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Abstract 

Current requirements of the EU in-vitro diagnostic directive (IVDD) has established the 

requirement for routine devices to provide results that are traceable to higher order 

reference standards, where available. Routine blood tests are an essential component of 

prognostic and diagnostic medicine; however, these often use arbitrary international 

units (IU) to facilitate comparability, which lack metrological traceability. Whilst a number 

of certified reference materials (CRMs) are available for small molecules, little has been 

done in developing SI-traceable biological reference materials. In this thesis, the first task 

is to develop an SI-traceable quantified B-type natriuretic peptide (BNP) standard by 

adapting the current isotope dilution mass spectrometry (IDMS) methods. The standard is 

used to develop a reference method for the SI-traceable quantification of BNP in plasma. 

The difficulties associated with the purity assessment of synthetic peptides, stabilisation 

of BNP in plasma, measurement of large intact peptides by mass spectrometry (MS) and 

multiplexing the method for monitoring for the presence of degradation products are 

addressed. 

Many circulating peptides such as BNP, are routinely measured and External Quality 

Assessment Schemes (EQAS) are already established. BNP is an essential biomarker for 

heart failure. The reference method was used to participate in EQAS to assess the 

capability of the method to supply reference values to EQAS samples. The ultimate goal of 

the reference method to develop a commutable certified reference material (CRM) to 

assist the standardization of BNP measurements and to ascertain the direct benefits of 

metrological traceability in clinical diagnostics and evidence based medicine. 
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This project also aims to include the higher order reference method in the Joint 

Committee for Traceability in Laboratory medicine (JCTLM) database. 
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RMPs for BNP measurements. Furthermore, the method has the potential to be 
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Chapter 1 Introduction 

A large number of biomarkers, such as albumin, peptide hormones, C-reactive protein, 

troponin, myoglobin and alpha-1-antitrypsin,have been identified over the past years and 

are routinely used in clinical diagnostics to guide medical treatment. [1] While biomarker 

discovery is generally performed by liquid chromatography (LC) coupled to mass 

spectrometry (MS) [2], routine measurement of proteins is currently carried out by 

immunoassays. [3] Immunoassay measurements are based on specific reactions between 

an antibody and the analyte of interest: the antigen. The specific part of the molecule the 

antibody recognizes is called the epitope. Immunoassay platforms are easy to use, 

provide quick results and are highly sensitive. Detection of the proteins of interest, 

however, may be hindered by structural changes introduced by pre-analytical effects. 

Cross-reactivity of different isoforms and breakdown products of proteins or peptides are 

also not uncommon. The lack of certified reference materials renders the reliable 

calibration of the assays problematic. [4], [5] This ultimately causes immunoassay results 

to be highly variable. [6]–[8] 

In order to support comparability, The World Health Organization (WHO) introduced 

International Standards (IS) for the harmonization of clinical measurements. [9] 

International Standards are value-assigned by collaborative studies and defined by 

International Units (IU). International Units are arbitrarily assigned describing biological 

activity per a given amount of the standard. IU is traceable to a defined portion of the 

product and not to a chemical entity. This makes comparability between different 

preparations difficult. The International Standards are produced periodically and value 

assigned by comparison of biological activity observed in the previous preparation. [10] 
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While IU will be comparable to the previous preparation, it may exhibit different 

molecular or matrix characteristics compared to the preceding reference material and the 

differences may affect immunoassay measurements. Discrepancies between biological 

activities of different preparations were highlighted by certification studies and the 

metrological community called for a critical evaluation of existing protocols. [11] Thus, 

the concept of traceability based on metrological principles for clinically relevant proteins 

and peptides emerged.  

Following the EU legislation of medical devices for in vitro diagnostics (IVD) in 1998 [12], 

the Joint Committee of Traceability in Laboratory Medicine (JCTLM) was formed in 2002 

to govern the global standardization of measurements in clinical laboratories. [13], [14] 

JCTLM was founded by the International Committee for Weights and Measures (Comité 

International des Poids et Mesures, CIPM), the International Federation of Clinical 

Chemistry and Laboratory Medicine (IFCC) and the International Laboratory Accreditation 

Cooperation (ILAC). [15] The organisation combines metrological and medical expertise 

and mediates between commercial suppliers and governmental bodies. It provides 

guidelines for standardization that will benefit patient care by helping in the earlier 

detection of diseases, promoting better understanding of pathological states and assisting 

in the monitoring of response to therapy. 

According to JCTLM the ultimate realisation of a given quantity that can be used for 

standardization is a reference material where the quantity of the measurand is assigned 

by a reference measurement. [16] 
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Chapter 1.1 Metrological traceability 

Modern metrology is based on the establishment of the International System of Units 

(Système International d'Unités) called “SI units” in 1960. The main driving force of this 

worldwide standardization initiative is to eliminate differences of measurement results of 

the same sample depending on the utilized measurement method, the geographical 

location or the time of the measurement. [17] 

Comparability is achieved through the establishment of reference measurement systems 

that enable traceability to certified reference materials directly related to one of the 

seven SI units (kilogram, meter, second, mole, Ampere, Kelvin, candela) through an 

unbroken chain of comparisons all with stated uncertainties (i.e. accounting for all 

sources of measurement variability). [18] 

An important prerequisite for the development of SI-traceable reference measurement 

systems is a value assignment of the primary standard using a primary reference method. 

For the development of such an analytical method the explicit definition of the 

measurand is required. Due to the complexity of proteins and biological matrices the 

definition of the measurand is often still unclear. The International Organization for 

Standardization (ISO) published a document controlling the measurement of biological 

quantities in 2003. According to ISO17511, calibrators and control materials used for IVD 

devices must achieve traceability to the highest order reference material available. In 

2011the International Consortium for Harmonization of Clinical Laboratory Results was 

established to complement the work of IFCC for analytes where SI-traceable 

quantification is problematic, efforts were unsuccessful or the definition of the analyte 

(due to heterogeneity of circulating forms) and production of reference materials are not 
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yet feasible. If a measurement result is traceable to international standards or a reference 

measurement procedure exists, the measurement system is harmonized. If the 

measurement result is traceable to the SI the measurement system is standardized (see 

Figure 1:1). [9] Traceability to the SI is maintained by using primary standards to assign 

concentration values to matrix matched secondary and product calibrators. To avoid 

measurement bias the commutability between the primary standard and the matrix 

matched secondary and product calibrator must be demonstrated. The reference 

material is commutable if it mimics the behaviour of real patient samples. Commutability 

must be evaluated as part of the validation of a reference material before it can be 

utilized as a common calibrator for routine measurement procedures. [19] 

To improve the metrological quality of the measurement systems primary methods must 

be developed for the measurement of proteins and peptides, factors affecting protein 

structure have to be evaluated and controlled and the biological implications of such 

changes fully understood. In order to achieve this progress in medical and analytical 

disciplines, advances in instrumental technology and cooperation between clinical and 

metrological experts on a global level is required. [9], [10], [20] 

The ISO standard 17511:2003 (In vitro diagnostic medical devices - Measurement of 

quantities in biological samples - Metrological traceability of values assigned to 

calibrators and control materials) is currently under revision to refine traceability 

requirements of the results for patient samples. [19] The JCTLM database lists all 

currently available higher order reference materials, reference methods and accredited 

laboratories that are capable of value assignment of product calibrators. [21] 
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Figure 1:1. Requirement for practical realisation of SI-traceability in clinical testing applications. 
EM-IDMS: Exact Matching Isotope Dilution Mass Spectrometry (primary method). 

In this thesis, the SI-traceable quantification of the pure substance calibrator will be 

discussed. The challenges associated with quantification of large intact peptides in plasma 

by MS will also be addressed. Finally, the direct comparison of immunoassay and MS 

results by participation in a National External Quality Assessment Scheme (NEQAS) will be 

presented.  

For the development of an MS-based reference method, the most important prerequisite 

is the ability to measure the analyte by MS at amounts that are practically useful.  
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Chapter 1.2 Mass spectrometry-based peptide and protein measurements 

Primary methods based on mass spectrometry, that can define the measured quantity 

and assign measurand concentrations unequivocally to calibrants used for immunoassays, 

are essential for successful standardization of clinical measurements. 

The development of mass spectrometry was founded by the study of positive rays (canal 

rays) by J.J. Thomson. Thomson was able to determine the mass to charge ratio (m/z, Th) 

of different atoms and molecules present from a mixture in the discharge tube at 

relatively low concentrations. In his method he evaluated the parabolas, recorded by the 

emitted rays channelled through electric and magnetic fields, on a photographic plate. 

[22] His colleague and mentee Francis Aston received the Nobel Prize in Chemistry for the 

discovery of isotopes using a mass spectrograph in 1922. The first mass spectrometer was 

developed by Arthur Jeffrey Dempster in 1918. [23] 

Mass spectrometers are capable of the measurement of the mass to charge ratio (m/z) of 

gas-phase ionised molecules. The ionised species, generated in an ion source, are 

manipulated by electric and/or magnetic fields enabling the separation of them according 

to their mass to charge ratio in the mass analyser. The relative abundance of the ions is 

recorded by a suitable detector to create a mass spectrum. Mass analysers and detectors 

are operated in high vacuum to increase the mean free path of the reactive ions and 

prevent them from losing their charge through collision. 

Development in the technology of ion sources and mass analysers enabled physicists to 

improve the resolution and the sensitivity of mass measurements. The discovery of 

isotopes and the ability of mass spectrometers to separate them by their mass to charge 

ratio was used to enrich 235Uby Alfred Nier. [24] 
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In chemistry, mass spectrometers were initially used for the quantitative analysis of 

hydrocarbons in the oil industry. [25] The establishment of fragmentation patterns and 

mechanisms by Fred McLafferty, Klaus Biemann and Carl Djerassi enabled chemists to link 

the mass spectrum to unknown structure and revolutionised analytical chemistry. [26] 

The technique was routinely used for thermally stable and volatile organic molecules 

ionised by electron ionisation (EI). [27] Thermo-labile biomolecules were first ionised by 

chemical ionisation (CI) [28], plasma desorption (PD) [29] or fast atom bombardment 

(FAB). [30] The transformation of large molecules (>2000 Da) into multiply charged gas 

phase ions without fragmentation however remained elusive. 

New ionisation techniques discovered in the late 1980s (Electrospray Ionisation (ESI), 

matrix-assisted laser desorption/ionisation (MALDI) [31], [32] made macromolecules 

amenable to MS analysis. The introduction of nanolitre flow regimes in LC (1999) enabled 

MS platforms to achieve quantification of proteins and peptides in clinically relevant 

concentration ranges. [33], [34] The sequence information of peptides can be harvested 

by tandem mass spectrometry (MS/MS), making this method an invaluable tool in 

biological research. [35] 

Introduction of higher amounts of naturally less abundant isotopes into proteins or 

peptides creates internal standards that are distinguishable by MS with identical 

behaviour as the target analyte. The use of isotopically labelled internal standards makes 

both relative and absolute quantification by MS and MS/MS possible. 
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Chapter 1.3 Ionisation techniques 

Chapter 1.3.1 Electrospray ionisation (ESI) 

The problem of producing gas phase ions of non-volatile molecules without degradation 

was ultimately solved by the phenomenon of droplet charging by electrospray. [36] 

Fundamental theories on the properties of charged droplets were established by Lord 

Rayleigh in 1882. [37] Dole studied the behaviour of macromolecules in electrospray in 

1968 in an attempt to generate ions from solution. [38] He used a nozzle skimmer system 

to produce a negatively charged ion beam of dilute polystyrene electrosprayed into an 

evacuation chamber. The nozzle skimmer system operates at atmospheric pressure. The 

oxygen content of the surrounding air adsorbs electrons and inhibits the formation of an 

electric discharge making this form of ionisation 10,000 times more effective than sources 

operating under reduced pressure. The speed of the molecules in the supersonic jet is 

proportional to their molecular weight. Macromolecules with uniform velocity are 

concentrated in the produced ion beam. Dole’s experiments gave evidence for the 

existence of multiply charged macromolecules with the charge state being proportional 

to the surface area of the molecule. 

Yamashita and Fenn investigated the introduction of liquid chromatography (LC) effluents 

to mass spectrometers using electrospray and reported the results at the American 

Society for Mass Spectrometry (ASMS) conference in 1984. [39] 

In electrospray, a volatile liquid containing ions and the analyte of interest is flowing 

through a capillary at high voltage potential. Due to the small diameter of the capillary, 

the strength of the electric field at the tip of the capillary is extremely high and the 
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surface of the emerging liquid becomes charged. When the electric field is high enough to 

overcome the surface tension, the charged liquid forms a Taylor cone. [40] 

Above the onset voltage small droplets are emitted from the tip of the cone. The charged 

droplets are driven by the electric field towards the inlet of the mass spectrometer 

(Figure 1:3). The droplets are commonly nebulized by an inert drying gas (usually N2). The 

drying gas is heated to high temperatures to compensate for evaporative cooling. 

Evaporation of the solvent decreases the diameter of the droplets and increases their 

surface charge density. The efficient transfer of ions into gas phase requires small, highly 

charged droplets. Evolution of small droplets can occur by two mechanisms. Spherical 

droplets blast into microscopic charged droplets when the forces of surface tension equal 

the forces generated by Coulomb repulsion (Rayleigh limit). Larger droplets can be 

deformed and form a new Taylor cone ejecting highly charged droplets before the 

Rayleigh limit is reached. The process is repeated until the solvent completely evaporates 

and a stable flow of charged gas phase molecular ions enters the mass spectrometer. 

The exact mechanism for the formation of gas phase ions from the charged droplet is not 

fully understood. Three models exist in the scientific literature. (Figure 1:2) The ion 

evaporation model (IEM) states that ion clusters (solvated ions) can be expelled from the 

charged droplet as long as the Coulombic repulsion between the escaping ion and electric 

field of the surface of the deformed parent droplet is greater than the attraction between 

the ion and the polarized solvent medium. [31], [41] 

According to the charged residue model (CRM) the size of the droplet decreases through 

Coulombic fission or Taylor cone mechanism and solvent evaporation until it contains a 
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single macromolecule. As solvent evaporation occurs the macromolecule ion remains in 

the gas phase. This explains the unlimited mass scale of electrospray ionisation.  

 

Figure 1:2. Schematic illustration of the three models describing the mechanisms of ion transfer 
from a charged droplet into the gas phase during ESI. IEM: ion evaporation model, 
CRM: charged residue model CEM: chain ejection model. Adopted from [42]. 

The consensus is that small molecule ions are formed following the ion evaporation 

model and the formation of macromolecule ions are explained by the charged residue 

model. It is also hypothesised that peptides and proteins can protrude into the gas phase 

and the repulsion between the charge carried on the end of the molecule and between 

the surface of the droplet promotes the escape of a single protein ion. (Chain ejection 

model (CEM)) [42], [43] Hydrophobic analytes accumulate on the surface of the droplet 

so their ionisation efficiency is higher. They can even suppress signal of hydrophilic 

components. 
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Nitrogen gas flowing perpendicular with the orifice and voltage applied to the repeller 

prevents small molecules and droplets entering the evacuated mass spectrometer. 

 

 

Figure 1:3. Illustration of the electrospray ionisation process. Picture from: 
http://www.magnet.fsu.edu. 

Ionisation of a range of different types of analyte by electrospray with high efficiency is 

possible. The ions are in ground state, the ion beam produced is stable and, due to the 

multiply charged nature of ions, within the m/z range of conventional mass analysers. 

Chapter 1.3.2 Superchargers 

The charge state distribution and the intensity of the most intense charge state of 

peptides and proteins generated by ESI can be influenced by superchargers. [44]–[49] 

Superchargers are compounds that can be added to the mobile phase or directly into the 

ESI source to change the composition of the electrosprayed droplets. [47], [49] The exact 

mechanism for supercharging is unclear and a number of research groups have studied 

the phenomenon in search for a comprehensive theory that fits the experimental data. 
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The charge state observed for large solute species depends on the density of available 

charge at the time of desorption of the ion into the gas phase and the ability of the 

macromolecule to accommodate them. [51] This in turn will depend on the conformation 

of the protein and the solvent composition of the charged droplet. The composition of 

the heated droplets changes before the gas phase ions are formed. The droplet 

temperature increases as the lower boiling point constituent evaporates which can 

promote the denaturation of proteins encapsulated in the electrosprayed droplet. [51], 

[52] The increase in surface area due to protein unfolding increases the maximum charge 

state as it exposes basic sites in the protein making them accessible to protonation. The 

effective temperature of the ESI droplet can be controlled by using a high boiling point 

additive, increasing the capillary temperature or by increasing the potential of the ESI 

source. Sterling et al. proposed that a higher potential promotes heating of the charged 

droplets through higher energy collisions with the heated gas molecules in the source 

interface. [53] The availability of charge in contrast depends on the proton transfer 

reactivity of the used superchargers. Supercharging ability has been shown to correlate 

with the dipole moment and gas phase basicity of the applied supercharging agent. [44] 

The effect of dimethyl sulfoxide (DMSO) was observed to depend on the amount added 

to the electrosprayed solution of lysozyme and myoglobin. [46] In low concentrations 

(5 %), DMSO promotes folding of the proteins resulting in a decrease in carried charge. If 

the amount of DMSO increased to 20 %, however, the charge of the protein increased as 

the proteins unfolded thanks to the higher boiling point solvent being enriched in the 

developing droplets. Hahne et al. reported enhanced ion intensities witnessed with the 

use of 5 % DMSO added to the mobile phases. [47] The presence of even a small amount 

of DMSO causes the droplets to be about 5 % smaller and the Rayleigh limit around 10-20 % 
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larger than without the additive leading to faster evaporation and a threefold 

improvement in ionisation efficiency. The maximum charge acquired by any protein is 

also influenced by the proximity of the charge bearing residues. [55] Electrostatic 

repulsion between the positive charges residing on neighbouring basic residues limit the 

highest charge state observed for proteins in electrospray. [47] Direct interaction with the 

analyte was given as an explanation for the increase in the highest charge states with the 

use of m-nitrobenzyl alcohol (m-NBA) or sulfolane. [45], [47] Adduct formation with 

superchargers can reduce the electrostatic repulsion by charge delocalisation through 

dipole reordering and reduce the barrier of proximal charging. 

Molecular dynamics simulations conducted on native proteins with the superchargers m-

NBA and sulfolane were compared to experimental results and a completely different 

mechanism for supercharging was proposed by Metwally et al. [49] When superchargers 

are used, solvent segregation occurs in the charged droplet. The protein is contained in 

an aqueous core that is surrounded by a shell formed by the supercharger. Unfavourable 

solvation of the charged particles in the supercharger limits charge ejection and increases 

ion concentration in the aqueous centre of the droplet. As water evaporates, the charge 

is transferred to the macromolecule ion. Electrostatically driven unfolding takes place 

over a longer timescale when the ionisation is already complete and a highly charged 

protein is released into the gas phase as the supercharger evaporates. 

Chapter 1.3.3 Matrix-assisted laser desorption/ionisation (MALDI) 

Matrix-assisted laser desorption/ionisation was first studied and reported by Franz 

Hillenkamp and Michael Karas while investigating the influence of the wavelength of 

ultraviolet laser irradiation on the desorption of organic molecular ions. They found that 
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10 times lower energy is required for the ionisation of alanine when mixed with 

tryptophan and irradiated with laser energy at the threshold irradiance specific to 

tryptophan(λ = 266 nm). [55] They recognized that the laser energy transferred to the 

condensed phase can be controlled by using a laser energy-absorbing matrix 

(chromophore) resulting in soft ionisation of thermally labile non-volatile molecules. [32] 

In the first experiment when MALDI was successfully applied to biomolecules, reported by 

Karas and Hillenkamp in 1987 [38], the matrix was an aqueous solution of nicotinic acid 

and they used a pulsed Nd:YAG Laser (λ = 266 nm; 3 ns). Their correspondence contained 

a laser desorption spectrum of the 67 kDa bovine albumin. [57] 

Based on similar results, Koichi Tanaka shared the Nobel Prize with Fenn in 2002 for the 

development of Soft Laser Desorption (SLD). [58] Tanaka used a nitrogen laser (λ = 337 

nm) and ultra-fine cobalt powder as the laser energy-absorbing chromophore in glycerol 

and recorded a spectrum of carboxypeptidase-A (34 kDa).  

In MALDI the analyte is mixed with an excess of laser energy-absorbing matrix molecules 

and deposited on a target plate. The matrix/analyte mixture is irradiated with a laser 

pulse tuned to excite the matrix material. The laser pulse induces rapid heating and 

desorption (ablation) of the matrix/analyte mixture from the surface producing a plume 

of ionised matrix and analyte molecules (Figure 1:4). 
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Figure 1:4. Matrix-Assisted Laser Desorption/Ionisation. Figure adopted from 
http://www.magnet.fsu.edu. 

The transfer mechanism of the excess energy from the matrix ions to the analyte is still 

debated. It has been accepted, that the primary ionisation of the matrix is taking place in 

the condensed phase and secondary ion transfer is occurring in the expanding plume. [59], 

[60] The most common matrices currently applied with MALDI for proteins and peptides 

are 2,5-dihydroxybenzoic acid (DHB), α-cyano-4-hydroxycinnamic acid (CHCA) and 

sinapinic acid (SA). Ideal matrices display a strong absorbance at the laser irradiation 

wavelength, sufficient vacuum stability and chemical inertness. Since the ion signal 

generated by this technique is pulsed, it is best coupled with time-of-flight mass analysers 

(TOF). Ions observed by conventional MALDI are predominantly singly charged. Structural 

information of the analyte can be acquired by controlled fragmentation, e.g. using post-

source decay (PSD). [61] This typically requires the separation of the fragments from the 

parent molecules using an ion reflector. [62] 

Recent developments also concentrate on the use of liquid support matrices (LSM) and 

ionic liquid matrices (ILM). The self-healing attributes of the liquid matrix facilitates the 

generation of persistent ion yields from the same desorption (ablation) spot. Longevity of 
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the ion signal has been demonstrated in using matrices with viscous liquids such as 

glycerol. [62] 

Chapter 1.4 Mass analysers 

The ions formed in the ion source enter the evacuated mass analysers where they are 

separated by their mass to charge ratio (m/z). Depending on the principle of ion 

separation, mass analysers are divided into two different classes. Scanning devices 

employ dynamic electric and magnetic fields to manipulate ions and only transmit ions of 

a certain mass-over-charge (m/z) value at any given time (i.e. quadrupole). Non-scanning 

mass analysers record an entire mass spectrum from a single pulse of ions (i.e. TOF, 

orbitrap). 

Table 1:1. Comparison of different type of mass spectrometers used in this study. 

Instrument Mass range (m/z) Resolution Dynamic range 
OME 

Sensitivity 

RMS 
Agilent only 

Scan/acquisition 
rate 

AB Sciex 
4000 
QTRAP 

5-2,800 > 3,000 at 
m/z 609 6 N/A 2,400 Da/s 

Agilent 
6490 
QqQ 

5-1,400 > 1,500 at 
m/z 609 6 > 60,000:1a 12,500 Da/s 

Agilent 
6530 
Q-TOF 

Q: 5-4,000 
TOF: 100-20,000 

> 10,000 at 
m/z 118 

> 20,000 at 
m/z 1,522 

5 > 500:1a 50 spectra/s 

Waters 
Xevo G2 
Q-TOF 

Q: 20-4,000 
TOF: 20-100,000 

> 22,500 at 
m/z 956 4 N/A 40 spectra/s 

OME: orders of magnitude estimate, SNR: signal to noise ratio, RMS: root mean square (of baseline, noise 
estimate), Q: quadrupole, TOF: time-of-flight, a) MS/MS, 1 pg injection of reserpine on the transition m/z 
609 to 195.  
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Chapter 1.4.1 Quadrupole 

The development of dynamic mass analysers is based on the strong ion-focusing principle 

of quadrupole electric fields. Quadrupole mass analysers (Q) separate ions using their 

stable and unstable ion trajectories through an electric quadrupole field. Wolfgang Paul 

was awarded the Nobel Prize in Physics for the discovery of the first quadrupole mass 

filter. [64] Quadrupoles consist of four hyperbolic rods set in parallel to each other. 

Opposing pairs of rods are connected and an oscillating electric field is generated by a 

combination of direct current potential (dc, 𝑈𝑈) superimposed on radiofrequency voltages 

(RF, 𝑉𝑉cos(ω𝑡𝑡), were ω is frequency and 𝑡𝑡 is time). Two rods have a voltage of +𝑈𝑈 +

𝑉𝑉cos(ω𝑡𝑡) and the other two −𝑈𝑈 − 𝑉𝑉cos(ω𝑡𝑡). The focused ion beam enters the mass 

analyser and travels along the axis of the poles. Their m/z ratio determines their travel 

trajectory (Figure 1:5). Depending on the applied voltage the ions either reach the 

detector or get neutralized by colliding with the quadrupole rods; allowing the user to 

record an entire range of m/z values or to filter a particular ion from a mixture of ions.  

 

Figure 1:5. Schematic illustration of a quadrupole mass analyser. Adopted from 
www.shimadzu.com [64]. 
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The differential equations describing the trajectories of the ions are highly complex but 

can be simplified mathematically and modelled to display the stable solutions where ions 

do not collide with the rods in the analyser with the help of Matthieu’s differential 

equation.  

In Figure 1:6 the shaded area represents the stable solutions of the equation. The mass 

scan line is a number line that contains the masses of all the particles entering the 

analyser. The slope of the mass line is 2𝑈𝑈
𝑉𝑉

. By changing the slope of the mass line (i.e. 

increasing U and V while keeping the ratio constant), only a small portion will lie within 

the stable areas of the diagram. The sharp tip of the a-q diagram can be used to create a 

narrow pass mass filter. 

 

Figure 1:6. The a-q stability diagram. Shaded area represents the values for which the solutions 
of the Matthieu’s differential equation are stable. B) Resolution of a narrow pass 
mass filter. Figure adopted from [66]. 



Introduction 

19 

As a and q are inversely proportional to mass, the lighter particles are on the right, and 

higher masses are on the left side of the mass line. The complete mass spectrum with unit 

mass resolution can be recorded by simultaneously sweeping the direct and 

radiofrequency voltages applied to the rods. Similarly, reducing the slope will allow a 

larger portion of the mass scan line to pass through the stable area of the a-q stability 

diagram reducing the resolution of the mass filter. If the quadrupole is operated in RF 

only (i.e. U=0, slope is 0) it transmits and focuses all ions that are stable in the a-q stability 

diagram. [65] The main advantages of quadrupoles are: simple mechanical design, small 

size and electronic control.  

The ability of quadrupoles to allow only ions in a small m/z window to traverse is used in 

MS/MS. In triple quadrupole instruments (QqQ) any mass can be filtered by the first 

quadrupole. The second quadrupole is used in RF only mode. It focuses the scattered ions 

and if filled with an inert gas (nitrogen, helium or argon) introduces fragmentation by 

low-energy (3-50 eV) collision-induced dissociation (CID). [44] If the selected precursor is 

subjected to CID the entire spectrum of its fragments can be recorded by scanning the 

third quadrupole. If the third quadrupole is set to monitor a particular fragment only, the 

experiment is called selected reaction monitoring (SRM). The high efficiency of the 

individual components, the focusing effect of the quadrupoles and the elimination of 

chemical noise enable these instruments to detect and quantify compounds in complex 

matrices with superior selectivity and sensitivity. [35] 
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Chapter 1.4.2 Orbitrap 

For quadrupoles, scanning the entire m/z range is necessary to record a complete mass 

spectrum. Non-scanning analysers such as the orbitrap and time-of-flight analysers record 

the entire mass spectrum of ion packets by measuring their oscillation frequency and 

flight time, respectively. 

The operation of the orbitrap is based on the principle of electrostatic trapping first 

described in 1923 by Kindon. [27] The orbitrap consists of a central spindle-like electrode 

(max diameter 12 mm) surrounded by a barrel-like outer electrode (inner diameter 30 

mm). The ions are trapped by a rapid increase of the electric field by setting the central 

electrode to -3.5 kV (for positive ions), while the outer electrode is at ground potential. 

The ions enter the analyser 7.5 mm from the centre pane of the orbitrap at high kinetic 

energy and start oscillating around the central spindle (Figure 1:7). 

 

Figure 1:7. Schematic illustration of an 
orbitrap mass analyser. 
Adopted from [68]. 

Due to the unique design of the trap no additional excitation is required. The transient of 

the small AC current generated by the ion oscillations is recorded and Fourier-

transformed to provide the mass spectrum according to Equation 1:1.  
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𝜔𝜔𝑧𝑧 = �
𝑘𝑘

𝑚𝑚 𝑧𝑧⁄
 

Equation 1:1. Angular frequency (𝜔𝜔𝑧𝑧 ) dependence on mass-to-charge (𝑚𝑚 𝑧𝑧⁄ ) ratio in an orbitrap 
analyser.k: axial restoring force. 

Resolving power of the orbitrap is proportional to the time of oscillations. [68] If the 

transient is recorded longer the accuracy of the ion oscillation frequency measurement 

improves and results in higher resolution mass spectra. [68] 

Makarov patented the device in 1996 and published his results in 2000. [69] 

ThermoFisher developed the first commercial orbitrap instrument in 2005. The 

commercial LTQ-Orbitrap uses a linear trap to transmit the ions and an rf-only curved 

quadrupole (C-trap) to store and to rapidly inject them into the orbitrap analyser. [71] 

The C-trap is filled with N2 bath gas for collisional damping. The temperature of the 

analyser and its power supplies must be kept constant to maintain calibration stability 

and reduce thermal noise. High vacuum must be maintained for the measurement of 

large molecules such as proteins. A pre-scan using the linear trap (AGC automatic gain 

control) determines the optimal fill time to avoid space charging. With the above set up 

are solution exceeding 100,000 can be reached with the long term mass accuracy being 

better than 5 ppm. [71] 

Chapter 1.4.3 Time-of-flight (TOF) analyser 

While quadrupoles are designed to monitor a constant beam of ions, TOF analysers are 

best used with pulsed ion packages. The concept of relating the flight time of accelerated 

ions to their mass to charge ratio (m/z) was first reported in 1946 by W. E. Stephens. [71] 

The first commercial instrument was built according to the design published by Wiley and 

McLaren in 1955. [73] With the TOF analyser a full mass spectrum can be obtained in 
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microseconds. It theoretically has an unlimited mass range and high sensitivity but early 

instrument designs suffered from poor mass resolution due to the dispersed energetic 

state of the ions leaving the ion source. In TOF mass analysers, ion packages generated in 

the ion source are accelerated into the flight tube of the TOF analyser by an electric field. 

The potential energy (Ep) of the ions is converted into kinetic energy (Ek). Ions with the 

same m/z ratio acquire the same amount of kinetic energy by the potential (V) applied in 

the accelerating region of the analyser. (Equation 1:2) 

The time required to reach the detector for ions with the same m/z depends on their 

position after ionisation (space distribution) and their kinetic energy acquired in the 

ionisation region of the mass spectrometer (energy distribution). The difference in kinetic 

energies is addressed by delayed extraction and the use of a reflector. In delayed 

extraction [72], the ions are allowed to expand into the field free region when a high-

energy pulse is applied to accelerate them towards the detector. Ions with higher initial 

velocity will be affected less by the applied electric field than slower ones reducing kinetic 

energy differences. Increasing the flight path by building longer flight tubes or decreasing 

the acceleration voltage also improves resolution but is impractical. [73] Reflectrons, 

discovered in 1973 by Mamyrin [61], increase the flight time and compensate for kinetic 

energy differences simultaneously. Reflectrons consist of an electrostatic ion reflector 

and use a retarding electric field to reverse the direction of ion travel. Faster ions 

penetrate deeper into the ion mirror than slower ones resulting in uniform flight times for 

ions with the same m/z value but different kinetic energies. [61] TOF mass analysers 

equipped with a reflectron and delayed extraction produce high-resolution mass spectra. 

The amount of time for each ion to reach the detector will depend on their mass (m), the 

charge they are carrying (q = ze, where z = charge number and e = elementary charge) 
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and the distance (d) of the field free region between the source and the detector 

according to Equation 1:3 and Equation 1:4. 

𝐸𝐸𝑘𝑘 =
𝑚𝑚𝑚𝑚2

2
= 𝑞𝑞𝑉𝑉 = 𝑧𝑧𝑧𝑧𝑉𝑉 = 𝐸𝐸𝑝𝑝  

Equation 1:2.  Ek : kinetic energy, v: velocity, V: electric potential, Ep: potential energy 

𝑡𝑡 =
𝑑𝑑
𝑚𝑚

 

Equation 1:3.  t: flight time, d: length of flight tube 

𝑡𝑡2 =
𝑚𝑚
𝑧𝑧
�
𝑑𝑑2

2𝑉𝑉𝑧𝑧
� 

Equation 1:4.  Flight time (t) dependence on mass-to-charge (m/z) 

As d and V are constant, the flight time t is directly proportional to the mass-to-charge 

ratio (m/z) (Equation 1:5). 

𝑡𝑡~�
𝑚𝑚
𝑧𝑧

 

Equation 1:5.  Flight time dependence on m/z 

Small multiply charged molecules will get to the detector first, while larger molecules in 

lower charges states will take longer to reach the detector. The TOF analyser is ideally 

suited to pulsed ion sources and frequently coupled to the MALDI ionisation technique. 

Quadrupoles followed by a collision cell can be coupled with a TOF analyser (Q-TOF) and 

used in tandem MS experiments providing the advantages of selectivity and high 

resolution. An illustration of a Q-TOF mass analyser is displayed in Figure 1:8.  
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Figure 1:8. Schematic illustration of Agilent 6530 Q-TOF LC/MS. Adopted from 
www.Agilent.com. 

When the Q-TOF instrument is operated to record MS spectra, the quadrupole is in RF 

mode and the collision cell is not pressurised. In tandem MS, the selected precursor is 

transmitted by the quadrupole and accelerated into a gas-filled hexapole collision cell 

where excitation and dissociation occurs. The focused beam of (fragment) ions is then 

pulsed into the TOF analyser by applying high voltage on the back plate of the pulser. The 

pulse rate depends on the m/z range of interest. [73] 
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Chapter 1.5 Peptide fragmentation 

Peptide molecules fragment along the backbone when exposed to low energy CID during 

MS/MS analysis in QqQ or Q-TOF instruments. The translational energy of precursor ions 

selected in the first mass analyser is converted into internal energy by collisions with gas 

molecules (usually argon, nitrogen or helium) in the collision cell. The activated ions 

undergo spontaneous decomposition. The maximum energy converted into internal 

energy depends on the amount of kinetic energy of the ion, the mass of the ion and the 

mass of the gas molecule. Large ions require more energy to fragment and the higher the 

mass of the gas molecule in the collision cell the lower the energy that is required to 

fragment a certain peptide (CEAr (40)<CE N2(28)<CEHe (4)). The peptide CID fragmentation 

pattern is sequence and charge dependent. According to the mobile proton theory 

fragmentation is charge directed. Fragmentation depends on the number of ionizing 

protons and the number of arginine residues in the sequence. Basic residues (arginine (R), 

lysine (K), histidine (H)) attract the first positive charge in order of their gas phase basicity. 

Singly charged peptides containing arginine require high energy to mobilise the 

sequestered charge. [74] Sequence information for peptides with multiple basic residues 

is difficult to obtain. Acidic amino acid residues or protonated histidine can provide the 

additional proton required for fragmentation. Singly charged peptides with arginine 

selectively cleave at aspartic acid (D) or/and glutamic acid (E). [75] The annotation of the 

peptide fragments is governed by the position of the cleavage along the backbone and 

depends on the charge bearing side of the chain. If the charge is on the N-terminal the 

fragments are called a, b and c. If the charge is retained on the C-terminal of the chain the 

fragments are called x, y and z. [76], [77] Basic amino acids at the N-terminus give rise to 

a fragments. b Fragments are dominant for peptides without basic residues or acylated at 
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the N-terminus. Tryptic peptides contain arginine or lysine at the C-terminal hence 

predominantly produce y ions. [78]–[80] Peptide sequences containing basic side chains 

or amides (i.e. arginine (R), lysine (K), asparagine (N), glutamine (Q)) produce 

characteristic fragments missing 17 Da (NH3). Side chains containing hydroxyl, or carboxyl 

moieties (i.e. serine (S), threonine (T), aspartic acid (D), glutamic acid (E)) loose water (-18 

Da). 

Additional sequence information can be gained by fragmentation of the amino acid side 

chains during high energy CID or utilizing post-source decay (PSD) in MALDI-TOF 

instruments. [81] Soft fragmentation techniques are available for the MS analysis of post-

translational modifications such as phosphorylation and glycosylation by electron capture 

dissociation (ECD) [82] and electron transfer dissociation (ETD). [83] 

The primary sequence of B-type Natriuretic Peptide (BNP) and the most intense fragment 

of its tryptic peptides observed in a triple quadrupole instrument are displayed in Figure 

1:9. 
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B-type Natriuretic Peptide BNP-32 

 

MVQGSGCFGR 

 

ISSSSGLGCK 

 
Figure 1:9. Amino acid sequence of BNP, tryptic peptides of BNP and fragments used for 

quantification. BNP contains a disulphide bridge between the underlined cysteine (C) 
residues. The number in the subscripts represent the position of the amino acid in 
the peptide bond where the fragmentation occurs.  
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Chapter 1.6 Isotope dilution mass spectrometry (IDMS) 

Mass spectrometry combined with isotope dilution (IDMS) measurement is a definitive 

primary method that provides low uncertainty and accurate results for the assignment of 

SI-traceable concentrations of primary calibrators. [83], [84] The method is based on the 

MS measurement of the ratio of isotope fractions by mass spectrometry in a 

gravimetrically prepared blend of analyte spiked with isotopically labelled material. 

Provided that the concentration of either the labelled or the natural component is known 

the concentration of the other constituent of the blend can be calculated. [85] 

The feasibility of this approach requires the existence of a stable isotopically labelled form 

of the analyte, its availability in a highly purified form and the ability to measure them 

accurately using mass spectrometry. [86] In order to acquire such an isotopic substance 

the measurand must be well defined. Due to production and purification difficulties, and 

the limited sensitivity of mass spectrometers at high m/z, direct IDMS on macromolecules 

is not yet possible. 

Currently the primary standards with the highest metrological quality available with SI-

traceable values assigned are amino acids. The National Institute of Standards and 

Technology (NIST) in the USA supplies a mixture of amino acids prepared gravimetrically 

and quantified by IDMS. [88] Their Japanese counterpart, The National Metrology 

Institute of Japan (NMIJ) provides pure amino acid standards quantified by titrimetry and 

more recently by quantitative NMR. [88]–[90] 

The concentration of peptide standards can be assigned with the use of these primary 

amino acid standards and isotopically labelled amino acids. If IDMS is used as the 
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quantification method, the peptide concentration can be directly linked to the kg or the 

amount of substance, the mole. [92], [93] 

Absolute Quantification (AQUA) of proteins with the use of labelled peptides has been 

introduced by Steve Gygi and colleagues at Harvard Medical School in 2001. [93] It uses 

an internal standard that contains isotopically labelled amino acids incorporated into the 

sequence of peptides that is typically generated by enzymatic digestion of the parent 

protein. Quantification is performed by adding a known amount of the isotopically 

labelled peptide before enzymatic digestion and monitoring the ion signal ratio between 

the unlabelled and the isotopically labelled peptide.  

LGC and other National Measurement Institutes (NMIs) have further developed the 

method introduced by Gygi et al. by applying the principles of exact matching isotope 

dilution mass spectrometry on peptides. [94]–[97] 

Exact matching IDMS involves an iterative procedure culminating in the gravimetric 

preparation of a calibration blend (CB) having the same ion abundance, ratio and molar 

amount content of unlabelled and labelled peptides as the sample blend (SB). [83], [84] 

For protein quantification, the calibration blend contains quantified synthetic signature 

peptides (i.e. MVQGSGCFGR, ISSSSGLGCK for BNP) and stable isotopically labelled 

peptides, whereas the sample blend contains the stable isotopically labelled peptides at 

known amounts and the peptide or protein to be quantified (i.e. BNP). Both calibration 

blend and sample blend are digested and analysed by LC-MS/MS using selected reaction 

monitoring (SRM) experiments.  
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Results are then obtained by applying the double exact matching IDMS equation 

(Equation 1:6). 
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Equation 1:6. EM-IDMS equation 

wx amount content of the amino 
acid, peptide or protein to be 
quantified (µg/g) 

wz amount content of the pure 
standard material in the 
standard solution (µg/g) 

mz, myc mass of the unlabelled 
standard and the labelled 
standard used to prepare the 
calibration blend (g) 

my, mx mass of labelled standard and 
the sample in the sample blend 
(g) 

R’B, R’BC measured ratios of the 
unlabelled and labelled peptide 
signals in the sample and in the 
calibration blend 

 

The measurement system requires the proteins to be enzymatically digested into 

peptides and the peptide standards to be traceably quantified by amino acid analysis 

against primary standards by IDMS. Figure 1:10 shows a schematic outline of the method. 
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Figure 1:10. Workflow of SI-traceable protein quantification. IDMS: Isotope dilution mass 
spectrometry, NIST2389a: certified primary standards (mixed amino acid solution) 
supplied by NIST (National Institute of Standards and Technology, USA), NMIJ 
individual amino acid standards supplied by NMIJ (National Measurement Institute 
of Japan). 

The chosen enzyme must liberate unique signature peptides from the parent protein in 

an equimolar manner. The peptides must not go under any post-translational 

modifications, must be amenable to synthesis in both the unlabelled and the labelled 

form and must contain at least three amino acids (arbitrary condition) that can be 

quantified by amino acid analysis (i.e. do not degrade during acid hydrolysis). [94], [98] 

With the above approach, the SI-traceable value assignment of primary protein reference 

materials at the highest metrological quality is possible. 
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Chapter 1.7 Cardiovascular biomarkers 

Cardiovascular events remain the biggest cause of mortality around the world. In the UK 

they kill over 180,000 people a year according to the Coronary Heart Disease Statistics 

published by the British Heart Foundation. [99] Heart failure costs the UK healthcare 

system £8.7 billion and £19 billion to the UK economy as a whole. Early detection of heart 

disease by monitoring cardiac markers is vital for appropriate treatment and prevention 

of death. Cardiac markers should be sensitive, specific, proportional to the degree of 

myocardial injury, stable enough to be detectable in patients after the event and must be 

validated by clinical studies. [8] From the initial discovery of biomarkers there is a long 

journey until they become validated and approved so they can be utilized in everyday 

clinical testing. While the currently proposed cardiac biomarkers include less specific 

enzymes and proteins such as creatine kinase (CK, CK-MB), myoglobin and C-reactive 

protein, official approval by the Food and Drug Administration (FDA) has only been 

attained for two: cardiac troponin (troponin T and I) and BNP, listed in Table 1:2. 

Table 1:2. FDA-Approved Cardiac Markers 

Marker Disease Sensitivitya Specificityb 
Troponin I Myocardial Infarction 93 % 81 % 
B-type Natriuretic Peptide Congestive Heart Failure 98 % 92 % 

a. Biomarker correctly identifies patients suffering from the condition (true positive 
rate). 

b. Biomarker correctly identifies individuals not suffering from a medical condition 
(true negative rate). [101] 
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In 2004 NIST released a Human Cardiac Troponin Complex (SRM2921) standard in order 

to assist in the global standardization of immunoassay measurements. [101] The 

assignment of SI-traceable concentration to the reference material was hindered by the 

lack of clear definition of the measurand. Troponin contains three subunits (troponin C, 

troponin I, and troponin T) with unknown chemical structure. In an attempt to fully 

characterise the candidate reference material the subunits were separated by reversed 

phase liquid chromatography (RP-HPLC) and fraction collected for quantification by amino 

acid analysis. The nature of any post-translational modifications was investigated by 

combining proteolytic digestion and MALDI-TOF-MS. 

Quantification of the standard was performed by a combination of comparing the 

ultraviolet (UV) signal of purified troponin I that was quantified by amino acid analysis 

and performing amino analysis on each fraction of the troponin complex after acid 

hydrolysis.SI-traceability was established by using certified amino acid standards for the 

calibration of the amino acid method. NIST has used three amino acid residues (alanine, 

valine and leucine) to assign amount of substance to the reference material. 

During the development of the reference material it became evident that very little is 

known about the exact structure of troponin in patients with myocardial infarction, 

purification of large proteins extracted from human tissues is problematic and capabilities 

for the full characterization of the exact chemical structure of such a complex molecule 

are lacking. The project highlighted the fact that the definition of the measurand that can 

be explicitly targeted by MS methods is of paramount importance for the successful 

standardisation of measurements in laboratory medicine. [10] 
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C-peptide is a 31 amino acid peptide where the implementation of a reference 

measurement system was successful. [103] The measurand is sufficiently well defined and 

its concentration can be assigned using SI units. [92] Primary reference materials and 

reference measurement procedures exist and equivalence of the results between 

different laboratories has been demonstrated. [102] A list of laboratories capable of a 

provision of reference measurements is available on the JCTLM database. [21] External 

quality assessment schemes are established and provide a platform for the monitoring of 

the standardisation efforts. [102] 
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Chapter 1.8 B-type natriuretic peptide (BNP) 

BNP is a cardiac hormone secreted by the myocytes of the left ventricle in response to 

volume overload in an event of congestive heart failure. [103] The prohormone (proBNP) 

contains 108 amino acids and is naturally cleaved into the 32 amino acid long, biologically 

active BNP and the biologically inactive N-terminal (NT-proBNP, 76 amino acids) peptides 

by the putative enzymes corin and furin. [104] Corin degrades proBNP in the heart muscle, 

while furin is responsible for the processing of the secreted proBNP in circulation. [106], 

[107] The amino acid sequence of proBNP is shown in Figure 1:11.  

 

Figure 1:11. Amino acid sequence of proBNP. After proteolytic cleavage, NT-proBNP (1-76) and 
BNP (77-108 also BNP1-32) forms in circulation. Serine (S37, S44, S53) and threonine 
(T36,T48, T58, T71) residues highlighted in purple are O-glycosylated. 

BNP contains a ring structure with 17 amino acid residues, shared by all natriuretic 

peptides, which plays an important role in the recognition of the peptides in cell signalling. 

[107] BNP reduces blood pressure and increases sodium excretion as part of the cardiac 
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endocrine function. The circulating concentration of BNP ranges from 15 pg/mL in healthy 

individuals to around 1,400 pg/mL in patients who suffered a severe heart attack. NT-

proBNP and BNP levels reflect the severity of the heart attack and were found to 

correlate well with the classification of cases by the New York Heart Association (NYHA; 

see Table 1:3). [108] 

Table 1:3. BNP concentration found by clinical assays in heart failure patient samples. [79] 

NYHA Class Patient Symptoms BNP 
(pg/mL) 

BNP 
(fmol/mL) 

Class I 
(Mild) 

No limitation of physical activity. Ordinary 
physical activity does not cause undue fatigue, 
palpitation or dyspnea (shortness of breath) 

83-152 24-44 

Class II  
(Mild) 

Slight limitation of physical activity. 
Comfortable at rest but ordinary physical 
activity results in fatigue, palpitation or 
dyspnea 

235-322 68-93 

Class III 
(Moderate) 

Marked limitation of physical activity. 
Comfortable at rest but less than ordinary 
activity causes fatigue, palpitation or dyspnea 

459-590 133-170 

Class IV 
(Severe) 

Unable to carry out any physical activity 
without discomfort. Symptoms of cardiac 
insufficiency at rest. If any physical activity is 
undertaken discomfort is increased 

960-1190 277-344 

 

In 2007 the National Academy of Clinical Biochemistry published a document aimed at 

the utilization of test results of BNP/NT-proBNP. [110] BNP and its N-terminal co-

metabolite NT-proBNP are valid biomarkers that can be used for the confirmation of 

heart failure in ambiguous patient cases. [110] Their measurement is also warranted 

when risk stratification is required. NT-proBNP and BNP concentrations are routinely 

measured by immunoassays for the diagnosis and prognosis of congestive heart failure 

(CHF). BNP and NT-proBNP levels below 100 pg/mL and 400 pg/mL respectively rule heart 

failure out while above 500 pg/mL and 1800 pg/mL confirm heart failure with 98 % 

sensitivity. The study has found that results from commercial assays (Biosite and Abbott) 
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and research assays (Shiongi) can differ by 15-20 %, making the establishment of decision 

limits or BNP/NT-proBNP guided therapy not reliable. [111] 

In 2013 Franzini et al. published the results of heart failure patient and control samples 

distributed as part of the CardioOrmoCheck external quality assessment scheme. The BNP 

results showed a marked bias between the four assays (Siemens, Biosite, Abbot and TOSO) 

used in point of care (POC) testing in Italy, highlighting the need for standardisation of 

BNP measurements. [112] 

Chapter 1.8.1 Glycosylation 

proBNP is O-glycosylated at four threonine and three serine residues on the N-terminal of 

its sequence (Figure 1:11). In 2006 Schellenberger et al. investigated the post-

translational modifications of proBNP. [113] Recombinant proBNP was purified by 

monoclonal antibodies developed to be specific to the C-terminal end of proBNP 

sequence (-CKVLRRH). The treatment of the recombinant proBNP expressed in Chinese 

hamster ovary (CHO) cells with a cocktail of deglycosylating enzymes resulted in two 

separate bands in Western blot analysis. The glycosylation sites were identified by 

digestion of the deglycosylated protein with trypsin and endoproteinase GluC followed by 

Edman degradation of the proteolytic peptides. Patient samples confirmed that the 

circulating form of proBNP is an O-linked glycoprotein and the extent of the glycosylation 

is not uniform. The high density of glycosylation of the T3 tryptic peptide 

(LSELQVEQTSLEPLQESPRPTGVWK) prevented cleavage at glutamic acid residues (E) by 

GluC. Edman degradation of proBNP found a truncated sequence missing the first two N-

terminal amino acid residues (-HP) (cf. Figure 1:11).In 2008 Hammerer-Lecher et al. used 

affinity chromatography coupling sheep monoclonal antibodies (mAB) recognizing the 

first 21 amino acid residues on NT-proBNP to silica beads to investigate the circulating 
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forms of BNP. The captured NT-proBNP was put through a tryptic reactor and the 

resulting peptides were analysed by LC-ESI MS/MS. The identified tryptic peptides 

originated from both NT-proBNP and BNP, confirming that the processing of proBNP is 

not complete and there is intact proBNP present in the blood of patients with heart 

failure. Deglycosylation of the collected peptide fractions by O-glycosidase and N-

acetylneuraminidase corroborated the findings of Schellenberger et al. both proBNP and 

NT-proBNP are glycosylated monomers in vivo. [115] 

Chapter 1.8.2 Incomplete processing of proBNP 

Glycosylation also affects the processing of proBNP by furin. According to Semanov et al. 

the glycosylation at threonine 71 residue prevents the production of the bioactive BNP 

molecule.[105] 

The first qualitative evidence of the overestimation of biologically active BNP in 

circulation was produced by Hawkridge et al. in 2005. The research group used nano-LC-

FT-ICRMS to identify and quantify circulating forms of intact BNP in patients with high 

concentrations of BNP (cBNP> 290 fmol/mL, i.e. 1000 pg/mL) determined by point of care 

tests (POCT). [116] To accomplish the required sensitivity an enrichment method was 

developed using antibodies specific to BNP. Quantification was based on the addition of 

synthetic BNP containing U13C, U15N labelled glycines. The claimed detection limit of 15 

fmol (52 pg) on column was achieved. However, there was no endogenous BNP detected 

even in patient samples that showed very high concentrations by clinical assays. The 

conclusion based on the MS results was that the immunoassay readings cannot be 

attributed to the biologically active intact BNP alone, strongly suggesting the existence of 

cross-reacting species in circulation introducing error to clinical assay results. 
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In 2007 Lian et al. used monoclonal antibodies reported to be selective for the C-terminal 

of BNP for immunoprecipitation of BNP in NYHA IV class patient samples. Western blot 

analysis of the purified glycosylated and deglycosylated patients’ plasma samples showed 

substantial amount of proBNP. [116] Additionally, recombinant proBNP was found to be 

6-8 times less potent than BNP in affecting the behaviour of cells involved in alleviating 

heart attack symptoms. They also demonstrated that two commercially available BNP 

immunoassays (Triage and Advia Centaur) were unable to distinguish between the 

prohormone (proBNP) and its mature proteolytic peptide (BNP). The NT-proBNP assay 

(Elecsys) did not recognize BNP but significantly underestimated proBNP concentration 

most likely due to the glycosylation of the recombinant proBNP blocking the recognition 

of the epitope. 

An in depth study of cross-reactivity between clinical assays was conducted in 2008 by 

the IFCC Committee for the Standardisation of Markers of Cardiac Damage. [117] The 

comparison of five commercial assays for BNP and three for the analysis of NT-proBNP 

was performed by quantifying two BNP, two NT-proBNP and two proBNP calibration 

reagents. All assays were calibrated according to the manufacturer’s instructions. The 

peptide standards from five different suppliers showed substantial variation in reactivity 

depending on the methods of peptide production (synthetic or recombinant), the degree 

of glycosylation and assay architectures. The study concluded that both BNP and NT-

proBNP specific assays cross react with non-glycosylated proBNP. The IFCC urged the 

clinical field to gain better understanding of what is being measured by immunoassays 

and since 2014 the analytical characteristics of the major commercial immunoassays are 

available online. [118] In 2016, a cross-reactivity study was conducted with all BNP-

related peptides on five different BNP, nine NT-proBNP and three proBNP platforms. The 
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conclusion of the immunoassay specificity experiment was that BNP and NT-proBNP or 

proBNP results are not transferable even between assays with the same antibody 

configuration due to substantial cross reactivity and lack of standardisation. [120] 

Apart from the incomplete processing and the possibility of the glycosylation sites 

blocking epitope recognition, cross-reactivity may also be caused by degradation products 

of the biomarkers in human blood.  

Chapter 1.8.3 Degradation of NT-proBNP and BNP 

Measurement results of BNP by immunoassays are inherently heterogeneous. [111] Lack 

of exact definition of the measurand due to post-translational modifications (see Chapter 

1.8.1) already makes the development of selective antisera for immunoassays unfeasible. 

[114], [116] Additional challenges are the incomplete processing of the prohormone (see 

Chapter 1.8.2) and the rapid degradation of both BNP and NT-proBNP in blood and 

plasma. [103], [120] 

In 2006 Brandt and co-workers showed that BNP gets truncated into its des Ser-Pro form 

in vivo by the ubiquitous enzyme dipeptidyl peptidase IV (DPP IV). [120] BNP is also 

degraded in circulation by neprilysin (neutral endopeptidase, NEP), insulin degrading 

enzyme (IDE) and meprin. All of these enzymes are located in the heart. [121] 

Rapid degradation of BNP in plasma and whole blood was studied in 2008 by Niederkofler 

et al. [123] A Mass Spectrometry ImmunoAssay (MSIA) method was developed to capture 

BNP by two different types of monoclonal antibodies recognizing both the C-terminal end 

(-CKVLRRH) and an epitope between amino acid residues 5-13 of intact BNP (-

VQGSGCFGR-). The captured peptides were analysed by MALDI. Analysis of intact BNP 

spiked into plasma showed the complete hydrolysis of the full length peptide (BNP 1-32) 
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within an hour. Neither the addition of ethylenediamine-tetraacetic acid (EDTA, 

anticoagulant) nor cooling to 4 °C inhibited the DPP IV enzyme activity significantly. The 

most effective protease inhibitor combination was found to be (4-(2-aminoethyl) 

benzenesulfonyl fluoride (AEBSF) mixed with leupeptine or with benzamidine. The 

breakdown products are truncated forms of the BNP missing a combination of amino acid 

residues at both C- and N-terminus. External calibration with synthetic peptides allowed 

quantification of the most abundant species of the disintegrated BNP. To avoid bias due 

to differences in ionisation efficiencies the signals were normalized against biotinylated 

BNP internal standard. Comparison of the sum of the quantified breakdown product 

concentrations with results from clinical assays showed a significant overestimation of 

BNP concentrations by the latter. Unprocessed proBNP and further breakdown products, 

not captured by the antibody combination used, may be responsible for the difference 

between the results. A comparison of clinical assays with the above mentioned MSIA 

measurements was conducted in 2011 to unveil the circulating fragments of BNP in 

patient with chronic heart failure. [123] To prevent degradation of BNP a protease 

inhibitor “cocktail” of 10 mmol/L benzamidine and 5 mmol/L AEBSF was added to the 

centrifuged samples, split and kept at -70 °C until batch analysis by both MS and clinical 

antibody assays. A total of seventy patients were enrolled and statistically significant 

correlations between clinical characteristics and the concentrations between circulating 

levels of BNP (MS and clinical antibody assays) were evaluated. The study found that BNP 

1-32 degrades regardless of the inhibitor added. Biologically inactive forms of BNP (3-32, 

4-32 and 5-32) and proBNP were also detected suggesting that insufficient processing of 

the prohormone and degradation of BNP 1-32 are responsible for both the cross-
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reactivity in immunoassays and the lack of clinical compensation in patients with 

congestive heart failure.  

More recently the direct analysis of the peptidoforms was performed by capillary 

electrophoresis (CE) with ESI-MS detection. [125] Zhang et al. spiked synthetic BNP into 

heparin and EDTA plasma at high concentration (250 µg/g, 72 nmol/g) and analysed the 

degradation of BNP by multisegment injection (MSI). The same sample was injected every 

34 minutes over fourteen hours. After the addition of BNP to plasma it was rapidly 

degraded by the DPPIV to form BNP 3-32. BNP 3-30 and 3-29 was detected after 40 and 

100 minutes respectively with the simultaneous decrease of BNP 3-32 concentration. The 

level of 3-30 reached a plateau after about 120 minutes and remained high until the end 

of the time course experiment. (c.f. Figure 5:3) These data confirm that rapid degradation 

of BNP is taking place in plasma and suggests that degradation products are also 

substrates of various enzymes and their clearance take considerably longer. BNP related 

peptidoforms remain in circulation for at least over 14 hours after the complete 

disappearance of the biologically active cardiac hormone.  
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Chapter 1.9 EntrestoTM 

In 2015, a new heart failure drug called EntrestoTM gained approval by the FDA agency. 

The new medicine developed by Novartis contains two active ingredients. The first 

inhibits the angiotensin II receptor (valsartan) and the second blocks neprilysin activity 

(sacubitril). It was suggested that the measurement of BNP is no longer appropriate for 

the diagnosis of heart failure for patients administered with the drug. For patients taking 

EntrestoTM BNP concentrations may be deceptively high, as both BNP and proBNP remain 

intact in circulation. [126] 

The majority of the detected BNP by immunoassays, especially in chronic heart failure, is 

proBNP. To prove the assumption that measured BNP concentrations will be unaffected 

by blocking the enzyme, proBNP and BNP was incubated with neprilysin and their 

concentration was monitored. The measurements were made with two types of 

immunoassays with different epitope specificity. 

 

 

Figure 1:12. Platform, code and epitope specificity of capture antibodies used in the study. 
Epitopes are highlighted in red. a) Shionogi, BC-203, epitope 14-21 b) Hytest, mAb 
24C5, epitope 11-27. 
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The epitope of the first antibody (A) recognises one of the cleavage sites of neprilysin 

(R17-I18) and the authors used the results to demonstrate the non-specificity of the 

immunoassays depending on the antibody they use for capturing BNP for analysis. 

MALDI-MS experiments were conducted to determine the location of the cleavage sites 

of the enzyme. Neprilysin lysed BNP at hydrophobic residues consecutively. BNP was 

cleaved between residues M5-V6 after 30 min. R17-I18 after two hours, K14-M15, G23-L24, 

V28-L29 after four hours.BNP concentrations were different depending on epitope 

specificity. Results of the first antibody (A) showed a rapid degradation of BNP as the 

cleaved BNP was no longer captured by the antibody. 

The proBNP signal was constant in the same time period measured with the same BNP 

assays. Neither the glycosylated nor the non-glycosylated forms of proBNP were ideal 

substrates for neprilysin (i.e. there was no degradation of proBNP). The authors conclude 

that the effect of the new drug may not change immunoassay readings significantly, as 

proBNP is not degraded by neprilysin and remains the major part recognized by the 

immunoassays due to the cross-reactivity between BNP and proBNP. They also suggest 

that using different antibodies with varying epitope recognition can accommodate better 

understanding of the effects of EntrestoTM. [126] 

All clinical studies related to the measurement of cardiac hormones are conducted by 

immunoassays. [106] Due to the lack of comparability between the results, complete 

understanding of their faith in circulation or the efficacy of cardiac medications does not 

exist. Even the MS-based methods use immunoaffinity enrichment to achieve the 

required quantification levels. A reference standard and a reference method that is 

capable of the measurement of BNP in clinically relevant concentration is required to 

support the clinical community in the establishment of common decision limits, to assist 
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standardisation of BNP testing and to enable the thorough understanding of the 

pathophysiology of heart failure. 

Chapter 1.10 Aims of the work/project 

BNP is routinely measured worldwide for the diagnosis of heart failure. Immunoassay 

measurements are highly variable and there is no reference method for the accurate 

quantification of calibrators. The structure of the thesis follows the steps necessary to 

fulfil the requirements for the development of a reference measurement system. 

Characterisation and quantification of the primary reference standard is described in 

Chapter 3 and the development of a reference measurement procedure in Chapter 4. The 

capability of the reference method for the provision of reference values to matrix 

matched calibrator is investigated by participation in the UK National External Quality 

Assessment Scheme (UK-NEQAS, Chapter 5). The equivalence of results between different 

laboratories is demonstrated by comparison samples analysed by LGC and NIST and BNP 

is a subject of an international comparison study between NMIs to assess their calibration 

capabilities in 2020. The final aim of the project is a development of a reference 

measurement procedure that is included on the JCTLM database as a higher order 

method for the accurate quantification of the cardiac hormone. 
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Chapter 2 Materials and Methods 

Chapter 2.1 Materials 

Chapter 2.1.1 Amino acid analysis of synthetic peptides 

Synthetic BNP was purchased from Sigma-Aldrich (Gillingham, UK) and from Phoenix 

Pharmaceuticals, INC. (Burlingame, CA, USA). Synthetic isotopically labelled BNP was 

custom-synthesised by CPC Scientific (Sunnydale, CA, USA) as SPKMV(13C5,15N)Q-

G(13C2,15N)S-G(13C2,15N)-CF-G(13C2,15N)-RKMDR-I(13C6,15N)-SSSSGLGC-K(13C6,15N2)-VLRRH 

with a stated purity of 95 %. BNP stock solution was prepared in 0.1 % formic acid 

(FA)/10 % acetonitrile and stored at -80 °C ± 5 °C. Signature ‘tryptic’ peptides of BNP were 

custom-synthesised by AnaSpec (Fremont, CA, USA): MVQGSGCFGR, MVQGSGC-

F(13C9,15N)-GR, ISSSSGLGCK and ISSSS-G(13C2,15N)-L(13C6,15N)-GCK, with stated purities of 

95 %. Signature peptide solutions were prepared in water and stored at -20 °C ± 5 °C. All 

dilutions were carried out in Eppendorf Protein LoBind tubes from Thermo Fisher 

Scientific UK (Paisley, UK). Unlabelled amino acids were obtained from Fluka (Buchs, 

Switzerland): L-glycine, L-leucine, L-alanine, L-valine, L-lysine, L-isoleucine, L-proline, L-

arginine, L-phenylalanine (purities > 99 %). Labelled amino acids were obtained from 

Cambridge Isotopes Laboratory (Andover, MA, USA): L-glycine(13C2
15N, 98 %), L-leucine 

(13C6
15N, 98 %), L-alanine (13C3

15N, 98 %), L-valine (13C5
15N, 98 %), L-lysine/2HCl (13C6, 

15N2, 

98 %), L-isoleucine (13C6, 98 %), L-proline (13C5
15N, 98 %), L-arginine/HCl (13C6, 98 %), L-

phenylalanine (13C9
15N, 99 %).The reference material used for the traceable mass fraction 

determination of unlabelled amino acids was SRM 2389a (National Institute of Standards 

and Technology [NIST], Gettysburg, PA, USA), which is a mixture of seventeen free amino 

acids in 100 mM hydrochloric acid solution (Gly (2.52 ± 0.07 mmol/L), Leu (2.44 ± 0.11 

mmol/L), Ala (2.50 ± 0.07 mmol/L), Val (2.51 ± 0.10 mmol/L), Lys (2.41 ± 0.17 mmol/L), Ile 
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(2.44 ± 0.11 mmol/L), Pro (2.46 ± 0.11 mmol/L), Arg (2.51 ± 0.07 mmol/L), Phe (2.55 ± 

0.09 mmol/L), Asp (2.50 ± 0.08 mmol/L), Cys (1.23 ± 0.06 mmol/L), Glu (2.50 ± 0.08 

mmol/L), His (2.52 ± 0.07 mmol/L), Met (2.51 ± 0.07 mmol/L), Thr (2.49 ± 0.07 mmol/L), 

Tyr (2.54 ± 0.08 mmol/L), and Ser (2.44 ± 0.11 mmol/L)). Unlabelled amino acid standard 

solutions were prepared in 100 mM hydrochloric acid and calibrated against the NIST 

standard reference material using exact-matching isotope dilution mass spectrometry 

(EM-IDMS). The determined amino acid purities were: glycine 99.8 + 0.2/-2.1 %, leucine 

96.5 ± 2.5 %, valine 98.9 + 1.1/-2.1 %, lysine 96.7 + 3.3/-3.9 %, isoleucine 99.0 + 1/-3.1 %, 

proline 99.0 ± 1.0 %, arginine 95.2 + 4.8/-5.3 % and phenylalanine 99.0 ± 1 %. The BNP 

primary standard was quantified using certified amino acids from the National Metrology 

Institute of Japan (NMIJ; Tsukuba, Japan). Glycine (CRM 6022-a, 99.9 ± 0.2 %), L-leucine 

(CRM 6012-a, 99.9 ± 0.2 %), L-alanine (CRM 6011-a, 99.9 ± 0.2 %), L-valine (CRM 6015-a, 

99.8 ± 0.2 %), L-lysine monohydrochloride (CRM 6018-a, 99.8 ± 0.2 %), L-isoleucine (CRM 

6012-a, 99.7 ± 0.2 %), L-proline (CRM 6016-a, 99.9 ± 0.2 %), L-arginine (CRM 6017-a, 99.8 

± 0.2 %), L-phenylalanine (CRM 6014-a, 99.9 ± 0.2 %). Concentrated hydrochloric acid was 

obtained from ROMIL (Ultra Purity Acid, ROMIL, UK) and N-methyl-N-(trimethylsilyl)-

trifluoroacetamide (MSTFA) containing 1 % trimethylchlorosilane (TMCS) catalyst was 

bought from Restek Corporation (Belleforte, PA, USA). N-tert-Butyldimethylsilyl-N-

methyltrifluoroacetamide (MTBSTFA) with 1 % tert-Butyldimethylchlorosilane (TBDMSCl) 

was purchased from Sigma-Aldrich (Gilliam, UK). 
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Chapter 2.1.2 MALDI-TOF MS 

Trifluoroacetic acid (TFA) was from Thermo Scientific (Rockford, IL, USA). 2,5-

dihydroxybenzoic acid (DHB) was purchased from Bruker Daltonics (Coventry, UK). 

Chapter 2.1.3 ESI-Q-TOF MS, ESI-QqQ MS 

Ultra-pure water (18.2 MΩ cm) was generated by the ELGA Process Water Flex 2 

instrument (ELGA Process Water, UK). Formic acid (FA) 99.5 + %, Optima™ LC/MS Grade 

was acquired from Fisher Scientific (Loughborough, UK). HPLC Optigrade organic solvents 

were obtained from LGC Standards (Teddington, UK). Dimethyl sulfoxide (DMSO), 

sulfolane and 3-nitrobenzyl alcohol (m-NBA)were sourced from Sigma-Aldrich (Gillingham, 

UK). 

Chapter 2.1.4 Tryptic digestion 

Tris(hydroxymethyl)aminomethane hydrochloride (TRIS-HCl), ammonium bicarbonate 

(ABC), urea, sodium dodecyl sulfate, S-methyl methanethiosulfonate (MMTS) and calcium 

chloride dihydrate were purchased from Sigma-Aldrich (Gillingham, UK). Tris(2-

carboxyethyl)phosphine hydrochloride (TCEP-HCl) was obtained from Thermo Fisher 

Scientific (Schwerte, Germany). Modified sequencing-grade trypsin and Zwittergent 

detergents were supplied by Roche Applied Science (Penzberg, Germany). 

Chapter 2.1.5 Plasma and plasma clean-up 

Human K2 EDTA mixed-gender plasma was purchased from Sera Laboratories 

International Ltd. (Haywards Heath, West Sussex, UK). The following solid phase 

extraction (SPE) cartridges were evaluated: Bond Elute PLEXA (60 mg/3 mL, 100 Å, 45 µm; 

Agilent Technologies Inc., Santa Clara, CA, USA), STRATA XL (200 mg/3 mL, 300 Å, 100 µm; 

Phenomenex, Macclesfield, UK), ZIC-HILIC SPE (200 mg/3 mL, 60 Å, 50 µm; Millipore UK 
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Ltd., Watford, UK) and EVOLUTE CX-50 (100 mg/3 mL, N/K, 50 µm; Biotage GB Ltd., 

Hengoed, UK). Ultracentrifugation was explored with Amicon Ultra 0.5 mL Centrifugal 

Filters Ultracel10 membrane (NMWL: 10 kDa; Millipore UK Ltd.).  

Chapter 2.2 Methods 

Chapter 2.2.1 Amino acid analysis 

The traceable quantification of the peptides by amino acid analysis was achieved by acid 

hydrolysis followed by IDMS on the released amino acids. Vapour phase hydrolysis was 

performed at 190 °C with the use of MILESTONE ETHOZ EZ Microwave Digestion System 

(Milestone S.r.l., Sorisole (BG), Italy). The peptide concentration was calculated assuming 

complete release of the amino acids from the parent peptide (glycine, leucine, alanine, 

valine, lysine, isoleucine, proline, arginine and phenylalanine). The peptide solutions were 

prepared in a nominal concentration of 50 nmol/g (BNP) and 100 nmol/g (ISSSSGLGCK, 

MVQGSGCFGR) corrected for the peptide content supplied on the certificate of analysis. 

The quantification of peptide stock solutions was performed on six independent aliquots 

for both signature BNP peptides, and the intact BNP peptide. The hydrolysis was repeated 

three times. Amino acid standard solutions containing the expected molar concentrations 

of the amino acids from the parent peptide molecule were prepared and used as 

calibrants. The calibration blends were prepared by mixing the calibrants with the 

labelled amino acids in equimolar amounts. The peptide solutions were spiked with the 

same labelled amino acid solutions. All blends were prepared gravimetrically. The 

calibration and sample blends were frozen at -80 °C for 30 min and then freeze-dried in a 

vacuum centrifuge (Alpha 1-2LD, RVO 2-25, Christ, Osterode am Harz, Germany) at 0.1 

mbar (-42 °C) for 2.5 h. The samples were hydrolysed at 190 °C for 30 min in the 

MILESTONE ETHOZ EZ Microwave Digestion System equipped with a protein hydrolysis kit, 
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containing 30 mL 6 M hydrochloric acid. The hydrolysed samples were lyophilized and 

reconstituted in 80 µL MSTFA or MTBSTFA. The samples were then analysed using a single 

quadrupole Finnigan TRACE DSQ GC-MS system (Thermo Fisher Scientific, Waltham, MA, 

USA) equipped with a CTC Combi-PAL Autosampler system (CTC Analytics AG, Zwingen, 

Switzerland). The amino acids were separated on a 30 m long Zebron ZB-5HT INFERNO GC 

column (0.25 µm i.d.) attached to 2 m long Zebron HT deactivated guard column (0.5 µm 

i.d.) both from Phenomenex (Macclesfield, UK). The inlet temperature was 280 °C and the 

split flow was set at 85 mL/min with splitless time for 0.75 min. 1 µL of the samples were 

injected. The temperature program was: hold at 90 °C for 2 min, then increase to 330 °C 

at a rate of 25 °C/min and hold the final temperature for 5 min. The ions monitored for 

each unlabelled/labelled amino acid pair in selected ion monitoring mode (SIM, in order 

of elution) are tabulated in Table 2:1. 

Table 2:1. SIM ions used for the quantification of amino acids. 

Amino acid Quantifier mass (m/z, U/L) 
MSTFA 

Quantifier mass (m/z, U/L) 
MTBSTFA 

Alanine 116/119 158/161 

 
Glycine 102/104 218/220 
Valine 144/149 186/191 
Leucine 158/164 200/206 
Isoleucine 158/163 200/205 
Proline 216/221 184/189 
Phenylalanine 192/201 302/305 
Lysine 84/90 300/307 
Arginine 256/261 199/203 
U: unlabelled; L: labelled. 
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Chapter 2.2.2 Purity assessment of synthetic peptides 

Chapter 2.2.2.1 MALDI-TOF MS 

The synthetic signature peptides ISSSSGLGCK, MVQGSGCFGR, ISSSSG*L*GCK and 

MVQGSGCF*GR (*:13C and 15N enriched amino acids) were cysteine-alkylated and mixed 

in equimolar amounts to obtain a concentration of 10.8 nmol/g for each peptide. 200 mg 

of 2,5-dihydroxybenzoic acid (DHB) was dissolved in 2 mL of water to make a saturated 

solution. On an AnchorChip plate (Bruker Daltonics) 0.5 µL of analyte solution was mixed 

with 0.5 µL of DHB matrix solution, air-dried and used for MS analysis. MALDI-TOF MS 

measurements were performed using an Ultraflex II mass spectrometer (Bruker Daltonics). 

The laser pulse repetition rate was set to 50 Hz and spectra were recorded by averaging 

500 shots. For MS calibration, Peptide Calibration Standard II mixture (Bruker Daltonics, 

Cat. #222570) was prepared the same way as the samples. 

Chapter 2.2.2.2 LC-ESI-Q-TOF MS 

10 nmol (100 µL, 100 nmol/g) of the synthetic peptides were reduced using 200 nmol of 

TCEP (4 µL, 50 mM TCEP, 37 °C, 60 min) in 500 µL LowBind Eppendorf tubes. The cysteine 

residues were then alkylated with 400 nmol MMTS (4 µL, 100 mM MMTS, dark, 37 °C, 30 

min). For MS analysis, an Agilent Q-TOF 6530 instrument was coupled to an Agilent 1200 

capillary and nano pump system (Agilent Technologies, Inc., Santa Clara, CA, USA), 

providing a split flow of 4 µL/min for loading onto the trap and 0.6 µL/min for separation. 

An Agilent chip-cube assembly was used to interface the HPLC-chip with the MS. 

Chromatographic separation was achieved using an Agilent HPLC-chip (5 µm particle size, 

300 Å mean pore diameter, Zorbax 300SB-C18 Protein ID Chip) that comprised of a 40 nL 

enrichment and a 75 µm x 43 mm analytical column. The trap was loaded using 0.1 % FA 

(solution A) while separation was performed with a linear gradient from 1-50 % of 0.1 % 
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FA in acetonitrile (solution B) in solution A within 9.5 min. The gas temperature of the 

source was 235 °C and the gas flow was set to 6 L/min. The capillary voltage was set to 

1950 V and the fragmentor voltage was 210 V. The fragmentation of the signature 

peptides was performed by targeting the doubly charged ions, using a CID voltage of 20 V. 

Chapter 2.2.3 Tryptic digestion and quantification of BNP 

The calibration blend for the tryptic digestion contained the previously quantified 

synthetic peptide standards and their labelled analogues (MVQGSGCFGR, ISSSSGLGCK, 

ISSSSG*L*GCK and MVQGSGCF*GR). The sample blend was prepared with intact BNP 

peptide solution mixed with the labelled synthetic peptides. Digestion was optimised to 

achieve complete tryptic proteolysis by repeated addition of trypsin to the buffered 

solution and monitoring the ratio of unlabelled and labelled synthetic peptide signals until 

a plateau was reached. 5 µL of 10.8 nmol/g of the sample and calibration blends were 

diluted to 250 µL with 500 mM TRIS buffer, 10 mM Ca2+ solution (pH 8.10). This mixture 

was digested with 3.5 µg of trypsin (37 °C, 1 hour). 3.5 µg of trypsin (3.5 µL, 1 µg/µL 

trypsin) was added after an hour and the mixture was digested further at 37 °C for an 

hour. The digest was reduced with 200 nmol TCEP (4 µL, 50 mM TCEP, 37 °C, 60 min) and 

alkylated with 400 nmol MMTS (4 µL, 100 mM MMTS, dark, 37 °C, 30 min). Two sample 

blends and two calibration blends were treated with the same digestion protocol, in 

triplicate. A Q-TRAP 4000 quadrupole linear ion trap instrument (ABSciex, Framingham, 

MA, USA) coupled to an Agilent 1100 series HPLC system (Agilent Technologies, Inc.) was 

used for the quantification of the signature peptides. Separation was achieved on an 

XBridge BEH C18 Waters column (3.5 µm particle size, 2.1 mm i.d., 150 mm length, 130 Å 

mean pore diameter) from Waters Corporation (Milford, MA, USA) at a flow rate of 100 

µL/min. Mobile phase solutions were: (A) 0.1 % FA and (B) 0.1 % FA in acetonitrile. 
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Peptides eluted with a linear gradient from 5 % to 40 % solution B within 30 min. The 

column effluent was introduced into the ESI source through a divert valve directing the 

solvent into waste after the peptides eluted. A Turbo V ESI ion source was used. Source 

temperature was 600 °C, ion spray voltage was 3000 V. Curtain gas pressure was 30 psi. 

