Non-random latitudinal gradients in range size and niche breadth predicted by spatial patterns of climate

[thumbnail of Open Access]
Preview
Text (Open Access) - Published Version
· Available under License Creative Commons Attribution.
· Please see our End User Agreement before downloading.
| Preview
Available under license: Creative Commons Attribution
[thumbnail of RN Patterns_GEB_Revisions_clean_III.pdf]
Text - Accepted Version
· Restricted to Repository staff only
Restricted to Repository staff only

Please see our End User Agreement.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Saupe, E., Myers, C., Peterson, A. T., Soberon, J., Singarayer, J., Valdes, P. and Qiao, H. (2019) Non-random latitudinal gradients in range size and niche breadth predicted by spatial patterns of climate. Global Ecology and Biogeography, 28 (7). pp. 928-942. ISSN 1466-8238 doi: 10.1111/geb.12904

Abstract/Summary

Aim. Tropical species are thought to experience and be adapted to narrow ranges of abiotic conditions. This idea has been invoked to explain a broad array of biological phenomena, including the latitudinal diversity gradient and differential rates of speciation and extinction. However, debate continues regarding the broad-scale applicability of this pattern and potential processes responsible. Here, we use a simulation approach to test two propositions: (1) strong geographic patterns of variation in realized niche breadth can arise in the absence of variance in the size of fundamental niches, and (2) realized niche breadths can show latitudinal patterns as a consequence of spatio-temporal climate change, even when fundamental niche breadths are unrelated to latitude, and dispersal abilities are held constant. Location. Global. Time period. Simulations were conducted using climate models from over the last 120 Ka, with trait dynamics captured at 95 Ka and present-day. Major taxa studied. We used virtual species with traits based loosely on plants. Methods. We simulated latitudinal trends of niche breadth and range size for virtual species using a cellular automaton algorithm that linked a gridded geographic domain with a three-dimensional environmental landscape. Results. In all simulations, strong spatial patterns in realized niches were obtained in the absence of niche evolution, and realized niches showed geographic patterns deriving only from real-world spatiotemporal variation in climate. We noted contrasting patterns of niche breadth in different environmental dimensions, with temperature breadth increasing with latitude, but precipitation breadth decreasing with latitude. Overall, simulation outcomes mimicked real-world pattern of latitudinal range extent covarying with amount of land area. Main conclusions. Tropical species can have narrower niche breadths for maximum and minimum temperature ranges compared to temperate species solely as the result of the spatial arrangement of environments. We therefore suggest that the complex spatiotemporal distribution of global abiotic environments has strong potential for structuring observed latitudinal gradients of niche breadths.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/82377
Identification Number/DOI 10.1111/geb.12904
Refereed Yes
Divisions Interdisciplinary centres and themes > Centre for Past Climate Change
Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
Publisher Wiley
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar