A semi-supervised approach to message stance classification

[thumbnail of main.pdf]
Preview
Text - Accepted Version
· Please see our End User Agreement before downloading.
| Preview

Please see our End User Agreement.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Giasemidis, G., Kaplis, N., Agrafiotis, I. and Nurce, J. R. C. (2020) A semi-supervised approach to message stance classification. IEEE Transactions on Knowledge and Data Engineering, 32 (1). pp. 1-11. ISSN 1041-4347 doi: 10.1109/TKDE.2018.2880192

Abstract/Summary

Social media communications are becoming increasingly prevalent; some useful, some false, whether unwittingly or maliciously. An increasing number of rumours daily flood the social networks. Determining their veracity in an autonomous way is a very active and challenging field of research, with a variety of methods proposed. However, most of the models rely on determining the constituent messages' stance towards the rumour, a feature known as the "wisdom of the crowd". Although several supervised machine-learning approaches have been proposed to tackle the message stance classification problem, these have numerous shortcomings. In this paper we argue that semi-supervised learning is more effective than supervised models and use two graph-based methods to demonstrate it. This is not only in terms of classification accuracy, but equally important, in terms of speed and scalability. We use the Label Propagation and Label Spreading algorithms and run experiments on a dataset of 72 rumours and hundreds of thousands messages collected from Twitter. We compare our results on two available datasets to the state-of-the-art to demonstrate our algorithms' performance regarding accuracy, speed and scalability for real-time applications.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/81213
Identification Number/DOI 10.1109/TKDE.2018.2880192
Refereed Yes
Divisions Science > School of Mathematical, Physical and Computational Sciences > Department of Mathematics and Statistics
Science > School of Mathematical, Physical and Computational Sciences > Department of Mathematics and Statistics > Centre for the Mathematics of Human Behaviour (CMOHB)
Publisher IEEE
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar