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3 Abstract

The usual complex integral is defined in terms of complex numbers in Carte-
sian form but transcomplex numbers are defined in polar form and almost all
transcomplex numbers, with infinite magnitude, have no Cartesian form. How-
ever, there are eight infinite, transcomplex numbers which do have a Cartesian
form and these can be used to define the transcomplex integral as the limit of
sums of these eight numbers. Thus we introduce the transcomplex integral.

4 Keywords

Transcomplex integral, transcomplex derivative, transcomplex number, trans-
mathematics.

5 Introduction

The transreal numbers [2] [10] totalise the real numbers by allowing division
by zero in terms of three definite, non-finite numbers: negative infinity, −∞ =
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−1/0; positive infinity, ∞ = 1/0; and nullity, Φ = 0/0. In earlier work, real
elementary functions and real limits were extended to transreal form [1] [6],
as were both real differential and integral calculus [5] [7]. This extends real
analysis to transreal analysis. Further to this work, a new transreal integral is
being developed, but so far we have it only for the extended-real numbers [3].

We are now in the process of extending complex analysis to transcomplex
analysis. Starting with the transcomplex numbers [4] the transcomplex topol-
ogy, elementary functions and limits were developed [8] [9]. In the present pa-
per we develop the transcomplex integral and just as much of the transcomplex
derivative as we need. This leaves a totalisation of the transcomplex derivative
for future work, which will then extend complex analysis to transcomplex anal-
ysis. Thus the present paper can be seen as the penultimate step in extending
complex analysis.

In order to understand this present paper, we advise the reader to review the
transreal integral [7] and to review transcomplex numbers, their arithmetic, how
their topology works, and how the elementary functions are defined on them [9].

The natural numbers have two different definitions, either including or ex-
cluding zero. The former definition is popular in Computer Science, the latter
in Mathematics. Here we follow the mathematical convention N = {1, 2, 3, . . . }.

6 Initial Considerations

In the complex domain, the integral along a curve is defined as follows. If
f : [a, b] → C is a function then, taking u : [a, b] → R and v : [a, b] → R such
that f = u+iv, f is integrable in [a, b] if and only if u and v are integrable in [a, b]

and the integral of f in [a, b] is defined as
∫ b
a
f(t) dt :=

∫ b
a
u(t) dt+i

∫ b
a
v(t) dt. A

smooth path is a differentiable function γ : [a, b]→ C such that γ′ is continuous.
Given a smooth path γ : [a, b]→ C and f : γ ([a, b])→ C, f is integrable on γ if
and only if (f ◦ γ)γ′ is integrable in [a, b] and the integral of f on γ is defined

as
∫
γ
f(z) dz :=

∫ b
a
f(γ(t))γ′(t) dt.

Notice that the definition of the complex integral is closely linked to the
Cartesian form of complex numbers, a+ ib where a, b ∈ R and i is the imaginary
unit. So we have a big problem to define the integral in the transcomplex
domain. Since almost all infinite transcomplex number cannot be written as
a + ib with a, b ∈ RT , not all transcomplex functions can be represented by
u+ iv with u and v being transreal functions.

Observe that only eight infinite transcomplex numbers can be written as
a + ib with a, b ∈ RT , namely, 1

0 , −10 , i
0 , −i0 , 1+i

0 , −1+i0 , −1−i0 and 1−i
0 , which

are: ∞+ i0, −∞+ i0, 0+ i∞, 0+ i(−∞),∞+ i∞, −∞+ i∞, −∞+ i(−∞) and
∞ + i(−∞), respectively. Adding these eight numbers we can get an infinite
number of infinite transcomplex numbers which, although they do not have
Cartesian form, they are a sum of numbers which have Cartesian form. Note also
these eight numbers are, in exponential form: ∞ei0,∞eiπ,∞eiπ2 ,∞e−iπ2 ,∞eiπ4 ,
∞ei 3π4 , ∞e−i 3π4 , ∞e−iπ4 , respectively. Summing numbers from these eight, we
get numbers of the form ∞ei lπ2n with l, n ∈ {0} ∪N. Now notice that l

2n , called
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dyadic rational numbers, are dense in R. Therefore few infinite transcomplex
numbers have Cartesian form but every infinite transcomplex number is the limit
of a sequence of numbers which are sums of numbers which have Cartesian form.

