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C. M. Maynarda,c, T. Melvina, E. H. Müllerd, S. Mullerwortha, A. R. Porterb,

M. Reznye, B. J. Shipwaya, R. Wonga

aMet Office, UK
bSTFC Hartree Centre, Daresbury Laboratory, UK

cDepartment of Computer Science, University of Reading, UK
dDepartment of Mathematics, University of Bath, UK

eMonash University, Melbourne, Australia

Abstract

This paper describes LFRic: the new weather and climate modelling system being

developed by the UK Met Office to replace the existing Unified Model in preparation

for exascale computing in the 2020s. LFRic uses the GungHo dynamical core and runs

on a semi-structured cubed-sphere mesh. The design of the supporting infrastructure

follows object-oriented principles to facilitate modularity and the use of external li-

braries where possible. In particular, a ‘separation of concerns’ between the science

code and parallel code is imposed to promote performance portability. An application

called PSyclone, developed at the STFC Hartree centre, can generate the parallel code

enabling deployment of a single source science code onto different machine architec-

tures. This paper provides an overview of the scientific requirement, the design of the

software infrastructure, and examples of PSyclone usage. Preliminary performance re-

sults show strong scaling and an indication that hybrid MPI/OpenMP performs better

than pure MPI.
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1. Introduction

The Met Office develops and maintains a large suite of numerical models that un-

derpins its operational weather and climate research work. The Unified Model (UM)

of the atmosphere is at the heart of this suite. The UM was developed in the late 1980s

and introduced into operational use in 1990 [1]. Since its inception there has been a

continuous drive to increase its complexity, accuracy and compute performance so as

to deliver the Met Office’s purpose which is to work at the forefront of weather and

climate science for protection, prosperity and well-being.

In continuing to improve the Met Office’s atmosphere model capability into the

future, three challenges were anticipated.

Firstly, for many years much of the improvement in compute performance of the

UM could be obtained by buying high performance computers with faster processors.

However, clock speeds of new generations of standard CPUs are now often slower

than the old. Scaling to more CPUs is limited by interprocessor communications, and

the costs of powering machines with higher core counts is becoming unsustainable.

All these factors challenge the ability to deliver higher resolution and more complex

numerical models [2].

Secondly, a particular challenge for many atmosphere models, including the UM,

relates to their use of the latitude-longitude (lat-lon) grid. The convergence of longitude

lines at the poles causes numerical issues that make it hard to scale the model to higher

core counts.

Thirdly, looking forward to the future, it is anticipated that HPC architectures will

change radically, and that the diversity of architectures will increase. Even when port-

ing from one CPU-based machine to another, there is a cost due to the need to re-tune

the performance for the particular characteristics of the new machine. With the emer-

gence of more diverse machines such as GPU-based machines, the cost will only get

worse.

In collaboration with academic partners, the Met Office reviewed the options avail-

able to resolve these three issues [3]. The decision was to develop a new dynamical

core called GungHo [4] written to run on an unstructured mesh that avoids the polar
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singularity problem. A new software infrastructure would be required as the UM in-

frastructure will not support an unstructured mesh. The architecture of the software

infrastructure would impose a separation between scientific code and parallel systems

code – code that supports parallelism on HPC machines – so as to reduce the cost and

complexity of porting to new architectures. This paper describes the novel features of

this new model infrastructure and experiences in developing scientific code within it,

and provides some preliminary compute performance results.

1.1. The LFRic Roadmap

LFRic is the name given to the new atmospheric model and to the new software

infrastructure which is being developed to host the GungHo dynamical core. LFRic is

named after the pioneering weather forecaster Lewis Fry Richardson ( [5], [6]). The

LFRic Roadmap comprises three phases: developing the first version of the software

infrastructure to support the GungHo dynamical core; extension of the software in-

frastructure to support implementation of a full atmosphere model including physics

codes; deployment of the model in operational trials in the lead up to its replacement

of the Unified Model.

Currently LFRic is mid-way through Phase 2, which will end in 2020. The start of

Phase 3 marks the point when the LFRic atmosphere model replaces the Unified model

as the Met Office’s main target for science and computational performance improve-

ments. Phase 3 is expected to end with the deployment of the LFRic atmosphere model

in the Met Office NWP Operational Suite towards the mid-2020s, following which the

first climate configuration will be developed that uses LFRic.

At the core of the LFRic design, the software architecture of the natural science

code imposes a separation of concerns between science code and code relating to par-

allelisation of the model. The architecture is called PSyKAl after the three layers it

comprises: Parallel Systems or PSy layer code, Kernel code and Algorithm code. The

architecture aims to separate scientific code in the algorithms and kernels from parallel

code within the PSy layer. Metadata embedded in the scientific code is read by an ap-

plication called PSyclone which automatically generates the PSy layer code. Initially,

PSyclone has successfully converted serial code into OpenMP and MPI parallel code
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without changing any of the science code. The design is described in more detail in

Section 3.

The PSy layer code generated by PSyclone includes calls to the LFRic software

infrastructure. The LFRic infrastructure implements a data model that supports finite

element, finite volume and finite difference model fields, domain decomposition of

these fields on distributed memory platforms, and halo swaps of fields to support com-

munication of information between distributed memory domains. This infrastructure

is implemented in Fortran and uses Fortran 2003 constructs to impose the separation of

concerns.

It is important to be clear that most of the focus of the project so far has been to sup-

port the science requirements of the GungHo dynamical core and atmosphere model,

and to demonstrate the principle of the separation of concerns within the PSyKAl ap-

proach. Performance results provided in this paper are based on only parts of the

scientific model (the dynamics and individual kernels) and are therefore preliminary.

Currently development of the GungHo dynamics is still ongoing: important optimi-

sations to its algorithmic performance such as provision of a multigrid preconditioner

are not complete. Furthermore, while the LFRic infrastructure is capable of running

physics codes copied from the UM, the codes are currently being pulled in as is, with

no consideration of compute performance as yet.

Additionally, while targeting of future platforms is planned, even now the ability to

test LFRic on some such machines is limited by lack of sufficient Fortran 2003 support

by some compilers for the object-oriented features being exploited in the design of the

LFRic infrastructure. While lack of compiler support has impacted the development

and testing of LFRic, in the long run the OO design will better enable the infrastructure

to develop and adapt without impacting scientific code.

The rest of the paper is organised as follows: The GungHo dynamical core and

computational aspects are presented in Section 2. The software design for the separa-

tion of concerns and PSyKAl API are described in Section 3. The model infrastructure

and use of libraries is discussed in Section 4. PSyclone, the code generator is presented

in Section 5 and the package developed to apply linear solvers and preconditioners is

presented in Section 6. Finally a scaling analysis is presented in Section 7 and conclu-
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sions drawn in Section 8.

2. GungHo

The dynamical core in an atmospheric model is responsible for simulating those

fluid dynamical processes that are resolved by the underlying mesh. It is then cou-

pled to a suite of subgrid physical parametrization schemes for processes that are not

resolved (such as cloud microphysics and convection) and those that act as subgrid

diabatic sources (such as longwave and shortwave radiative heating/cooling). For the

purposes of this paper only the dry dynamical core without the subgrid processes is

considered.

The GungHo dynamical core has been developed to replace the current ENDGame

dynamical core in the UM. The GungHo model seeks to replicate the accuracy and sta-

bility of ENDGame whilst replacing the regular lat-lon grid with a quasi-uniform grid.

This avoids the problems associated with the polar singularities in ENDGame resulting

from the convergence of meridians at the poles. The mesh used to develop GungHo

within LFRic is an equi-angular cubed-sphere, shown in Figure 1 [7]. This has the ben-

efit of near uniform resolution across the globe and a maximum/minimum edge length

of ≈ 1.3 achieved by using only quadrilateral cells. However, this quasi-uniform mesh

comes at the expense of losing orthogonality (the line between two neighbouring cells

centres is not, in general, perpendicular to the edge shared between the two cells). Ad-

ditionally, the two polar singularities of the lat-lon grid have been replaced by the eight

corners of the cubed sphere, where only three cells meet at a vertex instead of the usual

four. The lack of orthogonality and the presence of the corner singularities need to

be taken into account when choosing an appropriate numerical method to avoid errors

being dominated by the corners.

To generate the 3D mesh this 2D cubed-sphere mesh is extruded in the radial direc-

tion to form a spherical shell of cells. Where orography is present a terrain following

radial coordinate is used such that every column contains the same number of cells.

The horizontal mesh is treated as unstructured, such that it could easily be changed, for

example, to an icosahedral mesh as considered in [8]. The vertical mesh is structured
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Figure 1: Equi-angular cubed-sphere mesh as used in GungHo with 12x12 subdivisions per face, referred to

as a C12 mesh. This gives 864 columns of cells.

and directly addressed, so that a data point is addressed as map(df,col)+k, where col

is the horizontal index of the column and k=0,...,nlayers-1 is the index of the vertical

layer; df is the index of a particular data point within the cell, allowing multiple data

points within a single cell, and finally map is an array containing the address of data

points at the bottom of the model column. Using an extruded mesh of this type with

direct access and data contiguity in the vertical, the cost of the indirectly addressed hor-

izontal index can be offset (see [9]) provided enough layers are used. Since the current

UM uses O(100) layers the cost of the indirection is minimal.

2.1. Formulation

The GungHo dynamical core solves the Euler equations for a perfect gas in a rotat-

ing frame

∂u
∂t

= − (2Ω + ∇ × u) × u − ∇
(

1
2

u · u + Φ

)
− cpθ∇Π, (1)

∂θ

∂t
= −u · ∇θ, (2)

∂ρ

∂t
= −∇ · (uρ) , (3)
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the system is closed by the equation of state

Π
1−κ
κ =

R
p0
ρθ. (4)

These constitute a set of coupled non-linear Partial Differential Equations (PDEs) for

the vector wind u, the density ρ, potential temperature θ and Exner pressure Π. Addi-

tionally: Ω is the rotation rate; Φ is the geopotential; p0 is a reference pressure; R is

the gas constant; cp is the specific heat at constant pressure and κ ≡ R/cp.

2.2. Spatial Discretisation

In order to maintain a similar accuracy to ENDGame on a quasi-uniform mesh a

mixed Finite Element Method is used [10, 11]. This gives the finite element equivalent

of the C-grid-Charney-Phillips staggering [12, 13] used in ENDGame, but without re-

lying on the orthogonality of the mesh for numerical consistency. The mixed FEM is

very general in terms of the order of approximation and shape of the underlying mesh,

allowing the method to be tailored to specific needs of the application. The mixed

FEM involves defining a number of finite element spaces and differential mappings be-

tween them. The particular family of finite element spaces [14], for a given polynomial

order p, used in GungHo are: Qp+1 containing continuous point wise scalar quanti-

ties; Np containing circulation vectors that have continuous tangential components;

RTp containing flux vectors that have continuous normal components; QD
p containing

discontinuous volume integrated scalars; along with a horizontally discontinuous verti-

cally continuous space [11] for θ to mimic the Charney-Phillips grid staggering used in

ENDGame. Here continuous means that neighbouring cells share degrees of freedom

(hereafter dofs) located on the shared entities (e.g. faces, edges, vertices). In practice

the lowest order spaces p = 0 are used, the resulting location of the dofs for these

spaces are shown in Figure 2.

The velocity field u is placed in the RT0 space; the vorticity ξ ≡ ∇×u is placed in the

N0 space; density, ρ, and Exner pressure, Π, are placed in the QD
0 space; as mentioned

above the potential temperature, θ, is placed in a scalar-space corresponding to the

vertical components of RT0 with dofs located in the centre of the top and bottom faces

of a cell. See [4] for a full description of the discretisation used in the GungHo model.
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(a) (b)

(c) (d)

Figure 2: Location of degrees of freedom at p = 0, (a) Q1, (b) N0, (c) RT0 and (d) QD
0 finite element spaces.

Circles correspond to scalar degrees of freedom and triangles to vector degrees of freedom.

2.3. Advection

In order to achieve accuracy similar to that of ENDGame it is important to have a

high-order approximation to the scalar advective terms: u.∇ρ and u.∇θ. In ENDGame

these are evaluated using a semi-Lagrangian formulation that involves computation

of the trajectories that the fluid has taken over a timestep, followed by a high-order

multi-dimensional interpolation of the scalar field to the origin of the trajectory. The

non-local nature of the trajectory computation can lead to significant communication

costs if the trajectory crosses over processor boundaries, which often happens near the

poles of the lat-lon grid.

In GungHo this semi-Lagrangian scheme is replaced by an Eulerian finite-volume

method of lines advection scheme that maintains inherent local conservation of mass.

The method fits a high-order upwind polynomial over a number of neighbouring cells

and evaluates this at a fixed point to compute the advective term. This only requires a

local computation and the stencil is fixed, reducing the amount of computation needed.
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However, in order to obtain a stable scheme it is wrapped in a multi-stage evaluation,

meaning that the advection update needs to be computed a number of times per iter-

ation of the iterative-semi-implicit scheme (see Section 2.4); nominally 3 stages are

used. Future work will evaluate the use of flux-form Semi-Lagrangian scheme (COS-

MIC) [15] to replace the current scheme. This carries many of the benefits of the semi-

Lagrangian scheme used in ENDGame but without the communication costs (due to

use of a quasi-uniform mesh) as well a simplification to the computation from using a

dimensionally split formulation that only requires one-dimensional interpolation.

2.4. Time-stepping

As in ENDGame, to facilitate the use of long time-steps, a two time-level iterative

semi-implicit time-stepping scheme is used. This requires, within each time-step, a

non-linear Picard iteration to update the non-linear and advection terms and at each

iteration a large sparse linear system is solved, which is formed by use of a quasi-

Newton method,

L (xn) x′ = R
(
x(k)

)
, (5)

for the increment x′ ≡ x(k+1) − x(k) on the kth estimate from the Picard iteration of the

prognostic variables x ≡ (u, θ, ρ, Π). The linear system L (xn) is chosen as to contain

the terms necessary for stability of the fast acoustic and gravity waves as in [16] and is

formed from a linearisation about the previous timestep fields xn. The method used to

solve this linear system is detailed in Section 6. An overview of the time-step is given

in Table 1.

3. Separation of Concerns

Science applications in general and weather and climate codes in particular are writ-

ten in high-level languages such as Fortran or C/C++. Fortran is commonly employed

for weather and climate codes as it is especially suited to numeric computation. Using

such a high-level language, an algorithm is written to solve a mathematical problem

without consideration for the processor architecture. The compiler generates machine-

specific instructions and can, in principle, make optimisation choices to exploit the

architecture of different processors.
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do n = 1,N (begin time-step loop)

Set x(1) = xn

Compute L (xn)

Compute R (xn)

do k = 1,K (begin Picard loop)

Compute advective terms RA
(
x(k), x(n)

)
Compute R

(
x(k)

)
Set R(k) = Rn + R(k) + RA

Solve L (xn) x′ = R(k)

end do

Set xn+1 = x(K)

end do

Table 1: Overview of a single timestep in the GungHo dynamical core, typically K = 4.

This abstraction of a separation of concerns between mathematics code and ma-

chine code is powerful. It enables the portability of science code to different processor

architectures, and allows the application to exploit a significant fraction of the peak

performance of the processor. Whilst many science applications may contain code op-

timisations in performance-critical sections (for example, blocking or tiling loop nests

to better utilise cache memory), in general these applications have relied on clock speed

increases between processor generations to increase performance.

Increases in processor speed between generations ceased more than a decade ago

due to the ending of Dennard scaling [17]. Instead, successive generations of proces-

sors have had increasing numbers of processor cores per socket. Science applications

typically have already been adapted to run on multiple nodes to exploit supercomputers

with the distributed memory and data parallelism typically expressed via MPI. Multi-

core nodes present additional opportunities and challenges to applications in terms of

exploitation of shared address space within a node. Heterogeneous compute nodes such

as CPU + GPU with distinct memory spaces require further additional programming

models to enable proper exploitation of the available compute performance.
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A great number of programming models exist. For distributed memory there are,

for instance, MPI and Partitioned Global Address Space (PGAS) languages, such as

Co Array Fortran, Unified Parallel C, Chapel and GASPI. For threaded and shared-

memory parallelism there are directive-based solutions such as OpenMP and OpenACC

as well as languages such as CUDA and OpenCL. However, the programming models

lag behind in development of the rapidly evolving computer architectures. Particular

models lack feature or processor coverage making the choice of programming model

difficult. These issues are especially difficult for weather and climate applications with

their long development cycles.

Many applications have adopted an MPI + X model, where X is one or more of

the programming models mentioned in the previous paragraph. This is problematic

for several reasons. The programming models are not only different, they are different

types of model: languages, language extensions, libraries and directives, some of which

are architecture specific. Worse, the interaction between them is outside the scope of

any model and may, for example, depend on control by the batch scheduling system.

The applications may require a different X for different architectures and even different

data layouts and loop nest order. All these parallel and performance features break

the data abstraction of the separation of concerns between the maths/science code and

architecture-specific code.

The design for the LFRic model is based upon a computational science report from

Phase 1 of the GungHo project [3]. By employing a layered software architecture,

the complex parallel code can be kept separate from the science code. As outlined

in Section 1, the software is separated into three layers. Algorithms are expressed as

operations on global, data-parallel field objects, in the top algorithm layer. The middle

PSy layer (Section 1) contains the looping over the horizontal field and is where the

data parallelism is expressed. The bottom layer comprises the kernels which encode

the operation invoked in the algorithm layer. Kernels are written to operate on a single

vertical column of cells. Shown in Figure 3 is a schematic diagram of this layered

software architecture. The red arrows indicate the control flow through the different

layers.

The APIs between the layers are tightly controlled. The PSy layer can be called
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Figure 3: Schematic diagram of the PSyKAl layered architecture. A single model could be for example,

the atmospheric model. The blue vertical line between the PSy layer and the Algorithm and Kernel layers

represents a separation of the science and parallel code.

only from the algorithm layer by an invoke procedure call. The permitted arguments

to these invoke procedures are a restricted set of LFRic objects, such as fields, that the

kernels will operate on. The kernels can be called only from the PSy layer. The PSy

layer code unpacks information from the LFRic objects including data arrays, scalars

for loop bounds, and supporting arrays of both reals and integers for the Finite Element

Method. The API is implemented using a Fortran 2003 object orientation coding style.

By restricting the domain of the problem from all numerical mathematics to only that

required (in the first instance) in the GungHo dynamical core it is possible to constrain

the parallelism to the PSy layer.

Compilers in general have to be conservative about the assumptions they can make

in order to guarantee correctness. However, a further advantage of the DSL approach is

that developers can explicitly express the domain knowledge which is not possible in a

standard, high level language. In the case of the LFRic model, data access descriptors

are employed to say whether access to a field is read, write, readwrite or increment.

The latter two discriminate between fields that do not share degrees of freedom between
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columns (e.g. density defined on QD
p function space, see Section 2.2 for more details)

and the ones that do (e.g. velocity defined on RT0 space, Section 2.2). This information

is embedded in Fortran as part of the kernel. Other information encoded in this way

is the loop iterator (for example, the choice to loop over horizontal cells), whether the

kernel operates on a field which lives on a specific function space, whether any of the

fields live on common function spaces and for FEM kernels whether the kernel uses

any basis functions.

The restricted domain, strict control of the APIs between layers and, critically, the

data access descriptors and other kernel metadata allow a set of rules to be derived to

construct the PSy layer. The code itself can therefore be automatically generated, and

a Python code parser, transformer and code generator called PSyclone has been written

to generate it. More details of PSyclone can be found in Section 5. The generated

PSy layer code is Fortran and contains calls to the LFRic infrastructure (see Section 4

for more details) to access functionality such as: MPI distributed memory parallelism,

dereferencing the Fortran 2003 objects, looping over the horizontal mesh elements and

calling the kernels themselves. PSyclone can also perform optional transformations to

target other programming models such as OpenMP or OpenACC.

3.1. Implementation

The algorithm layer code is written in Fortran 2003. However, this code is not

actually compiled; it is parsed and processed by PSyclone first. Most of the Fortran is

left as written. The exception to this is the call to any invoke procedure. The invoke

procedure does not exist as such in the source code. Instead, an invoke means execute

these kernels looping over the chosen entities, hence instructing PSyclone on how to

generate parallel code. PSyclone can parallelise this horizontal looping with MPI,

OpenMP or both. Shown in the code fragment below is an invoke procedure call from

the algorithm layer.

Listing 1: Code fragment showing an invoke procedure from the Algorithm layer

call invoke( setval_c(v(m), 0.0 _r_def), &

matrix_vector_kernel_type(v(m), s(m), mm), &

enforce_bc_kernel_type( v(m) ) )
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There are three kernels in this invoke. The first setval_c is an example of a point-

wise kernel. The same operation, setting all the values of the field to the same scalar,

is applied to each dof so no FEM structure is required. This is an example of a built-in

operation generated in-place in the PSy layer by PSyclone. The second kernel is written

as a call to the constructor of the kernel type, so that it is valid Fortran. The arguments

to this call v and s are fields and mm is an operator, in this case a mass matrix.

PSyclone replaces the code for an invoke to the kernels with a call to a generated

procedure in the PSy layer, with the fields and operators as arguments. Shown in

Listing 2 is a code fragment from the generated PSy layer for the call to the matrix-

vector kernel in invoke shown in Listing 1.

Listing 2: Code fragment of the generated PSy layer with distributed memory support

1 CALL v_proxy%halo_exchange(depth =1)

2 IF (s_proxy%is_dirty(depth =1)) THEN

3 CALL s_proxy%halo_exchange(depth =1)

4 END IF

5 DO cell=1,mesh%get_last_halo_cell (1)

6 CALL matrix_vector_code(cell , nlayers , v_proxy%data , &

7 s_proxy%data , mm_proxy%ncell_3d , mm_proxy%local_stencil , &

8 df_any_space_1_v , undf_any_space_1_v , &

9 map_any_space_1_v (:,cell), &

10 ndf_any_space_2_s , undf_any_space_2_s , &

11 map_any_space_2_s (:,cell))

12 END DO

Lines 1-4 are the distributed memory calls to the infrastructure for a halo exchange and

testing/setting flags to indicate whether a halo (and to what depth) has been updated.

Lines 6-12 are the looping over the horizontal mesh and the procedure call to the kernel

itself. The arguments are simple scalars for sizes and loop counters, the data arrays and

(in this example) the indirection maps.

Shown in the code fragment below is the kernel metadata for the matrix-vector

kernel invoked in the algorithm layer.

14



Listing 3: Code fragment showing kernel metadata for the matrix-vector operator kernel

1 type , public , extends(kernel_type) :: &

2 matrix_vector_kernel_type

3 private

4 type(arg_type) :: meta_args (3) = (/ &

5 arg_type(GH_FIELD , GH_INC , ANY_SPACE_1), &

6 arg_type(GH_FIELD , GH_READ , ANY_SPACE_2), &

7 arg_type(GH_OPERATOR , GH_READ , ANY_SPACE_1 , &

8 ANY_SPACE_2) /)

9 integer :: iterates_over = CELLS

10 contains

11 procedure , nopass :: matrix_vector_code

12 end type

The metadata is embedded in Fortran so that no special comments or other mark-up is

required. The access descriptors shown above are key to deriving the appropriate rules

for generating the code in the PSy layer. The arg_type has three components. Firstly,

the type of the data object, in this case fields and operators (an operator is a mapping

between one function space and another). Secondly, the data access pattern for the

data object. For example, GH_INC means the data is incremented. Thirdly, which

function space the data lives on. In this case, the kernel is general and can operate

on any function space, hence, the any_space_n. Whilst the n can be any number,

the function space of the first field must correspond to the first function space of the

operator and the function space of second field must correspond to the second function

space of the operator.

4. Infrastructure

As shown in Figure 3, the PSyKAl layered architecture is supported by the LFRic

infrastructure. The LFRic infrastructure provides functionality such as distributed

memory support (halo exchanges), colouring for OpenMP threading and the provision

of loop bounds that the generated PSy layer will use.
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Figure 4: A Unified Modelling Language (UML) class diagram of the family of objects used in the LFRic

infrastructure to support the field object.

Within the development of LFRic there has been a conscious effort to provide the

infrastructure following an object-oriented approach. As such, much of the infrastruc-

ture is provided through a family of objects that ultimately support the field object that

is used within the science code. The objects are shown in Figure 4. Two-dimensional

topological and positional information about the global mesh is read into the global

model object. This is passed to a partitioner to generate a partition object that de-

scribes what portion of the global mesh the local processing element will be working

on. The global mesh and the partition objects are then combined to form a mesh ob-

ject that extrudes the two-dimensional mesh information in the vertical for just the part

of the mesh that will be used on the local processing element to form a local, three-

dimensional representation of the mesh. The way the data that is held within the field

object relates to the mesh is described by the function space.

The LFRic infrastructure has been designed to be mesh-agnostic and thus most

of the LFRic infrastructure supports a generic horizontally unstructured mesh. The

partitioner is currently implemented to provide optimised partitioning specifically for

cubed-sphere and planar meshes only. If a different mesh is required, the only in-

frastructure change required to support the new mesh is a relatively straightforward

extension of the partitioner code.

Most of the infrastructure is accessed through the field object. So, for example if

a halo exchange is required on a field, the halo exchange method on the field object

is called. This infrastructure API is used by the PSy layer to access information and

functionality.
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4.1. Distributed Memory Optimisation

Distributed memory parallelism is achieved by partitioning the full (global) domain

into smaller sections (partitioned or local domains). Information is passed between the

tasks through the use of halo regions. Data in these areas are provided from other

partitions that own that section of the domain.

Performing halo exchanges is not unique to LFRic. Running large parallel weather

and climate model codes has been done for many years, with halo exchanges being

required to communicate updates between the partitions of data. However, the fol-

lowing aspects of the data model within the LFRic infrastructure make implementing

distributed memory parallelism using halo exchanges particularly challenging:

1. LFRic is designed to support horizontally unstructured meshes, which means it

has to support non-uniform shaped partitions with complex shaped halo regions;

2. Because the domain is horizontally unstructured, moving from one data point to

a horizontally adjacent data point requires using a lookup table, which is slower

than using direct addressing. In order to recover some code performance, fields

are laid out in memory so that vertically adjacent data points are next to each

other, and the looping structure within LFRic kernels is vertical looping inner-

most;

3. As noted in Section 2.2, the discretisation being used within LFRic leads to dof

data being held on all the different entities within the mesh: cell volumes, faces,

edges and vertices. A partitioning scheme that partitions the domain along cell

boundaries leads to partitions that must share the dofs that are located on the

boundaries of the domain. Having to assign ownership of these shared dofs to a

particular partition adds to the complexity of setting up the halo exchanges.

The halo exchanges are achieved by passing information between processes using

MPI. For performance and ease of use reasons, the MPI library is not called directly,

instead a layer between the model and MPI is introduced. At initialisation time, the

layer generates the communication routing tables required to perform a halo exchange.

These tables are then reused every time a halo exchange is required.
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In order to generate the routing table, each rank needs to supply the following

information to the library:

• A list of all the global dof ids of all the locally owned dofs;

• A list of all the global dof ids of all the dofs in the halos.

Initially, the LFRic project used the infrastructure library component of the Earth

System Modelling Framework (ESMF) [18] to provide the layer between the model

and MPI, however it was not particularly well-suited to the higher order finite-element

fields used in LFRic . Although the routing tables it generated were optimal (the halo

exchanges called during timestepping were very fast), only a small part of the ESMF

framework was actually being used. This made it a rather heavyweight dependency.

The design of the model framework to support the ‘separation of concerns’ led to all

the halo exchange functionality being neatly encapsulated in the PSy layer. Therefore it

was relatively easy to try a different library to provide the intermediate layer. A switch

was made to use the YAXT (Yet Another eXchange Tool) [19] library. This provides

halo exchanges during time stepping that are as fast as those provided by ESMF, via a

lightweight library.

The API for supporting distributed memory optimisation is very simple. A halo

exchange function is provided on every field and a flag is maintained by the infrastruc-

ture to track whether data held in the halo cells is up to date with the owner of that data

(‘clean’ halos) or whether a parallel computation has updated the field on the owning

partition and the local halos are out of date (‘dirty’ halos). When the PSy layer deter-

mines that a halo exchange may be required, it first checks the state of the halos and if

(and only if) they are ‘dirty’ it calls the halo exchange functionality.

When the LFRic project was initiated, a survey of other models and systems found

no other infrastructures or data models that would support the particular combination

of higher order FEM methods and unstructured meshes. Since then, the ATLAS li-

brary [20] has emerged which in time may potentially be considered as an alternative

data model capable of delivering LFRic requirements.
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4.2. Shared Memory Optimisation

As with all the parallelisation within LFRic, the shared memory parallelism is im-

plemented by inserting directives in the PSy layer. The finite-element formulation

makes use of data on mesh entities shared by more than one cell. Two different threads

working on adjacent cells may try writing to a dof shared between the cells at the same

time. Graph colouring is applied to the mesh so that no cells of any one colour share

dofs. This means parallel threads can run over the whole set of cells within a particular

colour and safely write dof values without contention. The information and functional-

ity to support colouring within the shared memory parallelism is provided by the LFRic

infrastructure.

When the mesh object is created, it is coloured by the infrastructure and informa-

tion about the colouring is stored, so it can be used from within the PSy layer. The

infrastructure provides the number of colours, the number of cells in each colour and

which cells are present in each colour. Shared memory parallel directives are placed

in the PSy layer and the looping can be made safe using the colouring information

provided by the infrastructure.

4.3. Parallel I/O

A consequence of models running over many thousands of cores is a requirement

for scalable parallel I/O. A computationally optimised model is of little practical op-

erational use if I/O then becomes a limiting factor. The LFRic project has decided to

investigate options for I/O alongside the computational and infrastructure development

for three main reasons. Firstly, the requirement to be able to run science assessment

jobs on large numbers of cores and obtain the output efficiently. Secondly, a key aim

of LFRic is scalability and therefore it is helpful to be able to monitor the impact of

I/O on this as the infrastructure and science develops. Thirdly, LFRic is making some

fundamental changes that impact the underlying mesh and this links to I/O in terms of

input/output file formats. Having a concrete idea of what these file formats will be in

the future enables LFRic to inform future users, internal and external to the Met Office.

Although developing a bespoke I/O system was a possibility, the decision was made

early on to adopt an existing parallel I/O framework and leverage knowledge and ex-
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perience from the community; developing Earth System Models is becoming increas-

ingly complex and challenging for any one organisation to develop and maintain all

the required components [2]. As of early 2016, when the first scoping work for LFRic

parallel I/O was being done, there were several existing parallel I/O frameworks and

XIOS was selected as the prime candidate for evaluation [21]. A discussion of the other

frameworks and why they were not considered can be found in [22].

XIOS was an obvious choice for LFRic as it was a mature framework, having had

many years of development and was already in use in the weather and climate domain;

for example, the Orchidee land surface model, the Dynamico dynamical core (part of

the LMD-Z Atmosphere model) and the NEMO ocean model. NEMO is used in Met

Office coupled models so there was some existing experience with XIOS. In terms of

potential scalability, XIOS had also been proved to run successfully in models running

on the order of 10,000 cores. Crucially for climate models, XIOS works with the OA-

SIS coupling framework that is commonly used in coupled climate models including

the UM.

The key features of XIOS can be summarised as follows:

1. Flexible definition of I/O workflows via external XML files;

2. Client/Server architecture allowing asynchronous I/O servers on dedicated cores;

3. Sophisticated “in situ” post-processing via workflows defined in the XML file(s).

XIOS is written in C++, but also provides a Fortran API to developers. It makes

use of MPI-IO and the NetCDF4 and HDF5 libraries and handles unstructured and

regular grids. XIOS is a client-server framework where I/O servers are asynchronous

processes buffering output requests from client processes. XIOS also has sophisticated

post-processing functionality - e.g. for regridding, and computing time series and time

averages. The output schedule and file format are defined by an XML file which hides

a lot of complexity from the user.

Prior to 2016, XIOS only supported read and write of NetCDF file formats that

follow the CF (Climate and Forecast) conventions [23]. As previously explained in

Section 2, the LFRic implementation uses horizontally unstructured meshes and a FEM

formulation, where variables are held on different elements of the mesh (vertices, edges
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or faces). Therefore, the I/O system needs to handle data structured in this way. The

UGRID-NetCDF format has been chosen as the main LFRic input mesh format and

also output format for diagnostics and model dumps [24]. In the UGRID convention

the topology of the underlying unstructured mesh is stored as well as data, and data

can be defined on any of the mesh elements: vertices, edges, or faces. Working in

collaboration with IPSL (Institut Pierre Simon LaPlace), the ability to write the UGRID

format was added to XIOS in 2016 in order to support LFRic.

XIOS has been integrated into LFRic via a lightweight I/O interface so that (as far

as possible) the underlying I/O framework is hidden and could be replaced by an al-

ternative. The I/O interface is designed to be compatible with the use of Fortran 2003

Object Orientation in LFRic. The field object (see Figure 4) contains read and write in-

terface declarations that use Fortran procedure pointers to define I/O behaviours. When

a field is created the behaviours are set by pointing to a specific reading or writing

method. Writing a field just involves calling field%write_field() - i.e., it is the

responsibility of the field to write itself and how the writing is actually done is hidden.

More details of the experimental results of the LFRic-XIOS integration work can be

found in [22] where preliminary results on I/O scalability (up to 13824 processors) and

XIOS and Lustre performance tuning are presented. The conclusions of this work were

that XIOS is an effective parallel I/O framework that was technically straightforward to

integrate into the existing LFRic infrastructure via the XIOS Fortran interface. Scaling

experiments showed that XIOS performance was scalable with respect to increasing

numbers of cores, even with minimal tuning.

5. PSyclone

As discussed earlier, PSyclone [25] is a domain-specific compiler which, given

an algorithm and associated kernels, generates the code for the middle, PSy layer.

Currently, each of these layers must be in Fortran and hence the compiler is embedded

in Fortran. This makes the generated code easy to understand for domain scientists

and means that existing debuggers and profilers can be used as if it were any other

hand written Fortran code. The choice of Fortran is motivated in Section 3. However,
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there is nothing in the approach to prevent other languages being targeted in the future.

PSyclone itself is written in Python.

PSyclone is heavily influenced by the OP2 system [26, 27]. However, PSyclone

supports the specification of more than one kernel in a parallel region of code, com-

pared with a limit of one for OP2, giving more scope for optimisation. Further, PSy-

clone takes responsibility for distributed memory parallelisation whereas it must be

written manually by the application developer in OP2.

PSyclone is also designed to support a combination of kernels that are 1) written

by the application developer and 2) provided by the system. It also allows optimi-

sations to be applied by an HPC expert via a scripting interface, rather than neces-

sarily automating the process. By way of contrast, in the related GridTools [28] and

Firedrake [29, 30] approaches, the application developer specifies the mathematical

operations (finite-difference stencils and finite element operations, respectively) in a

high-level language and optimised code is generated automatically. Whilst this is a

very powerful approach, it relies on the high-level language capturing all possible op-

erations and for the system to produce highly optimised code automatically.

PSyclone, GridTools and Firedrake approaches are all based on the concept of (var-

ious flavours of) a Domain-Specific Language (DSL) for finite-difference and finite-

element applications. This is distinct from other, lower-level performance-portable

abstractions, such as Kokkos [31] and OCCA [32] where the aim is to provide a lan-

guage that permits an application developer to implement a kernel once and have it

compile to performant single-node code on a range of multi- and many-core devices.

These approaches compliment DSL’s, in that DSL’s could make use of them to generate

single-node parallel code rather than using e.g. OpenMP or CUDA directly.

Lastly, CLAW [33] is a Fortran source-to-source translation tool designed to pro-

duce performance-portable Physics single-node code. As such it is complimentary to

PSyclone and could be used to optimise PSyclone physics kernels that have been writ-

ten by application developers.

Figure 5 shows the data flow within the PSyclone architecture. Starting from the

left, the Algorithm is parsed (using fparser, a pure Python implementation of a Fortran

parser) and any invoke procedure calls identified. The list of kernels (and their argu-
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Figure 5: Data flow within the PSyclone architecture.

ments) associated with each of these calls is then stored. For each invoke, the Fortran

modules containing the kernel code (as identified by the Fortran use statements) are

parsed and the meta-data for each kernel extracted.

PSyclone must then perform two tasks. Firstly, generate an internal representa-

tion, known as a schedule, of a PSy layer routine for each invoke in the Algorithm.

If distributed memory is specified then this schedule must include appropriate halo

exchanges and global sums to ensure correct execution. Secondly, PSyclone must

modify the supplied Algorithm code and replace each ‘call invoke’ with a call to the

corresponding routine in the PSy layer. This latter task is achieved by modifying the

fparser-produced Abstract Syntax Tree (AST) of the Algorithm and then re-generating

Fortran from the new AST.

If no transformations are being applied (see below) to the PSy layer schedule(s)

then all that remains is for the PSy generator to create Fortran code. The steps involved

in generating a vanilla (un-optimised) PSy layer subroutine are as follows:

1. Generate the unique list of arguments required by all kernels in the invoke;

2. Generate Fortran which queries the LFRic infrastructure to get information on
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the sizes of the various iteration spaces (number of cells, vertical levels, dofs

etc.);

3. Generate Fortran which queries the LFRic infrastructure to get the various look-

up tables (e.g. for identifying the dofs belonging to a given cell);

4. Generate Fortran which dereferences the various field and operator objects to get

the necessary data arrays;

5. For each kernel in the invoke

(a) Generate a loop over the correct iteration space (cells or dofs),

(b) Generate a call to the kernel subroutine with all necessary arguments.

Since the algorithm deals with global objects (fields, operators etc.) and a kernel

deals with e.g. individual columns of cells (see e.g. Section 1), the PSy layer must

also account for the fact that the global objects are in fact decomposed over MPI pro-

cesses by the LFRic infrastructure. PSyclone must therefore ensure that global sums

are placed appropriately and that the halos of any fields read by a given kernel are up-

to-date before that kernel is executed. Initially clean halos were implemented simply

by generating code that, at run-time, marked any field written to by a kernel as hav-

ing a dirty halo (using the LFRic infrastructure). Prior to each kernel call code was

also inserted that, for each field with a halo access, performed a halo swap if the halo

was dirty. Subsequently, dependence analysis has been added and now only those halo

exchanges that are known to be required are inserted [25].

5.1. Transformations

The large variety in existing computer architectures, the number of different com-

pilers and the fact that all of these are constantly evolving means that it is simply not

possible to write or generate a single source code that will be (and continue to be)

performance portable [34, 35]. It is also very difficult to create a system that is au-

tomatically able to create performant code for such a range of conditions. PSyclone

therefore seeks to be a tool for the HPC expert, enabling them to apply the optimisa-

tions that, thanks to their experience and knowledge, they know to be beneficial for a

particular architecture and/or compiler.
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The application of optimisations is achieved by applying PSyclone-provided trans-

formations to the schedule of an invoke. For instance, in order to parallelise a given

schedule using OpenMP, PSyclone provides transformations to create a parallel region

and introduce various forms of work-sharing construct. However, work-sharing of

loops over cells for kernels which update quantities on horizontally continuous func-

tion spaces will result in race conditions where multiple threads attempt to write to

the same dof on a shared mesh entity. It is therefore necessary to control the iteration

space in order to prevent these race conditions and PSyclone provides a loop-colouring

transformation for this purpose.

Although PSyclone transformations may be applied within a Python interactive

session, they will typically be used during the compilation phase of a potentially large

application. Therefore, PSyclone allows (Python) transformation scripts to be supplied

on the command line. For example, to add OpenMP to the PSy layer, three transfor-

mations need to be applied. Firstly, the colouring transformation is applied to all loops

in the schedule which contain fields on horizontally continuous spaces that are modi-

fied, Secondly, all loops, except loops over colours, have two OpenMP transformations

applied. This script, shown in Listing 5 in the Appendix 8, has 17 lines of executable

Python and is all that is required to apply OpenMP to the whole model. Note, PSyclone

supports the application of transformations to any subset of a schedule and to any set

of schedules so may be used for general whole-code optimisations and/or specific op-

timisations to particular code regions.

Applying the OpenMP transformations to the invoke call described in Section 3

results in the following generated PSy layer code shown in Listing 4.

Listing 4: Code fragment of the generated PSy layer with OpenMP transformations

1 CALL v_proxy%vspace%get_colours(ncolour , ncp_colour , cmap)

2 DO colour=1,ncolour

3 !$omp parallel default(shared), private(cell)

4 !$omp do schedule(static)

5 DO cell=1, ncp_colour(colour)

6 CALL matrix_vector_code(cmap(colour , cell), nlayers , &

7 v_proxy%data , s_proxy%data , mm_proxy%ncell_3d , &
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8 mm_proxy%local_stencil , ndf_any_space_1_v , &

9 undf_any_space_1_v , &

10 map_any_space_1_v (:,cmap(colour , cell)), &

11 ndf_any_space_2_s , undf_any_space_2_s , &

12 map_any_space_2_s (:,cmap(colour , cell )))

13 END DO

14 !$omp end do

15 !$omp end parallel

16 END DO

The transformation has resulted in a call to the LFRic infrastructure to obtain the

colouring information, a loop over the number of colours, then the OpenMP workshare

directives, which parallelise the loop over the cells and the colour.

6. Linear solvers and preconditioners

Iterative solvers for large sparse linear systems of equations are required in several

places in the model. For example, since mass matrices in the finite element discretisa-

tion are not diagonal, they need to be inverted with a small number of iterations of a

Krylov subspace method. More importantly, the semi-implicit time-stepping approach

requires the solution of a very large sparse system for all prognostic unknowns in each

step of the non-linear Picard iteration (Section 2.4). Since the system is ill-conditioned,

it needs to be preconditioned efficiently. This is achieved by the (approximate) reduc-

tion to an elliptic system for the pressure, which itself is preconditioned with a tensor-

product multigrid algorithm [36] (see Section 6.2). To increase efficiency, the pressure

preconditioner can be wrapped in its own iterative solver for the Helmholtz system.

Note that in contrast to the approach already employed in the ENDGame model [16],

an outer iteration over the full system is still required due to the non-diagonal nature of

the finite element mass matrices. Altogether this results in a rather complex solver.

6.1. Solver infrastructure

To allow easy implementation of sophisticated nested iterative solvers and precon-

ditioners, a dedicated abstraction was developed by using object-oriented features of
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Fortran 2003. This approach follows similar design philosophies in widely used lin-

ear algebra libraries such as PETSc [37, 38] and DUNE-ISTL [39]. More specifically,

the implementation in LFRic uses derived types which realise the following operations

(see Fig. 6, left):

• Vector types which support common linear algebra operations such as AXPY

y 7→ y + αx and dot products x, y 7→ s = 〈x, y〉. The most important vector-type

is field vector, which contains a collection of model fields;

• Linear operator types which implement the operation x 7→ y = Ax for vectors

x and y;

• Preconditioners which approximately solve the system Px = b for a given right

hand side b and some operator P ≈ A;

• Iterative solvers which solve the system Ax = b with a Krylov-subspace method

for a given right hand side b. Currently supported solvers include Conjugate

Gradient, GMRES and BiCGStab.

Each of those types is derived from an abstract base type. The iterative solver types

operate on generic vector types and are passed preconditioner and linear operator ob-

jects which adhere to the interface of their abstract base types. This implies that only

one instance of a particular Krylov method has to be implemented in the code. Apart

from avoiding code duplication, this increases reliability and maintainability, since only
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one instance of each solver has to be developed and tested. In addition, it allows easy

“plug-and-play” to explore the space of all possible solver/preconditioner combinations

to achieve optimal performance.

To solve a particular problem, the user has to develop bespoke derived types for

the corresponding linear operator and preconditioners. Note that the apply() meth-

ods of those derived types contain invoke calls to kernels, which guarantees optimal

performance of the entire model. For example, to construct a solver for the implicit

linear system which is inverted in every semi-implicit time-step, the user implements

the following objects (see Fig. 6, right):

• A linear operator type which applies the full linear system to all components of

a field vector;

• A preconditioner type which reduces the full linear system to the (approximate)

Schur-complement in pressure space by lumping the velocity mass matrix; this

preconditioner then calls the solver for the pressure (Helmholtz) system;

• A linear operator type which applies the Helmholtz operator for the pressure

system;

• A preconditioner type which approximately inverts the Helmholtz operator (see

Section 6.2).

Once implemented, those linear operators/preconditioners need to be passed to suitable

existing linear solvers.

In addition to this more traditional approximate Schur-complement approach for

solving the full linear system, the development of solvers based on a hybridisation

approach is currently being explored [40, 41]. Since an exact Schur-complement can

be formed in this case, hybridisation avoids the expensive iteration over the full linear

system, and potentially leads to significant improvements in performance.

6.2. Preconditioner

To precondition the strongly anisotropic Helmholtz operator for the pressure sys-

tem, the tensor-product multigrid approach in [36] is being developed for use in LFRic.
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This is a more advanced solver than the current tridiagonal vertical-only preconditioner

in the ENDGame model. The multigrid algorithm currently being developed in LFRic

has been tested extensively for representative elliptic equations in atmospheric mod-

elling in [42, 43], including a mixed-finite element discretisation of a linear gravity

wave system in [44]. The key idea to address the strong vertical anisotropy due to the

high-aspect ratio of the domain is to combine vertical-only smoothing (line relaxation)

with a horizontal multigrid hierarchy. To allow the easy construction of the vertical-

only operators in the Schur-complement from the finite element discretisation of the

full equations, a suitable operator algebra was developed in [44] and tested in the Fire-

drake library. For horizontally discontinuous function spaces (such as the pressure

space, QD
0 , and the vertical-only components of the RT0 velocity space, see Section 2.2

for more details), operators can be partially assembled into a matrix type which stores

all couplings within one vertical column. Matrices of this type can be multiplied, added

and, most importantly, inverted in the tridiagonal solvers which realises the vertical line

relaxation. This allows the high-level construction of the building blocks required for

the Helmholtz solver and preconditioner. The same data structures were implemented

as derived Fortran 2003 types in the LFRic code and form the building blocks of the

tensor-product multigrid preconditioner for the elliptic Helmholtz system.

Compared to simpler preconditioners, which do not combine vertical line relaxation

with a horizontal multigrid hierarchy, the tensor-product multigrid approach typically

reduces the solution time of the pressure system by a factor of at least two [42, 44].

However, since the Helmholtz system contains a zero-order term, only a small number

(≈ 3−4) of multigrid levels is required (independent of the grid resolution). This greatly

increases scalability since it avoids global couplings which arise on the coarsest level.

7. Scaling

A key goal of LFRic and GungHo is scalability to meet run-time requirements. The

use of an unstructured mesh from GungHo and the solver construction described in

Section 6 should enable the LFRic model to scale to a very large degree of parallelism.

However, compiling some of the Fortran 2003 object-oriented constructs necessary to
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build such a solver infrastructure is a challenging task for most compilers which has

delayed implementing such a solver. This remains a work in progress.

The February 2018 release of LFRic contains a simpler solver. This employs a

Krylov iterative GCR algorithm on the mixed system of velocity, potential tempera-

ture, density and Exner pressure. This is preconditioned by an approximate Schur-

complement for the Exner pressure which uses lumped mass matrices. The pressure

(Helmholtz) system is solved with BiCGstab and preconditioned by a vertical only

tridiagonal solver. Both mixed and Helmholtz solvers use a relative tolerance of 10−6.

Shown in Figure 7 is the parallel efficiency of the LFRic time-step for a very high

resolution model run. The mesh is a C1944 cubed-sphere with 30 levels, where each

panel has 1944×1944 cells. This roughly corresponds to a 5 km global resolution. The

science configuration is the baroclinic wave test [45] with a 75 second time-step. The

code was compiled to production level (-O3) with the Intel 17 compiler. The model

was run in hybrid mode with both MPI and OpenMP on the Met Office Cray XC40.

Each node comprises of dual socket Intel Xeon (Broadwell) 18-core processors. The
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affinity was set to be three MPI ranks per socket with six OpenMP threads per MPI

rank.

The model shows good strong scaling out to a very large number of nodes, 4374,

which is 157366 cores. Scaling starts to drop off at this scale to just below 70% com-

pared to 216 nodes. Here, the local volume has been reduced to 12 × 12 with only 30

levels that is only 4320 dofs per unit of parallelism for the pressure space. The ratio of

communication to computation cost will become worse if the problem is scaled further.

The number of iterations for the solver is relatively large and with multiple solves per

time-step and five global sums per iteration of the BiCGStab algorithm, the cost of the

global sums becomes prohibitive.

At this stage it would be difficult to make a meaninful comparison to the perfor-

mance of the current UM. The physical parameterisation schemes are, as yet, mostly

absent from LFRic. Moreover, the UM has been highly optimised for the CPU archi-

tecture. The unstructured mesh will give LFRic the algorithmic scaling advantage but

the absolute performance, i.e. wall-clock time, will still be inferior. However, the new

solver implementation will enable better scaling by reducing the number of Krylov

solver iterations required by using a much more efficient preconditioner. This will also

improve the absolute performance, i.e. reduce run-time. Until the solver is closer to

being algorithmically optimal it does not make sense to apply further computational

optimisations.

Shown in Figure 8 is the effect of using OpenMP on scaling for 50 time-steps of

the baroclinic wave problem, in this case with the May 2018 release of LFRic. The

code was again compiled with the Intel 17 compiler. The model employs redundant

computation into the halos. Each processor computes the contribution to dofs that

reside on a shared mesh entity (such as a face) which belong to a cell adjacent to a halo

cell from both the “owned” cell and the halo cell. Thus avoiding communication that

would otherwise be required to correctly calculate the contribution of neighbour cells

to that dof. Comparing MPI only to the hybrid mode, each processor in the former

regime has more work to do in the case of redundant computation from the scaling of

volume to surface area. The mixed-mode has fewer cells to redundantly compute than

MPI only. Choosing redundant computation as a communication reduction algorithm

31



24 54 96 216 384
# nodes

200

400

800

1600

3200

tim
e 
(s
)

perfect scaling
MPI
OMP

Figure 8: a) Log-log plot of strong scaling of 50 time-steps of the baroclinic wave problem on a cubed sphere

mesh, C576, with 30 levels from the May 2018 release. The red bars, labelled MPI, show MPI only, i.e. 36

MPI ranks per node. The yellow bars, labelled OMP, show mixed-mode, with 6 MPI ranks per node and 6

OpenMP threads per MPI rank. The dashed line shows perfect scaling and is drawn to guide the eye.

favours threading; hence OpenMP is faster and scales better.

8. Discussion and Conclusion

This paper describes the novel features of the design of the new LFRic model and

infrastructure, and the GungHo dynamical core within it. The challenges of GungHo’s

higher order FEM approach on a horizontally unstructured mesh essentially resulted in

a requirement to develop a new infrastructure from scratch. This requirement provided

an opportunity to develop a Domain Specific Language by separating the concerns of

the science code from the parallel code. A domain specific compiler called PSyclone

has been developed to automatically generate the OpenMP and MPI parallel code re-

quired to deploy the application on an HPC machine.

DSLs also feature heavily in other work seeking to make weather and climate mod-

els exascale ready. In contrast to this work, they are only part of the solution. For

example, MeteoSwiss have ported the COSMO model to run on GPUs, by rewriting
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the dynamical core code using a DSL (STELLA). Other parts of the code (e.g. physics)

have been instrumented with compiler directives [46]. CSCS (the Swiss National Su-

percomputing Centre) have made significant progress in porting the ICON dynamical

core to run on GPUs by instrumentation with OpenACC directives and several physics

schemes have been ported using a combination of OpenACC and the CLAW source to

source translation tool. To further this effort, the ENIAC (ENable Icon on a hetero-

geneous ArChitecture) project seeks to make the ICON model exascale ready using a

similar strategy of tools (the GridTools DSL and the CLAW source to source transla-

tor) and OpenACC directives [47]. The E3SM (Energy Exascale Earth System Model)

project (a collaboration between 7 National US laboratories) [48] has ported HOMME

(the dynamics/transport component of the Community Earth System Model) to a single

source version (HOMMEXX) able to run on MIC, CPU and GPU architectures using

Kokkos [31].

In summary, the design of LFRic has so far proven to be successful. The intro-

duction of PSyclone has enabled seamless switching from serial to parallel running.

Having initially being run in serial for many months while the first version of PSyclone

was developed, it was possible to run in parallel (both MPI and OpenMP) on 220,000

cores of the Met Office Cray XC40 within two weeks of the full PSyclone functionality

becoming available.

The GungHo dynamical core is routinely run in a range of science configurations

and several scientists are currently developing code within the system. For the most

part, scientists develop algorithms and kernels within the existing infrastructure and

with auto-generated PSy layer code. For some newer developments the PSy layer code

is hand-written while new features are added to PSyclone. A clean separation between

the science code and the PSy layer code has been maintained throughout.

The need for PSyclone and the LFRic infrastructure to continuously evolve in the

light of new and changing science requirements underlines an important point: the

‘separation of concerns’ that has enabled the science code to be kept isolated from the

parallel systems code does not mean that scientists and engineers can work in isolation.

In fact, the close ties between the scientists and software engineers has been a key part

of the success of the approach.

33



The scaling performance of the GungHo dynamical core is promising. While sig-

nificant improvements in the algorithmic design are required to deliver better through-

put of the model, the application (with I/O capability switched off) scales well, with

scaling tailing off at around 160,000 cores due to the local volume of current con-

figurations becoming very small. One of the first improvements to the algorithmic

performance is anticipated to come from application of a geometric multigrid solver

within the new solver infrastructure discussed in the paper.

Currently, the generation of MPI and OpenMP code is supported by PSyclone. The

approach of computing results into the halo redundantly so as to reduce interprocessor

communications helps the performance of deployments with more OpenMP threads

per MPI rank (for a given total core count) because the larger domain of the high-

thread runs means that the relative size of the halos, and therefore the relative amount

of redundant computation, is smaller. Moreover, PSyclone has been developed with

the ability to add transformations that increase the amount of redundant computation

so as to reduce the number of halo swaps, to re-order kernels and to loop-fuse ker-

nels to provide a performance benefit. Work is also underway to support OpenACC

transformations which can then be applied without having to re-write the science code.

The overall design has sought to carefully modularise functionality. A benefit of

this is to enable trialling of different externally sourced libraries. An example of this

was when the ESMF library was replaced by the YAXT library in a short period of

time.

Development of the core LFRic infrastructure and PSyclone is still in its early days.

LFRic is currently written to support any order of finite element method on a range of

different horizontally unstructured meshes. Should the GungHo science converge on

a particular mesh or set of meshes, and on a particular FEM order it will likely be

possible to refactor the underlying LFRic data model to support more efficient access

to the data.

As well as continuing the technical capabilities of LFRic, currently, sub-grid physics

processes are being added to the GungHo dynamical core implementation of LFRic

with a view to steadily building up to a fully-specified NWP model around 2020.

Assuming the scientific and computational performance results are acceptable it will
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likely go head-to-head with the Met Office UM for 3-4 years while it is further en-

hanced and optimised, eventually replacing the Unified Model atmosphere at the core

of the Met Office operations.
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Appendix

Listing 5: Python script for applying transformations to a PSyclone schedule.

def trans(psy):

ctrans = Dynamo0p3ColourTrans ()

otrans = Dynamo0p3OMPLoopTrans ()

oregtrans = OMPParallelTrans ()

# Loop over all of the invokes in the PSy object

for invoke in psy.invokes.invoke_list:

schedule = invoke.schedule

# Colour loops over cells unless on discontinuous spaces

for loop in schedule.loops ():

if loop.iteration_space == "cells" \

and loop.field_space.orig_name \

not in DISCONTINUOUS_FUNCTION_SPACES:

schedule , _ = ctrans.apply(loop)

# Add OpenMP to loops unless they are over colours

for loop in schedule.loops ():

if loop.loop_type != "colours":

schedule , _ = oregtrans.apply(loop)

schedule , _ = otrans.apply(loop , reprod=True)

return psy

35



References

[1] D. Walters, I. Boutle, M. Brooks, T. Melvin, R. Stratton, S. Vosper, H. Wells,

K. Williams, N. Wood, T. Allen, A. Bushell, D. Copsey, P. Earnshaw, J. Edwards,

M. Gross, S. Hardiman, C. Harris, J. Heming, N. Klingaman, R. Levine, J. Man-

ners, G. Martin, S. Milton, M. Mittermaier, C. Morcrette, T. Riddick, M. Roberts,

C. Sanchez, P. Selwood, A. Stirling, C. Smith, D. Suri, W. Tennant, P. L. Vidale,

J. Wilkinson, M. Willett, S. Woolnough, P. Xavier, The Met Office Unified Model

Global Atmosphere 6.0/6.1 and JULES Global Land 6.0/6.1 configurations, Geo-

scientific Model Development 10 (4) (2017) 1487–1520. doi:10.5194/gmd-10-

1487-2017.

URL https://www.geosci-model-dev.net/10/1487/2017/

[2] B. N. Lawrence, M. Rezny, R. Budich, P. Bauer, J. Behrens, M. Carter, W. De-

coninck, R. Ford, C. Maynard, S. Mullerworth, C. Osuna, A. Porter, K. Serradell,

S. Valcke, N. Wedi, S. Wilson, Crossing the Chasm: How to develop weather and

climate models for next generation computers?, Geosci. Model Dev. 11 (2018)

1799–1821. doi:10.5194/gmd-11-1799-2018.

URL https://www.geosci-model-dev.net/11/1799/2018/

[3] R. Ford, M. Glover, D. Ham, C. Maynard, S. Pickles, G. Riley, GungHo Phase 1:

Computational science recommendations, Technical report, Met Office (2013).

URL https://www.metoffice.gov.uk/binaries/content/assets/

mohippo/pdf/8/o/frtr587tagged.pdf

[4] T. Melvin, T. Benacchio, B. Shipway, N. Wood, J. Thuburn, C. Cotter, A mixed

finite-element, semi-implicit finite-volume discretisation for atmospheric dynam-

ics: Cartesian geometry, Q. J. Roy. Meteorol. Soc.In preparation.

[5] P. Lynch, The Emergence of Numerical Weather Prediction: Richardson’s Dream,

Cambridge University Press, 2006.

[6] P. Lynch, Richardson’s fantastic forecast factory, european meteorological society

website, https://www.emetsoc.org/resources/rff/, accessed 12 October

2018.

36



[7] R. D. Nair, S. J. Thomas, R. D. Loft, A discontinuous Galerkin transport

scheme on the cubed sphere, Monthly Weather Review 133 (4) (2005) 814–828.

doi:10.1175/MWR2890.1.

URL https://doi.org/10.1175/MWR2890.1

[8] A. Staniforth, J. Thuburn, Horizontal grids for global weather prediction and

climate models: A review, Q. J. Roy. Meteorol. Soc. 138 (2012) 1–26.

doi:10.1002/qj.958.

[9] A. E. MacDonald, J. Middlecoff, T. Henderson, J.-L. Lee, A general method for

modeling on irregular grids, The International Journal of High Performance Com-

puting Applications 25 (4) (2011) 392–403. doi:10.1177/1094342010385019.

URL https://doi.org/10.1177/1094342010385019

[10] C. J. Cotter, J. Shipton, Mixed finite elements for numerical weather prediction,

J. Comput. Phys. 231 (2012) 7076–7091.

[11] A. Natale, J. Shipton, C. J. Cotter, Compatible finite element spaces

for geophysical fluid dynamics, Dynam. Stat. Climate Sys. 1 (1).

doi:10.1093/climsys/dzw005.

[12] J. G. Charney, N. Phillips, Numerical integration of the quasi-geostrophic equa-

tions for barotropic and simple baroclinic flows, J. Meteor. 10 (2) (1953) 71–99.

[13] A. Arakawa, V. R. Lamb, Computational design of the basic dynamical pro-

cesses of the UCLA general circulation model, in: J. Chang (Ed.), General

Circulation Models of the Atmosphere, Vol. 17 of Methods in Computational

Physics: Advances in Research and Applications, Elsevier, 1977, pp. 173–265.

doi:https://doi.org/10.1016/B978-0-12-460817-7.50009-4.

URL http://www.sciencedirect.com/science/article/pii/

B9780124608177500094

[14] D. Boffi, F. Brezzi, M. Fortin, Mixed Finite Element Methods and Applications,

Vol. 44, Springer, 2013.

37



[15] B. P. Leonard, A. P. Lock, M. K. MacVean, Conservative explicit

unrestricted-time-step multidimensional constancy-preserving advection

schemes, Mon. Weather Rev. 124 (11) (1996) 2588–2606. doi:10.1175/1520-

0493(1996)124¡2588:CEUTSM¿2.0.CO;2.

[16] N. Wood, A. Staniforth, A. White, T. Allen, M. Diamantakis, M. Gross,

T. Melvin, C. Smith, S. Vosper, M. Zerroukat, J. Thuburn, An inherently mass-

conserving semi-implicit semi-Lagrangian discretization of the deep-atmosphere

global non-hydrostatic equations, Q. J. Roy. Meteorol. Soc. 140 (682) (2014)

1505–1520. doi:10.1002/qj.2235.

URL http://dx.doi.org/10.1002/qj.2235

[17] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, A. R. LeBlanc, Design

of ion-implanted MOSFET’s with very small physical dimensions, IEEE J. Solid-

State Circuits 9 (5) (1974) 256–268. doi:10.1109/JSSC.1974.1050511.

[18] ESMF project website, http://www.earthsystemmodeling.org, accessed 23

July 2018.

[19] YAXT project website, https://www.dkrz.de/redmine/projects/yaxt, ac-

cessed 20 July 2018.

[20] W. Deconinck, P. Bauer, M. Diamantakis, M. Hamrud, C. Kühnlein, P. Maciel,
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