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Abstract

Numerical weather and climate models are using increasingly fine meshes that resolve

small-scale, steeply-sloping terrain. Terrain-following meshes become highly distorted above

such steep slopes, degrading the numerical balance between the pressure gradient and grav-

ity. Furthermore, existing models often prefer dimensionally-split transport schemes for

their computational efficiency, but such schemes can suffer from splitting errors above steep

slopes. The cut cell method offers an alternative that avoids most mesh distortions, but arbi-

trarily small cut cells can impose severe time-step constraints on explicit transport schemes.

This thesis makes three contributions to improve atmospheric simulations, particularly in

the vicinity of steeply-sloping terrain.

First, a multidimensional finite volume transport scheme is formulated to obtain ac-

curate solutions on arbitrary, highly-distorted meshes. Stability conditions derived from a

von Neumann stability analysis are imposed during model initialisation to obtain stability

and improve accuracy near steeply-sloping lower boundaries. Reconstruction calculations

depend upon the mesh only, needing just one vector multiply per face per time-stage. The

scheme achieves second-order convergence across a series of tests using highly-distorted

terrain-following meshes and cut cell meshes. The scheme is extended using the k-exact

method to achieve third-order convergence on distorted meshes without increasing the

computational cost during integration.

Second, a new type of mesh is designed to avoid severe mesh distortions associated

with terrain-following meshes and avoids severe time-step constraints associated with cut

cells. Numerical experiments compare the new mesh with terrain-following and cut cell

meshes, revealing that the new mesh simultaneously achieves an accurate balance between

the pressure gradient and gravity, and avoids severe time-step constraints.

Third, a new two-dimensional test case is proposed that excites the Lorenz computa-

tional mode. The new test is used to compare results from a nonhydrostatic model with

Lorenz staggering with those from a model variant with a newly-developed generalised

Charney–Phillips staggering for arbitrary meshes.
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1 Introduction

Atmospheric models are using increasingly fine mesh spacing to resolve small-scale processes

and improve weather and climate forecasts (Wedi, 2014). These finer meshes resolve small-scale,

steeply sloping terrain that is poorly represented by traditional terrain-following meshes and

traditional numerical methods (Schär et al., 2002), motivating research into alternative vertical

meshes including improved terrain-following meshes (Schär et al., 2002; Klemp, 2011) and

cut-cell meshes (Jähn et al., 2015; Yamazaki et al., 2016), and improved numerical methods

(Zängl, 2012; Steppeler and Klemp, 2017).

Traditional terrain-following meshes become highly distorted over steeply sloping terrain,

resulting in increased numerical errors: transport across distorted terrain-following mesh layers

can produce spurious numerical diffusion and grid-scale oscillations (Hoinka and Zängl, 2004;

Schär et al., 2002), and spurious flows result from errors in the calculation of the pressure gra-

dient where terrain-following mesh layers are not perpendicular to gravity (Klemp, 2011; Zängl,

2012). Cut cell meshes can reduce numerical errors associated with transport and pressure

gradient calculations (Good et al., 2014), but the cut cell method creates meshes with arbitrarily

small cut cells that impose severe time-step constraints on explicit transport schemes (Klein

et al., 2009).

1.1 Vertical meshes to represent the atmosphere above terrain

Terrain-following meshes have been in widespread operational use since atmospheric models

first included a numerical representation of terrain (Steppeler et al., 2003), with Phillips (1957)

having formulated the σ coordinate, also known as the basic terrain-following coordinate or

basic terrain-following mesh (Gal-Chen and Somerville, 1975). Above sloping terrain, basic

terrain-following meshes distort every model layer , with only the upper boundary being entirely

horizontal. Terrain-following mesh distortions become more severe with increasingly steep
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2 CHAPTER 1. INTRODUCTION

slopes, reducing the numerical accuracy of transport schemes and pressure gradient calculations

in particular.

In a mesoscale model forecast over the Alps, transport across terrain-following mesh lay-

ers produced spurious numerical diffusion in water vapour and relative vorticity fields near

the tropopause where vertical gradients are strong (Hoinka and Zängl, 2004). Schär et al.

(2002) found that lower-order transport schemes are inaccurate in the presence of basic terrain-

following mesh distortions, with the transported tracer exhibiting numerical diffusion and grid-

scale oscillations. Furthermore, such errors are not confined to atmospheric models: in coupled

ocean/sea-ice model experiments performed by Naughten et al. (2017), an inaccurate transport

scheme produced numerical oscillations, leading to supercooling and spurious sea-ice produc-

tion.

Pressure gradient errors near steep slopes result in spurious circulations that can degrade

simulated slope flows, along-valley flows, orographically-induced precipitation and cold air

pools (Zängl et al., 2004). Comparing model simulations with field campaign observations in

the Salt Lake valley, Fast (2003) found that simulated winds were too strong at night, when

observed winds were weak and cold air pools formed. Zängl et al. (2004) performed a model

intercomparison using an idealised test with a stratified atmosphere initially at rest above an

isolated mountain with steep slopes. After one simulated day, pressure gradient errors produced

maximum spurious vertical velocities between 0.4 ms−1 and 3 ms−1 across different models.

Pressure gradient errors are also problematic using terrain-following meshes to represent steep

ocean bathymetry: Luo et al. (2002) simulated an ocean initially at rest above an isolated

seamount, and found that spurious vertical velocities increased with steeper seamount slopes.

To improve the accuracy of transport schemes and pressure gradient calculations, terrain-

following mesh layers can be smoothed so that mesh distortions further above the lower bound-

ary are reduced. While the layers of a basic terrain-following mesh are distorted throughout

the domain, the layers of a hybrid terrain-following mesh are gradually flattened and become

purely horizontal at a specified height below the domain top (Simmons and Burridge, 1981).

Compared to the basic terrain-following mesh, the hybrid terrain-following mesh has been found

to improve forecasts, particularly in the stratosphere where hybrid terrain-following mesh layers

are horizontal (Eckermann et al., 2014). Variants of the hybrid terrain-following mesh have

become widely adopted in atmospheric models (Davies et al., 2005; Donner et al., 2011) as

well as some ocean models (Burchard and Petersen, 1997; Halliwell, 2004). More sophisticated

methods have been developed that produce even smoother terrain-following meshes, including

the smooth level vertical (SLEVE) mesh (Schär et al., 2002; Leuenberger et al., 2010) used in

the icosahedral nonhydrostatic ICON model (Zängl et al., 2015).

Despite their associated numerical errors, terrain-following meshes are attractive because
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their rectangular structure is simple to process by computer, they can be straightforwardly linked

with parameterization schemes, and the boundary layer resolution can be improved simply by

using variable spacing of vertical layers (Schär et al., 2002). Nevertheless, terrain-following

meshes cannot avoid distortions near the surface, and terrain-following cell volumes approach

zero as sloping terrain approaches a 90◦ cliff. The cut cell mesh is an alternative in which the

mesh does not follow the terrain but, instead, cells that lie entirely below the terrain are removed,

and those that intersect the surface are modified in shape so that they more closely fit the terrain.

The resulting mesh is entirely undistorted except for cells that have been cut. Cut cells are also

known as shaved cells (Adcroft et al., 1997; Adcroft, 2013) or embedded boundaries (Schwartz

et al., 2015; Devendran et al., 2017).

The cut cell method can create arbitrarily small cells that severely constrain the maximum

time-step for explicit methods (Klein et al., 2009), and several approaches have been tried

in order to alleviate the problem. Yamazaki and Satomura (2010) combine small cells with

horizontally or vertically adjacent cells. Steppeler et al. (2002) employ a thin-wall approximation

to increase the computational volume of small cells without altering the terrain. Jebens et al.

(2011) avoid the time-step restriction associated with explicit schemes by using an implicit

method for cut cells and a semi-explicit method elsewhere.

In an idealised test with a stratified atmosphere initially at rest above a mountain, Good

et al. (2014) found that spurious circulations became increasingly severe with increasingly steep

slopes represented by terrain-following meshes, but such errors were eliminated by using cut

cell meshes. In a comparison of terrain-following and cut cell meshes using real initial data,

Steppeler et al. (2013) found that 5-day forecasts of precipitation and wind over Asia were more

accurate in the cut cell model, although this result depended upon an old version of a model

being used.

Another alternative method for representing terrain is the Eta coordinate (Mesinger et al.,

1988), which creates terrain profiles having a staircase pattern. Mesinger et al. (1988) found

that the Eta coordinate improves the accuracy of pressure gradient calculations compared to

basic terrain-following meshes, and Mesinger et al. (2012) later refined the formulation to allow

diagonal transport of momentum and temperature immediately above sloping terrain, making

the Eta coordinate similar to the cut cell method.

1.2 Horizontal meshes to represent a spherical Earth

We have seen that increasingly fine mesh spacing poses problems for traditional terrain-following

meshes and traditional numerical methods, but further numerical and computational issues also

arise with finer meshes. Traditionally, global atmospheric models have used uniform latitude-



4 CHAPTER 1. INTRODUCTION

longitude meshes to represent a spherical Earth but, with increasingly fine horizontal mesh

spacing, the cells of latitude-longitude meshes become very small near the Earth’s poles, causing

a bottleneck in parallel computation (Staniforth and Thuburn, 2012) and placing severe time-

step constraints on explicit methods. In addition to the small cell problem near the poles,

computer storage and computation time increase dramatically when horizontal mesh spacing is

reduced uniformly over a latitude-longitude mesh: halving the horizontal mesh spacing results

in four times as many cells and simulations require a smaller time-step.

In response to these problems, a variety of alternative horizontal representations have

been proposed. Alternative, quasi-uniform meshes avoid small cells near the poles of latitude-

longitude meshes (Staniforth and Thuburn, 2012), and some models are already using quasi-

uniform meshes: the ICON model uses an icosahedral mesh (Zängl et al., 2015), the Global

Environmental Multiscale model uses a Yin-Yang mesh comprising two overlapping sections

arranged like a tennis ball (Qaddouri and Lee, 2011), and the Met Office are preferring a cubed-

sphere mesh for their next-generation GungHo model (N. Wood 2017, personal communication).

To improve the scalability of computational resources with finer mesh spacing, static mesh re-

finement and dynamic adaptive mesh techniques create meshes with fewer cells while retaining

the numerical accuracy achieved with a uniformly fine mesh (Jablonowski et al., 2009).

These alternative meshes alleviate many of the computational and numerical problems that

arise due to finer horizontal mesh spacing, but they introduce problems of their own. Unlike

latitude-longitude meshes, quasi-uniform meshes have non-zero skewness or non-orthogonality

that produces grid imprinting errors and excites computational modes (Weller et al., 2012). Mesh

refinement and adaptive mesh techniques also create mesh geometries with non-orthogonalities

or hanging nodes (Marras et al., 2016).

Some recent studies have applied mesh refinement and adaptive mesh techniques to ver-

tical meshes to better resolve cloud processes (Müller et al., 2013) and flows over mountains

(Yamazaki and Satomura, 2012). The vertical discretisation used by Yamazaki and Satomura

(2012) supports a computational mode (Thuburn and Woollings, 2005) that can be avoided

by using an alternative staggering of variables. The Charney–Phillips staggering is free from

computational modes, but the Charney–Phillips staggering has yet to be generalised for arbitrary

vertical meshes.

1.3 Aims and research outline

With such a wide choice of horizontal and vertical meshes and numerical schemes, it is important

that next-generation atmospheric models are designed so that the choice of mesh and choices

of numerical schemes can be deferred until later in the development process, or changed during
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operation as new techniques emerge (Ford et al., 2013; Theurich et al., 2016). This thesis makes

four contributions to improve numerical accuracy for flows over steep slopes:

1. a new approach for stabilising finite volume transport schemes on arbitrary meshes,

2. a high-order finite volume formulation for transport on arbitrary meshes,

3. a new vertical mesh for representing terrain,

4. a new test case to excite the Lorenz computational mode on a two-dimensional x–z Carte-

sian plane.

All numerical tests are performed using two-dimensional flows on Cartesian planes and spherical

shells, but there is nothing precluding the extension of all four formulations to three-dimensional

geometries.

Throughout the thesis, we use the OpenFOAM software package (The OpenFOAM Foun-

dation) to implement numerical schemes and numerical experiments, enabling like-for-like

comparisons between different model variants and different types of mesh. We provide source

code archives for the OpenFOAM implementation of the new transport schemes (Weller et al.,

2018; Shaw, 2018d) and supporting tools (Shaw et al., 2018; Shaw, 2018e), the ASAM cut cell

mesh generator (Leibniz Institute for Tropospheric Research and Shaw, 2018) and associated

OpenFOAM converter (Shaw, 2018c), and the hexagonal–icosahedral mesh generator (Thuburn

et al., 2018). For the numerical test cases presented, we also supply the source code (Shaw,

2018b) and resulting data (Shaw, 2018f). For convenience, we have pre-installed all necessary

software in an executable Singularity container (Shaw, 2018a). The source code for the thesis

itself is also available (Shaw, 2018g).

Chapter 2 formulates a new finite volume transport scheme to achieve numerical stability

over steep terrain represented by highly-distorted, arbitrary meshes. It is second-order con-

vergent on quasi-uniform spherical meshes, terrain-following and cut cell meshes. Chapter 3

proposes a modification to the formulation, using the k-exact method (Barth, 1995) to achieve

higher than second-order convergence in the interior of distorted meshes without increasing

the computational cost during integration. Chapter 4 introduces a new type of vertical mesh

that simulateously avoids severe mesh distortions associated with traditional terrain-following

meshes, while avoiding arbitrarily small cells associated with cut cell meshes. Numerical experi-

ments verify that a more accurate balance is achieved between the pressure gradient and gravity,

and we find that the new mesh permits maximum time-steps comparable to those permitted by

terrain-following meshes. Chapter 5 extends the work of Arakawa and Konor (1996) to create

a new two-dimensional test case that excites the Lorenz computational mode, enabling a more

straightforward assessment of models using Lorenz or Charney–Phillips staggerings. Motivated
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by the emerging need for vertical mesh refinement and mesh adaptivity, the Charney–Phillips

staggering is generalised for arbitrary meshes, and the formulation is assessed using the new

two-dimensional test case. Closing remarks are made in chapter 6.



2 Numerically stable transport over steep slopes

Highlights

• The new cubicFit transport scheme is second-order convergent regardless of mesh

distortions or the choice of velocity field

• Sub-grid reconstructions are mostly precomputed depending on the mesh geometry

alone

• Misalignment of the velocity field with mesh layers is the primary source of numerical

error and not simply mesh distortions

A huge variety of transport schemes have been developed for atmospheric models, but few

are able to account for distortions associated with steep terrain because they treat horizontal and

vertical transport separately (Kent et al., 2014), resulting in numerical errors called ‘splitting

errors’. Such errors can be reduced by explicitly accounting for transverse fluxes when combining

fluxes (Leonard et al., 1996), but splitting errors are still apparent in flows over steep terrain

where meshes are highly distorted and metric terms in a terrain-following coordinate transform

are large (Chen et al., 2017).

Transport schemes are often classified as dimensionally-split or multidimensional. Dimension-

ally-split schemes such as Lin and Rood (1996); Guo et al. (2014) calculate transport in each

dimension separately before the flux contributions are combined. Such schemes are compu-

tationally efficient and allow existing one-dimensional high-order methods to be used. When

dimensionally-split schemes are used for horizontal transport, quadrilateral meshes are needed

because the mesh dimensions are inherently separable. Special treatment is required at the

corners of cubed-sphere panels where local coordinates differ (Putman and Lin, 2007; Guo

7
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et al., 2014). Dimensional splitting is often used for vertical transport and, for similar reasons,

dimensionally-split schemes have only been used with terrain-following coordinate transforms

and not cut cells. Perhaps confusingly, dimensionally-split schemes are sometimes called multi-

dimensional, too, because they use one-dimensional techniques for multidimensional transport.

Unlike dimensionally-split schemes, multidimensional schemes consider transport in two

or three dimensions together. There are several subclasses of multidimensional schemes that

include semi-Lagrangian finite volume schemes (also called conservative mesh remapping),

swept-area schemes (also called flux-form semi-Lagrangian, incremental remapping, or forward-

in-time), and method-of-lines schemes (also called Eulerian schemes). Two-dimensional semi-

Lagrangian finite volume schemes such as Iske and Käser (2004); Lauritzen et al. (2010) inte-

grate over departure cells that are found by tracing backward the trajectories of cell vertices.

These schemes are conservative because departure cells are constructed so that there are no

overlaps or gaps, which requires that cell areas are simply-connected domains (Lauritzen et al.,

2011b). SLICE-3D is a three-dimensional semi-Lagrangian finite volume scheme for latitude-

longitude meshes that applies separate conservative remappings in each dimension (Zerroukat

and Allen, 2012). Swept-area schemes such as Lashley (2002); Skamarock and Menchaca

(2010); Lauritzen et al. (2011a); Thuburn et al. (2014) calculate the flux through a cell face by

integrating over the upstream area that is swept out over one time-step. Such schemes differ

in their choice of area approximation, sub-grid reconstruction, and spatial integration method.

Because swept-area schemes integrate over the reconstructed field, they typically require a

matrix-vector multiply per face per time-stage (Thuburn et al., 2014; Skamarock and Menchaca,

2010). Method-of-lines schemes such as Weller et al. (2009); Skamarock and Gassmann (2011)

use a spatial discretisation to reduce the transport PDE to an ODE that is typically solved using

a multi-stage time-stepping method. A method-of-lines scheme using a spectral element recon-

struction was recently developed to achieve accurate solutions near the surface of cut cell meshes

(Steppeler and Klemp, 2017). Unlike semi-Lagrangian finite volume schemes, swept-area and

method-of-lines schemes achieve conservation for small-scale rotational flows. Such flows can

twist the departure domain to such an extent that the domain intersects itself (Lauritzen et al.,

2011a). In two dimensions, a self-intersecting departure domain has a bowtie or hourglass

shape. There are many more types of atmospheric transport schemes, but all can be classified

according to their treatment of the three spatial dimensions. A more comprehensive overview

is presented by Lauritzen et al. (2014).

For transport schemes that are ordinarily classified as ‘multidimensional’, a further distinc-

tion ought to made between horizontally-multidimensional and three-dimensional schemes.

Most multidimensional schemes are only horizontally-multidimensional because, while the two

horizontal dimensions are considered together, horizontal and vertical transport are still treated
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separately. This separate treatment becomes less justifiable as atmospheric models are using in-

creasingly fine horizontal mesh spacings that resolve small-scale steep slopes, resulting in greater

mesh distortion and possible splitting errors (Kent et al., 2014). Three-dimensional schemes

avoid any splitting errors over steep slopes, but only a few conservative three-dimensional

schemes have been used in atmospheric models. The multi-moment constrained finite volume

scheme (Ii and Xiao, 2009) is a three-dimensional scheme that has been used to simulate non-

hydrostatic flows over orography with terrain-following coordinates on a x–z plane (Li et al.,

2013). Simulations of subcritical flow around a cylinder have also been performed on a three-

dimensional hexahedral-prismatic hybrid mesh (Xie and Xiao, 2016). The Multidimensional

Positive Definite Advection Transport Algorithm (MPDATA) is another three-dimensional scheme

that is suitable for arbitrary meshes. It has been used on triangular unstructured meshes to simu-

late two-dimensional nonhydrostatic flows over orography (Smolarkiewicz and Szmelter, 2011),

and in three-dimensional transport tests (Smolarkiewicz and Szmelter, 2005). Most recently,

Kühnlein and Smolarkiewicz (2017) extended MPDATA to enable semi-implicit integrations of

the compressible Euler equations on arbitrary meshes, and MPDATA has also been extended to

achieve third-order convergence (Waruszewski et al., 2018). The three-dimensional method-of-

lines scheme developed by Weller and Shahrokhi (2014) has been used in two-dimensional flows

over orography on Cartesian x–z planes with distorted meshes (Chen et al., 2017). This finite

volume scheme uses a moving weighted least-squares reconstruction (Lashley, 2002; Thuburn

et al., 2014) that makes it suitable for arbitrary meshes. Similar least-squares approaches have

been applied previously to shallow water flows (Cueto-Felgueroso et al., 2006), aeronautic

(Cueto-Felgueroso et al., 2007) and porous media (White et al., 2017) simulations.

This chapter presents a new multidimensional method-of-lines scheme, ‘cubicFit’, that im-

proves the stability of the scheme by Weller and Shahrokhi (2014) and avoids all splitting errors.

To reconstruct values at cell faces, the scheme fits a multidimensional cubic polynomial over an

upwind-biased stencil using a least-squares approach. The implementation uses stability con-

ditions derived from a von Neumann stability analysis to select appropriate polynomial fits for

stencils in highly-distorted mesh regions. This stabilisation procedure has similarities to the Mul-

tidimensional Optimal Order Detection (MOOD) method (Clain et al., 2011; Diot et al., 2013).

However, MOOD is an a posteriori method that detects discontinuities in the solution. In contrast,

the cubicFit stabilisation procedure is an a priori method that depends upon the mesh geometry

only, and reconstruction weights can be precomputed without knowledge of the velocity field

or tracer field. Wang et al. (2018) propose a different stabilisation approach that regularises

ill-conditioned matrices that are associated with least-squares fits over highly-distorted mesh

regions, though the technique has so far only been tried with element-free Galerkin methods.

For the cubicFit transport scheme, almost all of the least-squares procedure depends upon
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the mesh geometry only and reconstruction weights can be precomputed without knowledge of

the velocity field or tracer field. Hence, the computational cost of the cubicFit scheme is lower

than most swept-area schemes that require a matrix-vector multiply per face per time-stage with

an m× n matrix where m is the size of the stencil and n is associated with the order of accuracy.

Instead, the computational cost of the cubicFit scheme is more comparable to dimensionally-split

schemes, requiring only m multiplies per face per time-stage.

The remainder of this chapter is organised as follows. Section 2.1 starts by discretising the

transport equation using a method-of-lines approach before describing the cubicFit transport

scheme, and a multidimensional linear upwind transport scheme that is included in the Open-

FOAM software distribution (CFD Direct, 2018b). Subsequent sections evaluate the cubicFit

scheme in a series of three idealised numerical tests. The test in section 2.2 follows Schär et al.

(2002), transporting a tracer horizontally above steep mountains on two-dimensional, highly-

distorted terrain-following meshes. Section 2.3 formulates a new tracer transport test that uses

a terrain-following velocity field to challenge transport schemes on cut cell meshes. Finally,

in section 2.4, we assess the cubicFit transport scheme on hexagonal-icosahedral meshes and

cubed-sphere meshes using a standard test of deformational flow on a single-layer spherical

Earth, as specified by Lauritzen et al. (2012).

2.1 Transport schemes for arbitrary meshes

The transport of a tracer density φ in a prescribed, non-divergent velocity field u is given by the

flux-form equation (Nair and Lauritzen, 2010)

∂ φ

∂ t
+∇ · (uφ) = 0 . (2.1)

The time derivative is discretised using an explicit, two-stage, second-order Heun scheme,

φ? = φ(n) +∆t g(φ(n)) (2.2a)

φ(n+1) = φ(n) +
∆t
2

�

g(φ(n)) + g(φ?)
�

(2.2b)

where g(φ(n)) = −∇·(uφ(n)) at time level n. This two-stage second-order time-stepping scheme

is similar to the three-stage second-order time-stepping scheme used later in a model of the fully

compressible Euler equations (section 4.3), which needs an additional time-stage to converge

upon the semi-implicit solution. The two-stage second-order time-stepping scheme is used for

both the cubicFit scheme and the multidimensional linear upwind scheme. Although the Heun

scheme is unstable for a linear oscillator (Durran, 2013) and for solving the transport equation

using centred, linear differencing, it is stable when it is used for transport schemes with sufficient

upwinding (Hundsdorfer and Verwer, 2013, p. 149).
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Using the finite volume method, the velocity field is prescribed at face centroids and the

dependent variable is stored at cell centroids. The divergence term in equation (2.1) is discretised

using Gauss’s theorem,

∇ · (uφ)≈ 1
Vc

∑

f ∈ c

u f · S fφF (2.3)

where subscript f denotes a value stored at a face and subscript F denotes a value approximated

at a face from surrounding values. Vc is the cell volume, u f is a velocity vector prescribed at a

face, S f is the surface area vector with a direction outward normal to the face and a magnitude

equal to the face area, φF is an approximation of the dependent variable at the face, and
∑

f ∈ c

denotes a summation over all faces f bordering cell c.

This discretisation is applicable to arbitrary meshes. A necessary condition for stability is

given by the multidimensional Courant number (Weller and Shahrokhi, 2014),

Coc =
∆t
2Vc

∑

f ∈ c

|u · S f | (2.4)

such that, for all cells c in the domain, Coc is less than or equal to some constant that depends

upon the spatial and temporal discretisation. Hence, stability is constrained by the maximum

Courant number of any cell in the domain.

The accurate approximation of the dependent variable at the face, φF , is key to the overall

accuracy of the transport scheme. The cubicFit scheme and the multidimensional linear upwind

scheme differ in their approximations, and these approximation methods are described next.

Cubic fit transport scheme

The cubicFit scheme is based on the method-of-lines scheme by Weller and Shahrokhi (2014).

The value of the dependent variable at the face, φF , is approximated using a least-squares fit

over a stencil of surrounding known values. To introduce the approximation method, we will

consider how an approximate value is calculated for a face that is far away from the boundaries

of a two-dimensional uniform rectangular mesh. For any mesh, every interior face connects

two adjacent cells. The velocity direction at the face determines which of the two adjacent

cells is the upwind cell. Since the stencil is upwind-biased and asymmetric, two stencils must

be constructed for every interior face, and the appropriate stencil is chosen depending on the

velocity direction at each face for every time-step.

The upwind-biased stencil for a face f is shown in figure 2.1a. The wind at the face, u f , is

blowing from the upwind cell cu to the downwind cell cd . To obtain an approximate value at f ,

a polynomial least-squares fit is calculated using the stencil values. The stencil has 4 points in x
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y

x

(a)

φF

u f

φc

φu φd

(b)

φu
φd

φc

φF

u f

Figure 2.1: Upwind-biased stencils for faces far away from the boundaries of two-dimensional
(a) rectangular and (b) hexagon meshes. The stencil is used to fit a multidimensional polynomial
to cell centre values, φc, marked by grey circles, in order to approximate the value φF at the
face centroid marked by an open circle. φu and φd are the values at the centroids of the upwind
and downwind cells neighbouring the target face, drawn with a heavy line. The velocity vector
u f is prescribed at face f and determines the choice of stencil at each time-step.

and 3 points in y , leading to a natural choice of polynomial that is cubic in x and quadratic in

y ,

φ = a1 + a2 x + a3 y + a4 x2 + a5 x y + a6 y2 + a7 x3 + a8 x2 y + a9 x y2 . (2.5)

A least-squares approach is needed because the system of equations is overconstrained, with

12 stencil values but only 9 polynomial terms. The stencil geometry is expressed in a local

coordinate system with the face centroid as the origin so that the approximated value φF is

equal to the constant coefficient a1. The stencil is upwind-biased to improve numerical stability,

and the multidimensional cubic polynomial is chosen to improve accuracy in the direction of

flow (Leonard et al., 1993).

The remainder of this section generalises the approximation technique for arbitrary meshes

and describes the methods for constructing stencils, performing a least-squares fit with a suitable

polynomial, and ensuring numerical stability of the transport scheme.

Stencil construction

For every interior face, two stencils are constructed, one for each of the possible upwind cells.

Stencils are not constructed for boundary faces because values of φ at boundaries are calculated

from prescribed boundary conditions. For a given interior face f and upwind cell cu, we find

those faces that are connected to cu and ‘oppose’ face f . These are called the opposing faces.

The opposing faces for face f and upwind cell cu are determined as follows. Defining G to be

the set of faces other than f that border cell cu, we calculate the ‘opposedness’, Opp, between
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faces f and g ∈ G, defined as

Opp( f , g)≡ −S f · Sg

|S f |2
(2.6)

where S f and Sg are the surface area vectors pointing outward from cell cu for faces f and g

respectively. Using the fact that a · b= |a| |b| cos(θ ) we can rewrite equation (2.6) as

Opp( f , g) = −|Sg |
|S f |

cos(θ ) (2.7)

where θ is the angle between faces f and g. In this form, it can be seen that Opp is a measure

of the relative area of g and how closely it parallels face f .

The set of opposing faces, OF, is a subset of G, comprising those faces with Opp≥ 0.5, and

the face with the maximum opposedness. Expressed in set notation, this is

OF( f , cu)≡ {g : Opp( f , g)≥ 0.5} ∪ {g : max
g ∈ G
(Opp( f , g))} . (2.8)

On a rectangular mesh, there is always one opposing face g, and it is exactly parallel to the face

f such that Opp( f , g) = 1.

Once the opposing faces have been determined, the set of internal and external cells must

be found. The internal cells are those cells that are connected to the opposing faces. Note that cu

is always an internal cell. The external cells are those cells that share vertices with the internal

cells. Note that cd is always an external cell. Finally, the stencil boundary faces are boundary

faces having Dirichlet boundary conditions1 that share a vertex with the internal cells. Having

found these three sets, the stencil is constructed to comprise all internal cells, external cells and

stencil boundary faces.

Figure 2.2 illustrates a stencil construction for face f connecting upwind cell cu and down-

wind cell cd . The two opposing faces are denoted by thick dashed lines and the centres of the

three adjoining internal cells are marked by black circles. The stencil is extended outwards by

including the external cells that share vertices with the internal cells, where the vertices are

marked by black squares. A boundary at the far left has Dirichlet boundary conditions, and so

the four stencil boundary faces are also included in the stencil, where the boundary face centres

are marked by black triangles. The resultant stencil contains fourteen points.

1Boundary faces with Neumann boundary conditions would require extrapolated boundary values to be cal-
culated. This would create a feedback loop in which boundary values are extrapolated from interior values, then
interior values are transported using stencils that include boundary values. We have not considered how such an
extrapolation could be made consistent with the multidimensional polynomial reconstruction. Hence, boundary
faces with Neumann boundary conditions are excluded from the set of stencil boundary faces.
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Figure 2.2: A fourteen-point, upwind-biased stencil for face f connecting the pentagonal upwind
cell, cu, and the downwind cell cd . The dashed lines denote the two faces of cell cu that oppose
f , and black circles mark the centroids of the internal cells that are connected to these two
opposing faces. The stencil is extended outwards by including cells that share vertices with
the three internal cells, where black squares mark these vertices. Four stencil boundary faces,
marked by black triangles, are also included. The local coordinate system (x , y) has its origin at
the centroid of face f , marked by an open circle, with x normal to f and y perpendicular to x .

Least-squares fit

To approximate the value of φ at a face f , a least-squares fit is calculated from a stencil of

surrounding known values. First, we will show how a polynomial least-squares fit is calculated

for a face on a rectangular mesh. Second, we will make modifications to the least-squares fit

that are necessary for numerical stability.

For faces that are far away from the boundaries of a rectangular mesh, we fit the multidi-

mensional polynomial given by equation (2.5) that has nine unknown coefficients, a= a1 . . . a9,

using the twelve cell centre values from the upwind-biased stencil, φ = φ1 . . .φ12. This yields a

matrix equation
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(2.9)

which can be written as

Ba= φ . (2.10)

The rectangular matrix B has one row for each cell in the stencil and one column for each

term in the polynomial. B is called the stencil matrix, and it is constructed using only the mesh
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geometry. A local coordinate system is established that is a translation, rotation and rescaling

of the physical, Cartesian coordinate system: the origin is positioned at the centroid of face f ,

with x normal to the face and y perpendicular to x , and the distance between the origin and

the upwind cell centroid is one. The local coordinates (x i , yi) give the position of the centroid

of the ith cell in the stencil. A two-dimensional stencil is also used for the tests on spherical

meshes in section 2.4. In these tests, cell centres are projected perpendicular to a tangent plane

at the face centre. Previous studies found that results were largely insensitive to the projection

method (Skamarock and Gassmann, 2011; Lashley, 2002).

The unknown coefficients a are calculated using the pseudo-inverse, B+, found by singular

value decomposition,

a= B+φ . (2.11)

Recall that the approximate value φF is equal to the constant coefficient a1, which is a weighted

mean of φ,

a1 =
�

b+1,1 b+1,2 · · · b+1,12

��

φ1,φ2, · · · ,φ12

�ᵀ
(2.12)

where the weights b+1,1 . . . b+1,12 are the elements of the first row of B+. Note that the majority

of the least-squares fit procedure depends on the mesh geometry only. An implementation may

precompute the pseudo-inverse for each stencil during model initialisation, and only the first

row needs to be stored. Since each face has two possible stencils depending on the orientation

of the velocity relative to the face, the implementation stores two sets of weights for each

face. Knowledge of the values of φ is only required to calculate the weighted mean given by

equation (2.12), which is evaluated once per face per time-stage.

In the least-squares fit presented above, all stencil values contributed equally to the poly-

nomial fit. It is necessary for numerical stability that the polynomial fits the cells connected to

face f more closely than other cells in the stencil, as shown by Lashley (2002); Skamarock and

Menchaca (2010). To achieve this, we allow each cell to make an unequal contribution to the

least-squares fit. We assign an integer multiplier to each cell in the stencil, m= m1 . . . m12, and

multiply equation (2.10) by M= diag(m) to obtain

B̃a=Mφ (2.13)

where B̃=MB. The constant coefficient a1 is then calculated from the pseudo-inverse B̃+,

a1 = b̃+1 ·m ·φ (2.14)

where b̃+1 = b̃+1,1 . . . b̃+1,12 are the elements of the first row of B̃+. Again, a1 is a weighted mean

of φ, where the weights are now b̃+1 ·m. Values for m are chosen so that the cells connected to

face f make a greater contribution to the least-squares fit, as discussed later in section 2.1.
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Figure 2.3: Upwind-biased stencils for faces near the lower boundary of a rectangular x–z mesh,
with (a) a 3× 2 stencil for the face immediately adjacent to the lower boundary, and (b) a 3× 3
stencil for the face immediately adjacent to the face in (a). Each stencil belongs to the face
marked by a thick line. The local coordinate system is shown, having an x direction normal
to the face a y direction tangent to the face. For both stencils, attempting a least-squares fit
using the nine-term polynomial in equation (2.5) would result in an underconstrained problem.
There is no normal flow at the lower boundary.

For faces of a non-rectangular mesh, or faces that are near a boundary, the number of stencil

points and number of polynomial terms may differ: a stencil will have one or more cells and, for

two-dimensional meshes, its polynomial will have between one and nine terms. Additionally,

the polynomial cannot have more terms than its stencil has cells because this would lead to

an underconstrained system of equations. The procedure for choosing suitable polynomials is

discussed next.

Polynomial generation

The majority of faces on a uniform two-dimensional mesh have stencils with more than nine

cells. For example, a rectangular mesh has 12 points (figure 2.1a), and a hexagonal mesh has

10 points (figure 2.1b). In both cases, constructing a system of equations using the nine-term

polynomial in equation (2.5) leads to an overconstrained problem that can be solved using

least-squares. However, this is not true for faces near boundaries: stencils that have fewer than

nine cells (figure 2.3a) would result in an underconstrained problem, and stencils that have

exactly nine cells may lack sufficient information to constrain high-order terms. For example,

the stencil in figure 2.3b lacks sufficient information to fit the x3 term. In such cases, it becomes

necessary to perform a least-squares fit using a polynomial with fewer terms.

For every stencil, we find a set of candidate polynomials that do not result in an undercon-
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strained problem. In two dimensions, a candidate polynomial has some combination of between

one and nine terms from equation (2.5). There are two additional constraints that a candidate

polynomial must satisfy.

First, high-order terms may be included in a candidate polynomial only if the lower-order

terms are also included. More precisely, let

M(x , y) = x i y j : i, j ≥ 0 and i ≤ 3 and j ≤ 2 and i + j ≤ 3 (2.15)

be the set of all monomials of degree at most 3 in x , y. A subset S of M(x , y) is “dense” if,

whenever xa y b is in S, then x i y j is also in S for all 0 ≤ i ≤ a, 0 ≤ j ≤ b. For example,

the polynomial φ = a1 + a2 x + a3 y + a4 x y + a5 x2 + a6 x2 y is a dense subset of M(x , y), but

φ = a1+a2 x+a3 y+a4 x2 y is not because x2 y can be included only if x y and x2 are also included.

In total there are 26 dense subsets of the two-dimensional polynomial in equation (2.5).

Second, a candidate polynomial must have a stencil matrix B that is full rank. The matrix is

considered full rank if its smallest singular value is greater than 1× 10−9. Using a polynomial

with all nine terms and the stencil in figure 2.3b results in a rank-deficient matrix and so the

nine-term polynomial is not a candidate polynomial for that stencil.

The candidate polynomials are all the dense subsets of M(x , y) that have a cardinality greater

than one with a stencil matrix that is full rank. The final stage of the cubicFit transport scheme

selects a candidate polynomial and ensures that the least-squares fit is numerically stable.

Achieving numerical stability

So far, we have constructed a stencil and found a set of candidate polynomials. Applying a

least-squares fit to any of these candidate polynomials avoids creating an underconstrained

problem. The final stage of the transport scheme chooses a suitable candidate polynomial and

appropriate multipliers m so that the fit is numerically stable.

The approximated value φF is equal to a1 which is calculated from equation (2.14). The

value of a1 is a weighted mean of φ where w= b̃+1 ·m are the weights. If the cell centre values

φ are assumed to approximate a smooth field then we expect φF to be close to the values of φu

and φd , and expect φF to be insensitive to small changes in φ. When the weights w have large

magnitude then this is no longer true: φF becomes sensitive to small changes in φ which can

result in large, numerically unstable departures from the smooth field φ.

To avoid numerical instabilities, simplified, one-dimensional von Neumann analyses were

performed in order to impose stability conditions on the weights w. The first analysis uses a

two-cell approximation to derive separate stability conditions involving the upwind weight wu

and downwind weight wd . The second analysis uses three cells to derive a stability condition

that involves all weights in a stencil.
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The two-cell analysis starts with the conservation equation for a dependent variable φ that

is discrete-in-space and continuous-in-time

∂ φ j

∂ t
= −v

φR −φL

∆x
(2.16)

where v is the velocity, and the left and right fluxes, φL and φR, are weighted averages of the

neighbouring cell centres. Assuming that v is positive

φL = αuφ j−1 +αdφ j (2.17)

φR = βuφ j + βdφ j+1 (2.18)

where φ j−1,φ j ,φ j+1 are cell centre values, and j denotes a cell centre position x = j∆x where

∆x is a uniform mesh spacing. αu and βu are the upwind weights and αd and βd are the

downwind weights for the left and right fluxes respectively, and αu +αd = 1 and βu + βd = 1.