Nebuliser and heater gas pressures were set to 70 psi each. The mass spectrometer was 

operated in positive ion mode. The doubly charged molecular ions were fragmented by 

CID. SRM and source conditions were optimized for the most abundant fragment ions. A 

collision cell voltage of 25 V was used for both peptides. Table 2:2 shows the 

monoisotopic and observed masses of the parent and the monitored fragment ions. The 

analytical column temperature was 60 °C.  

Table 2:2. Masses monitored for the signature peptides. 

Unlabelled 
 Monoisotopic 

Theoretical Mass Observed Mass 
QTRAP M (g/mol) m/z (z=2) 

MVQGSGC(Methylthiol)FGR 1086.4409 544.2277 544.3 
Monitored fragment y7+ 729.2807  729.4 
ISSSSGLGC(Methylthiol)K 983.4416 492.7281 492.4 
Monitored fragment y8+ 784.3328  784.4 

Labelled 
 Monoisotopic 

Theoretical Mass Observed Mass 
QTRAP M (g/mol) m/z (z=2) 

MVQGSGC(Methylthiol)F*GR 1096.4684 549.2413 549.3 
Monitored fragment y7+ 739.3079  739.4 
ISSSSG*L*GC(Methylthiol)K 993.4625 497.7385 497.3 
Monitored fragment y8+ 794.3537  793.5 
* :labelled amino acids 13C, 15N. 
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Chapter 2.2.4 ESI-Q-TOF MS purity assessment of BNP primary stock 

The Agilent Q-TOF 6530 instrument was coupled to the Agilent 1290 HPLC system (Agilent 

Technologies, Inc.). The instrument was calibrated using the Agilent LC/MS low 

concentration tuning mix. (Cat. # G1969-85020) The chromatographic separation was 

performed using an Aeris PEPTIDE XB-C18 column (2.6 µm particle size; 2.1 mm i.d.; 250 

mm length, pore size of 90 Å) from Phenomenex. A linear gradient from 1 % to 20 % 

solution B was applied over 20 min. Solution A was 0.5 % FA and solution B was 0.5 % FA 

in acetonitrile. The flow rate was set to 400 µL/min and the temperature to 60 °C. 

Samples were kept at 5 °C in the auto sampler. Dimethyl sulfoxide (DMSO) was infused 

post column with a separate pump (PU-1585 Intelligent HPLC Pump; JASCO Analytical 

Instruments, Dunmow, Essex, UK) at a flow rate of 1 µL/min. The Agilent JetStream ESI 

source was used with the following settings: Gas temperature was 300 °C and drying gas 

flow was set at 13 L/min. Nebuliser gas pressure was 50 psig. Sheath gas temperature was 

350 °C and the flow was 12 L/min. Capillary voltage was set to 1500 V. Nozzle voltage was 

1000 V. Fragmentor and skimmer voltage was 175 V and 65 V, respectively.  

Chapter 2.2.5 UPLC-UV-ESI MS experiments 

The purity of the BNP stock solution was determined by recording the chromatogram of 

the stock solution with UV and MS detectors connected in series. An Acquity UPLC Twin 

UV (TUV) Detector (Waters Corporation) was connected to the column and after the UV 

cell the eluent was directed to the ESI source of a Xevo G2-XS QToF MS instrument 

(Waters Corporation). The separation was performed using an Acquity UPLC H-Class 

system (Waters Corporation) on an Aeris PEPTIDE XB-C18 column (2.6 µm particle size; 

2.1 mm i.d.; 250 mm length, pore size of 90 Å) from Phenomenex. Solvent A was 0.5 % FA 

and solvent B was 0.5 % FA in acetonitrile. A linear gradient from 1 % to 25 % solution B 
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was applied over 48 min. The flow rate was set to 250 µL/min and the column 

temperature to 70 °C. Samples were kept at 5 °C in the auto sampler. The Twin UV 

detector was set up to display absorption at 260 nm after correction with Median 

Baseline Filter (MBF). Sampling rate was 20 point/sec and the filter constant was set to 

Normal (0.1 sec). Sensitivity setting was 4 AUFS with positive polarity and a voltage offset 

of 0 mV. The ESI source temperature was 100 °C, desolvation temperature 450 °C, cone 

gas flow was 50 L/h and desolvation gas flow was set to 600 L/h. The MS instrument was 

operated in positive ion sensitivity mode. A capillary voltage of 3 kV and a cone voltage of 

40 V were applied. The data acquisition range was m/z 50-1,800. [Glu1]-Fibrinopeptide 

lockmass solution (100 µg/µL, m/z 785.8427) was infused at a flow rate of 10 µL/min. 

Them/z scale was automatically corrected every 60 seconds. 

Chapter 2.2.6 BNP LC-ESI MS Method development 

Chapter 2.2.6.1 Superchargers 

Both the Agilent Q-TOF 6530 instrument and the Agilent QqQ 6490 instrument were used 

and coupled to the Agilent 1290 HPLC system. The chromatographic separation was 

performed using an Aeris PEPTIDE XB-C18 column (2.6 µm particle size; 2.1 mm i.d.; 250 

mm length; pore size of 90 Å) from Phenomenex. A linear gradient from 1 % to 20 % 

solution B was applied over 20 min. Solvent A was 0.5 % FA and solvent B was 0.5 % FA in 

acetonitrile. The flow rate was set to 400 µL/min and the temperature to 60 °C. Samples 

were kept at 5 °C in the auto sampler. Sulfolane, m-NBA and DMSO were infused post 

column with a separate pump (PU-1585 Intelligent HPLC Pump; JASCO Analytical 

Instruments) at a flow rate of 1 µL/min (0.25 %; v/v). The settings of the Agilent JetStream 

ESI source is displayed in Table 2:3. On the Q-TOF instrument the fragmentor and 

skimmer voltage was 175 V and 65 V, respectively.  
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Table 2:3. MS source conditions on the Agilent Q-TOF 6530 and Agilent QqQ 6490 instruments 
employed for the comparison of superchargers. 

Gas Temperature (°C) 300 

Gas Flow (l/min) 18 
Nebulizer Gas Pressure (psi) 35 
Sheath Gas Temperature (°C) 300 
Sheath Gas Flow (L/min) 12 
Capillary Voltage (V) 3500 
Nozzle Voltage (V) 1500 

 

Chapter 2.2.6.2 Optimisation of MS/MS conditions 

Source optimisation was performed by monitoring the intensity of BNP signal with 

different source conditions. The LC described in Chapter 2.2.6.1 was delivering 10 % 

acetonitrile, 90 % water, 0.1 % FA (v/v/v) at 400 µL/min. BNP standard (1 nmol/g) was 

connected to the mobile phase through a t-piece and infused using a syringe pump at 10 

µL/min. A second LC pump was delivering DMSO at 1 µL/min through another t-piece 

before the ESI source. The MS instrument was operated in positive ion mode. Full scan 

spectra were recorded from m/z 400-800. The capillary voltage was set to 3000 - 4000 V 

in 500 V increments, the nozzle voltage was varied from 0 - 1500 V in 500 V increments. 

Gas temperature was varied between 300 and 350 °C. Gas flow was set to 18 and 11 

L/min. The nebuliser gas pressure was changed from 30 psi to 50 psi in 5 psi increments. 

For the SRM optimisation the product ion spectrum of the 6+ charge state of BNP (m/z 

578.3) was monitored. Cell acceleration voltage was varied from 1 - 5 V by 1 V increments. 

The collision cell voltage was increased from 16 V to 22 V in 1 V increments. The electron 

multiplier voltage (EMV) was increased to +450 V. 

Table 2:4. MS ion source and SRM transition optimisation results. 

Source Conditions Default Optimised 

Gas Temperature (°C) 300 300 
Gas Flow (L/min) 18 18 
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Source Conditions Default Optimised 

Nebuliser Gas Pressure (psi) 35 50 
Sheath Gas Heater Temperature (°C) 300 350 
Sheath Gas Flow (L/min) 12 12 
Capillary Voltage (V) 3500 1500 
Nozzle Voltage (V) 1500 1000 
 

Transition Settings Default Optimised 

EMV (V) 0 + 450 
Precursor (m/z) Monoisotopic Average 
Product (m/z) Monoisotopic Average 

Resolution Unit/Unit Unit/Wide 
Dwell Time (ms) 200 100 
Fragmentor Voltage (V) 380 380 
Collision Cell Voltage (V) 16 18 
Cell Accelerator Voltage (V) 5 1 
The values in bold were attributed to the enhancement of signal intensity and optimised 
accordingly. 

Chapter 2.2.6.3 Protein precipitation (PPT) 

For the reference method a volume of 1.5 mL of water:acetonitrile (20:80; v/v) containing 

0.5 % FA was added to the plasma samples, vortexed vigorously and centrifuged at 5,000 

rpm at 4 °C for 60 min (Eppendorf Centrifuge 5804R; Thermo Fisher Scientific UK). The 

supernatant was transferred to pre-weighed 2 mL Eppendorf tubes and freeze-dried 

overnight in a CHRIST ALPHA 1-2 LD plus freeze dryer with a CHRIST RVC 2-25 centrifuge 

(SciQuip Ltd, Newtown, UK). 

Chapter 2.2.6.4 Stabilisation experiments 

Ten aliquots containing 60 fmol (200 pg) of BNP were freeze-dried. 0.5 g plasma was 

added gravimetrically to each aliquot. A volume of 1.5 mL of precipitation solvent was 

added at the beginning of the experiment to the first aliquot and at 10 min intervals to 

the remaining aliquots. Samples were centrifuged; the supernatant subjected to SPE and 

reconstituted in 100 µL of water containing 0.5 % FA (v/v) and an equimolar amount of 
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isotopically labelled BNP. The samples were then analysed by LC-ESI MS/MS SRM using 

the Agilent QqQ system. 

Chapter 2.2.6.5 Solid phase extraction (SPE) 

For the determination of elution characteristics of BNP, the STRATA XL cartridges were 

conditioned with 5 mL of methanol containing 0.5 % FA (v/v) followed by 5 mL of water 

containing 0.5 % FA (v/v). A solution containing 200 fmol of BNP was loaded (200 µL, 1 

pmol/g BNP solution). The loaded cartridges were washed twice with 2 mL of water 

containing 0.5 % FA (v/v) and eluted with the sequential addition of 2 mL of water 

containing increasing percentages of acetonitrile (steps of 10 % from 10 to 100 % (v/v)). 

The washing and elution volumes were individually collected in 2 mL Protein LoBind vials. 

The solutions were freeze-dried and reconstituted in 100 µL of water with 0.5 % FA (v/v) 

containing an amount of isotopically labelled BNP equal to the amount of loaded BNP 

(200 fmol). The extracts were analysed by the LC-ESI MS/MS SRM reference method 

described in Chapter 2.2.7 and on the Agilent Q-TOF instrument in full scan mode. BNP 

recoveries were calculated by comparing the MS peak areas of the extracted ion 

chromatogram signal of the BNP recovered from the SPE and the extracted ion 

chromatogram signal of the isotopically labelled internal standard. For the reference 

method the STRATA XL SPE cartridges were conditioned with 5 mL of methanol containing 

0.5 % FA (v/v) followed by 5 mL of water containing 0.5 % FA (v/v). The freeze-dried 

extracts from the protein precipitation experiments (PPT) were reconstituted in 2 mL of 

water containing 0.5 % FA (v/v), loaded onto the SPE cartridges, washed twice with 2 mL 

of water containing 0.5 % FA (v/v) and twice with 2 mL of water:acetonitrile (95:5; v/v) 

containing 0.5 % FA (v/v). All solvents contained 45 µg/g of methionine. Bound peptides 

were eluted into 5 mL Eppendorf vials with 4 mL of water:acetonitrile (65:35; v/v) 
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containing 0.5 % FA (v/v) and methionine at a concentration of 45 µg/g. The collection 

vials were pre-rinsed with an aqueous solution containing 0.5 % FA and 500 µg/g BSA to 

avoid any loss of BNP on the vessel surfaces. The extracts were lyophilized, reconstituted 

in 100 µL of water containing 0.5 % FA (v/v) and analyzed by LC-ESI MS/MS as described 

in Chapter 2.2.7. 

Chapter 2.2.7 LC-ESI MS reference method 

For the quantification of BNP by SRM, experiments were set up by fragmenting the 6+ 

charge state of the intact precursor ion (BNP: m/z 578.3, BNP*: m/z 583.3) and 

monitoring the 4+ y26 product ion (BNP: m/z 699.2, BNP*: m/z 705.2). Oxidation of 

methionine residues were monitored in separate windows. If one of the methionines was 

oxidized the precursor ion was at m/z 581.0 with the product ions of m/z 699.2 and m/z 

703.5. If both of the methionines were oxidized the precursor ion was at m/z 583.7 and 

the product ion at m/z 703.5. The resolution was set to UNIT/WIDE (Q1: m/z 0.7/Q3: m/z 

1.2). The mass spectrometer was operated in positive ion mode. The dwell time was set 

to 100ms and the fragmentor voltage was set to 380.0 V. Collision energies (CE) and cell 

acceleration voltages (CAV) were optimized (BNP: CE18, CAV 1; BNP*: CE18, CAV 1). The 

electron multiplier voltage (EMV) was set to +450 V. Volumes of 10 µL of the appropriate 

samples were injected. The chromatographic separation was performed by using an Aeris 

PEPTIDE XB-C18 column (2.6 µm particle size; 2.1 mm i.d.; 250 mm length, pore size of 90 

Å) from Phenomenex. A linear gradient from 1 % to 20 % solution B was applied over 20 

min. Solvent A was 0.5 % FA (v/v) and solvent B was 0.5 % FA in acetonitrile (v/v). The 

flow rate was set to 400 µL/min and the temperature to 60 °C. Samples were kept at 5 °C 

in the auto sampler. Dimethyl sulfoxide (DMSO) was infused post column with a separate 
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pump (PU-1585 Intelligent HPLC Pump; JASCO Analytical Instruments) at a flow rate of 1 

µL/min. 

Chapter 2.2.8 Final optimisation of sample clean-up 

The recovery of the clean-up procedure was determined at every concentration level by 

comparing the ratio determined in the post-spiked samples to pre-spiked samples. Seven 

aliquots of the diluted BNP primary stock standard were prepared at the calibration range 

of the reference method (15 fmol/g-150 fmol/g, i.e. 52 pg/g-520 pg/g), spiked with 30 

fmol isotopically labelled BNP and freeze-dried (pre-spike). Another set of BNP standard 

without the isotopically labelled internal standard was also prepared (post-spike). 

Labelled internal standard was added to the post-spikes after SPE. Plasma was added and 

the samples were subjected to PPT and SPE as described previously. Blank plasma 

samples were analysed with both sets of samples. The samples were analysed with the 

LC-ESI MS/MS SRM method. 

Chapter 2.2.9 Analysis of NEQAS samples 

Freeze-dried plasma samples were delivered by post and stored at 5 °C until analysis. The 

samples were reconstituted in the supplied reconstitution solvent by following the 

instructions provided by NEQAS. Immediately after reconstitution, 1.5 mL of the PPT 

solvent (water:acetonitrile (20:80; v/v)) was added. Seven plasma samples spiked with 

the BNP primary standard in a range of concentrations between 15 fmol/g-150 fmol/g (52 

pg/g-520 pg/g) were also prepared. Blank plasma and the seven spiked plasma samples 

were used to construct the calibration curve. The same amount of isotopically labelled 

BNP (30 fmol) was added to the calibrants and the UK NEQAS samples. All samples were 
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processed and analysed as previously described in Chapter 2.2.7 by performing the two-

step sample clean-up procedure prior to LC-ESI MS/MS analysis. 
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Chapter 3 Development of a primary B-type Natriuretic Peptide standard 

Chapter 3.1 Introduction 

Measurements must produce comparable results independent of the measurement 

platform used. Standardisation in clinical diagnostics can be achieved by means of 

Certified Reference Materials (CRMs) that can define the scale of quantity and link the 

measurement units to international references (i.e. SI unit), and by the existence of a 

reference measurement procedure that enables the transfer of SI-traceable values to 

calibrants with high precision and accuracy. Metrological traceability is defined as “the 

property of a measurement result whereby the result can be related to a reference 

through a documented unbroken chain of calibrations, each contributing to the 

measurement uncertainty”. [18] Traceability is stipulated by international quality 

standards and requires the establishment of a calibration hierarchy. [12], [128] In 

chemistry, the realisation of the measurand as a high-purity primary reference material 

represents the highest metrological order in the calibration hierarchy. While well 

characterised primary reference standards with known purity are available for small 

organic molecules, where the measurand is well defined, methods for the purity 

assignment of more complex peptide and protein standards are still lacking. The purity of 

an organic substance is expressed as the mass fraction of the main compound in a 

nominally pure material. (Equation 3:1.) 

𝑤𝑤𝐴𝐴 =
𝑚𝑚𝐴𝐴

𝑚𝑚𝐴𝐴 + ∑𝑚𝑚𝑥𝑥
 

Equation 3:1. Definition of purity of organic standards, where 𝑤𝑤𝐴𝐴  is the mass fraction of the main 
component A in the material, 𝑚𝑚𝐴𝐴  is the gravimetric amount of the main component 
and ∑𝑚𝑚𝑥𝑥  is the sum of the minor impurities present. 
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The purity can be determined directly by measuring the amount of substance of the main 

component or indirectly by determining the amount of impurities and subtracting it from 

the total value. Direct purity measurements require primary reference standards so the 

amount of substance can be assigned by gravimetry, titrimetry or by establishing 

comparison to the same chemical entity by isotope dilution mass spectrometry (IDMS) 

[129], [130], quantitative nuclear magnetic resonance (NMR) [90], [91] or by 

chromatographic response. The total amount of impurities can be determined indirectly 

by thermal methods such as differential scanning calorimetry (DSC) [131] or adiabatic 

calorimetry by evaluating phase-change phenomena (i.e. melting point depression). If the 

purity is determined indirectly by quantifying the impurities individually, the method is 

called “mass balance” approach. In the “mass balance” approach the impurities are 

categorised into well-established classes. [132] Table 3:1. Purity determination is 

performed by the systematic assessment of water content, related structure impurities, 

residual organic solvents and non-volatiles in the solid material. [133], [134] 
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Table 3:1. Analytical techniques used for the assessment of the purity of organic substances. 

Class of impurity Analytical technique 
Related structure 

 

Chromatographic techniques with universal and selective detectors 

 GC-FID, GC-ECD, GC-MS/MS, LC-DAD, LC-UV, LC-MS/MS, LC-CAD, GPC-
MALDI 

 Elemental Microanalysis 
Water Karl Fischer Titration 
 Thermogravimetric Analysis (TGA, TGA-MS) 
Residual solvents Headspace GC/MS 
 Thermogravimetric Analysis (TGA, TGA-MS) 
 Quantitative NMR 
Non-volatiles 

 

 

 
Organic 

 

Ion Chromatography 
Inorganic Inductively Coupled Plasma MS (ICP-MS) 

GC: gas chromatography, ECD: electron capture detector, DAD: diode array detector, UV: 
ultraviolet detector, CAD: charged aerosol detector, GPC: gel permeation chromatography NMR: 
nuclear magnetic resonance. 

Additional information such as synthetic production routes, potential side reactions and 

degradation pathways are particularly useful in the identification of impurities present in 

the material. The identity of the impurities is confirmed using orthogonal 

chromatographic techniques utilising different separation chemistries with universal (DAD, 

UV, FID, MS, CAD) and structure-specific detectors (i.e. electron capture detector, ECD) 

and ionisation techniques (ESI, atmospheric pressure chemical ionisation (APCI), 

atmospheric pressure photo ionisation (APPI)). [135], [133], [132], [136] Once the identity 

of every impurity is confirmed, impurity standards are used for accurate quantification by 

external calibration.  

While analytical approaches to define the purity of small organic molecules are well 

established, there is a clear gap between the demand from clinicians and available CRMs 

for biological measurands. The Joint Committee for Traceability in Laboratory Medicine 

(JCTLM) database, maintained by the International Bureau of Weights and Measures 

(BIPM), is constantly updated with the list of available certified reference materials, 
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reference measurement procedures and laboratories with calibration facilities. As of 

August 2017 there are only twenty five CRMs available for peptides and proteins with 

values that provide traceability to the SI. Twenty-four of these are in matrix and only one, 

the human C-peptide, is available as a solid. [21] The number of CRMs for small organic 

molecules is over two hundred and fifty. 

The lack of availability of higher order CRMs is mainly due to the complexity of large 

biomolecules and their potential impurities. The traditional “mass balance” approach for 

synthetic peptides is not always applicable because of the high costs associated with the 

production and purification of large quantities of the solid standard material. [137] 

Synthetic peptides are produced by solid phase peptide synthesis (SPPS). The peptide 

chain is built from the C-terminus towards the N-terminus. Resins with the C-terminal 

amino acid attached are commercially available. SPPS involves selective protection and 

de-protection of the reactive moieties of the coupled amino acid and the residue already 

attached to the growing peptide chain. [138] The advantage of solid phase synthesis 

versus solution chemistry is that the product remains attached to the polymeric material 

and the reagents can be washed away between each step minimising unwanted side 

reactions. The disadvantage is that in the case of incomplete coupling the main product 

will be contaminated with closely related peptidic impurities. Deletion sequences missing 

one or more amino acid residues are not uncommon. Imperfect washing of the resin 

between the coupling steps can result in multiple residues being built into the peptide 

sequence. As the yield of coupling efficiency is decreasing significantly with the number of 

residues in the sequence, proteins that contain more than 75 residues are produced by 

means of recombinant DNA technologies. For proteins used in clinical diagnostics the 

characterisation of different isoforms, post-translational modifications (PTM) and higher 
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order protein structure is also necessary and further increases the complexity of purity 

determinations.  

National Metrology Institutes (NMI) are required to participate in comparison trials 

coordinated by the BIPM to demonstrate their measurement capabilities. The studies are 

organised and operated within the framework of the Consultative Committee for Amount 

of Substance (Comité Consultatif pour la Quantité de Matére, CCQM)- Metrology in 

Chemistry. Participation in a CCQM study allows NMIs to assess their calibration methods 

for the determination of organic purities and to compare and discuss results with fellow 

NMIs. Participation in CCQM studies also provides an opportunity for NMIs to 

demonstrate their Calibration and Measurement Capability (CMC) claims for the provision 

of organic pure substance CRMs. [133], [139] 

A strategy for the SI-traceable value assignment of peptides and proteins was drafted by 

the Protein Analysis Working Group (PAWG) of the CCQM in 2017 to outline the 

timeframe for future CCQM studies. [140] The strategy classifies peptides and proteins by 

size and complexity. The first study for mass concentration assignment of small synthetic 

peptides of unknown purity was conducted in 2010. (CCQM-P55.1) In 2014, human C-

peptide was distributed to participating NMIs to assess the capabilities for the purity 

assignment of a solid synthetic peptide standard without cross linking. (CCQM-K155) [141] 

The results of the key comparison study are displayed in Figure 3:1. The study highlighted 

the technical and metrological difficulties associated with the purity assignment of large 

synthetic peptides and the need for further research in the area. 
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Figure 3:1. Mass fraction estimates by participants for human C-peptide (hCP) in CCQM-K115 
with their reported expanded uncertainties (± U, k=2). Solid line: proposed reference 
value. Dashed lines: uncertainties. PICAA: Peptidic impurity corrected amino acid 
analysis. 

Future studies are aimed at assessing technical capabilities for mass fraction assignment 

of peptides and proteins with disulfide bridges, post-translational modifications and from 

recombinant origin. While the metrological tools to determine the purity of complex 

biomolecules are still lacking, NMIs are developing “fit for purpose” approaches to fulfil 

the clinical demand. 

Two methods are currently available for the SI-traceable quantification of proteins and 

peptides. The first is amino acid analysis and the second is quantification of proteins via 

their enzymatic peptides that had been quantified by amino acid analysis. For synthetic 

peptides the method of choice for SI-traceable quantification is amino acid analysis by 

EM-IDMS after acid hydrolysis. [128], [129], [141] Certified amino acid reference 

standards are readily available and provide traceability to the SI. Provided that the 

hydrolysis is complete, the concentration of the peptides can be derived by determining 

the concentration of the amino acids in their sequence. The drawback of this approach is 
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that full coverage of the sequence is not always possible as not all amino acids are stable 

during the harsh conditions employed during acid hydrolysis. Asparagine and glutamine 

are hydrolysed to aspartic acid and glutamic acid. Tyrosine and tryptophan decompose 

and serine and threonine are partially hydrolysed. Methionine is oxidised to methionine-

sulfoxide or sulfone and cysteine is oxidised to cysteic acid. [143] As the main related 

structure impurities in synthetic peptides are deletion products or amino acid 

replacements during SPPS the results from the amino acid analysis represent the total 

peptidic content (peptide and peptidic impurities). Reliable quantification by amino acid 

analysis alone is only possible for high-purity proteins and peptides. [144] Even if the 

synthetic or recombinant standard is available in highly purified form difficulties still 

remain for macromolecules that display higher order structures. [145], [146] 

An alternative to amino acid analysis is the SI-traceable quantification of macromolecules 

by performing EM-IDMS on the peptide level. Figure 1:10. The most widespread approach 

for the absolute quantification (AQUA) of large proteins entails the selection of signature 

peptides from the sequence, digestion to completeness by a suitable enzyme and 

quantification based on the postulation of equimolar release and sufficient stability 

during the measurement process. In silico digestion of the protein and a database search 

of the resulting peptides confirms that their sequence is unique and that these peptides 

can be used as signature peptides for quantification. [147], [97] Complete release and 

stability of the signature peptides is determined during the optimisation of the digestion 

step. Ideal signature peptides lack residues that are susceptible to post-translational 

modifications or degradation and contain at least three amino acids amenable to amino 

acid analysis. SI-traceability is maintained by assigning the concentration of the synthetic 

peptides by certified amino acid reference materials using EM-IDMS as previously 
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mentioned. When EM-IDMS is applied after enzymatic digestion for the absolute 

quantification of proteins, isotopically labelled peptides are used as internal standards 

and digested with the protein. A second blend containing the SI-traceable quantified 

synthetic standards and the isotopically labelled peptide standards is also digested and 

the EM-IDMS equation is applied on the peptide level. The most popular enzyme of 

choice for the quantitative digestion of macromolecules is trypsin. High-purity trypsin is 

available in sufficient quantity and produces reproducible results. Trypsin cleaves the 

peptide chain at the carboxylic side of arginine and lysine (unless they are followed by a 

proline). [148] As tryptic peptides originating from within the peptide sequence always 

contain a basic residue at the C-terminus they are predominantly observed as doubly 

charged species in positive ESI. The majority of the ions are often concentrated in one or 

two charge states only. This quality ensures maximum signal intensity when measured at 

low concentrations. The small size of the produced tryptic peptides makes them more 

likely to be amenable to SPPS in high purity and without a large number of deletion 

products. The impurities are relatively easy to separate from the main compound by LC 

and the determination of their sequence by MS/MS is possible.  

Neither of the above mentioned quantification approaches is able to distinguish 

impurities from the main compound which can lead to overestimation of the assigned 

concentration. Breaking down peptides and proteins into their constituents (amino acids 

or peptides) also means that information about their secondary, tertiary or quaternary 

structure that determines biological activity in their natural environment is lost. 

In this chapter the SI-traceable quantification of BNP is described. BNP was quantified 

using two different sets of amino acid CRMs and after tryptic digestion using its SI-

traceable quantified signature peptides. New methods were tested for the reduction or 
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accurate estimation of the amount of peptidic impurities to avoid inaccuracies in the 

amino acid results. At the end of the chapter a fit for purpose method for the purity 

assessment of large synthetic peptides is proposed. 

Chapter 3.2 Results and Discussion 

Chapter 3.2.1 Amino acid analysis of BNP and signature peptide standards 

In 2010, a method for the SI-traceable quantification of peptide standards via amino acid 

analysis was developed at LGC (Teddington, UK) and validated through the CCQM-P55.1 

study organised by the BIPM. [149], [150] The study covered the traceable quantification 

of peptides of unknown purity in solution containing a maximum of 10 amino acid 

residues. Peptide hydrolysis traditionally takes place in vacuum at 110 °C for 24-56 hours. 

[151], [95], [129] The microwave-assisted vapour phase acid hydrolysis method 

developed by LGC reduced the required reaction time to three hours by increasing the 

temperature of the hydrolysis to 165 °C. As the rate of the reaction doubles with every 

10 °C increase in the temperature, higher operating temperatures are desirable to reduce 

hydrolysis time. Due to pressure limitations of the CEM microwave instrument used for 

the CCQM-P55.1 study any further increase of the hydrolysis temperature was not 

possible. In 2012 the CEM instrument was replaced and a new method was developed 

using a MILESTONE ETHOZ EZ Microwave Digestion System. Because of the robust design 

of the hydrolysis kit, the new system allowed the use of temperatures up to 190 °C. At 

190 °C the complete release of the amino acid residues was achieved in 30 min. The short 

hydrolysis time also prevented any degradation of the released amino acids before 

analysis.  
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BNP and the signature peptides of BNP (MVQGSGCFGR and ISSSSGLGSK)were quantified 

by amino acid analysis. BNP contains eight of the nine amino acid residues amenable to 

vapour phase acid hydrolysis providing excellent coverage of its sequence (60 %). The 

signature peptides contain six and five stable amino acid residues, respectively. The 

amino acid sequences of BNP and the signature peptides used in this study are displayed 

in Figure 3:2. 

 
Figure 3:2. Amino acid sequences of BNP and two of its signature peptides after disulphide 

cleavage. Amino acids amenable to acid hydrolysis and used for SI-traceable value 
assignment are highlighted in green. 

The SI-traceable quantification of BNP and its signature peptides was first performed 

against the NIST standard reference material SRM 2389a. [152] This NIST standard 

contains equimolar amount of seventeen amino acids in aqueous hydrochloric acid 

solution (100 mM). Amino acid quantification by exact matching isotope dilution mass 

spectrometry (EM-IDMS) requires the same amount of amino acids in the standard as is 

released from the peptide. Because the SRM 2389a contains amino acids in equimolar 
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amounts, exact matching of the correct molar ratios for the amino acids in BNP and the 

signature peptides was not directly possible. Therefore, individual amino acid standards 

were sourced from a commercial supplier and, to maintain SI-traceability, their 

concentration was determined in-house against the NIST amino acid SRM 2389a. For the 

EM-IDMS experiment two blends were prepared for each peptide gravimetrically. The 

calibration blend contained the in-house SI-traceable quantified amino acids mixed with 

isotopically labelled amino acids. The molar ratio of the amino acids was matched with 

the respective peptide sequence (e.g. ISSSSGLGCK: I, 2xG, L, K). The sample blend 

contained the peptide solution spiked with the same isotopically labelled amino acids as 

the calibration blend. Quantification of the peptide stock solutions was performed on 

three different days. Two aliquots of the BNP stock, MVQGSGCFGR and ISSSSGLGCK 

peptides were hydrolysed each day. The results for the signature peptides and BNP are 

displayed in Figure 3:3. 

 

 



Development of BNP standard 

73 

 

 

 

 
Figure 3:3. SI-traceable amino acid concentrations for the signature peptides (MVQGSGCFGR, 

ISSSSGLGCK) and BNP. Results are traceable to the NIST SRM 2389a. Each point 
represents the average of two results from each hydrolysis experiment. Error bars 
are the uncertainties of the individual amino acid results calculated by Equation 3:2.  
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Uncertainties associated with lysine and arginine concentrations are larger due to the 

instability of the derivatives. Trimethylsilyl derivative of arginine decomposes to ornithine 

and the derivative of the amine group on the side chain of lysine is unstable. [153] While 

the internal standard compensates for such degradation, peak broadening of the late 

eluting peaks and loss of sensitivity had a detrimental effect on the ratio precision of the 

measurement and led to higher uncertainties. The relative standard uncertainty of the 

amino acid concentrations in the NIST SRM was in the range of 1.39 - 7.43 %. [154] The 

uncertainties of the individual results are dominated by the uncertainty of the NIST amino 

acid SRM that was used to confirm the concentration of the commercially sourced amino 

acid stocks. Apart from the instability of arginine and lysine derivatives, the robustness of 

the GC-MS method was affected by the batch-to-batch variability of the derivatising agent. 

The inconsistent quality of the BSTFA reagent used in the original method necessitated 

the development of a GC-MS method for alternative amino acid derivatives. Transitions 

and separation conditions were determined using N-tert-butyldimethylsilyl-N-

methyltrifluoroacetamide (MTBSTFA). MTBSTFA derivatives are ten thousand times more 

stable than their trimethylsilyl counterparts. The higher boiling point of the derivatives 

also improved resolution between the amino acid residues in the GC-MS experiments.  

In 2015 the National Measurement Institute of Japan (NMIJ) released 17 individual pure 

amino acid primary standards with a relative standard uncertainty of 0.2 %. [136] Using 

the solid amino acid primary standards allowed the preparation of calibration solutions in 

the correct molar ratio and eliminated the need for SI-traceable concentration 

assignment of in-house calibrators. The BNP primary material was subsequently re-

quantified using the NMIJ amino acid standards and MTBSTFA derivatization reagent. The 

determined concentration for the BNP using the newly available NMJI standards agreed 
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with the previous quantification data within the stated uncertainties. The concentration 

of the individual amino acid results determined by EM-IDMS using the NMIJ standards is 

displayed in Figure 3:4. 

 
Figure 3:4. SI-traceable amino acid concentration values assigned by certified individual amino 

acid calibrators supplied by the NMIJ to the BNP primary standard. Each point 
represents the average of two results from each hydrolysis investigation. Error bars 
are the uncertainties of the individual amino acid results calculated by Equation 3:2. 

Differences in the assigned uncertainty for the quantification results highlight the 

importance of the quality of the amino acid reference materials. Using individual high 

purity solid amino acid CRMs the expanded uncertainty (U, k=2, 95 % confidence level) of 

the SI-traceable concentration of BNP was reduced from ± 7.1 % to ± 1.8 %. (Chapter 3.2.3 

Uncertainty calculations)  
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Chapter 3.2.2 Tryptic digestion of BNP 

To increase the confidence in the determined SI-traceable concentration, the BNP 

primary stock was also quantified by IDMS applied on the peptide level following tryptic 

digestion. The signature peptides were sourced and quantified by amino acid analysis 

using in-house calibrators as described in Chapter 3.2.1. Peptides with isotopically 

labelled amino acids incorporated in their sequence were also purchased and used as 

internal standards. BNP produces two tryptic peptides which are long enough to be 

unique for the parent peptide (ISSSSGLGCK and MVQGSGFGR). These signature peptides 

are amenable to amino acid analysis but not ideal for quantification because they contain 

amino acids susceptible to post-translational modifications. The presence of cysteine and 

methionine require special precautions during the digestion and quantification 

experiments. The standard method for reduction of disulfide bridges involves heating to 

60 °C with the reducing agent for an hour. Preliminary experiments with BNP indicated 

that these conditions lead to degradation of BNP. The reduction temperature was 

subsequently reduced to 37 °C. The alkylation agents were added in large excess to 

prevent the formation of dimers between the peptides with reduced cysteine residues. 

The release of the peptides was monitored by performing a digestion time course 

experiment. For the time course experiment four aliquots of the buffered pre-digestion 

BNP solution were spiked with the labelled synthetic peptides ISSSSG*L*GCK and 

MVQGSGCF*GR (*:13C and 15N enriched amino acids) and digested with trypsin. One 

aliquot was analysed after 2, 4, 18 and 20 hours. Fresh trypsin was added after 2, 4 and 

18 hours. The samples were analysed on the Agilent Q-TOF instrument to determine 

digestion kinetics and to confirm equimolar release. The ratios were determined from 

integrating the extracted ion chromatograms of the doubly charged ions of the unlabelled 
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and labelled peptides. The equimolar release of the peptides was achieved after two 

hours of digestion and oxidation of the methionine residue in MVQGSGCFK was detected 

after four hours. Two-hour digestion was therefore adopted for the quantification 

experiments with the addition of trypsin at the beginning and after an hour. The two 

signature peptides quantified with the in-house calibrated amino acid standards were 

used for the quantification of BNP after tryptic digestion. The BNP concentration 

determined by the three methods is summarised in Figure 3:5. 

 

Figure 3:5. Quantification results for BNP, using the isotopically labelled synthetic peptides 
ISSSSG*L*GCK and MVQGSGCF*GR and tryptic digestion of the mixture and the 
results obtained by amino acid analysis using the NIST SRM 2389a and individual 
amino acid standards from the NMIJ. (see text for further information) The error 
bars represent the calculated combined expanded uncertainty (U) (k=2, at 95 % 
confidence level). 

The BNP amino acid results agree with the result obtained from the signature BNP 

peptides within their uncertainties. The uncertainty of the amino acid measurement was 

greatly reduced when individual amino acid standards were used from NMIJ.   
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Commercially available synthetic peptides used in this study are supplied in 95-98 % 

purities. The certificate of analysis provided by the manufacturer normally contains an LC-

UV trace where the purity is calculated as the percentage area of the main peak 

compared to the sum of the total peak areas. When the peptides were received the 

peptide weights stated on the certificates were corrected with the purities and used to 

calculate the nominal concentrations for the stock solutions using the average molecular 

weights, i.e. 1 mg MVQGSGCFGR was made up in 10 mL water to give a concentration of 

96.0 nmol/g. The nominal and SI-traceable concentrations are tabulated in Table 3:2. 

Table 3:2. Nominal and SI-traceable concentrations of the synthetic peptide standards. 

Sequence 
Nominal 

Concentration 
(nmol/g) 

AA Results 
(nmol/g) 

U (k=2) 

MVQGSGCFGR 96.0 110.1 3.1 
ISSSSGLGCK 106.5 111.5 4.5 

SPKMVQGSGCFGRKMDRISSSSGLGCKVLRRH 
NIST 

57.7 107.8 7.7 

SPKMVQGSGCFGRKMDRISSSSGLGCKVLRRH 
NMIJ 

57.7 111.9 2.0 

SPKMVQGSGCFGRKMDRISSSSGLGCKVLRRH 
EM-IDMS SIGNATURE PEPTIDES 

57.7 100.8 10.8 

NIST: results obtained with NIST SRM2389a; NMIJ: results obtained with the individual NMIJ 
amino acid standards; SIGNATURE PEPTIDES: results obtained with the signature peptides after 
enzymatic digestion, U: expanded uncertainty, k: coverage factor at 95 % confidence level. 

For BNP, the determined concentration is almost twice of what was expected. Without 

amino analysis or a certified reference material to assign accurate concentration to 

calibrators a significant bias can be introduced into quantification results based on 

commercially available synthetic peptides.   
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Chapter 3.2.3 Uncertainty calculations 

The standard and combined uncertainties were calculated in accordance with ISO Guide 

to the Expression of Uncertainty in Measurement [155] and EURACHEM guidelines [156].  

The peptide concentration values determined by amino acid analysis (wpeptide) were 

calculated by averaging the individual amino acid results (wAAP). The uncertainty (u) of the 

individual amino acid results, associated with the exact matching IDMS values were 

calculated according to Equation 3:2. 
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Equation 3:2. Uncertainty calculated for the exact matching isotope dilution equation, where the 
standard uncertainty (u) for each amino acid concentration is expressed as the 
concentration of the amino acid in the hydrolysed peptide (wAAP) and multiplied by 
the square root of the sum of the variances of uncertainty contributions from the 
EM-IDMS equation. Equation 1:6. 

 

wAA Amino acid standard 
concentration (NIST SRM or 
NMIJ CRM) 

wAAP Amino acid concentration 
determined in the hydrolysed 
peptide 

mx mass of the peptide used 

my mass of the labelled amino acid 
standard added to the sample 
blend 

mz mass of the unlabelled amino 
acid standard added to the 
calibration blend 

myc mass of the labelled amino acid 
standard added to the 
calibration blend 

R’B measured ratio (unlabelled 
peak area/labelled peak area) 
in the sample blend  

R’BC measured ratio (unlabelled 
peak area/labelled peak area) 
in the calibration blend 

 

Each sample blend was injected five times. The standard deviation of the mean of the 

measured ratio was used to calculate the uncertainty associated with instrument 

variability. 
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The uncertainty arising from sample preparation and hydrolysis was then combined using 

Equation 3:3 to give the combined uncertainty for the assigned peptide concentration 

(upeptide); 

𝑢𝑢𝑝𝑝𝑧𝑧𝑝𝑝𝑡𝑡𝑝𝑝𝑑𝑑𝑧𝑧 = ��
𝑢𝑢(𝑤𝑤𝐴𝐴𝐴𝐴𝐴𝐴)�����������
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Equation 3:3. Calculation of the combined uncertainty of the determined peptide concentration 
wpeptide. 

Peptide concentration uncertainty was calculated by taking the square root of the sum of 

the squares of the average standard uncertainty of the stable amino acid results and the 

standard deviation of the mean of the calculated peptide concentrations, where ‘n’ 

represents the number of samples used for quantification (n=6). Finally, the uncertainty 

was expanded using a coverage factor value of two (k=2) to give the final uncertainty (U) 

with a 95 % confidence.  

The uncertainty of the BNP stock after enzymatic digestion was calculated in the same 

way as after hydrolysis using the assigned concentration and uncertainty values of the 

signature peptide standards instead of amino acids. 



Development of BNP standard 

81 

Chapter 3.2.4 Qualitative assessment of signature peptide standards 

The identity of the signature peptides and isotopically labelled internal standards was 

confirmed by exact mass using MALDI-TOF MS and LC-Q-TOF MS. MALDI-TOF MS 

experiments were performed on equimolar mixtures of the unlabelled and labelled form 

of the reduced and alkylated signature peptides. The resulting mass spectra are displayed 

in Figure 3:6 and Figure 3:7. 

 

Figure 3:6. MALDI-TOF mass spectrum of alkylated (-S-CH3) signature peptide MVQGSGCFGR 
(m/z 1087.448), and the internal standard MVQGSGCF*GR (m/z 1097.475). 
( ): Monoisotopic m/z values *: amino acids containing 13C and 15N isotopes. 
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Figure 3:7. MALDI-TOF mass spectrum of alkylated (-S-CH3) signature peptide ISSSSGLGCK (m/z 
984.470) and the internal standard ISSSSG*L*CK (m/z 994.470). 
( ): Monoisotopic m/z values: *: amino acids containing 13C and 15N isotopes. 

The labelled internal standard for the ISSSSGLGCK peptide displayed an incorrect mass in 

the MALDI-TOF and ESI-Q-TOF spectra. Isotopically labelled glycine and leucine 

(G(13C2, 15N), L(13C6, 15N)) was requested to be incorporated into the sequence to result in 

a mass difference of + 10 Da relative to the unlabelled peptide.  

The sequence of the signature peptides was confirmed by MS/MS using an Agilent Q-TOF 

6530 instrument coupled with liquid chromatography. All y-ions were present in the 

MS/MS spectrum for the unlabelled peptides. MS/MS sequencing of the labelled peptide 

confirmed that the leucine residue was not enriched with the 15N isotope. The ESI-Q-TOF 

MS/MS spectrum and the identification of the peptide fragments are displayed in Figure 

3:8. 
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Figure 3:8. Deconvoluted ESI-Q-TOF MS/MS spectrum of the alkylated (-S-CH3) peptide 
ISSSSG*L*GCK obtained on the Agilent 6530 Q-TOF instrument. CID voltage 20 eV. 

The 1 Da difference was not readily identified for the doubly charged peptide ion on the 

quadrupole instrument used for the quantification of the BNP stock solution because of 

the lower resolution of quadrupole analysers.  

Chapter 3.2.5 Purity assessment of BNP 

The initial assessment of the primary BNP stock was performed by the evaluation of the 

high-resolution MS spectrum of high-concentration standards recorded using nano-flow 

LC-ESI-Q-TOF MS. The nano-flow LC chromatogram of the primary BNP stock is displayed 

in Figure 3:9.  
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Figure 3:9. Nano-flow LC-ESI MS chromatograms of the primary BNP stock. Extracted ion 
chromatograms of the identified impurities (± 10 ppm of the monoisotopic m/z 
peaks)are displayed. MoM: methionine sulfoxide in position 4. MMo: methionine 
sulfoxide in position 15. -S: one serine residue, -G one glycine residue, -SP: a serine 
and a proline residue missing from the sequence. 

The impurities were confirmed by exact mass and their relative amount estimated by 

comparing the area of the integrated extracted chromatograms to the main peak. The 

main impurities are deletion products of the sequence (-SP, -G, -S) and oxidation of 

methionine residues in the stock solution. Because the highest-intensity charge state 

observed for BNP was 6+, only impurities with a 6+ charge state produced detectable 

signals. The resolution of the Q-TOF instrument is 20,000. This is sufficient to distinguish 

differences of ≥12 Da in molecular weight for the 6+ charge state of the potential 

impurities or post-translational modifications. Oxidised methionine was detected but was 

not fully resolved in the mass spectrum due to saturation of the detector with the intact 
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BNP ions. MS instruments using ESI sources can produce different signal intensities for 

the main compound and the impurities depending on ionisation behaviour of the analytes. 

Without the use of isotopically labelled internal standards purity estimation by ESI-Q-TOF 

MS is not quantitative but gives an estimation of the amount and the identity of the 

impurities. Due to the close nature of the found impurities they could not be separated 

on the nano-flow LC system. The lack of baseline separation of the impurities leads to the 

overestimation of their relative amount. Products of in-source fragmentation of BNP can 

also be incorrectly identified as coeluting impurities.  

At the method development stage the BNP stock was quantified by the in-house 

calibrated amino acid standards and the assigned uncertainty was ± 7.18 %.The purity 

assessment of the primary stock showed that the total amount of peptidic impurities was 

below 6 %. Therefore any differences caused by their presence are encompassed in the 

assigned uncertainty value. When the BNP stock standard was re-quantified against the 

NMIJ amino acid standards the uncertainty for the determined concentration was 

reduced to ± 1.8 %. An optimised LC separation for the oxidised methionine species was 

also available and investigated. (Chapter 4.3.1.1). The purity assessment of the BNP stock 

was repeated with the LC conditions developed for the reference method. A gradient 

from 1-20 % ACN (0.5 % FA) was used in 20 minutes. The resulting chromatogram is 

displayed in Figure 3:10. 
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Figure 3:10. Normal flow LC-ESI ion chromatograms of the primary BNP stock with a gradient of 
1-20 % ACN (0.5 % FA) in 20 minutes. Extracted ion chromatograms of the identified 
impurities (± 10 ppm of the monoisotopic m/z peaks) are displayed. MoM: 
methionine sulfoxide in position 4. MMo: methionine sulfoxide in position 15. 
MoMo: methionine sulfoxide in position 4 and 15. -S: one serine residue, -G one 
glycine residue, -SP: a serine and a proline residue missing from the sequence. 

Baseline separation of the BNP molecules that contain methionine sulfoxide allowed the 

more accurate determination of their relative amount (< 1 %). The impurity missing the 

first two amino residues (-SP) was also separated chromatographically confirming that it 

is not a product of in-source fragmentation. The relative area of this impurity was ≅ 1.6 %. 

The determined amino acid concentration was lower for proline, indicating the presence 

of the impurity missing -SP. (cf. Figure 3:4). Impurities missing one serine and one glycine 

from the sequence were also detected and separated but not fully resolved under the 

conditions utilised. A small amount of an additional impurity corresponding to a mass 

difference of + 42 Da was found (< 0.1 %). The 42 Da mass difference agrees with an 

acetylated BNP impurity or a valine/glycine amino acid replacement in the sequence. In 

an attempt to further increase chromatographic resolution, the elution gradient was 
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reduced by increasing the ACN composition of the mobile phase from 1 % to 20 % in 40 

minutes. (Figure 3:11)  

 

Figure 3:11. Normal flow LC-ESI ion chromatograms of the primary BNP stock with a gradient 1-
20 % ACN (0.5 % FA) in 40 minutes. Extracted ion chromatograms of the identified 
impurities (± 10 ppm of the monoisotopic m/z peaks) are displayed. MoM: 
methionine sulfoxide in position 4. MMo: methionine sulfoxide in position 15. 
MoMo: methionine sulfoxide in position 4 and 15. -S: one serine residue, -G one 
glycine residue, -SP: a serine and a proline residue missing from the sequence. 

The separation improved between the oxidised methionine species and for the impurities 

missing a single amino acid residue (G, S). The relative area of the impurities missing a 

glycine and a serine was ≅ 2.3 % and 1.5 % respectively. The extracted ion chromatograms 

suggest that there are three isobaric impurities present missing one serine and two 

impurities missing one glycine residue from the sequence. BNP contains six serine and 

five glycine residues. Methionine and serine are not amenable to amino acid 

quantification as they are not stable during acid hydrolysis but the signature peptides 

used for quantification (MVQGSGCFGK and ISSSSGLGCK) include one of the methionines 

and five of the serine residues increasing the coverage of the BNP sequence from 60 % to 
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87.5 %. The agreement between the results obtained with the signature peptides and 

with amino acid analysis increases the confidence in the assigned SI-traceable 

concentration value. For the development and validation of the LC-ESI MS/MS reference 

method the results obtained by the NMIJ amino acid standards were used. It is 

reasonable to assume that the concentration uncertainty incorporates the differences 

caused by the small amount of impurities present in the BNP stock. 

Chapter 3.2.6 Purification 

Current metrological approaches for the quantification of peptide-related impurities are 

based on the correction of the amino analysis results (PICAA) with the amount of peptidic 

impurities and quantification of the amount of the impurities by external calibration using 

the “mass balance” approach. The availability of authentic impurity standards is limited; 

therefore alternative ways of assigning purity to synthetic peptide solutions is desirable. 

One option is to reduce the number of impurities present by purification.  

To investigate the feasibility of an adequate purification approach, a new batch of 

synthetic BNP was acquired from Phoenix Pharmaceuticals LTD (Phoenix stock) and 

analysed by LC-ESI-Q-TOF MS. An example ion chromatogram of the Phoenix stock with 

the identified impurities is displayed in Figure 3:12. The amount of impurity of the 

Phoenix material was higher than in the BNP stock making it an ideal candidate for the 

purification experiments. 
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Figure 3:12. Normal flow LC-ESI ion chromatograms of BNP obtained from Phoenix 
Pharmaceuticals LTD, with a gradient 1-20 % ACN (0.5 % FA) in 20 minutes. Extracted 
ion chromatograms of the identified impurities (± 10 ppm of the monoisotopic m/z 
peaks) are displayed. MoM: methionine sulfoxide in position 4.MMo: methionine 
sulfoxide in position 15. MoMo: methionine sulfoxide in position 4 and 15.-S: one 
serine residue, -G one glycine residue, -SP: a serine and a proline residue missing 
from the sequence. 

In order to maximise the separation between the impurities and BNP, two 25-cm long 

columns were connected in series and the LC was run with the isocratic composition of 

10 % ACN. The full spectrum was monitored and the eluent was collected for 1 min when 

only BNP was detected in the full MS spectrum. (centre of the peak). 40 µL of the 

concentrated Phoenix stock was injected ten times. The collected fractions were freeze 

dried and combined. The chromatogram of the purified Phoenix material is displayed in 

Figure 3:13. Approximately 20 % of the BNP content was recovered during the LC 

purification. 
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Figure 3:13. Normal flow LC-ESI ion chromatograms of the purified Phoenix BNP with a gradient 
1-20 % ACN (0.5 % FA) in 20 minutes. Extracted ion chromatograms of the identified 
impurities (± 10 ppm of the monoisotopic m/z peaks) are displayed. MoM: 
methionine sulfoxide in position 4.MMo: methionine sulfoxide in position 15. 

The purification experiments show that the approach can be used for the production of 

pure synthetic peptide CRMs, however, further optimisation of the process is required as 

the manipulation of the standard may introduce post-translational modifications to 

peptides with unstable amino acid residues in their sequence. In this case an increase in 

the relative amount of oxidised methionine residues was observed most likely introduced 

during the freeze drying step of the purified standard material. 
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Chapter 3.2.7 LC-UV-ESI MS purity estimation 

Purity assessment of small organic molecules is normally performed using a number of 

different chromatographic techniques coupled with universal detectors. (e.g. GC-FID, LC-

UV c.f. Table 3:1) The purity of the compound is assigned by integrating all peaks in the 

resulting chromatogram and calculating the relative area of the main compound to the 

sum of the integrated areas. The mass fraction is determined by multiplying the weight 

used for the gravimetric preparation of the standard solution with the relative area 

percentage of the main peak. Water content, residual solvents, non-volatile and inorganic 

impurities are determined separately and used to correct the weight of the solid material 

used to prepare the standard solution. 

The assumption is made that all related structure impurities produce a signal in the 

detector and the response of the detector is the same for the impurities and the main 

compound, i.e. relative response factor (RRF) equals 1. If the identity of the impurity is 

known and an impurity standard is available the RRF is determined by comparing the 

slope of the linear calibration curve obtained with the impurity standard to the slope of 

the main compound. For synthetic peptides, the amount of solid material is seldom 

available in sufficient quantities to perform a full purity assessment. The amino acid 

analysis results can be used to define the concentration of the main component if the 

concentration and the identity of the impurities are known. As the determined amino acid 

concentration is a result of all stable amino acids released from the peptide solution, the 

relative amount of the peptidic impurities is sufficient to calculate their concentration if 

their sequence is known. It is possible to determine the relative response factors for the 

impurities without having the solid impurity standards if the linear calibration is 

performed by injecting increasing amounts of the stock solution. Because the impurities 
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are normally at very low concentrations compared to the main compound the sensitivity 

and dynamic range of the detector used for recording the chromatograms must be high. 

UV is a universal detector that fulfils these requirements but does not provide qualitative 

information on the nature of the impurities. As UV is non-destructive it is possible to 

record the UV chromatogram before MS detection to combine the benefits of high 

dynamic range and molecular selectivity. High-resolution mass spectra and MS/MS 

sequencing can be used for the identification of the different impurities and UV for the 

quantification of their relative amounts.  

BNP is an excellent example where this approach would be extremely useful. A proof-of-

concept study was conducted at LGC and the results are displayed in Table 3:3. Different 

volumes of the concentrated Phoenix stock were injected in triplicate. The 

chromatograms were recorded with UV and ESI-Q-TOF MS. The UV traces were 

integrated and the slopes were determined by linear regression using the injection 

volumes as independent variables. The slopes are divided by the relative % area to get the 

response factor (RF) and the response factors relative to BNP were calculated. The purity 

of BNP was then corrected with the determined RRF values. The purity of the Phoenix 

stock determined from the relative peak area of the UV chromatogram was found to be 

90.98 %.  
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Table 3:3. Mass fraction assignment of the impurities calculated from the UV trace at each 
injection level (the slope was calculated from linear regression using injection 
volumes as x-variable) 

Injection 
(µL) 

Relative % Area 
(average of 3 injections) 

MMo MoM -SP -S BNP Q -500Da 

3 0.23 0.41 0.42 1.84 91.06 4.79 1.25 
5 0.34 0.41 0.50 1.75 91.01 4.78 1.20 
7 0.31 0.37 0.55 1.72 91.01 4.90 1.14 
9 0.36 0.35 0.54 1.70 91.04 4.92 1.07 

(m/m) % 

 

0.31 0.39 0.50 1.76 91.03 4.85 1.17 
Slope 0.99 0.91 1.53 4.46 242.90 13.23 2.78 
Slope/(m/m) % 3.19 2.36 3.05 2.54 2.67 2.73 2.39 
RRF 1.20 0.88 1.14 0.95 1.00 1.02 0.89 
Corrected 
m/m % 0.26 0.44 0.44 1.84 90.98 4.74 1.30 

MoM: methionine sulfoxide in position 4.MMo: methionine sulfoxide in position 15.MoMo: 
methionine sulfoxide in position 4 and 15. -S: one serine residue, -SP: a serine and a proline 
residue missing from the sequence, 500 Da: acetyl BNP 6-32. 

Amino acid analysis was performed on the Phoenix stock as previously reported and the 

individual amino acid results were corrected with the amino acid content of the peptidic 

impurities. BNP concentration in the Phoenix stock determined from the average of the 

amino acid results before correction was 151 nmol/g (523 µg/g) after correction the value 

was 138 nmol/g (476 µg/g, 91.00 %). Although the full validation of this method was not 

possible further experiments will be conducted on a number of synthetic peptides to 

validate its applicability for the purity assessment of peptide solutions. 

Chapter 3.2.8 Dilution of BNP stock 

The determined SI-traceable concentration of the BNP standard is 111.9 ± 2.0 nmol/g. 

The clinically relevant concentration of BNP in plasma is in the fmol/g range. In order to 

maintain SI-traceability the quantitative dilution of the quantified stock must be 

evaluated and confirmed. BNP stock was initially diluted in water when the sensitivity of 

the instrument was investigated during the development of the reference method. 
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(Chapter 4) The dilution experiments provided inconsistent results. Repeated injection of 

the stock solution diluted in water alone resulted in decaying BNP signal detected. No 

BNP was found after a day when glass autosampler vials were used. BNP contains seven 

basic residues and has an overall 6+ charge in neutral aqueous medium. The most likely 

explanation for the drop in signal is that the positively charged peptide binds to the free 

silanol groups of the glass vials over time. Reduction and alkylation of the disulfide bridge 

did not improve the reproducibility of the dilution. Decreasing the pH of the dilution 

medium by the addition of 0.5 % FA and using polypropylene vials allowed the dilution of 

the stock solution to the 100 pmol/g (350 ng/g) level. Below 100 pmol/g, the addition of a 

carrier protein was also necessary. [157] Thus, the optimised dilution medium contains 

0.05 % bovine serum albumin BSA and 0.5 % FA. All solutions used for the manipulation of 

BNP in future experiments of the study contained 0.5 % FA. 

Chapter 3.3 Conclusions 

A synthetic BNP solution was quantified for future use as a primary calibrator as part of 

the development of a reference method to quantify BNP in plasma. Metrological 

traceability of the results to the SI was established by relating the concentrations directly 

to amino acid reference materials by EM-IDMS. The concentration determined by amino 

acid analysis was confirmed by quantification of BNP using signature peptides after tryptic 

digestion. Using the two different approaches 87.5 % of the sequence was accurately 

quantified. Purity assessment of the BNP stock was performed and the peptidic impurities 

were identified. The relative amount of the found impurities was sufficiently small to be 

accounted for in the assigned uncertainty of the SI-traceable concentration. Two novel 

approaches were tested for the production of certified reference materials for BNP. In the 

first, BNP stock solution was purified. The results show that without sufficient control of 
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sample handling conditions unintended modifications can occur to peptides that contain 

unstable amino acid residues during purification. In the second approach the combination 

of a universal detector with MS was investigated for the identification and accurate 

assessment of the concentration of peptidic impurities. The relative (detector) response 

ratios for the impurities can be determined without the use of solid impurity standards, 

and the determination of the purity of a peptide solution by the evaluation of the UV 

chromatogram is possible. The SI-traceable concentration of the peptide solution can be 

determined by PICCA. There are certain limitations to the applicability of the method. The 

peptide and its impurities must absorb UV light and the impurities must be baseline-

separated. The preliminary results are encouraging and further experiments are needed 

to validate the method for the determination of the purity of potential peptide calibrators. 

The ability for National Measurement Institutes to accurately assign purity values to 

protein and peptide calibrators is a fundamental requirement. Due to the complexity of 

production and close nature of the potential impurities, establishing SI-traceability for the 

quantification results of synthetic peptides requires extensive research and is a subject of 

future metrological trials. The uncertainty determined for the BNP standard solution was 

deemed fit for purpose for the development of the reference method described in the 

next chapter.  
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Chapter 4 Development and validation of a reference method for BNP in 
plasma 

Chapter 4.1 Introduction 

Measurement of large biomolecules in plasma by MS is a formidable challenge 

complicated by a number of issues. Clinical levels of biomolecules are very low and often 

not within the practical detection limits of mass spectrometers. The structural complexity 

and high dynamic range of plasma proteins often compete for available charge and can 

cause (analyte-specific) suppression of ionisation in MS sources. The multiply charged 

nature of molecular ions generated by ESI is advantageous because it brings the analyte 

ions into the working range of conventional mass analysers but limit signal abundance at 

low concentrations as the ions are split between the different charge state populations. 

Diagnosis of heart failure is based on two distinct BNP concentration levels. BNP 

concentration below 100 pg/g rules out heart failure with 98 % sensitivity (true positive 

rate) and BNP concentration above 500 pg/g confirms heart failure event with 92 % 

specificity (true negative rate). Table 1:2. Over the past decade a number of papers have 

been published on the development of methods for the quantification of BNP by MS. 

[123], [158]–[162] The gap between the sensitivity limitation of MS and the low levels of 

circulating BNP in plasma was bridged by using immunoaffinity enrichment of BNP by 

selective capture antibodies, large volume sample injections or performing quantification 

after enzymatic digestion (i.e. using signature tryptic peptides). [123], [158], [160], [162] 

The MS methods used for the quantification of intact BNP in plasma are listed in Table 4:1. 

In 2005, Hawkridge et al. used nano-LC-ESI-FT-ICR MS for the quantification of intact BNP 

in patient samples. [158] The authors used bulk plasma spiked with commercially 

available BNP standard to develop an immunoaffinity enrichment method and a custom-
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synthesised isotopically labelled internal standard for quantification. To reach the 

required levels of sensitivity, 1 mL of plasma was used for the capture of BNP. The eluent 

containing the released BNP was filtered, lyophilised and reconstituted in 50 µL of 0.0001 % 

Zwittergent 3-16. The entire volume of the reconstituted extract (50 µL) was injected on a 

nano-LC column. The robustness of the system was affected by the quick deterioration of 

the column because of the presence of high-abundance proteins (e.g. albumin) in the 

immunoprecipitated samples. Only the most intense 5+ charge state of BNP was observed 

at low concentrations and there was no BNP detected in the patient samples even though 

the immunoassay readings were above 420 fmol/mL. In a bid to overcome the disconnect 

between the practical detection limits of the MS system and the low levels of BNP in 

biological samples, the research group followed up the study in 2009, investigating the 

chromatographic performance for intact BNP and its tryptic peptides. [159] 

Table 4:1. Summary of MS quantification methods for intact BNP in plasma. 

Authors Plasma 
(mL) Strategy 

Final 
volume 

(µL) 

Loading 
volume  

(µL) 

LOQ 
plasma 
(fmol/g) 

Instrument 

Hawkridge 
et al. 2005 [158] 1 IA 50 

(20x) 50 150 Nano-LC-
ESI-FT-ICR 

 Niederkofler 
et al. 2008 [123] 0.5 IA 3.5 

(143x) 3.5 50 MALDI-TOF 

Sobhi 
et al. 2011 [161] 0.75 PPT 

UF 30 kDa - 2 x 750 250 Nano-LC-
LTQ 

Chappell  
et al. 2016 [162] 1 IA 50 

(20x) 30 5 Nano-LC-
TSQ 

IA: immunoaffinity enrichment, PPT protein precipitation, UF: ultrafiltration, FT-ICR: Fourier-
transform ion cyclotron resonance (Thermo), MALDI-TOF: MALDI time-of-flight (Bruker), LTQ: 
linear ion trap quadrupole (Thermo), TSQ: triple quadrupole (Waters) In brackets ( ): the 
concentration factor relative to the original sample volume. 

In 2008,a mass spectrometry immunoassay (MSIA) method was developed by 

Niederkofler et al. using MALDI-TOF. [123] 500 µL plasma was processed and eluted in 3.5 

µL of a solution containing the MALDI matrix straight onto MALDI plates. The group 

observed rapid degradation of BNP in EDTA plasma and quantified the degradation 
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products by external calibration with synthetic peptides. The mass error of less than 212 

ppm (0.742 m/z at 3,500) was used for positive identification of BNP and BNP-related 

degradation products. BNP degradation was stopped by the addition of (4-(2-aminoethyl) 

benzenesulfonyl fluoride (AEBSF) mixed with leupeptine or with benzamidine to the 

plasma samples before immunoaffinity enrichment. 

BNP was quantified in plasma by Sobhi et al. in 2011. [161]The approach involved a two-

step plasma extraction procedure: protein precipitation followed by ultrafiltration. Two 

volumes of 750 µL of the depleted extracts were injected, trapped and back-flushed onto 

the nano-LC analytical column. The limit of quantification of the method was 250 fmol/g 

(866 pg/g). No protease inhibitors were used in the study. 

More recently, Chappell et al. published a novel immunoaffinity LC-MS assay where 1 mL 

plasma was used to reach the limit of quantification of 5 fmol/g (17.3 pg/g) for BNP. [162] 

The method used 50 µL of 0.1 % FA/100 µL/mL bovine serum albumin (BSA)/0.001 % 

Zwittergent to elute the captured BNP and BNP-related species from the antibodies 

conjugated to magnetic beads. 30 µL of the extract was used to quantify intact BNP 1-32, 

and its degradation products (BNP 3-32, 4-32, 5-32 and 5-31). The remaining 20 µL was 

digested with trypsin and used to determine the total BNP-related content captured by 

the immunoassay by quantifying the ISSSSGLGCK peptide. The authors used P800 plasma 

containing a proprietary cocktail of inhibitors and observed that BNP concentration was 

relatively unchanged when it was measured by the IA-MS method after an hour.  

MS methods with an ESI source used nano-LC to improve ionisation efficiency. The latter 

two methods used selective reaction monitoring (SRM) to increase the selectivity by 

fragmenting either the 4+ or the 5+ charge state of BNP. 
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BNP was also quantified by SRM using its tryptic peptides by Keshishian et al. in 2009. 

[160] The assay used immunoaffinity depletion of high abundance proteins prior to tryptic 

digestion and quantification of the tryptic peptides with the use of isotopically labelled 

internal standards. In this case, the sensitivity was increased by performing the 

quantification on the tryptic peptides instead of the intact BNP molecule. The doubly 

charged nature of tryptic peptides ensures higher ion abundances at low levels. The 

corresponding limit of quantification achieved for BNP was 222 fmol/g (768 pg/g). 

This chapter describes the development of a reference method for the quantification of 

intact BNP in plasma. To quantify BNP in a clinically relevant range (52-520 pg/g, 15-150 

fmol/g) an iterative optimisation of the LC-MS/MS and sample clean-up conditions were 

required to maximize the selectivity and the sensitivity of the method.  

Chapter 4.2 Results and Discussion 

The development of the reference method took place in several stages. First, a 

preliminary LC method was developed using high-concentration BNP standards and the 

sensitivity of the system was tested by analysing gravimetric dilutions of the BNP stock. 

MS source conditions were optimised for all observed charge states of BNP on a triple 

quadrupole (QqQ) system in single ion monitoring mode (SIM). An SRM method was then 

developed to increase specificity and optimised for the transition used for quantification. 

The development of the plasma extraction protocol started when the required limit of 

detection and limit of quantitation for solvent standards was achieved.  
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Chapter 4.2.1 Preliminary LC method 

For the preliminary test of the sensitivity of the system, LC separation was achieved on an 

Atlantis dC18 Waters column (5 µm particle size, 2.1 mm i.d., 150 mm length, 100 Å pore 

size). The flow rate was 400 µL/min. The gradient of 1-20 % ACN containing 0.1 % FA was 

run in 11 min. The QqQ method was set up to monitor the most intense charge states (5+, 

6+, 7+) of BNP in SIM mode. The 6+ charge state was observed with the highest intensity. 

The intensity of the 5+ and 7+ charge states were 28 and 31 % of the 6+ ions. Gravimetric 

dilution of the quantified stock solution was prepared and analysed with the LC-SIM 

method. With the above settings the 10 pmol/g (350 ng/g) concentration produced a 

peak area of 5,000 (arbitrary units), when an injection volume of 40 µL was used. 

Chapter 4.2.2 Superchargers 

The sensitivity of the system was not adequate for the quantification of BNP in the 

clinically relevant range (15-150 fmol/g). It has been reported that the charge state 

distribution and signal abundance of peptides and proteins generated by ESI can be 

influenced by superchargers. [43]–[48]; therefore the use of supercharging additives were 

investigated. Sulfolane (γ 50.18 mN/m, 285 °C, 120.17 g/mol), m-nitrobenzyl alcohol (m-

NBA, γ 52.7 mN/m, 175-180 °C, 153.15 g/mol) and dimethyl-sulfoxide (DMSO, γ 43.54 

mN/m, 198 °C, 78.13 g/mol) have been studied extensively [46]–[48], [52], [53], [163], 

[164] in relation to their ability to influence the charge state distribution of 

macromolecules and were chosen for the experiments. In order to adjust the amount of 

supercharger present and to avoid disturbance of the chromatographic separation or 

contamination of the LC system a second pump was used after the analytical column for 

the controlled infusion of the selected charge enhancers. The introduction of 

superchargers after elution but before electrospraying has the same effect on 
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electrospray ionisation as adding them earlier to the mobile phase. [50] High-

concentration BNP solutions were injected while the three superchargers were infused 

post-column on the Agilent 6530 Q-TOF (100 pmol/g, 0.35 µg/g) and Agilent 6490 QqQ 

(750 pmol/g, 2.6 µg/g) instruments with otherwise identical LC and ESI source conditions. 

The resulting full scan spectra are presented in Appendix A Superchargers. The numerical 

values for the charge state abundances are displayed in Figure 4:1. In the absence of 

superchargers the most intense charge state of BNP was found to be 6+ on both 

instruments. On the Q-TOF instrument the most intense charge state increased to 7+ in 

the presence of the three supercharging reagents. Apart from the shift in the most 

intense charge state, the intensity of the 6+ and 7+ charge states also increased while the 

intensity of the 5+ charge state decreased. Up to an eighteen fold improvement in ion 

intensity was observed in the presence of 0.25 % DMSO, in agreement with the more 

efficient ionisation reported by Hahne et al. [48] 
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Figure 4:1. MS ion signal abundances of different charge states detected in full scan 
experiments for BNP when infusing a range of different superchargers. 445.7 m/z 
(8+), 495.8 m/z (7+), 578.2 m/z (6+) and 693.6 m/z (5+) A: Agilent Q-TOF 6530 results. 
B: Agilent QqQ 6490 results. CPS: counts per second. 

On the QqQ instrument the most intense charge state shifted in the presence of sulfolane 

and m-NBA to 8+ and 7+ respectively and remained 6+ with DMSO. The highest ion signal 
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intensity on the QqQ system was detected for the 6+ charge state in the presence of 

DMSO. The increase in ion signal intensities was not as significant as on the Q-TOF 

instrument. This was unexpected because the LC and ESI source conditions were the 

same on both instruments. The increase in the most intense charge state with the use of 

the superchargers was initially attributed in the literature to thermal denaturation due to 

the increase in the temperature of the ESI droplet as it is enriched in the high-boiling 

point additives. [46], [165] As BNP has no tertiary structure the reason for the increase in 

the most intense charge state cannot be thermal denaturation caused by the 

supercharging reagents. The formation of a supercharger shell that restricts ion 

evaporation and increases ion density at the time of evaporation, as described by 

molecular dynamics simulations, is a more likely reason for the observed experimental 

results. [49] The full scan spectra in Appendix A Superchargers show little evidence of 

adducts of BNP formed with the different superchargers but another plausible 

explanation for the observed increase in the most intense charge states is the stabilising 

effect arising from the formation of adducts between the charged BNP ions and the highly 

polar supercharger molecules. [46] Without the supercharger, the neighbouring basic 

residues in the BNP sequence (R13/K14 and R30/R31, Figure 3:2) cannot accommodate 

protons. Adduct formation may lead to the reduction of the electrostatic repulsion 

between closely located positively charged basic residues and allows the BNP molecule to 

be protonated to 7+ or 8+.Even though the same source conditions were used, the 

internal designs of the two mass spectrometers are different. The QqQ instrument has a 

high pressure ion funnel (8-12 Torr) after the source while on the Q-TOF instrument the 

ions enter a region of the mass spectrometer evacuated to lower pressures (1.5-2.5 Torr). 

Less effective evaporation and the loss of ions through collision in the high-pressure ion 
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funnel at the front of the QqQ instrument may be responsible for the difference in ion 

abundances detected on the two instruments. DMSO and m-NBA were selected for 

further experiments on the QqQ system. The experiments were repeated with the two 

superchargers infused at different concentrations while monitoring the different BNP 

charge states in SIM. Both m-NBA and DMSO improved signal intensities of the selected 

charge states. The greatest increase of the 6+ charge state (300 %) was observed when 

DMSO was infused at a concentration of 0.25 % (v/v) relative to the flow rate of the 

mobile phase (1 µL/min vs 400 µL/min).Increasing the concentration of DMSO above 0.25 % 

did not improve signal intensity further. With the infusion of 0.25 % DMSO, a twenty fold 

increase in intensity was achieved using the Atlantis dC18 Waters column (5 µm particle 

size, 2.1 mm i.d., 150 mm length, 100 Å pore size) and the LC-SIM method. 

Chapter 4.2.3 Optimisation of LC and MS/MS conditions 

In order to enhance chromatographic performance the method was then transferred to 

an Acquity BEH C18 UPLC column (1.7 µm particle size, 2.1 mm i.d., 50 mm length, 130 Å 

pore size). The use of a smaller particle size column improved resolution and peak 

intensities. Increasing the concentration of FA in the mobile phases from 0.1 % to 0.5 % 

reduced peak asymmetry and tailing and allowed the detection of BNP at the level of 100 

fmol/g (346 pg/g) using the LC-SIM method. For the SRM method, 0.25 % DMSO was 

infused and ESI source conditions were optimised to maximise the intensity of the 6+ 

charge state of BNP. A table of the default and optimised source and transition settings 

can be found in the Materials and Methods section.(Chapter 2.2.6.2) Product ion scan 

experiments of the 6+ charge state were performed and the fragments used for 

quantification and confirmation selected. Finally, the collision cell voltage, collision cell 
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acceleration voltage, dwell time and electron multiplier voltage for the selected 

transitions were optimised. 

The most intense observed fragment for BNP and BNP* after CID was the quadruply 

charged y26 fragment ion. Figure 4:2. 

 
Figure 4:2. Sequence of BNP and the most abundant MS/MS fragment observed when 

fragmenting the most intense charge state (6+). Methionine residues are labelled in 
grey. 

For the quadruply charged y26 fragment ion, the theoretical monoisotopic m/z values for 

BNP and BNP* are 698.8549 and 704.8655, respectively. Most elements that make up 

organic molecules occur as a mixture of isotopes in nature. (Table 4:2) For large peptides 

and proteins the multiply charged ions are displayed as an envelope of the isotopomers 

and isotopologues in low-resolution mass spectra. For BNP (C143H244N50O42S4) the 

envelope of the 6+ charge state spans an m/z range of 1.5. Quadrupole settings can affect 

signal intensities in SRM experiments if the m/z selection windows and resolution settings 

are incorrect.  
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Table 4:2. List of heavy isotopes sorted by natural abundance. 

Isotope Mass [Da] % Abundance 
(molar fraction) 

34S 33.967868 4.21 
13C 13.003355 1.10 
33S 32.971459 0.75 
15N 15.000109 0.37 
18O 17.999159 0.20 
17O 16.999131 0.038 
2H 2.014102 0.015 

 

To confirm that the first quadrupole accurately transmits the majority of the BNP 

precursor in the presence of DMSO, the intensity of the SRM transition was recorded for 

an equimolar blend of high-concentration solutions (BNP + BNP* 1 pmol/g). The solutions 

were analysed using the optimised source and MS/MS conditions determined previously. 

The m/z selection of the first quadrupole was increased by m/z 0.1 intervals while the 

average mass of the quadruply charged y26 fragment ions was monitored (m/z 699.5 and 

705.0). The resolution of the quadrupoles was set to unit (± m/z 0.35). The results of 

triplicate injections of a 1 pmol/g BNP + BNP* solution are displayed in Figure 4:3. 
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Figure 4:3. Effect of quadrupole settings on signal intensity of the SRM transitions (UNLAB 6+ 
578.2 - 579.0 → y24

4+ 699.5, LAB 6+ 582.6 - 583.4 → y24
4+ 705.0) used for 

quantification. The resolution used was UNIT/UNIT (Q1/Q3). CPS: counts per second. 

The results confirmed that selecting the average m/z values for the 6+ charge states 

provides the maximum transmission of the analyte in unit resolution.  

