
Information flow analysis for a dynamically
typed language with staged
metaprogramming
Article

Accepted Version

Lester, M. ORCID: https://orcid.org/0000-0002-2323-1771,
Ong, L. and Schäfer, M. (2016) Information flow analysis for a
dynamically typed language with staged metaprogramming.
Journal of Computer Security, 24 (5). pp. 541-582. ISSN 0926-
227X doi: https://doi.org/10.3233/JCS-160557 Available at
https://centaur.reading.ac.uk/81998/

It is advisable to refer to the publisher’s version if you intend to cite from the
work. See Guidance on citing .

To link to this article DOI: http://dx.doi.org/10.3233/JCS-160557

Publisher: IOS Press

All outputs in CentAUR are protected by Intellectual Property Rights law,
including copyright law. Copyright and IPR is retained by the creators or other
copyright holders. Terms and conditions for use of this material are defined in
the End User Agreement .

www.reading.ac.uk/centaur

CentAUR

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence

Central Archive at the University of Reading
Reading’s research outputs online

Information flow analysis for a dynamically
typed language with staged
metaprogramming
Article

Accepted Version

Author version of article, including citation to official published version

Lester, M., Ong, L. and Schäfer, M. (2016) Information flow
analysis for a dynamically typed language with staged
metaprogramming. Journal of Computer Security, 24 (5). pp.
541­582. ISSN 0926­227X doi: https://doi.org/10.3233/JCS­
160557 Available at http://centaur.reading.ac.uk/81998/

It is advisable to refer to the publisher’s version if you intend to cite from the
work. See Guidance on citing .
Published version at: http://dx.doi.org/10.3233/JCS­160557

To link to this article DOI: http://dx.doi.org/10.3233/JCS­160557

Publisher: IOS Press

Publisher statement: The final publication is available at IOS Press through
http://dx.doi.org/10.3233/JCS­160557

All outputs in CentAUR are protected by Intellectual Property Rights law,
including copyright law. Copyright and IPR is retained by the creators or other
copyright holders. Terms and conditions for use of this material are defined in
the End User Agreement .

www.reading.ac.uk/centaur

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence

CentAUR

Central Archive at the University of Reading

Reading’s research outputs online

Journal of Computer Security 0 (0) 1 1
IOS Press

Information flow analysis for a dynamically
typed language with staged
metaprogramming
Martin Lester a,∗, Luke Ong a, and Max Schäfer b

a Department of Computer Science, University of Oxford, Parks Road, Oxford, OX1 3QD, UK
b Semmle Limited, Blue Boar Court, 9 Alfred Street, Oxford, OX1 4EH, UK

Abstract. Web applications written in JavaScript are regularly used for dealing with sensitive or personal data. Consequently,
reasoning about their security properties has become an important problem, which is made very difficult by the highly dynamic
nature of the language, particularly its support for runtime code generation via eval. In order to deal with this, we propose to
investigate security analyses for languages with more principled forms of dynamic code generation.

To this end, we present a static information flow analysis for a dynamically typed functional language with prototype-based
inheritance and staged metaprogramming. We prove its soundness, implement it and test it on various examples designed to
show its relevance to proving security properties, such as noninterference, in JavaScript. To demonstrate the applicability of the
analysis, we also present a general method for transforming a program using eval into one using staged metaprogramming.

To our knowledge, this is the first fully static information flow analysis for a language with staged metaprogramming, and
the first formal soundness proof of a CFA-based information flow analysis for a functional programming language.

Keywords: noninterference, staged metaprogramming, information flow, JavaScript, static analysis

1. Introduction

An information flow analysis determines which values in a program can influence which parts of the
result of the program. Using an information flow analysis, we can, for instance, prove that program inputs
that are deemed high security do not influence low security outputs; this important security property is
known as noninterference [15].

Early work on noninterference focused mainly on applications in a military or government setting,
where there might be strict rules about security clearance and classification of documents. More recently,
there has been increased interest in information security (and hence its analysis) for Web applications,
particularly for Web 2.0 applications written in JavaScript. Analysis of JavaScript programs is hindered
by its many dynamic features, in particular eval, which allows execution of a string as program code.

We have developed a static information flow analysis for a dynamically typed, pure, functional lan-
guage with stage-based metaprogramming [26]; we call the language SLamJS (Staged Lambda JS) be-

*Corresponding author. E-mail: martin.lester@cs.ox.ac.uk.

0926-227X/0-1900/$27.50 © 0 – IOS Press and the authors. All rights reserved. The final publication is available at IOS Press
through http://dx.doi.org/10.3233/JCS-160557

2 M. M. Lester et al. / Information flow analysis for a dynamically typed language with staged metaprogramming

cause it exhibits a number of JavaScript’s interesting features in an idealised, lambda calculus-based set-
ting [18]. The analysis is based on the idea of extending a constraint-based formulation of the analysis
0CFA [47] with constraints to track information flow. We believe that the idea could be extended to other
CFA-style analyses (such as CFA2 [50]) for improved precision. We have formally proved the correct-
ness of our analysis; we have also implemented it and tested it on a number of examples. Finally, in order
to demonstrate the applicability of the analysis to programs using string-based eval, we have developed
an automated transformation that turns a program using eval into an equivalent one using template-based
staged metaprogramming.

Our work stems from the observation that, while programmers may pass arbitrary strings to eval, they
are usually constructed by string concatenation; this string concatenation is used to splice together code
templates, which is exactly what is captured by the more principled formalism of staged metaprogram-
ming. As Choi et al. note [7], directly analysing strings passed to eval is unlikely to be fruitful, as the
range of strings may be infinite, in which case there is no obvious way to analyse their behaviour finitely.
They also observe that the scoping behaviour of staged metaprogramming is similar to function abstrac-
tion and application. We build on this by extending 0CFA, an analysis that handles functions well, to
deal with staged metaprogramming. 0CFA gives us the control flow of the program, which essentially
corresponds to the direct flows of information. On top of this, we layer some extra constraints to track
indirect flows. That gives us an information flow analysis for a language with staged metaprogramming.

Next, we seek a way to transform eval automatically into staged metaprogramming, so that we may
truly analyse eval-using programs. There are two key ideas here. Firstly, we note that, for certain pro-
gramming language grammars, it does not matter in which order parts of a string are parsed, so we are
free to parse them in any order to build up code templates. Secondly, we note that we do not need to
determine fully the behaviours of eval in a single pass: as long as we can feed some information about
its behaviours back into our analysis, we can gradually build up a transformation of a program. However,
in order to do this, we need to relate information about a staged program back to the eval-using program
from which it originated. Combining these ideas, we obtain our algorithm for transforming eval into
staged metaprogramming, which we are now able to analyse.

Supporting material, which includes mechanisations of our key results in the theorem prover Coq and
an implementation of our analysis in OCaml, is available online [30]. The presentation of the analysis in
this paper extends that in CSF 2013 [28]. The details of the transformation are novel, but we outlined its
key ideas in previous work [29].

The structure of the remainder of the paper is as follows. In Section 2, we present SLamJS: we begin
with an explanation of why we believe our chosen combination of language features is relevant to infor-
mation security in Web applications. Next, we present the semantics of SLamJS and explain, using an
augmented semantics, what information flow means in this language. Section 3 explains how the analysis
works and how we proved its correctness. We discuss our implementation and some examples on which
we have tested the analysis in Section 4. Then, in Section 5, we describe how to apply the analysis to
eval-using programs via a transformation to staged metaprogramming; again we discuss its performance
on various examples. In Section 6, we examine the gap between our work and a practical analysis for
real-world Web applications. We also discuss other research on analysis of information flow and staged
metaprogramming, before concluding in Section 7.

M. M. Lester et al. / Information flow analysis for a dynamically typed language with staged metaprogramming 3

2. The language SLamJS

2.1. Motivation

The new arena of Web applications presents many interesting challenges for information flow analysis.
While there is an extensive body of research on information flow in statically typed languages [40], there
is comparatively little tackling dynamically typed languages. The semantics of JavaScript are complex
and poorly understood [33], which makes any formal analysis difficult. Web applications frequently
comprise code from multiple sources (including libraries and adverts), written by multiple authors in
an ad-hoc style. They are often interactive (so cannot be viewed as a single execution with inputs and
outputs) and it might not be known in advance which code will be loaded.

The eval construct of JavaScript, which allows execution of arbitrary code strings, is particularly
troublesome, to the extent that many analyses just ignore it. However, a recent survey shows that real
JavaScript code uses eval extensively [41]. Its uses vary widely from straightforward (loading data via
JSON) through ill-informed (accessing fields of an object without using array notation) to subtle (chang-
ing scoping behaviour) and complex (emulating higher order functions). We think that it is important to
develop techniques for analysing this notorious construct.

We have developed a simplified language called SLamJS, which we use to present our ideas. This
allows us to work reasonably formally without being distracted by the complexities of full JavaScript. The
language is heavily influenced by λJS, a “core calculus” for JavaScript [18]. Like JavaScript, SLamJS is
dynamically typed and features first-class functions and objects with prototype-based inheritance. Like
JavaScript, it allows code to be constructed, passed around and executed at run-time. Unlike JavaScript,
this is achieved using Lisp-style code quotations rather than code strings [7]. Recent work indicates that
real-world usage of eval is often of a form that could be expressed using code quotations [24]. Thus
analysis of programs with executable code quotations is an important step towards analysis of programs
with executable code strings.

2.2. Staged metaprogramming versus eval

The eval construct of JavaScript takes a string, parses it and executes the result as program code. For
example, eval("x * 2") evaluates to double the value of x in the current scope. Note that, as strings
can be stored in variables and passed around, that scope might be different from the one in which the
string was first defined.

In JavaScript, as in most languages, strings can be joined together using concatenation. Thus, if a string
encodes a piece of program code, string concatenation can be used to splice together code templates.
Consider, for example:

var f = function(z) { return 3 * z };
var y = "2";
var x = "f(" + y + ")";
eval(x);

This program constructs the code template f(2), then executes it, returning 3 ∗ 2 = 6.
For several years, authors of static analyses for JavaScript argued that they could ignore it because

it was rarely used or used only in trivial ways [16]. Their real reason was probably that analysis of
such a powerful construct seemed utterly hopeless, particularly when considering the language’s lack of
protection mechanisms, as it allows arbitrary behaviours to result from an unstructured data value.

4 M. M. Lester et al. / Information flow analysis for a dynamically typed language with staged metaprogramming

In contrast, the language Lisp allows programs to construct code templates as data values, splice them
together and run the resulting code. We refer to these features collectively as staged metaprogramming.
Following Kim et al. [26], we can add these features to a programming language with three constructs:

– box e turns the expression e into a code value; it does not evaluate e.
– run e evaluates the code value e.
– unbox emay only occur inside a box expression. It forces evaluation of e; the resulting code value

is spliced into the surrounding code template.

The values in a program using these constructs and the steps in its execution can be stratified into num-
bered stages. Programs that do not use these constructs execute entirely at stage 0. The contents of a box
expression at the top level of a program exist at stage 1, but box can be nested arbitrarily deeply, creating
expressions at any stage n > 0, with each nesting being one stage higher. However, when unbox occurs
within box, its contents are considered to be one stage lower; that is, they are at the same stage as the
expression containing the box.

The constructs box, unbox and run correspond to the backquote, comma and eval operators of Lisp.
Adding them to JavaScript, the previous example could be written as:

var f = function(z) { return 3 * z };
var y = box(2);
var x = box(f(unbox(y)));
run(x);

Our goal is to produce an information flow analysis for a JavaScript-like language extended with these
constructs, then show how to transform an example like the former into the latter, so that we may apply
our analysis to the former.

Roughly speaking, box and unbox/run act like function abstraction and application, except that they
use a dynamic (instead of static) scoping discipline. This intuition is made more precise in Choi et al.’s
work on static analysis of staged programs [7], where staging constructs are translated into function
abstraction and application. However, we will be working directly on the staged language.

2.3. Syntax and semantics of SLamJS

2.3.1. Syntax
SLamJS is a functional language with atomic constants, records, branching, first-class functions and

staged metaprogramming; the syntax is given in Fig. 1.
The language has five types of atomic constant: booleans, strings, numbers and two special values

(undef and null) to indicate undefined or null values. A record {s : v} is a finite mapping from fields
(named by strings) to values. Fields can be read (e[e]), updated or replaced (e[e] = e) and deleted
(del e[e]). Records support prototype-based lookup: a read from an undefined field of a record is redi-
rected to the corresponding field on the record held in its " proto " field, if there is one.

Branching on boolean values is enabled by the if(e){e} else{e} construct. Functions can be defined
(fun(x){e}) and applied (e(e)).

Staged metaprogramming is supported through use of the box, unbox and run constructs in the style
of Choi et al. [7]. The construct box e1 turns e1 into a “quoted” or “boxed” code value, which can be
executed using run. The use of unbox e2 within a boxed expression e1 forces evaluation of e2 to a boxed
value, which is spliced into e1 before it becomes a boxed value.

M. M. Lester et al. / Information flow analysis for a dynamically typed language with staged metaprogramming 5

Booleans b ::= true | false
Strings s ∈ String
Numbers n ∈ Number
Names x ∈ Name
Constants k ::= undef | null | b | s | n
Expressions e ::= k | {s : e} | x | fun(x){e} | e(e) | box e | unbox e | run e

| if(e){e} else{e} | e[e] | e[e] = e | del e[e] | (e, ρ) | run e in ρ
Values. . . v, v0 ::= (fun(x){e}, ρ) . . . at stage 0 only
. . . at any stage vn ::= k | {s : vn} | (box vn+1)
. . . at higher vn+1 ::= x | (fun(x){vn+1}) | (vn+1(vn+1)) | (run vn+1)

stages only | (if(vn+1){vn+1} else{vn+1})
| (vn+1[vn+1]) | (vn+1[vn+1] = vn+1) | (del vn+1[vn+1])

vn+2 ::= (unbox vn+1)

Environments ρ ∈ Name fin−→ v0

Fig. 1. Syntax of SLamJS

Cmn ::= [] ∈ Cnn
| (fun(x){Cm+1

n }) ∈ Cm+1
n | (if(Cmn){e} else{e}) ∈ Cmn

| (Cmn (e)) ∈ Cmn | (if(vm+1){Cm+1
n } else{e}) ∈ Cm+1

n

| (vm(Cmn)) ∈ Cmn | (if(vm+1){vm+1} else{Cm+1
n }) ∈ Cm+1

n

| (unbox Cmn) ∈ Cm+1
n | (box Cm+1

n) ∈ Cmn
| (run Cmn in ρ) ∈ Cmn | (run Cmn) ∈ Cmn
| (Cmn [e]) ∈ Cmn | (Cmn [e] = e) ∈ Cmn
| (vm[Cmn]) ∈ Cmn | (vm[Cmn] = e) ∈ Cmn
| (del Cmn [e]) ∈ Cmn | (vm[vm] = Cmn) ∈ Cmn
| (del vm[Cmn]) ∈ Cmn

Fig. 2. Evaluation contexts

(k, ρ)
n
99K k (x, ρ)

n+1
99K x

(fun(x){e}, ρ)
n+1
99K (fun(x){(e, ρ)}) (e1(e2), ρ)

n
99K ((e1, ρ)((e2, ρ)))

(box e, ρ)
n
99K (box (e, ρ)) (unbox e, ρ)

n
99K (unbox (e, ρ))

(run e, ρ)
0
99K (run (e, ρ) in ρ) (run e, ρ)

n+1
99K (run (e, ρ))

({s : e}, ρ)
n
99K {s : (e, ρ)} (e1[e2], ρ)

n
99K ((e1, ρ)[(e2, ρ)])

(e1[e2] = e3, ρ)
n
99K ((e1, ρ)[(e2, ρ)] = (e3, ρ)) (del e1[e2], ρ)

n
99K (del (e1, ρ)[(e2, ρ)])

(if(e1){e2} else{e3}, ρ)
n
99K (if((e1, ρ)){(e2, ρ)} else{(e3, ρ)})

Fig. 3. Environment propagation rules

6 M. M. Lester et al. / Information flow analysis for a dynamically typed language with staged metaprogramming

Cmn 〈e〉
m−→ Cmn 〈e′〉 if e

n
99K e′

(LOOKUP) (x, ρ)
0
99K ρ(x)

(APPLY) ((fun(x){e}, ρ)(v))
0
99K (e, ρ[x 7→ v])

(UNBOX) (unbox (box v1))
1
99K (v1)

(RUN) (run (box v1) in ρ)
0
99K (v1, ρ)

(IFTRUE) (if(true){e1} else{e2})
0
99K e1

(IFFALSE) (if(false){e1} else{e2})
0
99K e2

(READ1) ({s : v, si : vi, s′ : v′}[si])
0
99K vi

(READ2) ({s : v," proto " : {s′ : v′}, s′′ : v′′}[sx])
0
99K ({s′ : v′}[sx]) if sx 6∈ s ∪ s′′

(READ3) ({s : v," proto " : null, s′′ : v′′}[sx])
0
99K undef if sx 6∈ s ∪ s′′

(WRITE1) ({s : v, si : vi, s′ : v′}[si] = v′i)
0
99K {s : v, si : v′i, s

′ : v′}
(WRITE2) ({s : v}[sx] = vx)

0
99K {s : v, sx : vx} if sx 6∈ s

(DEL1) (del {s : v, si : vi, s′ : v′}[si])
0
99K {s : v, s′ : v′}

(DEL2) (del {s : v}[sx])
0
99K {s : v} if sx 6∈ s

Fig. 4. Evaluation under a context and proper reduction rules

Expressions of the form (e, ρ) and run e in ρ only arise as intermediate terms during execution: the
former represents an explicit substitution [22,26] where all free variables of the expression e are given
their value by the environment ρ; the latter represents an expression to be unboxed and evaluated in
environment ρ.

Values exist at all stages. Constants, records with constant fields and constant code quotations are
values vn at every stage n; closures are only values v0 at stage 0. Other constructs may be values at
higher stages (vn+1, vn+2 for n ≥ 0), provided that their subexpressions are values at the appropriate
stage. We generally omit the stage superscript for values of stage 0 (writing v instead of v0).

2.3.2. Semantics
We give a small-step operational semantics with evaluation contexts and explicit substitutions for

SLamJS. There are two reduction relations,
n
99K and n−→, each annotated with a level n. The former is for

top-level reduction, while the latter is for evaluation under a context.
Evaluation contexts In a staged setting, evaluation contexts may straddle stage boundaries, hence they

are annotated with stage subscripts and superscripts. A contextCmn denotes an expression at stagemwith
a hole at stage n inside it. For a context Cmn and an expression e, we denote by Cmn 〈e〉 the expression
obtained by plugging e into the hole contained in Cmn . The grammar of evaluation contexts is given in
Fig. 2. Note that the contents of box exist at a higher stage than the enclosing expression, while those
of unbox exist at a lower stage. Consequently, an expression at stage m > 0 can contain an unbox
expression with contents at a stage m′ < m with a hole at stage n < m.

Reduction rules Top-level reduction rules fall into two categories: environment propagation rules for
pushing explicit substitutions inwards (Fig. 3), and proper reduction rules (Fig. 4). Almost all the proper

M. M. Lester et al. / Information flow analysis for a dynamically typed language with staged metaprogramming 7

reductions occur only at stage 0. The exception is (UNBOX), which occurs only at stage 1; this (combined
with the stratification of evaluation contexts by stage) prevents unbox from being reduced other than
within an enclosing box code value. That is, unbox can only ever splice code into an enclosing piece of
code; in order to bring code to stage 0 and execute it, run must be used.

The environment propagation reductions control variable scoping within the language. Note that ex-
plicit substitutions only apply at stage 0, hence (x, ρ) evaluates to x at level n + 1 without looking up
x in ρ. Furthermore, observe that (run e, ρ) pushes its environment into e, allowing boxed code values
to capture variables from outside. Only environment propagation reductions may occur at higher stages;
these reductions implement dynamic variable scoping for stages above 0.

The proper reduction rules are also quite standard [7], except for the field access rules, which are
designed to be similar to JavaScript semantics.

In particular, every record is expected to have a " proto " field, which holds either the value null or
another record, giving rise to a chain of prototype objects that ultimately ends in null. Reading a record
field follows this chain by rule (READ2), until the field is either found (READ1), or the top of the chain

is reached, where (READ3) yields undef. Note that the reduction
0
99K can get stuck, for example, when

applying a non-function, or branching on a non-boolean.
There is only a single rule for m−→, namely: Cmn 〈e〉

m−→ Cmn 〈e′〉 if e
n
99K e′. That is, an expression

at stage m can only ever be evaluated at stage m, but its evaluation may involve reductions
n
99K with

n > m. In particular, a complete program is usually evaluated entirely at stage 0, but its evaluation
involves reductions within the program at higher stages. However, the only reductions at stages above
0 are (UNBOX) (at stage 1 only) and environment propagation rules (at all stages). We write ◊−→ for the
union over all m of m−→, and ◊−→∗ for its reflexive, transitive closure.

Example 1. Here is an evaluation trace of a simple if statement. We use ε to stand for the empty envi-
ronment.

(if(true){false} else{1}, ε)
0−→ if((true, ε)){(false, ε)} else{(1, ε)}
0−→ if(true){(false, ε)} else{(1, ε)}
0−→ (false, ε) 0−→ false

Example 2. The staging constructs in SLamJS allow fragments of code to be treated as values and
spliced together or evaluated at run-time, as shown in this evaluation trace.

(run (box (if(unbox (box (true))){false} else{1})), ε)
0−→ run (box (if(unbox (box (true))){false} else{1}), ε) in ε
0−→∗ run (box (if(unbox (box (true))){(false, ε)} else{(1, ε)})) in ε
0−→ run (box (if(true){(false, ε)} else{(1, ε)})) in ε (as: unbox (box (true))

1
99K true)

0−→∗ run (box (if(true){false} else{1})) in ε
0−→ (if(true){false} else{1}, ε)
0−→ if(true, ε){(false, ε)} else{(1, ε)}
0−→ if(true){(false, ε)} else{(1, ε)} 0−→ (false, ε) 0−→ false

8 M. M. Lester et al. / Information flow analysis for a dynamically typed language with staged metaprogramming

Example 3. Our staging constructs allow variables to be captured by code values originating outside
their scope. Here, the code value box y is outside the scope of y, but captures y during evaluation.

(((fun(x){(fun(y){run x})})(box y))(true), ε)
0−→∗ (fun(y){run x}, 〈x 7→box y〉)(true)
0−→ (run x, 〈y 7→ true, x 7→box y〉)
0−→ run (x, 〈y 7→ true, x 7→box y〉) in 〈y 7→ true, x 7→box y〉
0−→ run (box y) in 〈y 7→ true, x 7→box y〉
0−→ (y, 〈y 7→ true, x 7→box y〉)
0−→ true

This useful feature is vital for modelling certain uses of eval; the above code corresponds to this
JavaScript:
((function (x) {return function (y) { return (eval(x));}})("y"))(true);
However, the power comes at a price: the usual alpha equivalence property of λ-calculus does not hold
in SLamJS [26], which makes reasoning about programs harder.

2.4. Augmented semantics of SLamJS

The result of a program can depend on its component values in essentially two different ways. Con-
sider programs operating on two variables l and h. The program (if(l){h} else{1}) may evaluate to the
value of h (if l is true); we say that there is a direct flow from h to the result. Conversely, the program
(if(h){false} else{1}) cannot evaluate to h. However, the result of evaluation tells us whether h was
true or false because h influences the control flow of the program; there is an indirect flow from h to the
result of the program.

In order to track the dependency of a result on its component subexpressions, we augment the language
with explicit dependency markers [39,1]. We also introduce new rules for lifting markers into their parent
expressions to avoid losing information about dependencies. As an expression is executed according
to the augmented semantics, these markers accumulate around the result, recording its dependencies.
However, the augmented semantics is not intended for use in the execution of programs; rather, we use
it for analysing and reasoning about dependencies in the original language. We begin by adding markers
to the syntax:

Markers m ∈ Marker
Expressions e ::= . . . | (m : e)
Values vn ::= . . . | (m : vn)

We extend contexts to allow evaluation within a marked expression:

Cmn ::= . . . | (m : Cmn) ∈ Cmn

We allow propagation of environments within marked expressions:

(m : e, ρ)
n
99K (m : (e, ρ))

M. M. Lester et al. / Information flow analysis for a dynamically typed language with staged metaprogramming 9

(LIFT-APP) ((m : e), ρ)(v)
0
99K (m : ((e, ρ)(v)))

(LIFT-IF) (if(m : v){e1} else{e2})
0
99K (m : (if(v){e1} else{e2}))

(LIFT-UNBOX) unbox (m : v)
1
99K (m : (unbox v))

(LIFT-RUNIN) run (m : v) in ρ
0
99K (m : (run v in ρ))

(LIFT-READSEL) (v1[m : v2])
0
99K (m : (v1[v2]))

(LIFT-READREC) ((m : v1)[v2])
0
99K (m : (v1[v2]))

(LIFT-WRITESEL) (v1[m : v2] = v3)
0
99K (m : (v1[v2] = v3))

(LIFT-WRITEREC) ((m : v1)[v2] = v3)
0
99K (m : (v1[v2] = v3))

(LIFT-DELSEL) (del v1[m : v2])
0
99K (m : (del v1[v2]))

(LIFT-DELREC) (del (m : v1)[v2])
0
99K (m : (del v1[v2]))

Fig. 5. Semantic rules for lifts

In Fig. 5 we introduce lifts to maintain a record of indirect flows. Lifts are not needed to record direct
flows, as markers are part of values, so the markers will move wherever the values do. For example, in
a record assignment v1[v2] = v3, there are indirect flows from v1 and v2 to the resulting record, so the
rules (LIFT-WRITESEL) and (LIFT-WRITEREC) are needed. However, there is no need for a lift rule to track

the flow from v3 (i.e., v1[v2] = (m : v3)
0
99K (m : v1[v2] = v3)), since that flow is direct.

Example 4. Recall Example 1. Suppose we add markers to each of the components of the if. The evalu-
ation trace now becomes:

(if((H : true)){(L : false)} else{(I : 1)}, ε)
0−→∗ if((H : true)){((L : false), ε)} else{((I : 1), ε)}
0−→ (H : (if(true){((L : false), ε)} else{((I : 1), ε)}))
0−→ (H : ((L : false), ε))
0−→∗ (H : (L : false))

Note how the markers H and L in the result indicate that it depends on the marked values (H : true) and
(L : false).

Example 5. Here is an example of marked evaluation with functions:

(((fun(x){I : (fun(y){x})})(H : 1))(L : 2), ε)
0−→∗(I : (H : 1))

Observe that the result depends on I because the function (I : (fun(y){x})})) was used to compute it,
but not on L, as (L : 2) is discarded by that function.

Simulation
Consider a function unmark, defined in the obvious way, which strips an expression of all markers.

Clearly if unmark(e1) = f1 and f1
n−→ f2, then for some e2 such that e1

n−→∗e2, we have unmark(e2) =
f2:

10 M. M. Lester et al. / Information flow analysis for a dynamically typed language with staged metaprogramming

e1
unmark−−−−−→ f1y

*

n

yn
e2

unmark−−−−−→ f2

The marked expression may require multiple evaluation steps because of the need to apply lift rules
before it is possible to apply the relevant rule of the unmarked semantics.

The marked semantics introduces some nondeterminism, but only in the order of application of lift
rules for records, where if both a record and its field selector are marked, then a lift rule may be applied
on either first. However, this only affects the order in which markers accumulate around an expression
during evaluation, not the identity of the markers or the value of the result.

3. Information flow analysis for SLamJS

3.1. Overview

Before we can define an information flow analysis, we need to define what information flow is. Follow-
ing Pottier and Conchon [39], we use the idea that if information does not flow from a marked expression
into a value resulting from evaluation, then erasing that marked expression or replacing it with a dummy
value should not affect the result of evaluation. (We use only their proof technique; their type-based
analysis is not applicable to our language.) We begin in Section 3.2 by defining erasure and establishing
some results about its behaviour.

Our information flow analysis is built on top of a 0CFA-style analysis capable of handling our staging
constructs. Two variants of such an analysis are explained in Section 3.3; mechanised correctness proofs
in Coq are available online [30].

In Section 3.4, we present the information flow analysis itself. A key idea in CFA is that control
flow influences data flow and vice versa. Information flow depends on control and data flow, but the
reverse is not true. Therefore it is possible to treat information flow analysis as an addition to CFA, rather
than a completely new combined analysis. We have two versions of the CFA, each of which yields an
information flow analysis. We sketch a correctness proof of the simpler analysis; complete mechanised
proofs of both are available online [30].

Finally, in Section 3.5, we prove soundness of the information flow analysis. We also discuss its rela-
tionship with termination-insensitive noninterference.

3.2. Erasure and stability

3.2.1. Erasure and prefixes
We extend the language with a “hole” that behaves like an unbound variable:

Expressions e ::= . . . |
Values vn ::= . . . |
Reductions (, ρ)

n
99K

M. M. Lester et al. / Information flow analysis for a dynamically typed language with staged metaprogramming 11

That is, behaves like a stuck expression that cannot be evaluated.
Now for M ⊆ Marker, define the M -retaining erasure of e, written becM , to be: e with any subex-

pression (m : e′) where m /∈M replaced by . A full definition is in Appendix A. The erasure operation
captures the idea of a low view commonly used to reason about noninterference [39].

3.2.2. Prefixing and monotonicity
We say that e1 is a prefix of e2 or write e1 4 e2 if replacing some subexpressions of e2 with gives e1.
Evaluation is monotonic with respect to prefixing: if e1 4 e2 and e1

◊−→∗f , where f contains no ,
then e2

◊−→∗f .

Lemma 1 (Step Stability). If e1
n
99K e2, then either be1cM

n
99K be2cM or the reduction rule applied to

derive e1
n
99K e2 is a lift (LIFT-*) of a marker m /∈M .

Proof. By induction over the rules defining
n
99K.

Theorem 1 (Stability). Consider an expression e1 (which may use) and a -free expression e2 such
that e1

◊−→∗e2. Then for every M ⊆ Marker such that be2cM = e2, it follows that be1cM
◊−→∗be2cM .

Proof. Consider any e2 and M with be2cM = e2. Aim to prove, for any e1 with e1
◊−→ ∗e2, that

be1cM
◊−→∗e2. Argue by induction over the length k of derivations of e1

◊−→∗e2.
Base case: k = 0. So e1 = e2. We have be2cM = e2, so trivially be1cM = e2.
Inductive step: k = k′+1. Given e1

n−→ e
◊−→k′e2, aim to prove be1cM

◊−→∗e2. Assume by the induction
hypothesis that becM

◊−→k′e2. Let e1 = Cmn 〈f1〉 and e = Cmn 〈f〉 with f1
n
99K f . Case split on if f1

n
99K f

is a lift of a marker m /∈M .
If it is such a lift, then let f = (m : f ′). Now bfcM = , so bfcM 4 bf1cM . Thus bCmn 〈f〉cM 4
bCmn 〈f1〉cM ; that is, becM 4 be1cM . We already have (from the induction hypothesis) that becM

◊−→k′e2.
Now, applying Monotonicity, we get be1cM

◊−→∗e2.
Otherwise, apply the Step Stability Lemma to get bf1cM

n
99K bfcM . It follows that bCmn 〈f1〉cM

n−→
bCmn 〈f〉cM ; that is, be1cM

n−→ becM . Using the induction hypothesis gives be1cM
n−→ becM

◊−→k′e2, as
required.

Example 6. Recall that in Example 5, the result depended on H and I, but not L. Applying b−c{H,I} and
evaluating the initial expression gives:

(((fun(x){I : (fun(y){x})})(H : 1))(), ε)
0−→∗(I : (H : 1))

That is, the result of evaluation is unchanged.

3.3. 0CFA for SLamJS

We use a context-insensitive, flow-insensitive control flow analysis (0CFA [47]) to approximate stati-
cally the set of values to which individual expressions in a program may evaluate at runtime. As far as
0CFA is concerned, the only non-standard feature of SLamJS is its staging constructs. We present two
variants of 0CFA for SLamJS: a simple, but somewhat imprecise formulation that does not distinguish
like-named variables bound by different abstractions, and a more complicated one that does.

12 M. M. Lester et al. / Information flow analysis for a dynamically typed language with staged metaprogramming

Abstract domains

Abstract values ν ∈ AbsVal ::= NULL | UNDEF | BOOL | NUM | STR
| FUN(x, e) | BOX(e) | REC(`)

Abstract variables ξ ∈ AbsVar ::= x | `.p
Abstract caches Γ : Label→ P(AbsVal)
Abstract environments % : AbsVar→ P(AbsVal)

Some rules for the 0CFA acceptability judgement

Γ, % |= k` if dke ∈ Γ(`)

Γ, % |= x` if %(x) ⊆ Γ(`)

Γ, % |= (box e)` if Γ, % |= e
and ∃ν ∈ Γ(`).Γ, % |= ν ≈ box e

Γ, % |= (unbox t`)`0 if Γ, % |= t`

and ∀BOX(t′`
′
) ∈ Γ(`).Γ(`′) ⊆ Γ(`0)

Γ, % |= (if(t`11){t`22 } else{t`33 })`4 if Γ, % |= t`11 ∧ Γ, % |= t`22 ∧ Γ, % |= t`33
and Γ(`2) ⊆ Γ(`4) ∧ Γ(`3) ⊆ Γ(`4)

The approximation judgement Γ, % |= ν ≈ t and the abstract value operation dke

Γ, % |= dke ≈ k for any literal k
Γ, % |= FUN(x, e) ≈ fun(x){e}
Γ, % |= BOX(e) ≈ box e

Γ, % |= REC(`′) ≈ {s : t`} if ∀i.∃νi ∈ %(`′.si).Γ, % |= νi ≈ ti
Γ, % |= ν ≈ t′ if Γ, % |= ν ≈ t ∧ t` n−→ t′`

Γ, % |= ν ≈ (t, ρ) if Γ, % |= ν ≈ t ∧ Γ, % |= ρ

For a literal k, let dke be:
dnulle= NULL

dundefe= UNDEF

dbe= BOOL for boolean b
dne= NUM for number n
dse= STR for string s

Fig. 6. Some details of the simple analysis

3.3.1. Simple analysis
Following Nielson, Nielson and Hankin [36], we formalise our analysis by means of an acceptability

judgement of the form Γ, % |= e, where Γ is an abstract cache associating sets of abstract values with
labelled program points, and % is an abstract environment mapping local variables and record fields to
sets of abstract values. Intuitively, the purpose of this judgement is to ensure that Γ(`) soundly over-
approximates all possible values to which the expression at program point ` can evaluate, and % does the
same for variables and record fields.

More precisely, we assume that all expressions in the program are labelled with labels drawn from a
set Label. An abstract cache is a mapping Label → P(AbsVal) associating a set of abstract values with
every program point; similarly, an abstract environment % : AbsVar→ P(AbsVal) maps abstract variables
to sets of abstract values, where an abstract variable is either a simple name x (representing a function
parameter), or a field name of the form `.p, where ` is a label representing a record, and p is the name of
a field of that record.

M. M. Lester et al. / Information flow analysis for a dynamically typed language with staged metaprogramming 13

Our domain of abstract values (Fig. 6, top) is mostly standard, with, e.g., an abstract value NULL to
represent the concrete null value, an abstract NUM value representing any number, and abstract values
FUN(x, e), BOX(e) and REC(`) representing, respectively, a function value, a quoted piece of code, and a
record allocated at program point `. For an abstract environment % and a label ` we define proto(`)% to
be the smallest set P ⊆ Label such that ` ∈ P and for every p ∈ P and REC(`′) ∈ %(p." proto ") also
`′ ∈ P .

The acceptability judgement is now defined using syntax-directed rules, some of which are shown in
Fig. 6 (middle). The remaining rules, which are standard, are given in Appendix B.

We write t` to represent an expression of the syntactic form t, labelled with `. (Alternatively, we write
lbl(e) to mean the label of expression e.) Thus, k` means an expression consisting of a literal k labelled
`, and the first rule simply says that in order for Γ and % to constitute an acceptable analysis of k`, Γ(`)
must contain the abstract value dke representing k. Similarly, the second rule requires Γ and % to be
consistent in the abstract values they assign to variables and references to them. The rules for dealing
with function abstractions and records are standard and so are elided here for brevity.

The rule for box e requires Γ and % to be an acceptable analysis of the single sub-expression e, and
for Γ(`) to include an abstract value ν approximating box e, which is written as Γ, % |= ν ≈ box e.
This judgement holds if ν = BOX(e), but we must be slightly more flexible: during evaluation, unboxing
may splice new code fragments into e, changing its syntactic shape to some new expression e′. In order
for the flow analysis to be effectively computable, we want the set of abstract values to be finite, so we
cannot expect every such BOX(e′) to be part of our abstract domain. Instead, we close the approximation
judgement under reduction, that is, if Γ, % |= ν ≈ t and t` n−→ t′`

′
, then also Γ, % |= ν ≈ t′; the full

definition of the approximation judgement appears in Fig. 6 (bottom). Note that ρ here is the concrete
environment from the concrete semantics (in Fig. 1), which maps variable names to concrete values
during execution; it is not the abstract environment %, which maps abstract variable names to sets of
abstract values. The concrete environment plays no role in the analysis, other than its proof of correctness.

The rule for unbox t` is surprisingly simple: all that is required is that, for any abstract value BOX(t′`
′
)

that the analysis thinks can flow into `, every abstract value flowing into its body t′`
′

also flows into the
unboxing expression. Note that this models the name capture associated with dynamic scoping, since our
abstract environment % does not distinguish between different variables of the same name. The rule for
run is the same as for unbox.

Finally, we show the rule for if, which is standard: any abstract value that either of the branches can
evaluate to is also a possible result of the entire if expression.

To show this acceptability judgement makes sense, we prove its coherence with evaluation:

Theorem 2 (Simple CFA Coherence). If Γ, % |= e and e n−→ e′, then Γ, % |= e′.

The proof of this theorem is fairly technical and is elided here. A full formalisation in Coq is available
online in our supporting material [30]. As an overview, the first step is to prove that if t1`1

n−→ t2
`2

and Γ, % |= t1
`1 , then Γ(`2) ⊆ Γ(`1). This is done by proving the corresponding result for reductions

by induction over the rules for
n
99K, then (as evaluation is reduction under a context) by induction over

the structure of contexts. Next the main theorem can be proved, again by induction over the derivation
of reductions, followed by induction over the structure of contexts. Most of the cases in the proof are
straightforward, but the large number of reduction rules in the language and the need to track carefully
the indices on contexts make the proof somewhat involved.

14 M. M. Lester et al. / Information flow analysis for a dynamically typed language with staged metaprogramming

Owing to its syntax-directed nature, the definition of the acceptability relation can quite easily be recast
as constraint rules; by generating and solving all constraints for a given program, an acceptable flow
analysis can be derived.

Note that, while there may be infinitely many abstract values of the form BOX(e) and FUN(e) that are
relevant to a particular program, the closure of the approximation judgement under reduction means that
the analysis need only consider those corresponding to subexpressions e of the original program, not
those that may arise during execution. That is, the analysis need only solve a finite set of constraints over
a finite set of abstract values and a finite set of labels and abstract variables, so it can be guaranteed to
terminate.

Example 7. Recall again Example 5. Our implementation of the analysis labels the expression as fol-
lows:

(((fun(x){(I : (fun(y){x0})1)2})3(H : 14)5)6(L : 27)8)9

By generating and solving constraints it gives the following solution for Γ:

0 7→ {NUM} 1 7→ {FUN(y, (x)0)} 2 7→ {FUN(y, (x)0)}
3 7→ {FUN(x, ((I : (fun(y){(x)0})1)2)} 4 7→ {NUM}
5 7→ {NUM} 6 7→ {FUN(y, (x)0)} 7 7→ {NUM}
8 7→ {NUM} 9 7→ {NUM}

while % = {x 7→ {NUM}, y 7→ {NUM}}. As expected, the result of evaluation (labelled 9) is a number.

3.3.2. Improved analysis
The analysis presented so far is not very precise, since abstract environments do not distinguish identi-

cally named parameters of different functions. Ordinarily, this is not a problem, as one can rename them
apart, but this is not possible for SLamJS, which does not enjoy alpha conversion.

To restore analysis precision in the absence of alpha conversion, we introduce an abstract context
Ξ that keeps track of name bindings (Fig. 7, top) and various operations on it (Fig. 7, middle). In a
single-staged language, such an abstract context would simply map a name x to the innermost enclosing
function abstraction whose parameter is x. In a multi-staged setting, we need to distinguish between
bindings at different stages, hence the abstract context maintains one such mapping per stage. Thus Ξ
is a stack of abstract frames Λ, one for each stage; a frame maps each variable name to the label of its
binding context.

For instance, the two uses of x in the SLamJS expression fun(x) {box(fun(x) { (unboxx)(x) })}
are at different stages, and hence bound by different abstractions: the first x by the outer abstraction, the
second by the inner one.

The height of an abstract context is the level of its topmost abstract frame; that is, one less than the
total number of frames in the context.

Having enhanced the analysis by recording where variables are bound, we can use this information
to improve the precision of our abstract environment %, which is now a binary function. For a label `
labelling the body of a function abstraction with parameter x, %(`, x) overapproximates all values this
parameter may be bound to in any invocation of the function. Similarly, for ` labelling the body of a box
expression, %(`, x) overapproximates the values x may have in any evaluation of that body. Finally, for `
labelling a record, %(`, s) overapproximates all values that may be stored in field s of that record.

M. M. Lester et al. / Information flow analysis for a dynamically typed language with staged metaprogramming 15

Abstract domains

Abstract values ν ∈ AbsVal ::= NULL | UNDEF | BOOL | NUM | STR
| FUN(x, e) | BOX(e) | REC(`)

Abstract caches Γ : Label→ P(AbsVal)
Abstract environments % : Label× (Name] String)→ P(AbsVal)
Abstract frames Λ : Name→ Label
Abstract contexts Ξ ::= Λ | Ξ + (`,Λ)

Operations on abstract contexts

Context height height (Λ0 + (`1,Λ1) + · · ·+ (`n,Λn))
def
= n

Context extension (Ξ + (`,Λ))[x 7→ `′]
def
= (Ξ + (`,Λ[x 7→ `′]))

Context base replacement Λ0 + (`1,Λ1) + · · ·+ (`n,Λn) � Λ′
def
= Λ′ + (`1,Λ1) + · · ·+ (`n,Λn)

Context as partial function (Ξ + (`,Λ))(x)
def
=

{
Λ(x) if x ∈ dom(Λ)
` otherwise

Hence: Ξ � (x) =

{
Λ(x) if height (Ξ) = 0
Ξ(x) otherwise

Some rules for the 0CFA acceptability judgement

Γ, %,Ξ |= k` if dke ∈ Γ(`)
Γ, %,Ξ |= x` if x 6∈ dom(Ξ) ∨ %(Ξ(x), x) ⊆ Γ(`)
Γ, %,Ξ |= (box t`)`0 if Γ, %,Ξ + (`, ε) |= t`

and ∃ν ∈ Γ(`).Γ, % |= ν ≈ box t`

Γ, %,Ξ |= (unbox t`)`0 if ∃Ξ′, `1,Λ.Ξ = Ξ′ + (`1,Λ)
and Γ, %,Ξ′ |= t`

and ∀BOX(t′`
′
) ∈ Γ(`).(∀x.%(Ξ(x), x) = %(`′, x)) ∧ Γ(`′) ⊆ Γ(`0)

Γ, %,Ξ |= (if(t`11){t`22 } else{t`33 })`4 if Γ, %,Ξ |= t`11 ∧ Γ, %,Ξ |= t`22 ∧ Γ, %,Ξ |= t`33
and Γ(`2) ⊆ Γ(`4) ∧ Γ(`3) ⊆ Γ(`4)

Fig. 7. Some details of the improved analysis

The acceptability judgement for the improved analysis is now of the form Γ, %,Ξ |= e, and the deriva-
tion rules include additional bookkeeping to adjust Ξ when analysing subexpressions at different stages.
While the change is conceptually simple, the rules are now syntactically somewhat more complex. A
selection are shown in Fig. 7 (bottom); the rest are in Appendix B. Observe that they are structurally very
similar to those for the simple analysis. As for the simple analysis, we demonstrate correctness of the
improved analysis by proving its coherence with evaluation:

Theorem 3 (Improved CFA Coherence). If Γ, %,Ξ |= ewith Ξ of height n, and e n−→ e′, then Γ, %,Ξ |= e′.

Once again, a full formalisation in Coq is available in the online supporting material.

16 M. M. Lester et al. / Information flow analysis for a dynamically typed language with staged metaprogramming

Expression e Subexpressions Direct Flows Indirect Flows
|=IF e holds: if: and: and:
k` − − −
x` − x ` −
fun(x){t`1}`2 |=IF t

`1 − −
(t`11 (t`22))` |=IF t

`1
1 ∧ |=IF t

`2
2 ∀FUN(x, t`33) ∈ Γ(`1) .`2 x ∧ `3 ` `1 # `

(if(t`11){t`22 } else{t`33 })`4
∧3
i=1 |=IF t

`i
i `2 `4 ∧ `3 `4 `1 # `4

(t1, ρ)`1 |=IF t1
`1 ∧

∧
(x 7→t`)∈ρ |=IF t

` − −
(m : t`1)`2 |=IF t

`1 `1 `2 ∧m `2 −
(t`11 [t`22])` |=IF t

`1
1 ∧ |=IF t

`2
2 ∀REC(`′) ∈ Γ(`1) .∀`′′ ∈ proto(`′)% . `1 # `

∀s .`′′.s ` `2 # `

{s1 : t`11 , . . . , sn : t`nn }`
∧n
i=1 |=IF en ∃REC(`′) ∈ Γ(`) .∀i .`i `′.si −

(t`11 [t`22] = t`33)`
∧3
i=1 |=IF t

`i
i `1 ` ∧ ∀REC(`′) ∈ Γ(`1) .∀s .`3 `′.s `2 # `

(del t`11 [t`22])` |=IF t
`1
1 ∧ |=IF t

`2
2 `1 ` `2 # `

(box t`1)`2 |=IF t
`1 − −

(unbox t`1)`2 |=IF t
`1 ∀BOX(t′`

′
) ∈ Γ(`1) .`

′ `2 `1 # `2

(run t`1)`2 |=IF t
`1 ∀BOX(t′`

′
) ∈ Γ(`1) .`

′ `2 `1 # `2

(run t`1 in ρ)`2 |=IF t
`1∧ |=IF ρ ∀BOX(t′`

′
) ∈ Γ(`1) .`

′ `2 `1 # `2

Fig. 8. Rules for the judgment Γ, %,;|=IF e, which generates information flow constraints on ;

Example 8. Consider the following expression, in which the variable x is bound twice:

(((fun(x){(fun(x){(run(x)0)1})2})3((false)4))5((box(x)6)7))8

By generating and solving constraints it gives the following solution for Γ:

0 7→ {BOX(x6)} 1 7→ {BOX(x6)} 2 7→ {FUN(x, (run(x)0)1)}
3 7→ {FUN(x, (fun(x)(run(x)0)1)2)} 4 7→ {BOOL} 5 7→ {FUN(x, (run(x)0)1)}
6 7→ {BOX(x6)} 7 7→ {BOX(x6)} 8 7→ {BOX(x6)}

and for %:

(1, x) 7→ {BOX(x6)} (2, x) 7→ {BOOL} (6, x) 7→ {BOX(x6)}

which correctly shows that the result of evaluation (labelled 8) is the code value box x.

3.4. Information flow for SLamJS

Assume we have already analysed a program using 0CFA and found environments Γ, % that over-
approximate the values flowing to each labelled expression. We use information about which functions

M. M. Lester et al. / Information flow analysis for a dynamically typed language with staged metaprogramming 17

and boxed values may occur to assist in determining what direct and indirect flows occur between labels
of the expression.

By recursing over the structure of an expression, we generate constraints on a relation ;:

; : (Label] AbsVar]Marker)→ (Label] AbsVar]Marker)

Because an expression, the labels, variable names and markers occurring within an expression and the
abstract values in the results of 0CFA for an expression are all finite, the process will terminate. This
is similar to Rushby’s interference relation [42], but whereas his relation describes a security policy by
specifying which parts of a system are permitted to interact, ours describes the behaviour of a system by
stating which parts of a system might interact.

The constraints on ; between labels, variable names and markers are split into direct flows (written
x y) and indirect flows (written x # y). Both denote the same constraint on ;, namely x ; y,
but we list them separately for clarity of exposition. There is otherwise no practical difference between
them with regard to the resulting analysis. Note that if we interpret x y and x # y as (elements of)
relations and define ; = ∪#, then ; satisfies the constraints.

We say that Γ, %,;|=IF e if Γ, % |= e and the conditions in Fig. 8 hold. As Γ, % and ; are constant
throughout the definition, we abbreviate Γ, %,;|=IF e to |=IF e for clarity.

We now prove the coherence of our information flow analysis with evaluation. Like the corresponding
proof for our 0CFA, this is lengthy and technical, so we only sketch it here. A mechanisation of the proof
is available online [30].

Lemma 2 (Reduction Preserves Satisfaction). If we have Γ, %,;|=IF t`11 and also t`11
n
99K t`22 , then

Γ, %,;|=IF t
`2
2 . Furthermore, `2 ;∗ `1.

Proof. By case analysis on the rules defining
n
99K.

Theorem 4 (Information Flow Coherence). If we have Γ, %,;|=IF e1 and also e1
m−→ e2, then

Γ, %,;|=IF e2. Furthermore, lbl(e2) ;∗ lbl(e1).

Proof. Sketch: Unfolding the definition of m−→, we let e1 = Cmn 〈t
`1
1 〉 and e2 = Cmn 〈t

`2
2 〉 with t`11

n
99K t`22 .

Observe that Γ, %,;|=IF t
`1
1 and hence, applying Lemma 2, Γ, %,;|=IF t

`2
2 , with `2 ;∗ `1. Observe

further that constraints generated by Cmn and the contents of its hole interact only at that hole, labelled
`2 or `1. Thus, using `2 ;∗ `1, they must be satisfied in the conclusion, giving Γ, % ;|=IF C

m
n 〈t

`2
2 〉 as

required.
The claim that lbl(e2) ;∗ lbl(e1) is trivial for all non-empty contexts, as lbl(e2) = lbl(e1). For the

empty context, it follows directly from the similar claim in Lemma 2.

Note that, while the 0CFA and information flow analysis phases are conceptually distinct, correctness
of the latter depends on correctness of the former. Therefore, for the sake of simplicity, our mechanisa-
tion of the proof concerns a combined formulation of the analyses in which both phases are performed
simultaneously.

Example 9. Recall once more Example 5. Using the results of 0CFA, our implementation generates the
relations and# as depicted in Fig. 9.

Setting ; = ∪#, we have H ;∗ 9 and I ;∗ 9 and L 6;∗ 9. As expected, this means the result
(labelled 9) has information flows from H and I, but not L.

18 M. M. Lester et al. / Information flow analysis for a dynamically typed language with staged metaprogramming

4 5 x 0 7 8 y

H I 3# 6# 9 L

1 2

Fig. 9. Information flow constraints for Example 5

3.5. Information flow soundness

The information flow relation ; expresses which flows might occur (locally) during a single step of
execution of an expression. We now show how this relates to the flows that might occur (globally) over a
sequence of execution steps that terminates in a value.

Theorem 5 (Information Flow Soundness). Suppose Γ, %,;|=IF t
`. Then if t` ◊−→∗v`′ , where v is a stage-

0 value composed only of markers and constants, then bvcM = v where M = {m ∈ Marker | m ;∗ `}.

Proof. (We argue using the judgment for the simple analysis, but the same argument holds for the im-
proved analysis.) First show that Γ, %,;|=IF v`

′
with `′ ;∗ `. Argue by a simple induction over the

derivation of t` ◊−→∗v.
Base case: Γ, %,;|=IF t

` follows immediately from the theorem’s premise.
Inductive step: Assume that Γ, %,;|=IF e1 and lbl(e1) ;∗ `, with e1

◊−→ e2 the next step in the
derivation. Apply Theorem 4 to show that Γ, %,;|=IF e2 and lbl(e2) ;∗ lbl(e1); hence lbl(e2) ;∗ `.

Now we have Γ, %,;|=IF v and `′ ;∗ `. Observe from the definition of bvcM that if for every marker
m that occurs in v we have m ∈M , then bvcM = v.

But v is a value composed only of markers and constants, so for every marker m that occurs in v (by
examination of the |=IF constraint rules) it must be the case that m ;∗ `′. Thus, as `′ ;∗ `, m ;∗ `.
Hence, from the definition of M , m ∈M . So it is indeed true that bvcM = v.

Relationship with noninterference
Our information flow analysis can be used to verify the classical security property termination-

insensitive noninterference. Noninterference asserts that the values of any “high-security” inputs must
not affect the values of any “low-security” outputs. In order for this assertion to be meaningful, we must
have notions of input, output and high- and low-security levels.

For example, assume elements of Marker represent different levels of security, such as L for low secu-

rity and H for high security. For input, assume two relations low−→ and
high−→, which take an expression and

substitute subexpressions to model values of low and high inputs respectively. For low-security output,
just take the value to which an expression evaluates.

Say that expression t` satisfies noninterference analysis if Γ, %,;|=IF t
` and H 6;∗ `. Further, require

that low−→ and
high−→ satisfy the following conditions:

Γ, %,;|=IF t
` ∧ t low−→ t′ =⇒ Γ, %,;|=IF t

′`

Γ, %,;|=IF t
` ∧ t high−→ t′ =⇒ Γ, %,;|=IF t

′`

Γ, %,;|=IF t
` ∧ t high−→ t′ =⇒ btc{L} = bt′c{L}

M. M. Lester et al. / Information flow analysis for a dynamically typed language with staged metaprogramming 19

Claim. If t` satisfies noninterference analysis, then in the following situation:

t`
low−→ t′` t′`

high−→ t`1 t′`
high−→ t`2 t`1

◊−→∗u`′

where u`
′

is a value composed only of markers and constants, it follows that t`2
◊−→∗u`′ . That is, the low

output u is independent from the values of the high inputs for t selected using
high−→.

Proof. By the condition on low−→, observe we have Γ, %,;|=IF t
′. By the first condition on

high−→, it then
follows that Γ, %,;|=IF t

`
1 and Γ, %,;|=IF t

`
2. As H 6;∗ `, by soundness of information flow, we have

u = buc{L}. So using Stability, we get bt1c{L}
◊−→∗u. But, by the second condition on

high−→, we have

bt′c{L} = bt1c{L} = bt2c{L}. So bt2c{L}
◊−→∗u. Then by monotonicity, t2

◊−→∗u.

The conditions on low−→ and
high−→ seem reasonable. As an example, low−→ and

high−→ that can only replace
constants marked as L and H respectively and can only replace them with constants of the same type
(integer, boolean or string) satisfy these conditions. That is, taking low−→ to be the equivalence relation on

expressions that differ only in the values of constants marked L satisfies the conditions; similarly for
high−→

and constants marked H. In this sense, low−→ and
high−→ play the roles of the usual low view and high view

equivalence relations ≈L and ≈H (common when considering program stores in an imperative setting),
at least for expressions that are yet to be executed.

Note that, as our information flow relation ; expresses all local information flows within a program,
its applications need not be restricted to transitive noninterference. It could also be used to reason about
intransitive noninterference policies [42,49], in which some flows from H to L may be allowed, but only
if they occur through a specified route, which may represent a secure communication channel or declas-
sification.

4. Evaluation

We have implemented our analysis in OCaml and tested it on a range of examples. The most expensive
part of the analysis computationally is 0CFA, which runs in time O(n3) in the size of the program [20];
consequently, it runs quickly on all our examples and we expect it to scale well to large programs. The
source code for our analysis tool and the examples are available online [30]. We now present some of
these examples.

For each example, we list the markers on which our simple analysis says the result may depend. Where
the improved analysis gives a more precise result, we list that too. To improve readability, we write
let x = v in e as a shorthand for fun(x){e}v. Our implementation extends SLamJS (and its analysis) as
presented in this paper with primitive arithmetic, equality and typeof operators, which we use in some of
our examples. It can also handle mutable references in the style of λJS and a subset of actual JavaScript
syntax. Many of our examples are inspired by patterns of eval usage common in Web applications, as
surveyed by Richards et al. [41] and discussed by Jensen et al. [24].

Example 10. Depends on: H, L.

if(H : true){L : false} else{1}

20 M. M. Lester et al. / Information flow analysis for a dynamically typed language with staged metaprogramming

We begin with a classic example where branching on a value introduces an indirect flow from it. As
our analysis does not track specific boolean values, it would give the same result if the branch were on
(H : false). We could resolve this imprecision by extending our abstract value domain with abstract
values for true and false.

Example 11. Depends on: H, I, L. Depends (improved): H, L.

let ctrue = fun(x){fun(y){x}} in
let cif = fun(x){fun(y){fun(z){(x(y))(z)}}} in
((cif (H : ctrue))(L : false))(I : 1))

Conversely, if we present the previous example using the standard Church-encodings of if and true as
functions, our analysis is precise enough to determine that the result does not depend on I. Note that we
need the improved analysis to distinguish the bindings of x and y in ctrue and cif .

Example 12. Depends on: L.

let x = if(true){box f} else{box g} in
let f = fun(y){1} in
let g = fun(z){L : true} in
run (box ((unbox x)(H : undef)))

This is modelled on the following JavaScript usage [24]:
if (...) x = "f"; else x = "g"; eval(x + "()");
f and g are bound to functions; x is set to a code value of either f or g; a function argument is added to
the code value and the result executed. In this example, both f and g ignore their argument (H : undef),
so the result does not depend on H; our analysis correctly identifies this.

Example 13. Depends on: H, L. Depends (improved): L.

let c = box x in
let x = L : 1 in
let eval = fun(b){run b} in
let x = H : 2 in
eval(c)

JavaScript programmers sometimes use eval to execute code within a different scope. SLamJS does not
aim to emulate all the quirks of eval, but scoping of staged code can still have interesting behaviour,
as shown in this example. In the scope of the definition of the function bound to eval , x is 1. So when
it evaluates the code value c, which contains just the variable x, this is the value it returns; note that x
was not bound at all where c was defined. The second binding of x is unused; our analysis correctly
determines this.

Example 14. Depends on: H, I, L.

let i = I : {" proto " : null,"x" : (H : 1),"y" : (L : 2)} in
let s = fun(id){let f = box (i[unbox id]) in run f} in
s(box "y")

M. M. Lester et al. / Information flow analysis for a dynamically typed language with staged metaprogramming 21

Some programmers use eval to construct variable names, as in (var n = 5; eval ("f_" + n);)
to access f_5. We cannot express this directly in SLamJS as there are no facilities to manipulate variable
names. Another common practice is to use eval to access object properties, often because of the program-
mer’s ignorance of JavaScript’s indirect object field access syntax; this example models that practice in
SLamJS. Because our analysis does not model the values strings may take, its handling of field reads and
writes is rather coarse, so it cannot tell the result will not depend on H; this could be addressed refining
our abstract value domain.

Example 15. Depends on: H.

let fst = fun(x){fun(y){x}} in
let f = if(false){fst} else{box fst} in
let x = (H : 1) in
let y = (L : true) in
if(typeof f = "function"){(f(x))(y)}
else{run (box (((unbox f)(x))(y)))}

This example models the JavaScript usage pattern:
if (f instanceof Function) f(x);
else eval (f + "(x)");
which may arise when using eval to emulate higher-order functions. Here, our analysis shows the same
precision on a boxed value representing a function as when dealing with a real function.

Example 16. Depends on: H, L. Depends (improved): L.

let pair = fun(x){fun(y){fun(z){run z}}} in
let fst = fun(z){z(box x)} in
let snd = fun(z){z(box y)} in
let bp = box ((pair(L : (box (1))))(H : (box (true)))) in
let boxfst = box ((fst)(unbox bp)) in
run (run (boxfst))

Most examples of staged metaprogramming in the literature do not use more than one level of staging.
This example, which pairs and unpairs two values in a rather roundabout way, illustrates that we can
handle higher levels too.

Example 17. Depends on: H.

fun(n){(fun(x){(x(x))(n)})
(fun(x){fun(y){if(y = 0){true} else{(x(x))(sub(y, 1))}}})
}(H : 5)

This program loops n times (where n is (H : 5) in this instance) before returning true. In this sense,
the result is independent of n: if n were a high-security input and the output low, the program would
satisfy noninterference, although the duration of execution may leak information about n. However,
n must be examined in order to execute the program, so there is an information flow from n to the

22 M. M. Lester et al. / Information flow analysis for a dynamically typed language with staged metaprogramming

result, in the sense captured by our augmented semantics. That is, no noninterference analysis based on
a sound over-approximation of the behaviour of such a semantics could ever show the program to be
noninterfering [43].

Example 18. Depends on: L

let fst = fun(x){fun(y){x}} in
let a = box x in
let b = box (fun(x){fun(y){fst(unbox a)(y)}}) in
(run b)(L : 1)(H : 2)

This program, based on an example from Choi et al. [7], splices a variable name into a code template to
produce code that takes two arguments and returns the first. Our analysis correctly determines that the
result depends only on the first.

Example 19. Depends on: L, H.

let fst = fun(x){fun(y){x}} in
let a = fun(p){p["x"]} in
let b = (fun(h){fun(p){fun(x){fun(y){
fst(h((p["x"] = x)["y"] = y))(y)}}}})(a) in
b({"__proto__" : null})(L : 1)(H : 2)

By applying Choi et al.’s unstaging translation to the core of the previous example, we obtain this un-
staged one. Note that while the result of the program is the same, we lose precision by analysing this
version instead of working directly on the staged version.

Example 20. Depends on: L, H. Depends (improved): L.

let blank = fun(get){get(null)(null)} in
let getx = fun(x){fun(y){x}} in
let gety = fun(x){fun(y){y}} in
let setx = fun(env){fun(newx){
fun(get){get(newx)(env(gety))}}} in
let sety = fun(env){fun(newy){
fun(get){get(env(getx))(newy)}}} in
let fst = fun(x){fun(y){x}} in
let a = fun(p){p(getx)} in
let b = (fun(h){fun(p){fun(x){fun(y){ fst (h(sety(setx (p)(x))(y))) (y) }}}})(a) in
b(blank)(L : 1)(H : 2)

Here we have applied the unstaging translation, as in the previous example, but using higher order func-
tions to encode environments instead of records. In this case, we can recover the lost precision, but at
the cost of an O(n2) increase in the size of the source program, making the combined analysis O(n6)
instead of O(n3).

M. M. Lester et al. / Information flow analysis for a dynamically typed language with staged metaprogramming 23

5. Transforming eval to staged metaprogramming

5.1. Overview

In order to demonstrate the applicability of the information flow analysis, we now describe the Boxing
Algorithm, an algorithm for transforming a program that uses string-based eval into one that uses the
box and unbox of staged metaprogramming.

Given a program e1 that uses eval, the aim is to transform it into an equivalent program e2 that instead
uses staged metaprogramming. We can then meaningfully apply the information flow analysis of Sec-
tion 3 to e2. An overview of the algorithm is given in Figure 10; a more detailed illustration of dataflow
within the algorithm is shown in Figure 11. Like most static analysis problems, the question of whether
an eval-using program can be transformed into one using staged metaprogramming is undecidable, so
we cannot hope to produce a sound algorithm that will always find a transformation when one exists.

The transformation is based on the assumption that an eval-using program uses string concatenation
to join together well-formed code templates. Hence constant strings can be transformed into box expres-
sions, uses of concatenation into unbox expressions, and eval into run. This assumption may be violated
if, for example: the structure of concatenation in the program does not correspond closely enough to the
syntactic structure of expressions; the program makes decisions about flow control on the basis of the
syntactic content of code strings; or the program uses substring operations to deconstruct code templates
(as unbox only describes composition). In these cases, the transformation will fail with an error.

5.2. Key ideas

5.2.1. Prerequisites
The basic idea is that the algorithm will transform:

– code constants into box expressions;
– concatenation of code strings into splicing using unbox;
– eval into run.

For example: becomes:
let x = "y" in let x = box y in
eval x run x

while: becomes:
let f = fun(z){mul(3, z)} in let f = fun(z){mul(3, z)} in
let y = "2" in let y = box 2 in
let x = "f(" + y + ")" in let x = box(f(unbox y)) in
eval x run x

But in order to use it, certain conditions must hold:

1. we need a sound dataflow analysis for the target language, including metaprogramming constructs;
2. we need a string analysis for the target language that will produce a sound over-approximation of

the string values that may occur at different program points or be bound to different variables;
3. the language must be parseable using lex and yacc or similar tools.

24 M. M. Lester et al. / Information flow analysis for a dynamically typed language with staged metaprogramming

– Input: an eval-using program e1.
– Output: a transformed staged program e2.

While a fixed point has not been reached:

1. Generate constraints α for e1 . . .
– . . . and (if not first iteration) any code previously generated in step 4.

2. Solve constraints α . . .
– . . . and (if not first iteration) any constraints γ previously generated in step 5.

3. Search for a transformation.
– If the search fails, terminate unsuccessfully.

4. Splice box expressions into e1 according to transformation, generating candidate e2.
– If (not first iteration and) candidate e2 is the same as previous iteration’s, a fixed point

has been reached; terminate successfully and return e2.

5. Generate, solve and resolve staged constraints γ on spliced code.

Fig. 10. Control flow in the Boxing Algorithm

We have already seen how to apply 0CFA to SLamJS, so we reuse that analysis to satisfy condition 1.
As 0CFA over-approximates the flow control of a program with a regular graph, it is easy to extract
a grammar-based string analysis from the results; that satisfies condition 2, although there are many
techniques that could improve upon this [6]. The lexer and parser for SLamJS are implemented using
OCamlLex and OCamlYacc, which satisfies condition 3. (INRIA’s Prosecco has produced such an un-
ambiguous grammar for JavaScript, so it meets the criteria for our algorithm to be applied.)

5.2.2. Building a sequence of program approximations
In most static analyses, the goal is to construct an over-approximation of the behaviours of a program.

In contrast, the goal of the Boxing Algorithm is to produce a staged program that exactly captures the
behaviours of the original eval-using program. Although we cannot immediately analyse the behaviour
of a program that uses eval, if we under-approximate the behaviour of eval by supposing it does nothing,
we can analyse the behaviour of other parts of the program and use this as a starting point for building a
sequence of increasingly accurate approximations that will hopefully converge to a fixed point that has
exactly the behaviour of the whole program.

In particular, any information supplied by the analysis about the program’s behaviour prior to the first
execution of eval will be sound. This includes information about the content of the first strings executed
as code. By analysing this code, we can construct a new approximation that will either reveal new in-
formation about the code executed, or show that we have enough information to capture the program’s
behaviour exactly.

We cannot simply analyse individual code strings, as there may be infinitely many possible such strings
arising over all executions of the program. Fortunately, the staged metaprogramming analysis allows us
to analyse the behaviour of possibly infinite sets of code values built using staged metaprogramming.

The approximation produced in the nth cycle of the fixed point process, if run, would behave the same
as the original program up to the nth execution of eval. After that, the behaviours of the original and
approximate program may diverge; in particular, the approximation may contain an odd mixture of staged

M. M. Lester et al. / Information flow analysis for a dynamically typed language with staged metaprogramming 25

select
staged

solve
constraints

combine
concatenations

resolve
constraints

?
= en−12

generate
constraints

solve
constraints

resolve
constraints

generate
constraints

{e′n1,m}

dependency
analysis

α
0CFA

constraints

{en+1
1,m } (m > 1)

staged code
discovered

Transformation Search

en2
candidate

staged program

A
n-cat argument

locations

C
constant
locations

B
box

locations

E
eval

locations

G
grammar-based
string analysis

Γ′

staged 0CFA
solution

dataflow
analysis

S
n-cat argument styles

(constant/hole)

U
unbox/box
locations

Splice Expressions

X
spliced

expressions

N
n-cat

locations

e1
initial

eval-using
program

e2
equivalent

staged program

{en1,m}
initial program
+ staged code

β
staged 0CFA
constraints

e′n1,1
initial

program

next cycle

γn+1

order 1
constraints

next cycle

β′

just staged
constraints

Γ
0CFA

solution

Fig. 11. Data flow in the Boxing Algorithm

26 M. M. Lester et al. / Information flow analysis for a dynamically typed language with staged metaprogramming

metaprogramming and code string-based metaprogramming. If the algorithm reaches a fixed point, the
transformed program, if executed, would behave the same as the original program.

5.2.3. Parsing expressions out-of-order
The Boxing Algorithm relies on using the existing parser for a language for part of the transformation;

this makes the technique easily applicable to other languages. Typically, languages are parsed in two
phases. The first phase, lexical analysis, splits the program text into a sequence of lexemes and transforms
these into a sequence of tokens; the tool lex generates a lexer that does this using a deterministic finite
state automaton. In the second phase, the actual parser turns the sequence of tokens into an abstract
syntax tree; yacc generates a LALR (Look Ahead, Left-to-right, Rightmost derivation) parser to do this
with a restricted form of pushdown automaton.

Normally, the lexer processes the characters in the program text in order from beginning to end. Simi-
larly, the parser processes the token sequence in order from left to right (hence the second L in LALR).
The Boxing Algorithm abuses these tools to process evaled text out of order in fragments. Effectively,
this gives us a finite way of parsing a string abstraction, which may encode infinitely many concrete
strings of unbounded length. However, there is a price: we risk changing the meaning of the evaled code.
To avoid this (and hence keep the transformation sound), we must check that the lexing and parsing
phases are unaffected by the change of order.

Parsing. In order to build an approximate analysis of an eval-using program, the algorithm transforms
string operations on code values into uses of staged metaprogramming. (Note that the intermediate ap-
proximations may combine uses of eval with uses of staged metaprogramming.) The difficulty here is
that, while an eval-using program might construct code strings using concatenation from left to right (or
some other order), staged metaprogramming splices one well-formed expression into another, without
respect for this order.

For example, consider a language (unlike SLamJS) with conventional arithmetic expressions. Using
the usual precedence of arithmetic operators, the expression 1 + 2 ∗ 3 would evaluate to 7. We could use
string concatenation to construct a string representation of this code and eval it:

letx = "1 + 2" in
let y = "3" in
eval(x+ " * " + y)

We might be tempted to transform this into the following representation using staged metaprogramming:

letx = box(1 + 2) in
let y = box 3 in
run(box((unboxx) ∗ (unbox y)))

But this would be incorrect, as it would change the bracketing of the expression from 1 + 2 ∗ 3 =
1 + (2 ∗ 3) = 7 (according to the usual rules of precedence in arithmetic) to (1 + 2) ∗ 3 = 9. (Arguably
this may have been the intent of the author of the program.)

The problem arises because without the rules of precedence, the grammar of expressions in the lan-
guage is ambiguous. The proposed transformation corresponds to one possible parsing of 1 + 2 * 3,
but not the one the language’s parser would choose when following the usual rules of precedence.

M. M. Lester et al. / Information flow analysis for a dynamically typed language with staged metaprogramming 27

If the language we wish to analyse is parseable using a deterministic context free grammar, we can
parse fragments of program code out-of-order without changing the resulting expression. Hence we can
safely transform a sequence of concatenations into the splicing of an expression into a template.

This is not an onerous requirement as, while yacc accepts ambiguous grammar specifications, it
resolves the grammar ambiguity (perhaps arbitrarily) and produces a LALR parser for a more restricted,
unambiguous grammar, which would itself be valid as a grammar specification.

Disambiguation in grammar specifications is often achieved by adding extra syntactic classes of ex-
pression. In the case of arithmetic expressions, there might be a class that represents only bracketed ex-
pressions or those free from addition, with multiplication only being permitted between expressions in
this class. The example above might not be transformable in this case, as while x and y should clearly
encode valid expressions, it is no longer permissible to multiply arbitrary expressions. In this case, re-
placing the final concatenation with "(" + x + ") * (" + y + ")" would allow the transforma-
tion, as the multiplication would be between bracketed expressions. So we may be unable to transform
some ostensibly reasonable programs because of the restriction to deterministic grammars, but it seems
a reasonable sacrifice in order to ensure sound transformation of other programs.

We can easily modify the yacc grammar for SLamJS to support parsing of incomplete expressions
containing holes by adding a new token named HOLE, representing a hole in an expression, and a new
rule stating that HOLE is an expression. We write 〈•〉 to mean a string that lexes to HOLE. In order to
avoid misinterpreting text produced within a program as 〈•〉, it ought to be treated as a special character
that cannot occur textually within a program or be produced by the string operations within the language.

Consider again the second example at the start of Section 5.2.1. Having added 〈•〉 and HOLE to the
lexer and parser respectively, we can treat the string generated by the concatenation "f("+ y+ ")" as
"f(〈•〉)", which, as 〈•〉 parses as an expression, also parses as an expression. In order to fill the hole,
we also need to parse "2" as an expression. The algorithm’s use of the parser is fairly straightforward:
it still only parses complete expressions; the trick is that sometimes the parsing of their subexpressions
occurs separately, those subexpressions having been replaced with holes. In contrast, other work on string
analysis of code [12] tracks the parse stack produced by partially parsing code string fragments. This
leads to a way of determining whether the code string must be a valid expression, but not what the content
of that expression is.

Lexing. A further complication in parsing expressions out-of-order is that concatenation of code strings
may change the boundaries and types of tokens produced during their lexical analysis.

This is unlikely to cause problems in SLamJS because the grammar is quite restrictive, but suppose
we allowed function application to be written as juxtaposition of expressions without brackets, as in a
typical functional language, and consider the following:

let x = if(y){"(g(3))"} else{"g(3)"} in
let z = "f" + x in
eval z

We might be tempted to transform it to:

let x = if(y){box (g(3))} else{box (g(3))} in
let z = box (f(unbox z)) in
run z

28 M. M. Lester et al. / Information flow analysis for a dynamically typed language with staged metaprogramming

But this would be wrong in the case where y is false. Depending on the value of y, the values of z in the
original program and its tokenisations might be:

"f(g(3))" 7→ VAR(f) LP VAR(g) LP INT(3) RP RP
"fg(3)" 7→ VAR(fg) LP INT(3) RP

In transforming the concatenation assigned to z, we observe that x is not constant, so we tokenise it as
HOLE(x); the concatenation then tokenises as VAR(f) HOLE(x). Treating HOLE(x) as a wildcard,
this matches the first case, but not the second.

The problem in this case is that the use of the hole has changed the lexeme boundaries within the string
and hence its tokenisation. Conceptually, we can view the lexer as a deterministic finite state transducer T
that reads the string and emits tokens on lexeme boundaries. In order to avoid changing the tokenisation
of code strings, we need to check that, whenever code strings x and y are concatenated, it is true that
T (x · y) = T (x) · T (y). (If it is not true, it might be deliberate on the part of the programmer, but is
more likely to indicate an error or a fragile piece of code.)

This hides some details of the problem, as in practice tokens that are identical in the automaton model
often carry some data that distinguishes them (as with VAR(f) and VAR(fg) in the above example).
What we really need to check is that concatenation does not change the positions of lexeme boundaries
in the code string.

Our solution is to look at the finite state transducer produced by the lexer generator in combination
with the string analysis. Whenever we wish to treat a concatenation argument as a hole, we compute (an
over-approximation to): the final states of the lexer having processed the last character of the hole string;
and all possible first characters of the following argument. We then require that, for each possible final
state: either it is one that emits a token (and hence the following character is irrelevant in how the hole
string is lexed); or, for all possible following characters, the lexer immediately emits the same token.
That is, each final state must correspond to a lexeme boundary. If the check fails, then the argument may
not safely be treated as a hole.

5.2.4. Constraint solution and resolution
Recall that the staged metaprogramming analysis for SLamJS is formulated as a system of constraints.

The constraints describe the abstract values that may arise when evaluating a particular subexpression of
a program. Solution of the constraints yields a function Γ such that Γ(`) is a sound over-approximation
of the abstract values that may occur at program point ` during execution.

The majority of constraints are “order 0” constraints of the form a ∈ Γ(`) or “order 1” constraints
of the form Γ(`1) ⊆ Γ(`2). But in order to express the behaviour of function and code values, we need
“order 2” constraints of the form ∀BOX(e`

′
) ∈ Γ(`1).Γ(`′) ⊆ Γ(`2).

It is possible (although not most efficient [37]) to find the smallest solution to these constraints it-
eratively using a fixed point computation: initialise each Γ(`) to be empty; consider each constraint in
turn, adding more abstract values to some relevant Γ(`) until it is satisfied; repeat the process until no
constraint adds new values (and hence every constraint is satisfied).

Note that, for a fixed Γ, an order 2 constraint can be expressed as a set of order 1 constraints and an
order 1 constraint can be expressed as a set of order 0 constraints. Obviously, when solving the constraints
iteratively, Γ is not fixed, but this observation that higher order constraints can be resolved to lower order
ones becomes important when considering how to use staged constraints in an eval-based program.

M. M. Lester et al. / Information flow analysis for a dynamically typed language with staged metaprogramming 29

5.2.5. Combining concatenations
The main premise of the Boxing Algorithm is that the syntactic structure of concatenation in rea-

sonable eval-using programs will be similar to composition of templates via staged metaprogramming.
However, they are unlikely to match exactly. In particular, if we consider an expression like f(x)
built with string concatenation by "f(" + "x" + ")", the implicit bracketing of the concatenation is
("f(" + "x") + ")". As “f(” is not a grammatically valid expression, we cannot represent this with
staged metaprogramming.

The solution is to replace syntactically adjacent instances of binary concatenation in an expression with
a single n-ary concatenation (or n-cat). This will not change the behaviour of the program in SLamJS, as
concatenation is associative, although in other languages (such as full JavaScript) there may be subtleties
arising from implicit string conversion or other peculiarities.

5.3. Cycle description

Let us now consider the steps in a single cycle of the fixed point process that produces a transformation.
Each cycle operates on the original program (plus, in later cycles, fragments of staged code and associated
constraints).

We begin by combining adjacent concatenations in the original program to get e′1. Next, we run our
original analysis on the program e′1 to obtain the relation that describes direct data flows between
program points `. If `1 `2, then there is a direct flow from `1 to `2. We can view as an edge relation
for a directed dataflow graph with program points as vertices. By reversing every edge in the graph, we
obtain a dependency graph with edge relation . We can use this to determine the program points from
which code strings flow into evals.

We also use the dataflow graph to produce a naive, grammar-based string analysis G. Essentially, we
associate a non-terminal with every program point and introduce a production for every edge in the
dependency graph. For string constant expressions, we add a production to the corresponding constants;
concatenation operations are translated directly into concatenation in the grammar. This approach is
outlined and developed further by Christensen et al. [8], considering in particular how to produce a
reasonably precise but regular over-approximation to the strings generated at a program point in the
presence of loops in the graph. But for the purposes of this transformation, we need only to determine
whether a program point ` yields a constant string (and if so, what it is).

We are now able to determine which program points are candidates for transformation:

– E — all occurrences of eval within e′1;
– C — all constant strings on which an argument of an eval depends;
– N — all n-cats on which the argument of an eval depends;
– A — all arguments to n-cats in N .

E is determined syntactically from e′1; the rest are determined using .
For every path from an eval argument back to a program point that produces a code string, the goal

is then to transform the expression at that program point into one that produces an equivalent staged
metaprogramming code value. If the code string produced is a constant and that constant parses correctly
to an expression, then this is simply a matter of replacing it with the corresponding box expression. If
the code string is produced by concatenation, it might not be constant. In this case, we attempt to turn it
into a box template with unbox expressions to fill any holes in the template.

A code concatenation expression will consist of several subexpressions joined together. For each of
these subexpressions, we must choose whether to treat it as a constant (which is obviously only possible

30 M. M. Lester et al. / Information flow analysis for a dynamically typed language with staged metaprogramming

if the subexpression is indeed constant, as determined by G), or to treat it as a hole. If we treat it as a
constant, it becomes part of the code template, which we parse to produce the box expression. If we treat
it as a hole, we introduce the obligation to transform any program point on a path from the subexpression
that produces a code string.

Hence the process of choosing what and how to transform can be viewed as a depth-first search rooted
at the occurrences of eval. If the search is successful, we produce:

– B — a set of program points where we may transform string constants into box expressions;
– U — a set of program points where we may transform string concatenations into unbox expres-

sions;
– X : (B ∪ U)→ T — a mapping from transformed program points into code templates.
– S : A→ {h, c}— a “style” specifying whether a concatenation argument should be turned into a
hole or treated as a constant.

A more formal description on the conditions that B, U , X and S must satisfy is given in Figure 12.
(In addition, every template must satisfy the lexing check described in Section 5.2.3.) As the conditions
are described in a syntax-directed way, it is usually fairly straightforward to find values that satisfy the
requirements using a search algorithm, if they exist. Some worked examples are given in Appendix D.

It is possible that we are unable to find B, U , X and S satisfying these conditions, in which case the
analysis fails. Otherwise, we transform e′1 into a candidate e2 by splicing in all the code templates from
X and turning occurrences of eval into run.

In order to make explicit the relationship between the original and transformed subexpressions, we
must maintain the labels on the program points. That is, the label on a subexpression being spliced
in must match the label on the subexpression it replaces. For example, in transforming "f(x)"1 into
(box(f2(x3))4)1 we preserve the outermost label 1. Similarly, in transforming ("f("1 + y2 + ")"3)4

into (box(f5(unbox y2)6)7)4 we preserve the label 4 on the n-ary concatenation and the label 2 on the
spliced argument.

We can now analyse our approximation e2 using our existing analysis for staged metaprogramming.
This may reveal more information about the staging behaviour of the program. For example, we may
find that there are new occurrences of eval, there are new strings used as code values, or that certain
program points take on a wider range of code values than previously assumed. We need to transfer this
information back to e′1, so that we can transform it again, generating a new, more accurate approximation
e′2.

What we would like to do is augment the constraints generated in the analysis of e′1 with the new
constraints β (some of them staged) generated by the analysis of the candidate e2. We cannot simply
union the two sets of constraints, as this would introduce staged code values to the analysis of an eval-
based program, which would be meaningless.

However, observing that the staged constraints are order 2 constraints, after solving β in our analysis
Γ′ of e2, we can filter out just the staged constraints β′ ⊆ β, then resolve them (relative to Γ′) to order 1
set-inclusion constraints γ.

As the staged constraints generated in cycle n express the interaction between the unstaged parts of
e1 = en+1

1,1 and the staged code en+1
1,2 , e

n+1
1,3 , . . . , e

n+1
1,k = {en+1

1,m | m > 1} introduced in its transformation
to e2, these order 1 constraints will refer to labelled program points in both e1 and the staged code.
Consequently, in order to combine the staged constraints meaningfully with the constraints for e1, we
must also include the constraints generated by analysis of these new expressions.

M. M. Lester et al. / Information flow analysis for a dynamically typed language with staged metaprogramming 31

Domain anti-restriction of a relation: x (A�R) y
def⇔ x R y ∧ x /∈ A

Restricted dependencies of a program point: ←↩ def= (N ∪ C) �

Cut of a program point: cut(`)
def
= {`′ | `←↩∗ `′} ∩ (N ∪ C)

Cut lifted to a set of program points: cut(L)
def
=
⋃
{cut(`) | ` ∈ L}

Arguments to eval: D
def
= {` | ∃`′ ∈ E, e.eval(e`)`

′
occurs in e′1}

Require that the transformed box/unbox
locations cover the combined cuts of all
arguments to eval: cut(D) ⊆ B ∪ U
Concatenated arguments treated as holes: V

def
= {` | S(`) = h}

Require that transformed locations cover
cuts of all arguments to concatenation
treated as holes: cut(V) ⊆ B ∪ U
n-cat arguments treated as constants: W

def
= {` | S(`) = c}

String analysis (for identifying constants): G(`)
def
=

{
s

if, according to analysis, `
yields the constant string s

undef otherwise
Require that locations transformed as
constant parts of templates are indeed
constant: W ⊆ dom(G)

Parsing function: parse(s)
def
=

{
e if s parses to expression e
undef otherwise

Require that locations transformed to
constant boxes agree with string analysis: ∀` ∈ B.X(`) = parse(G(`))

Template fragment for a program point: frag (`)
def
=

{
〈•〉 if S(`) = h
G(`) if S(`) = c

Template fragment lifted to n-cat arguments: frag (`)i
def
=

{
frag(`′) if `′ is ith argument to ` ∈ N
undef otherwise

n-ary concatenation:
⊕
si

def
= s1 . . . sn

Template for an n-cat : T (`)
def
=
⊕

frag (`)i
Require that templates generated at n-cat
locations agree with string analysis: ∀` ∈ U.X(`) = parse(T (`))

Fig. 12. Conditions on B, U , X and S in a cycle of the Boxing Algorithm

32 M. M. Lester et al. / Information flow analysis for a dynamically typed language with staged metaprogramming

So when we repeat the transformation cycle, we consider not just the original program e1, but also the
transformed code introduced in e2, augmented with the resolved staged constraints γ′ from the analysis
of e2. Note that it is now possible that we will have to transform expressions outside our original e1.

We repeat the process until (hopefully) we reach a fixed point; that is, until the transformed expression
is identical in two consecutive cycles. The rationale is that in cycle n, the transformed expression accu-
rately models the behaviour of e1 up to (at least) the n+1th use of eval. If we reach a fixed point at cycle
k, the result of any cycle k′ > k will be identical. Hence, by an inductive argument, the transformed
expression in cycle k accurately models any number of uses of eval. Note that, in contrast to simply
executing the program up to the n + 1th use of eval, cycle n + 1 may accurately model infinitely many
more uses of eval than cycle n. For example, if in the original program an eval occurs in a loop with an
unbounded number of iterations (or one that does not terminate at all), the transformed program in some
(finitely reachable) cycle n+ 1 may accurately model the loop up to any number of iterations.

5.3.1. Termination
It is not clear that the fixed point computation will terminate. In the case of 0CFA on a purely staged

program, termination is guaranteed because we need only consider finitely many program points and
finitely many abstract code values (representative of infinitely many possible constructed code values).
However, both of these conditions are violated when we introduce new transformed code. That said, it
seems unlikely that this would ever occur; it is more likely that the increasing density of constraints in
the original program would lead to a cycle where no transformation was possible, so the algorithm would
fail.

It seems unlikely that a useful, realistic program will feature a pathological sequence of extracted
constant code values, although it may be possible to construct one in a similar style to a Quine (self-
replicating program) [21]. For example, if a program constructs and evals a constant string value equal
to its own source code, and the string analysis can determine this value statically, then the next cycle will
involve analysis of an entire second copy of the program. Analysis of this second copy may introduce a
third copy in the following cycle, and so on.

If possible non-termination is an issue, the algorithm can simply be set to terminate after a fixed
number of cycles. In fact, in the vast majority of examples, where the first cycle of analysis of eval does
not reveal any new uses of eval or new code strings, two cycles are sufficient.

5.4. Soundness

We now sketch a proof of the soundness of the transformation produced by the Boxing Algorithm.
It would be desirable to give a detailed proof of the correctness of the algorithm, perhaps even going
as far as the mechanised proof of the information flow analysis in the previous section. However, as
discussed earlier, the algorithm tackles an unusually broad range of concerns. Correspondingly, a more
formal and detailed proof would need to invoke many results about the behaviours of the dataflow anal-
ysis, the string analysis and lexical analysis and parsing. Furthermore, a significant amount of technical
machinery would have to be introduced to track the interaction between these concerns. In particular, it
would require: a reformulation of the semantics of SLamJS in terms of a graph model (rather than the
current term tree model) in order to track the correspondence between the initial expression and its staged
approximations; and a modified proof of the information flow analysis to take account of the meaning
of the resolved staged constraints and the staged code fragments. This would be a significant undertak-
ing, but would be unlikely to aid significantly in the understanding of the algorithm or the clarity of its
exposition, so we leave it for future work.

M. M. Lester et al. / Information flow analysis for a dynamically typed language with staged metaprogramming 33

The transformation is developed through a sequence of approximations. So in order to argue about the
correctness of the final result, we must argue about the correctness of the intermediate steps.

The input to the algorithm is an expression e1 to be transformed. But cycle n takes as input not just

en1,1
def
= en, but also (for cycle n > 1) fragments of staged code en1,m (where m > 1) and 0CFA

constraints γn; note that the fragments of staged code do not themselves include any staging constructs.
The cycle then produces, in addition to a candidate transformed program en2 , the fragments of staged
code en+1

1,m and constraints γn+1 for the following cycle. So we must argue about the relationship of all
these entities.

Lemma 3 (Boxing Cycle Soundness). In cycle n of the Boxing Algorithm:

– the candidate en2 simulates the execution of e1 up to and including at least the nth use of eval;
– the fragments of staged code en+1

1,m are those that, when spliced into e1, yield en2 ;
– the constraints γn+1, combined with the constraints generated by analysing en+1

1,m , yield all staged
flows within en2 , and hence all flows in e1 resulting from uses of eval up to and including its nth
use.

Proof. See Appendix C.

Theorem 6 (Boxing Algorithm Soundness). Consider a program e1 written in SLamJS extended with
eval but without staging constructs. If the Boxing Algorithm transforms e1 to e2 and e1

◊−→∗v, then
e2

◊−→∗v. Furthermore, e2 is a SLamJS program without eval.

Proof. If the algorithm terminates, then e2 = ek2 for some k, with ek2 = ek−12 . Hence ∀n ≥ k.ek2 = en.
Thus by Lemma 3, e2 simulates the execution of e1 up to any number of uses of eval. There are only
finitely many uses of eval in the execution of e1

◊−→∗v, so e2 simulates the entirety of the execution of e1
and e2

◊−→∗v. The fact that e2 does not use eval follows from the construction of the transformation.

5.5. Implementation and examples

We now consider some example programs on which our implementation of the transformation works
and some on which it does not. As we are not immediately concerned with information flow analysis,
but rather on turning eval into staged metaprogramming, our examples do not feature any dependency
markers.

Example 21.
Original program:
let x = if(true){"0"} else{"1"} in
let y = "add(" + x+ ", 2)" in
eval y

Transformed program:
let x = if(true){box 0} else{box 1} in
let y = box(add((unboxx), 2)) in
run y

This example illustrates the basic concept that we turn constant strings (in this case, representing the
numbers 0 and 1) into box expressions and concatenation (in this case, inside a template that adds 2) into
box and unbox expressions. Constant strings and concatenation into argument position covers a large
proportion of eval use cases [41], so in the rest of the examples we look at some more esoteric examples
and situations in which the algorithm might fail to produce a transformation.

34 M. M. Lester et al. / Information flow analysis for a dynamically typed language with staged metaprogramming

Example 22.
Original program:
let id = "fun (x) { x } " in
let arg = if(true){"(1)"} else{"(2)"} in
eval(id + arg)

Transformation fails.

Although this is a seemingly reasonably program, in this case, the transformation fails because the con-
catenation does not match the syntactic structure of the language. As arg is not a constant, it must be
treated as a hole for a code expression. According to the grammar of SLamJS expressions, function ap-
plication has the form e1(e2). So while fun(x){x}, (1) and (2) are all valid expressions, the concatena-
tion of two expressions in the final line does not constitute an expression; there is no grammatical form
e1e2 in the language. If the final concatenation had been id + "("+ arg + ")", it would have worked.
The source of this problem in general is that parsing is not compositional, in that it is not true (for some
suitably-defined operation ·) that parse(s1 · s2) = parse(s1) · parse(s2).

Example 23.
Original program:
let id = "fun (x) { x } " in
let arg = "(1)" in
eval(id + arg)

Transformed program:
let id = "fun (x) { x } " in
let arg = "(1)" in
run(box(fun(x){x}(1)))

Where possible, the transformation prefers to use box and unbox to preserve the structure of the original
program. However, where it is not possible, it will try to use constant box expressions instead. This
example is very similar to the previous one, but because the evaled string is constant, the transformation
can handle it, even though the concatenation does not follow the syntactic structure of the language. Here,
the transformation determines exactly what the constant string passed to eval is and parses it directly,
rather than trying to build it from its component subexpressions.

Note how, as id and arg are not transformed, they remain in the transformed program, but are unused.
If we wish to preserve information flow in the transformed program, rather than just the final result, then
the box expression must adopt any dependency markers that were on id and arg .

A similar concern applies if we wish to extend the transformation to handle a language with side
effects, especially as they may affect which code strings are constructed. Suppose our original program
contains an expression e that yields a code string s, but also has some side effects, such as incrementing
a mutable variable used as a loop counter elsewhere in the source program. If we wish to transform e to
a code value box e′, we must be careful to preserve these side effects. We can do this by executing e and
discarding the result; that is, transforming e not to box e′ but to let x = e in box e′, where x is fresh.

Example 24.
Original program:
let x = "1" in
let y = "eval x" in
eval y

Transformed program:
let x = box 1 in
let y = box (run x) in
run y

All of the examples so far reach a fixed point in a single cycle of the algorithm, although a second cycle
is required in order to check that a fixed point has been reached. This program requires two cycles to
reach a fixed point: the first finds that the string in y is a code string for eval x; the second finds that the
string in x is also a code string.

M. M. Lester et al. / Information flow analysis for a dynamically typed language with staged metaprogramming 35

Example 25.
Original program:
let init = "0" in
let double = 5 in
let build = fun(loop){fun(n){fun(c){
if(n = 0){c} else{((loop(loop))
(sub(n, 1))("add(" + c+ ", 2)")}}}} in
let code = (build(build))(double)(init) in
eval code

Transformed program:
let init = box 0 in
let double = 5 in
let build = fun(loop){fun(n){fun(c){
if(n = 0){c} else{((loop(loop))
(sub(n, 1))(box(add((unbox c), 2)))}}}} in
let code = (build(build))(double)(init) in
run code

This is a functional implementation of a motivating example of Choi et al. [7]. It builds the arithmetic
expression 2 + ...+ 2 of unbounded size (determined here by the value of double) and executes it.
The purpose of that example was to demonstrate the difficulty of handling string-based metaprogram-
ming, in contrast with template-based staged metaprogramming, as methods for analysing the former
often introduce imprecision (for example, in the form of an infinite expression). As we claim our analysis
is applicable to JavaScript’s eval, it is important that we can transform it exactly. As this example shows,
we can.
Example 26.

Original program:
let gen_power =

let f = fun(p){fun(n){
if(n <= 0){"1"} else
{let q = (p(p))(sub(n, 1)) in
"mul(x, " + q + ")"}

}} in
f(f) in

let power = fun(y){eval(
"fun(x) { " + (gen_power(y)) + " }")} in
let raise5 = power(5) in
raise5 (2)

Transformed program:
let gen_power =

let f = fun(p){fun(n){
if(n <= 0){box 1} else
{let q = (p(p))(sub(n, 1)) in

(box(mul(x,unbox q)))}
}} in
f(f) in

let power = fun(y){run(
box(fun(x){unbox(gen_power(y))})} in

let raise5 = power(5) in
raise5 (2)

The staged power function is a staple of literature on metaprogramming [3]. Given a number (in this case
5), it generates code for a function that takes an argument and raises it to that power. This can be useful in
performance-critical situations, as it avoids the overhead of using a loop. While it is unlikely that anyone
would use JavaScript in such a situation, the ubiquity of the example demands that we should be able to
handle it.