At a given time t = n∆t at time-level n and with a time-step ∆t, we assume a wave-like

solution with an amplification factor A, such that

φ
(n)
j = Anei jk∆x (2.19)

whereφ(n)j denotes a value ofφ at position j and time-level n. Using this to rewrite the left-hand

side of equation (2.16)

∂ φ j

∂ t
=
∂

∂ t

�

At/∆t
�

ei jk∆x =
ln A
∆t

Aneik j∆x (2.20)

hence equation (2.16) becomes

ln A
∆t
= − v
∆x

�

βu + βd eik∆x −αue−ik∆x −αd

�

(2.21)

ln A= −c (βu −αd + βd cos k∆x + iβd sin k∆x −αu cos k∆x + iαu sin k∆x) (2.22)

where the Courant number c = v∆t/∆x . Let ℜ = βu − αd + βd cos k∆x − αu cos k∆x and

ℑ= βd sin k∆x +αu sin k∆x , then

ln A= −c (ℜ+ iℑ) (2.23)

A= e−cℜe−i cℑ (2.24)

and the complex modulus of A is

|A|= e−cℜ = exp (−c (βu −αd + (βd −αu) cos k∆x)) . (2.25)

For stability we need |A| ≤ 1 and, imposing the additional constraints that αu = βu and αd = βd ,

then

(αu −αd) (1− cos k∆x)≥ 0 ∀k∆x (2.26)
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and, given 0≤ 1− cos k∆x ≤ 2, then

αu −αd ≥ 0 . (2.27)

Additionally, we do not want more damping than a first-order upwind scheme (where αu = βu =

1, αd = βd = 0), having an amplification factor Aup, so we need |A| ≥ |Aup|, hence

exp (−c (αu −αd) (1− cos k∆x))≥ exp (−c (1− cos k∆x)) ∀k∆x (2.28)

therefore

αu −αd ≤ 1 . (2.29)

Now, knowing that αu +αd = 1 (or αd = 1−αu) then, using equations (2.27) and (2.29), we

obtain the first two stability conditions,

0.5≤ αu ≤ 1 and (2.30)

0≤ αd ≤ 0.5 . (2.31)

The three-cell analysis starts again from equation (2.16) but this time approximate φL and

φR using three cell centre values,

φL = αuuφ j−2 +αuφ j−1 +αdφ j (2.32)

φR = αuuφ j−1 +αuφ j +αdφ j+1 (2.33)

having used the same weights αuu, αu and αd for both left and right fluxes. Substituting equa-

tion (2.19) into equation (2.16) we find

A= exp
�−c

�

αuu

�

e−ik∆x − e−2ik∆x
�

+αu

�

1− e−ik∆x
�

+αd

�

eik∆x − 1
���

(2.34)

so that, if the complex modulus |A| ≤ 1 then

αu −αd + (αuu −αu +αd) cos k∆x −αuu cos 2k∆x ≥ 0 . (2.35)

Let y = cos k∆x then

αu −αd + (αuu −αu +αd)y −αuu(2y2 − 1)≥ 0. (2.36)

For stability, equation (2.36) should hold for y ∈ [−1, 1]. The minumum is either in the interval

−1< y < 1, or it is at y = −1 or y = 1. When y = 1 then, trivially, 0≥ 0. When y = −1 then

αu −αd ≥ αuu (2.37)
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If the minimum is in the interval −1< y < 1 then the turning points of equation (2.36) can be

found by differentiation such that

αuu(1− 4y)−αu +αd = 0 (2.38)

hence

y =
αuu −αu +αd

4αuu
. (2.39)

Since −1< y < 1 and the quadratic equation (2.36) must have αuu < 0 for the turning point to

be a minimum, then

5αuu < αu −αd < −3αuu . (2.40)

The left-hand side of equation (2.36) is zero when y = 1, and so any minimum in the interval

−1 < y < 1 must be less than zero, making the scheme unstable. Hence, the minimum of

equation (2.36) must occur for y ≤ 1 or y ≥ 1, so

αu −αd ≥ −3αuu. (2.41)

which is more permissive than the alternative, αu − αd ≤ 5αuu. Guided by equations (2.27),

(2.37) and (2.41), we choose the final stability condition

αu −αd ≥max
p ∈ P
|αp| (2.42)

where the peripheral cells P is the set of all stencil cells except for the upwind cell and downwind

cell, and αp is the weight for a given peripheral cell p.

The three stability conditions (equations 2.30, 2.31 and 2.42) are used to impose three

stability conditions on the weights w,

0.5≤ wu ≤ 1 (2.43a)

0≤ wd ≤ 0.5 (2.43b)

wu −wd ≥max
p ∈ P
(|wp|) (2.43c)

where wu and wd are the weights for the upwind and downwind cells respectively. The peripheral

points P are the cells in the stencil that are not the upwind or downwind cells, and wp is the

weight for a given peripheral point p. The upwind, downwind and peripheral weights sum to

one such that wu + wd +
∑

p∈P wp = 1. Inspection of stencil weights for stable and unstable

numerical experiments confirms that equation (2.43) provides suitable stability conditions to

achieve a stable transport scheme on arbitrary meshes.
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The stability of the one-dimensional transport equation discretised in space and time could

be analysed using existing techniques (Baldauf, 2008), but we have only analysed the spatial

stability of the cubicFit scheme. Numerical experiments presented in section 4.2 demonstrate

that the cubicFit scheme is generally insensitive to the time-step, provided that it is below a

stability limit.

Stabilisation procedure

Equipped with three stability conditions in equation 2.43, we develop a stabilisation procedure

that achieves numerical stability on arbitrary meshes. The stabilisation procedure comprises

three steps. In the first step, the set of candidate polynomials is sorted in preference order so

that candidates with more terms are preferred over those with fewer terms. If there are multiple

candidates with the same number of terms, the minimum singular value of B is calculated for

each candidate, and an ordering is imposed such that the candidate with the larger minimum

singular value is preferred. This ordering ensures that the preferred candidate is the highest-

order polynomial with the most information content.2

In the second step, the most-preferred polynomial is taken from the list of candidates and the

multipliers are assigned so that the upwind cell and downwind cell have multipliers mu = 210 and

md = 210 respectively, and all peripheral points have multipliers mp = 1. These multipliers are

very similar to those used by Lashley (2002), leading to a well-conditioned matrix B̃ and a least-

squares fit in which the polynomial passes almost exactly through the upwind and downwind

cell centre values.

In the third step, we calculate the weights w and evaluate them against the stability condi-

tions given in equation (2.43). If any condition is violated, the value of md is halved and the

conditions are evaluated with the new weights. This step is repeated until the weights satisfy the

stability conditions, or md becomes smaller than one. In practice, the conditions are satisified

when md is either small (between 1 and 4) or equal to 210. The upwind multiplier mu is fixed

at 210 and the peripheral multipliers mp are fixed at 1. If the conditions are still not satisfied,

then we start again from the second step with the next polynomial in the candidate list.

Finally, if no stable weights are found for any candidate polynomial, we revert to an upwind

scheme such that wu = 1 and all other weights are zero. In our experiments we have not

encountered any stencil for which this last resort is required. Furthermore, our experiments show

that the stabilisation procedure only modifies the least squares fit for stencils near boundaries

2Note that singular values are used for two purposes: first, to test if the matrix B is full-rank and, second, to impose
an ordering on candidates. We have used the minimum singular value, σmin(B), for both purposes. Alternatively,
we could use the condition number, cond(B), which is the ratio of smallest to largest singular value. Experiments
revealed that only the candidate ordering was sensitive to the choice of σmin or cond. The most suitable choices of
singular value calculations could be explored in future.
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Figure 2.4: One-dimensional least-squares fits with a stencil of five points using (a) a cubic
polynomial with multipliers mu = 1024, md = 1024 and mp = 1, (b) a quadratic polynomial
with the same multipliers, and (c) a quadratic polynomial with multipliers mu = 1024, md = 1
and mp = 1. Notice that the curves in (a) and (b) fit almost exactly through the upwind and
downwind points immediately adjacent to the y-axis, but in (c) the curve fits almost exactly only
through the upwind point immediately to the left of the y-axis. The point data are labelled with
their respective weights. Points that have failed one of the stability conditions in equation (2.43)
are marked in red with italicised labels. The upwind point is located at (−1,1.8) and the
downwind point at (0.62,1.9), and the peripheral points are at (−2.8,2.4), (−1.6,2.7) and
(−1.2,2.2). The stabilisation procedure (section 2.1) calculates weights using only x positions,
and values of φ are included here for illustration only.

and for stencils in distorted mesh regions. For stencils in the interior of a uniform rectangular

mesh, the least squares fit includes all terms in equation (2.5) with mu = md = 210.

To illustrate the stabilisation procedure, figure 2.4a presents a one-dimensional example of

a cubic polynomial fitted through five points, with the weight at each point printed beside it.

The stabilisation procedure uses only the x positions of these points and does not use the values

of φ themselves. The φ values are included here for illustration only. Hence, for a given set of

x positions, the same set of weights are chosen irrespective of the φ values.

For a one-dimensional cubic polynomial fit, the list of candidate polynomials in preference

order is

φ = a1 + a2 x + a3 x2 + a4 x3 , (2.44)

φ = a1 + a2 x + a3 x2 , (2.45)

φ = a1 + a2 x , (2.46)

φ = a1 . (2.47)

We begin with the cubic equation (2.44). The multipliers are chosen so that the polynomial
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passes almost exactly through the upwind and downwind points that are immediately to the

left and right of the y-axis respectively. The stability condition on the upwind point is violated

because wu = 1.822> 1 (equation 2.43a). Reducing the downwind multiplier does not help to

satisfy the stability condition, so we start again with the quadratic equation (2.45), and the new

fit is presented in figure 2.4b. Again, the multipliers are chosen to force the polynomial through

the upwind and downwind points, but this violates the stability condition on the downwind

point because wd = 0.502> 0.5 (equation 2.43b). This time, however, stable weights are found

by reducing md to one (figure 2.4c) and these are the weights that will be used to approximate

φF , where the polynomial intercepts the y-axis.

Future extension to three dimensions

All the procedures used in the cubicFit scheme generalise to three dimensions. The stencil

construction procedure described in section 2.1 creates a stencil with 12 cells for a face in the

interior of a two-dimensional rectangular mesh. In three dimensions, the same procedure creates

a stencil with 3× 12= 36 cells. A three-dimensional stencil has three times as many cells as its

two-dimensional counterpart if the mesh has prismatic cells arranged in columns. Hence, the

computational cost during integration increases three-fold when moving from two dimensions

to three dimensions.

To extend the least squares fit to three dimensions, the two-dimensional polynomial in

equation (2.5) is replaced with its three-dimensional counterpart,

φ = a1 + a2 x + a3 y + a4z + a5 x2 + a6 x y + a7 y2 + a8 xz + a9 yz + a10z2+

a11 x3 + a12 x2 y + a13 x y2 + a14 x2z + a15 xz2 + a16 yz2 + a17 y2z + a18 x yz . (2.48)

The procedure for generating candidate polynomials described in section 2.1 results in 26 dense

subsets in two dimensions and 842 dense subsets in three dimensions. Note that the combina-

torial explosion of dense subsets in three dimensions does not increase the computational cost

during integration.

The stabilisation procedure described in section 2.1 requires further numerical experiments

to verify that it is sufficient for three-dimensional flows and arbitrary polyhedral meshes. An

initial three-dimensional test with uniform flow and a uniform Cartesian mesh obtained a nu-

merically stable result. For stencils in the interior of the domain, the least squares fit includes all

polynomial terms in equation (2.48) with mu = md = 210. The stabilisation procedure does not

modify the least squares fit for these stencils, but we have not explored the three-dimensional

extension of the cubicFit scheme any further.
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Multidimensional linear upwind transport scheme

The multidimensional linear upwind scheme, called “linearUpwind” hereafter, is documented

here since it provides a baseline accuracy for the experiments that follow. The approximation

of φF is calculated using a gradient reconstruction,

φF = φu +∇c φ ·
�

x f − xc

�

(2.49)

where φu is the upwind value of φ, and x f and xc are the position vectors of the face centroid

and cell centroid respectively. The gradient ∇c φ is calculated using Gauss’s theorem:

∇c φ =
1
Vc

∑

f ∈ c

eφF S f (2.50)

where eφF is linearly interpolated from the two neighbouring cells of face f . The resulting stencil

comprises all cells sharing a face with the upwind cell, including the upwind cell itself. For a face

in the interior of a two-dimensional rectangular mesh, the stencil for the linearUpwind scheme

is a ‘+’ shape with 5 cells. On the same mesh, the stencil for the cubicFit scheme is more than

twice the size with 12 cells. For cells adjacent to boundaries having zero gradient boundary

conditions, the boundary value is set to be equal to the cell centre value before equation (2.50)

is evaluated. This implementation of the multidimensional linear upwind scheme is included

with OpenFOAM (CFD Direct, 2018b).

2.2 Horizontal transport over mountains

A two-dimensional transport test was developed by Schär et al. (2002) to study the effect of

terrain-following coordinate transformations on numerical accuracy. In this standard test, a

tracer is positioned aloft and transported horizontally over wave-shaped mountains. When

terrain-following meshes are used, this test challenges transport schemes because the tracer

must cross mesh layers, which acts to reduce numerical accuracy (Schär et al., 2002). Here

we use a more challenging variant of the test that has steeper mountains and highly-distorted

terrain-following meshes. Numerical convergence and numerical error structures are compared

using the linearUpwind and cubicFit transport schemes on terrain-following meshes and cut cell

meshes.

The domain is defined on a rectangular x–z plane that is 300 km wide as measured between

the outermost cell centres, and 25 km high as measured between upper and lower boundary

edges. Boundary conditions are imposed on the tracer density φ such that φ = 0kg m−3 at the

inlet boundary, and a zero normal gradient ∂ φ/∂ n= 0kg m−4 is imposed at the outlet boundary.

There is no normal flow at the lower and upper boundaries.
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The terrain is wave-shaped, specified by the terrain height h such that

h(x) = h? cos2(αx) (2.51a)

where

h?(x) =

¨

h0 cos2(β x) if |x |< a,

0 otherwise,
(2.51b)

where a = 25 km is the mountain envelope half-width, h0 = 6km is the maximum mountain

height, λ = 8km is the wavelength, α = π/λ and β = π/(2a). Note that, in order to make

this test more challenging, the mountain height h0 is double the mountain height used by Schär

et al. (2002).

A basic terrain-following (BTF) mesh is constructed by using the terrain profile to modify

the uniform rectangular mesh. The BTF method uses a linear decay function so that mesh layers

become horizontal at the top of the model domain (Gal-Chen and Somerville, 1975),

z(x) = (H − h(x)) (z?/H) + h(x) (2.52)

where z is the geometric height, H is the height of the domain, h(x) is the surface elevation and

z? is the computational height of a mesh layer. If there were no terrain then h= 0 and z = z?.

A velocity field is prescribed with uniform horizontal flow aloft and zero flow near the

ground,

u(z) = u0















1 if z ≥ z2,

sin2
�

π
2

z−z1
z2−z1

�

if z1 < z < z2,

0 otherwise,

(2.53)

where u0 = 10 ms−1, z1 = 7 km and z2 = 8km. This results in uniform horizontal flow above

8 km and zero flow at 7 km and below.

The discrete velocity field is defined using a streamfunction, Ψ. Given that u = −∂Ψ/∂ z,

the streamfunction is found by vertical integration of the velocity profile,

Ψ(z) = −u0

2















(2z − z1 − z2) if z > z2,

z − z1 − z2−z1
π sin

�

π
z−z1
z2−z1

�

if z1 < z ≤ z2,

0 otherwise.

(2.54)

A tracer with density φ is positioned upstream above the height of the terrain. It has the

shape

φ(x , z) = φ0







cosn
�

πr
2

�

if r ≤ 1,

0 otherwise,
(2.55a)
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with radius r given by

r =

√

√

√

�

x − x0

Ax

�2

+
�

z − z0

Az

�2

(2.55b)

where Ax = 25 km, Az = 3 km are the horizontal and vertical half-widths respectively, φ0 =

1kg m−3 is the maximum density of the tracer, and the exponent n= 2. At t = 0s, the tracer is

centred at (x0, z0) = (−50km, 12km) so that the tracer is upwind of the mountain, in the region

of uniform flow above z2.

Tests are integrated for 10 000 s using a time-step chosen for each mesh so that the maximum

Courant number is about 0.4. This choice yields a time-step that is well below any stability

limit, as recommended by Lauritzen et al. (2012). By the end of integration the tracer is

positioned downwind of the mountain. The analytic solution at t = 10000 s is centred at

(x0, z0) = (50 km,12 km) with its shape unchanged from the initial condition.

To measure numerical convergence, a range of mesh spacings are chosen so that∆x:∆z = 2:1

to match the original test specification by Schär et al. (2002). Tests were performed using the

linearUpwind and cubicFit schemes on BTF meshes and cut cell meshes with mesh spacings

between ∆x = 250 m and ∆x = 5000 m. Error norms are calculated by subtracting the analytic

solution from the numerical solution,

`2 =

√

√

√

∑

c (φ −φT )
2Vc

∑

c

�

φ2
TVc

� (2.56)

`∞ =
maxc|φ −φT |

maxc|φT |
(2.57)

where φ is the numerical value, φT is the analytic value,
∑

c denotes a summation over all cells

c in the domain, and maxc denotes a maximum value of any cell. The linearUpwind and cubicFit

schemes are second-order convergent in the `2 norm (figure 2.5a) and `∞ norm (figure 2.5b)

at all but the coarsest mesh spacings where errors are saturated for both schemes.

We can estimate the computational cost of the cubicFit scheme relative to the linearUpwind

scheme by considering the mesh spacing necessary for a given `2 error, and the size of the stencil

used by each scheme. The cubicFit scheme achieves a given `2 error using a mesh spacing that is

almost twice as coarse as that needed by the linearUpwind scheme. Doubling the mesh spacing

results in a coarser mesh with four times fewer cells because the ∆x :∆z aspect ratio is fixed.

Recall that the stencil for the cubicFit scheme has about twice as many cells as the stencil for

the linearUpwind scheme. Hence, for a given `2 error, the computational cost of the cubicFit

scheme per time-stage is about half the computational cost of the linearUpwind scheme.

Next, we examine the structure of numerical errors using the linearUpwind and cubicFit

transport schemes on BTF and cut cell meshes with ∆x = 1000m and ∆z = 500 m. To obtain a
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Figure 2.5: Numerical convergence of the two-dimensional tracer transport tests over mountains
using (a, b) horizontal and (c, d) terrain-following velocity fields. `2 errors (equation 2.56)
and `∞ errors (equation 2.57) are marked at mesh spacings between ∆x = 5000m and ∆x =
250m using linearUpwind and cubicFit transport schemes on basic terrain-following and cut
cell meshes.
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Figure 2.6: Tracer contours at the end of integration for the two-dimensional tracer transport
tests over mountains using (a, b, c, d) horizontal and (e, f, g, h) terrain-following velocity
fields. The numerical solution, marked with solid lines, and the analytic solution, marked with
dashed lines, are plotted every 0.1. Tracer contours overlay a colour error field, calculated by
subtracting the analytic solution from the numerical solution. Only the lowest 20 km in the lee
of the mountain is plotted. The entire domain is 300 km wide and 25 km high.
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maximum Courant number of about 0.4, we choose ∆t = 40 s on the cut cell mesh where the

flow is aligned with mesh layers and there are no fluxes through upper and lower cell faces.

Since there is no flow below z = 7 km, the time-step is not constrained by small, cut cells next to

the lower boundary. On the BTF mesh, ∆t is only 8 s because the flow is misaligned with mesh

layers, with fluxes through all four faces of cells above sloping terrain.

The highly-distorted BTF mesh presents a particular challenge to the linearUpwind scheme

with the final numerical solution, marked by solid lines, losing its correct shape and maximum

intensity compared to the analytic solution marked by dashed lines (figure 2.6a). The linearUp-

wind scheme produces a much more accurate solution on the cut cell mesh, with only small

phase errors apparent in figure 2.6b. Accuracy is much improved using the cubicFit scheme: on

the BTF mesh, shape and maximum intensity are similar to the analytic solution (figure 2.6c)

and, on the cut cell mesh, numerical errors are so small they are not visible (figure 2.6d). The

numerical and analytic contours overlay a colour error field that reveals horizontal streaks of

error on the BTF mesh (figure 2.6a, 2.6c) that were generated above the steepest mountain

peaks before becoming trapped in the region of zero flow below z = 7 km.

The horizontal transport test demonstrates that the cubicFit scheme is second-order conver-

gent in the domain interior irrespective of mesh distortions. Numerical errors are largest on

terrain-following meshes, due either to misalignment of the flow with mesh layers, or to mesh

distortions. In the next section, we propose a new test in order to identify the primary cause of

these numerical errors.

2.3 Transport in a terrain-following velocity field

In the horizontal transport test, results were least accurate on the BTF mesh where the mesh

was most distorted and flow was misaligned with mesh layers. Here, we formulate a new tracer

transport test in which the velocity field is everywhere tangential to the basic terrain-following

mesh layers. The flow is then aligned with the BTF mesh layers, but the cells in the linearUpwind

and cubicFit stencils are not uniformly distributed because the BTF mesh is distorted. Conversely,

the flow is misaligned with the cut cell mesh layers but, except for cut cells next to the ground,

the cut cell mesh is undistorted. This test determines whether the primary source of numerical

error is due to mesh distortions or misalignment of the flow with mesh layers.

The domain size, mountain profile, initial tracer profile and boundary conditions are the same

as those in the horizontal transport test in section 2.2. The discrete velocity field is calculated

using a streamfunction Ψ in the same way as the horizontal transport test. Here, we define a

different streamfunction that yields a velocity field that follows the BTF mesh layers given by
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equation (2.52) such that

Ψ(x , z) = −u0H1
z − h

H1 − h
(2.58)

where u0 = 10 ms−1, which is the horizontal velocity where h(x) = 0. The velocity field follows

the lower boundary and becomes entirely horizontal at H1 = H = 25 km, hence, there is no

normal flow at the lower and upper boundaries. In the domain interior, the flow is predominantly

horizontal, with non-zero vertical velocities only above sloping terrain.

The horizontal and vertical components of velocity, u and w, are given by

u= −∂Ψ
∂ z
= u0

H1

H1 − h
, w=

∂Ψ

∂ x
= u0H1

dh
dx

H1 − z

(H1 − h)2
, (2.59)

dh
dx
= −h0

�

β cos2 (αx) sin (2β x) +α cos2 (β x) sin (2αx)
�

. (2.60)

Unlike the horizontal transport test, the velocity field presented here extends from the top of

the domain all the way to the ground.

An analytic solution at 10 000 s is obtained by calculating the new horizontal position of the

tracer. Integrating along the trajectory yields t, the time taken to move from the left side of the

mountain at −a, to the right side of the mountain at a,

dt = dx/u(x) (2.61)

t =

∫ a

−a

H1 − h(x)
u0H1

dx (2.62)

t =
2a
u0
− h0

16u0H1

�

4x +
sin 2(α+ β)x

α+ β
+

sin2(α− β)x
α− β + 2

�

sin2αx
α

+
sin 2β x
β

��a

−a
(2.63)

Because the velocity field is non-divergent, the flow accelerates over mountain ridges and the

tracer travels 2997.162 m further compared to the tracer in a purely horizontal velocity field.

The vertical tracer position is unchanged downwind of the mountains because flow is parallel

to the mesh layers.

To enable comparisons with the horizontal transport test, results are obtained using the

linearUpwind and cubicFit transport schemes on BTF and cut cell meshes with ∆x = 1000 m

and ∆z = 500m. To obtain a maximum Courant number of about 0.4, we choose ∆t = 25 s on

the BTF mesh where flow is aligned with mesh layers. The cut cell mesh suffers from the small

cell problem, having a more stringent time-step constraint of ∆t = 8 s. Recall that, in this test,

there is flow everywhere in the domain, and it is flow through arbitrarily small cut cells that

imposes the more stringent time-step constraint.

Figure 2.7 shows results using the cubicFit scheme on the BTF mesh, illustrating the evolution

of the tracer with snapshots plotted every 5000 s. At t = 5000 s, the tracer is distorted by
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Figure 2.7: Tracer contours transported above mountains in a terrain-following velocity field at
t = 0s, 5000 s, and 10 000 s using the cubicFit transport scheme on a BTF mesh. The analytic
solution at t = 10000 s is plotted with dashed contours. All contour intervals are 0.1. The
terrain profile is shown immediately above the x axis. The region highlighted in orange marks
the region plotted in the panels of figure 2.6. Only the central 200 km of the domain is shown.
The entire domain is 300 km wide and 25 km high.

the terrain-following velocity field but, by t = 10 000s, the tracer has correctly returned to

its original shape, with some phase errors apparent when comparing the numerical solution

(solid contours) with the analytic solution (dashed contours). The region highlighted in orange

corresponds to the region plotted in figure 2.6, where tracer contours and numerical errors are

plotted at t = 10000 s.

Unlike the horizontal transport test, results are most accurate on the BTF mesh (linearUp-

wind, figure 2.6e; cubicFit, figure 2.6g) and least accurate on the cut cell mesh (linearUpwind,

figure 2.6f; cubicFit, figure 2.6h). Hence, we conclude that the accuracy of the transport schemes

depends upon alignment of the flow with mesh layers, and accuracy is mostly unaffected by

mesh distortions. The error structures on the cut cell mesh in this test (2.6f, 2.6h) are similar to

the error structures on the BTF mesh in the horizontal transport test (2.6a, 2.6c), and the phase

error using the linearUpwind scheme on the BTF mesh (2.6e) closely resembles the error on the

cut cell mesh in the horizontal transport test (2.6b).

Perhaps surprisingly, errors are slightly larger using the cubicFit scheme on the BTF mesh

(2.6g) compared to those obtained using the linearUpwind scheme (2.6e). At finer mesh spacings,

however, cubicFit is more accurate on BTF and cut cell meshes in both the `2 norm (figure 2.5c)

and `∞ norm (figure 2.5d). Once again, both transport schemes are second-order convergent
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irrespective of mesh distortions or misalignment of the flow with mesh layers.

In both horizontal and terrain-following transport tests, which are both variations on the

standard test case by Schär et al. (2002), the linearUpwind and cubicFit transport schemes are

second-order convergent irrespective of mesh distortions or misalignment of the flow with mesh

layers. Together, the horizontal and terrain-following transport tests demonstrate that numerical

accuracy depends primarily on the alignment of the flow with mesh layers.

2.4 Deformational flow on a sphere

The tests presented so far have used flows that are mostly uniform on meshes that are based on

rectangular cells. To ensure that the cubicFit transport scheme is suitable for complex flows on a

variety of meshes, we use a standard test of deformational flow on a spherical Earth, as specified

by Lauritzen et al. (2012). Results are compared between the linearUpwind and cubicFit schemes

using hexagonal-icosahedral meshes and cubed-sphere meshes. Hexagonal-icosahedral meshes

are constructed by successive refinement of a regular icosahedron following the approach by

Thuburn et al. (2014); Heikes and Randall (1995a,b) without any mesh twisting. Cubed-sphere

meshes are constructed using an equi-distant gnomic projection of a cube having a uniform

Cartesian mesh on each panel (Staniforth and Thuburn, 2012).

Following appendix A9 in Lauritzen et al. (2014), the average equatorial spacing ∆λ is used

as a measure of mesh spacing. It is defined as

∆λ= 360◦
∆x

2πRe
(2.64)

where ∆x is the mean distance between cell centres and Re = 6.3712× 106 m is the radius of

the Earth.

The deformational flow test specified by Lauritzen et al. (2012) comprised six elements:

1. a convergence test using a Gaussian-shaped tracer

2. a “minimal” resolution test using a cosine bell-shaped tracer

3. a test of filament preservation

4. a test using a “rough” slotted cylinder tracer

5. a test of correlation preservation between two tracers

6. a test using a divergent velocity field
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We assess the cubicFit scheme using the first two tests only. We do not consider filament preser-

vation, correlation preservation, or the transport of a “rough” slotted cylinder because no shape-

preserving filter has yet been developed for the cubicFit scheme. Stable results were obtained

when testing the cubicFit scheme using a divergent velocity field, but no further analysis is made

here.

The first deformational flow test uses an infinitely smooth initial tracer that is transported in

a non-divergent, time-varying, rotational velocity field. The velocity field deforms two Gaussian

‘hills’ of tracer into thin vortical filaments. Half-way through the integration the rotation reverses

so that the filaments become circular hills once again. The analytic solution at the end of

integration is identical to the initial condition. A rotational flow is superimposed on a time-

invariant background flow in order to avoid error cancellation. The non-divergent velocity field

is defined by the streamfunction Ψ,

Ψ(λ,θ , t) =
10Re

T
sin2

�

λ′
�

cos2 (θ ) cos
�πt

T

�

− 2πRe

T
sin (θ ) (2.65)

where λ is a longitude, θ is a latitude, λ′ = λ − 2πt/T , and T = 12 days is the duration of

integration. The time-step is chosen such that the maximum Courant number is about 0.4.

The initial tracer density φ is defined as the sum of two Gaussian hills,

φ = φ1(λ,θ ) +φ2(λ,θ ) . (2.66)

An individual hill φi is given by

φi(λ,θ ) = φmax exp

�

−b
� |x− xi|

Re

�2�

(2.67)

where φmax = 0.95 kgm−3 and b = 5. The Cartesian position vector x = (x , y, z) is related to

the spherical coordinates (λ,θ ) by

(x , y, z) = (Re cosθ cosλ, Re cosθ sinλ, Re sinθ ) . (2.68)

The centre of hill i is positioned at xi . In spherical coordinates, two hills are centred at

(λ1,θ1) = (5π/6, 0) , (2.69)

(λ2,θ2) = (7π/6, 0) . (2.70)

The results in figure 2.8 are obtained using the cubicFit scheme on a hexagonal-icosahedral

mesh with ∆λ = 0.542◦. The initial Gaussian hills are shown in figure 2.8a. At t = T/2 the

tracer has been deformed into an S-shaped filament (figure 2.8b). By t = T the tracer has almost

returned to its original distribution except for some slight distortion and diffusion that are the

result of numerical errors (figure 2.8c).
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Figure 2.8: Tracer fields for the deformational flow test using initial Gaussian hills. The tracer
is deformed by the velocity field before the rotation reverses to return the tracer to its original
distribution: (a) the initial tracer distribution at t = 0s; (b) by t = T/2 the Gaussian hills are
stretched into a thin S-shaped filament; (c) at t = T the tracer resembles the initial Gaussian
hills except for some distortion and diffusion due to numerical errors. Results were obtained
with the cubicFit scheme on a hexagonal-icosahedral mesh with an average equatorial mesh
spacing of ∆λ= 0.542◦.
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Figure 2.9: Numerical convergence of the deformational flow test on the sphere using initial
Gaussian hills. `2 errors (equation 2.56) and `∞ errors (equation 2.57) are marked at mesh
spacings between 8.61◦ and 0.271◦ using the linearUpwind scheme (dotted lines) and the
cubicFit scheme (solid lines) on hexagonal-icosahedral meshes and cubed-sphere meshes.
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To determine the order of convergence and relative accuracy of the linearUpwind and cubicFit

schemes, the same test was performed at a variety of mesh spacings betweeen ∆λ= 8.61◦ and

∆λ= 0.271◦ on hexagonal-icosahedral meshes and cubed-sphere meshes. The results are shown

in figure 2.9. The solution is slow to converge on coarser meshes, and this behaviour agrees

with the results from Lauritzen et al. (2012). Both linearUpwind and cubicFit schemes achieve

second-order convergence at finer mesh spacings. For any given mesh type and mesh spacing,

the cubicFit scheme is more accurate than the linearUpwind scheme. Results are more accurate

using hexagonal-icosahedral meshes compared to cubed-sphere meshes. It is not known whether

the larger errors on cubed-sphere meshes are due to mesh non-uniformities at panel corners but

there is no evidence of grid imprinting in the error fields (not shown).

A slightly more challenging variant of the same test is performed using a quasi-smooth tracer

field defined as the sum of two cosine bells,

φ =















b+ cφ1(λ,θ ) if r1 < r,

b+ cφ2(λ,θ ) if r2 < r,

b otherwise,

(2.71)

where b = 0.1, c = 0.9, r = Re/2 and an individual hill φi is given by

φi =







φmax
2

�

1+ cos
�πri

r

��

if ri < r,

0 otherwise,
(2.72)

where φmax = 1 and ri is the great circle distance between the centre point (λi ,θi) and point

(λ,θ ) such that

ri(λ,θ ) = Re arccos (sinθi sinθ + cosθi cosθ cos (λ−λi)) . (2.73)

The velocity field is the same as before. This test is used to determine the “minimal” resolution

∆λm, which is specified by Lauritzen et al. (2012) as the coarsest mesh spacing for which

`2 ≈ 0.033. Hence, a transport scheme that achieves a larger minimal resolution is more

accurate than one that achieves a smaller minimal resolution.

The minimal resolution for the cubicFit scheme on a hexagonal-icosahedral mesh is about

∆λm = 0.3◦. Tests were not performed at mesh spacings finer than ∆λ = 0.271◦ but approx-

imate minimal resolutions have been extrapolated from the second-order convergence that is

found at fine mesh spacings. These minimal resolutions are presented in table 2.1 along with a se-

lection of transport schemes having similar minimal resolutions from the model intercomparison

by Lauritzen et al. (2014).

The series of deformational flow tests presented here demonstrate that the cubicFit scheme

is suitable for transport on spherical meshes based on quadrilaterals and hexagons. The cubicFit
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Transport scheme Mesh type Minimal resolution (◦)

linearUpwind Cubed-sphere 0.15
FARSIGHT, grid-point semi-Lagrangian

(White and Dongarra, 2011)
Cubed-sphere 0.1875

linearUpwind Hexagonal-icosahedral 0.2
SLFV-SL, swept-area scheme

(Miura, 2007)
Hexagonal-icosahedral 0.25

cubicFit Cubed-sphere 0.25
cubicFit Hexagonal-icosahedral 0.3
ICON-FFSL, swept-area scheme

(Miura, 2007)
Triangular-icosahedral 0.42

Table 2.1: Minimal resolutions for the cubicFit and linearUpwind schemes in the test of deforma-
tional flow using cosine bells. Italicised values have been extrapolated using the second-order
convergence obtained at coarser mesh spacings. For comparison with existing models, some re-
sults are also included for unlimited versions of the transport schemes from the intercomparison
by Lauritzen et al. (2014).

scheme is largely insensitive to the mesh type, and results are more accurate compared to the

linearUpwind scheme for a given mesh type and mesh spacing. Neither scheme requires special

treatment at the corners of cubed-sphere panels.



3 High-order transport for arbitrary meshes

Highlights

• The new highOrderFit transport scheme is third-order convergent or higher on dis-

torted and undistorted meshes

• During integration, the highOrderFit scheme has the same computational cost as the

cubicFit scheme, only requiring m multiplies per face per time-stage using a stencil

of m cells

• High-order ‘k-exact’ polynomial reconstructions are obtained by calculating high-order

volume and surface moments exactly

Atmospheric models are using increasingly fine meshes to make more accurate forecasts,

but high-order numerical schemes offer another possible route to improving accuracy. Choos-

ing a higher-order scheme can be more computationally efficient than choosing a finer mesh

(Waruszewski et al., 2018), and numerical experiments performed by Ullrich (2014) to compare

the effective resolution of transport schemes identify third- or fourth-order schemes as the ‘sweet

spot’ where computational efficiency is maximised.

A high-order transport scheme is ordinarily defined as one with a formal accuracy greater

than second-order. The order of convergence observed in numerical experiments may be less

than the formal order of accuracy if the transported field is insufficiently smooth, and strong

gradients in the form of weather fronts and temperature inversions mean that atmospheric fields

are generally not smooth enough to obtain high-order convergence (Holdaway et al., 2008).

Even if high-order convergence is unattainable, high-order schemes offer other advantages over

second-order schemes: high-order schemes can reduce dispersion and diffusion errors (Ullrich

37
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and Jablonowski, 2012; Waruszewski et al., 2018), reduce grid imprinting (McCorquodale et al.,

2015), and increase the effective resolution of the scheme (Ullrich, 2014).

High-order schemes are often formulated by introducing additional degrees of freedom

within each cell. Such schemes are called ‘compact schemes’ because sub-grid reconstructions

are performed within each cell, only requiring data exchange with immediately adjacent cells.

Hence, compact schemes have near-optimal parallel scalability, making them attractive for mas-

sively parallel atmospheric simulations (Ullrich, 2014). Discontinuous Galerkin (DG) schemes

belong to the class of compact schemes, and DG schemes have been tried in some atmospheric re-

search models (Nair et al., 2005; Giraldo and Restelli, 2008). High-order DG schemes prognose

values at Gauss points within each cell in order to approximate integral values using Gaussian

quadrature. The position of Gauss points can be straightforwardly calculated for tetrahedral and

hexahedral reference cells, but no straightforward method is available for arbitrary polyhedra

(Costa et al., 2017). Furthermore, numerical quadrature calculations in DG schemes can be

expensive (Dumbser et al., 2007), motivating alternative, quadrature-free DG schemes (Atkins

and Shu, 1998; Nair, 2015). Another quadrature-free compact scheme is the multi-moment

constrained finite volume formulation which achieves high-order accuracy by storing several

prognostic moments collocated at cell centres (Ii and Xiao, 2009). Transporting a tracer using

a compact scheme usually requires the storage of multiple values per cell, and these storage

requirements increase with the order of accuracy, with a fourth-order accurate DG scheme re-

quiring the storage of up to 10 values per cell (Ullrich et al., 2010). The transport scheme by

Skamarock and Gassmann (2011) is a compact scheme for hexagonal meshes that, unusually,

only requires the cell average values of immediately adjacent cells, using them to calculate

a second-order derivative that cancels low-order errors in the Taylor series expansion. The

resulting scheme is high-order accurate on uniform hexagonal meshes, but it is formally only

first-order accurate on non-uniform meshes.

Non-compact schemes store only cell average values, and high-order reconstructions are

obtained on uniform or non-uniform meshes by using a larger stencil of cells. High-order

polynomial reconstructions over non-compact stencils have been used in fully compressible

finite volume models that employ Godunov-type schemes (Ullrich and Jablonowski, 2012) using

cubed-sphere meshes, or Weighted Essentially Non-Oscillatory (WENO) schemes (Tsoutsanis and

Drikakis, 2016) using arbitrary polyhedral meshes. Godunov-type schemes and WENO schemes

are well-suited for representing nonlinear dynamics with discontinuous solutions (LeVeque,

2002), but they are often computationally expensive. Computationally cheaper are high-order

swept area schemes, which also reconstruct high-order polynomials over non-compact stencils.

A swept area scheme calculates a face flux by Gaussian integration of the polynomial over the

upstream swept area, which typically requires a matrix-vector multiply per face per time-stage
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(Thuburn et al., 2014). Computationally cheaper than the swept area approach is the k-exact

method (Barth, 1995), which requires only one dot product of two vectors per face per time-

stage. The k-exact method is so-called because it exactly reconstructs a polynomial of degree k

or less, represented by a non-compact stencil of cell average values.

For the numerical experiments presented in chapter 2, the cubicFit transport scheme achieves

only second-order convergence even though it includes high-order polynomial terms. The cu-

bicFit scheme uses a sub-grid reconstruction that fits a polynomial over known values stored

at cell centre points, and it is this point-wise approach that limits the scheme to second-order

convergence. In this chapter, we apply the k-exact method, constraining the polynomial fit so

that the average of the polynomial integrated over a cell volume equals the cell average value.

The computationally expensive spatial integration calculations rely on the mesh geometry alone,

with just m multiplies per face per time-stage using a stencil of m cells. In this way, we obtain

a high-order transport scheme which retains the low computational cost of the cubicFit trans-

port scheme. Since it has much in common with the cubicFit scheme, we name this high-order

transport scheme ‘highOrderFit’.

In section 3.1, we formulate the highOrderFit transport scheme using the k-exact method.

We go on to perform numerical experiments to compare the order of convergence of the high-

OrderFit scheme and the cubicFit scheme: section 3.2 performs the standard test of horizontal

flow over mountains using terrain-following and cut cell meshes and, following Chen et al.

(2017), section 3.3 performs a test of deformational flow on a two-dimensional Cartesian plane

represented by uniform meshes and meshes with distortions similar to those of a cubed-sphere.

3.1 High-order finite volume formulation

Averaging the flux-form transport equation (2.1) over a volume V and using Gauss’s divergence

theorem,

1
V

∫

V

∂ φ

∂ t
dV = − 1

V

∫

∂ V
φu · n̂dA (3.1)

where n̂ is the outward unit normal vector. Using the method of lines, the time derivative is

discretised using the classical fourth-order Runge–Kutta time-stepping scheme (Durran, 2013,

p. 53), and the spatial discretisation is described next. For a polygonal cell with faces f

equation (3.1) becomes

1
V

∫

V

∂ φ

∂ t
dV = − 1

V
∑

f

∫

A f

φu · n̂dA f (3.2)



40 CHAPTER 3. HIGH-ORDER TRANSPORT FOR ARBITRARY MESHES

whereA f is the area of face f . If φ is a sufficiently smooth field then it can be approximated

to P-order accuracy by replacing φ with a polynomial interpolant ψ,

ψ=
∑

|p|≤P

ap (x− x0)
p (3.3)

where ap are unknown polynomial coefficients, x0 is a fixed position, and P is the total polyno-

mial order. Note that we use multi-index notation such that |p|= p1 + . . .+ pn and

ap (x− x0)
p = ap

D
∏

d=1

�

xd − x0d

�pd (3.4)

where D is the number of physical dimensions. As an example, the exponents p in two dimensions

(x , y)with |p| ≤ 1 are (0, 0), (1, 0) and (0, 1), hence the two-dimensional polynomial interpolant

for a total polynomial order P = 1 is

ψ= a0,0 + a1,0 (x − x0) + a0,1 (y − y0) . (3.5)

Replacing φ in (3.2) with ψ in (3.3) we obtain an expression for the face flux1,
∫

A
φu · n̂dA = u f · n̂

∑

|p|≤P

apm
p
A (3.6)

where m
p
A =

∫

A (x− x0)
p dA is the p-th moment of area A . Therefore, the face flux can be

calculated by finding the the polynomial coefficients ap.

Following the same approach as the cubicFit transport scheme, taking a total polynomial

order P = 3 gives 9 polynomial terms with polynomial coefficients calculated using the same

upwind-biased stencil. For every cell in the stencil we require that the average of the polynomial

integrated over a cell volume equals the cell average value,

〈ψ〉V = 〈φ〉V (3.7)

where the average over volume V is

〈ψ〉V =
1
V

∫

V
ψdV . (3.8)

Using equations (3.3) and (3.8) we can rewrite equation (3.7) as

1

m0
V

∑

|p|≤P

apm
p
V = 〈φ〉V (3.9)

1Equation (3.6) assumes that there is little variation in the velocity field u at the grid scale, such that u can be
approximated by a velocity u f that is constant over the face f . Such an assumption is justifiable for atmospheric
flows that are predominantly large-scale (Methven and Hoskins, 1999).
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where m
p
V =

∫

V (x− x0)
p dV is the p-th moment of volume V , and the zeroth moment m0

V is the

volume. For m polynomial terms and a stencil with n cells, we calculate a face flux by choosing

x0 to be the position of the face centre, then we write the linear system






m
p1
V1
/m0
V1
· · · m

pm
V1
/m0
V1

...
...

m
p1
Vn
/m0
Vn
· · · m

pm
Vn
/m0
Vn













ap1
...

apm






=







〈φ〉V1
...

〈φ〉Vn






(3.10)

which can be written as

Ba= φ (3.11)

where B is the stencil matrix, which is constructed using only the mesh geometry. The high-

OrderFit scheme generates stencils using the same procedure as the cubicFit scheme. Assuming

a stencil comprises at least as many cells as there are polynomial coefficients then n≥ m and the

matrix equation can be solved using a least-squares approach to find the unknown coefficients

a.

To obtain a stable transport scheme, we follow the approach of the cubicFit scheme by

introducing multipliers m to obtain

B̃a=m ·φ (3.12)

where B̃=MB and M= diag(m). The upwind cell and downwind cell have multipliers mu = 210

and md = 210 respectively, and all peripheral points have multipliers mp = 1.

The calculation of high-order cell volume moments and surface moments are required by

equations (3.10) and (3.6) respectively. These volume and surface moments can be calculated

exactly using the method of Tuzikov et al. (2003). We follow their method but, in order to

avoid any degenerate triangles, we introduce a centre point shared by all triangles instead of

triangulating polygons with only existing vertices.

While the highOrderFit transport scheme uses a total polynomial order P = 3 for stencils in

the domain interior, a total polynomial order P = 1 is used for stencils near the boundary having

fewer than 12 cells. This reduction in total polynomial order ensures that matrix equations are

not underconstrained. This thesis does not assess the accuracy of the highOrderFit scheme near

boundaries, and so the more sophisticated boundary treatment implemented in the cubicFit

scheme has not been implemented in the highOrderFit scheme.

3.2 High-order transport over mountains

Section 2.2 presented a more challenging variant of the standard two-dimensional transport

test formulated by Schär et al. (2002) to assess the numerical accuracy of the cubicFit scheme
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transporting a tracer horizontally above very steep slopes represented by highly-distorted terrain-

following meshes. In this section, we use the original test as specified by Schär et al. (2002)

that has shallower slopes than the test presented in section 2.2. We make only one modification

to the original test, choosing a smoother initial tracer to allow high-order convergence to be

achieved (Holdaway et al., 2008). This test is used to measure the order of convergence of

the cubicFit scheme and the highOrderFit scheme on undistorted cut cell meshes and distorted

terrain-following meshes.

The test follows the specification by Schär et al. (2002), with the same domain size and

boundary conditions as in section 2.2. The mountain profile is given by equation (2.51) and

the prescribed velocity field is given by equation (2.53). As originally specified by Schär et al.

(2002), the peak mountain height h0 = 3km, and the transition from zero flow near the ground

to uniform horizontal flow aloft occurs between z1 = 4km and z2 = 5 km. All other parameters

relating to the mountain profile and velocity field are the same as those given in section 2.2.

The tracer density is given by equation (2.55) and is centred at (x0, z0) = (−50km, 9km).

In order to allow high-order convergence to be achieved, the exponent n= 4 such that the cosn

hill has n− 1 continuous derivatives (Holdaway et al., 2008). All other tracer parameters are

the same as those given in section 2.2.

Tests are integrated for 10000 s using the classical fourth-order Runge–Kutta time-stepping

scheme with both cubicFit and highOrderFit transport schemes, and a time-step is chosen for each

mesh so that the maximum Courant number is about 0.4. The analytic solution at t = 10 000s is

centred at (x0, z0) = (50km, 9km). To measure the order of convergence of the cubicFit scheme

and the highOrderFit scheme, tests are performed using mesh spacings between ∆x = 5000 m

and ∆x = 250m. The vertical mesh spacing ∆z is chosen so that ∆x :∆z = 2 : 1 to match the

original test specification by Schär et al. (2002).

The `2 and `∞ errors are measured on a series of basic terrain-following meshes and cut

cell meshes (figure 3.1). The highOrderFit transport scheme achieves third-order convergence

on basic terrain-following meshes and fourth-order convergence on cut cell meshes. While we

have not formally analysed the order of accuracy of the highOrderFit scheme, we might expect

to obtain fourth-order convergence under these ideal test conditions: first, the highOrderFit

scheme uses a cubic reconstruction; second, cut cell meshes are undistorted away from the lower

boundary and, third, the horizontal flow is aligned with the cut cell mesh.

The cubicFit transport scheme achieves second-order convergence on cut cell meshes, and the

scheme achieves third-order convergence on basic terrain-following meshes, with error measures

very similar to those obtained with the highOrderFit scheme. It is perhaps surprising that higher-

order convergence is achieved when the mesh is distorted and flow is misaligned with the

mesh. Further tests using very fine meshes should confirm whether third-order convergence is
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Figure 3.1: Numerical convergence in a test transporting a cos4 tracer horizontally over moun-
tains. `2 (equation 2.56) and `∞ errors (equation 2.57) are marked at mesh spacings between
∆x = 5000m and ∆x = 250 m using cubicFit and highOrderFit transport schemes on basic
terrain-following and cut cell meshes.

maintained. We might expect that the cubicFit scheme tends towards second-order convergence

at finer mesh spacings, otherwise the cubicFit scheme would become more accurate on basic

terrain-following meshes than cut cell meshes!

At coarser mesh spacings, the cubicFit scheme is more accurate than the highOrderFit scheme.

It should be possible to increase the accuracy of the highOrderFit scheme by adjusting the

multiplier values used in the least-squares fit, but this has not been explored. At finer mesh

spacings, the highOrderFit scheme becomes more accurate than the cubicFit scheme thanks to

its higher order of convergence.

Further numerical experiments were performed using steeper slopes represented by basic

terrain-following meshes, but the highOrderFit scheme produced instabilities above the steepest

slopes. The stabilisation procedure used in the cubicFit scheme has not been implemented in

the highOrderFit scheme, but examination of the stencils reveals that, using the highOrderFit

scheme, some stencil weights violate the stability conditions given in equation (2.43). It is likely

that the selective removal of some high-order terms for particularly distorted stencils could

stabilise the highOrderFit scheme on highly-distorted meshes.

This series of horizontal transport tests demonstrates that, under favourable conditions with

a sufficiently smooth tracer and uniform flow, the highOrderFit scheme is capable of fourth-order

and third-order convergence on undistorted and distored meshes respectively. The tests also

demonstrated a surprising result that the cubicFit scheme is seemingly capable of third-order
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convergence only on distorted, terrain-following meshes. In the next section, we evaluate the

highOrderFit scheme on distorted and undistorted meshes using a more challenging, deforma-

tional flow.

3.3 Deformational flow on a plane

The standard test case by Lauritzen et al. (2012) of deformational flow on a two-dimensional

spherical shell was adapted by Chen et al. (2017) for use on a two-dimensional Cartesian plane.

Since the highOrderFit formulation described in section 3.1 has not been extended to spherical

geometry, we use the test case by Chen et al. (2017) to measure the order of convergence of the

highOrderFit transport scheme in a time-varying, rotational velocity field. Tests are performed

on uniform meshes, and meshes with distortions similar to those found on the cubed-sphere.

Following Chen et al. (2017), the domain is defined on a rectangular x–y plane that is 2π

wide and π tall. The domain is periodic in the x direction with no normal flow imposed at the

upper and lower boundaries. The discrete velocity field is defined using the streamfunction,

Ψ =
Ψ̂

T
sin2

�

2π
� x

2π
− t

T

��

cos2(y) cos
�πt

T

�

− 2πy
T

(3.13)

where Ψ̂ = 10, and T = 5 is the duration of integration, after which time the analytic solution is

equal to the initial condition. The initial tracer density φ is defined as the sum of two Gaussian

hills,

φ = φ1(x , y) +φ2(x , y) (3.14)

where an individual hill φi is given by

φi(x , y) = φ0 exp
�−b (|x− xi|)2

�

(3.15)

where φ0 = 0.95 kgm−3 and b = 5. The initial tracer field has two hills centred at

(x1, y1) = (5π/6, 0) , (3.16)

(x2, y2) = (7π/6, 0) . (3.17)

Tests were performed using the cubicFit and highOrderFit schemes using uniform meshes

and meshes with distortions similar to a cubed-sphere mesh. Uniform meshes comprise square

cells so that ∆x :∆y = 1 : 1. Distorted meshes modify the corresponding uniform mesh using a

coordinate transform,

x? = x , y? =







π
y− f
π−2 f if y ≥ f ,

π
y− f
π+2 f otherwise,

(3.18)
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Figure 3.2: A distorted mesh on a Cartesian plane that has distortions similar to a cubed-sphere
mesh. This coarse distorted mesh has 60× 30 cells such that ∆x = 6◦.

where (x , y) are the physical coordinates, (x?, y?) are the computational coordinates, and f is

given by

f =







tan(30◦)
�

π
4 − |x |

�

if |x | ≤ π
2 ,

tan(30◦)
�|x | − 3π

4

�

otherwise.
(3.19)

Figure 3.2 illustrates a resulting distorted mesh with 60×30 cells. The classical fourth-order

Runge–Kutta time-stepping scheme is used for both cubicFit and highOrderFit transport schemes,

and tests are integrated using a time-step chosen for each mesh so that the maximum Courant

number is about 0.4.

To measure numerical convergence, a range of mesh spacings are chosen between ∆x = 6◦

and ∆x = 0.375◦, and `2 and `∞ errors are calculated for the cubicFit and highOrderFit

schemes on each mesh (figure 3.3). Similar to the results of deformational flow on a sphere

in section 2.4, both the cubicFit scheme and the highOrderFit scheme are slow to converge on

coarser meshes. At finer mesh spacings, the cubicFit scheme achieves second-order convergence

and the highOrderFit scheme achieves third-order convergence. For both schemes, errors are

slightly larger switching from a uniform mesh to a distorted mesh, but the order of convergence

remains unchanged.

Unlike the results of transporting a smooth tracer over mountains (section 3.2), the high-

OrderFit scheme did not achieve fourth-order convergence for this deformational flow test case

on a uniform mesh. It might be that fourth-order convergence can be obtained only with a

uniform flow (J. Kent 2018, personal communication). Alternatively, it might be that the initial

Gaussian tracer field, which is infinitely differentiable, becomes insufficiently smooth due to

filamentation by the deformational velocity field.
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Figure 3.3: Numerical convergence of the deformational flow test on a Cartesian plane. `2 errors
(equation 2.56) and `∞ errors (equation 2.57) are marked at mesh spacings between 6◦ and
0.375◦ using cubicFit and highOrderFit transport schemes on uniform and distorted meshes.

Results presented in this chapter demonstrate that, assuming a sufficiently smooth tracer, the

highOrderFit transport scheme achieves third-order convergence or higher, irrespective of mesh

distortions or the choice of velocity field. Thanks to its high-order convergence, the highOrderFit

scheme is more accurate than the cubicFit scheme on all but the coarsest meshes.



4 A new mesh for representing the atmosphere

above terrain

Highlights

• The new slanted cell mesh permits longer time-steps than those permited by the cut

cell mesh, with time-steps comparable to terrain-following meshes

• Resting atmosphere simulations are more accurate using the new slanted cell method

compared to terrain-following methods

• Unlike the multidimensional linear upwind scheme, the cubicFit scheme is numerically

stable over very steep slopes represented by slanted cell meshes

Two sources of numerical error receive particular attention in atmospheric models: errors

associated with transport terms and errors associated with the pressure gradient term. The

previous two chapters developed transport schemes that reduce numerical errors associated

with transport over mountains. This chapter seeks to reduce errors associated with the balance

between the pressure gradient and gravity by representing the atmosphere above terrain with a

new type of mesh, the ‘slanted cell’ mesh.

Pressure gradient errors result in spurious flows that are especially apparent for diurnal

valley flows where synoptic-scale winds are weak (Fast, 2003), and even small velocity errors can

produce large errors in derived quantities such as relative vorticity and potential vorticity (Hoinka

and Zängl, 2004). These numerical errors are particularly large using terrain-following meshes

with steeply sloping terrain (Zängl, 2012). Terrain-following meshes are typically implemented

using a coordinate transform that introduces metric terms into the equations of motion. The

47
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Figure 4.1: Two dimensional x-z meshes created with the (a) basic terrain-following, (b) SLEVE,
(c) cut cell, and (d) slanted cell methods, used for the resting atmosphere tests in section 4.4.
Cell edges are marked by thin black lines. The peak mountain height h0 = 6km. Only the central
region of the domain is shown. The entire domain is 200 km wide and 20 km high.

horizontal pressure gradient ∂ p/∂ x |z can be written as (Mahrer, 1984)

∂ p
∂ x

�

�

�

�

z
=
∂ p
∂ x

�

�

�

�

z?
+
∂ z?

∂ x

�

�

�

�

z

∂ p
∂ z?

(4.1)

where ∂ /∂ x |z denotes a horizontal derivative at a fixed height in the physical domain, and

∂ /∂ x |z? denotes a horizontal derivative at a fixed model level in the computational domain,

with z? held constant. The first term on the right hand side of equation (4.1) is the change in

pressure along the terrain-following coordinate surface, and the second term corrects for the

vertical contribution in the first. These terms tend to be large and of opposite sign over steep

terrain, and cancellation errors between the two terms result in pressure gradients errors that

drive spurious flows.

There are two common approaches to reducing errors associated with terrain-following

meshes. The first approach reduces the influence of the terrain on the mesh by choosing a

vertical decay function that smooths mesh layers rapidly with height. The smooth level vertical

(SLEVE) decay function formulated by Schär et al. (2002) and later improved by Leuenberger
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et al. (2010), is one such approach. The SLEVE method achieves a less distorted terrain-following

mesh in the middle and top of the domain than the BTF method. The difference is illustrated in

figure 4.1, in which the SLEVE mesh (figure 4.1b) is noticeably smoother than the equivalent

BTF mesh (figure 4.1a). The SLEVE method partitions the terrain height h into coarse-scale and

fine-scale components, h1 and h2, such that h= h1+h2, with each component having a different

exponential decay. The transformation is defined as (Leuenberger et al., 2010)

z = z? + h1 b1 + h2 b2 (4.2)

where the vertical decay functions are given by

bi =
sinh ((H/si)

n − (z?/si)
n)

sinh (H/si)
n (4.3)

and s1 and s2 are the scale heights of coarse-scale and fine-scale terrain respectively. The

exponent n was introduced by Leuenberger et al. (2010) in order to increase cell thickness in

the layers nearest the ground, allowing longer timesteps. In their experiments, Leuenberger

et al. (2010) found the exponent to have an optimal value of n = 1.35. Choosing n = 1 gives

the decay functions used by Schär et al. (2002). While SLEVE can produce very smooth meshes,

the coordinate transform becomes non-monotonic and the SLEVE mesh becomes tangled if

parameter values are chosen poorly (Schär et al., 2002; Leuenberger et al., 2010), making it

difficult to produce a very smooth global mesh with real terrain (C. Kühnlein 2015, personal

communication). Many operational atmospheric models use some form of coordinate smoothing

(Eckermann, 2009), and this approach has been found to reduce pressure gradient errors (Schär

et al., 2002; Leuenberger et al., 2010; Klemp, 2011).

The second approach to reducing pressure gradient errors is to improve the accuracy in

calculating the horizontal pressure gradient itself. Instead of calculating the horizontal pres-

sure gradient in the computational domain, the techniques proposed by Klemp (2011) and

Zängl (2012) both involve interpolation onto z levels in the physical domain. This gave them

the flexibility to design more accurate horizontal pressure gradient discretizations using more

appropriate stencils.

Another approach is to improve the balance the between pressure gradient and gravity by

reducing the spurious solenoidal term using a curl-free gradient formulation (Thuburn and

Cotter, 2012), and this formulation was included in the nonhydrostatic model by Weller and

Shahrokhi (2014). Since their model calculates gradients in the Exner function of pressure

and does not calculate gradients of pressure directly, the formulation cannot be exactly curl-

free. Nevertheless, Weller and Shahrokhi (2014) found that switching from a horizontal gradient

formulation to the curl-free gradient formulation improved idealised simulations over orography

represented by terrain-following meshes.
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Cut cell meshes (also known as shaved cell meshes or embedded boundary meshes) are less

distorted than any smoothed terrain-following mesh, and some studies have shown examples

where cut cells produce more accurate results when compared to terrain-following meshes (Good

et al., 2014; Steppeler et al., 2013). Although cut cell meshes are almost entirely undistorted,

when explicit methods are used with cut cells, the small cell problem must be overcome in order

to avoid severe time-step constraints.

We seek a new type of mesh that improves the balance between the pressure gradient and

gravity compared to terrain-following methods, and avoids the severe time-step constraints

associated with arbitrarily small cut cells. Section 4.1 describes the slanted cell method which is

designed to satisfy these criteria. Section 4.2 presents a new two-dimensional test that challenges

transport schemes by transporting a tracer along the ground through slanted cells, and this test

is used to measure time-step constraints for terrain-following, cut cell and slanted cell meshes.

Section 4.3 outlines the discretisation of the fully compressible model taken from Weller and

Shahrokhi (2014) which includes a curl-free pressure gradient formulation. In section 4.4, the

fully compressible model is used to simulate a standard resting atmosphere test case (Klemp,

2011), comparing results using terrain-following, cut cell and slanted cell meshes.

4.1 Slanted cell method

The slanted cell method is straightforward, and slanted cell meshes are always free of mesh

tangling by construction. Starting from a uniform rectangular mesh, all cell vertices that lie

beneath the orography are moved up to the surface. Additionally, to avoid creating very thin

cells, all vertices up to 2∆z/5 above the orography can be moved down to the surface. Where

all four of a cell’s vertices are moved, the cell has zero volume and so it is removed. Where two

vertices at the same horizontal location are moved up to the surface they will occupy the same

point; this results in a zero-length edge that is removed to create a triangular cell. Figure 4.2

shows how a 2× 3-cell, uniform rectangular mesh is transformed into a slanted cell mesh. Cells

c5 and c6 are removed because they have zero volume, and the zero-length edge at point q is

removed to create a triangular cell, c4. Point p is moved down because it is within 2∆z/5 of the

surface, avoiding the creation of a very thin cell. We have not explored the sensitivity of results

using values other than 2∆z/5, but we did find that this approach reduces numerical errors on

some meshes with very thin slanted cells.

The slanted cell method does generate some small cells but, unlike the cut cell method, the

width of slanted cells is never altered. Since a no normal flow condition is imposed at the lower

boundary, flow must be parallel to the surface and there is only very weak flow across the long,

upper face of slanted cells. Hence, slanted cell meshes should not suffer from severe time-step
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Figure 4.2: Illustration of a slanted cell mesh (a) before, and (b) after construction. The terrain
surface, denoted by a heavy dotted line, intersects a uniform rectangular mesh comprising six
cells, c1, . . . , c6. The cell vertices, marked by open circles, are moved to the points at which the
terrain intersects vertical cell edges, marked by filled circles. Cells that have no volume are
removed. Where a cell has two vertices occupying the same point, the zero-length edge that
joins those vertices is removed. In this illustration, cells c5 and c6 are removed because they
have no volume, and the zero-length edge at point q is removed to create a triangular cell, c4.
Point p is moved down because it is within 2∆z/5 of the surface, avoiding the creation of a thin
cell.

constraints associated with arbitrarily small cut cells because slanted cells are never shortened

in the direction of flow. An example of a slanted cell mesh is illustrated in figure 4.1d for

comparison with the equivalent BTF (figure 4.1a), SLEVE (figure 4.1b), and cut cell (figure 4.1c)

meshes, with the same mesh spacing and mountain profile used for all meshes.

4.2 Transport over a mountainous lower boundary

The two-dimensional tests performed in chapter 2 transported tracers positioned well above the

terrain surface. Here we formulate a new test, positioning the tracer at the ground in order to

assess the accuracy of transport schemes immediately above a mountainous lower boundary.

Results are compared between the cubicFit scheme and the linearUpwind scheme on basic

terrain-following, cut cell and slanted cell meshes. The test presents a particular challenge

to transport schemes as they must transport the tracer through arbitrarily small cut cells and

distorted slanted cells.

The domain size and mountain profile are the same as those in the horizontal tracer transport

test in section 2.2, with a mesh spacing of ∆x = 1000m and ∆z = 500 m. In order to present

the most challenging test on slanted cell meshes vertices are not moved downwards, and so thin

cells remain near mountain peaks. Cell edges in the central region of the domain are shown in
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Figure 4.3: Two dimensional x-z meshes created with the (a) basic terrain-following, (b) cut
cell, and (c) slanted cell methods, used for the tracer transport tests in section 4.2. Cell edges are
marked by thin black lines. The peak mountain height h0 = 5km. The velocity field is the same
for all mesh types with streamlines marked on each panel by thick red lines. The velocity field
(equation 2.58) follows the lower boundary and becomes entirely horizontal above H1 = 10 km.
The mesh spacing is ∆x = 1000 m and ∆z = 500 m. Only the lowest 10 km for the central
region of the domain is shown. The entire domain is 300 km wide and 25 km high.

figure 4.3 for each of the three mesh types. Cells in the BTF mesh are highly distorted over steep

slopes (figure 4.3a) while the cut cell mesh (figure 4.3b) and slanted cell mesh (figure 4.3c) are

orthogonal everywhere except for cells nearest the ground.

A velocity field is prescribed using equation (2.58) so that the flow follows the terrain at

the surface and becomes entirely horizontal above H1 = 10km. The value of H1 is chosen to be

much smaller than the domain height H in equation (2.52) so that flow crosses the surfaces of

the BTF mesh. This is evident in figure 4.3a where the the velocity streamlines are tangential

to the mesh only at the ground. The flow is deliberately misaligned with the BTF, cut cell and

slanted cell meshes away from the ground (figure 4.3) to ensure that flow always crosses mesh

surfaces in order to challenge the transport schemes.

The tracer is defined again by equation (2.55) but is now positioned at the ground with

(x0, z0) = (−50 km,0 km) with half-widths Ax = 25km and Az = 10 km. Tests are integrated

forward for 10 000 s. The time-step was chosen for each mesh so that the maximum Courant

number was about 0.4 (table 4.1). An analytic solution at 10000 s is obtained by calculating
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Peak mountain height h0 (km)

Mesh type 0 3 4 5 6

BTF 40 16 10 8 5
Cut cell 40 1.6 1.6 0.5 1.6
Slanted cell 40 8 6.25 5 4

Table 4.1: Time-steps (s) for the two-dimensional transport test over a mountainous lower
boundary. The time-steps were chosen so that the maximum Courant number was between 0.36
and 0.46.

t = 0s t = 5000s t = 10000 s

z (m)

0

5000

10000

15000

20000

−100000 −75000 −50000 −25000 0 25000 50000 75000 100000
x (m)

1
Figure 4.4: Evolution of the tracer in the two-dimensional transport test over a mountainous
lower boundary. The tracer is transported to the right over the wave-shaped terrain. Tracer
contours are every 0.1 kgm−3. The result obtained using the cubicFit scheme on the basic
terrain-following mesh is shown at t = 0 s, t = 5000 s and t = 10000 s with solid black contours.
The analytic solution at t = 10 000s is shown with dotted contours. The mesh spacing is
∆x = 1000 m and∆z = 500m. The shaded box indicates the region that is plotted in figure 4.5.

the new horizontal position of the tracer using equation (2.63). By solving this equation we find

that x(t = 10000 s) = 6244.087m when h0 = 5km.

The tracer density boundary conditions are the same as those in section 2.2. Since the

cubicFit transport scheme uses values at boundaries with Dirichlet boundary conditions, the

cubicFit scheme uses only inlet boundary values in this test case.

Three series of tests were performed using similar configurations. The first series uses a peak

mountain height of h0 = 5km to examine errors on different mesh types using the linearUpwind

and cubicFit transport schemes. The second series varies the peak mountain height to examine

the sensitivity of the two transport schemes to mesh distortions. The third series verifies accuracy

at Courant numbers close to the limit of stability, and examines the longest stable time-step for

different mesh types.
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Figure 4.5: Tracer contours at t = 10 000s for the two-dimensional tracer transport tests over a
mountainous lower boundary. A region in the lee of the mountain is plotted corresponding to the
shaded area in figure 4.4. Results are presented on BTF, cut cell and slanted cell meshes (shown
in figure 4.3) using the linearUpwind and cubicFit transport schemes. The numerical solutions
are marked by solid black lines. The analytic solution is marked by dotted lines. Contours are
every 0.1 kgm−3. The mesh spacing is ∆x = 1000m and ∆z = 500m.

Comparison of numerical accuracy between mesh types and transport schemes

For the first series of tests with h0 = 5km, tracer contours at the initial time t = 0s, half-way

time t = 5000s, and end time t = 10000 s are shown in figure 4.4 using the cubicFit scheme

on the BTF mesh. As apparent at t = 5000 s, the tracer is distorted by the terrain-following

velocity field as it passes over the mountain as expected, and its original shape is restored once

it has cleared the mountain by t = 10 000s. Slight errors are apparent at t = 10000 s when

the numerical solution marked with solid contour lines is compared with the analytic solution

marked with dotted contour lines.

Numerical errors are more clearly revealed by subtracting the analytic solution from the

numerical solution. Error fields are compared between BTF, cut cell and slanted cell meshes

using the linearUpwind scheme (figures 4.5a, 4.5b and 4.5c respectively) and the cubicFit scheme

(figures 4.5d, 4.5e and 4.5f respectively). Results are least accurate using the linearUpwind

scheme on the slanted cell mesh (figure 4.5c) with the final tracer being slightly distorted.
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Figure 4.6: Error measures for the two-dimensional tracer transport tests over a mountainous
lower boundary. Peak mountain heights h0 are from 0 km to 6 km. Results are compared on BTF,
cut cell and slanted cell meshes using the linearUpwind and the cubicFit schemes. At h0 = 0km
the terrain is entirely flat and the BTF, cut cell and slanted cell meshes are identical. At h0 = 6km
the linearUpwind scheme is unstable on the slanted cell mesh.

The `∞ error magnitude is reduced by using the linearUpwind scheme on the cut cell mesh

(figure 4.5b), but the shape of the error remains the same. On the BTF mesh (figure 4.5d), cut

cell mesh (figure 4.5e) and slanted cell mesh (figure 4.5f), the cubicFit scheme is more accurate

than the linearUpwind scheme.

Numerical stability and numerical accuracy with increasingly steep slopes

To further examine the performance of the cubicFit scheme in the presence of steep terrain,

a second series of tests were performed in which the peak mountain height was varied from

0 km to 6 km keeping all other parameters constant. Results were obtained on BTF, cut cell and

slanted cell meshes using the linearUpwind scheme and cubicFit scheme. Again, the time-step

was chosen for each test so that the maximum Courant number was about 0.4 (table 4.1). The `2

error was calculated by subtracting the analytic solution from the numerical solution (figure 4.6).

Note that the analytic solution is a function of mountain height, with the tracer travelling farther

over higher mountains due to non-divergent flow through a narrower channel. In all cases,

error increases with increasing mountain height because steeper slopes lead to greater mesh

distortions. Errors are identical for a given transport scheme when h0 = 0 km and the ground is

entirely flat because the BTF, cut cell and slanted cell meshes are identical. The linearUpwind
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Figure 4.7: (a) Longest stable time-steps, ∆tmax, and (b) largest stable maximum Courant
numbers, max(Co), for the two-dimensional tracer transport test over a mountainous lower
boundary. Results were obtained on basic terrain-following, cut cell and slanted cell meshes at
mesh spacings between ∆x = 5000m and ∆x = 250m. The largest stable maximum Courant
numbers were calculated from the corresponding longest stable time-steps using equation (2.4).
The peak mountain height h0 = 6 km.

scheme is unstable on the slanted cell mesh with a peak mountain height h0 = 6km despite

using a Courant number of 0.428. The cubicFit scheme yields stable results in all tests, and

cubicFit is more accurate than linearUpwind in all tests.

Numerical stability limits of the cubicFit transport scheme

A final series of tests were performed to determine the stability limit of the cubicFit scheme with

the two-stage Heun time-stepping scheme (equation 2.2). The tracer was transported on BTF,

slanted cell and cut cell meshes with a variety of mesh spacings between ∆x = 5000 m and

∆x = 125 m. ∆z was chosen so that a constant aspect ratio is preserved such that∆x :∆z = 2:1.

The peak mountain height h0 = 6km. For each test, the time-step was adjusted in order to find

the largest stable time-step, ∆tmax (figure 4.7a). BTF meshes permit the longest time-steps of

all three mesh types since cells are almost uniform in volume. As expected, the longest stable
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time-step scales linearly with BTF mesh spacing. There is no such linear scaling on cut cell

meshes because these meshes can have arbitrarily small cells. The time-step constraints on cut

cell meshes are the most severe of the three mesh types. Slanted cell meshes have a slightly

more stringent time-step constraint than BTF meshes but still exhibit similar linear scaling with

mesh spacing.

Figure 4.7b presents the largest stable maximum Courant numbers, max(Co), which were

calculated by substituting ∆t =∆tmax into equation (2.4). On basic terrain-following meshes,

the maximum Courant number tends towards about 1.3 with finer mesh spacings. No such trend

is found on cut cell or slanted cell meshes. Cut cell meshes permit the largest maximum Courant

numbers of around 3, but the largest stable time-steps on cut cell meshes are still smaller than

corresponding time-steps on basic terrain-following and slanted cell meshes.

This thesis focuses on the spatial discretisation of the cubicFit scheme, but the stability limit

depends also upon the choice of time-stepping. We have not calculated a theoretical Courant

number limit, although such an analysis should be possible using the techniques of Baldauf

(2008).

This new test case demonstrates that the cubicFit transport scheme is more accurate than the

linearUpwind scheme on all meshes, and only the cubicFit scheme can achieve stable results on

slanted cell meshes with very steep slopes. The slanted cell method exhibits a time-step constraint

that scales linearly with mesh spacing, and slanted cells avoid severe time-step constraints

associated with arbitrarily small cut cells. Next, we incorporate the cubicFit transport scheme

into a model of the fully compressible Euler equations.

4.3 Discretisation of the fully compressible Euler equations

The finite volume model of the fully compressible Euler equations is taken from Weller and

Shahrokhi (2014), given by

Momentum
∂ ρu
∂ t
+∇ · (ρu⊗ u) = ρg− cpρθ∇Π−µρu (4.4a)

Continuity
∂ ρ

∂ t
+∇ ·ρu= 0 (4.4b)

Thermodynamic equation
∂ ρθ

∂ t
+∇ ·ρuθ = 0 (4.4c)

Ideal gas law Π(1−κ)/κ =
Rρθ
p0

(4.4d)

where ρ is the density, u is the velocity field, g is the gravitational acceleration, cp is the heat

capacity at constant pressure, θ = T (p0/p)
κ is the potential temperature, T is the temperature,
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p is the pressure, p0 = 1000 hPa is a reference pressure, Π = (p/p0)
κ is the Exner function of

pressure, and κ= R/cp is the gas constant to heat capacity ratio. µ is a damping function that

can be used to absorb momentum in a sponge layer near the upper boundary.

The model uses the C-grid staggering in the horizontal and the Lorenz staggering in the

vertical such that θ , ρ and Π are stored at cell centroids and the covariant component of velocity

at cell faces. The model is configured in an inertial frame without Coriolis forces.

Acoustic and gravity waves are treated implicitly and transport terms are treated explic-

itly. The trapezoidal implicit treatment of fast waves and the Hodge operator suitable for

non-orthogonal meshes are described in the appendix to Shaw and Weller (2016). To avoid

time-splitting errors between transport and fast waves, transport is time-stepped using a three-

stage, second-order Runge-Kutta scheme. The transport terms of the momentum equation (4.4a)

and thermodynamic equation (4.4c) are discretised in flux form using either the linearUpwind

scheme or the cubicFit scheme as desired.

This model is suitable for arbitrary meshes and includes a curl-free pressure gradient formu-

lation. In the next section, we use this model to compare the accuracy of hydrostatic balance

calculations using terrain-following, cut cell and slanted cell meshes.

4.4 Stratified atmosphere initially at rest

Diurnal valley and slope flows are associated with weak synoptic-scale winds, and cold air that

sinks along sloping terrain can stagnate for days after becoming trapped in topographic basins

(Chow et al., 2013). The test case by Klemp (2011) is an idealised representation of such

phenomena, in which a wave-shaped mountain is submerged in a stably stratified atmosphere

at rest in hydrostatic balance. The analytic solution is time-invariant, but numerical errors in

calculating pressure gradients can give rise to spurious flows which become stronger over steeper

terrain (Klemp, 2011). Results are compared using terrain-following, cut cell and slanted cell

meshes.

Following Klemp (2011), the domain is 200 km wide and 20 km high, and the mesh spacing

is ∆x =∆z? = 500 m. All boundary conditions are no normal flow. The wave-shaped mountain

profile has a surface height, h, given by

h(x) = h0 exp
�

−
� x

a

�2�

cos2 (αx) (4.5)

where a = 5km is the mountain half-width λ = 4km is the wavelength and h0 is the peak

mountain height. For the optimised SLEVE mesh, the coarse-scale component h1 is specified as

h1(x) =
1
2

h0 exp
�

−
� x

a

�2�

. (4.6)
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Figure 4.8: Spurious vertical velocities in the resting atmosphere test using BTF, SLEVE, cut
cell and slanted cell meshes. (a) Time series of spurious vertical velocities for a peak mountain
height h0 = 1 km, with the maximum absolute value calculated at each time-step. (b) Sensitivity
to peak mountain height h0, with the maximum absolute value calculated across all time-steps.

To accommodate a range of mountain heights we choose a coarse scale height s1 = 20 km and

a fine scale height s2 = 8 km. Following Leuenberger et al. (2010) the optimal exponent value

of n= 1.35 is used. These parameter values result in a SLEVE mesh that is more distorted than

the SLEVE mesh used by Klemp (2011), but the choice is necessary to avoid mesh tangling with

mountains higher than 1 km.

The initial potential temperature field has a nonlinear vertical profile in the lower atmosphere,

with θ (z = 0) = 288 K and a constant static stability with Brunt-Väisälä frequency N = 0.01 s−1

everywhere, except for a more stable layer of N = 0.02 s−1 between 2km ≤ z ≤ 3km. The

Exner function of pressure is calculated so that it is in discrete hydrostatic balance in the vertical

direction (Weller and Shahrokhi, 2014).

Momentum and potential temperature are transported using the cubicFit transport scheme.

The damping function µ is set to 0 s−1. Unlike Klemp (2011), there is no eddy diffusion in the

equation set.

The test is integrated forward by 6 hours using a time-step of ∆t = 25 s on the BTF, SLEVE,

cut cell and slanted cell meshes with a peak mountain height h0 = 1 km. For each mesh, the

maximum absolute vertical velocity is calculated at each time-step as a measure of the spurious

flow generated by numerical errors. In agreement with Klemp (2011), magnitudes of vertical

velocity peak shortly after integration begins and magnitudes are larger on more distorted meshes

(figure 4.8a). However, magnitudes are much smaller comparing results on the terrain-following

meshes with those from Klemp (2011): results in figure 4.8a, which use a curl-free pressure
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gradient formulation, have maximum absolute vertical velocities of 0.62 ms−1, compared with a

maximum of∼ 7m s−1 found by Klemp (2011) using their improved horizontal pressure gradient

formulation. The results on terrain-following meshes in figure 4.8a have similar maximum errors

as Weller and Shahrokhi (2014) but, due to the more stable split into implicitly and explicitly

treated terms (described in the appendix to Shaw and Weller (2016)), the errors decay over

time due to the dissipative nature of the transport scheme. Unlike the result from Klemp (2011),

spurious flows are similar on both terrain-following meshes even though the SLEVE mesh is less

distorted than the BTF mesh.

