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Abstract

Inferring reciprocal effects or causality between variables is a central aim of behavioral

and psychological research. To address reciprocal effects, a variety of longitudinal models

that include cross-lagged relations have been proposed in different contexts and

disciplines. However, the relations between these cross-lagged models have not been

systematically discussed in the literature. This lack of insight makes it difficult for

researchers to select an appropriate model when analyzing longitudinal data, and some

researchers do not even think about alternative cross-lagged models. The present research

provides a unified framework that clarifies the conceptual and mathematical similarities

and differences between these models. The unified framework shows that existing

longitudinal models can be effectively classified based on whether the model posits unique

factors and/or dynamic residuals, and what types of common factors are used to model

changes. The latter is essential to understand how cross-lagged parameters are

interpreted. We also present an example using empirical data to demonstrate that there is

great risk of drawing different conclusions depending on the cross-lagged models used.

Keywords: cross-lagged panel model, random-intercepts cross-lagged panel model, stable

trait autoregressive trait and state model, latent curve model with structured residuals,

autoregressive latent trajectory model, latent change score model
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A Unified Framework of Longitudinal Models to Examine Reciprocal

Relations

Longitudinal data analysis has been widely used to understand patterns, individual

differences and relations of change in variables. One of the primary interests of researchers

in longitudinal data analysis is the inference about reciprocal effects or causality between

variables: How does change in one variable affect change in another variable? To study

such reciprocal effects, the cross-lagged panel model (CLPM) has been extremely popular

in behavioral and psychological science research.1 The CLPM dates back to the vector

autoregressive model used in time-series analysis, and it was later incorporated into the

framework of structural equation modeling (SEM; Jöreskog, 1970; Jöreskog and Sörbom,

1979).

Despite the simplicity and intuitive appeal of the CLPM, solid causal conclusions

require more than merely establishing lagged relations in longitudinal data that are in

essence only correlational. At a superficial level, most researchers that use models with

cross-lagged relations are well aware of this, and carefully avoid the term “causal” using

other terms like “reciprocal” relation instead. However, an interest in the underlying

causal mechanism is often the driving force behind these studies; while this is not always

explicitly mentioned, it often becomes clear from the discussion section, where authors

make suggestions for potential interventions, or advise certain policy changes. Such

statements based on cross-lagged relations only make sense if we assume these relations

reflect causal mechanisms.

A key threat in the context of correlational research is the omitted variable problem,

which means that two variables may be related because they are both affected by a third,

unobserved variable. In longitudinal research, there are generally two types of omitted

variables: time-invariant variables, and time-varying variables. There are diverse
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alternative longitudinal models that incorporate cross-lagged relations, that can control

for such unobserved variables in different ways. These include the bivariate or multivariate

versions of the latent change score (LCS) model (Hamagami & McArdle, 2001; McArdle &

Hamagami, 2001; McArdle, 2009), the autoregressive latent trajectory (ALT) model

(Bollen & Curran, 2004, 2006; Curran & Bollen, 2001), the stable trait autoregressive trait

and state (STARTS) model (Kenny & Zautra, 1995, 2001), also known as the

trait-state-error (TSE) model (Kenny & Zautra, 1995), the latent curve model with

structured residuals (LCM-SR model; Curran et al., 2013), and the random-intercepts

CLPM (RI-CLPM; Hamaker, Kruiper, & Grasman, 2015). Although there have been

several studies that discussed the relations between some of these longitudinal models (e.g.

Bollen & Curran, 2004; Hamaker, 2005; Hamaker et al., 2015; Usami, Hayes, McArdle,

2015, 2016; Bainter & Howard, 2016), a comprehensive comparison of these alternative

models and their mathematical and conceptual relations has not yet been conducted.

Consequently, it is common practice for researchers to run a single model (typically the

CLPM) and evaluate its cross-lagged relations, without considering potential alternative

models. In fact, applied researchers may not even be aware that some of these alternative

models to examine cross-lagged relations exist.

The central aim of this article is to provide a unified statistical framework that

clarifies the mathematical and conceptual relations among diverse models that include

cross-lagged relations. As we will see, these models have different foci in their

formulations of cross-lagged relations, giving us different interpretations of the reciprocal

effects parameters. At the same time, these models share certain statistical properties,

making it possible to provide a systematic and integrated overview of how these models

are related to each other. The current paper serves as a first attempt to provide such a

unified framework, which will hopefully help researchers in their decision making process

when they want to investigate cross-lagged relations between variables.
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At the beginning of this article, we discuss several existing longitudinal models that

include cross-lagged relations to infer reciprocal effects. We begin with a section on

models in which modeling developmental trajectories (i.e. mean structure) is not of key

interest. In the subsequent section we focus on models in which modeling developmental

trajectories is an important aspect. In the third section, we discuss three key features that

define longitudinal cross-lagged models. A reader who is already familiar with these

models may want to skip these three sections and simply consult the overview provided in

Tables 2 and 3, and Figures 1 and 2. In the fourth section we present a unified framework

to relate these models to each other, and discuss the key differences and similarities

between all these longitudinal models. We will first explore whether the cross-lagged

parameters of these models can be interpreted as causal effects from a counterfactual

point of view, which is one of the dominant causal frameworks at this time. In section

five, we present an example using empirical data to show the steps and key decision points

in applying cross-lagged models. In the final section practical implications and potential

expansion of the unified framework are discussed.

Cross-Lagged Models that do not explicitly model developmental

trajectories

The CLPM is frequently used to model panel data in social and behavioral research.

Panel data consist of a relatively small number of repeated measurements (at least 2,

typically less than 6) from the same cases (e.g. individuals, dyads, or families).

Throughout, we are interested in the inference of reciprocal effects between variables X

and Y , and we let xit and yit be the measurements of these variables at time point t

(1 . . . t . . . T ) for individual i (1 . . . i . . . N).
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The cross-lagged panel model (CLPM)

In the CLPM, xit and yit can be group-mean centered using:

xit = µxt + x∗it

yit = µyt + y∗it,

(1)

at each time point. Here µxt and µyt are the group means at time point t, and x∗it and y
∗
it

are temporal deviation terms from these group means. Note that these means are allowed

to change over time; such changes may result from underlying developmental trajectories,

but this is typically not the focus when the CLPM is used, and thus the CLPM implicitly

removes such group-level longitudinal trajectories from the cross-lagged relations.

By definition, the deviations have a mean of zero (i.e. Ei(x
∗
it) = 0 and Ei(y

∗
it) = 0).

The group-mean centered parts x∗i1 and y∗i1 are modeled as exogenous variables (i.e.

variances and covariance of variables at t = 1 are separately estimated), whereas x∗it and

y∗it for t ≥ 2 are modeled as:

x∗it = βxtx
∗
i(t−1) + γxty

∗
i(t−1) + dxit

y∗it = βyty
∗
i(t−1) + γytx

∗
i(t−1) + dyit,

(2)

where βxt and βyt are autoregressive parameters and γxt and γyt are cross-lagged

regression parameters. Note that these parameters have a subscript t, implying that they

may change during the course of the study.

The cross-lagged parameters are the key parameters for inferring reciprocal relations

between the variables. This cross-lagged parameter represents a simple partial regression

coefficient from the predictor (e.g. y∗i(t−1)) to the outcome variable (e.g. x∗it), after

controlling for the effect of the outcome variable at the previous time point (e.g. x∗i(t−1)).

This effect is often referred to as Granger causality (Granger, 1969).

The residuals dxit and dyit are usually assumed to be normally distributed and
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correlated as:  dxit

dyit

 ∼ N


 0

0

 ,

 ω2
xt

ωxyt ω2
yt


 . (3)

Here, ω2
xt and ω

2
yt are the residual variances and ωxyt is the residual covariance at occasion

t. As another formulation of CLPM, time-invariant autoregressive (βx, βy) and

cross-lagged parameters (γx, γy) as well as residual variances and covariances (ω2
x, ω

2
y ,

ωxy) can be assumed (i.e. stationarity).

The factor CLPM

An obvious way to extend the CLPM is by separating out a unique factor from the

observed variables in the model, which is known as the factor CLPM. The factor CLPM

has been referred to as the autoregressive cross-lagged factor model (Usami et al., 2015),

the crossed-lagged regression of factors (McArdle, 2009), and quasi-simplex model

(Jöreskog, 1974). In this model the observed scores are considered to consist of latent true

scores (fxit and fyit) and unique factors (ϵxit and ϵyit, which are sometimes referred to as

measurement errors), that is,

xit = fxit + ϵxit

yit = fyit + ϵyit.

(4)

These unique factors are usually assumed to be normally distributed and possibly

correlated, that is,  ϵxit

ϵyit

 ∼ N


 0

0

 ,

 ψ2
xt

ψxyt ψ2
yt


 . (5)

Here, ψ2
xt and ψ

2
yt are unique variances, and ψxyt is a unique factor covariance. The latent

variables fxit and fyit are then modeled as:

fxit = µxt + f∗xit

fyit = µyt + f∗yit,

(6)
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where µxt and µyt are again the group means at time point t, and f∗xit and f
∗
yit are

temporal deviation terms from group means, after accounting for the unique factors. The

temporal deviation terms are then used in the factor CLPM, that is, for t ≥ 2 we have

f∗xit = βxtf
∗
xi(t−1) + γxtf

∗
yi(t−1) + dxit

f∗yit = βytf
∗
yi(t−1) + γytf

∗
xi(t−1) + dyit,

(7)

where βxt and βyt are autoregressive parameters, and γxt and γyt are cross-lagged

regression parameters at time point t, while the unique factors have been accounted for.

Hence, in the factor CLPM, the cross-lagged relations are posited between latent true

scores, rather than between observed scores.

Obviously, the CLPM can be considered as a special case of the factor CLPM: If we

set unique factors ϵxit and ϵyit to zero, the factor CLPM reduces to the CLPM. This

means that the CLPM is nested within the factor CLPM. The factor CLPM is identified if

two or more variables have been measured at three or more time points, while the CLPM

requires only two time points (in which case it is saturated). However, for identification

purposes, some constraints are required such as stationarity for unique factor

(co)variances (i.e. ψ2
x, ψ

2
y and ψxy). Table 1 summarizes the required number of time

points to identify the various longitudinal models which are discussed in this paper.

It may seem counterintuitive that a model in which each latent variable f is

measured by only one indicator is identified: It may seem impossible to distinguish

between the residuals ϵ and d. However, the important point is that d affects future scores

through the lagged relations, while the ϵ′s are associated with only a single measurement

occasion (Schuurman, Houtveen, & Hamaker, 2015). As such ϵ and d are statistically

distinguishable. We further elaborate on the difference between ϵ and d later.
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The random intercept cross-lagged panel model (RI-CLPM)

The RI-CLPM (Hamaker et al., 2015) can be seen as an extension of the CLPM

that includes latent variables, which are referred to as random intercepts. In the

RI-CLPM, xit and yit are modeled as

xit = µxt + Ixi + x∗it

yit = µyt + Iyi + y∗it,

(8)

where µxt and µyt are the temporal group means, while Ixi and Iyi are time-invariant

stable trait factors that represent an individual′s trait-like deviations from these means.

Note that, while the term “trait” often refers to personality traits in the literature of

psychology, in this manuscript “stable trait” simply means an invariant component of a

variable in an individual over time. These stable trait factors Ixi and Iyi can be

interpreted as random intercepts, and have means of 0 and a variance-covariance matrix

V . The residuals x∗it and y
∗
it are temporal deviations from the expected scores of

individual i at occasion t (i.e. µxt + Ixi and µyt + Iyi); hence they differ from x∗it and y
∗
it in

Equation 2, which represent deviations from the group means. For t ≥ 2, the cross-lagged

relations are modeled as in Equation 2. The RI-CLPM reduces to the CLPM if we set the

variances of Ixi and Iyi to zero, meaning there are no stable, trait-like between-person

differences. This means that the CLPM is nested within the RI-CLPM. The RI-CLPM is

identified if two or more variables have been measured at three or more time points

(regardless of the stationarity condition).

Because the RI-CLPM separates stable between-person differences (i.e. stable trait

factors) from within-person fluctuations over time, βxt and βyt do not represent the

stability of the rank order of individuals from one time point to the next, but rather the

amount of within-person carry-over (Hamaker et al., 2015). Similarly, the cross-lagged

relations pertain to a process that takes place at the within-person level and therefore γx

and γy should be interpreted as the quantities that express the extent to which the two
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variables influence each other within individuals.2 Hamaker et al. (2015) argued that

parameter estimates in the CLPM (and the factor CLPM as well) conflate between-person

and within-person processes and therefore the model provides inaccurate estimates for

within-person reciprocal effects.

Note that in the RI-CLPM the initial within-person centered scores (x∗i1 and y∗i1) are

not correlated with the stable trait factors I by definition. The reason for this is that the

model is based on decomposing the observed variance into between-person/trait-like

variance, and within-person/state-like variance. There is no reason to assume that an

individual′s temporal deviation at the first measurement from the person′s trait score is

dependent on that trait score (especially not when the measurements started at a

relatively arbitrary moment in time). This point also applies to the STARTS model

explained below.

The stable trait autoregressive trait state (STARTS) model

By extending the CLPM with separating out unique factor from observed variables

akin to the factor CLPM, and stable trait factors akin to the RI-CLPM, we obtain the

STARTS model (Kenny & Zautra, 2001), which was first presented as the trait-state-error

(TSE) model (Kenny & Zautra, 1995). The STARTS model was originally motivated by

the latent state-trait (LST) model (Schmitt & Steyer, 1993; Steyer, Schwenkmezger, &

Auer, 1990), which primarily focuses on the decomposition of trait and state variances of a

single variable in longitudinal data. Although the STARTS model was initially used to

investigate univariate relations, it has been extended to multivariate models, incorporating

cross-lagged parameters (e.g. Luhmann, Schimmack, & Eid, 2011; Zautra, Marbach,

Raphael, Lennon, and Kenny, 1995). Here we focus on the bivariate version of this model.

In the bivariate STARTS model, xit and yit are decomposed into latent true scores

(fxit and fyit) and unique factors (ϵxit and ϵyit), as shown in Equation 4 (i.e.
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xit = fxit + ϵxit and yit = fyit + ϵyit). Again, the unique factors are usually assumed to be

normally distributed (see Equation 5). Then, the latent true scores are further

decomposed into individual′s expected scores (µxt + Ixi and µyt + Iyi) and temporal

deviations from these (f∗xit and f
∗
yit), similar to the decomposition in the RI-CLPM

defined in the Equations 8. Namely,

fxit = µxt + Ixi + f∗xit

fyit = µyt + Iyi + f∗yit,

(9)

Hence, the observed scores in a STARTS model can be expressed as

xit = µxt + Ixi + f∗xit + ϵxit

xit = µyt + Iyi + f∗yit + ϵyit.

(10)

For t ≥ 2, the temporal deviation terms (f∗xit and f
∗
yit) are modeled as in the Equation 7.

While the STARTS model adds two highly desirable features to the CLPM (i.e.

unique factors and stable between-person differences), in practice the model is susceptible

to improper solutions, especially when the sample size and number of time points are

small. Therefore, diverse multiple indicator versions have been proposed (see Cole et al.

2005; Luhmann, Schimmack & Eid, 2011).3. Thus, while the STARTS model is

theoretically identified if two or more variables have been measured at four or more time

points, empirically it may require many more time points (cf. Kenny & Zautra, 2001). In

addition, for identification purposes, stationarity constraints on unique factor

(co)variances are required, like the factor CLPM.

Conclusion

The models described in this section can account for developmental trajectories (or,

mean structure) over time through the changing group means (i.e. µxt and µyt). The

extensions of the CLPM can be interpreted as tackling two threats to causal conclusions:

a) unique factors, which we can think of as omitted time-varying variables that behave as
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correlated or uncorrelated white noise processes over time (cf. the factor CLPM and the

STARTS model); and b) traits, which can be thought of as omitted time-invariant

variables (which are accounted for in the RI-CLPM and the STARTS model). In other

words, such extensional models are not able to account for omitted variables that vary

over time and that do not themselves behave as white noise (i.e. random variables like

unique factors and residuals). Note that with respect to the latter, there is an assumption

that the effect of the stable omitted variable is invariant over time. However, this

assumption can also be relaxed by allowing the factor loadings for the common factor

representing these stable between-person differences to vary over time. This suggests that,

while the predicted rank-order of individuals based on the common factor is invariant over

time, the distance between individuals may increase and/or decrease over time.

Cross-Lagged Models that explicitly model developmental trajectories

A popular model for investigating individual difference in developmental trajectories

is the latent curve model (LCM), which was first proposed by Meredith and Tisak (1984,

1990). In this model, time is used as a predictor and individuals can have different

intercepts and difference slopes (i.e. regression coefficients), resulting in different

trajectories over time. Below, we discuss two ways in which the LCM has been combined

with cross-lagged relations. In addition, we discuss an alternative model that has been

proposed to infer reciprocal relations in the presence of developmental trajectories.

The latent curve model with structured residuals (LCM-SR)

One way in which the LCM and the CLPM have been combined, is now referred to

as the LCM-SR (Curran et al., 2013; see also Chi & Reinsel, 1989; Hamaker, 2005). In

this model, the trend part is separated from the cross-lagged part, such that there is a

LCM with residuals that are modeled using a CLPM.
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Hence, the LCM-SR that consists of a (linear) LCM, can be expressed as

xit = Ixi + (t− 1)Sxi + x∗it

yit = Iyi + (t− 1)Syi + y∗it,

(11)

where Ixi and Iyi represent the intercepts of the regression line that describes the

developmental trajectories of individual i over time in variables x and y respectively, and

Sxi and Syi represent the linear slopes of these individual regression lines. Hence, these

intercept and slope factors are similar to the growth factors of an LCM. The residuals x∗it

and y∗it can be thought of as detrended variables with respect to individual linear growth

curves, and for t ≥ 2 they are modeled using Equations 2. In the LCM-SR the initial

within-person centered/detrended scores (x∗i1 and y∗i1) are not correlated with growth

factors (I and S). Note that both the RI-CLPM and the LCM-SR include the common

factor I that represents random intercepts. However, unlike the LCM-SR, the RI-CLPM

does not explicitly model developmental trajectories and it simply assumes time-variant

expected scores for each individual (i.e. µxt + Ixi and µyt + Iyi). This point will be

addressed later. For this reason, we refer to the common factor in the RI-CLPM as a

stable trait factor, and that in the LCM-SR as a growth factor, respectively, although

these are expressed by the same notation I in the current paper.

The autoregressive latent trajectory (ALT) model

The ALT model was proposed by Curran and Bollen (2001) with the aim to

synthesize the CLPM and the LCM (see also Bollen & Curran, 2004; 2006). The bivariate

ALT can be expressed as

xit = Axi + (t− 1)Bxi + βxtxi(t−1) + γxtyi(t−1) + dxit

yit = Ayi + (t− 1)Byi + βytyi(t−1) + γytxi(t−1) + dyit,

(12)

for t > 1. Diverse modeling options exist for t = 1 because there is a recursiveness in the

ALT and then the process needs to be “started up”( Bollen & Curran; 2004; Hamaker et
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al., 2015). As Bollen and Curran (2004) argued, the first observation is typically not the

beginning of the process, and it is thus reasonable to assume that the first observation is

also predictable from unobserved realizations of the process prior to it. This suggests that

at t = 1 we should not only account for the direct effects of the factors A and B, but also

their indirect effects through past realizations of the process. To solve this problem,

Curran and Bollen (2001) propose two solutions: Either the first observation (xi1 and yi1)

is treated as exogenous and allowed to be correlated freely with factors A and B, or

nonlinear constraints are imposed on the loadings for the first occasion. Jongerling and

Hamaker (2011) called the former and the later approaches “predetermined” and

“constrained” approaches, respectively, and the constrained approach can be thought of as

a special case of a predetermined approach. The most commonly used option is

“predetermined”, and in this approach xi1 and yi1 are assumed to be correlated with each

other and the common factors A and B. On the other hand, other cross-lagged models

discussed in this paper implicitly assume that the initial observations are strictly

exogenous (e.g. uncorrelated with the stable trait factors at any time point). The

treatment of the initial observations is an important theoretical and practical problem for

some cross-lagged models like the ALT model that include common factors but do not

separate stable between-person differences from within-person fluctuations over time.

The common factors Axi and Ayi have a constant direct effect over time, while the

latent variables Bxi and Byi have changing effects over time, due to the fixed factor

loadings (t− 1). This specification is similar to those for the slope factor in a (linear)

LCM. This assumption can be further relaxed by freely estimating the factor loadings of

Bxi and Byi (i.e. αxtBxi and αytByi). As such, Bxi and Byi are factors whose effects

usually increase as time progresses. Due to their indirect effects through previous

realizations of the process, however, the effects of these factors accumulate over time, and

they actually cannot be interpreted as the intercept and slope factors (i.e. I and S
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factors) in the LCM or the LCM-SR. We shall call the factors A and B in the ALT

accumulating factors. In the later section we elaborate on this point further. The ALT

model can be identified if two or more variables are measured at five or more time points.

When stationarity of parameters can be assumed, the minimum number of required time

points becomes four.

Note that the difference between the growth factors and the accumulating factors

dissipates when the autoregressive and cross-lagged paths are not present (i.e. there are

no indirect effects accumulating from the previous time points). Indeed, the ALT model

can be reduced to the LCM when β and γ are restricted to 0 (Bollen & Curran, 2004): In

this particular case, the factors Axi and Ayi are equivalent to the random intercept factors

of the LCM (I factor), while Bxi and Byi represent the random slopes (i.e. S factor). On

the other hand, despite the superficial similarities, the relation between the ALT model

and the CLPM is more complicated, which we will address in a later section.

Although the ALT model is more popular than the LCM-SR in applied research,

Curran et al. (2013) expressed a preference for the LCM-SR over the ALT model, because

it clearly separates between-person differences in growth trajectories (growth factors),

from a within-person reciprocal process. However, Hamaker (2005) showed that under

particular circumstances (e.g. time-invariant autoregressive and cross-lagged parameters),

the LCM-SR and the ALT model are statistically equivalent; in that case, the cross-lagged

parameters of these two models are identical, while the growth factors scores in the

LCM-SR can be expressed as a function of autoregressive/cross-lagged parameters as well

as accumulating factor scores of the ALT model. Hence, in both the LCM-SR and the

ALT model lagged estimates are not contaminated by between-person differences if models

are correctly specified. Rather, the advantage of the LCM-SR over the ALT model is that

the growth parameters have a clearer interpretation than the accumulating parameters

from the ALT model: In the LCM-SR growth parameters can be interpreted as the
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intercept and slope similarly to these parameters in the LCM.

The latent change score (LCS) model

The LCS model –also known as the latent difference score model–was developed by

McArdle (2001) as a very general framework that encompasses many longitudinal models,

including the CLPM and the LCM. Here we focus on the LCS model as it is commonly

used in the literature. In the bivariate LCS model, xit and yit are first decomposed into

latent true scores fxit and fyit and unique factors ϵxit and ϵyit using Equation 4. Note that

in many of the publications on the LCS model, additional latent variables are used for the

first time point, which are then referred to as the intercepts (e.g. McArdle, 2009).

However, these additional latent variables coincide with the latent true scores at the first

time point and thus do not serve any particular role (i.e. they are phantom variables), and

can be omitted from the presentation without any consequences (e.g. Usami et al., 2015).

For t ≥ 2 the latent true scores are modeled using latent change scores ∆fxit and

∆fyit, which express increments in the latent scores between adjacent time points t− 1

and t, that is

fxit = fxi(t−1) +∆fxit

fyit = fyi(t−1) +∆fyit.

(13)

Subsequently, the latent change scores are modeled as a function of a factor A, the

preceding latent scores, and a residual, that is,

∆fxit = Axi + βxfxi(t−1) + γxfyi(t−1) + dxit

∆fyit = Ayi + βyfyi(t−1) + γyfxi(t−1) + dyit.

(14)

The factor Axi and Ayi are typically referred to as slope factors in the LCS model

literature. However, if we plug Equation 14 into 13, we obtain the following expression

fxit = Axi + β∗xfxi(t−1) + γxfyi(t−1) + dxit

fyit = Ayi + β∗yfyi(t−1) + γyfxi(t−1) + dyit,

(15)
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where the autoregressive coefficients are functions of the proportional change coefficients

βx and βy in Equation 14, that is, β∗x = (1 + βx) and β
∗
y = (1 + βy). Therefore, despite its

name, slope factors in the LCS model can actually be interpreted as the baseline or

intercept in the equation, similar to the factors A in the ALT model (cf. Usami et al.,

2015). The cross-lagged parameters γx and γy are often referred to as coupling parameters

in the LCS model.

Although the LCS model typically assumes time-invariant autoregressive and

cross-lagged regression parameters, the assumption of stationarity can be relaxed and

time-varying parameters (i.e. βxt, βyt, γxt and γyt) can also be estimated, just as in the

preceding models. However, for identification purposes, stationarity constraints on unique

factor (co)variances are required, like in the factor CLPM and the STARTS model. In

addition, the model assumption can be further relaxed by freely estimating the factor

loadings αxt and αyt for the factors (i.e. αxtAxi and αytAyi) to express different amounts

of baseline change at each time point or to account for unequal spacing of observed data.

This model is called the triple change score (TCS) model (McArdle & Nesselroade, 2014).

The residuals dxit and dyit are usually assumed to be normally distributed as in Equation

3, and time-invariant residual variances and covariance are typically assumed in the LCS

model. Moreover, for reasons of empirical identification, these (co)variances are often fixed

to zero, which suggests the LCS model is used to describe the latent and deterministic

trends. Similar to the (predetermined) ALT model where the observations at the first

occasion are treated as exogenous and are allowed to be correlated with the growth

factors, the latent scores of the LCS model at the first occasion (fxi1 and fyi1) are treated

as exogenous and allowed to be correlated freely with the factors A.

Although the relation between the LCS model as expressed in Equations 13 and 14

and other longitudinal models may be difficult to see at first, the representation in

Equation 15 helps to clarify some of the connections between them. For example, the
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formulation in Equation 15 shows that the model is in fact closely related to an ALT

model. Specifically, when unique factors are assumed in the ALT model, this general

version of ALT model is reduced to the LCS model by setting (t− 1)Bxi = 0 and

(t− 1)Byi = 0 (Bollen & Curran, 2004). Thus, it becomes clear that the critical difference

between the LCS model and the ALT model lies in which accumulating factors are

included (i.e. the ALT model has additional accumulating factors, Bxi and Byi).

Previous research has addressed the relation between the LCS model and the LCM

and the CLPM. For example, when β and γ as well as the residual variances and

covariances are restricted to 0 under time-variant variances of the unique factors, the

model is mathematically equivalent to the (linear) LCM (cf. Usami et al., 2015). Here,

the factors Axi and Ayi are equivalent to the random slope factors of the LCM, whereas

fxi1 and fyi1 then represent the random intercepts. Usami et al. (2015) also showed that

the TCS model (a general form of the LCS model) is reduced to the factor CLPM by

setting Axi and Ayi to constant values, which is mathematically equivalent to fixing the

variances of these two factors (and the five covariances associated with them) to zero.

Note that Allison (2005) also introduced a cross-lagged model that is closely related

to the LCS model: If we omit the unique factors ϵ from the LCS model (while keeping the

residuals d), the LCS model is mathematically equivalent to Allison′s model. Like

Allison′s (2005) model, there are in fact various longitudinal models in the econometric

literature that account for individual-specific effects through the inclusion of a single

unobserved variable like the accumulating factor (A) (e.g. Hsiao, 2014). Such models are

referred to as dynamic panel models. However, to the best of the authors′ knowledge,

little attention has been paid to how dynamic panel models are related to the longitudinal

models discussed here among psychometric and econometric researchers.
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Conclusion

The models described in this section have been explicitly proposed as ways to study

reciprocal effects in the context of developmental trajectories and individual differences

therein. Two of these models control for the effect of time by including time as a

predictor, and allowing it to have different effects for different individuals (random slopes:

i.e. B factor in the ALT model and S factor in the LCM-SR). Moreover, two of the

models allow for developmental trajectories to result from the reciprocal connections

between the two variables (i.e. the ALT model and the LCS model). These models tackle

threats to conclusions about causality by accounting for both omitted time-varying and

time-invariant variables in different ways (i.e. unique factors in the LCS model, growth

factors in the LCM-SR and accumulating factors in the ALT and the LCS models).

However, if there are omitted time-varying variables characterized by autocorrelation over

time, these are not properly accounted for in these models and this is likely to cause

biased results. With respect to omitted time-invariant variables, our model specification

focused on linear effects of time (i.e. the factor loadings for the common factors B and S

were set to (t− 1) in the ALT model and the LCM-SR respectively). However, it is also

possible to allow these factor loadings to be estimated freely, such that we can account for

non-linear time-variant effects. Furthermore, these models can be extended with quadratic

and cubic terms to allow for more flexibility regarding the shape of trends.

Understanding the Relation Between Different Types of Longitudinal

Cross-lagged Models: A Unified Framework

Based on the earlier discussion of diverse longitudinal models with cross-lagged

relations, we can now identify key features of these models that define the fundamental

differences and similarities between them. These key features are useful to understand the

potential of longitudinal models to assess causal effects, which we will discuss later. After
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describing the features, we provide a unified statistical framework that clarifies the

mathematical and conceptual relations among diverse cross-lagged models.

Key features of cross-lagged panel models

To see how the diverse cross-lagged panel models are related and how they differ, it

is helpful to consider the following key features: a) whether unique factors are included or

not; b) the type of common factors that are included; and c) the type of trajectories they

can describe. We elaborate on each feature below.

Unique factors. A key feature of the models considered here is the type of residuals

they include. The factor CLPM, the STARTS model, and the LCS model all include

unique factors, which affect the observed scores only at a single occasion. In contrast, the

CLPM, the RI-CLPM, the ALT model, and the LCM-SR do not include unique factors.

For instance, the defining difference between the CLPM and the factor CLPM is that the

latter includes unique factor; the same is true when comparing the RI-CLPM and

STARTS model.

All the models considered here include residuals that affect subsequent scores

through the lagged relations: These are the residual terms dxit and dyit in the cross-lagged

regression equations, which represent the parts that cannot be explained by the lagged

relations (and other common factors) in the model. Because these residuals are

incorporated as a structural part of the model, their influences feed forward through the

lagged relations. As such, they are commonly referred to as innovations or dynamic

errors, to emphasize how their effect differs from that of unique factors, which are

sometimes referred to as measurement errors.

Whilst the inclusion of both unique factors and dynamic residuals is desirable based

on conceptual grounds, it can easily lead to estimation problems due to the strong

dependency between the estimated parameters (in the case of the STARTS model, see
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Lüdtke, Robitzsch & Wagner, 2017 for more details). For example, it has been stated that

STARTS models may require 10 or more time points of data to obtain reliable estimates

(Kenny & Zautra, 2001). Similarly, the inclusion of both kinds of errors in the LCS model

is prone to lead to convergence problems and improper solutions (e.g. McArdle et al.,

2004; Usami et al., 2015). Therefore, as noted earlier, dynamic errors are often omitted

from the LCS model in practical applications of it.

Common Factors. All the models discussed above, with the exception of the CLPM

and the factor CLPM, contain common factors that are used to model some form of

individual differences in trait level or developmental trajectory. Just as with unique

factors and dynamic residuals discussed above, the role of common factors critically

depends on whether or not they are separated from the lagged relations in the model.

When the factors are separated from the lagged relations, as is done in the RI-CLPM, the

STARTS model, and the LCM-SR, this separation suggests that the factors only have

direct effects on (latent) scores at each occasion. In contrast, when the factors are not

separated from the lagged relations, as is the case in the ALT and the LCS models, their

effects accumulate through the lagged relations, such that they have both direct and

indirect effects on the (latent) scores. This is why we call these factors (A and B)

accumulating factors.

To illustrate this point, let us compare the STARTS model and the LCS model:

Both models include unique factor and dynamic residual, and both models contain a

single common factor for each variable (i.e. Ixi and Iyi in the STARTS model, and Axi

and Ayi in the LCS model). We focus on the latent score of the variable x at the third

occasion (i.e. fxi3).

When considering the STARTS model, we can combine Equations 7 and 9, and use
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this to obtain an expression of the latent true score at occasion 3, that is,

fxi3 = µx3 + Ixi + f∗xi3

= µx3 + Ixi + βx3f
∗
xi2 + γx3f

∗
yi2 + dxi3

= µx3 + Ixi + βx3[βx2f
∗
xi1 + γx2f

∗
yi1 + dxi2] + γx3

(
βy2f

∗
yi1 + γy2f

∗
xi1 + dyi2

)
+ dxi3.

(16)

This expression shows that the stable trait factor Ixi only has a direct effect on fxi3, since

it does not show up in the lagged terms in the Equation. As a result, the expected score

for an individual at t = 3 is equal to µx3 + Ixi (i.e. the group mean for t = 3 plus the

individual′s stable deviation from the group mean).

In contrast, in the LCS model, it can be shown that the common factor Axi has

both a direct and indirect effects on fxi3. Using Equation 15, we can write

fxi3 = Axi + β∗xfxi2 + γxfyi2 + dxi3,

= Axi + β∗x(Axi + β∗xfxi1 + γxfyi1 + dxi2) + γx(Ayi + β∗yfyi1 + γyfxi1 + dyi2) + dxi3,

= (1 + β∗x)Axi + γxAyi + β∗x
(
β∗xfxi1 + γxfyi1 + dxi2

)
+ γx

(
β∗yfyi1 + γyfxi1 + dyi2

)
+ dxi3.

(17)

This shows that the effect of the common factor Axi is different at each occasion, and that

it becomes increasingly more complex over time. At time point t = 2, because fxi2 can be

expressed as fxi2 = Axi + β∗xfxi1 + γxfyi1 + dxi2, the effect of the common factor appears

as Axi. However, as shown in Equation 17, at t = 3, the effect becomes (1 + β∗x)Axi, which

reflects both a direct effect and an indirect effect. Furthermore, this expression also shows

that the expected score for person i on variable x at time point t = 3 is a function of: a)

the common factors Axi and Ayi; b) the lagged parameters β∗x and γx, as well as β
∗
y and

γy; and c) the initial latent states fxi1 and fyi1.

Hence, we argue that it is helpful to differentiate between models in which the

common factors are modeled separately from the lagged effects (i.e. the RI-CLPM, the
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STARTS model, and the LCM-SR), versus models in which the common factors have

accumulated effects over time on the (latent) scores through the lagged relations (i.e. the

ALT model and the LCS model). While the interpretation of factors with only direct

effects is straightforward, the interpretation of the accumulative factors with their direct

and indirect effects is more challenging. This issue is also relevant to the different

interpretations of the cross-lagged parameters (γ), which we will discuss in the later

section.

Mean structure and trends. Another important characteristic of the models

discussed here is how the mean structure is modeled. In the first category of models

discussed in this paper (i.e. the CLPM, the factor CLPM, the RI-CLPM, and the

STARTS model), the group means are typically not constrained over time. As a result,

the average trajectory can take on any shape. In addition, in the CLPM and the factor

CLPM, there are no individual trajectories modeled. In the RI-CLPM and the STARTS

model, the stable trait factor I suggests that individuals are characterized by a constant

deviation from this average trajectory. Hence, if on average there is a linearly increasing

trend, each individual is assumed to have the same trajectory that is simply shifted up or

down by a constant that is captured by the stable trait factor. Similarly, if there is on

average a logistic curve over time, each individual has their own logistic curve that is

parallel to this average curve.

In the second category of models considered in this paper (consisting of the

LCM-SR, the ALT model, and the LCS model), the average developmental trajectories

are modeled with the means of the common factors I and S, or A and B. This again

suggests that the way these factors are included in the model is of vital importance. As

the LCM-SR includes common (i.e. growth) factors separately from the lagged effects in

the model, their means operate in the same way as in the LCM: They represent the

average intercept and average (linear) slope of developmental trajectories.
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In contrast, in the ALT model and the LCS model the latent means are not

separated from the lagged relations in the model. As a result, the average trajectory is the

result of the means of common (i.e. accumulating) factors, but also of the lagged relations

(i.e. β and γ). At times, this can lead to unexpected trajectories. For example, Jongerling

and Hamaker (2011) showed how an ALT model with only a constant common factor A

(i.e. no slope factor B), may result in an increasing or decreasing trend (or up and down

when time-varying autoregressive parameters are assumed) over time. In fact, it is exactly

this entanglement of the common factors A and the lagged relations that forms the basis

of modeling trajectories with the LCS model.

This highlights an interesting difference in modeling traditions: Whilst the LCM-SR

seems to follow common practice in time series analysis, in which data are first detrended

before one investigates whether there are lagged relations within and between variables,

the ALT model and the LCS model seem more in line with the dynamic system′s

literature, in which short-term fluctuations are described using the same set of equations

as the ones used for long-term behavior of a system.

The latter observation may lead readers to conclude that the choice between these

models should depend on whether there is one set of underlying rules that govern the

system, or instead that there is a developmental process that operates separately from the

short-term reciprocal effects. This is partially correct. However, it is interesting that

under certain conditions (e.g. time-invariant autoregressive and cross-lagged parameters),

the lagged relations of these two approaches are actually identical (for details see

Hamaker, 2005).

A unified framework

Based on the key features discussed above, we can now provide a unified framework

that integrates all these cross-lagged longitudinal models into a general statistical model.
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Path diagrams of this framework as well as cross-lagged longitudinal models we have

discussed are provided in Figure 1. The unified framework makes it easy to see how the

diverse models differ from one another. The formulation consists of three sets of

equations, which we refer to as the measurement equations, the decomposition equations,

and the dynamic equations.

Measurement Equations. The first set of equations can be used to separate the

latent true scores from unique factors. We rewrite these measurement equations as

xit = fxit + ϵxit

yit = fyit + ϵyit.

(18)

For the factor CLPM, the STARTS model and the LCS model, these equations are used;

for all the other models we discussed (i.e. the CLPM, the RI-CLPM, the ALT model, and

the LCM-SR), no unique factors are included, and these equations are reduced to

xit = fxit and yit = fyit.

Decomposition Equations. The second set of equations allow for a decomposition

into an individual deterministic trend and a temporal deviation from this individual trend,

denoted as f∗xit and f
∗
yit. The individual deterministic trend can depend on the group

means µxt and µyt and/or on the random intercepts and slopes (i.e. Ixi, Iyi, Sxi and Syi).

Thus, we have

fxit = [µxt +
{
Ixi + (t− 1)Sxi

}
] + f∗xit

fyit = [µyt +
{
Iyi + (t− 1)Syi

}
] + f∗yit.

(19)

In the CLPM and the factor CLPM, the decomposition equations are simply used to

center the data per time point (i.e. detrend the group trajectory by including µxt and

µyt), whereas the other parts for the individual deterministic trends (i.e.
{
Ixi + (t− 1)Sxi

}
and

{
Iyi + (t− 1)Syi

}
) are dropped. In the RI-CLPM and the STARTS model, these

decomposition equations are used to center the data per time point and per individual
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(i.e. the expected scores of individuals are µxt + Ixi and µyt + Iyi), while the remaining

elements of the individual deterministic trends (i.e. (t− 1)Sxi and (t− 1)Syi) are dropped.

In contrast, the LCM-SR aims to directly evaluate growth trajectories through

growth factors rather than to detrend the overall growth by using µxt and µxt. Hence in

this model µxt and µyt are set to 0, and the means are modeled using the means of growth

factors I and S. Finally, the ALT model and the LCS model do not make use of the

options offered by the decomposition equations, meaning fxit = f∗xit and fyit = f∗yit.

Dynamic Equations. Finally, the dynamics of the processes are modeled with the

dynamic equations, which include the lagged relations over time. In addition, they also

include the accumulating factors A and B. This gives

f∗xit =
{
Axi + (t− 1)Bxi

}
+ βxf

∗
xi(t−1) + γxf

∗
yi(t−1) + dxit

f∗yit =
{
Ayi + (t− 1)Byi

}
+ βyf

∗
yi(t−1) + γyf

∗
xi(t−1) + dyit.

(20)

In the CLPM, the factor CLPM, the RI-CLPM, the STARTS model, and the LCM-SR,

accumulating factors are not used, meaning that
{
Axi + (t− 1)Bxi

}
and{

Ayi + (t− 1)Byi

}
are set to 0. In the ALT model, all parts of the dynamic equations are

used. In the LCS model, Axi and Axi are included, while Bxi = 0 and Byi = 0. Moreover,

in many applications, the dynamic residuals are also fixed to zero (i.e. dxit = 0 and

dyit = 0) for estimation purposes.

Because all terms in the dynamic equations contribute to the lagged predictors,

their influences feed forward through the lagged relations and accumulate at later time

points. This implies that the accumulating factors A and B, and the dynamic residuals d

have direct and indirect effects on f∗, and thus on the observed scores.

Specification of longitudinal cross-lagged models based on the unified framework

Using the unified framework presented above we can easily see that there are seven

components that may or may not be included in the model. These components are:
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unique factors ϵ (measurement equations), group means µ, random intercepts I, random

slopes S (decomposition equations), accumulating factors A and B, and dynamic residual

d (dynamic equations). In Table 2 we provide an overview of the seven models we have

discussed above, and indicate which of these seven components they include. The

corresponding mathematical expressions of the seven models in terms of the unified

framework are presented in Table 3. A conceptual diagram to further clarify the relations

between the cross-lagged models is provided in Figure 2. Note that we assumed

time-invariant autoregressive and cross-lagged parameters in all the models here, though

this assumption can be relaxed.

Table 2 provides a useful summary of the distinctive features of the different types

of longitudinal cross-lagged models. In addition, it can be also used to consider nested

relation between models: When a model contains all but one of the components another

model includes, it forms a special case of the latter. Some of these nested relations are

easy to recognize and have already been discussed before, such as the nesting of the

CLPM under the factor CLPM and the RI-CLPM, and the nesting of all the three models

under the STARTS model.

From the table, we can also see other nested relations. For example, if we extend

the ALT model with unique factor and free factor loadings (i.e. Axi + αxtBxi and

Ayi + αytByi), this general version of the ALT model is reduced to the TCS model (i.e.

the general version of the LCS model) by setting the accumulating factors A to zero. By

considering the nested relation between the TCS model and the factor CLPM (i.e. the

TCS model is reduced to the factor CLPM by setting the accumulating factors to constant

values across individuals; Usami et al., 2015), we can also find the close relation between

the ALT model and the CLPM: The ALT model with free factor loadings is reduced to

the CLPM by setting accumulating factor A to zero and B to constant values across

individuals.
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Table 2 also clarifies why two seemingly similar models are not nested. For instance,

the RI-CLPM and the LCM-SR are not nested, as the RI-CLPM contains the component

µt, which is not included in the LCM-SR, while the latter contains the component S,

which is not included in the RI-CLPM. But when the group means µt in the RI-CLPM

are constrained to be equal over time (i.e. µt = µ), we can estimate it using the mean of

the common factor I, while setting S to zero; hence, in the specific case that the group

means do not vary over time, the RI-CLPM is a special case of the LCM-SR (i.e. S=0).

Alternatively, when there are no individual differences in the slope of the LCM-SR (i.e.

variances of slope factors S are zero), this model actually becomes a special case of the

RI-CLPM, as it is based on the assumption that the group means follow a linear trend,

while in the RI-CLPM no such constraint is imposed on the group means.

Because all the cross-lagged models we have discussed can be considered as special

cases of the unified framework, the reader might assume that we want to advocate this

unified model as the most appropriate model to start with. However, this is not actually

possible since the unified model would be unidentified due to over-parameterization.

Instead, our goal for introducing this framework is to provide a general structure that

helps to relate the many diverse modeling approaches that are currently in use and that

focus on the cross-lagged relations between variables.

Interpretation of the cross-lagged parameters and choosing between the models

Although previous studies proposed different longitudinal models to examine

reciprocal effects, the interpretive differences in the cross-lagged parameters (γ) have

rarely been discussed explicitly in the literature. The unified framework we present here,

clarifies that the interpretations can largely differ depending on what factors are used in

specifying a cross-lagged model.

As indicated before, the first category consists of the models that do not explicitly
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account for developmental trajectories (the CLPM, the factor CLPM, the RI-CLPM and

the STARTS model). As such, if there are individual differences in developmental changes

over time, these are not separated from the reciprocal process that is modeled with

cross-lagged relations. In addition, the CLPM and the factor CLPM do not account for

stable individual differences; hence, their cross-lagged relations are also affected by stable

between-person differences. This is not a major problem when one wants to investigate

how individual differences in one variable can predict the change in individual differences

in another variable, but researchers should refrain from making claims beyond such

descriptive statements. The RI-CLPM and the STARTS model account for stable

between-person differences through the inclusion of random intercepts I, such that the

cross-lagged relations only capture within-person changes after the individuals′ expected

scores (captured by the sum of the temporal group means µt and the individual deviation

from these means I) are accounted for. Given that most causal relations addressed in

behavioral science research can be argued to operate at the within-person level, applying

the RI-CLPM and the STARTS seems to be a reasonable choice if the primary analytic

purpose is to infer reciprocal relation between variables. However, just separating the

within-person cross-lagged parameters from stable between-person differences does not

fully justify a causal interpretation (e.g. Murayama et al., 2017): Whilst this approach

controls for omitted time-invariant variables (i.e., trait factor I), it does not control for

omitted time-varying variables that are serially correlated. Thus, including some

time-varying covariates in the model might help researchers make a stronger arguments

about causality when applying the RI-CLPM and the STARTS model.

When considering the second category of models (the LCM-SR, the ALT model, and

the LCS model), the defining feature of these models is that they specifically aim to model

the group-level developmental trajectory and the individual differences in these

trajectories. However, these models achieve this in different ways. The LCM-SR, which
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clearly separates the individual developmental trajectories from the reciprocal effects, may

at first seem like the ideal solution if the primary analytic purpose is to infer the

reciprocal relation or causality between variables. However, there are costs to this

approach. Specifically, the LCM-SR decomposes the scores into one part due to individual

trends described by growth factors (I and S) and another part that represents the

individual′s temporal deviation from this trend. The cross-lagged relations are modeled

between the latter residual components, thus, the cross-lagged relations only relate to

dynamics after individual developmental changes have already been accounted for by the

slope factors S. This may well be a case of throwing the baby out with the bathwater, if

the key interest is actually in the reciprocal relations between developmental processes.

One could say that the LCM-SR controls for omitted time-varying variables that behave

as linear trends and that are the driving force behind the developmental trajectories.

However, if the development in one of the observed variables is actually (in part) the

result of development in another observed variable, using this LCM-SR is likely to result

in biased estimates of reciprocal effects, even though they can provide an inferential basis

for within-person processes.

These features of the LCM-SR can be contrasted with the RI-CLPM or the

STARTS model: Both RI-CLPM and the STARTS model allow for a group-level

trajectory (expressed as µt) that can take on any shape, and each individual deviates from

this trajectory by the distance of a constant (i.e. I). The reciprocal effects are then

modeled between the residuals, that is, the deviations from the expected scores based on

the group trajectory and the individual constant, without controlling for individual

developmental changes by the slope factors S. Hence, in this approach, individual

differences in development remain in the reciprocal part of the model. However, if

individual differences in development are caused by an omitted time-varying variable, this

may lead to biased estimates and erroneous conclusions about the reciprocal relations. In
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other words, the choice between the LCM-SR and the RI-CLPM/STARTS model lie in

what aspect is considered a critical component of reciprocal effects. If individual

differences in the developmental trajectories are considered a critical component of

reciprocal effects, the RI-CLPM or the STARTS model might be an appropriate choice.

On the other hand, if researchers consider developmental trajectories to be caused by

(serially-correlated) omitted time-varying variables (that exhibit linear trends), the

(linear) LCM-SR might be a better choice.

Accumulating factors (A and B), which are included in the ALT and the LCS

models, do not indicate stable individual differences, because their influences accumulate

through the dynamics of the process over time. In these models, the lagged relations are

not separated from the accumulating factors, and as a result the accumulating factors

have both direct and indirect effects on the observed scores. The critical point is that two

primary analytic purposes in applying cross-lagged models (i.e. inferring reciprocal effects

between variables, and describing latent trajectories of individuals) are intertwined in

these models, such that the lagged relations represent both the short-term dynamics and

the long-term developmental trajectories. While this may be a reasonable assumption for

some instances, it may be inappropriate for other instances, potentially leading to

erroneous conclusions. More specifically, whilst the inclusion of accumulating factors can

provide the inferential bases for within-person processes, which would also allow us to

control for omitted time-varying variables, there is a risk that accumulating factors

wrongly account for individual differences in developmental changes, resulting in biased

estimates of reciprocal effects if such individual differences are considered to be

constituent components of reciprocal effects.

It should be noted that the lagged parameters from the LCM-SR and the ALT

model are identical under certain circumstances (cf. Hamaker, 2005), which suggests that

in some scenarios, describing the short-term and long-term fluctuations with the same set
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of lagged relations as the ALT model does, is arguably equivalent to separating the

developmental trajectory from the dynamic residuals as the LCM-SR does. This is also

consistent with results reported by Wang and Maxwell (2015), who focused on the effect

of x on y in longitudinal multilevel models in the absence of lagged relations. They found

that detrending x, detrending x and y, or including time as a covariate all led to (very)

similar results regarding the effect of x on y.

A formal analysis of causal inference in cross-lagged models

To further clarify the causal implications of the cross-lagged models that we have

discussed so far, here we provide a formal discussion of causal inference in these

cross-lagged models. Specifically, we will place these models within the potential outcome

(or counterfactual) approach (Rubin Causal Model; Rubin, 1974), which is currently

considered the standard framework for defining causal effects (e.g. Imai, Keele & Tingley,

2010 and Huang & Yuan, 2017 for mediation analysis).

In this framework, the potential outcome for variable Y is denoted as Yi(xi) for

individual i (Huang & Yuan, 2017; Robins & Hernan, 2009): It is the outcome of Y that

we would have observed for this individual if Xi = xi. If X is a dichotomous treatment in

cross-sectional and experimental designs, with 0 indicating the control group condition,

and 1 indicating the treatment group condition, each individual has two potential

outcomes: Yi(0) and Yi(1). It is assumed that the potential outcomes of individual i are

unaffected by the particular assignment of treatments to the other individuals, and that

the potential outcomes of individual i are assumed not to be affected by the assignment of

treatment to the same individual i . Then, the individual level effect of the treatment on

the outcome is defined as Yi(1)− Yi(0), and the average causal effects of the treatment on

the outcome is defined as E[Yi(1)− Yi(0)] = E[Yi(1)]−E[Yi(0)] over the study population.

If there are multiple levels of X (e.g. if X is a continuous variable), the individual level
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effects when X increases one unit from the reference value xr is defined as

Yi(x
r
i + 1)− Yi(x

r
i ), and the average causal effect in this case is defined as

E[Y (xri + 1)− Y (xri )] = E[Y (xri + 1)]− E[Y (xri )] over the study population.

In general, these causal effects are not directly estimable from the observed data.

Instead, to estimate them, assumptions are needed that link the potential outcomes to the

observed values (Huang & Yuan, 2017). Below, we begin with discussing the identifiability

assumptions explained by Huang and Yuan (2017) and Robins and Hernan (2009) in the

context of longitudinal designs, and we show how these lead to the conclusion that the

cross-lagged parameters from the traditional CLPM represents the average causal effects.

However, these original identifiability assumptions are rather restrictive and do not allow

for unobserved confounding. Therefore, we discuss how these assumptions can be relaxed

in order to account for other unobserved confounding due to time-invariant factors, and

show how this leads to the conclusion that the cross-lagged parameters from the

RI-CLPM and the STARTS model reflect the average causal effects. We also discuss the

possibilities of other cross-lagged models to uncover causal effects, and caution that

model-specific assumptions, which might be unrealistic in practice, have to be met in

order for cross-lagged parameters in each model to be the causal effect.

Identifiability assumptions. Here, we assume that X and Y are variables that are

observed longitudinally, with Yit(xi(t−1)) being the potential outcome that denotes the

outcome of variable Y at time point t that we would have observed for individual i if

Xi(t−1) = xi(t−1) at the previous time point (t− 1). Furthermore, let

Li(t−1) = (Yi(t−1),L
−′

i(t−1))
′ be a vector of observed variables that includes the

time-varying confounder Yi(t−1), which is controlled for via the autoregressive effect, as

well as other observed time-varying confounders L−
i(t−1) at t− 1. Additionally,

Ui(t−1) = (Iyi,U
−′

i(t−1))
′ is a vector of unobserved variables that includes the

time-invariant stable trait factor score Iyi, which represents a composite of all



A Unified Framework of Longitudinal Models 34

time-invariant confounders, and U−
i(t−1), which represents a set of time-varying

confounders at t− 1.

As illustrated by Huang and Yuan (2017) and Robins and Hernan (2009) in a

longitudinal design, under the following identifiability assumptions we can show that the

cross-lagged parameters from the CLPM (i.e. γyt) can have a causal interpretation:

Assumption 1 (consistency): If Xi(t−1) = xi(t−1) for individual i, then Yit(xi(t−1)) = Yit for

that individual.

Assumption 2 (no unobserved confounders): Yit(xi(t−1)) ⊥ Xi(t−1)|Li(t−1) = li(t−1) for

each possible value x of X and l of L.

Assumption 3 (positivity): If Pr(Lit = lit) ̸= 0, Pr(Xit = xit|Lit = lit) > 0 for all x.

These first two assumptions are standard in causal inference (e.g. Huang & Yuan,

2017), whereas the third one is required when evaluating the weights posited to adjust

observed confounders (e.g. Robins & Hernan, 2009), which we will briefly discuss at the

end of this section.

Assumption 1 is known as consistency, and indicates that the observed outcome Yit

is equal to the potential outcome Yit(xi(t−1)) if observed level of X at the previous time

point is Xi(t−1) = xi(t−1). An implicit assumption here is that measurement error is not

present. Another implicit assumption is the Markov property to achieve consistency for

the potential outcome: The current potential outcome of Y only depends on the previous

state of X. In other words, there is no “carryover” effect (Imai & Kim, under review) of

past values prior to t− 1. Assumption 2 is known as no unobserved confounders, and

indicates that there is no unobserved confounding between the current potential outcome

of Y and the previous state of X after accounting for (the previous state of) the observed
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confounders L.

Together, these first two assumptions ensure that

Ei(Yit|Xi(t−1) = xi(t−1),Li(t−1) = li(t−1)) is identifiable from the observed data and

model parameters. Suppose that X and L are all linearly related to Y (as is the case for

the relation between X and Y in the cross-lagged models we have considered); then, the

average potential outcome can be expressed as

Ei(Yit(xi(t−1))) = Ei(Yit|Xi(t−1) = xi(t−1),Li(t−1) = li(t−1))

= cyt + βytyi(t−1) + γytxi(t−1) + l′−i(t−1)δyt, ∀t(= 2, 3, . . . , T ) (21)

Where cyt is an intercept and βyt, γyt and δyt are regression coefficients. If we use time

centered valuables such as y∗i(t−1) = yi(t−1) − µy(t−1), x
∗
i(t−1) = xi(t−1) − µx(t−1) and

l−∗
i(t−1) = l−i(t−1) − µl(t−1) at each time point, alternative formulation can be obtained as

Ei(Yit(xi(t−1))) = µyt + βyty
∗
i(t−1) + γytx

∗
i(t−1) + l′−∗

i(t−1)δyt, (22)

where µyt = cyt + βytµy(t−1) + γytµx(t−1) + µ′
l(t−1)δyt.

Obviously, this expression is mathematically equivalent to the (conditional)

expected outcome of Yit from the CLPM that assumes observed confounders. Using this

expression, the average causal effect when X increases one unit from the reference value

xr at time t− 1 is given by

Ei(Yit(x
r
i(t−1) + 1))− Ei(Yit(x

r
i(t−1))) = [µyt + βyty

∗
i(t−1) + γyt(x

∗r
i(t−1) + 1) + l′−∗

i(t−1)δyt]

−[µyt + βyty
∗
i(t−1) + γytx

∗r
i(t−1) + l′−∗

i(t−1)δyt]

= γyt, (23)

where x∗ri(t−1) = xri(t−1) − µx(t−1). Thus, if the true data generating model satisfies the

identifiability assumptions (i.e. consistency, no unobserved confounders) and two

additional ones (i.e. X and L are linearly related to potential outcomes, normal
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residuals), γyt in the CLPM (with observed confounders L−) represents the average causal

effect across individuals from x at time t− 1 to y at time t. Likewise, it can be shown that

γxt also represents the average causal effect from y at time t− 1 to x at time t.

However, if unobserved confounders Uit are present as the cause of Xit as well as Yit

in the true data generating model, this implies that

Ei(Yit(xi(t−1))) ̸= Ei(Yit|Xi(t−1) = xi(t−1),Li(t−1) = li(t−1)), and thus γyt in the CLPM

does not represent the (average) causal effect any more, because this model fails to

account for Uit (i.e. unobserved confounding). Unfortunately, unobserved confounding is

very likely in observation studies. The major weakness of observation studies is that,

unlike in randomized experiments with full compliance, the above identifiability conditions

are not guaranteed by design (Robins & Hernan, 2009). An additional problem is that the

presence of unobserved confounding can not be empirically tested.

Extending identifiability assumptions to account for time-invariant unobserved

confounding. To overcome the problem of unobserved confounding, accounting for a

(time-invariant) stable trait factor I, as the RI-CLPM and the STARTS model do, can

mitigate the potential risk. Specifically, if we relax the assumptions of the second and

third identifiability assumptions by allowing the presence of stable trait factor I into the

true data generating model as

Assumption 2’: (no unobserved confounders after controlling for a stable trait factor)

Yit(xi(t−1)) ⊥ Xi(t−1)|Li(t−1) = li(t−1), Iyi

Assumption 3’: (positivity with controlling for a stable trait factor) If

Pr(Lit = lit|Iyi) ̸= 0, Pr(Xit = xit|Lit = lit, Iyi) > 0 for all x.

then, Ei(Yit(xi(t−1))) = Ei(Yit|Xi(t−1) = xi(t−1),Li(t−1) = li(t−1), Iyi). Suppose that X, L
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and I are all linearly related to Y , the average of potential outcomes can be expressed as

Ei(Yit(xi(t−1))) = cyt + Iyi + βytyi(t−1) + γytxi(t−1) + l′−i(t−1)δyt ∀t (= 2, 3, . . . , T ).

(24)

We can rewrite this equation as

Ei(Yit(xi(t−1))) = [cyt + Iyi + βyt(Iyi + µy(t−1)) + γyt(Ixi + µx(t−1)) + (Ili + µl(t−1))
′δyt]

+βyty
∗
i(t−1) + γytx

∗
(t−1) + l′∗−i(t−1)δyt

= [µyt + I∗yi] + βyty
∗
i(t−1) + γytx

∗
(t−1) + l′∗−i(t−1)δyt, (25)

where I∗yi = Iyi + βytIyi + γytIxi + I′
liδyt, µyt = cyt + βytµy(t−1) + γytµx(t−1) + µ′

l(t−1)δyt,

y∗i(t−1) = yi(t−1) − (Iyi + µy(t−1)), x
∗
i(t−1) = xi(t−1) − (Ixi + µx(t−1)) and

l∗i(t−1) = li(t−1) − (Ili + µl(t−1)). Ili is a vector of stable component of observed

confounders for an individual i. If stationarity of βyt, γyt and δyt is satisfied,

I∗yi = Iyi + βyIyi + γyIxi + I′
liδy has a time-invariant feature, indicating that in this case

Equation 25 is mathematically equivalent to the (conditional) expected outcome of Yit

from the RI-CLPM that assumes observed confounders L−.

From Equation 25, under a weaker identifiability assumption (i.e. no unobserved

confounders after controlling for a stable trait factor) and other assumptions (i.e. X, L

and I are linearly related to potential outcomes, normal residuals), the average causal

effect can be expressed as

Ei(Yit(x
r
i(t−1) + 1))− Ei(Yit(x

r
i(t−1))) = γyt. (26)

This result indicates that under the weaker identifiability assumption γyt in the RI-CLPM

(with stationarity assumption and observed confounders) represents the (average) causal

effect, while γyt in the CLPM does not because this model fails to account for

time-invariant unobserved confounding variables (i.e. stable trait factor I). In other words,

the RI-CLPM (with stationarity assumption and observed confounders) can provide a
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stronger basis to infer causal effects by allowing for the presence of time-invariant

unobserved confounding variables in estimating γ. Because the stable trait factor is likely

to exist in many situations in psychology (i.e. most variables in psychology have individual

differences in mean scores over time), the RI-CLPM can be considered as a reasonable

approach that can infer (average) causal effects more safely, compared to the CLPM.

In the same way, it can be shown that the STARTS model (with stationarity

assumption and observed confounders), which accounts for the presence of unique factors

(i.e. measurement errors as well), can provide a stronger basis than the RI-CLPM to infer

causal effects by loosening assumption 1.

Time-varying unobserved confounding and model selection. One may consider that

other longitudinal models such as the LCM-SR, the ALT model and the LCS model,

provide even stronger inferential basis for causal effects than the RI-CLPM and the

STARTS model, because these models implicitly allow for other types of unobserved

confounding variables. As we have discussed, the ALT and the LCS models control for

time-varying unobserved confounding variables (accumulating factors A and B) that have

both direct and indirect effects on the observed scores through lagged relations. Also, the

LCM-SR controls for time-varying unobserved confounding variables that behave as linear

trends (S). In particular, in the ALT and the LCS models indirect effects are expressed by

(the linear sum of) complex functions of autoregressive parameters and cross-lagged

parameters which are accumulated over time (see Equation 17 for occasion t = 3 in the

LCS model). If unobserved confounders behave in such a way in true data generating

model, cross-lagged parameters in these cross-lagged models represent causal effects,

whereas those in the CLPM and the RI-CLPM do not.

More specifically, from the similar procedures, it can be shown that the ALT and

the LCS models (with observed confounders) can provide a stronger basis than the

RI-CLPM and the STARTS model to infer causal effects by loosening the assumption 2’
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(i.e. no unobserved confounders after controlling for a stable trait factor), whereas the

LCM-SR demands a stationarity assumption as well as observed confounders for γ to

represent causal effects. However, when influences of time-varying unobserved variables do

not change linearly over time (i.e. the LCM-SR) or in accumulative ways (i.e. the LCS

and the ALT models), these models cannot provide accurate estimates of causal effects.4

Hence, we can conclude that no single cross-lagged model is ever superior to the

others for estimating causal effects, and all models (except for the CLPM and the factor

CLPM) can speak to causality if they model unobserved confounders correctly when they

are present. In other words, the crucial point for choosing the cross-lagged model is

whether the model provides adequate control of time-varying and time-invariant

confounders. To judge this, substantive knowledge about potential confounders and their

characteristics (e.g. are they time-invariant or time-varying? do their means change

linearly or non-linearly?) that researchers are expecting is important. In addition, fit

indices should be a useful tool to assess the potential misspecification.

In conclusion, if researchers are interested in causal inference, model selection

should be made based on the balance between substantial knowledge about potential

confounders and their characteristics, and the bottom up assessment of potential

misspecification using model fit indices. If researchers do not have good knowledge about

confounders, controlling for at least a stable trait factor might be a safe choice as long as

the fit is good enough.

Marginal structural modeling. Regardless of the choice of the cross-lagged models, in

order for γ to be the causal effect, model-specific assumptions (e.g., distributional

assumptions in unique factors, no time-varying unobserved confounders, structure of

change in time-varying unobserved confounder, and linear relation between (bivariate)

outcomes) have to be met but these might be unrealistic in practice. However, recent

statistical developments have made it possible to relax some of these assumptions.
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Specifically, marginal structural models (MSMs; Robins, 1999; Robins, Hernan, &

Brumback, 2000) do not demand researchers to model the particular relation between a

(potential) outcome and (observed) confounding variables, whereas a linear relation was

implicitly assumed in the previous discussion (i.e. Equations 22 and 25) . Since its

introduction by Robins (1999), MSMs have rapidly gained popularity among applied

researchers in biomedical and other fields (e.g. VanderWeele, Hawkley, Thisted, &

Cacioppo, 2011 in psychology) as a tool for causal inference from longitudinal data in

observational studies (Imai & Ratkovic, 2015). If the three identifiability conditions hold,

in MSMs, instead of including observed confounding variables to explain (potential)

outcomes as in Equation 22, a propensity score for each individual with Xi(t−1) = xi(t−1)

is first estimated from the observed confounding variables using some sort of function (e.g.

logistic regression) at each time point. Then, the influence of these confounding variables

on outcomes Yit is adjusted and parameters are estimated using inverse probability

weights (IPW), which are typically based on the product of a propensity score estimated

separately at each time point.

However, it should be noted that in MSMs the outcome at a particular

measurement occasion (typically the last) to be their focus; hence, it is not really about

obtaining the reciprocal dynamics between two variables over time, as cross-lagged models

we have discussed. Therefore, MSMs are applicable only when researchers aim to

investigate causal effects through unidirectional relations of variables (See VanderWeele et

al., 2011 for example). Another critical issue is that there are some computational

challenges to precisely estimate the IPW (e.g. the IPW is highly sensitive to

misspecification of the function for calculating propensity scores even when the number of

time points is moderate; Imai & Ratkovic, 2015). There are several recent developments

in this field to overcome this problem (e.g. Bang & Robins, 2005 for doubly robust

estimators; Imai & Ratkovic, 2015 for covariate balancing propensity score (CBPS)
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methodology). The possible dependence between confounders and measurements might

also be a challenging issue. For example, if the time-varying confounders are affected by

the time-varying exposure (and the confounders, in turn, affect the exposure) controlling

for these confounders in longitudinal models could become difficult.

An Example Using Empirical Data

Here, we present an example using empirical data to show how parameter estimates

for the cross-lagged effects are different depending on the choice of the model (see also

Usami et al., 2015; Bainter & Howard, 2016). This example investigates the reciprocal

relation between adolescents′ perceived exposure to smoking in movies (X) and their

smoking intensity (Y ), using data from the Minnesota Adolescent Community Cohort

(MACC) Study 2000-2013. The MACC Study is a prospective cohort study designed to

expand the understanding of the transitional process from non-smoking to smoking during

adolescence and to examine the effect of state- and local-level tobacco prevention and

control programmes on youth in Minnesota (Choi, Forster, Erickson, Lazovich, &

Southwell, 2012). For illustrative purposes we used a sample of 4,671 adolescents who

were surveyed from ages 15 to 20 every six months in most of the years of the survey.

When participants joined two surveys in a year, only the response data from the first

survey were used to construct the dataset of T = 6, which is common practice when

analysing longitudinal data. More detailed information about the study design and the

population of MACC is available in Choi et al (2012) and on the website of the

Inter-university Consortium for Political and Social Research

(https://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/36282) 5.

Perceived exposure to smoking in movies and smoking intensity were assessed

during each round of data collection. Participants were asked to report how often they

saw actors and actresses smoking when they watched movies, with four response options:
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most of the time (4), some of the time (3), hardly ever (2) and never (1). This measure

assessed participants′ exposure to smoking in movies and their recognition of these

images, similar to the construct of receptivity to tobacco marketing (Choi et al., 2012).

The data also included an index of smoking intensity, which represents how frequently the

participants smoked (see Choi et al., 2012, for details). There were two sources of missing

data: missing by design and attrition. We used all available data in estimating parameters

of cross-lagged models (we removed data from one participant who was missing for all of

the variables in all time points). All analyses were conducted using the lavaan package

(Rosseel, 2012) in R (R Core Team, 2016) using the full information maximum likelihood

estimation method. The lavaan source code is available in the Online Supplemental

Materials.

Table 4 shows the parameter estimates and fit indices from various models we

discussed in the paper. Although we assumed stationarity (e.g. equality of autoregressive

effects, cross-lagged effects, unique variances and covariances over time), we can actually

loosen these constraints if necessary. The assumption of stationarity is typically made in

the application of the LCS model, but for other models this assumption is less common.

The STARTS model and the ALT model both resulted in an improper solution; as such

Table 4 only provides the estimates for the CLPM, the factor CLPM, the RI-CLPM, the

LCM-SR and the LCS model 6. The CLPM, which is most widely used in applied

research, showed statistically significant and positive cross-lagged estimates (perceived

exposure to smoking in movies predicted the later smoking intensity, and vice versa), but

also had the worst fit among the models. The factor CLPM and the RI-CLPM fitted

better, and resulted in non-significant estimates for both cross-lagged parameters in the

RI-CLPM, while the factor CLPM showed statistically significant cross-lagged estimates

for γy (meaning that more perceived exposure to smoking in movies predicted stronger

smoking intensity).
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The LCS model fitted better than these models, and resulted in statistically

significant and negative cross-lagged estimates for γx (meaning that stronger smoking

intensity predicted less perceived exposure to smoking in movies). It should be noted that

the LCS model showed relatively larger standard errors in comparison to other models.

This may suggest instability of parameter estimates due to possible multicollinearity

caused by large correlations between accumulating factors (A) and latent true scores at

the previous time point (Usami et al., 2015). Finally, the LCM-SR model had the best

model fit, and resulted in non-significant estimates for both cross-lagged parameters,

similar to the RI-CLPM.

This example clearly demonstrates the risk of drawing different conclusions based on

the cross-lagged parameters from different models: We obtained a significant negative

cross-lagged parameter (the LCS model), significant positive cross-lagged parameters (the

CLPM and the factor CLPM), and non-significant cross-lagged parameters (the RI-CLPM

and the LCM-SR). By focusing on model fit from the view of model misspecification the

LCM-SR would be the most appropriate model for these data. Moreover, since the model

fit of the LCM-SR is so much better than that of the RI-CLPM (e.g. the difference in AIC

is more than 200, and this is also true for the difference in BIC, which could be considered

as overwhelming evidence for the LCM-SR), it would seem safe to conclude that there are

omitted time-varying variables that affect both observed variables. If researchers are

interested in causal inferences and they can reasonably expect unobserved time-varying

confounders that change linearly (as an S factor), choosing the estimation results from the

LCM-SR seems to be reasonable. In this case, it can be concluded that there is little

evidence for causal effects.

The RI-CLPM could be an option if one aims to infer reciprocal predictive relations

between variables without being certain that there are unobserved time-varying

confounders that change linearly, and individual differences in the developmental changes
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of smoking intensity and perceived exposure to smoking in movies are considered to be

critical components of reciprocal effects. In this case, it would be reasonable to conclude

that there are no significant reciprocal effects between these variables. However, we need

to consider that their estimates of reciprocal effects might be biased due to the

(serially-correlated) omitted time-varying variables.

One important note is that such analytic purposes are inherently inseparable from

another major analytic purpose of using a cross-lagged model: estimating developmental

trajectories. Even if one is not interested in developmental trajectories, the presence of

certain types of unobserved confounders sometimes demands the correct specification of

developmental trajectories to accurately estimate causal effects. Conversely, if one is

interested in developmental trajectories but individual differences in the developmental

changes are considered to be critical components of causal effects rather than

(unobserved) confounders, overly controlled common factors in the model are likely to

cause biased estimates for causal effects.

General Discussion

Inferring reciprocal effects between variables is a central aim of behavioral research.

To address reciprocal effects, a variety of longitudinal models that include cross-lagged

relations have been proposed. However, as these models were proposed in diverse contexts

with different backgrounds, the similarities and differences between these longitudinal

cross-lagged models have been unclear, making it difficult for researchers to select a model

that suits the goal of their research. To facilitate the understanding of the strengths and

weakness of these models and to promote informed model selection, we have proposed a

unified framework that helps to clarify the conceptual and statistical differences between

various longitudinal cross-lagged models (i.e. the CLPM, the factor CLPM, the

RI-CLPM, the STARTS model, the LCM-SR, the ALT model, and the LCS model). The
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unified framework effectively summarizes the relation between these models, mainly based

on whether and how unique factors, different types of common factors, and developmental

trajectories are specified.

We suggest that, when investigating cross-lagged relations, researchers should select

a model based on the analytic purpose (i.e. investigating reciprocal relations or causality)

and substantial knowledge (i.e. what types of confounders researchers are expecting) as

well as the result of bottom up assessment of potential misspecification using model fit

indices. This combination of theory and empirically driven approaches would help

researchers to make the most informed decision when selecting models for analysis.

Currently, it is common that researchers use the CLPM as a default choice without

considering any other alternative models to test reciprocal effects, even though these

alternatives may provide better insight into their data. For example, it has been shown

that reliance on the CLPM alone can potentially lead to erroneous conclusions regarding

the presence, predominance, and sign of reciprocal effects (Hamaker et al., 2015) .

We have argued that model comparison is an important step toward better

understanding of the reciprocal relations (or causality) between variables, but we are also

aware of some practical issues which may be worth considering. First, different models

require different numbers of time points for model identification, as we summarized in

Table 1. It shows that the CLPM is the only model that is identified when T = 2 or more,

and the required number of time points increases as the model becomes more complex.

The ALT model requires the largest number of time points (T = 4 or more when

assumption of stationarity of parameters is made, and T = 5 or more when this

assumption is relaxed) mainly because it has more than one accumulating factor (A and

B). These observations indicate that, although model comparison should be encouraged,

it is often the case that the data researchers acquire do not allow for such model

comparisons due to the limited number of time points. In fact, Hamaker et al. (2015)
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found that 45% of the studies that used the CLPM had only two waves of data. Hence,

prior to data collection, researchers should consider carefully how many time points they

should record depending on which cross-lagged model they will use for analysis.

Second, our empirical example highlighted the problem of improper solutions when

comparing different types of models. Although not well documented in the literature

(although see, Cole, 2005), we have frequently heard from applied researchers that they

encounter improper solutions when they applied these different types of longitudinal

models (other than the CLPM). An inherent problem is that improper solutions do not

always mean that the model is misspecified. A correctly specified model could produce

improper solutions due to sampling error, especially when the model is complex, which is

the case for the longitudinal models we reviewed. When the model contains unique factors

(e.g. the STARTS model or the LCS models), it may be helpful to use multiple indicators

(rather than a single indicator). Cole et al. (2005) found that the TSO model, which

assumes multiple indicators in the STARTS model (but no errors are assumed in common

factors for indicators), encountered fewer improper solutions. This indicates that the

inclusion of multiple indicators may help to reduce the risk of improper solutions. In

addition, a recent study (Lüdtke, Robitzsch & Wagner, 2017) showed that Bayesian

estimation can effectively address problems of estimation including improper solutions in

the STARTS model by specifying prior distributions that are weakly informative. Further

research is needed to develop more strategies to address the issue of improper solutions.

It is also important to note that, although some models are well-suited to examine

reciprocal effects (e.g. the RI-CLPM), we still need to consider potential unobserved

time-varying confounders to make an accurate causal inference, as these models do not

control for them. Such time-varying (and time-invariant) confounders can be easily

implemented in the existing longitudinal models. Indeed, Bollen and Brand (2010)

proposed a general panel model with lagged effects to model univariate longitudinal data
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using both time-varying and time-invariant covariates. In their model, they include a

latent time-invariant variable which is the same as an accumulating factor A in the unified

framework proposed here.

One limitation of the current manuscript is that we did not discuss models that

incorporate the potential random effects other than random intercepts. For example, in

comparison to the CLPM, the RI-CLPM incorporates stable trait factors with fixed factor

loadings (= 1). These stable trait factors are analogous to random effects in temporal

group means. Similarly, the LCS model can be seen as an extension of the CLPM which

includes random intercepts in cross-lagged regressions (Usami et al., 2015). These

observations indicate that stable trait factors or accumulating factors can serve as random

effects of intercepts in cross-lagged models. However, these models do not consider

random effects (i.e. individual differences between participants) in other parameters:

autoregressive coefficients, cross-lagged (coupling) coefficients, and unique and residual

variances. This is a hidden, but strong assumption in the existing longitudinal cross-lagged

models, as it is plausible that autoregressive and reciprocal effects are different between

individuals. There have been recent developments to combine between- and within-person

information in a multilevel framework: For example, Bringmann et al., (2013) applied the

network approach based on the multilevel vector autoregression (VAR) model, allowing for

individual differences in the lagged parameters (see also Schuurman, Ferrer, de

Boer-Sonnenschein, and Hamaker, 2016). These multilevel autoregressive models are used

to analyze intensive longitudinal data consisting of 20 or more repeated measurements per

person. While allowing for individual differences in the lagged parameters would be of

interest in many applications, it is not clear whether this would be feasible with the

relatively small number of repeated measures in traditional longitudinal research.

In recent decades, the literature on longitudinal data design and analysis has been

rapidly growing. For example, with intensive longitudinal data, Bringmann, Hamaker,
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Vigo, Aubert, & Borsboom, (2017) proposed the semi-parametric TV-AR model to

capture nonstationary processes that may arise in such data for univariate cases. There is

also a growing body of literature on continuous time modeling using SEM (e.g. Deboeck

& Preacher, 2016; Voelkle, Oud, Davidov, & Schmidt, 2012), which can effectively address

unequally spaced observations and the lag-problem (i.e. the fact that the strength of a

lagged relation is influenced by the interval between the observations; see Gollob and

Reichardt, 1987). Furthermore, there has been major development in recent classification

techniques for longitudinal data such as SEM Trees (Brandmaier, Oertzen, McArdle, &

Lindenberger, 2013; Usami, Hayes, & McArdle, 2017) and SEM forests (Brandmaier,

Prindle, McArdle & Lindenberger, 2016). These new methodologies expand the scope of

the current longitudinal data analysis considerably, but there is still a lot of room for

innovation and improvement in how various cross-lagged models can be effectively

integrated into these approaches. We hope that our unified framework contributes to a

better understanding of the diverse existing longitudinal models and their cross-lagged

relations, and helps the integration of the existing cross-lagged models with new

approaches.
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Footnotes

1The CLPM is also referred to as the autoregressive cross-lagged model, the

cross-lagged path model, and the cross-lagged regression model.

2Because cross-lagged parameters as well as autoregressive parameters in the

RI-CLPM are individual-invariant, within person relations captured by this model can be

essentially considered as across persons and not within individual. In the general

discussion we discuss the extension of models on this point.

3For example, Cole et al. (2005) proposed an alternative model called

trait-state-occasion (TSO) model. TSO model is a multiple-indicator version of STARTS

but no errors are assumed in common factors for indicators, with additional stationarity

assumption on autoregressive and cross-lagged parameters (e.g. βxt = βx). Also,

Luhmann, Schimmack, and Eid (2011) tested a modified (bivariate) TSO model, in which

factor loadings αxt from stable trait factor scores freely estimated (e.g. use αxtIxi instead

of Ixi) as well as second-order time-variant autoregressive parameters are added. Although

these models are slightly different from each other, all models share the same feature that

stable trait factors account for the stable individual differences, allowing us to make an

inference about within-person process for their cross-lagged parameters

4In the ALT model, there are “predetermined” and “constrained” approaches

according to the way of constraining parameters, as we have discussed. Because this

difference is irrelevant to the basic assumption of the ALT model (i.e. assuming two

accumulating factors), this point is not an important in evaluating the potential of the

ALT model to assess causal effects.

5Choi et al (2012) investigated the reciprocal relation between adolescents′ perceived

exposure to smoking in movies and smoking status (SS). SS is a composite measure and is

different from smoking intensity that we used in this example. In addition, Choi et al

(2012) focused on the sample of adolescents from ages 12 to 18, and applied only the
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CLPM and included second-order autoregressive parameters, while adjusting for gender,

race/ethnicity, parent education, level of urbanisation and age cohort. Due to these

procedural differences and illustrative purpose of the current example we do not compare

analysis results from Choi et al (2012) here.

6 Many empirical studies have reported the improper solutions in applying the

STARTS model, and trait factor variances were negative in the current analysis.

Conceptually, one potential reason is that unstable estimates of some parameters

(particularly autoregressive parameters) caused by some aspects of the research design

(e.g. small sample size) can unduly inflate the variances of the deviation terms (x∗it and

y∗it), increasing the risk of obtaining negative estimates of trait factor variances (as well as

other variances parameters). In the ALT model, negative variance of intercept factor and

singular Hessian matrix were produced. One possible scenario was that true data

generating model did not include unobserved time-varying confounders whose behaviors

can be expressed by (the linear sum of) the two common factors whose influences

accumulate at the later time points, resulting in producing a singular Hessian matrix.



Model assumption The number
of time points CLPM factor CLPM RI-CLPM STARTS LCM-SR ALT LCS

T =2 14 17 17 20 24 34 24
T =3 16 19 19 22 24 34 24
T =4 18 21 21 24 24 34 24
T =5 20 23 23 26 24 34 24
T =2 14 17 17 20 24 34 24
T =3 23 26 26 29 31 41 31
T =4 32 35 35 38 38 48 38
T =5 41 44 44 47 45 55 45

2 3 3 3 3 4 3
2 3 3 4 4 5 4

*For non-stationarity condition, stationarity constraint of unique factor (co)variances is imposed in the factor CLPM, STARTS and the LCS models for identification. 
*In the ALT model, factor loadings from accumulating factors B are assumed to be prespecified as αt= t-1. 

non-stationarity

stationarity

Table 1. The number of parameters and required number of time points for model identification in cross-lagged models.

*In the LCM-SR, factor loadings from slope factors S are assumed to be prespecified as αt= t-1. 

*The assumption of stability indicates that autoregressive parameters, cross-lagged (or, coupling) parameters, residual and error variances and covariances 
are time-invariant, while instability indicates time-variant.

*The numbers of second-order moments are 14, 27, 44 and 65 for T =2,3,4 and 5, respectively.

Minimum T  in stationarity assumption
Minimum T  in non-stationarity assumption



Table 2. An overview of cross-lagged models that indicates which of components

they include.

Measurement equations Decomposition equations Dynamic equations

Model ϵ µ I S A B d

CLPM − + − − − − +

factor CLPM + + − − − − +

RI-CLPM − + +(a) − − − +

STARTS + + +(a) − − − +

LCM-SR − − + + − − +

ALT − − − − + + +

LCS + − − − + − +(b)

+(a) These factors have a mean of zero, unless the µ′ s are fixed to zero.

+(b) This residual is typically fixed to zero for estimation purposes.



Table 3. Overview of the bivariate longitudinal models considered in the current

study (for reasons of space, we only include the expression for one of the two variables).

Acronym Equations Purpose

Unified framework xit = fxit + ϵxit Measurement equation

fxit = [µxt +
{
Ixi + (t− 1)Sxi

}
] + f∗

xit Decompostion equation

f∗
xit =

{
Axi + (t− 1)Bxi

}
+ βxf∗

xi(t−1)
+ γxf∗

yi(t−1)
+ dxit Dynamic equation

CLPM xit = fxit Identical

fxit = µxt + f∗
xit Dissociation of temporal means

f∗
xit = βxf∗

xi(t−1)
+ γxf∗

yi(t−1)
+ dxit Lagged regression

factor CLPM xit = fxit + ϵxit Measurement errors

fxit = µxt + f∗
xit Dissociation of temporal means

f∗
xit = βxf∗

xi(t−1)
+ γxf∗

yi(t−1)
+ dxit Lagged regression

RI-CLPM xit = fxit Identical

fxit = [µxt + Ixi] + f∗
xit Dissociation of temporal and person means

f∗
xit = βxf∗

xi(t−1)
+ γxf∗

yi(t−1)
+ dxit Lagged regression

STARTS model xit = fxit + ϵxit Measurement errors

fxit = [µxt + Ixi] + f∗
xit Dissociation of temporal and person means

f∗
xit = βxf∗

xi(t−1)
+ γxf∗

yi(t−1)
+ dxit Lagged regression

LCM-SR xit = fxit Identical

fxit = [Ixi + (t− 1)Sxi] + f∗
xit Growth curves

f∗
xit = βxf∗

xi(t−1)
+ γxf∗

yi(t−1)
+ dxit Lagged regression

ALT model xit = fxit Identical

fxit = f∗
xit No detrending

f∗
xit =

{
Axi + (t− 1)Bxi

}
+ βxf∗

xi(t−1)
+ γxf∗

yi(t−1)
+ dxit Lagged regression and growth curves

LCS model xit = fxit + ϵxit Measurement errors

fxit = f∗
xit No detrending

f∗
xit = Axi + β∗

xf
∗
xi(t−1)

+ γxf∗
yi(t−1)

+ dxit Lagged regression and growth curves

*We supposed time-invariant autoregressive and cross-lagged parameters in all the models here.

*β∗
x = 1 + βx.



Est. SE p Est. SE p Est. SE p Est. SE p Est. SE p
βy 0.818 0.006 0.000 0.955 0.010 0.000 0.700 0.012 0.000 0.349 0.027 0.000 0.792 0.033 0.000
γy 0.037 0.013 0.003 0.042 0.019 0.024 -0.005 0.022 0.824 0.026 0.025 0.308 -0.131 0.094 0.163
βx 0.511 0.006 0.000 0.861 0.008 0.000 0.166 0.011 0.000 0.082 0.014 0.000 0.736 0.047 0.000
γx 0.009 0.004 0.022 -0.004 0.004 0.349 -0.008 0.007 0.250 0.015 0.011 0.178 -0.019 0.009 0.042

CFI
TLI
AIC
BIC

  RMSEA   [95% CI]                                 
SRMR

degree of freedom
Num of Parameters

*CFI…comparative fit index, TLI…Tucker-Levis index, AIC…Akaike information criterion, BIC…Bayesian information criterion, 

68 65 65 66 66
22 25 25 24 24

0.077 [0.074, 0.079] 0.038 [0.035, 0.041] 0.045 [0.042, 0.048] 0.036 [0.033, 0.039] 0.036  [0.033, 0.039]
0.113 0.047 0.066 0.042 0.044

0.973 0.973

73607.512 72212.878 72385.389 72164.412 72170.637
73465.636 72051.655 72224.166 72009.638 72015.863

RMSEA…root mean square error of approximation, SRMR…standardized root mean square residual.
*The STARTS model and the ALT model both resulted in an improper solution.

Table 4. Parameter estimates and model fit indices from different cross-lagged models (N =4,670)
CLPM factor CLPM RI-CLPM LCM-SR LCS

0.879 0.970 0.958 0.973 0.973
0.875 0.970 0.959



Figure Captions 
 
Figure 1. Path diagrams of cross-lagged models. 
Notes. Residuals covariances and covariances between common factors are all omitted for clarity of 

presentation. Note that means of common (trait) factors are set to zero in the RI-CLPM and the STARTS 

model. 

 
Figure 2. A conceptual diagram to clarify the relations among cross-lagged models.  
Notes. One-headed arrow indicates nested relations, while dotted line indicates that relationship can be 

satisfied conditionally. Double-headed dotted line indicates that models are statistically equivalent under 

particular circumstances. Note that we supposed time-invariant autoregressive and cross-lagged 

parameters in all the models here. 
Notes. CLPM…cross-lagged panel model, RI-CLPM…random-intercepts CLPM, STARTS…stable trait 

autoregressive trait and state, LCM-SR…latent curve model with structured residuals, 

ALT…autoregressive latent trajectory, LCS…latent change score, TCS…triple change score. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 1a. CLPM
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Figure 1c. RI-CLPM
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Figure 1e. LCM-SR
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Figure 1f. ALT model
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Online Supplemental Material: Sample means and covariance 

matrix in empirical data example 

 
Means 
 

X: perceived exposure to smoking in movies Y: smoking intensity 

Age 15 Age 16 Age 17 Age 18 Age 19 Age 20 Age 15 Age 16 Age 17 Age 18 Age 19 Age 20 

3.140  3.140  3.078  3.068  3.046  3.029  1.219  1.346  1.463  1.692  1.794  1.867  

 
 

Covariance matrix 
 

  X: perceived exposure to smoking in movies Y: smoking intensity 

    Age 15 Age 16 Age 17 Age 18 Age 19 Age 20 Age 15 Age 16 Age 17 Age 18 Age 19 Age 20 

X: 

perceived 

exposure to 

smoking in 

movies 

Age 15 0.414 0.207 0.173 0.159 0.147 0.127 0.081 0.077 0.076 0.086 0.087 0.096 

Age 16 0.207 0.392 0.185 0.169 0.147 0.144 0.112 0.080 0.064 0.085 0.089 0.094 

Age 17 0.173 0.185 0.349 0.182 0.152 0.154 0.084 0.079 0.080 0.087 0.078 0.067 

Age 18 0.159 0.169 0.182 0.341 0.170 0.168 0.033 0.037 0.034 0.074 0.046 0.044 

Age 19 0.147 0.147 0.152 0.170 0.324 0.181 0.247 0.108 0.052 0.066 0.070 0.067 

Age 20 0.127 0.144 0.154 0.168 0.181 0.327 NA 0.231 0.037 0.063 0.041 0.061 

Y: smoking 

intensity 

Age 15 0.081 0.112 0.084 0.033 0.247 NA 0.649 0.576 0.525 0.572 0.461 0.719 

Age 16 0.077 0.080 0.079 0.037 0.108 0.231 0.576 0.974 0.723 0.665 0.599 0.677 

Age 17 0.076 0.064 0.080 0.034 0.052 0.037 0.525 0.723 1.181 0.923 0.851 0.846 

Age 18 0.086 0.085 0.087 0.074 0.066 0.063 0.572 0.665 0.923 1.720 1.322 1.230 

Age 19 0.087 0.089 0.078 0.046 0.070 0.041 0.461 0.599 0.851 1.322 1.923 1.508 

Age 20 0.096 0.094 0.067 0.044 0.067 0.061 0.719 0.677 0.846 1.230 1.508 2.064 

*NA…not available 

 

 

 



Online Supplemental Material: The lavaan source codes 
 

*Original data (denoted as “dat” in the code below) can be available through the website of Inter-

university Consortium for Political and Social Research 

(https://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/36282). 
 
* The lavaan package has to be installed in advance. To install lavaan, simply start up R, and type: 
 
install.packages("lavaan", dependencies = TRUE) 
 
 
# Data cleaning and retrieving 
attach(dat) 
dat2<-subset(dat, AGE_YRS>14 & AGE_YRS<21)  #age restriction 
detach(dat); attach(dat2) 
Data<-data.frame(matrix(rep(NA,13*length(table(MASTERID))),length(table(MASTERID)),13)) 
KK<- MASTERID[1]; AA<-1 

for(j in 1:nrow(dat2)){  #Creating data as subject×time format 
KK2<- MASTERID[j] 
AA<-ifelse(KK2==KK,AA,AA+1) 
Data[AA,1]<-MASTERID[j]  #ID 
Data[AA,AGE_YRS[j]-13]<-Q0680[j]  # perceived exposure to smoking in movies 
Data[AA,AGE_YRS[j]-7]<-SMOKEINTENSITY[j]  # smoking intensity 
KK<-KK2 
} 

detach(dat2) 
 
colnames(Data)<-c("ID","x1","x2","x3","x4","x5","x6" ,"y1","y2","y3","y4","y5","y6") 
attach(Data) 
Data<-data.frame(cbind(x1,x2,x3,x4,x5,x6,y1,y2,y3,y4,y5,y6)) 
 
#Lavaan source codes for each cross-lagged model (T=6). 
 
#CLPM(T=6) 

CLPMT6 <- ' 
x1~mux1*1; y1~muy1*1; x2~mux2*1; y2~muy2*1; x3~mux3*1; y3~muy3*1; x4~mux4*1; 
y4~muy4*1;  x5~mux5*1; y5~muy5*1; x6~mux6*1; y6~muy6*1 
FFx1~0*1;FFy1~0*1; FFx1~~phix*FFx1; FFy1~~phiy*FFy1; FFx1~~phixy*FFy1; 
FFy2~ betay*FFy1+gammay*FFx1; FFx2~ betax*FFx1+gammax*FFy1 

    FFy3~ betay*FFy2+gammay*FFx2; FFx3~ betax*FFx2+gammax*FFy2 
    FFy4~ betay*FFy3+gammay*FFx3; FFx4~ betax*FFx3+gammax*FFy3 
    FFy5~ betay*FFy4+gammay*FFx4; FFx5~ betax*FFx4+gammax*FFy4 
    FFy6~ betay*FFy5+gammay*FFx5; FFx6~ betax*FFx5+gammax*FFy5 
    FFx2~~Omegax*FFx2; FFx3~~Omegax*FFx3; FFx4~~Omegax*FFx4; FFx5~~Omegax*FFx5; 

FFx6~~Omegax*FFx6 
    FFy2~~Omegay*FFy2; FFy3~~Omegay*FFy3; FFy4~~Omegay*FFy4; FFy5~~Omegay*FFy5; 

FFy6~~Omegay*FFy6 
    FFx2~~Omegaxy*FFy2; FFx3~~Omegaxy*FFy3; FFx4~~Omegaxy*FFy4; FFx5~~Omegaxy*FFy5; 

FFx6~~Omegaxy*FFy6 
    FFy1 =~ 1*y1; FFy2 =~ 1*y2; FFy3 =~ 1*y3; FFy4 =~ 1*y4; FFy5 =~ 1*y5; FFy6 =~ 1*y6 
    FFx1 =~ 1*x1; FFx2 =~ 1*x2; FFx3 =~ 1*x3; FFx4 =~ 1*x4; FFx5 =~ 1*x5; FFx6 =~ 1*x6 
'  



#factor-CLPM(T=6) 
factorCLPMT6 <- ' 

x1~mux1*1; y1~muy1*1; x2~mux2*1; y2~muy2*1; x3~mux3*1; y3~muy3*1; x4~mux4*1; 
y4~muy4*1;  x5~mux5*1; y5~muy5*1; x6~mux6*1; y6~muy6*1 
x1 ~~ psix*x1; x2 ~~ psix*x2; x3 ~~ psix*x3; x4 ~~ psix*x4; x5 ~~ psix*x5; x6 ~~ psix*x6 

    y1 ~~ psiy*y1; y2 ~~ psiy*y2; y3 ~~ psiy*y3; y4 ~~ psiy*y4; y5 ~~ psiy*y5; y6 ~~ psiy*y6 
y1 ~~ psixy*x1; y2 ~~ psixy*x2; y3 ~~ psixy*x3; y4 ~~ psixy*x4; y5 ~~ psixy*x5; y6 ~~ psixy*x6 
FFx1~0*1;FFy1~0*1; FFx1~~phix*FFx1; FFy1~~phiy*FFy1; FFx1~~phixy*FFy1; 
FFy2~ betay*FFy1+gammay*FFx1; FFx2~ betax*FFx1+gammax*FFy1 

    FFy3~ betay*FFy2+gammay*FFx2; FFx3~ betax*FFx2+gammax*FFy2 
    FFy4~ betay*FFy3+gammay*FFx3; FFx4~ betax*FFx3+gammax*FFy3 
    FFy5~ betay*FFy4+gammay*FFx4; FFx5~ betax*FFx4+gammax*FFy4 
    FFy6~ betay*FFy5+gammay*FFx5; FFx6~ betax*FFx5+gammax*FFy5 
    FFx2~~Omegax*FFx2; FFx3~~Omegax*FFx3; FFx4~~Omegax*FFx4; FFx5~~Omegax*FFx5; 

FFx6~~Omegax*FFx6 
    FFy2~~Omegay*FFy2; FFy3~~Omegay*FFy3; FFy4~~Omegay*FFy4; FFy5~~Omegay*FFy5; 

FFy6~~Omegay*FFy6 
    FFx2~~Omegaxy*FFy2; FFx3~~Omegaxy*FFy3; FFx4~~Omegaxy*FFy4; FFx5~~Omegaxy*FFy5; 

FFx6~~Omegaxy*FFy6 
    FFy1 =~ 1*y1; FFy2 =~ 1*y2; FFy3 =~ 1*y3; FFy4 =~ 1*y4; FFy5 =~ 1*y5; FFy6 =~ 1*y6 
    FFx1 =~ 1*x1; FFx2 =~ 1*x2; FFx3 =~ 1*x3; FFx4 =~ 1*x4; FFx5 =~ 1*x5; FFx6 =~ 1*x6 
'  
 
#RI-CLPM(T=6) 

RICLPMT6 <- ' 
x1~mux1*1; y1~muy1*1; x2~mux2*1; y2~muy2*1; x3~mux3*1; y3~muy3*1; x4~mux4*1; 
y4~muy4*1;  x5~mux5*1; y5~muy5*1; x6~mux6*1; y6~muy6*1 
x1~~0*x1; y1~~0*y1; x2~~0*x2; y2~~0*y2; x3~~0*x3; y3~~0*y3; x4~~0*x4; y4~~0*y4; 
x5~~0*x5; y5~~0*y5; x6~~0*x6; y6~~0*y6; 
Tx~~0*FFx1;Tx~~0*FFy1; Ty~~0*FFx1;Ty~~0*FFy1; 
Tx=~1*x1+1*x2+1*x3+1*x4+1*x5+1*x6; Ty=~1*y1+1*y2+1*y3+1*y4+1*y5+1*y6 
Tx~0*1; Ty~0*1; Tx~~taux*Tx; Ty~~tauy*Ty; Tx~~tauxy*Ty 
FFx1~0*1;FFy1~0*1; FFx1~~phix*FFx1; FFy1~~phiy*FFy1; FFx1~~phixy*FFy1; 
FFy2~ betay*FFy1+gammay*FFx1; FFx2~ betax*FFx1+gammax*FFy1 

    FFy3~ betay*FFy2+gammay*FFx2; FFx3~ betax*FFx2+gammax*FFy2 
    FFy4~ betay*FFy3+gammay*FFx3; FFx4~ betax*FFx3+gammax*FFy3 
    FFy5~ betay*FFy4+gammay*FFx4; FFx5~ betax*FFx4+gammax*FFy4 
    FFy6~ betay*FFy5+gammay*FFx5; FFx6~ betax*FFx5+gammax*FFy5 
    FFx2~~Omegax*FFx2; FFx3~~Omegax*FFx3; FFx4~~Omegax*FFx4; FFx5~~Omegax*FFx5; 

FFx6~~Omegax*FFx6 
    FFy2~~Omegay*FFy2; FFy3~~Omegay*FFy3; FFy4~~Omegay*FFy4; FFy5~~Omegay*FFy5; 

FFy6~~Omegay*FFy6 
    FFx2~~Omegaxy*FFy2; FFx3~~Omegaxy*FFy3; FFx4~~Omegaxy*FFy4; FFx5~~Omegaxy*FFy5; 

FFx6~~Omegaxy*FFy6 
    FFy1 =~ 1*y1; FFy2 =~ 1*y2; FFy3 =~ 1*y3; FFy4 =~ 1*y4; FFy5 =~ 1*y5; FFy6 =~ 1*y6 
    FFx1 =~ 1*x1; FFx2 =~ 1*x2; FFx3 =~ 1*x3; FFx4 =~ 1*x4; FFx5 =~ 1*x5; FFx6 =~ 1*x6 
'  
 
#STARTS(T=6) 

STARTST6 <- ' 
x1~mux1*1; y1~muy1*1; x2~mux2*1; y2~muy2*1; x3~mux3*1; y3~muy3*1; x4~mux4*1; 
y4~muy4*1;  x5~mux5*1; y5~muy5*1; x6~mux6*1; y6~muy6*1 
Tx=~1*x1+1*x2+1*x3+1*x4+1*x5+1*x6; Ty=~1*y1+1*y2+1*y3+1*y4+1*y5+1*y6 
Tx~~0*FFx1;Tx~~0*FFy1; Ty~~0*FFx1;Ty~~0*FFy1; 
Tx~0*1; Ty~0*1; Tx~~taux*Tx; Ty~~tauy*Ty; Tx~~tauxy*Ty 
x1 ~~ psix*x1; x2 ~~ psix*x2; x3 ~~ psix*x3; x4 ~~ psix*x4; x5 ~~ psix*x5; x6 ~~ psix*x6 

    y1 ~~ psiy*y1; y2 ~~ psiy*y2; y3 ~~ psiy*y3; y4 ~~ psiy*y4; y5 ~~ psiy*y5; y6 ~~ psiy*y6 



y1 ~~ psixy*x1; y2 ~~ psixy*x2; y3 ~~ psixy*x3; y4 ~~ psixy*x4; y5 ~~ psixy*x5; y6 ~~ psixy*x6 
FFx1~0*1;FFy1~0*1; FFx1~~phix*FFx1; FFy1~~phiy*FFy1; FFx1~~phixy*FFy1; 
FFy2~ betay*FFy1+gammay*FFx1; FFx2~ betax*FFx1+gammax*FFy1 

    FFy3~ betay*FFy2+gammay*FFx2; FFx3~ betax*FFx2+gammax*FFy2 
    FFy4~ betay*FFy3+gammay*FFx3; FFx4~ betax*FFx3+gammax*FFy3 
    FFy5~ betay*FFy4+gammay*FFx4; FFx5~ betax*FFx4+gammax*FFy4 
    FFy6~ betay*FFy5+gammay*FFx5; FFx6~ betax*FFx5+gammax*FFy5 
    FFx2~~Omegax*FFx2; FFx3~~Omegax*FFx3; FFx4~~Omegax*FFx4; FFx5~~Omegax*FFx5; 

FFx6~~Omegax*FFx6 
    FFy2~~Omegay*FFy2; FFy3~~Omegay*FFy3; FFy4~~Omegay*FFy4; FFy5~~Omegay*FFy5; 

FFy6~~Omegay*FFy6 
    FFx2~~Omegaxy*FFy2; FFx3~~Omegaxy*FFy3; FFx4~~Omegaxy*FFy4; FFx5~~Omegaxy*FFy5; 

FFx6~~Omegaxy*FFy6 
    FFy1 =~ 1*y1; FFy2 =~ 1*y2; FFy3 =~ 1*y3; FFy4 =~ 1*y4; FFy5 =~ 1*y5; FFy6 =~ 1*y6 
    FFx1 =~ 1*x1; FFx2 =~ 1*x2; FFx3 =~ 1*x3; FFx4 =~ 1*x4; FFx5 =~ 1*x5; FFx6 =~ 1*x6 
'  
 
#LCM-SR(T=6) 

LCMSRT6 <- ' 
Ix=~1*x1+1*x2+1*x3+1*x4+1*x5+1*x6; Iy=~1*y1+1*y2+1*y3+1*y4+1*y5+1*y6 
Sx=~0*x1+1*x2+2*x3+3*x4+4*x5+5*x6; Sy=~0*y1+1*y2+2*y3+3*y4+4*y5+5*y6 
x1~0*1; y1~0*1; x2~0*1; y2~0*1; x3~0*1; y3~0*1; x4~0*1; y4~0*1;x5~0*1; y5~0*1; x6~0*1; 
y6~0*1 
x1~~0*x1; y1~~0*y1; x2~~0*x2; y2~~0*y2; x3~~0*x3; y3~~0*y3; x4~~0*x4; y4~~0*y4; 
x5~~0*x5; y5~~0*y5; x6~~0*x6; y6~~0*y6; 
Ix~muIx*1; Iy~muIy*1; Sx~muSx*1; Sy~muSy*1 
FFx1~0*1; FFx1~~0*Ix;FFx1~~0*Iy;FFx1~~0*Sx;FFx1~~0*Sy 
FFy1~0*1; FFy1~~0*Ix;FFy1~~0*Iy;FFy1~~0*Sx;FFy1~~0*Sy 
FFy2~ betay*FFy1+gammay*FFx1; FFx2~ betax*FFx1+gammax*FFy1 

    FFy3~ betay*FFy2+gammay*FFx2; FFx3~ betax*FFx2+gammax*FFy2 
    FFy4~ betay*FFy3+gammay*FFx3; FFx4~ betax*FFx3+gammax*FFy3 
    FFy5~ betay*FFy4+gammay*FFx4; FFx5~ betax*FFx4+gammax*FFy4 
    FFy6~ betay*FFy5+gammay*FFx5; FFx6~ betax*FFx5+gammax*FFy5 
    FFx2~~Omegax*FFx2; FFx3~~Omegax*FFx3; FFx4~~Omegax*FFx4; FFx5~~Omegax*FFx5; 

FFx6~~Omegax*FFx6 
    FFy2~~Omegay*FFy2; FFy3~~Omegay*FFy3; FFy4~~Omegay*FFy4; FFy5~~Omegay*FFy5; 

FFy6~~Omegay*FFy6 
    FFx2~~Omegaxy*FFy2; FFx3~~Omegaxy*FFy3; FFx4~~Omegaxy*FFy4; FFx5~~Omegaxy*FFy5; 

FFx6~~Omegaxy*FFy6 
    FFy1 =~ 1*y1; FFy2 =~ 1*y2; FFy3 =~ 1*y3; FFy4 =~ 1*y4; FFy5 =~ 1*y5; FFy6 =~ 1*y6 
    FFx1 =~ 1*x1; FFx2 =~ 1*x2; FFx3 =~ 1*x3; FFx4 =~ 1*x4; FFx5 =~ 1*x5; FFx6 =~ 1*x6 
'  
 
 
#ALT(T=6) 

ALTT6 <- ' 
x1~0*1; y1~0*1; x2~0*1; y2~0*1; x3~0*1; y3~0*1; x4~0*1; y4~0*1;x5~0*1; y5~0*1; x6~0*1; 
y6~0*1 
FFy1 =~ 1*y1; FFy2 =~ 1*y2; FFy3 =~ 1*y3; FFy4 =~ 1*y4; FFy5 =~ 1*y5; FFy6 =~ 1*y6 

    FFx1 =~ 1*x1; FFx2 =~ 1*x2; FFx3 =~ 1*x3; FFx4 =~ 1*x4; FFx5 =~ 1*x5; FFx6 =~ 1*x6 
    Iy=~1*FFy2+1*FFy3+1*FFy4+1*FFy5+1*FFy6; Ix=~1*FFx2+1*FFx3+1*FFx4+1*FFx5+1*FFx6 
    Sy=~1*FFy2+2*FFy3+3*FFy4+4*FFy5+5*FFy6; Sx=~1*FFx2+2*FFx3+3*FFx4+4*FFx5+5*FFx6 

FFx1~mux1*1; FFy1~muy1*1; Ix~muIx*1;Iy~muIy*1; Sx~muSx*1;Sy~muSy*1 
FFx1~~phix1* FFx1; FFy1~~phiy1*FFy1; Ix~~phiIx*Ix;Iy~~phiIy*Iy; 
Sx~~phiSx*Sx;Sy~~phiSy*Sy 
FFx1~~phix1Sx*Sx; FFx1~~phix1Sy*Sy;  
FFy1~~phiy1Sx*Sx; FFy1~~phiy1Sy*Sy;  



Ix~~phiIxSx*Sx; Ix~~phiIxSy*Sy;  
Iy~~phiIySx*Sx; Iy~~phiIySy*Sy; Sx~~phiSxSy*Sy 
FFx1~~phix1y1* FFy1; FFx1~~phix1Ix*Ix; FFx1~~phix1Iy*Iy;FFy1~~phiy1Ix*Ix 
FFy1~~phiy1Iy*Iy; Ix~~phiIxIy*Iy 
x1 ~~ 0*x1; x2 ~~ 0*x2; x3 ~~ 0*x3; x4 ~~ 0*x4; x5 ~~ 0*x5; x6 ~~ 0*x6 

    y1 ~~ 0*y1; y2 ~~ 0*y2; y3 ~~ 0*y3; y4 ~~ 0*y4; y5 ~~ 0*y5; y6 ~~ 0*y6 
y1 ~~ 0*x1; y2 ~~ 0*x2; y3 ~~ 0*x3; y4 ~~ 0*x4; y5 ~~ 0*x5; y6 ~~ 0*x6 
FFy2~ betay*FFy1+gammay*FFx1; FFx2~ betax*FFx1+gammax*FFy1 

    FFy3~ betay*FFy2+gammay*FFx2; FFx3~ betax*FFx2+gammax*FFy2 
    FFy4~ betay*FFy3+gammay*FFx3; FFx4~ betax*FFx3+gammax*FFy3 
    FFy5~ betay*FFy4+gammay*FFx4; FFx5~ betax*FFx4+gammax*FFy4 
    FFy6~ betay*FFy5+gammay*FFx5; FFx6~ betax*FFx5+gammax*FFy5 
    FFx2~~Omegax*FFx2; FFx3~~Omegax*FFx3; FFx4~~Omegax*FFx4; FFx5~~Omegax*FFx5; 

FFx6~~Omegax*FFx6; 
    FFy2~~Omegay*FFy2; FFy3~~Omegay*FFy3; FFy4~~Omegay*FFy4; FFy5~~Omegay*FFy5; 

FFy6~~Omegay*FFy6 
    FFx2~~Omegaxy*FFy2; FFx3~~Omegaxy*FFy3; FFx4~~Omegaxy*FFy4; FFx5~~Omegaxy*FFy5; 

FFx6~~Omegaxy*FFy6 
'  
 
 
#LCS(T=6) 

LCST6 <- ' 
x1~0*1; y1~0*1; x2~0*1; y2~0*1; x3~0*1; y3~0*1; x4~0*1; y4~0*1;x5~0*1; y5~0*1; x6~0*1; 
y6~0*1 
FFy1 =~ 1*y1; FFy2 =~ 1*y2; FFy3 =~ 1*y3; FFy4 =~ 1*y4; FFy5 =~ 1*y5; FFy6 =~ 1*y6 

    FFx1 =~ 1*x1; FFx2 =~ 1*x2; FFx3 =~ 1*x3; FFx4 =~ 1*x4; FFx5 =~ 1*x5; FFx6 =~ 1*x6 
    Iy=~1*FFy2+1*FFy3+1*FFy4+1*FFy5+1*FFy6; Ix=~1*FFx2+1*FFx3+1*FFx4+1*FFx5+1*FFx6 

FFx1~mux1*1; FFy1~muy1*1; Ix~muIx*1;Iy~muIy*1 
FFx1~~phix1* FFx1; FFy1~~phiy1*FFy1; Ix~~phiIx*Ix;Iy~~phiIy*Iy 
FFx1~~phix1y1* FFy1; FFx1~~phix1Ix*Ix; FFx1~~phix1Iy*Iy;FFy1~~phiy1Ix*Ix 
FFy1~~phiy1Iy*Iy; Ix~~phiIxIy*Iy 
x1 ~~ psix*x1; x2 ~~ psix*x2; x3 ~~ psix*x3; x4 ~~ psix*x4; x5 ~~ psix*x5; x6 ~~ psix*x6 

    y1 ~~ psiy*y1; y2 ~~ psiy*y2; y3 ~~ psiy*y3; y4 ~~ psiy*y4; y5 ~~ psiy*y5; y6 ~~ psiy*y6 
y1 ~~ psixy*x1; y2 ~~ psixy*x2; y3 ~~ psixy*x3; y4 ~~ psixy*x4; y5 ~~ psixy*x5; y6 ~~ psixy*x6 
FFy2~ betay*FFy1+gammay*FFx1; FFx2~ betax*FFx1+gammax*FFy1 

    FFy3~ betay*FFy2+gammay*FFx2; FFx3~ betax*FFx2+gammax*FFy2 
    FFy4~ betay*FFy3+gammay*FFx3; FFx4~ betax*FFx3+gammax*FFy3 
    FFy5~ betay*FFy4+gammay*FFx4; FFx5~ betax*FFx4+gammax*FFy4 
    FFy6~ betay*FFy5+gammay*FFx5; FFx6~ betax*FFx5+gammax*FFy5 
    FFx2~~Omegax*FFx2; FFx3~~Omegax*FFx3; FFx4~~Omegax*FFx4; FFx5~~Omegax*FFx5; 

FFx6~~Omegax*FFx6; 
    FFy2~~Omegay*FFy2; FFy3~~Omegay*FFy3; FFy4~~Omegay*FFy4; FFy5~~Omegay*FFy5; 

FFy6~~Omegay*FFy6 
    FFx2~~Omegaxy*FFy2; FFx3~~Omegaxy*FFy3; FFx4~~Omegaxy*FFy4; FFx5~~Omegaxy*FFy5; 

FFx6~~Omegaxy*FFy6 
'  
 
 
 
 
 
 
 
 
 
 



library(MASS); require("lavaan") 
 
fit<-cfa(CLPMT6, data=Data, missing='fiml') 
summary(fit, fit.measures = TRUE) 
fit<-cfa(factorCLPMT6, data=Data, missing='fiml') 
summary(fit, fit.measures = TRUE) 
fit<-cfa(RICLPMT6,data=Data, missing='fiml') 
summary(fit, fit.measures = TRUE) 
fit<-cfa(STARTST6, data=Data, missing='fiml') 
summary(fit, fit.measures = TRUE) 
fit<-cfa(LCMSRT6, data=Data, missing='fiml') 
summary(fit, fit.measures = TRUE) 
fit<-cfa(ALTT6, data=Data, missing='fiml') 
summary(fit, fit.measures = TRUE) 
fit<-cfa(LCST6, data=Data, missing='fiml') 
summary(fit, fit.measures = TRUE) 
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