Figure 4:4 shows the summary of the effects of optimisation on the intensity of BNP signal 

in SRM. Triplicate injections of an equimolar blend of BNP + BNP* (1 pmol/g) were 

performed with default source and SRM conditions, optimised source and SRM conditions 

and optimised source and SRM conditions while DMSO was infused. The figure shows that 

the most significant intensity increase is attributed to the addition of DMSO. Signal 

intensity could be increased further by reducing the resolution on the first quadrupole to 

allow more ions to enter the collision cell but this would decrease selectivity and results 

in higher variability in the intensity of the SRM transitions. 
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Figure 4:4. Results of MS/MS method optimisation and effect of resolution settings on SRM 
transition intensities. DEFAULT: default MS/MS conditions, OPT: optimised setting 
for selected SRM, DMSO: optimised settings with DMSO infused, 6+ m/z NAT/LAB 
578.3/583.3, y26 4+ NAT/LAB 699.5/705.0,quadrupole resolution settings: UNIT: ± 
m/z 0.35 WIDE: ± m/z 0.60. CPS: counts per second. 

For the quantification method the quadruple setting of Q1/Q3 UNIT/WIDE resulted in the 

best intensity, signal to noise and ratio precision values.  

Chapter 4.2.4 Final LC-MS/MS method 

To improve the retention of the hydrophilic BNP molecule the method was transferred to 

a 250 mm Aeris PEPTIDE UPLC core shell column (2.6 µm particle size, 2.1 mm i.d., 250 

mm length, 90 Å pore size). Chromatographic conditions were optimised with the new 

column geometry. The effect of the mobile phase composition during the isocratic period 

at the start of the LC run on ion peak shape and signal intensity are displayed in Figure 4:5. 

The results show that extending the isocratic step with high aqueous mobile phase 

content in the LC method improves peak symmetry and the intensity of the BNP ion peak 

most likely due to a stacking effect at the head of the column. 
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Figure 4:5. 1pmol/g BNP + BNP* analysed with the optimised MS/MS settings and different 
elution conditions. 

The LC method was modified to include a 6 min 1 % ACN isocratic segment after injection. 

The gradient of 1-20 % ACN in 14 minutes with 0.5 % FA in the mobile phases was 

adopted with the wash of 50 % ACN before column conditioning. Increasing the column 

temperature improves peak shape and resolution by decreasing the viscosity of the 

solvent and increasing the diffusion rate of the molecules into and out of the pores of the 

stationary phase. [30] The column compartment temperature was set to 60 °C for the 

final LC method. The limit of detection of the optimised LC-MS/MS method using the 

Aeris PEPTIDE column for BNP was 6 fmol/g (22 pg/g) and the limit of quantitation was 21 

fmol/g (72 pg/g) with only 10 µL injected (210 amol on column). 

To demonstrate the effect of the optimised conditions on the observed BNP signal 

intensity, a standard corresponding to the lowest calibration point for the reference 

method (75 fmol/g, 260 pg/g) was injected using default SRM settings, optimised SRM 
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conditions and the optimised settings with DMSO infused. The chromatograms are 

displayed in Figure 4:6.  

 

Figure 4:6. Chromatographic trace of the BNP transition used for quantification (m/z 578.3→ 
699.2) using default SRM settings (solid), optimised source and SRM conditions 
(dotted) and 0.25 % DMSO infusion with the optimised source and SRM settings 
(dashed). The concentration of the injected BNP solution was 75 fmol/g (250 pg/g). 
CPS: counts per second. 

The optimised source and SRM conditions increased the area of the BNP peak by a factor 

of twenty-five. With DMSO infused, a forty four-fold increase was achieved together with 

a seventeen-fold increase in the signal-to-noise ratio. While achieving the same signal 

intensities is not expected in plasma as with BNP standard solutions due to matrix 

suppression, the method was deemed to be appropriate for the development of a 

suitable concentration and clean-up strategy at the levels required for the analysis of 

clinical samples. 
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Chapter 4.3 Development of a clean-up method 

The complexity of the blood plasma matrix is such that without a reasonable reduction of 

interferences from high-abundance proteins BNP cannot be analysed by LC-MS/MS. 

Plasma proteins are proteins that are secreted by the liver and the intestines and remain 

in circulation as they are larger than the kidney filter cut off (≈ 45 kDa). [166] High-

abundance proteins in plasma include albumin (60 % w/w), globulins (25 % w/w) and 

fibrinogen (3 % w/w). Albumin concentration in plasma is around 50 mg/g. [165] This 

reference method is aimed at the quantification of BNP for concentrations six orders of 

magnitude lower than albumin, i. e. in the range of 52-520 pg/g.The majority of the 

methods published on the quantification of intact BNP used immunoaffinity enrichment. 

However, antibodies lack molecular specificity and are not compatible with the acidified 

solutions used for the quantitative dilution of the BNP stock standard; therefore they 

were not considered in the current study. Preliminary experiments with 

ultracentrifugation, solid phase extraction and protein precipitation indicated that a 

single step sample preparation would not be sufficient for the removal of abundant 

plasma proteins. A combination of two sample clean-up procedures will be necessary.  

Sobhi et al. used ultrafiltration after protein precipitation and concentrated BNP on a trap 

column using high injection volumes. [160] To avoid the need for complex column-

switching configurations, protein precipitation was chosen as the first step of the clean-up 

procedure and BNP was captured and separated from the remaining plasma proteins by 

solid phase extraction.  

Apart from the complexity another major concern when working with plasma is the 

instability of BNP. BNP degrades rapidly in plasma (half-life ≈ 23 min) due to the activity 

of the enzymes displayed in Table 4:3. [122], [127], [167] 
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Table 4:3. Enzymes degrading BNP in blood circulation. 

Enzyme pHopt 
BNP cleavage sites 

Major Minor 

Neprilysin, Neutral endopeptidase (NEP) 7.0 M4-V5 

R17-I18 

K14-M15 

G23-L24 
V28-L29 

Dipeptidyl peptidase IV (DPPIV) 7.4-8.7 P2-K3 - 

Insulin degrading enzyme (IDE) 6.0-8.5 
L29-R30 
R30-R31 
K3-M4 

G12-R13 

R13-K14 

D16-R17 

C26-K27 
Meprin 7.5-9.5 Q6-G7 G7-S8 
pHopt is the pH at which enzyme activity is maximum. Major and minor cleavage sites are 
indicated with the amino acid residue codes. The position of the amino acids is displayed in the 
subscript. 

The enzymes degrading BNP operate at or slightly above physiological pH. It was 

hypothesised that performing protein precipitation in acidified solution blocks enzymatic 

degradation and precipitates high-abundance proteins in a single step. Plasma samples 

treated with protein precipitation alone cannot be injected on LC-MS/MS without 

deterioration to the LC column. Before performing protein precipitation experiments on 

spiked plasma samples a solid phase extraction step was developed for the selective 

capture of BNP. 

Chapter 4.3.1 Solid phase extraction (SPE) 

Preliminary experiments with different SPE chemistries showed that the STRATA XL 

cartridges offered the most suitable combination of bed-size, pore diameter and 

stationary phase for the enrichment of BNP in the second step of the clean-up procedure. 

To investigate retention behaviour of BNP on the STRATA XL cartridges serial elution 

experiments were conducted using various elution solvents. (Chapter 2.2.6.5) The most 

appropriate elution solvent composition was initially determined by loading and eluting 

aqueous BNP solutions and analysing the extract with the developed LC-SRM method. 

Recoveries were calculated by spiking the extracts with labelled BNP* post-elution. BNP 
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was detected in the 20, 30 and 40 % ACN elution steps. The sum of the recoveries in the 

individual elution steps, however, was below 50 %. Poor recovery of BNP was considered 

to be partially caused by the oxidation of the methionine residues during SPE that were 

not detected using the LC-SRM method. Whereas the use of the labelled internal 

standard compensates for any bias during quantification, oxidation of BNP will 

compromise the sensitivity of the method.  

Chapter 4.3.1.1 Oxidation of methionine residues during SPE 

BNP contains two methionine residues in position 4 and 15. Either of these can be 

oxidized to methionine sulfoxide or sulfone. MALDI MS experiments conducted at the 

University of Reading showed extensive oxidation of BNP when dissolved in water and 

exposed to air (i.e. spotted/dried on MALDI plates). The methionine residues were 

oxidised to methionine sulfoxide. Oxidation to methionine sulfone was not detected. 

In order to verify that oxidation of the methionine residues is the reason for the low 

recoveries of BNP during SPE, the collected fractions were analysed using a Q-TOF 

instrument. Three additional baseline separated peaks were detected in the SPE fractions. 

The full scan mass spectrum indicated the presence of one doubly oxidised and two singly 

oxidised methionine species. The location of the oxidised methionine residue and the 

extent of the oxidation could not be identified from the full scan spectra. 

The oxidised species can be distinguished on a triple quadrupole (QqQ) instrument in 

SRM mode by fragmenting the most intense charge state (6+) and monitoring the most 

abundant fragment ion (quadruply charged y26) because the y26 fragment ion only 

contains the second methionine residue (M15) in the sequence. (Figure 4:2) The 

theoretical precursor and fragment m/z values for all plausible oxidation products were 

calculated and the transitions were included in the SRM method. The SPE extract were 
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subsequently re-analysed and the resulting chromatogram is displayed in Figure 4:7. The 

transitions for the intact and different oxidised BNP forms detected in the SPE fractions 

are tabulated in Table 4:4. 

Table 4:4. Monitored m/z values for intact BNP and the oxidised-methionine sulfoxide forms of 
BNP. 

Description precursor m/z 
BNP 

fragment m/z 
BNP 

precursor m/z 
BNP* 

fragment m/z 
BNP* 

INTACTBNP 578.3 699.2 583.3 705.2 
MMo 581.0 699.2 585.9 705.2 
MoM 581.0 703.5 585.9 709.2 
MoMo 583.7 703.5 588.9 709.2 
MoM: M4 is oxidised. MMo: M15 is oxidised. MoMo: M4 and M15 are oxidised. 
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Figure 4:7. Chromatogram of the 40 % ACN SPE fraction analysed with selective SRM transitions 
to determine the elution order of BNP and the different BNP forms containing 
methionine sulfoxide. MoMo: both methionines 4 and 15 are oxidised. MMo: 
methionine 15 is oxidised. MoM: methionine 4 is oxidised. 

The transitions for the oxidised BNP products were added to the final SRM method and 

their presence was monitored in all future experiments. Excess amount of methionine 

added to peptide/protein solutions can act as an antioxidant. [168] To investigate that 

methionine can act as a scavenger during the SPE process, 45 µg/g (0.3 µmol/g) of 

methionine was added to the washing and elution solvents. The solid phase extraction 

experiments previously described were repeated in the presence of methionine. The SPE 

extracts were analysed by SRM. There was no oxidised BNP detected in the solvent 

standards after SPE or in the reconstituted solution of the freeze-dried aliquots. The 

addition of 45 µg/g methionine into the elution solvents prevented oxidation of 

methionine residues and was therefore employed in the final clean-up procedure. The 

highest recovery of BNP was found by using 4 mL of 35 % ACN (water:ACN, 65:35, v/v) for 

the elution of BNP from the STRATA XL SPE cartridges. 
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Chapter 4.3.2 Protein precipitation (PPT) and stabilisation 

To confirm that the addition of the acidified PPT solvent blocks the degradation of BNP 

thirteen aliquots of the BNP stock were prepared gravimetrically and freeze dried. Plasma 

was added to all thirteen aliquots at the start. The enzymatic degradation of BNP was 

stopped when acidified PPT solution was added and the sample was vigorously vortexed. 

For the first three samples the PPT solution was added directly after the plasma to 

establish the start point (T=0). The PPT solution was added at ten minute intervals to the 

remaining aliquots. Following both PPT and SPE, the final extracts were made up in a 

solution containing an equimolar amount of the isotopically labelled BNP* compared to 

the initially loaded amount of BNP. The samples were analysed by LC-MS/MS and the 

results are displayed in Figure 4:8. 
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Figure 4:8. BNP spiked into 0.5 g plasma and PPT solvent added at 10 minute intervals. After 
freeze drying the samples were subjected to solid phase extraction (SPE) clean-up. 
The SPE extracts were spiked with labelled BNP (BNP*) using equal amounts of BNP* 
compared to the initial BNP loading. y-axis: Ratio of the integrated area of intact 
unlabelled BNP divided by the integrated area of labelled BNP (small black squares). 
The spiking concentration was 120 fmol/g (400 pg/g). 

BNP degrades rapidly once it comes in contact with EDTA plasma. 65 % of the initial 

concentration was determined after only 10 minutes before the acidified protein 

precipitation solvent was added. The half-life determined by these experiments agrees 

very well with the literature data (23 min). Once the pH is decreased, BNP is stable in 

solution. Enzymatic degradation of BNP was successfully blocked by decreasing the pH 

and the samples are stable at room temperature while being processed and for more 

than 2 days while kept at 5 °C in the autosampler. 
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Chapter 4.3.3 Final optimisation of the sample clean-up 

Next, the proposed clean-up strategy was investigated for the recovery of BNP across the 

desired calibration range of 15-150 fmol/g (52-520 pg/g). The recovery was determined 

by comparing the measured ratio of the integrated area of the unlabelled and isotopically 

labelled BNP* determined in the samples spiked with the isotopically labelled BNP* 

internal standard at the beginning (pre-spikes; pre-clean-up) and at the end of the clean-

up process (post-spikes; post-clean-up). The recovery of BNP from plasma was 51 %. 

Matrix suppression was also investigated by comparing the intensities of the internal 

standard in the post-spiked samples with the signal intensity of the internal standard 

solution prepared at the same concentration. Matrix suppression was 65 %. As the final 

step of the method development process a systematic evaluation of the two-stage 

sample clean-up procedure was performed in an attempt to reduce matrix suppression 

and improve BNP recovery. Spiked plasma samples were prepared containing BNP 

corresponding to the proposed quantification limit for the reference method (15 fmol/g, 

52 pg/g). The composition of the SPE eluent was varied in the first experiment with the 

precipitation solvent composition kept constant.  

Precipitation was performed in 70 % ACN (water:ACN, 30:70 v/v)and the amount of ACN 

in the SPE elution solvent was increased in 5 % increments. Extracts were analysed in SRM 

and full scan (FS) mode on the QqQ instrument. Full scan experiments showed a 

significant decrease in ion abundance at the expected retention time of BNP (16.4 

minutes) due to co-eluting matrix components. Figure 4:9.  
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Figure 4:9. Full scan and SRM chromatograms of plasma extracts spiked with unlabelled BNP 
and precipitated using 70 % ACN (water:ACN, 30:70 v/v) solvent. ACN composition of 
the SPE elution solvent was increased in 5 % increments.CPS: counts per second. 

The chromatographic behaviour implies that the polarities of the interferences are very 

similar to BNP. Increasing the organic content of the SPE elution solvent above 20 % 
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(water:ACN 80:20/75:25/70:30/65:35, v/v) resulted in large decrease in ion abundances 

observed in the FS experiments. It is likely that due to the similar elution characteristics of 

BNP and the interference and the poor resolution of the SPE cartridges, they could not be 

separated in the SPE step. The summary of the results is presented in Figure 4:10. 

 
Figure 4:10. The relationship between matrix suppression, BNP recovery and signal intensity 

related to the amount of ACN in the SPE solution. PPT solvent composition was 70 % 
ACN (water:ACN, 30:70, v/v). Data shown is an average of three measurements. 

In the second experiment the amount of ACN in the precipitation solvent was varied. The 

composition of the SPE elution solvent was kept constant (water:ACN, 65:35 v/v).The full 

scan and SRM chromatograms are displayed in Figure 4:11 and the summary of the 

results is displayed in Figure 4:12.  
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Figure 4:11. Full scan and SRM chromatograms of plasma extracts spiked with unlabelled BNP 
and PPT was performed using water:ACN (0:100/10:90/20:80/30:70, v/v) solvent. 
ACN composition of the SPE elution solvent was kept constant (water:ACN 65:35, 
v/v).CPS: counts per second. 
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No BNP was recovered when neat ACN was used for precipitation. The presence of the 

coeluting impurity causing ion signal suppression decreased significantly when 80 % or 

more ACN was used in the PPT solution.  

 

Figure 4:12. Matrix suppression, recovery and signal intensity dependence on the composition of 
the precipitation solvent. SPE solvent composition was water:ACN (65:35, v/v). Data 
shown is an average of three measurements. 

The highest recovery of BNP (68 %) was achieved when precipitation was performed with 

70 % ACN (water:ACN, 30:70, v/v) and SPE with 35 % ACN (water:ACN, 65:35, v/v). Matrix 

suppression with this combination was high so the signal intensities remained relatively 

low. The best conditions with the BNP recovery of 58 % and matrix suppression of 38 % 

were reached when PPT was performed with 80 % ACN (water:ACN, 20:80, v/v) and the 

elution solvent used for SPE was 35 % ACN (water:ACN, 65:35, v/v). The workflow of the 

final method is displayed in Figure 4:13. 
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Figure 4:13. Diluted stock solutions of the BNP primary standard is gravimetrically dispensed into 
2 mL Protein LoBind Eppendorf tubes. The solutions were spiked with equal amount 
of labelled BNP*. Isotopically labelled amino acids are highlighted in purple add a 
mass difference of +30 Da. After freeze drying 0.5 g plasma was added 
gravimetrically and the samples were subjected to protein precipitation (PPT) and 
solid phase extraction (SPE) clean-up. The final extracts are reconstituted in 100 µL 
and analysed by LC-MS/MS. 

Chapter 4.4 Method validation 

The limit of detection and quantification, repeatability, intermediate precision, linearity 

and accuracy of the method were assessed. Three sets of plasma samples were 

gravimetrically prepared containing isotopically labelled BNP (BNP*) at 60 fmol/g and 

seven calibration points with increasing amounts of unlabelled BNP at concentrations 

between 52-520 pg/g corresponding to 15-150 fmol/g. PPT and SPE were performed as 

previously described before analysis by LC-MS/MS. The observed ratio of the ion signal 

area of the unlabelled BNP divided by the ion signal area of the labelled BNP 

(AREAUNLAB/AREALAB (y)) was corrected for the gravimetric amount of isotopically labelled 
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BNP* (nLABELLED) added and plotted against the gravimetric amount of unlabelled BNP in 

each sample (mUNLABELLED (pg) (x)).Equation 4:1. 

𝐴𝐴𝑅𝑅𝐸𝐸𝐴𝐴𝑈𝑈𝑈𝑈𝑈𝑈𝐴𝐴𝐵𝐵𝐵𝐵𝑈𝑈𝐴𝐴

𝐴𝐴𝑅𝑅𝐸𝐸𝐴𝐴𝑈𝑈𝐴𝐴𝐵𝐵𝐵𝐵𝑈𝑈𝐴𝐴∗ ∗ 𝑛𝑛𝑈𝑈𝐴𝐴𝐵𝐵𝐵𝐵𝑈𝑈𝐴𝐴∗ = 𝑏𝑏 ∗ 𝑚𝑚𝑈𝑈𝑈𝑈𝑈𝑈𝐴𝐴𝐵𝐵
𝐵𝐵𝑈𝑈𝐴𝐴 + 𝑦𝑦 

Equation 4:1. Linear regression equation used for the determination of the amount of unlabelled 
BNP in plasma. b: slope, c: intercept. 

The calibration points from the three experiments were combined to construct the 

calibration curve displayed in Figure 4:14. 

 

Figure 4:14. Calibration curve obtained by combining the data points of three independent sets 
of samples. Each point represents the average of three injections. ± U: expanded 
uncertainty. 

The accuracy of the method was assessed by calculating the difference (bias) between the 

amounts of BNP determined from the constructed linear regression curve with the 

gravimetric values. This was performed by considering each plasma extract as an 

unknown sample and by quantifying its content of BNP using the calibration curve 

constructed without this unknown sample. Repeatability was calculated as the average 
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standard deviation of the replicate injections (n=3) determined from the individual 

calibration curves and the intermediate precision was calculated as the standard 

deviation of the results for each injection determined from the combined calibration 

curve and reported in Table 4:5. 

The calculation of the error of the concentrations determined by linear calibration 

requires the estimation of the random error associated with both the intercept and the 

slope. [169], [170]The confidence limits in Table 4:5 (± U) were determined by calculating 

the concentration of each sample from the calibration curve and expanding the standard 

deviation (𝑠𝑠𝑥𝑥𝑥𝑥 )  of the determined concentrations (𝑥𝑥0)  with the t-value at 95 % 

confidence level, with (n-2) degrees of freedom according to Equation 4:2.  

𝑥𝑥0 ± 𝑡𝑡(𝑛𝑛−2)𝑠𝑠𝑥𝑥0  

Equation 4:2. Uncertainty associated with concentrations determined by linear regression. 

Where n is the number of calibration points. Analysis of variance (ANOVA) of the 

calculated concentrations at each level from experiments performed on different days 

confirmed that the inter-day variability is not statistically significant. A limit of detection 

of 4.37 fmol/g (15.15 pg/g) was determined by calculating the standard deviation of the 

analytical response of the blank plasma samples (n=9).  
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Table 4:5. Concentration levels for the calibration curve and calculated statistics from the 
validation experiments. 

pg/g plasma1 ± U2 Bias pg/g Repeatability Intermediate precision 

0.00 

 

15.49 - - - 
53.99 15.41 6.86 4.57 7.92 
107.97 15.36 9.82 7.87 9.83 
155.85 15.33 7.21 7.07 7.85 
206.71 15.31 11.28 14.81 15.71 
310.21 15.34 10.51 13.34 12.29 
425.01 15.47 20.80 12.78 16.73 
527.56 15.62 33.28 16.49 34.60 
1Gravimetrically prepared concentration of BNP;2Expanded uncertainty. 

The uncertainties assigned to the concentrations determined by linear calibration are 

dominated by variability arising from the construction of the calibration curve (47.5 %). 

Uncertainties can be reduced by improving the quality of the calibration standard and 

performing EM-IDMS. 

Chapter 4.5 Conclusions 

A reference method was developed for the SI-traceable quantification of BNP in plasma at 

the clinically relevant concentrations between 52 and 520 pg/g (15-150 fmol/g). The 

effects of incremental improvements in sensitivity by optimisation of the LC separation, 

ionisation efficiency, SRM conditions and sample preparation were demonstrated. Unlike 

previously reported MS-based methods, quantification of BNP in the pg/g range was 

achieved without the use of immunoaffinity enrichment. The classical sample clean-up 

techniques used in the reference method are not affected by the inconsistencies 

associated with the lack of specificity of enrichment antibodies. Stabilisation of the 

unstable cardiac hormone was achieved by reducing plasma pH and creating 

unfavourable conditions for enzymatic activity. 
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The sensitivity of the MS system was increased by the use of a supercharger reagent. Due 

to the improved ionisation efficiency observed with the use of 0.25 % DMSO, normal flow 

chromatography with low injection volumes can be used allowing repeated analysis of the 

same sample extracts. Results determined by the newly developed reference method are 

traceable to the SI and can be used for the accurate quantification of BNP in external 

quality assessment scheme and/or clinical samples. Determination of intact BNP 

concentration can be used to provide confirmation of the efficacy of cardiac drugs 

targeting BNP in clinical trials, it can be utilised in enzyme-substrate studies or to 

determine the effectiveness of plasma stabilisation protocols. The versatility of MS 

detection was utilised to distinguish between oxidised methionine species using SRM. The 

developed method is capable of the selective detection of oxidised BNP metabolites and 

can extend the scope of research into cardiovascular disease pathophysiology. The 

method was applied to the quantification of BNP in the UK NEQAS samples and the 

results of this are presented in the next chapter. 
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Chapter 5 National External Quality Assessment Scheme (NEQAS) 

Chapter 5.1 Introduction 

Clinical laboratories providing BNP tests must participate in an external quality 

assessment scheme (EQAS) to demonstrate their competence and comply with 

accreditation. [171] In order to verify that correlation between the immunoassays and the 

LC-MS/MS method results exists, the method described in the previous chapter was used 

to quantify samples distributed by the UK NEQAS cardiac marker scheme. The results of 

the reference method provide evidence that the major immunoreactive form in the 

samples is BNP and a tool for the assessment of the consistency and the stability of the 

samples. Furthermore, a method for monitoring enzymatic products of BNP was 

developed to support the understanding of cross-reactivity issues with the antibodies in 

three of the commercially available immunoassay analysers. The laboratories 

participating in the UK NEQAS use the same antibody configurations on different 

automated platforms. These BNP analysers are manufactured by Abbott Laboratories 

(Architect), Siemens (ADVIA Centaur CP, ADVIA Centaur XP, ADVIA Centaur XPT) and 

Beckmann Coulter (Access 2, DxI). 

The samples distributed by NEQAS are EDTA plasma samples spiked with synthetic 

unlabelled BNP. EDTA is an additive used in blood collection tubes to block the activity of 

metalloproteases by chelating divalent metal ions (DPPIV, IDE, NEP listed above in Table 

4:3). BNP was found to be unstable in EDTA plasma [123] therefore an enzyme inhibitor 

cocktail (Sigma-Aldrich) is added during the preparation of the samples. Using plasma 

spikes instead of pooled clinical samples is also beneficial for the comparison as the 

immunoassay results cannot be attributed to any cross-reactivity originating from 

unprocessed proBNP. The results are reported to the scheme organiser by all laboratories 
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and the data presented below are based on the average of all reported results for the 

different immunoassays and the LC-MS/MS measurement. 

Chapter 5.2 Results and discussion 

Eighty four samples from the UK NEQAS Cardiac Marker scheme were analysed by the 

method described in Chapter 4. Three samples were received every month and quantified 

by the developed reference method. The samples were provided as freeze-dried aliquots, 

which were reconstituted according to the instructions provided by NEQAS and 

transferred into Eppendorf vials containing the isotopically labelled internal standard 

BNP*. Quantification of the NEQAS samples was performed as described in Chapter 4.2.4. 

Briefly, seven plasma samples spiked with the unlabelled BNP primary calibrator in a 

range of concentrations between 52-520 pg/g (15-150 fmol/g) were prepared and used to 

construct the calibration curve. The same amount of isotopically labelled BNP* was added 

to the calibrants and the UK NEQAS samples.  