Compared to results on the terrain-following meshes, spurious flows are two orders of

magnitude smaller on the cut cell mesh and the slanted cell mesh with a maximum absolute

vertical velocity of ∼ 1× 10−3 ms−1. Good et al. (2014) found the maximum vertical velocity

in their cut cell model was 1× 10−12 ms−1, which is better than any result obtained here. It is

worth noting that our model stores values at the geometric centre of cut cells, whereas the model

used by Good et al. (2014) has cell centres at the centre of the uncut cell, resulting in the centre

of some cut cells being below the ground (S.-J. Lock 2014, personal communication). This

means that the mesh is effectively regular when calculating horizontal and vertical gradients,

and this would account for the very small velocities found by Good et al. (2014).

To evaluate the slanted cell method with steeper slopes, we perform a second series of

tests with peak mountain heights ranging from h0 = 0 km to h0 = 6 km. The BTF, SLEVE, cut

cell and slanted cell meshes with the largest peak mountain height of h0 = 6 km are shown

in figure 4.1. To obtain a single measure of spurious flow for a given mesh, the maximum

absolute vertical velocity is calculated across all time-steps (figure 4.8b). The most accurate

results are obtained without mountains where h0 = 0km when all meshes become identical,

with max(|w|)∼ 1× 10−11 m s−1. Using terrain-following meshes, the model becomes unstable

beyond h0 = 2km. Using cut cell meshes, maximum vertical velocities are almost constant

at ∼ 0.5m s−1 beyond h0 = 1km because cut cell mesh distortions are largely independent

of mountain height. Using slanted cell meshes, maximum vertical velocities are one to two

orders of magnitude smaller than those found on terrain-following meshes at a given mountain

height. Unlike results on terrain-following meshes, slanted cell meshes yield stable results for all

mountain heights, although maximum vertical velocities increase with peak mountain height as

slanted cells become increasingly distorted. Up to a peak mountain height of h0 = 4km, slanted

cell meshes produce results that are more accurate than those obtained for any other mesh.

In summary, spurious velocities in the resting atmosphere test were similar on both types of

terrain-following mesh, with errors being much smaller compared to those from Klemp (2011).

The maximum absolute vertical velocity was decreased by one to two orders of magnitude using

cut cell and slanted cell meshes so we conclude that, in this test, mesh distortion, or lack of
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alignment of the mesh with surfaces of constant gravitational potential, is the primary cause

of numerical error. The resting atmosphere test presented a challenge to the pressure gradient

formulation but the resultant spurious flows presented no particular challenge to the cubicFit

transport scheme. We will turn our attention to transport-dominated flow in the next chapter.





5 A new test case to excite the Lorenz

computational mode

Highlights

• A new idealised two-dimensional test case reveals spurious grid-scale waves excited

by the Lorenz computational mode

• The Charney–Phillips staggering is generalised for arbitrary meshes, reducing to the

classical Charney–Phillips staggering on traditional meshes

• A new fully compressible Euler model that implements the generalised Charney–

Phillips formulation is free from spurious grid-scale waves

The Lorenz computational mode arises from having one too many degrees of freedom in the

Lorenz staggering of variables, and it is often excited by thermal forcing, producing spurious,

vertical, two-grid alternating waves (Schneider, 1987; Arakawa and Konor, 1996). In the Lorenz

staggering (Lorenz, 1960), the pressure and vertical velocity variables are staggered, with the

thermodynamic variable collocated with the pressure variable (figure 5.1a). Hydrostatic models

calculate the hydrostatic balance equation and nonhydrostatic models calculate the vertical

momentum equation and, in both cases, vertical averaging of the thermodynamic variable

means that these spurious grid-scale waves persist because they become invisible to the model

(Arakawa and Konor, 1996). Spurious grid-scale waves have been attributed to the Lorenz

computational mode in the Global Environmental Multiscale 3 model (Girard et al., 2014), and

the Korea Institute of Atmospheric Prediction Systems Integrated Model (Yi and Park, 2017)

amongst others, and these non-physical waves can lead to spurious rainfall in atmospheric
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(a) Lorenz (b) Charney–Phillips

Figure 5.1: (a) Lorenz and (b) Charney–Phillips vertical staggering of variables. Dashed lines
mark the vertical position of cell centres and solid lines mark the vertical position of horizontal
faces. The Lorenz staggering collocates the thermodynamic variable θ with the pressure variable
p and horizontal velocity u. The Charney–Phillips staggering collocates the thermodynamic
variable with the vertical velocity w. Adapted from Holdaway et al. (2013).

models (Hollingsworth, 1995), inaccurate simulations of idealised hurricanes (Zhu and Smith,

2003), and spurious instabilities in ocean models (Bell and White, 2017).

The computational mode can be at least partially controlled by using sufficient vertical diffu-

sion (Chang, 1992; Zadra et al., 2004), or by using a higher-order vertical discretisation (Untch

and Hortal, 2004; Guerra and Ullrich, 2016; Yi and Park, 2017), but the computational mode

can only be properly eliminated by choosing an alternative staggering of variables that removes

the extra degree of freedom. One such alternative is the Charney–Phillips staggering (Charney

and Phillips, 1953), in which the thermodynamic variable is collocated with vertical velocity

(figure 5.1b), avoiding any vertical averaging in calculating the vertical momentum equation.

Due to the errors associated with the Lorenz computational mode, the Global Environmental

Multiscale model switched from a Lorenz staggering to a Charney–Phillips staggering between

model versions 3 and 4 (Girard et al., 2014), and a Charney–Phillips staggering is also used in

the Met Office Unified Model (Davies et al., 2005) and the Global/Regional Assimilation and

Prediction System (Yang et al., 2007). Thuburn and Woollings (2005) exhaustively tested differ-

ent combinations of vertical coordinates, prognostic variables and their staggerings, and found

that a Charney–Phillips staggering has better dispersion properties than a Lorenz staggering

for any given choice of vertical coordinate and prognostic variables. Numerical experiments

performed by Cullen et al. (1997) revealed that a model with a Charney–Phillips staggering

reduced spurious gravity waves and had better geostrophic adjustment compared to the same

model with a Lorenz staggering.

While the Charney–Phillips staggering avoids vertical averaging of the thermodynamic vari-

able in calculating the vertical momentum equation, Davies et al. (2005) notes that horizontal
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pressure gradient calculations can involve vertical averaging of the thermodynamic variable

which is inaccurate in the lowest layers where there are strong temperature gradients. Hold-

away et al. (2013) note that, in calculating the Richardson number for boundary layer schemes,

averaging that is necessary with the Charney–Phillips staggering is avoided by using a Lorenz

staggering.

Previous studies have used a variety of test cases to compare different model variants using

Lorenz and Charney–Phillips staggering. One of the earliest comparisons was made by Arakawa

and Moorthi (1988) who found that, without additional diffusion, their numerical solutions

of a baroclinic instability test were dominated by short-wave noise. Later, Arakawa and Konor

(1996) performed the same test to find that a model using a Charney–Phillips staggering did not

suffer from spurious noise, with the Charney–Phillips model needing no additional diffusion. In

the same study, Arakawa and Konor (1996) proposed new test cases that use thermal forcing to

excite the Lorenz computational mode, and these tests clearly reveal spurious grid-scale waves

that grow and persist throughout the simulation. Based on the work of Arakawa and Konor

(1996), Untch and Hortal (2004) developed a new test case, using thermal forcing to excite

spurious grid-scale waves in a 600-day integration of a global, 3D model.

While these tests have proved useful, they are not ideally suited for dynamical core develop-

ment: the test case by Untch and Hortal (2004) uses a three-dimensional global domain with a

long simulation time, and the test cases by Arakawa and Konor (1996) were developed only for a

simplified, vertically discrete model in pressure coordinates. Hence, we propose a new, idealised

test case on a two-dimensional x–z Cartesian plane, based on the work of Arakawa and Konor

(1996), to compare the accuracy of models using Lorenz or Charney–Phillips staggerings. The

new test case intended to aid the development and intercomparison of modern, nonhydrostatic

dynamical cores. The test completes quickly, using a coarse two-dimensional mesh specified

in Cartesian coordinates. We compare test results between the fully compressible Euler model

with a Lorenz staggering (section 4.3), and a variant of this same model that includes a new

generalisation of the Charney–Phillips staggering for arbitrary meshes.

After describing the generalised Charney–Phillips formulation in section 5.1, we compare

Lorenz and generalised Charney–Phillips model variants in section 5.2 using the standard moun-

tain waves test case specified by Schär et al. (2002). Section 5.3 presents the new test case

based on the original test specified by Arakawa and Konor (1996). We verify that the Lorenz

computational mode is excited using the fully compressible Euler model with a Lorenz stagger-

ing, and we verify that the Charney–Phillips model variant is free of spurious grid-scale waves.

Finally, we explore the sensitivity to mesh distortions using the generalised Charney–Phillips

model variant.
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5.1 Generalising the Charney–Phillips staggering for arbitrary

meshes

The generalisation of the Lorenz staggering for arbitrary meshes is straightforward (Weller and

Shahrokhi, 2014) but this is not true for the Charney–Phillips staggering, which is only suitable

for structured meshes with cells stacked in columns. On a finite volume mesh, variables are

ordinarily placed at cell centres or cell faces. In the Charney–Phillips staggering, the thermo-

dynamic variable is placed at only those cell faces that lie on the vertical coordinate surfaces,

and vertically-oriented faces have no thermodynamic information. This existing staggering is

unsuitable for arbitrary finite volume meshes because faces can have any orientation.

A generalised Charney–Phillips staggering will be particularly relevant to atmospheric models

that use vertical mesh refinement techniques. Mesh refinement has received growing attention

in atmospheric modelling literature because it could enable atmospheric models to produce

more accurate forecasts with less computation (Behrens, 2006; Jablonowski et al., 2009). While

much of the literature concentrates on horizontal mesh refinement, some investigations have

been made into vertical refinement on two-dimensional x–z Cartesian planes: Müller et al.

(2013) have used conforming refinement of triangular meshes for simulating the standard

rising bubble and density current test cases, Van Hooft et al. (2018) have used block-structured

adaptive mesh refinement for direct numerical simulations of the atmospheric boundary layer,

and Yamazaki and Satomura (2012) have used nonconforming block-refinement to better resolve

the atmosphere immediately above idealised mountains.

According to Thuburn and Woollings (2005), the vertical discretisation used by Yamazaki and

Satomura (2012) supports computational modes and instabilities, although these errors were

not excited by the test cases performed by Yamazaki and Satomura (2012). The Charney–Phillips

staggering is not susceptible to such errors, but we are not aware of any existing literature that

combines mesh refinement with a Charney–Phillips staggering. By allowing for an arbitrary

mesh, a generalised Charney–Phillips formulation should be suitable for any type of mesh,

including conforming and non-conforming mesh refinement, terrain-following meshes, cut cell

meshes and slanted cell meshes.

Generalised Charney–Phillips formulation

The generalised Charney–Phillips model is a new variant of the fully compressible Euler model

with a Lorenz staggering, as documented by Weller and Shahrokhi (2014) and summarised in

section 4.3. The model variant uses a newly-formulated generalisation of the Charney–Phillips

staggering for arbitrary meshes. The primary difference between the Lorenz and Charney–

Phillips formulations is their treatment of the prognostic thermodynamic variable: the gener-
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θC
b f ,θ fn̂ f

ĝ

Figure 5.2: A quadrilateral cell with the prognostic thermodynamic variable b f stored at face
centres marked by open circles. b f is calculated from the potential temperature θ f such that
b f = θ f ĝ · n̂ f where n̂ f is the unit vector outward normal to face f , and ĝ is the unit vector
of gravitational acceleration. The potential temperature at the cell centre, θC , is reconstructed
from surrounding values of b f using equation (5.2).

alised Charney–Phillips formulation stores the prognostic thermodynamic variable b f at all cell

faces such that b f = θ f ĝ · n̂ f where f is a face, θ f is the potential temperature at the face, ĝ

is the unit vector of gravitational acceleration and n̂ f is the unit vector that is outward normal

to the face. This arrangement is illustrated in figure 5.2. To transport the thermal field, first,

potential temperature is transported in advective form using first-order time-stepping,

θ n+1
f = θ n

f −∆tu f ·
�

∇cθ
`
f

�

F
(5.1)

where θ n+1
f is the value of θ f at the new time-step, θ `f is the lagged value from the previous

time-stepping iteration, u f is the velocity, (·)F denotes an interpolation from cell centres to faces,

and∇c denotes a cell centre gradient (Weller and Shahrokhi, 2014). Next, b f is calculated such

that b f = θ f ĝ · n̂ f . On a Cartesian mesh with no diagonal faces, b f is zero for entirely vertical

faces and b f = θ f for entirely horizontal faces.

Potential temperature at the cell centre is reconstructed from bordering faces,

θC = ĝ ·
 

∑

f ∈c

n̂ f S f

!−1

·
∑

f ∈c

S f b f (5.2)

where θC is the reconstructed potential temperature. On a rectangular Cartesian mesh with no

diagonal faces, θC is simply a linear interpolation from the face values immediately above and

below the cell centre, and the generalised Charney–Phillips formulation reduces to the standard

Charney–Phillips formulation.

Finally, θ f is recalculated from b f and θC ,

θ f := |ĝ · n̂ f θ f |+
�

1− |ĝ · n̂ f |
�

(θC)F . (5.3)

This ensures that values of θ f on vertical faces is calculated from nearby b f values and is not

retained across time-steps.
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The generalised Charney–Phillips model variant makes two other modifications to the Lorenz

model variant in order to simplify implementation: first, gravity waves are treated explicitly and,

second, first-order Euler semi-implicit time-stepping is used with deferred correction of explicit

terms (equation 5.1).

5.2 Schär mountain waves test

Chapter 4 assessed a finite volume model of the fully compressible Euler equations with a

Lorenz staggering using a test case with a stratified atmosphere initially at rest above an isolated

mountain. We now turn our attention to a transport-dominated test case that presents a challenge

to the transport schemes within the dynamical model. As specified by Schär et al. (2002), the test

prescribes flow over idealised terrain with small-scale and large-scale undulations that induce

propagating and evanescent gravity waves. We use the test to compare results from the two

finite volume model variants with Lorenz and generalised Charney–Phillips staggerings against

the reference solution from Melvin et al. (2010).

Following Melvin et al. (2010), the domain is 300 km wide and 30 km high, and the mesh

spacing is ∆x = 500 m and ∆z? = 300 m. The mountain profile has the same form as equa-

tion (4.5), but the mountain waves test has a lower peak mountain height of h0 = 250 m. As in

the resting atmosphere test (section 4.4), a = 5 km is the mountain half-width and λ= 4 km is

the wavelength.

A uniform horizontal wind (u, w) = (10,0)ms−1 is prescribed in the domain interior and

at the inlet boundary. No normal flow is imposed at the top and bottom boundaries and the

velocity field has a zero gradient outlet boundary condition.

The initial thermodynamic conditions have constant static stability with N = 0.01 s−1 every-

where such that

θ (z) = θ0 exp

�

N2

g
z

�

(5.4)

where the temperature at z = 0 is θ0 = 288 K. Potential temperature values are prescribed at

the inlet and upper boundary using equation (5.4), and a zero gradient boundary condition is

applied at the outlet. At the ground, fixed gradients are imposed by calculating the component

of∇θ normal to each face using the vertical derivative of equation (5.4). For the Exner function

of pressure, hydrostatic balance is prescribed on top and bottom boundaries and the inlet and

outlet are zero normal gradient.

Sponge layers are added to the upper 10 km and leftmost 10 km at the inlet boundary to

damp the reflection of waves. The damping term µ in the momentum equation (4.4a) is a
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function adapted from Melvin et al. (2010) such that

µ(x , z) = µupper +µinlet (5.5a)

µupper(z) =







µ sin2
�

π
2

z−zB
H−zB

�

if z ≥ zB,

0 otherwise,
(5.5b)

µinlet(x) =







µ sin2
�

π
2

x I−x
x I−x0

�

if x < x I ,

0 otherwise,
(5.5c)

where µ = 1.2 s−1 is the damping coefficient, zB = 20km is the bottom of the sponge layer,

H = 30 km is the top of the domain, x0 = −150km is the leftmost limit of the domain and

x I = −140 km is the rightmost extent of the inlet sponge layer. The sponge layer is active only

on entirely horizontal faces so that only vertical momentum is damped. Note that, while the

domain itself is 30 km in height, for the purposes of generating basic terrain-following meshes,

the domain height is set to 20 km because the sponge layer occupies the uppermost 10 km.

The test is integrated forward by five hours using a time-step of 8 s. At the end of the

simulation, gravity waves are apparent in the contours of vertical velocity (figure 5.3). Results

are presented for the Lorenz model variant, with momentum and potential temperature being

transported using the linearUpwind scheme (figure 5.3a) and the cubicFit scheme (figure 5.3b),

and for the generalised Charney–Phillips model variant (figure 5.3c), and all are in general

agreement with the reference solution from Melvin et al. (2010), reproduced in figure 5.3d. All

four results presented in figure 5.3 were obtained using the same basic terrain-following mesh.

Spurious distortions are visible in the vertical velocity contours using the Lorenz model

variant and the linearUpwind transport scheme (figure 5.3a), and similar error structures have

been found in previous studies that were attributed to numerical errors associated with basic

terrain-following mesh distortions (Schär et al., 2002; Klemp et al., 2003). In agreement with

these previous findings, we find that spurious gravity wave distortions can be avoided by switch-

ing from a basic terrain-following mesh to a slanted cell mesh or cut cell mesh (results not

shown). We also find that spurious gravity wave distortions can be avoided by transporting mo-

mentum and potential temperature on a basic terrain-following mesh using the cubicFit scheme

(figure 5.3b). Avoiding such spurious gravity waves distortions using either approach produces

solutions that closely match the reference solution (figure 5.3d). Given these results, we can

attribute spurious gravity wave distortions to transport scheme errors associated with flow that

is misaligned with mesh layers. Unlike the results obtained by Shaw and Weller (2016) that

used an older formulation of the cubicFit scheme, potential temperature errors are negligible for

all types of mesh when using the most recent formulation of the cubicFit scheme documented

in chapter 2.
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(d) Reference solution by Melvin et al. (2010)

Figure 5.3: Vertical velocities at the end of integration of the Schär mountain waves test case.
Results obtained using a basic terrain-following mesh and Lorenz staggering, with potential
temperature and momentum transported by (a) the linearUpwind scheme and (b) the cubicFit
scheme, and (c) using a basic terrain-following mesh and generalised Charney–Phillips stagger-
ing. For comparison, (d) provides a reference solution obtained with a mass-conserving semi-
implicit semi-Lagrangian model (Melvin et al., 2010). Contours are plotted every 0.05 ms−1.
In figures (a), (b) and (c), ascending velocities are marked by solid black lines and descending
velocities are marked by dashed red lines. Only the lowest 12 km in the central region of the
domain is shown. The entire domain is 300 km wide and 30 km high.
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As seen in figure 5.3c, the generalised Charney–Phillips model variant produces gravity waves

with spurious distorted structures similar to those obtained using the Lorenz model variant with

the linearUpwind scheme (figure 5.3a). In addition, as evidenced by the density of vertical

velocity contour lines in figure 5.3c, the generalised Charney–Phillips model variant produces

gravity wave amplitudes that are too large compared to the reference solution.

In summary, all solutions obtained here are in general agreement with the reference solution

from Melvin et al. (2010). However, on the basic terrain-following mesh, numerical errors lead

to spurious gravity wave distortions using the generalised Charney–Phillips model variant and

using the Lorenz model variant with momentum and potential temperature transported by the

linearUpwind scheme. Using the more accurate cubicFit scheme in the Lorenz model variant

produces the correct solution on the basic terrain-following mesh that is free from any spurious

gravity wave distortions.

Knowing that an improved transport scheme was responsible for the improved gravity wave

solution using the Lorenz model variant, we conjecture that the generalised Charney–Phillips

model variant produces less accurate results because the model uses a transport scheme that is

insufficiently accurate. In the next section we perform a further comparison between Lorenz

and generalised Charney–Phillips model variants using a new test case to excite the Lorenz

computational mode.

5.3 A two-dimensional standing waves test case

Having verified that the generalised Charney–Phillips formulation produces a reasonable moun-

tain waves solution, we must also verify that the formulation is free from the Lorenz computa-

tional mode. Since existing tests are not well-suited for nonhydrostatic model evaluation, we

design a new, two-dimensional standing waves test case, based on the original specification by

Arakawa and Konor (1996). Results are compared between Lorenz and generalised Charney–

Phillips model variants. To explore the applicability of the generalised Charney–Phillips formu-

lation to arbitrary vertical meshes, we also compare results between distorted and undistorted

meshes.

The domain is 30 km high and 600 km wide between the outermost faces, and the mesh

spacing is ∆x = 10km and ∆z = 1 km. The lower boundary is flat with no mountain profile.

The upper and lower boundaries are no normal flow, and the domain is horizontally periodic.

The initial potential temperature profile is the sum of a stably-stratified profile and a grid-

scale perturbation near the ground. The stably-stratified profile has θ(z = 0) = 250 K and a

constant static stability with Brunt-Väisälä frequency N = 0.02 s−1. The potential temperature
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perturbation θ ′ is defined as

θ ′ =







Sθ ′0 sin(2πx
λ ) if |x | ≤ λ

2 ,

0 otherwise,
(5.6a)

where S is given by

S =















−1 if 1 km≤ z < 2km,

1 if 2km≤ z < 3km,

0 otherwise,

(5.6b)

with the maximum amplitude θ ′0 = 0.5K and the wavelength λ = 100km. Using a Lorenz

staggering, this arrangement produces grid-scale waves in the central region of the domain in two

adjacent layers near the ground (figure 5.4a). Using a generalised Charney–Phillips staggering,

the perturbation is non-zero at the lowest two interior mesh layers above the lower boundary

(not shown). The definition given by equation (5.6) ensures that the potential temperature

perturbation integrated over the domain is zero. Using the Lorenz model variant, potential

temperature is transported using the linearUpwind scheme. Using the Charney–Phillips model

variant, potential temperature is transported in advective form (equation 5.1).

At the upper and lower boundaries zero gradients are imposed on the potential temperature

field for the Lorenz model variant; for the Charney–Phillips model variant, fixed potential tem-

perature values are prescribed using equation 5.4. The Exner function of pressure is calculated

so that it is in discrete hydrostatic balance with the perturbed potential temperature field.

A sponge layer is added to the upper 10 km. The damping function is given by

µ(z) =







µ sin2
�

π
2

z−zB
H−zB

�

if z ≥ zB,

0 otherwise,
(5.7)

where µ= 1.2 s−1 is the damping coefficient, zB = 20 km is the bottom of the sponge layer and

H = 30 km is the top of the domain. The sponge layer is active only on entirely horizontal faces

so that only vertical momentum is damped.

The test is integrated forward by 48 hours using a time-step of∆t = 25s. The initial potential

temperature perturbation generates gravity waves that spread rapidly through the domain. In

addition to these gravity waves, using the Lorenz model variant, a grid-scale standing wave

slowly spreads vertically, occupying the entire depth of the atmosphere (figure 5.4b), and the

initial perturbation, though weakened in amplitude, persists throughout the duration of the

simulation. No standing waves are produced by the generalised Charney–Phillips model variant

(figure 5.4c). When the mesh is refined vertically such that∆z = 500 m then the initial potential
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Figure 5.4: Differences in potential temperature for the standing waves test case. On the uniform
mesh and the horizontally tilted mesh, (a, d) a grid-scale potential temperature perturbation
near the surface is added to an initial, stably-stratified profile; the difference between the
initial, unperturbed, stably-stratified potential temperature profile and the final solution are
shown using (b, e) the Lorenz model variant, and (c, f) the generalised Charney–Phillips model
variant. The largest differences in potential temperature on the horizontally tilted mesh using
the generalised Charney–Phillips model variant is about 1.5 K, which is not representable by the
colour scale used here. Only the lowest 22 km in the central region of the domain is shown. The
entire domain is 600 km wide and 30 km high.



74 CHAPTER 5. A NEW TEST CASE TO EXCITE THE LORENZ COMPUTATIONAL MODE

z (m)

0

10000

20000

30000

z (m)

0

10000

20000

30000

−300000 −150000 0 150000 300000

1

(a) Tilted horizontal surfaces

(b) Tilted vertical surfaces

Figure 5.5: Distorted meshes used for the standing waves test with (a) horizontally tilted and
(b) vertically tilted surfaces.

temperature perturbation is no longer at the grid scale, occupying four mesh layers rather than

two. On this refined mesh, neither the Lorenz model variant nor the generalised Charney–

Phillips model variant produce any standing waves (not shown). Since they are produced

only by an initial grid-scale potential temperature perturbation using the Lorenz model variant,

we conclude that the grid-scale standing waves are a spurious feature excited by the Lorenz

computational mode.

To assess the suitability of the generalised Charney–Phillips formulation for arbitrary vertical

meshes, we perform the same standing waves test case on rectangular domains with tilted

horizontal surfaces (figure 5.5a) and tilted vertical surfaces (figure 5.5b). To allow for periodic

lateral boundaries, each mesh is split into left and right blocks of equal size, with the right block

mirroring the left. For the left-hand block of the horizontally tilted mesh, horizontal surfaces are

distorted such that the ratio of minimum and maximum vertical edge lengths at x = −300km

is 1 : 16, and the ratio at x = 0km is 16 : 1. The vertically tilted mesh is constructed in a similar

manner, with a ratio of minimum and maximum horizontal edge lengths at z = 0km of 81 : 100,

and a ratio at z = 30 km of 100 : 81.

Using the horizontally tilted mesh, large-scale responses are produced by both the Lorenz

model variant (figure 5.4e) and generalised Charney–Phillips model variant (figure 5.4f), and

these large-scale responses are very different from the small-scale gravity waves produced by
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Figure 5.6: Total normalised energy changes for the standing waves test case using Lorenz and
generalised Charney–Phillips model variants on a uniform mesh, a horizontally tilted mesh and
a vertical tilted mesh. Energy changes are negligible using the Lorenz model variant on all
meshes, and using the generalised Charney–Phillips model variant on the uniform mesh.

the Lorenz and generalised Charney–Phillips models using the uniform mesh (figures 5.4b and

5.4c respectively). Using the Lorenz model variant and the horizontally tilted mesh, a vertical

tripole structure is seen in the final potential temperature field, with some grid-scale features

visible near the centre of the domain throughout the depth of the atmosphere (figure 5.4e).

A similar solution is produced by the Lorenz model variant using the vertically tilted mesh

(not shown). In contrast to the solutions produced by the Lorenz model variant, using the

generalised Charney–Phillips model variant and the horizontally tilted mesh produces a solution

that is everywhere too warm (figure 5.4f). Using the generalised Charney–Phillips model variant

and the vertically tilted mesh, the atmosphere warms rapidly before the model becomes unstable

after about 2.5 hours. Note that, since the initial potential temperature perturbation is defined in

Cartesian coorinates and not relative to model layers, the discrete initial potential temperature

perturbation differs slightly between the uniform mesh (figure 5.4a), horizontally tilted mesh

(figure 5.4d) and vertically tilted mesh (not shown). However, we do not expect this slight initial

difference to result in such dramatically different solutions.

To better examine the thermal errors produced by the generalised Charney–Phillips model

variant, we calculate total energy change over time, normalised by the initial total energy,

where the total energy is the sum of the kinetic energy, potential energy and internal energy

(figure 5.6). Energy changes are negligible using the Lorenz model variant on all meshes,

and using the generalised Charney–Phillips model variant on the uniform mesh. Using the
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generalised Charney–Phillips model and the horizontally tilted mesh, total energy increases

linearly with time, which corresponds with the spurious warm atmosphere seen in figure 5.4f.

Using the vertically tilted mesh, a rapid increase in total energy is observed at about t = 2.5

hours, just before the model becomes unstable. Since the generalised Charney–Phillips model

variant transports potential temperature using an advective-form scheme and not a flux-form

scheme, it is likely that the observed energy changes and associated potential temperature errors

are due to a lack of conservation on distorted meshes.

Here we have presented a new standing waves test case that has been used to clearly excite

the Lorenz computational mode, and we have demonstrated that the generalised Charney–

Phillips formulation is free from the Lorenz computational mode on a uniform mesh. The

generalised Charney–Phillips model variant suffers from inaccurate or unstable solutions on

distorted meshes, but we expect that a more accurate transport scheme could avoid such a

severe lack of conservation and improve solutions on distorted meshes.



6 Conclusions and future work

Atmospheric models are using increasingly fine horizontal mesh spacings that resolve steep

slopes in terrain resulting in highly-distorted meshes and increased numerical errors. This

thesis makes four contributions to reduce numerical errors for flows over steep slopes. First,

we presented a new multidimensional method-of-lines transport scheme, cubicFit, that enforces

stability conditions derived from a von Neumann stability analysis to make the scheme stable

while maintaining second-order convergence over steep terrain on highly-distorted, arbitrary

meshes. The scheme has a low computational cost at runtime, requiring only m multiplies per

face per time-stage using a stencil with m cells. Stability condition calculations are pre-computed

during model initialisation since they depend upon the mesh geometry only. A new transport

test case with a terrain-following velocity field was formulated which reveals that numerical

transport errors are primarily due to misalignment of the velocity field with mesh layers and not

simply mesh distortions. In all tests, compared to the multidimensional linear upwind scheme,

the cubicFit scheme is more stable and more accurate. The cubicFit transport scheme is second-

order convergent on two-dimensional meshes over steeply sloping terrain, cubed sphere meshes

and hexagonal-icosahedral meshes, irrespective of the velocity field or mesh distortions.

Second, a high-order multidimensional method-of-lines transport scheme, highOrderFit, was

developed. The highOrderFit scheme uses k-exact polynomial reconstructions that are obtained

by calculating high-order volume and surface moments exactly. All computationally expensive

reconstruction calculations depend upon the mesh geometry alone. During integration, the

highOrderFit scheme requires only m multiplies per face per time-stage using a stencil of m cells,

meaning that, at runtime, the highOrderFit scheme has the same computational cost and storage

requirements as the cubicFit scheme. Transport tests demonstrate that the highOrderFit scheme

achieves at least third-order convergence in the domain interior irrespective of the velocity field

or mesh distortions.

The highOrderFit transport scheme offers a promising route to obtaining high-order conver-
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gence with a low computational cost, but we are aware of three improvements that could be

investigated:

1. By selectively removing high-order polynomial terms for highly-distorted stencils, the cu-

bicFit scheme achieves stable results where, on the same mesh, the highOrderFit scheme

is unstable. We expect that a similar stabilisation procedure could be included in the

highOrderFit scheme to obtain stable results on more highly-distorted meshes. This sta-

bilisation procedure should also permit stable transport over arbitrary lower boundaries

and, to further improve accuracy near boundaries, high-order boundary conditions might

be derived following existing approaches (Devendran et al., 2017; Schwartz et al., 2015).

2. The highOrderFit scheme achieves high-order convergence that makes it more accurate

than the cubicFit scheme at finer mesh spacings but, at coarser mesh spacings, the cubic-

Fit scheme is more accurate. For both transport schemes, the multipliers that appear in

the weighted least-squares fit are used to ensure that the polynomial fits the upwind and

downwind cells almost exactly, and this is necessary to achieve stability on highly-distorted

meshes. On less distorted meshes, however, more accurate results can be obtained by mod-

ifying the multiplier values so that the polynomial has a less exact fit through the upwind

and downwind cells, but has better least-squares fit to the stencil overall. Devendran et al.

(2017) note that these multipliers introduce extra degrees of freedom into the system, and

a strategy for optimising these values is the subject of future work. We hope that if such a

strategy were included in the highOrderFit scheme then more accurate results could be

obtained on coarser meshes.

3. The highOrderFit scheme has only been tested on Cartesian planes, and further research is

necessary to extend the scheme to spherical geometry. It is not clear that a projection from

the sphere onto a local tangent plane, as used by Sjögreen (2012), will achieve high-order

convergence. Instead, it is more likely that high-order convergence could be achieved by

taking the method by Tuzikov et al. (2003) for calculating exact polyhedral surface and

volume moments and extending it to spherical polyhedra.

Third, we proposed a new type of mesh, the slanted cell mesh, for representing the atmo-

sphere above steeply sloping terrain. The slanted cell mesh is designed to avoid severe mesh

distortions associated with terrain-following meshes, and to avoid severe time-step constraints

associated with arbitrarily small cut cells. In a test of a stratified atmosphere at rest, spurious

circulations were reduced by switching from the highly-distorted basic terrain-following mesh

to the more uniform slanted cell mesh. A new test case was formulated to challenge transport

schemes over a steeply sloping lower boundary. Unlike the multidimensional linear upwind
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scheme, the cubicFit scheme is numerically stable over these very steep slopes. The test reveals

that the slanted cell mesh permits longer time-steps than those permitted by cut cell meshes,

since slanted cells are always long in the direction of flow.

In this thesis, all tests that represent terrain with x–z meshes have used only uniform vertical

mesh spacing. Operational atmospheric models have non-uniform vertical mesh spacing, using

finer mesh spacing near the ground to resolve boundary layer processes. Fine vertical mesh

spacing near the ground is also desirable for resolving diurnal flows along mountain slopes,

which are typically 1 m to 20 m deep (Chow et al., 2013, p. 39). Since we have established that

the numerical accuracy of a transport scheme depends primarily on the alignment of flow with

the mesh (section 2.3), we might expect a terrain-following mesh to be better-suited than a cut

cell mesh for representing slope flows. The tests presented here demonstrate that transport over

mountain slopes is more accurate using terrain-following meshes (section 4.2), but that a more

accurate balance between the pressure gradient and gravity is achieved using cut cell meshes or

slanted cell meshes (section 4.4). Hence, future work might seek an improved mesh that blends

the best features of both terrain-following and slanted cell meshes.

Finally, a two-dimensional test case was developed to excite the Lorenz computational mode.

The test is based on the original specification by Arakawa and Konor (1996) that was developed

for a simplified, vertically-discrete model in pressure coordinates. Test results were compared us-

ing two models of the fully compressible Euler equations: one variant having a Lorenz staggering,

and the other model variant using a newly-formulated Charney–Phillips staggering generalised

for arbitrary meshes. The test case verifies that the generalised Charney–Phillips model variant

is free from the Lorenz computational mode, and we hope that the new test case might aid in

the development and intercomparison of future dynamical cores.

The research presented in this thesis creates new opportunities for accurate atmospheric

transport with low computational cost and improved numerical balance between the pressure

gradient and gravity, and we have provided a series of new, idealised test cases for evaluating

dynamical cores. In combination, the slanted cell mesh, the highOrderFit transport scheme

and numerical stabilisation techniques from the cubicFit scheme offer a route to more accurate

numerical simulations of the atmosphere in the vicinity of steeply sloping terrain.





Appendices
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A Mesh geometry on a spherical Earth

The cubicFit transport scheme is implemented using the OpenFOAM CFD library. Unlike many

atmospheric models that use spherical coordinates, OpenFOAM uses global, three-dimensional

Cartesian coordinates with the z-axis pointing up through the North pole. In order to perform

the experiments on a spherical Earth presented in section 2.4, it is necessary for velocity fields

and mesh geometries to be expressed in these global Cartesian coordinates.

Velocity field specification

The non-divergent velocity field in section 2.4 is specified as a streamfunction Ψ(λ,θ ). Instead

of calculating velocity vectors, the flux u f · S f through a face f is calculated directly from the

streamfunction,

u f · S f =
∑

e ∈ f

e · xeΨ(e) (A.1)

where e ∈ f denotes the edges e of face f , e is the edge vector joining the two vertices of the

edge, xe is the position vector of the edge midpoint, and Ψ(e) is the streamfunction evaluated

at the same position. Edge vectors are directed in a counter-clockwise orientation.

Spherical mesh construction

Since OpenFOAM does not support two-dimensional spherical meshes, instead, we construct

meshes that have a single layer of cells that are 2000 m deep, having an inner radius r1 =

Re − 1000 m and an outer radius r2 = Re + 1000 m. By default, OpenFOAM meshes comprise

polyhedral cells with straight edges and flat faces. This is problematic for spherical meshes

because face areas and cell volumes are too small. For tests on a spherical Earth, we override
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the default configuration and calculate our own face areas, cell volumes, face centres and cell

centres that account for the mesh curvature. Note that the new centres are no longer centroids,

but they are consistent with the horizontal transport tests on a sphere presented in section 2.4.

A face is classified as either a surface face or radial face. A surface face has any number of

vertices, all of equal radius. A radial face has four vertices with two different radii, r1 and r2,

and two different horizontal coordinates, (λ1,θ1) and (λ2,θ2). A radial face centre is modified

so that it has a radius Re. The latitudinal and longitudinal components of a radial face centre

need no modification. The face area A f for a radial face f is the area of the annular sector,

A f =
d
2
|r2

2 − r2
1 | (A.2)

where d is the great-circle distance between (λ1,θ1) and (λ2,θ2).

To calculate the centre of a surface face f , a new vertex is created that is positioned at the

mean of the face vertices. Note that this centre position, c̃ f , is used in intermediate calculations

and it is not the face centre position. Next, the surface face is subdivided into spherical triangles

that share this new vertex (Van Brummelen, 2013). The face centre direction and radius are

calculated separately. The face centre direction r̂ is the mean of the spherical triangle centres

weighted by their solid angle,

r̂=

∑

t ∈ f Ωt

�

xt,1 + xt,2 + c̃ f

�

|∑t ∈ f Ωt

�

xt,1 + xt,2 + c̃ f

�| (A.3)

where t ∈ f denotes the spherical triangles t of face f , Ωt is spherical triangle’s solid angle

which is calculated using l’Huilier’s theorem, xt,1 and xt,2 are the positions of the vertices shared

by the face f and spherical triangle t, and c̃ f is the position of the centre vertex shared by all

spherical triangles of face f . The face centre radius r is the mean radius of the face vertices,

again weighted by the solid angle of each spherical triangle,

r =

∑

t∈ f Ωt

�|xt,1|+ |xt,2|
�

/2

Ω f
(A.4)

where the solid angle Ω f of face f is the sum of the solid angles of the constituent spherical

triangles,

Ω f =
∑

t∈ f

Ωt . (A.5)

We use equations (A.3) and (A.4) to calculate the centre c f of the face f ,

c f = r r̂ (A.6)
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The area vector S f of the surface face f is the sum of the spherical triangle areas (Van Brummelen,

2013),

S f = r2Ω f r̂ . (A.7)

Cell centres and cell volumes are corrected by considering faces that are not normal to the sphere

such that
�

S f · c f

�2

|S f |2|c f |2
> 0 . (A.8)

Let F be the set of faces satisfying equation (A.8). Then, the cell volume Vc is

Vc =
1
3

∑

f ∈F
S f · c f (A.9)

which can be thought of as the area A integrated between r1 and r2 such that
∫ R

0 A(r) dr =
∫ r2

r1
r2Ω dr = 1

3Ω
�

r3
2 − r3

1

�

. The cell centre is modified so that it has a radius Re, which is

consistent with radial faces.

Edges can be classified in a similar manner to faces where surface edges are tangent to the

sphere and radial faces are normal to the sphere. The edge midpoints xe are used to calculate

the face flux for non-divergent velocity fields (equation A.1). For transport tests, corrections to

edge midpoints are unnecessary. Due to the choice of r1 and r2 during mesh construction, the

midpoint of a radial edge is at a radial distance of Re which is necessary for the correct calculation

of non-divergent velocity fields. The position of surface edge midpoints is unimportant because

these edges do not contribute to the face flux since e · xe = 0. Edge lengths are the straight-line

distance between the two vertices and not the great-circle distance. Again, the edge lengths are

not corrected because it makes no difference to the face flux calculation.
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