods 

developed by Liu and Li [26], Liu [27], and Liu et al. [28] are on the basis of the IVIFWPBM, 

IVIFWPHM, and IVIFWPMSM operators, respectively. Thus, all of the three methods not only focus 

on the power weighting vectors but also capture the interrelationship among attributes. More 

specifically, Liu and Li’s [26] and Liu’s [27] methods consider the interrelationship between any two 

attributes, and Liu et al.’s method [28] can capture the interrelationship among multiple attributes. 

Therefore, Liu et al.’s method [28] is better and more flexible than Liu and Li’s [26] and Liu’s [27] 

methods to some extent. However, all of them fail to consider the interrelationship among any 

attributes, which is precisely the most prominent advantage of the newly proposed method. In 

addition, as mentioned in Section 3, Liu and Li’s [26] and Liu et al.’s [28] methods are special cases of 

the proposed method, which demonstrates the flexibility and generality of the proposed method. 

Hence, our method is of higher flexibility, powerfulness, and generality over existing interval-valued 

intuitionistic fuzzy MAGDM methods [22–29]. To sum up, the reasons why decision-makers should 

use the proposed MAGDM method are as follows. Firstly, decision-makers may provide extreme 

evaluation values due to the high complexity of real-life MAGDM problems. Our proposed method 

can reduce the bad influence of unreasonable evolution information, making the decision results 
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more reliable. Secondly, there is usually an interrelationship among attributes, and our method can 

effectively deal with such kind of interrelationship. Additionally, our method is very flexible as there 

is a parameter vector in the proposed IVIFWPMM operator. Therefore, decision-makers should 

choose the proposed method to determine the best alternatives in real MAGDM procedure.  

6. Conclusion remarks  

The PA and MM operators have good performance in the process of information aggregation. 

PA makes the aggregation results more reasonable as it can eliminate the bad influence of unduly 

high or low aggregated arguments. MM is a powerful information technique, which reflects the 

interrelationship among any numbers of input variables. IVIFSs are a good tool to describe decision 

makers’ preferential information in MAGDM. In order to fully exploit the advantages of PA, MM, 

and IVIFSs, this paper developed the IVIFPMM and IVIFWPMM operators. Further, a new MAGDM 

method with interval-valued intuitionistic fuzzy information was introduced. A builder selection 

problem was presented to demonstrate validity. Through comparison analysis, the superiorities and 

advantages can be found. To sum up, the contributions of this paper are two-fold. Firstly, we 

developed some new aggregation operators for IVIFSs. These newly proposed operators exhibit 

higher flexibility and powerfulness over most existing interval-valued intuitionistic fuzzy 

aggregation operators. Secondly, a new interval-valued intuitionistic fuzzy MAGDM method was 

proposed. In further works, we shall investigate more aggregation operators for IVIFSs.  
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