Prado-Gonjal, J., Phillips, M., Vaqueiro, P.
ORCID: https://orcid.org/0000-0001-7545-6262, Min, G. and Powell, A. V.
(2018)
Skutterudite thermoelectric modules with high volume-power-density: scalability and reproducibility.
ACS Applied Energy Materials, 1 (11).
pp. 6609-6618.
ISSN 2574-0962
doi: 10.1021/acsaem.8b01548
Abstract/Summary
The construction and evaluation of wholly-skutterudite thermoelectric modules with a high volume-power-density is described. Such modules afford the maximum power output for the minimum use of material. Synthesis of the component n-type unfilled skutterudite CoSb2.75Sn0.05Te0.20 and p-type filled skutterudite Ce0.5Yb0.5Fe3.25Co0.75Sb12, was achieved using a scalable ball-milling route that provides sufficient material for the construction and assessment of performance of 12 modules. Impedance spectroscopy at room temperature is shown to provide a rapid means of evaluating the quality of module fabrication. The results show a high degree of reproducibility in module performance across the 12 modules, with an average internal resistance of 102(4) m. Electrical measurements on the component n- and p-type materials reveal power factors (S2σ) of 1.92 and 1.33 mW m-1 K-2, respectively, at room temperature and maximum figures of merit of ZT = 1.13 (n-type) and ZT = 0.91 (p-type) at 673 K and 823 K, respectively. The figure of merit of the module at room temperature (ZT = 0.12) is reduced by ca. 39% from the average of the n- and p-type component materials at the same temperature, as a result of thermal- and electrical-contact resistance losses associated with the architecture of the module. I-V curves for the module determined for T in the range 50 – 450 K show an almost linear dependence of the open-circuit voltage on T and allow calculation of the power output, which reaches a maximum value of 1.8 W (0.9 W cm-2) at T = 448 K.
Altmetric Badge
| Item Type | Article |
| URI | https://reading-clone.eprints-hosting.org/id/eprint/80527 |
| Identification Number/DOI | 10.1021/acsaem.8b01548 |
| Refereed | Yes |
| Divisions | Interdisciplinary centres and themes > Chemical Analysis Facility (CAF) Life Sciences > School of Chemistry, Food and Pharmacy > Department of Chemistry |
| Publisher | ACS Publications |
| Download/View statistics | View download statistics for this item |
Downloads
Downloads per month over past year
University Staff: Request a correction | Centaur Editors: Update this record
Download
Download