The transcomplex integral, which we define here, is closely grounded in
the above fact. For each transcomplex function f we take (fn)n∈N such that
limn→∞ fn = f and fn can be written as

∑m
k=1 (uk + ivk) for some m ∈ N

where uk and vk are transreal functions.

7 The Integral on Transcomplex Numbers

A series of complex numbers is defined as the sequence (sn)n∈N where sn :=∑n
i=1 zi = z1 + · · ·+zn and (zn)n∈N ⊂ C. We define transreal series in the same

way [6]. But we need to be careful when defining series of transcomplex numbers
because transcomplex addition is not associative. For example, z1 + z2 + z3 is
not well defined since (z1 + z2) + z3 can be different from z1 + (z2 + z3).

Definition 1 Let (zn)n∈N ⊂ CT . We define
∑1
k=1 zk := z1 and, for each

n ≥ 2,
∑n
k=1 zk :=

(∑n−1
k=1 zk

)
+ zn. For each n ∈ N denote sn :=

∑n
k=1 zk.

The sequence (sn)n∈N is called a series of transcomplex numbers and is denoted
by
∑
zn, each sn is called a partial sum of

∑
zn and zn is called the n-th term

of
∑
zn. We say that

∑
zn converges or is convergent if and only if there

is the limn→∞ sn. Otherwise,
∑
zn diverges or is divergent. When

∑
zn is

convergent we denote
∑∞
k=1 zk := limn→∞

∑n
k=1 zk.

Definition 2 We denote

A := C ∪ {Φ} ∪
{
∞ei lπ2n ; l, n ∈ {0} ∪ N

}
and for each z ∈ A we define

∑
(ak + bki), named the Cartesian form of z, in

the following way:

I) If z ∈ C then take a, b ∈ R such that z = a+ bi and define

a1 := a and ak := 0 for all k ≥ 2 and
b1 := b and bk := 0 for all k ≥ 2.

II) If z = Φ then define

a1 := Φ and ak := 0 for all k ≥ 2 and
bk := 0 for all k ∈ N.

III) If z =∞ then define

a1 :=∞ and ak := 0 for all k ≥ 2 and
bk := 0 for all k ∈ N.

3



IV) If z ∈
{
∞ei lπ2n ; l, n ∈ {0} ∪ N

}
\ {∞} then take n ∈ {0} ∪ N and l odd

with l ∈ {1, . . . , 2n+1} such that z = ∞ei lπ2n and define ak := a
(n, l)
k and

bk := b
(n, l)
k where

(
a
(n, l)
k

)
k∈N

and
(
b
(n, l)
k

)
k∈N

are defined inductively in

the following way:

For n = 0:

a
(0,1)
1 := −∞ and a

(0,1)
k := 0 for all k ≥ 2,

b
(0,1)
k := 0 for all k ∈ N.

For n = 1:

a
(1,1)
1 := 0 for all k ∈ N and

b
(1,1)
1 :=∞ and b

(1,1)
k := 0 for all k ≥ 2

and

a
(1,3)
1 := 0 for all k ∈ N and

b
(1,3)
1 := −∞ and b

(1,3)
k := 0 for all k ≥ 2.

For n ≥ 2: for all k ≥ 2,

i) if 0× 2n−2 < l ≤ 1× 2n−2 then

a
(n, l)
1 :=∞ and a

(n, l)
k := a

(n−1, l)
k−1

b
(n, l)
1 := 0 and b

(n, l)
k := b

(n−1, l)
k−1

ii) if 1× 2n−2 < l ≤ 2× 2n−2 then

a
(n, l)
1 := 0 and a

(n, l)
k := a

(n−1, l−2n−2)
k−1

b
(n, l)
1 :=∞ and b

(n, l)
k := b

(n−1, l−2n−2)
k−1

iii) if 2× 2n−2 < l ≤ 3× 2n−2 then

a
(n, l)
1 := 0 and a

(n, l)
k := a

(n−1, l−2n−2)
k−1

b
(n, l)
1 :=∞ and b

(n, l)
k := b

(n−1, l−2n−2)
k−1

iv) if 3× 2n−2 < l ≤ 4× 2n−2 then

a
(n, l)
1 := −∞ and a

(n, l)
k := a

(n−1, l−2×2n−2)
k−1

b
(n, l)
1 := 0 and b

(n, l)
k := b

(n−1, l−2×2n−2)
k−1
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v) if 4× 2n−2 < l ≤ 5× 2n−2 then

a
(n, l)
1 := −∞ and a

(n, l)
k := a

(n−1, l−2×2n−2)
k−1

b
(n, l)
1 := 0 and b

(n, l)
k := b

(n−1, l−2×2n−2)
k−1

vi) if 5× 2n−2 < l ≤ 6× 2n−2 then

a
(n, l)
1 := 0 and a

(n, l)
k := a

(n−1, l−3×2n−2)
k−1

b
(n, l)
1 := −∞ and b

(n, l)
k := b

(n−1, l−3×2n−2)
k−1

vii) if 6× 2n−2 < l ≤ 7× 2n−2 then

a
(n, l)
1 := 0 and a

(n, l)
k := a

(n−1, l−3×2n−2)
k−1

b
(n, l)
1 := −∞ and b

(n, l)
k := b

(n−1, l−3×2n−2)
k−1

viii) if 7× 2n−2 < l ≤ 8× 2n−2 then

a
(n, l)
1 :=∞ and a

(n, l)
k := a

(n−1, l−4×2n−2)
k−1

b
(n, l)
1 := 0 and b

(n, l)
k := b

(n−1, l−4×2n−2)
k−1 .

Remark 3 Notice that for all Cartesian form
∑

(ak + bki), it follows that
(ak)k∈N and (bk)k∈N are sequences of transreal numbers which have just a fi-
nite number of non-zero elements. Because of this,

∑∞
k=1 (ak + bki) is nothing

more than a finite sum. So that we do not need to worry about convergence of
series.

Proposition 4 Given z ∈ A and
∑

(ak + bki) its Cartesian form, it follows
that

z =

∞∑
k=1

(ak + bki) .

Proof 5 The result holds immediately from Definition 2.

Definition 6 Let D ⊂ CT and f : D → CT such that f(D) ⊂ A. For each
w ∈ D, denote the Cartesian form of f(w) as

∑
(ak(w) + bki(w)). For each

k ∈ N, denote as uk the function uk : D → RT where uk(w) = ak(w) for all
w ∈ D and as vk the function vk : D → RT where vk(w) = bk(w) for all w ∈ D.
Of course, f =

∑∞
k=1 (uk + vki). We call

∑
(uk + vki) the Cartesian form of

f .
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Definition 7 For each z ∈ CT we define (zn)n∈N, named the related sequence
to z, in the following way: If z ∈ A then define zn := z for all n ∈ N; if
z /∈ A then take θ ∈ (π, 3π] such that z = ∞eiθ and, for each n ∈ N, take

ln := max
{
t ∈ N; tπ

2n < θ
}

and define zn :=∞ei
lnπ
2n .

Proposition 8 For all z ∈ CT , the related sequence to z converges to z.

Proof 9 Let z ∈ CT be arbitrary. If z ∈ A then the result is immediate; if z /∈ A
then take θ ∈ (π, 3π] such that z = ∞eiθ and take

(
∞ei

lnπ
2n

)
n∈N

, the related

sequence to z. Notice that, by Definition 7, for all n ∈ N, lnπ
2n < θ ≤ (ln+1)π

2n

whence 0 < θ − lnπ
2n ≤

π
2n . Taking n tending to infinity in the latter inequality,

we have that limn→∞
lnπ
2n = θ whence limn→∞∞ei

lnπ
2n =∞eiθ = z.

Definition 10 Let D ⊂ CT and f : D → CT be arbitrary. We define (fn)n∈N,
named the related sequence of functions to f , in the following way: for each
w ∈ D, take (zn)n∈N, the related sequence to f(w). For each n ∈ N, define
fn : D → CT such that fn(w) = zn.

The metric d and the homeomorphism ϕ used henceforth are defined in [9].

Proposition 11 Let D ⊂ CT be arbitrary. For all f : D → CT , the related
sequence of functions to f converges uniformly to f .

Proof 12 Let D ⊂ CT , f : D → CT and (fn)n∈N be the related sequence of
functions to f . Let positive ε ∈ R be arbitrary. For each w ∈ D with f(w) /∈ A,
denote f(w) = ∞eiθ(w), where θ(w) ∈ (π, 3π], and denote the related sequence

to f(w) as
(
∞ei

ln(w)π
2n

)
n∈N

. As the function g : R → C, where g(x) = eix for

all x ∈ R, is uniformly continuous in [0, 3π], it follows that there is a positive
δ ∈ R such that |eix − eiy| < ε whenever x, y ∈ [0, 3π] and |x − y| < δ. Let

m ∈ N such that π
2m < δ. It follows that if n ≥ m then

∣∣∣θ(w)− ln(w)π
2n

∣∣∣ =

θ(w)− ln(w)π
2n ≤ π

2n < δ for all w ∈ D with f(w) /∈ A whence d(fn(w), f(w)) =∣∣ϕ(fn(w)), ϕ(f(w))
∣∣ =

∣∣∣ 1
1+ 1
∞
ei
ln(w)π

2n − 1
1+ 1
∞
eiθ(w)

∣∣∣ =
∣∣∣ei ln(w)π

2n − eiθ(w)
∣∣∣ < ε for

all w ∈ D with f(w) /∈ A. Furthermore, d(fn(w), f(w)) = d(f(w), f(w)) = 0 <
ε for all n ∈ N and for all w ∈ D with f(w) ∈ A. Whatever, if n ≥ m then
d(fn(w), f(w)) < ε for all w ∈ D.
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Definition 13 Let a, b ∈ R with a < b and f : [a, b]→ CT such that f ([a, b]) ⊂
A and take

∑
(uk + ivk) its Cartesian form. We say that f is integrable in [a, b]

if and only if uk and vk are integrable in [a, b] for all k ∈ N. If f is integrable
in [a, b], the integral of f in [a, b] is defined as∫ b

a

f(t) dt =

∞∑
k=1

(∫ b

a

uk(t) dt+ i

∫ b

a

vk(t) dt

)
.

Definition 14 Let a, b ∈ R with a < b, f : [a, b] → CT and (fn)n∈N be the
related sequence of functions to f . We say that f is integrable in [a, b] if and

only if fn is integrable in [a, b] for all n ∈ N and
(∫ b

a
fn(t) dt

)
n∈N

is convergent.

If f is integrable in [a, b], the integral of f in [a, b] is defined as∫ b

a

f(t) dt = lim
n→∞

∫ b

a

fn(t) dt.

Remark 15 Notice that if f has Cartesian form then definitions 13 and 14
give the same result.

Definition 16 Let D ⊂ CT . A path in D is a continuous function γ : [a, b]→
D where a, b ∈ R and a < b. The image of the function γ is denoted by |γ|.

Remark 17 For every path γ, either |γ| = {Φ} or Φ /∈ |γ|. Indeed, as γ is
continuous, Φ is an isolated point and images of connected sets by continuous
functions are connected ones, if Φ ∈ |γ| then |γ| = {Φ}.

Now we define the derivative of a path. If γ(t) ∈ C then we have already

the usual definition γ′(t) = limh→0
γ(t+h)−γ(t)

h . If γ(t) = Φ then γ ≡ Φ and we
define γ′(t) = Φ. We have a difficulty when γ(t) ∈ CT∞. If γ(t) ∈ CT∞ we have
two possibilities: either there is a neighbourhood U of t such that γ(U) ⊂ CT∞
or γ(U) ∩ C 6= ∅ for all neighbourhoods U of t. In the first case, for all s ∈ U ,
γ(s) = ∞eiθ for some θ ∈ R. Hence, as γ is continuous, γ(U) is an arc of the
circle at infinity. Thus there is a path β in C such that γ(s) = ∞β(s) for all
s ∈ U and we define γ′(t) = ∞β′(t). In the second case, t ∈ γ−1(C) so if γ is
differentiable in γ−1(C) we define γ′(t) = lims→t γ

′(s) if this limit exist.

Definition 18 Let γ : [a, b] → D ⊂ CT be a path and t ∈ [a, b]. Henceforth
γ′C(t) denotes the usual complex derivative of γ in t. We say that γ is differen-
tiable in t if and only if one of the following conditions holds:
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i) γ(t) ∈ C and γ is differentiable in t in the usual sense. In this case we
define the derivative of γ in t as the usual derivative of γ in t, that is,
γ′(t) := γ′C(t).

ii) γ(t) = Φ. In this case we define the derivative of γ in t as Φ, that is,
γ′(t) := Φ.

iii) γ(t) ∈ CT∞ and there is a path β in C and a neighbourhood U of t such that
γ(s) =∞β(s) for all s ∈ U ∩ [a, b]. In this case we define the derivative of
γ in t as ∞β′(t), that is, γ′(t) :=∞β′(t).

iv) γ(t) ∈ CT∞ and t ∈ E, where E is the set of all elements s from [a, b]
such that γ(s) ∈ C and γ is differentiable in s, and there is lims→t γ

′
C(s).

In this case we define the derivative of γ in t as lims→t γ
′
C(s), that is,

γ′(t) := lims→t γ
′
C(s).

Definition 19 Let γ : [a, b]→ D be a path. We say that γ is smooth when γ is
differentiable and γ′ is continuous in [a, b].

Definition 20 Let γ : [a, b] → CT be a smooth path and f : |γ| → CT be a
function. We say that f is integrable on γ if and only if (f ◦ γ)γ′ is integrable
in [a, b]. If f is integrable on γ, the integral of f on γ is defined as∫

γ

f(z) dz :=

∫ b

a

f(γ(t))γ′(t) dt.

Proposition 21 Every complex function of complex variable is integrable in
the usual sense if and only if it is integrable in the transcomplex sense. In other
words: let γ : [a, b] → C be a smooth path and f : |γ| → C be a function, it
follows that f is integrable on γ in the usual sense if and only if f is integrable
on γ in the transcomplex sense. Furthermore both integrals have the same value.

Proof 22 Let γ : [a, b] → C be a smooth path and f : |γ| → C be a function.
As ((f ◦ γ)γ′)([a, b]) ⊂ C, there are functions u : [a, b] → R and v : [a, b] → R
such that u+ vi is the Cartesian form of (f ◦ γ)γ′.

It follows that f is integrable on γ in the usual sense if and only if (f ◦ γ)γ′

is integrable in [a, b] in the usual sense if and only if u and v are integrable
in [a, b] in the usual sense if and only if u and v are integrable in [a, b] in the
transreal sense ([7], Proposition 49.a) if and only if, by Definition 13, (f ◦ γ)γ′
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is integrable in [a, b] in the transcomplex sense if and only if, by Definition 20,
f is integrable on γ in the transcomplex sense. And∫

γ
C

f(z) dz =

∫ b

a
C

((f ◦ γ)γ′)(t) dt =

∫ b

a
R

u(t) dt+ i

∫ b

a
R

v(t) dt

=

∫ b

a

u(t) dt+ i

∫ b

a

v(t) dt =

∫ b

a

((f ◦ γ)γ′)(t) dt =

∫
γ

f(z) dz

where
∫
γ

C
f(z) dz denotes the integral of f on γ in the usual sense and

∫ b
a

C
((f ◦

γ)γ′)(t) dt denotes the integral of (f ◦ γ)γ′ in [a, b] in the usual sense and∫ b
a

R
u(t) dt and

∫ b
a

R
v(t) dt denote, respectively, the integral of u and v in [a, b] in

the usual sense.

Example 23 Let us calculate the integral of |z| along the semi-straight line
from 0 to ∞i.

Figure 1: A Semi-straight Line

Let f : CT → CT where f(z) = |z| and γ : [0, 1]→ CT where γ(t) = t
1−t i. Note

that γ is continuous and differentiable with γ′(t) = 1
(1−t)2 i. Thus

∫
γ
f(z) dz =∫ 1

0

f(γ(t))γ′(t) dt =

∫ 1

0

∣∣∣∣ t

1− t
i

∣∣∣∣ 1

(1− t)2
i dt =

∫ 1

0

t

1− t
1

(1− t)2
i dt = i

∫ 1

0

t

(1− t)3
dt =

∞i.

Example 24 Let us calculate the integral of z along the circle at infinity.
Let f : CT → CT where f(z) = z and γ : [−π, π] → CT where γ(t) =
∞eit. Note that γ is continuous and differentiable with γ′(t) = ∞ie−it. Thus
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∫
γ
f(z) dz =

∫ π

−π
f(γ(t))γ′(t) dt =

∫ π

−π
∞eit∞ieit dt =

∫ π

−π
∞e−it∞ieit dt =∫ π

−π
∞ie−iteit dt =

∫ π

−π
∞i dt = i

∫ π

−π
∞ dt =∞i× 2π =∞i.

Example 25 Let us calculate the integral of 1
|z|2 along C, a semi-circle of

centre 1 and radius 1
2 .

Figure 2: A Semi-circle

Notice that, for all z ∈ C, d(z, 1) = 1
2 whence |ϕ(z) − ϕ(1)| = 1

2 , hence∣∣ϕ(z)− 1
2

∣∣ = 1
2 . As d(z, 1) = 1

2 for all z ∈ C, we have that Φ /∈ C. Be-

cause of this, for all z ∈ C there is w ∈ BC(0, 1) such that z = ϕ−1(w). Thus C
is made from points ϕ−1(w), with w ∈ C, such that

∣∣ϕ(ϕ−1(w))− 1
2

∣∣ = 1
2 , that

is,
∣∣w − 1

2

∣∣ = 1
2 . But

∣∣w − 1
2

∣∣ = 1
2 if and only if w = 1

2 + 1
2e
it for some t ∈ R.

Therefore each point of C is given by ϕ−1
(
1
2 + 1

2e
it
)

=
| 12+ 1

2 e
it|

1−| 12+ 1
2 e
it|e

iArg( 1
2+

1
2 e
it)

= 1

2−
√

2+2 cos(t)
(1 + cos(t) + i sin(t)) for some t ∈ R.

Let us take γ :
[
−π2 ,

π
2

]
→ CT , where γ(t) = 1

2−
√

2+2 cos(t)
(1 + cos(t) +

i sin(t)), and calculate the integral of f : CT → CT , where f(z) = 1
|z|2 , along

|γ|. Firstly, note that γ is continuous. Indeed, if t ∈
[
−π2 ,

π
2

]
\ {0} then,

clearly γ is continuous in t and, furthermore, γ(0) = ∞ and limt→0 γ(t) = ∞
whence γ is also continuous in 0. Secondly, note that γ is differentiable. In fact,

clearly γ is differentiable in
[
−π2 ,

π
2

]
\ {0} with γ′(t) =

2 sin(t)
(√

2+2 cos(t)−4
)

4
(
2−
√

2+2 cos(t)
)2 +

i
8 cos(t)−

(√
2+2 cos(t)

)3

4
(
2−
√

2+2 cos(t)
)2 and limt→0 γ

′(t) =∞ whence γ is differentiable in 0 with

γ′(0) =∞. Furthermore γ′ is continuous. Thus γ is a smooth path.

Now, notice that f(γ(t)) = 1
|γ(t)|2 =

(
2−
√

2+2 cos(t)
)2

2+2 cos(t) for all t ∈
[
−π2 ,

π
2

]
.

Thus f(γ(t))γ′(t) =
sin(t)

(√
2+2 cos(t)−4

)
2(2+2 cos(t)) + i

8 cos(t)−
(√

2+2 cos(t)
)3

4(2+2 cos(t)) for all t ∈
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[
−π2 ,

π
2

]
\ {0} and f(γ(0))γ′(0) = Φ. Therefore∫

γ

f(z) dz =

∫ π
2

−π2
f(γ(t))γ′(t) dt

=

∫ π
2

−π2

sin(t)
(√

2 + 2 cos(t)− 4
)

2(2 + 2 cos(t))
dt

+i

∫ π
2

−π2

8 cos(t)−
(√

2 + 2 cos(t)
)3

4(2 + 2 cos(t))
dt

= (π − 2−
√

2)i.

Example 26 Let us calculate the integral of z along a semi-circle at infinity.
Let f : CT → CT where f(z) = z and γ :

[
−π2 ,

π
2

]
→ CT where γ(t) = ∞eit.

Note that γ is continuous and continuously differentiable with γ′(t) = ∞ie−it.
Thus

∫
γ
f(z) dz =

∫ π
2

−π2
f(γ(t))γ′(t) dt =

∫ π
2

−π2
∞eit∞ieit dt =

∫ π
2

−π2
∞iei2t dt =∫ π

2

−π2
∞ei(2t+π) dt = limn→∞

∫ π
2

−π2
fn(t) dt where, for each t ∈

[
−π2 ,

π
2

]
, (fn(t))n∈N

is the related sequence to ∞ei(2t+π).
Now, notice that, given n ∈ N, from Definition 7 it follows that, fn(t) =

∞ei
(l−1)π

2n for all t ∈
[−2n+l−1

2n+1 π, −2
n+l

2n+1 π
)
, for each l ∈ {1, . . . , 2n+1}. Hence,

given n ∈ N, denoting the Cartesian form of fn as
∑(

u
(n)
k + iv

(n)
k

)
and de-

noting, for each l ∈ {1, . . . , 2n+1} and for each t ∈
[−2n+l−1

2n+1 π, −2
n+l

2n+1 π
)
, the

Cartesian form of fn(t) =∞ei
(l−1)π

2n as
∑(

a
(n, l−1)
k + ib

(n, l−1)
k

)
, it follows that∫ π

2

−π2
fn(t) dt =

∞∑
k=1

(∫ π
2

−π2
u
(n)
k (t) dt+ i

∫ π
2

−π2
v
(n)
k (t) dt

)
=

∞∑
k=1

2n+1∑
l=1

−2n+l

2n+1 π∫
−2n+l−1

2n+1 π

a
(n, l−1)
k dt+ i

2n+1∑
l=1

−2n+l

2n+1 π∫
−2n+l−1

2n+1 π

b
(n, l−1)
k dt

=

∞∑
k=1

2n+1∑
l=1

a
(n, l−1)
k + i

2n+1∑
l=1

b
(n, l−1)
k

 =

∞∑
k=1

(Φ + iΦ) = Φ.

Example 27 If γ : [a, b]→ CT is the constant path γ ≡ Φ then

∫
γ

f(z) dz = Φ
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for all f : {Φ} → CT . Indeed,

∫
γ

f(z) dz =

∫ b

a

f(γ(t))γ′(t) dt =

∫ b

a

f(Φ)× Φ dt =∫ b

a

Φ dt = Φ.

8 Conclusion

Earlier, real elementary functions, real limits and both real differential and
integral calculus were extended to transreal forms. This extended real analysis
to transreal analysis.

We now introduce the transcomplex integral and, incidentally, the derivative
for transcomplex functions whose domain is a real interval. In future work,
totalising the transcomplex derivative would complete the task of extending the
main elements of complex analysis to transcomplex analysis.

Taking these results all together, a very large part of practical computation
is extended to transnumbers.
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