The results from the calibrants were plotted as the gravimetric amount of primary 

calibrator vs. the MS ion signal area ratios of the unlabelled BNP divided by the area of 

the isotopically labelled BNP. From this ion signal ratio, the amount of BNP in the UK 

NEQAS samples was calculated. The uncertainties associated with the values reported for 

the unknown samples were calculated by applying Equation 5:1. 
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Equation 5:1. Calculation of uncertainty of BNP concentration for the NEQAS samples, where 
u(cBNPstock)/(cBNPstock) is the relative standard uncertainty associated to the stock 
solution; u(mBNP)/mBNP is the relative standard uncertainty of the amount of BNP in 
the sample determined by the calibration function; sMS RATIO/√n is the standard 
deviation of the mean of the measured mass spectrometry ratio; u(mplasma)/mplasma is 
the relative standard uncertainty of the UK NEQAS sample weights. 

To visualise the correlation between the LC-MS/MS and the immunoassay methods the 

results were plotted in pairs and displayed in Figure 5:1. Only the results that were within 

the calibration range of the LC-MS/MS method were included. The individual results for 

all NEQAS samples can be found in Appendix B  UK NEQAS . 

 

Figure 5:1.  Correlation between the BNP results determined by the reference method and the 
Abbott, Siemens and Beckman Coulter immunoassay methods. x-axis: LC-MS/MS 
results, y-axis: average of the immunoassay results reported by the clinical 
laboratories for the same samples. 

The results of the LC-MS/MS method were in most cases lower and correlate with the 

results of the immunoassays. The existence of a mathematical relationship between the 

results of immunoassays and the reference measurement procedure is the prerequisite 

for the success of any harmonisation or standardisation efforts in clinical chemistry.  
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Chapter 5.2.1 Multiplexing the LC-MS/MS method 

Immunoassays are highly selective and specific to the epitope they are designed to 

recognise but due to the similar nature of the enzymatic degradation products of BNP 

cross-reactivity is not uncommon. [118], [120] An MS method for the determination of 

these products would be extremely valuable for the correct interpretation of the 

immunoassay results. Table 5:1 contains the list of the truncated BNP products and the 

enzymes responsible for their formation. 

Table 5:1. Degradation products of BNP reported in literature.[122], [127], [167] 

Sequence  Ma pIb Chargec Enzymed 

SPKMVQGSGCFGRKMDRISSSSGLGCKVLRRH 1-32 3464.1 12.1 6 - 

 

 

KMVQGSGCFGRKMDRISSSSGLGCKVL 3-29 2830.4 11.5 4 DPPIV/ID

 

 

KMVQGSGCFGRKMDRISSSSGLGCKVLR 3-30 2986.6 11.9 5 DPPIV/ID

 

 

KMVQGSGCFGRKMDRISSSSGLGCKVLRRH 3-32 3279.9 12.1 6 DPPIV 

 
MVQGSGCFGRKMDRISSSSGLGCK 4-27 2489.9 11.4 3 Corin/IDE 

 
MVQGSGCFGRKMDRISSSSGLGCKVL 4-29 2702.2 11.4 3 Corin/IDE 

 
MVQGSGCFGRKMDRISSSSGLGCKVLR 4-30 2858.4 11.9 4 Corin/IDE 

 
MVQGSGCFGRKMDRISSSSGLGCKVLRR 4-31 3014.6 12.1 5 Corin/IDE 

 
MVQGSGCFGRKMDRISSSSGLGCKVLRRH 4-32 3151.7 12.1 5 Corin 

 
SPKMVQGSGCFGRKMDRISSSSGLGCKVL 1-29 3014.5 11.5 6 IDE 

 
SPKMVQGSGCFGRKMDRISSSSGLGCKVLR 1-30 3170.7 11.9 7 IDE 

 
VQGSGCFGRKMDRISSSSGLGCKVL 5-29 2571.0 11.4 5 NEP/IDE 

 
VQGSGCFGRKMDRISSSSGLGCKVLRR 5-31 2883.4 12.1 7 NEP/IDE 

 
VQGSGCFGRKMDRISSSSGLGCKVLRRH 5-32 3020.5 12.1 7 NEP 

 
PKMVQGSGCFGRKMDRISSSSGLGCKVLRR 2-31 3239.8 12.2 6 - 

 
SPKMVQGSGCFGRKMDRISSSSGLGCKV 1-28 2901.4 11.5 6 NEP 

 
KMVQGSGCFGRKMDRISSSSGLGC 3-26 2489.9 11.4 5 DPPIV/ID

 

 

MVQGSGCFGRKMDRISSSSGLGC 4-26 2361.7 11.2 4 Corin/IDE 

 
SPKMVQGSGCFGRKMDRISSSSGLGC 1-26 2674.1 11.4 5 IDE 

 
VQGSGCFGRKMDRISSSSGLGC 5-26 2230.5 11.2 4 NEP/IDE 

 
VQGSGCFGRKMDRISSSSGLGCK 5-27 2358.7 11.4 5 NEP 

 
a: monoisotopic molecular weight (g/mol), b: calculated isoelectric point, c: positive charge at pH 
7, [171] d: enzyme responsible, NEP: Neprilysin, DPPIV: Dipeptidyl peptidase IV, IDE: Insulin 
degrading enzyme.  
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The list is not comprehensive as additional enzymes likely to be involved in the 

degradation of BNP. [122], [167], [173] Meprin listed in Table 4:3.produces a truncated 

form of BNP 8-32 by cleaving between G7 and S8 in mice but not in humans therefore it 

was not included in the degradation study. [174] All listed degradation products share the 

ring structure of the intact BNP and truncated at the N-terminal and/or the C-terminal of 

the sequence. It is not unreasonable to assume that they are similarly recovered during 

the developed PPT and SPE conditions. 

Because the synthetic peptides standards were not purchased, an experiment similar to 

the one used for the determination of the stabilisation effect of the acidified PPT (Chapter 

4.3.2.) was used for the deliberate degradation of BNP. Five aliquots of a highly 

concentrated BNP solution were mixed with labelled BNP* in equimolar amounts (10 

pmol, 2.9 µg) and freeze dried. The degradation products were generated in plasma by 

adding 0.5 g plasma to the aliquots resulting in a final concentration of 20 pmol/g (5.8 

µg/g). PPT solvent was then added at the start (0 min) after 30, 60 and 90 min. These 

aliquots were used to study the degradation kinetics of BNP within the timeframes 

normally expected with sample processing. One aliquot was kept at room temperature 

and the degradation stopped after 54 hours to detect any BNP-related products formed 

after prolonged storage. (Figure 5:2.) 

The identification of the degradation products was achieved by simultaneously 

monitoring specific transitions for the degradation products and the isotopically labelled 

internal standard based on the presumption that the internal standard degrades in an 

identical manner to the native analyte. Detection of the same transition for the 

unlabelled and labelled BNP was used as a confirmation of identity for the corresponding 
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product. Comparing the different time points the evolution of the different degradation 

products can be visualised and followed. Skyline was used for method development. 

Skyline is an open source software tool that can be used to create SRM transition lists for 

peptides and proteins that can be exported into existing MS methods. [175] Skyline is 

compatible with Agilent platforms and was used for the generation of the SIM and SRM 

methods for monitoring the formation of products in the degradation experiments. The 

measurements were performed on the Agilent 6490 QqQ system. The number of 

plausible transitions that includes all possible fragments and charge states for BNP alone 

is over 200 (y- and b-ions only). The use of the isotopically labelled internal standard is 

invaluable in the identification of degradation products but doubles the number of 

transitions that are monitored. For the more than twenty degradation products listed in 

Table 5:1, the number of plausible transitions was more than 4,000. In reality not all 

charge states are observed and there are algorithms for the prediction of peptide charge 

states. Two formulas were used to try to reduce the number of transitions monitored for 

the screening methods. In the first, the net charge of peptides at a given pH was 

estimated by using the theoretical pKa/pKb values of the amino acid constituents. [176] 

The calculation is simple but neglects any interaction between the amino acid residues. 

The second method is based on the assumption that a minimum of three residues are 

required between acidic or basic residues to accommodate a charge. [55] Unfortunately, 

using either of the above methods resulted in an overestimation of the observed charge 

state for BNP. The relative position of the amino acids in the sequence, secondary 

structure and the use of superchargers affect the amount of protons accommodated on 

the peptide ion and make the prediction of the highest observed charge state 

cumbersome. Experiments were set up to monitor the charge states corresponding to ± 1 
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charge relative to the net charge calculated at pH 7 in single ion monitoring mode (SIM) 

(e.g. BNP 3-32, net charge at pH 7: 6+, monitored SIM: 5+/6+/7+). This method resulted in 

a total of 120 SIM transitions, which led to three MS methods.  

For the degradation products that were identified in the SIM experiments, SRM 

transitions were set up to fragment the most intense charge state and monitor the y 

fragment ions only with the charge state equal to the precursor and - 1 and - 2 charge 

states relative to the precursor. The determined transitions for the detected peptides are 

listed in Table 5:2. The results of the degradation experiment are displayed in Figure 5:2. 

Table 5:2. SRM m/z transitions for the monitored degradation products.  

 
Cleaved 
residues 

UNLABELLED 
 

LABELLED Precursor 
charge 
state 

Monitored 
fragment  Precursor Fragment Precursor Fragment 

1-32  578.3 699.2 583.3 705.3 6+ y26 4+ 
3-30 SP-/-RH 598.3 715.6 604.3 723.0 5+ y27 4+ 
3-32 SP- 547.7 699.2 552.6 705.3 6+ y26 4+ 
4-32 SPKM- 631.3 731.3 637.3 737.3 5+ y27 4+ 
8-31 SPKMVQG- 548.2 586.7   5+ y20 4+ 
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Figure 5:2. Results of the degradation experiments of BNP in plasma. Three degradation 
products were identified and monitored: BNP 3-32, BNP 3-30 and BNP 4-32. The 
integrated area of the SRM transitions corresponding to the unlabelled peptides is 
plotted vs time of degradation. Concentration of BNP in spiked plasma: 20 pmol/g 
(5.8 µg/g). 

The degradation of BNP follows the same kinetics as determined in Chapter 4.3.2. As BNP 

degrades the ion signal for the peptide missing the first two amino acid residues (3-32) 

evolves due to the activity of the DPPIV enzyme. [121] The degradation product truncated 

at both the C-terminal and the N-terminal (3-30) was detected after 30 min and its ion 

signal increased as the degradation continued. BNP 4-32 was detected in the sample after 

30 min and its ion signal intensity peaked after 90 min, only a small amount remained 

after 54 hours. These results agree with the findings of Zhang et al. when the 

peptidoforms of BNP were analysed by CE-MS. [125] The results of both experiments 

suggest that BNP 3-30 and 3-29 remain stable after an extended period of time. Assays 

targeting 3-30 may be more appropriate for the heart failure diagnosis. Relative amounts 

of 3-30 and 3-29 could be indicative of the time of the cardiac event. 
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Figure 5:3. Time course profile of BNP peptidoforms detected by CE-MS by Zhang et al. 
Concentration of BNP in spiked plasma: 250 ng/µL (250 µg/g). [125] 

Although without the use of isotopically labelled internal standard the results are not 

quantitative, they provide further evidence of the instability of BNP. In addition, the 

method can be used to monitor for the presence of any degradation products in the EQA 

samples. 

In the course of the year samples from the same preparations were sent out on several 

occasions by NEQAS. The results corresponding to the same preparations (A, B, C, LGC1 

and LGC2) and the degradation profiles determined for each sample are displayed in 

Figure 5:4. 
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Figure 5:4. BNP quantitation results (A, top) and degradation profiles (B, bottom) of NEQAS 
samples. Dashed lines: range of the reference method (52-520 pg/g). Dotted lines: 
lower and higher decision limits (100/500 pg/g). RATIO: BNP, 3-32, 3-30 and 4-32 
area over the labelled BNP* area. A, B, C, LGC1 and LGC2: samples are coming from 
the same preparation.  



NEQAS 

138 

The LC-MS/MS results for replicate measurements agree within the determined 

uncertainty of the reference method. The results of the immunoassay measurements also 

show high reproducibility. The lower values of the newly developed LC-MS/MS reference 

method could indicate the non-specificity of the immunoassays. Additional reasons for 

the observed discrepancy could be a lack of characterisation of the BNP material used for 

the preparation of the EQAS samples, differences in the standards used for the calibration 

of immunoassays and degradation of BNP before analysis. The synthetic peptide 

employed by NEQAS could contain high amounts of closely related peptidic impurities 

that could cross-react with the immunoassays. [177], [178] To test this hypothesis, 

concentrated aliquots of the newly developed BNP primary standard were sent to NEQAS 

and used for the preparation of two sets of samples (LGC1 and LGC2). Using this BNP 

primary standard for spiking the plasma samples did not improve the agreement between 

the four assays. Because the primary BNP standard material was assessed for the 

presence of impurities and it was shown that it contained less than 4 % of peptidic 

impurities (Chapter 3), the difference between the immunoassay and the reference 

method was not caused by the quality of the BNP spiking material. 

The agreement between the results for the replicate measurements of the same 

preparations is very good for all samples with the three immunoassays and the reference 

method. The only exception is sample 213A. (LGC2, Figure 5:4). In sample 231A a high 

amount of BNP products was detected by LC-MS/MS. The LC-MS/MS reference method 

and two of the immunoassays reported lower BNP concentrations, while the Beckman 

Coulter assay reported roughly the same value. This can be explained with the different 

epitope specificity of the antibodies used in the different immunoassays. Immunoassay 

manufacturers are required to publish epitope specificity of the antibodies used in their 
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kits. [119] The specificity of capture and detection antibodies for the three assays 

participating in the study is listed in Table 5:3. 

Table 5:3. Epitope specificities of the antibodies used in immunoassays in the UK NEQAS. 

Assay Capture Detection Calibrant 

Abbott  
NH2 terminus and part of the 

ring structure (Scios) 
Murine monoclonal AB (5-13) 

COOH terminus 
Murine monoclonal AB (26-32) 

Synthetic 
BNP 

Siemens  
COOH terminus (BC-203) 

(Shionogi) 
Murine monoclonal AB (27-32) 

KY-hBNP-II (Shionogi) 
Murine monoclonal AB (14-21) 

Synthetic 
BNP 

Beckman 
Coulter  

BNP (Biosite) 
Murine omniclonal AB 

epitope not characterized 

NH2 terminus and part of the ring 
structure (Scios) 

Murine monoclonal AB(5-13) 

Recombinant 
BNP 

Omniclonal: mixture of different antibody molecules. 

The Abbott assay uses a combination of antibodies specific to the intact N-terminus of 

BNP and to amino acids 5-13 of the sequence. The detection antibody requires an intact 

C-terminus. This means that the Abbott assay will capture all the degradation products as 

long as the 5-13 amino acids are intact and detects everything that is not truncated at the 

C-terminal (i.e. 3-32, 4-32 and 5-32). The Siemens assay captures peptides with an intact 

C-terminus and detects everything that has an unbroken ring structure. (3-32, 4-32, 5-32, 

8-32). The Beckman Coulter assay uses a mixture of different antibodies for capture and 

detects everything that has an intact N-terminal and the sequence corresponding to 5-13 

amino acids of BNP. (1-29, 1-30, 1-28, 1-26). Recombinant BNP is used for the calibration 

of the Beckman Coulter assay while the other two immunoassays are calibrated by 

synthetic BNP.  

In preparation C, sample 211A shows an increased amount of 3-32 peptide present in the 

extracts. The Siemens and Beckman Coulter assay reported higher BNP results than for 

sample 212A and 214B which came from the same preparation. In preparation B, the 

Abbott and the Siemens assay agree (100 ng/kg) but the Beckman Coulter assay reports 
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over 200 ng/kg BNP concentrations for the three samples. All three degradation products 

(3-32, 3-30, 4-32) were found in these samples. The high amount of 3-30 and 4-32 found 

in sample 213A also suggests that some of the differences between the immunoassay 

results can be explained by cross-reactivity with the products from the degrading BNP. 

In order to investigate the possible cross-reactivity of the immunoassays, two samples 

distributed by NEQAS were spiked with BNP 8-32 peptide instead of BNP. BNP 8-32 is the 

degradation product of enzymatic activity of Meprin and the only BNP product peptide 

that is commercially available. The spiking experiment was devised to demonstrate the 

existence of cross-reactivity of immunoassays with different epitope specificities. The 

results reported by the four methods are displayed in Figure 5:5. 

As expected, no BNP 1-32 was detected by LC-MS/MS. The Siemens assay detected BNP 

in the second sample. The capture antibody of the Siemens assay recognised the intact C-

terminal of the 8-32 peptide and as the truncated peptide contains the 14-21 residues of 

the BNP sequence the detection antibody incorrectly gave positive readings for the 

NEQAS sample. The result successfully demonstrates how the use of nonspecific capture 

and detection antibodies can lead to erroneous results in clinical laboratories and the 

utility of a reference method for the correct value assignment of quality assessment 

samples. 
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Figure 5:5. Results reported for the NEQAS preparations of samples 229C and 231C spiked with 
BNP 8-32 but no BNP. Dashed lines: range of the reference method (52-520 pg/g). 
Dotted lines: lower and higher decision limits (100/500 pg/g). 

The capture antibody of the Abbott assay did not react and the detection antibody of the 

Beckman Coulter assay did not recognise the 8-32 peptide.  
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Chapter 5.3 Conclusions 

The reference method was successfully applied to the analysis of EQA samples for the 

determination of BNP concentration in plasma samples spiked with synthetic BNP. The 

LC-MS/MS results correlated with the results reported by the three immunoassays and 

therefore can be applied for the harmonisation or standardisation of clinical BNP 

measurements. The results of repeated analyses of EQA samples are very consistent for 

both the immunoassays and the reference method. The absolute BNP results in most 

cases are higher than the LC-MS/MS results. The differences between the (absolute) 

results reported by the immunoassays can be due to differences in the amount of BNP in 

the calibrants provided by the manufacturers, the lack of specificity of capture and/or 

detection antibodies and cross-reactivity between the immunoassays and BNP 

degradation products. As no certified BNP reference material in plasma is currently 

available, immunoassay manufacturers supply the calibrants to be used with the assays. 

The source and quality of these calibrants is not known.  

With the use of isotopically labelled internal standard, MS detection enabled the reliable 

identification of degradation products without the need for synthetic peptide standards. 

The results from these experiments demonstrate that some of the differences between 

the immunoassay results are caused by the different specificity of the assays for BNP and 

BNP degradation products in plasma. The reference method can be extended to quantify 

multiple degradation products for BNP. Quantitative information on the presence and 

stability of degradation products can be used to develop assays not affected by cross-

reactivity and could account for differences between results from existing immunoassays. 
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Chapter 6 Future work 

The utility of LC-MS/MS for the development of a reference method for the quantification 

of an unstable intact peptide in plasma was demonstrated. The results of the reference 

method correlate with the immunoassay results for spiked plasma samples therefore it 

can potentially be used for the harmonisation and standardisation of external quality 

assessment schemes by assigning reference values to EQA samples. 

The developed method provided insight into the possible causes for the variability 

between the different immunoassay results. The quality of the calibrants used by the 

immunoassay manufacturers, the lack of molecular specificity of antibodies and 

degradation of BNP in plasma have been identified as likely causes for the discrepancies 

in the reported absolute BNP values by different clinical laboratories. 

Future work is aimed at the extension of the LC-MS/MS method for the quantification of 

BNP degradation products and the analysis of patient samples.  

With the availability of a reliable platform for the detection and quantification of BNP and 

BNP degradation products alternative cardiac markers which have a longer half-life in 

circulation can be identified and targeted in clinical diagnostics. As the degradation 

kinetics is different for the products, their relative concentration could be indicative of 

the onset of the original cardiac injury. Information on the biological activity of BNP 

degradation products is not available in literature. An MS based method could be an 

extremely useful tool in medical research for the unambiguous confirmation of the 

efficacy of cardiac drugs or for therapeutic drug monitoring. 

The results from patient samples can provide further understanding into the extent of 

cross reactivity with unprocessed proBNP and the availability of the biologically active 
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cardiac hormone (or biologically active degradation products of BNP) in heart failure 

patients. If correlation with the patient samples exists between the reference method 

and immunoassay results, the development of a commutable reference material is a 

possibility. 

The work here carried out represents the background for a CCQM study for the 

quantification of BNP in plasma. The study will enable NMIs to demonstrate their 

competence and use their methods to provide reference values to samples distributed by 

their corresponding national EQA schemes. 

A concerted effort in studying (biological) activity of degradation products, epitope 

mapping of antibodies used in commercial assays and reference laboratories capable of 

the value assignment of EQA samples could greatly benefit our understanding of cardiac 

health and efforts in the harmonisation and standardisation of clinical BNP measurements. 
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Appendix A Superchargers 

Agilent6530 Q-TOF 0.25 % sulfolane 

 
Appendix A 1 MS ion signal abundances in full scan experiments for BNP (top) and when infusing 

sulfolane (bottom). 495.8 m/z (7+), 578.2 m/z (6+) and 693.6 m/z (5+). 

Agilent 6530 Q-TOF 0.25 % m-NBA 

 
Appendix A 2 MS ion signal abundances in full scan experiments for BNP (top) and when infusing 

m-NBA (bottom). 495.8 m/z (7+), 578.2 m/z (6+) and 693.6 m/z (5+).  
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Agilent 6530 Q-TOF 0.25 % DMSO 

 
Appendix A 3 MS ion signal abundances in full scan experiments for BNP (top) and when infusing 

DMSO (bottom). 495.8 m/z (7+), 578.2 m/z (6+) and 693.6 m/z (5+). 

Agilent 6490 QqQ 0.25 % sulfolane 

 
Appendix A 4 MS ion signal abundances in full scan experiments for BNP (top) and when infusing 

sulfolane (bottom). 434.1 m/z (8+), 495.8 m/z (7+), 578.2 m/z (6+) and 693.6 m/z 
(5+). 
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Agilent 6490 0.25 % m-NBA 

 
Appendix A 5 MS ion signal abundances in full scan experiments for BNP (top) and when infusing 

m-NBA (bottom). 434.1 m/z (8+), 495.8 m/z (7+), 578.2 m/z (6+) and 693.6 m/z (5+). 

Agilent 6490 0.25 % DMSO 

 
Appendix A 6 MS ion signal abundances in full scan experiments for BNP (top) and when infusing 

DMSO (bottom). 495.8 m/z (7+), 578.2 m/z (6+) and 693.6 m/z (5+). 
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Appendix B  UK NEQAS results 

 

 
Appendix B 1 BNP quantitation results and degradation profiles of NEQAS samples. Dashed lines: 

range of the reference method (52-520 pg/g). Dotted lines: lower and higher 
decision limits (100/500 pg/g). RATIO: BNP, 3-32, 3-30 and 4-32 area over the 
labelled BNP* area. Results 207-208. 
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Appendix B 2 BNP quantitation results and degradation profiles of NEQAS samples. Dashed lines: 

range of the reference method (52-520 pg/g). Dotted lines: lower and higher 
decision limits (100/500 pg/g). RATIO: BNP, 3-32, 3-30 and 4-32 area over the 
labelled BNP* area. Results 209-211. 

  



Appendices 

161 

 

 
Appendix B 3 BNP quantitation results and degradation profiles of NEQAS samples. Dashed lines: 

range of the reference method (52-520 pg/g). Dotted lines: lower and higher 
decision limits (100/500 pg/g). RATIO: BNP, 3-32, 3-30 and 4-32 area over the 
labelled BNP* area. Results 212-214. 
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Appendix B 4 BNP quantitation results and degradation profiles of NEQAS samples. Dashed lines: 

range of the reference method (52-520 pg/g). Dotted lines: lower and higher 
decision limits (100/500 pg/g). RATIO: BNP, 3-32, 3-30 and 4-32 area over the 
labelled BNP* area. Results 215-217. 
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Appendix B 5 BNP quantitation results and degradation profiles of NEQAS samples. Dashed lines: 

range of the reference method (52-520 pg/g). Dotted lines: lower and higher 
decision limits (100/500 pg/g). RATIO: BNP, 3-32, 3-30 and 4-32 area over the 
labelled BNP* area. Results 218-220. 
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Appendix B 6 BNP quantitation results and degradation profiles of NEQAS samples. Dashed lines: 

range of the reference method (52-520 pg/g). Dotted lines: lower and higher 
decision limits (100/500 pg/g). RATIO: BNP, 3-32, 3-30 and 4-32 area over the 
labelled BNP* area. Results 221-223. 
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Appendix B 7 BNP quantitation results and degradation profiles of NEQAS samples. Dashed lines: 

range of the reference method (52-520 pg/g). Dotted lines: lower and higher 
decision limits (100/500 pg/g). RATIO: BNP, 3-32, 3-30 and 4-32 area over the 
labelled BNP* area. Results 224-226. 
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Appendix B 8 BNP quantitation results and degradation profiles of NEQAS samples. Dashed lines: 

range of the reference method (52-520 pg/g). Dotted lines: lower and higher 
decision limits (100/500 pg/g). RATIO: BNP, 3-32, 3-30 and 4-32 area over the 
labelled BNP* area. Results 227-229. 
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Appendix B 9 BNP quantitation results and degradation profiles of NEQAS samples. Dashed lines: 

range of the reference method (52-520 pg/g). Dotted lines: lower and higher 
decision limits (100/500 pg/g). RATIO: BNP, 3-32, 3-30 and 4-32 area over the 
labelled BNP* area. Results 230-232. 
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Appendix B 10BNP quantitation results and degradation profiles of NEQAS samples.Dashed lines: 

range of the reference method (52-520 pg/g). Dotted lines: lower and higher 
decision limits (100/500 pg/g). RATIO: BNP, 3-32, 3-30 and 4-32 area over the 
labelled BNP* area. Results 233-235. 
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Appendix C  Related publications 
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