Note that, in general, any program that only uses constant code strings (with no concatenation or any
attempts to perform intensional operations) and does not feature nested uses of eval can be transformed
successfully by the algorithm. There are many more interesting programs that can also be successfully
transformed, but we do not have a succinct characterisation of them.

6. Related work

6.1. From SLamJS to JavaScript applications

The application that guided our work is information flow analysis for JavaScript in Web applications.
We now consider some of the features of this scenario that we have not addressed and how they have

36 M. M. Lester et al. / Information flow analysis for a dynamically typed language with staged metaprogramming

been handled by others. We claim that most of the problems have been addressed, although combining
them into a single analysis system would require further effort.

Handling of Primitive Datatypes As demonstrated in some of our examples, our analysis models its
primitive datatypes (such as strings and booleans) very coarsely; our abstract domains are too simple.
Fortunately, more refined abstractions for these datatypes have been well-studied [6].

Precision of 0CFA JavaScript has several features not found in SLamJS, including typical imperative
control flow features (such as for loops) and exceptions, but there are CFA-style analyses for JavaScript
that handle these. But one might ask whether 0CFA is a good fit for JavaScript. In particular, its lack of
context sensitivity may make it too imprecise for some programs. However, there is good evidence to
suggest that CFA-style analyses are a good fit for JavaScript, and hence our work could be adapted to
these. The obvious way to add context sensitivity gives k-CFA. For example, Guarnieri et al. [17] use
1-CFA (k-CFA with k = 1) augmented with a variety of JavaScript-focused techniques to build Actarus,
a static taint analysis tool for JavaScript. They show their tool working on a variety of challenging exam-
ples. Alternatively, Might et al. [35] suggest a subtler variant called m-CFA that adds context sensitivity
as good as k-CFA for most object-oriented programs, but with much better performance. Perhaps most
notable is the recent CFA2 analysis [50], which was developed for JavaScript and features significantly
better analysis of higher order flow control.

Associative Arrays as Objects One of the most challenging features of JavaScript from a static analysis
perspective is its objects, which are really associative arrays. (In other scripting languages these are
called hashes or dicts.) In particular, as any string can be used as a field name, it is difficult to determine
whether two distinct reads or writes might refer to the same field. Our analysis is deliberately coarse in
its handling of objects, so that we can focus on eval. These challenges have been considered in detail for
k-CFA by Liang and Might [32]. However, as their work targets Python, they do not discuss JavaScript’s
prototype chains or with construct. Both of these features are treated by λJS as syntactic sugar (although
the translation of with is non-compositional), so if our underlying analysis is sufficiently precise, we
might be able to do the same without loss of precision. However, as with interacts with variable scoping,
this might not be so straightforward.

JavaScript Semantics A bigger problem in producing a sound analysis of JavaScript is the complexity
and quaintness of its semantics [33]. Guha et al. attempt to simplify this problem by producing a much
simpler “core calculus” for JavaScript called λJS and a transformation from JavaScript into λJS [18].
They have mechanised various proofs about their language in Coq. As Web applications execute in the
context of a webpage in a browser, an analysis must also model how a webpage interacts with code via
the DOM.

Code Strings vs Staged Code Perhaps the most relevant difference between JavaScript and SLamJS is
our metaprogramming constructs: JavaScript eval runs on strings, while, in an effort to develop a more
principled analysis, our staged metaprogramming follows the tradition of Lisp quotations. As we have
shown, in SLamJS, an automated and sound transformation from eval into staged metaprogramming is
often possible. However, this relies on certain assumptions that may not always hold in full JavaScript.
For example, the effect of implicit type conversion on string concatenation would need to be considered,
as would the preservation of side effects [29]. The purely extensional view of metaprogramming does not
allow us to manipulate variable names within code, as in the JavaScript example eval ("f_" + n);.
This feature could be added, but to do so in a general way would complicate the analysis somewhat, as
the number of variable names used in a program might no longer be finite, so an extra layer of abstraction
would be needed in order to retain precision.

M. M. Lester et al. / Information flow analysis for a dynamically typed language with staged metaprogramming 37

Reactive Systems A practical Web application is not simply a program that takes inputs, runs once,
then gives output: it may interleave input and output throughout its execution, which might not terminate.
Bohannon et al. consider the consequences of this for information security in their work on reactive
noninterference [4].

Infrastructural Issues In applying an information flow analysis to a Web application, several infrastruc-
tural issues need to be addressed. Would the code be analysed before being published by on a webserver,
in the browser running it or by some proxy in between? Will the entire code be available in advance,
or must it be analysed in fragments [9]? Who would set the security policies that the analysis should
enforce? Li and Zdancewic argue that noninterference alone is too strict a policy to enforce and that a
practical policy must allow for limited declassification [31].

6.2. Information flow analysis

Early work on information flow security focused on monitoring program execution, dynamically mark-
ing variables to indicate their level of confidentiality [13]. However, the study of static analysis for in-
formation flow security can essentially be traced back to Denning, who introduced a lattice model for
secure information flow and critically considered both direct and indirect flows [10]. Denning and Den-
ning developed a simple static information flow analysis that rejected programs with flows violating a
security policy [11].

Noninterference Goguen and Meseguer introduced the idea of noninterference [15] (the inability of the
actions of one party, or equivalently data at one level, to influence those of another) as a way of specifying
security policies, including enforcement of information flow security. Noninterference and information
flow security became almost synonymous, although Pottier and Conchon were careful to emphasise the
distinction between the two [39].

Security Type Systems Security type systems became a common way of enforcing noninterference
policies and proving the correctness of noninterference analyses, progressing from a reformulation of
Denning and Denning’s analysis [51] to Simonet and Pottier’s type system for ML [40]. Unfortunately,
the requirement that the program analysed follow a strict type discipline makes it impractical to apply
these ideas to dynamically typed languages such as JavaScript. Perhaps as a consequence, information
flow in untyped and dynamically typed languages is relatively poorly understood.

Dynamic Analyses Dynamic information flow analysis circumvents the need for a type system or other
static analysis by tracking information flow during program execution, and enforcing security policies
by aborting program execution if an undesired flow is detected; examples of such analyses for JavaScript
are presented by Just et al. [25] and Hedin and Sabelfeld [19]. Indeed, the problems they address and
their motivations are very similar to ours, but our methods are very different.

Dynamic vs Static A dynamic analysis only observes one program run at a time, so dynamic code
generation is easy to handle. However, care has to be taken to track indirect information flow due to
code that was not executed in the observed run. Strategies to achieve this include, for instance, the no-
sensitive upgrade check [52], which aborts execution if a public variable is assigned in code that is control
dependent on private data. As a rule, however, such strategies are fairly coarse and could potentially abort
many innocuous executions; thus it is commonly held that static analyses are superior to dynamic ones in
their treatment of indirect flows [44]. Note that this is in contrast to analysis of safety properties, where
static analyses may generate “false positives” because they need to approximate flow control and other
complex behaviours within a program.

Nonetheless, there has been a resurgence of interest in dynamic analyses [45]. From a practical per-
spective, dynamic analyses are usually significantly simpler than static analyses, which means that they

38 M. M. Lester et al. / Information flow analysis for a dynamically typed language with staged metaprogramming

can be developed more easily for complex languages like JavaScript. They can also be deployed in sit-
uations where there is no opportunity to analyse the code before running it, for example because it is
being supplied by a third-party advertiser on a website. In terms of speed, dynamic analyses incur no
computational cost during development, but typically slow down execution of a program by a roughly
constant factor, so there is often a focus on making them more efficient [38]. Static analyses can be slow
to run during development, but cost nothing at run-time. Thus, provided the analysis scales reasonably
with the size of the program, optimisation is less important, as it has no impact on the user.

But ultimately, dynamic and static approaches are fundamentally different in that static analyses en-
force information flow policies by alerting the developer before a program is deployed, allowing the
program to be fixed before it causes problems for a user. Although dynamic approaches are also able to
enforce information flow policies, they do so by terminating the offending program, inconveniencing its
user.

Hybrid Approaches As a compromise, Chugh et al. [9] propose extending a static information flow
analysis with a dynamic component that performs additional checks at runtime when dynamically gener-
ated code becomes available. The static part of their analysis is similar to ours (minus staging), although
they do not formally state or prove its soundness. Their study of JavaScript on popular websites suggests
the static part is precise enough to be useful. Because the additional checks on dynamically generated
code occur at runtime, they must necessarily be quick and simple to avoid performance degradation.
Consequently, these checks are limited to purely syntactic isolation properties, with a corresponding loss
of precision. Our fully static analysis does not suffer from these limitations.

Going in the other direction, Austin and Flanagan [2] have proposed faceted execution, a form of
dynamic analysis that explores different execution paths and can thus recover some of the advantages of
a static analysis.

6.3. Static analysis of staged metaprogramming

Many different approaches to staged metaprogramming have been proposed. Our language’s staging
constructs are modelled after the language λS of Choi et al. [7]. However, our semantics of variable
capture are different. For example, we allow the program (fun(x){run (box x)}(1)), which behaves
much like this JavaScript program: (function (x) {return eval("x")})(1);

Control flow analysis for a two-staged language has been investigated by Kim et al. [27]. Their ap-
proach is based on abstract interpretation, putting particular emphasis on inferring an over-approximation
of all possible pieces of code to which a code quotation may evaluate. This information is not explicitly
computed by our analysis, so it is quite possible that their analysis is more precise than ours. However it
does not seem to have been implemented yet.

Choi et al. [7] propose a more general framework for static analysis of multi-staged programs, which
is based on an unstaging translation that replaces staging constructs with function abstractions and appli-
cations. Under certain conditions, analysis results for the unstaged program can then be translated back
to its staged version. This method allows existing static analyses for the unstaged language to be used
on the staged language, requiring only the specification of a “projection function” that describes how
analysis results for the translated program relate to the original program.

There are some limitations to their work. Most significantly, many interesting programs, such as the
one mentioned earlier, are not valid in λS and hence cannot be unstaged using their translation; this
limits its applicability to JavaScript. While it may be possible to adapt their approach to our semantics
of variable capture, we believe that this may be indicative of a more fundamental problem with their

M. M. Lester et al. / Information flow analysis for a dynamically typed language with staged metaprogramming 39

approach, namely that it relies on variable binding when splicing code being similar to variable binding
of functions. Although this is the case in λS , there should be no need for it to be so in other languages.

Furthermore, as shown in Examples 18–20, the precision of the resulting combined analysis is highly
sensitive to the target language encoding used in the translation and the behaviour of the target language
analysis. While their approach is useful as a quick way of adding staging to an existing language and
analysis, we argue that staging constructs are sufficiently important and complex that we should aim to
analyse them directly.

Inoue and Taha [23] consider the problem of reasoning about staged programs; in particular, they
identify equivalences that fail to hold in the presence of staging, and develop a notion of bisimulation
that can be used to prove extensionality of function abstractions, and work around some of the failing
equivalences. Their language differs from ours in that it avoids name capture.

Some work on analysing metaprogramming focuses on its application to optimising compilation of
programs with metaprogramming. For example, Smith et al. [48] consider using static analysis to opti-
mise compilation in a cut-down version of Cyclone, a type-safe, C-style language with run-time code
generation. Their analysis is based around a relatively coarse over-approximation of control flow between
code blocks in a program, but this suits their application because their language does not have first-class
functions.

We have mainly considered homogeneous metaprogramming, in which the code manipulated and exe-
cuted is written in the same language as the code that manipulates it. In heterogeneous metaprogramming,
the two languages are different. This is particularly relevant for web applications that construct database
queries, which are often written in SQL. Schoepe et al. [46] extend an idea from Cheney et al. [5] to pro-
duce an ML-like language in which database queries can be built using staged metaprogramming. They
develop a type system for analysing information flows within the language and the database, including
flows that result from the program reading information through a database query and later writing it with
a different query.

6.4. Analysing eval

There has been relatively little work on analysing eval. Probably the most advanced is Jensen et al.’s
tool Unevalizer [24], which is based around the JavaScript analysis tool TAJS. In contrast to our approach
of transforming eval into a better-behaved form and then analysing that, they aim to analyse and remove
it in a single step, replacing it with code that does not use metaprogramming. In addition to being able
to transform constant strings, their tool can recognise certain fixed patterns of variable string usage, such
as concatenating an argument into a function or an object access. However, unlike our approach, theirs
lacks generality: new usage patterns must be manually added and justified. Their tool is more practically
motivated, meaning that they can handle full JavaScript taken from popular websites. Unfortunately, the
combination of JavaScript’s semantic peculiarities and their ad-hoc approach seems to lead to them to
expend considerable effort reasoning about the correctness of each new transformation pattern.

A different approach is taken by Meawad et al. [34]. Their tool Evalorizer uses a proxy to intercept
and log uses of JavaScript eval that occur during Web browsing. It then advises a developer on how best
to replace them with code that does not use eval. In order to do this safely and sensibly, it must first
categorise the dynamically gathered code strings according to their structure and content. The aim of the
tool is to aid migration of a website away from eval, with interaction from the developer, rather than to
analyse its behaviour fully and automatically.

40 M. M. Lester et al. / Information flow analysis for a dynamically typed language with staged metaprogramming

7. Conclusions

We have presented a fully static information flow analysis based on 0CFA for a dynamically typed
language with staged metaprogramming, implemented it and formally proved its soundness. We have
shown how to apply our analysis to a language with string-based eval via a transformation to staged
metaprogramming. We believe our approach is transferable to other CFA-style analyses and applicable
to JavaScript.

Progressing from here, there are two obvious lines of work. The first is to improve the precision of
the analysis by applying its ideas to CFA2 or using results from abstract interpretation. The second is to
extend the language to handle more features, such as imperative control flow and exceptions.

All the pieces are now in place for an interesting, sound and principled analysis of JavaScript with
eval, but it will take significant effort to bring them together.

Acknowledgments
We thank our anonymous reviewers for their comments and suggestions.

References

[1] M. Abadi, A. Banerjee, N. Heintze, and J. G. Riecke. A Core Calculus of Dependency. In POPL, pages 147–160, 1999.
[2] T. H. Austin and C. Flanagan. Multiple Facets for Dynamic Information Flow. In POPL, pages 165–178, 2012.
[3] M. Berger and L. Tratt. Program logics for homogeneous meta-programming. In E. M. Clarke and A. Voronkov, editors,

LPAR (Dakar), volume 6355 of Lecture Notes in Computer Science, pages 64–81. Springer, 2010.
[4] A. Bohannon, B. C. Pierce, V. Sjöberg, S. Weirich, and S. Zdancewic. Reactive Noninterference. In Computer and

Communications Security, pages 79–90, 2009.
[5] J. Cheney, S. Lindley, and P. Wadler. A practical theory of language-integrated query. In G. Morrisett and T. Uustalu,

editors, ACM SIGPLAN International Conference on Functional Programming, ICFP’13, Boston, MA, USA - September
25 - 27, 2013, pages 403–416. ACM, 2013.

[6] T.-H. Choi, O. Lee, H. Kim, and K.-G. Doh. A Practical String Analyzer by the Widening Approach. In APLAS, pages
374–388, 2006.

[7] W. Choi, B. Aktemur, K. Yi, and M. Tatsuta. Static Analysis of Multi-staged Programs via Unstaging Translation. In
POPL, pages 81–92, 2011.

[8] A. S. Christensen, A. Møller, and M. I. Schwartzbach. Precise analysis of string expressions. In R. Cousot, editor, Static
Analysis, 10th International Symposium, SAS 2003, San Diego, CA, USA, June 11-13, 2003, Proceedings, volume 2694
of Lecture Notes in Computer Science, pages 1–18. Springer, 2003.

[9] R. Chugh, J. A. Meister, R. Jhala, and S. Lerner. Staged Information Flow for JavaScript. In PLDI, pages 50–62, 2009.
[10] D. E. Denning. A Lattice Model of Secure Information Flow. CACM, 19(5):236–243, 1976.
[11] D. E. Denning and P. J. Denning. Certification of Programs for Secure Information Flow. CACM, 20(7):504–513, 1977.
[12] K. Doh, H. Kim, and D. A. Schmidt. Abstract LR-parsing. In G. Agha, O. Danvy, and J. Meseguer, editors, Formal

Modeling: Actors, Open Systems, Biological Systems - Essays Dedicated to Carolyn Talcott on the Occasion of Her 70th
Birthday, volume 7000 of Lecture Notes in Computer Science, pages 90–109. Springer, 2011.

[13] J. S. Fenton. Memoryless subsystems. Comput. J., 17(2):143–147, 1974.
[14] J. Field and T. Teitelbaum. Incremental reduction in the lambda calculus. In LISP and Functional Programming, pages

307–322, 1990.
[15] J. A. Goguen and J. Meseguer. Security Policies and Security Models. In IEEE Symposium on Security and Privacy,

pages 11–20, 1982.
[16] S. Guarnieri and V. B. Livshits. GATEKEEPER: mostly static enforcement of security and reliability policies for

JavaScript code. In F. Monrose, editor, 18th USENIX Security Symposium, Montreal, Canada, August 10-14, 2009, Pro-
ceedings, pages 151–168. USENIX Association, 2009.

[17] S. Guarnieri, M. Pistoia, O. Tripp, J. Dolby, S. Teilhet, and R. Berg. Saving the world wide web from vulnerable JavaScript.
In M. B. Dwyer and F. Tip, editors, Proceedings of the 20th International Symposium on Software Testing and Analysis,
ISSTA 2011, Toronto, ON, Canada, July 17-21, 2011, pages 177–187. ACM, 2011.

[18] A. Guha, C. Saftoiu, and S. Krishnamurthi. The Essence of JavaScript. In ECOOP, pages 126–150, 2010.
[19] D. Hedin and A. Sabelfeld. Information-flow security for a core of JavaScript. In S. Chong, editor, CSF, pages 3–18.

IEEE, 2012.

M. M. Lester et al. / Information flow analysis for a dynamically typed language with staged metaprogramming 41

[20] N. Heintze and D. A. McAllester. On the cubic bottleneck in subtyping and flow analysis. In LICS, pages 342–351. IEEE
Computer Society, 1997.

[21] D. R. Hofstadter. Godel, Escher, Bach: An Eternal Golden Braid. Basic Books, Inc., New York, NY, USA, 1979.
[22] D. V. Horn and M. Might. An analytic framework for JavaScript. CoRR, abs/1109.4467, 2011.
[23] J. Inoue and W. Taha. Reasoning About Multi-stage Programs. In ESOP, 2012.
[24] S. H. Jensen, P. A. Jonsson, and A. Møller. Remedying the Eval that Men Do. In ISSTA, pages 34–44, 2012.
[25] S. Just, A. Cleary, B. Shirley, and C. Hammer. Information Flow Analysis for JavaScript. In PLASTIC, 2011.
[26] I.-S. Kim, K. Yi, and C. Calcagno. A polymorphic modal type system for lisp-like multi-staged languages. In POPL,

pages 257–268, 2006.
[27] T. Kim, C. Lee, K. Lee, S. Baik, and K. Yi. A Control Flow Analysis for 2-staged Programming Languages. Techreport

ROSAEC-2009-005, ROSAEC, 2009.
[28] M. Lester, L. Ong, and M. Schäfer. Information flow analysis for a dynamically typed language with staged metapro-

gramming. In CSF, pages 209–223. IEEE, 2013.
[29] M. M. Lester. Position paper: the science of boxing. In P. Naldurg and N. Swamy, editors, PLAS, pages 83–88. ACM,

2013.
[30] M. M. Lester. Verifying information flow and metaprogramming in dynamically typed languages: Mecha-

nised Coq proofs and analysis source code supporting thesis. Oxford University Research Archive, 2015.
http://dx.doi.org/10.5287/bodleian:wxdB0NV6k.

[31] P. Li and S. Zdancewic. Downgrading policies and relaxed noninterference. In POPL, pages 158–170, 2005.
[32] S. Liang and M. Might. Hash-flow taint analysis of higher-order programs. In S. Maffeis and T. Rezk, editors, Proceedings

of the 2012 Workshop on Programming Languages and Analysis for Security, PLAS 2012, Beijing, China, 15 June, 2012,
page 8. ACM, 2012.

[33] S. Maffeis, J. C. Mitchell, and A. Taly. An Operational Semantics for JavaScript. In APLAS, pages 307–325, 2008.
[34] F. Meawad, G. Richards, F. Morandat, and J. Vitek. Eval begone!: semi-automated removal of eval from javascript

programs. In G. T. Leavens and M. B. Dwyer, editors, OOPSLA, pages 607–620. ACM, 2012.
[35] M. Might, Y. Smaragdakis, and D. V. Horn. Resolving and exploiting the k-cfa paradox. CoRR, abs/1311.4231, 2013.
[36] F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis. Springer, 1999.
[37] J. Palsberg and M. I. Schwartzbach. Safety analysis versus type inference. Inf. Comput., 118(1):128–141, 1995.
[38] P. H. Phung, D. Sands, and A. Chudnov. Lightweight self-protecting JavaScript. In W. Li, W. Susilo, U. K. Tupakula,

R. Safavi-Naini, and V. Varadharajan, editors, Proceedings of the 2009 ACM Symposium on Information, Computer and
Communications Security, ASIACCS 2009, Sydney, Australia, March 10-12, 2009, pages 47–60. ACM, 2009.

[39] F. Pottier and S. Conchon. Information Flow Inference for Free. In ICFP, 2000.
[40] F. Pottier and V. Simonet. Information Flow Inference for ML. TOPLAS, 25(1):117–158, 2003.
[41] G. Richards, C. Hammer, B. Burg, and J. Vitek. The Eval That Men Do — A Large-Scale Study of the Use of Eval in

JavaScript Applications. In ECOOP, 2011.
[42] J. Rushby. Noninterference, transitivity, and channel-control security policies. Technical report, dec 1992.
[43] A. Russo and A. Sabelfeld. Dynamic vs. static flow-sensitive security analysis. In CSF, pages 186–199, 2010.
[44] A. Sabelfeld and A. C. Myers. Language-based information-flow security. IEEE Journal on Selected Areas in Communi-

cations, 21(1):5–19, 2003.
[45] A. Sabelfeld and A. Russo. From Dynamic to Static and Back: Riding the Roller Coaster of Information-Flow Control

Research. In Ershov Memorial Conf., 2009.
[46] D. Schoepe, D. Hedin, and A. Sabelfeld. Selinq: tracking information across application-database boundaries. In J. Jeur-

ing and M. M. T. Chakravarty, editors, Proceedings of the 19th ACM SIGPLAN international conference on Functional
programming, Gothenburg, Sweden, September 1-3, 2014, pages 25–38. ACM, 2014.

[47] O. Shivers. Control-Flow Analysis in Scheme. In PLDI, pages 164–174, 1988.
[48] F. Smith, D. Grossman, J. G. Morrisett, L. Hornof, and T. Jim. Compiling for template-based run-time code generation.

J. Funct. Program., 13(3):677–708, 2003.
[49] R. van der Meyden. What, indeed, is intransitive noninterference? Journal of Computer Security, 23(2):197–228, 2015.
[50] D. Vardoulakis and O. Shivers. CFA2: a Context-Free Approach to Control-Flow Analysis. Logical Methods in Computer

Science, 7(2), 2011.
[51] D. M. Volpano, C. E. Irvine, and G. Smith. A sound type system for secure flow analysis. Journal of Computer Security,

4(2/3):167–188, 1996.
[52] S. Zdancewic. Programming Languages for Information Security. PhD thesis, Cornell University, 2002.

42 M. M. Lester et al. / Information flow analysis for a dynamically typed language with staged metaprogramming

Appendix

A. Semantics Definitions

b cM =
bkcM = k

b{s : e}cM = {s : becM}
bxcM = x

bfun(x){e}cM = fun(x){becM}
be1(e2)cM = be1cM (be2cM)
bbox ecM = box becM

bunbox ecM = unbox becM
brun ecM = run becM

bif(e1){e2} else{e3}cM = if(be1cM){be2cM} else{be3cM}
be1[e2]cM = be1cM [be2cM]

be1[e2] = e3cM = be1cM [be2cM] = be3cM
bdel e1[e2]cM = del be1cM [be2cM]
b(e, ρ)cM = (becM , bρcM)

brun e in ρcM = run becM in bρcM
bρcM (x) = bρ(x)cM
bm : ecM = m : becM if m ∈M
bm : ecM = if m /∈M

Fig. 13. Definition of becM , the M -retaining erasure of e

B. 0CFA for SLamJS

B.1. Labelled Semantics

We extend the syntax of SLamJS with labels to indicate program points. The labels have no effect on
the result of computation, but are used to track which values may occur at which points. Consequently,
it is important for the soundness of the corresponding analysis that the semantics correctly tracks labels.

We reformulate the syntax of SLamJS to distinguish between terms (expressions in the unlabelled
semantics) and expressions (which are labelled terms):

Expressions e ::= t`

Terms t ::= k | {s : e} | x | fun(x){e} | e(e)
| box e | unbox e | run e
| if(e){e} else{e} | e[e] | e[e] = e
| del e[e] | (t, ρ) | run e in ρ

M. M. Lester et al. / Information flow analysis for a dynamically typed language with staged metaprogramming 43

(k, ρ)`
n
99K k`

({s : t`}, ρ)`
′ n
99K {s : (t, ρ)`}`′

(x, ρ)`
n+1
99K x`

(fun(x){t`}, ρ)`
′ n+1
99K (fun(x){(t, ρ)`})`′

(t`11 (t`22), ρ)`
n
99K ((t1, ρ)`1((t2, ρ)`2))`

(box t`, ρ)`
′ n
99K (box (t, ρ)`)`

′

(unbox t`, ρ)`
′ n
99K (unbox (t, ρ)`)`

′

(run t`, ρ)`
′ 0
99K (run (t, ρ)` in ρ)`

′

(run t`, ρ)`
′ n+1
99K (run (t, ρ)`)`

′

(if(t`11){t`22 } else{t`33 }, ρ)`0
n
99K (if((t1, ρ)`1){(t2, ρ)`2} else{(t3, ρ)`3})`0

(t`11 [t`22], ρ)`0
n
99K ((t1, ρ)`1 [(t2, ρ)`2])`0

(t`11 [t`22] = t`33 , ρ)`0
n
99K ((t1, ρ)`1 [(t2, ρ)`2] = (t3, ρ)`3)`0

(del t`11 [t`22], ρ)`0
n
99K (del (t1, ρ)`1 [(t2, ρ)`2])`0

(m : t`11 , ρ)`
n
99K (m : (t1, ρ)`1)`

Fig. 14. Labelled environment propagation rules

Values remain expressions, so they include labels at the outer level. For example, k` is a value, rather
than k. Contexts other than the empty context also gain labels at the outer level, so we have (Cmn 〈e〉)`
rather than (Cmn 〈e〉).

The labelling of the reduction rules is a little more complicated, so we list them in full in
Fig. 14, 15 and 16. For an expression e = t`, we write e`

′
as a shorthand for t`

′
and (e, ρ)`

′
for (t, ρ)`

′
.

Note that we use this in the rules (LOOKUP), (UNBOX), (RUN) and (READ1).
In the rules (APPLY), (UNBOX), (IFTRUE) and (IFFALSE), the outer label of the expression changes during

reduction. This is necessary to prove coherence of the improved analysis, as labels are used to identify
variables. Thus, when a subexpression is promoted in the conclusion of a rule, it must bring its label with
it to preserve the abstract identity of any variables within. This is not needed for the simple analysis, as
variables are identified abstractly just by their name.

B.2. Analysis

The abstract domains of the analysis are defined in Fig. 6. Abstract variables of the form x represent
function parameters; abstract variables of the form `.p represent record fields. Note that e, `, x and p only
range over expressions, labels and names occurring in the program to be analysed, hence the abstract
domains are finite.

The approximation judgement Γ, % |= ν ≈ t and the abstract value operation dke are also shown in full
in Fig. 6. Some rules of the acceptability judgement for the simple analysis (Γ, % |= e) and the improved
analysis (Γ, % |= ρ) were shown in Fig. 6 and Fig. 7 respectively. The full definitions are shown here in
Fig. 17 and Fig. 18.

44 M. M. Lester et al. / Information flow analysis for a dynamically typed language with staged metaprogramming

(LOOKUP) (x, ρ)`
0
99K v` where ρ(x) = v

(APPLY) ((fun(x){t`1}, ρ)`2(v))`3
0
99K (t, ρ[x 7→ v])`1

(UNBOX) (unbox (box v1)`1)`2
1
99K (v1)`2

(RUN) (run (box v1)`1 in ρ)`2
0
99K (v1, ρ)`2

(IFTRUE) (if(true){t`11 } else{t`22 })`
0
99K t`11

(IFFALSE) (if(false){t`11 } else{t`22 })`
0
99K t`22

(READ1) ({s : v, si : vi, s′ : v′}`1 [s`2i])`3
0
99K v`3i

(READ2) ({s : v,"__proto__" : {s′ : v′}`′1 , s′′ : v′′}`1 [s`2x])`3
0
99K ({s′ : v′}`′1 [s`2x])`3 if sx 6∈ s ∪ s′′

(READ3) ({s : v,"__proto__" : null`
′
1 , s′′ : v′′}`1 [s`2x])`3

0
99K undef`3 if sx 6∈ s ∪ s′′

(WRITE1) ({s : v, si : vi, s′ : v′}`1 [s`2i] = v′i)
`3

0
99K {s : v, si : v′i, s

′ : v′}`3

(WRITE2) ({s : v}`1 [s`2x] = vx)`3
0
99K {s : v, sx : vx}`3 if sx 6∈ s

(DEL1) (del {s : v, si : vi, s′ : v′}`1 [s`2i])`3
0
99K {s : v, s′ : v′}`3

(DEL2) (del {s : v}`1 [s`2x])`3
0
99K {s : v}`3 if sx 6∈ s

Fig. 15. Labelled proper reduction rules

(LIFT-APP) (((m : t`1), ρ)`2(v))`3
0
99K (m : ((t, ρ)`1(v))`3)`3

(LIFT-IF) (if((m : v)`0){t`11 } else{t`22 })`
0
99K (m : (if(v){t`11 } else{t`22 })`)`

(LIFT-UNBOX) (unbox (m : v)`1)`2
1
99K (m : (unbox v)`2)`2

(LIFT-RUNIN) (run (m : v)`1 in ρ)`2
0
99K (m : (run v in ρ)`2)`2

(LIFT-READSEL) (v1[(m : v2)
`1])`2

0
99K (m : (v1[v2])

`2)`2

(LIFT-READREC) ((m : v1)
`1 [v2])

`2
0
99K (m : (v1[v2])

`2)`2

(LIFT-WRITESEL) (v1[(m : v2)
`1] = v3)

`2
0
99K (m : (v1[v2] = v3)

`2)`2

(LIFT-WRITEREC) ((m : v1)
`1 [v2] = v3)

`2
0
99K (m : (v1[v2] = v3)

`2)`2

(LIFT-DELSEL) (del v1[(m : v2)
`1])`2

0
99K (m : (del v1[v2])`2)`2

(LIFT-DELREC) (del (m : v1)
`1 [v2])

`2
0
99K (m : (del v1[v2])`2)`2

Fig. 16. Labelled lifts

M. M. Lester et al. / Information flow analysis for a dynamically typed language with staged metaprogramming 45

Γ, % |= k` if dke ∈ Γ(`)
Γ, % |= x` if %(x) ⊆ Γ(`)
Γ, % |= {s : e}` if ∀i.Γ, % |= ei

and ∃REC(`′) ∈ Γ(`).∀i.Γ(lbl(ei)) ⊆ %(`′.si)
Γ, % |= (fun(x){e})` if Γ, % |= e

and ∃ν ∈ Γ(`).Γ, % |= ν ≈ fun(x){e}
Γ, % |= (t`11 (t`22))` if Γ, % |= t`11 ∧ Γ, % |= t`22

and ∀FUN(x, t`33) ∈ Γ(`1).Γ(`2) ⊆ %(x) ∧ Γ(`3) ⊆ Γ(`)
Γ, % |= (box e)` if Γ, % |= e

and ∃ν ∈ Γ(`).Γ, % |= ν ≈ box e
Γ, % |= (unbox t`)`0 if Γ, % |= t`

and ∀BOX(t′`
′
) ∈ Γ(`).Γ(`′) ⊆ Γ(`0)

Γ, % |= (run t`)`0 if Γ, % |= t`

and ∀BOX(t′`
′
) ∈ Γ(`).Γ(`′) ⊆ Γ(`0)

Γ, % |= (run t` in ρ)`0 if Γ, % |= t` ∧ Γ, % |= ρ

and ∀BOX(t′`
′
) ∈ Γ(`).Γ(`′) ⊆ Γ(`0)

Γ, % |= (if(t`11){t`22 } else{t`33 })`4 if Γ, % |= t`11 ∧ Γ, % |= t`22 ∧ Γ, % |= t`33
and Γ(`2) ⊆ Γ(`4) ∧ Γ(`3) ⊆ Γ(`4)

Γ, % |= (t, ρ)` if Γ, % |= t` ∧ Γ, % |= ρ

Γ, % |= (t`11 [t`22])` if Γ, % |= t`11 ∧ Γ, % |= t`22
and ∀REC(`′) ∈ Γ(`1).∀s, `′′ ∈ proto(`′)%.ρ(`′′.s) ⊆ Γ(`)
and UNDEF ∈ Γ(`)

Γ, % |= (t`11 [t`22] = t`33)` if Γ, % |= t`11 ∧ Γ, % |= t`22 ∧ Γ, % |= t`33
and ∀s ∈ String, REC(`′) ∈ Γ(`1).Γ(`3) ⊆ %(`′.s)
and Γ(`1) ⊆ Γ(`)

Γ, % |= (del t`11 [t`22])` if Γ, % |= t`11 ∧ Γ, % |= t`22
and Γ(`1) ⊆ Γ(`)

Γ, % |= (m : t`11)` if Γ, % |= t`11
and Γ(`1) ⊆ Γ(`)

Γ, % |= ρ if ∀x ∈ dom(ρ).Γ, % |= ρ(x) ∧ Γ(lbl(ρ(x))) ⊆ %(x)

Γ, % |= dke ≈ k for any literal k
Γ, % |= FUN(x, e) ≈ fun(x){e}
Γ, % |= BOX(e) ≈ box e

Γ, % |= REC(`′) ≈ {s : t`} if ∀i.∃νi ∈ %(`′.si).Γ, % |= νi ≈ ti
Γ, % |= ν ≈ t′ if Γ, % |= ν ≈ t ∧ t` n−→ t′`

Γ, % |= ν ≈ (t, ρ) if Γ, % |= ν ≈ t ∧ Γ, % |= ρ

Fig. 17. Acceptability judgements for the simple analysis

46 M. M. Lester et al. / Information flow analysis for a dynamically typed language with staged metaprogramming

Γ, %,Ξ |= k` if dke ∈ Γ(`)
Γ, %,Ξ |= x` if x 6∈ dom(Ξ) ∨ %(Ξ(x), x) ⊆ Γ(`)
Γ, %,Ξ |= {s : e}` if ∀i.Γ, %,Ξ |= ei

and ∃REC(`′) ∈ Γ(`).∀i.Γ(lbl(ei)) ⊆ %(`′, si)
Γ, %,Ξ |= (fun(x){t`})`0 if Γ, %,Ξ[x 7→ `] |= t`

and ∃ν ∈ Γ(`0).Γ, % |= ν ≈ fun(x){e}
Γ, %,Ξ |= (t`11 (t`22))` if Γ, %,Ξ |= t`11 ∧ Γ, %,Ξ |= t`22

and ∀FUN(x, t`33) ∈ Γ(`1).Γ(`2) ⊆ %(`3, x) ∧ Γ(`3) ⊆ Γ(`)
Γ, %,Ξ |= (box t`)`0 if Γ, %,Ξ + (`, ε) |= t`

and ∃ν ∈ Γ(`).Γ, % |= ν ≈ box t`

Γ, %,Ξ |= (unbox t`)`0 if ∃Ξ′, `1,Λ.Ξ = Ξ′ + (`1,Λ)
and Γ, %,Ξ′ |= t`

and ∀BOX(t′`
′
) ∈ Γ(`).(∀x.%(Ξ(x), x) = %(`′, x)) ∧ Γ(`′) ⊆ Γ(`0)

Γ, %,Ξ |= (run t`)`0 if Γ, %,Ξ |= t`

and ∀BOX(t′`
′
) ∈ Γ(`).(∀x ∈ dom(Ξ).%(Ξ(x), x) = %(`′, x))

∧ Γ(`′) ⊆ Γ(`0)
Γ, %,Ξ |= (run t` in ρ)`0 if ∃Λ.Γ, %,Ξ � Λ |= t` ∧ Γ, %,Λ |= ρ

and ∀BOX(t′`
′
) ∈ Γ(`).(∀x ∈ dom(Ξ � Λ).%(Ξ � Λ(x), x) = %(`′, x))

∧ Γ(`′) ⊆ Γ(`0)

Γ, %,Ξ |= (if(t`11){t`22 } else{t`33 })`4 if Γ, %,Ξ |= t`11 ∧ Γ, %,Ξ |= t`22 ∧ Γ, %,Ξ |= t`33
and Γ(`2) ⊆ Γ(`4) ∧ Γ(`3) ⊆ Γ(`4)

Γ, %,Ξ |= (t, ρ)` if ∃Λ.Γ, %,Ξ � Λ |= t` ∧ Γ, %,Λ |= ρ

Γ, %,Ξ |= (t`11 [t`22])` if Γ, %,Ξ |= t`11 ∧ Γ, %,Ξ |= t`22
and ∀REC(`′) ∈ Γ(`1).∀s, `′′ ∈ proto(`′)%.%(`′′, s) ⊆ Γ(`)
and UNDEF ∈ Γ(`)

Γ, %,Ξ |= (t`11 [t`22] = t`33)` if Γ, %,Ξ |= t`11 ∧ Γ, %,Ξ |= t`22 ∧ Γ, %,Ξ |= t`33
and ∀s ∈ String, REC(`′) ∈ Γ(`1).Γ(`3) ⊆ %(`′, s)
and Γ(`1) ⊆ Γ(`)

Γ, %,Ξ |= (del t`11 [t`22])` if Γ, %,Ξ |= t`11 ∧ Γ, %,Ξ |= t`22
and Γ(`1) ⊆ Γ(`)

Γ, %,Ξ |= (m : t`11)` if Γ, %,Ξ |= t`11
and Γ(`1) ⊆ Γ(`)

Γ, %,Λ |= ρ if ∀x ∈ dom(ρ).x ∈ dom(Λ)
∧ Γ, %,Λ |= ρ(x)
∧ Γ(lbl(ρ(x))) ⊆ %(Λ(x), x)

Γ, % |= dke ≈ k for any literal k
Γ, % |= FUN(x, e) ≈ fun(x){e}
Γ, % |= BOX(e) ≈ box e

Γ, % |= REC(`′) ≈ {s : t`} if ∀i.∃νi ∈ %(`′, si).Γ, % |= νi ≈ ti
Γ, % |= ν ≈ t′ if Γ, % |= ν ≈ t ∧ t` n−→ t′`

Γ, % |= ν ≈ (t, ρ) if ∃Λ.Γ, % |= ν ≈ t ∧ Γ, %,Λ |= ρ

Fig. 18. Acceptability judgements for the improved analysis

M. M. Lester et al. / Information flow analysis for a dynamically typed language with staged metaprogramming 47

C. Proof of the Boxing Cycle Soundness Lemma

Lemma 3 (Boxing Cycle Soundness). In cycle n of the Boxing Algorithm:

– the candidate en2 simulates the execution of e1 up to and including at least the nth use of eval;
– the fragments of staged code en+1

1,m are those that, when spliced into e1, yield en2 ;
– the constraints γn+1, combined with the constraints generated by analysing en+1

1,m , yield all staged
flows within en2 , and hence all flows in e1 resulting from uses of eval up to and including its nth
use.

Proof. Cycle k of the algorithm begins by folding together adjacent string concatenations in the code
{ek1,m} to produce {e′k1,m}. As string concatenation in SLamJS is associative and the language does not
have side effects, this will not change the result of evaluation; in particular, the result of evaluating ek1,1
and e′k1,1 is the same.

Next, the algorithm performs 0CFA on the code and (as we are considering only successful transfor-
mations) finds a transformation meeting the conditions in Figure 12. Applying that transformation to
e′k1,1 gives the candidate ek2 .

We now have to show a correspondence between configurations in the execution traces of these pro-
grams. The simulation is weak in the sense that several steps in the execution of one program may corre-
spond to multiple steps in the other. In order to make the correspondence more explicit, instead of con-
sidering e′k1,1 directly, we first replace all n-cat arguments treated as constants with their corresponding
string; that is, we replace all subexpressions ` where S(`) = c with G(`). Next, merge any adjacent con-
stant arguments to an n-cat; so ncat("x","y", z) becomes ncat(”xy”, z). Call the resulting expression
fk1 ; it evaluates to the same result as e′k1,1 by correctness of the string analysis.

Our goal is now to show a correspondence between fk1 and ek2 . We can achieve this by considering an
augmented semantics in which we maintain the transformation � between the two expressions, tracking
explicitly the correspondence � between values that are code strings in fk1 and their equivalent staged
values in ek2 .

In order to formalise this idea fully, we would need a significant amount of technical machinery.
For example, we would need a notion of expression template with multiple holes at arbitrary positions
(as opposed to our existing notion of execution context, which permits a single hole that points to the
next redex). In order to combine this with tracking the shared structure of the original and transformed
program in the presence of nested operations on code strings or staged code, we would also have to switch
to a graph-based formulation of the semantics [14]. (Simonet and Pottier use a succinct paired formalism
to track common structure, but this does not permit nesting [40].) As this is unlikely to improve the
clarity of our soundness argument, we instead focus on explaining the correspondence between fk1 and
ek2 for reductions that manipulated code strings or staged code.

Write 〈f,�,�〉 ∼ e to mean: that the expression f occurring in the execution of fk1 corresponds to
the expression e in the execution of ek2; and that �(f) = e (meaning that � transforms f into e); with
f ′ � e′ = box (parse(f ′)) for any subexpression f ′ of f in the domain of �. Permit f ′ and e′ to range
over expression templates (as well as expressions).

Set �0 to relate constant string expressions in fk1 to their transformed box expressions in ek2 . That is,
for all ` in B, the subexpression s` of fk1 has s` �0 e

` for the subexpression e` = box X(`) of ek2 . In
addition, set �0 to relate n-cat expressions in fk1 to their transformed box expression templates. That is,
for all ` in U , the subexpression template f ` = ncat(frag(`)i)

` of fk1 has f ` �0 e
` for the subexpression

48 M. M. Lester et al. / Information flow analysis for a dynamically typed language with staged metaprogramming

e` = box X(`) of ek2 . Set �0 to be the transformation from fk1 to ek2 , so that �0(f
k
1) = ek2 . Assert

〈fk1 ,�0,�0〉 ∼ ek2 as the correspondence between the initial configurations of both programs.
Now, suppose for some f,�,�, e we have 〈f,�,�〉 ∼ e with f being at any point before the

kth invocation of eval in the execution of fk1 . We need to show that there are f ′, �′, �′ and e′ with
〈f ′,�′,�′〉 ∼ e′ and f ′ 6= f or e′ 6= e. There are several cases, depending on whether the next step in
the execution of f ′ reduces an expression that is transformed and, if so, whether it was transformed to a
box, unbox or run.

Case: Reduced subexpression was not transformed. If the reduced subexpression was not transformed,
as f and e will otherwise have the same structure, the same reduction will apply to both. The reduction
may copy code strings or staged code values respectively, but otherwise cannot interact with them. (Here
we use the requirement that code strings are not used intensionally.) So f ◊−→ f ′ and e ◊−→ e′. The
construction of �′ and �′ depends on the reduction rule (which may restructure the expressions), but is
otherwise straightforward.

Case: Reduced subexpression originated from ` ∈ B. The redex in f is a code string and in e is
the corresponding box expression. The only rule affecting constants is environment propagation, so
f

◊−→ f ′. We pick e′ with e ◊−→∗e′ based on how many reductions are needed to propagate the environment
throughout the box expression. The initialisation of �0 means that the code string and staged value are
already appropriately related, so as in the previous case, �′ and �′ only change to reflect any change in
structure.

Case: Reduced subexpression originated from ` ∈ A ∪ N . The redex in f is an n-cat or one of
its arguments. The corresponding redex in e occurs either in a box expression that contains unbox
expressions or within one of those unbox subexpressions. Recall that we constructed fk1 by replacing
constant arguments with their eventual values. So the only arguments to the n-cat that may require
evaluation (before performing the concatenation) are those that correspond to unbox expressions. In fact,
the evaluation of the arguments themselves requires no special consideration beyond this observation.

The reductions that do require consideration are the application of the rule (UNBOX) in e (` ∈ A) and
the evaluation of the concatenation in f (` ∈ N). Both of these correspond to the act of splicing together
code templates, but in the case of the code string all the splicing happens after the spliced code has been
evaluated, whereas in the staged case the splicing is interspersed with evaluation of the spliced code for
each hole. In the first case, f ′ = f and e ◊−→ e′. �′ is constructed from � by removing the mapping
from f ′′` to (box e′′)` and replacing the mapping from ncat(f1, . . . , •`, . . . , fj) to box T with one from
ncat(f1, . . . , f

′′`, . . . , fj) to box T [e′′]. In the second case, f ◊−→ f ′ and e′ = e. The reduction in f

is ncat(si)
` 0
99K ⊕(si)

`. Hence �′ is constructed from � by replacing the mapping from ncat(si)
` to

(box e′′)` with one from ⊕(si)
` to (box e′′)` . In both cases, �′ need only take account of the changed

structure of the expression.
Case: Reduced subexpression originated from ` ∈ E. The redex in f is an eval f ′′`

′
with `′ ∈ D;

the redex in e is a run e′′`
′
. f ′′`

′
must be a valid code string (or else fk1 would not evaluate to a value).

Furthermore, as f ′′`
′
� e′′`

′
, it follows that e′′ = box (parse(f ′′)). Hence eval f ′′`

′ 0
99K parse(f ′′) and

run e′′`
′ 0
99K parse(f ′′), giving f 0−→ f ′ and e 0−→ e′ respectively.

M. M. Lester et al. / Information flow analysis for a dynamically typed language with staged metaprogramming 49

D. Worked Examples of the Boxing Algorithm

We now illustrate in detail how the Boxing Algorithm transforms two eval-using programs. The first
example focuses on how string concatenation is transformed into box and unbox; the second example
demonstrates why multiple cycles are sometimes needed. We use the simple version of staged 0CFA as
it is easier to follow than the improved version and is sufficiently accurate for these examples.

D.1. Handling String Concatenation

Look at Example 21. Recall that let x = v in e is a shorthand for fun(x){e}v. Desugaring let and
combining adjacent concatenations gives the code shown in Fig. 19 (with labels, as assigned by our
implementation, on the left). Also shown is a graph of data and information flow in the program, as
determined by the information flow analysis. Direct flows that pass values unchanged are shown by solid
arrows; direct flows resulting from concatenation (which changes values) are shown by dotted arrows, as
are indirect flows resulting from the use of a value influencing flow control.

The site of the eval has label 10 and its argument has label 9. That is, E = {10} and D = {9}. The
argument depends on the n-cat at 8, which in turn depends on the constant strings at 1, 2, 4 and 7. That
is, N = {8} and C = {1, 2, 4, 7}.

Now we need to decide which locations B and U to transform. We need to transform strings that may
flow to the argument of eval. As D = {9} can only take string values that flow out of the n-cat at 8,
cut(D) = cut(9) = {8}. We require that cut(D) ⊆ B ∪ U , so (as 8 ∈ N and U ⊆ N but B ⊆ C) we
must have 8 ∈ U .

As 8 ∈ U , we need to find a code template X(8) = parse(T (8)) for the n-cat. In order to find the
code template, we need to decide whether to treat each of the arguments in A = {4, 5, 7} as constants or
holes, so that we can decide on the corresponding code string fragments. That is, we need to find values
for S(4), S(5) and S(7).

As x5 can be either "0" or "1", it is not a constant and must be treated as a hole; that is,G(5) = undef
and thus necessarily S(5) = h. (Otherwise, we would have S(5) = c and 5 ∈ W , which would violate
the requirement that W ⊆ dom(G).)

As "add("4 and ", 2"7 are constants, G(4) = "add(" 6= undef and G(7) = ", 2)" 6= undef ,
so we have the option of treating them as constants and setting S(4) = c and S(7) = c. However,
heuristically, we usually get better transformation results by treating as many n-cat arguments as holes
as is possible. But if we set S(4) = h or S(7) = h, we would eventually introduce the requirement to
parse these constants as expressions. This would fail, but we might not discover this until later, at which
point we would either have to give up or backtrack to the point where the decision was made and try
an alternative; neither is desirable. However, because 4 and 7 are constants, we can immediately check
whether G(4) and G(7) can be parsed as expressions; they cannot, so we set S(4) = c and S(7) = c.

Having decided on S(4) = c, S(5) = h and S(7) = c, we obtain the fragments of the template at 8:

frag(8)1 = frag(4) = G(4) = "add("

frag(8)2 = frag(5) = 〈•〉

frag(8)3 = frag(7) = G(7) = ", 2)"

Hence T (8) = "add(〈•〉 , 2)" and X(8) = parse(T (8)) = add(〈•〉, 2).

50 M. M. Lester et al. / Information flow analysis for a dynamically typed language with staged metaprogramming

Now that we have decided whether to treat each argument as a hole or constant, we have the holes V =
{5} and the constants W = {4, 7}. As remarked earlier, G(4) and G(7) are defined, so W ⊆ dom(G) is
satisfied and no further work is needed on that front.

But treating x5 as a hole means we must transform the code strings that may flow into it, namely "0"1

and "1"2. That is, we must have cut(V) = cut(5) = {1, 2} ⊆ B∪U . As they are both constant strings,
we will transform them into box statements; that is, as 1 ∈ C and 2 ∈ C, we must set 1 ∈ B and
2 ∈ B. This means we have to find code templates X(1) and X(2) for these constant strings. Our choice
is constrained to:

X(1) = parse(G(1)) = parse("0") = 0 andX(2) = parse(G(2)) = parse("1") = 1

We have found a transformation. Applying it to the original code gives our candidate e2, as shown in
Fig. 20.

In order to check whether a single cycle is sufficient, we transfer the staged code and constraints back
to the original program and perform the transformation again. Both the original and the staged code are
shown in Fig. 21. In this case, the staged constraints are:

∀BOX(t′`
′
) ∈ Γ(9).Γ(`′) ⊆ Γ(10) and ∀BOX(t′`

′
) ∈ Γ(5).Γ(`′) ⊆ Γ(18)

These resolve to the unstaged constraints also shown in Fig. 21, together with the resulting information
flow analysis.

In this case, the new code and constraints have no effect on the transformation: the first staged con-
straint only introduces new values to the result of the eval; the other staged constraints only affect one of
the arguments to the (staged) addition. As the result of the second cycle is the same as the first, we have
reached a fixed point; the first candidate e2 was correct, so we return it as the result of the algorithm.

M. M. Lester et al. / Information flow analysis for a dynamically typed language with staged metaprogramming 51

Original code:
fun(x){

fun(y){
eval (

9 y
10)
11 }

(
ncat (

4 "add("
,

5 x
,

7 ", 2)"
8)

12)
13 }

(
if (

0 true
) {

1 "0"
} else {

2 "1"
3 }

14)

1110

1312

14

01

9

3

2

54 7

8

y

x

Fig. 19. Boxing Algorithm concatenation example — cycle 1 input

52 M. M. Lester et al. / Information flow analysis for a dynamically typed language with staged metaprogramming

Candidate staged code:
fun(x){

fun(y){
run (

9 y
10)
11 }

(
box (

add (
unbox (

5 x
18)

,
901 2
902)
8)

12)
13 }

(
if (

0 true
) {

box (
200 0
1)

} else {
box (

300 1
2)
3 }

14)

11 10

13 12

14

200 300

18

0

902

1

9

3

901

5

2

8

y

x

Fig. 20. Boxing Algorithm concatenation example — cycle 1 output

M. M. Lester et al. / Information flow analysis for a dynamically typed language with staged metaprogramming 53

Original code:
fun(x){

fun(y){
eval (

9 y
10)
11 }

(
ncat (

4 "add("
,

5 x
,

7 ", 2)"
8)

12)
13 }

(
if (

0 true
) {

1 "0"
} else {

2 "1"
3 }

14)

Staged code:
add (

18 <*>
,

901 2
902)

and:
200 0

and:
300 1

Staged constraints:
Γ(902) ⊆ Γ(10)
Γ(200) ⊆ Γ(18)
Γ(300) ⊆ Γ(18)

902

10

13 12

14

200 300

18

0

901

21

9

3

11 54 7

8

y

x

Fig. 21. Boxing Algorithm concatenation example — cycle 2 input

54 M. M. Lester et al. / Information flow analysis for a dynamically typed language with staged metaprogramming

D.2. Handling Nested Evals

In the previous example, a single cycle was sufficient to uncover all staged code. The second cycle was
necessary only to check that the first cycle was correct. Let us now consider Example 24, in which the
result of the first cycle reveals new code that must be transformed in the second cycle. The desugared,
labelled code and the information flow graph are shown in Fig. 22.

Initially, there is only one eval visible to the analysis, with label 3 and argument y labelled 2. Thus
E = {3} and D = {2}. The only constant that flows to the argument is the string "eval x" at label
1. There is no concatenation. So C = {1} and N = A = {}, with cut(2) = {1}. It is straightforward
to conclude that boxing the string at 1 will give a valid transformation: we have B = {1}, U = {},
X(1) = (eval x) and (as A is empty) S undefined.

Applying the transformation gives the code shown in Fig. 23 with corresponding information flow
analysis.

Clearly, the transformation is not yet complete, as the code contains a use of eval. The analysis gener-
ates the staged constraint:

∀BOX(t′`
′
) ∈ Γ(2).Γ(`′) ⊆ Γ(3)

which we resolve to Γ(203) ⊆ Γ(3). Combining this with the original code and the code fragment eval x,
we get the input to the second cycle, as shown in Fig. 24. Once again, the graph shows the corresponding
information flow analysis.

The staged code fragments and resolved constraints reveal new code to be transformed: an eval at 201
with argument x at 200, into which flows the constant string "1" at 0. Hence we now haveE = {3, 201},
D = {2, 200} and C = {0, 1} with cut(200) = {0}. Again, it is easy to find a transformation, which in
this case extends that of the previous cycle withB = {0, 1} andX(0) = 1. Applying the transformation,
we get the staged program shown (with information flow analysis) in Fig. 25.

This looks more promising, as there are now no uses of eval. Still, we need to try another cycle to be
sure. Again, we resolve the staged constraints:

∀BOX(t′`
′
) ∈ Γ(2).Γ(`′) ⊆ Γ(3) and ∀BOX(t′`

′
) ∈ Γ(200).Γ(`′) ⊆ Γ(201)

producing Γ(201) ⊆ Γ(3) and Γ(100) ⊆ Γ(201). We combine them with the original code and staged
code fragments, as shown with resulting information flow graph in Fig. 26.

For cycle 3, both the transformation and output are as in cycle 2, so the output of cycle 2 was correct;
we return it and terminate successfully.

M. M. Lester et al. / Information flow analysis for a dynamically typed language with staged metaprogramming 55

Original code:
fun(x){

fun(y){
eval (

2 y
3)
4 }

(
1 "eval x"
5)
6 }

(
0 "1"
7)

103

2

5

4

7

6 yx

Fig. 22. Boxing Algorithm nested example — cycle 1 input

Candidate staged code:
fun(x){

fun(y){
run (

2 y
3)
4 }

(
box (

eval (
200 x
201)
1)
5)
6 }

(
0 "1"
7)

201200

10

3

2

5

4

7

6

yx

Fig. 23. Boxing Algorithm nested example — cycle 1 output

56 M. M. Lester et al. / Information flow analysis for a dynamically typed language with staged metaprogramming

Original code:
fun(x){

fun(y){
eval (

2 y
3)
4 }

(
1 "eval x"
5)
6 }

(
0 "1"
7)

Staged code:
eval (

200 x
201)

Staged constraints:
Γ(203) ⊆ Γ(3)

201

200

10

3

25

4

7

6

yx

Fig. 24. Boxing Algorithm nested example — cycle 2 input

M. M. Lester et al. / Information flow analysis for a dynamically typed language with staged metaprogramming 57

Candidate staged code:
fun(x){

fun(y){
run (

2 y
3)
4 }

(
box (

run (
200 x
201)
1)
5)
6 }

(
box (

100 1
0)
7)

201

200

1

0

3

2

5

4

7

6

y

x

100

Fig. 25. Boxing Algorithm nested example — cycle 2 output

58 M. M. Lester et al. / Information flow analysis for a dynamically typed language with staged metaprogramming

Original code:
fun(x){

fun(y){
eval (

2 y
3)
4 }

(
1 "eval x"
5)
6 }

(
0 "1"
7)

Staged code:
eval (

200 x
201)

and:
100 1

Staged constraints:
Γ(201) ⊆ Γ(3)

Γ(100) ⊆ Γ(201)

201

200

10

3 2

5

4

7

6

yx

100

Fig. 26. Boxing Algorithm nested example — cycle 3 input

