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Abstract 
 
This research is concerned with whether and to what extent information security managers may be biased 

in their evaluation of and decision making over the quantifiable risks posed by information management 

systems where the circumstances may be characterized by uncertainty in both the risk inputs (e.g. system 

threat and vulnerability factors) and outcomes (actual efficacy of the selected security controls and the 

resulting system performance and associated business impacts). Although ‘quantified security’ and any 

associated risk management remains problematic from both a theoretical and empirical perspective 

(Anderson 2001; Verendel 2009; Appari 2010), professional practitioners in the field of information 

security continue to advocate the consideration of quantitative models for risk analysis and management 

wherever possible because those models permit a reliable economic determination of optimal operational 

control decisions (Littlewood, Brocklehurst et al. 1993; Nicol, Sanders et al. 2004; Anderson and Moore 

2006; Beautement, Coles et al. 2009; Anderson 2010; Beresnevichiene, Pym et al. 2010; Wolter and 

Reinecke 2010; Li, Parker et al. 2011)
1
. The main contribution of this thesis is to bring current quantitative 

economic methods and experimental choice models to the field of information security risk management to 

examine the potential for biased decision making by security practitioners, under conditions where 

information may be relatively objective or subjective and to demonstrate the potential for informing 

decision makers about these biases when making control decisions in a security context.  

 

No single quantitative security approach appears to have formally incorporated three key features of the 

security risk management problem addressed in this research: 1) the inherently stochastic nature of the 

information system inputs and outputs which contribute directly to decisional uncertainty (Conrad 2005; 

Wang, Chaudhury et al. 2008; Winkelvos, Rudolph et al. 2011);  2) the endogenous estimation of a 

decision maker’s risk attitude using models which otherwise typically assume risk neutrality or an inherent 

degree of risk aversion  (Danielsson 2002; Harrison, Johnson et al. 2003); and 3) the application of 

structural modelling which allows for the possible combination and weighting between multiple latent 

models of choice (Harrison and Rutström 2009). The identification, decomposition and tractability of these 

decisional factors is of crucial importance to understanding the economic trade-offs inherent in security 

control choice under conditions of both risk and uncertainty, particularly where established psychological 

decisional biases such as ambiguity aversion (Ellsberg 1961) or loss aversion (Kahneman and Tversky 

1984) may be assumed to be endemic to, if not magnified by, the institutional setting in which these 

decisions take place. Minimally, risk averse managers may simply be overspending on controls, over-

compensating for anticipated losses that do not actually occur with the frequency or impact they imagine. 

On the other hand, risk-seeking managers, where they may exist (practitioners call them ‘cowboys’ – they 

                                                                        
1 For practitioner’s guidance, see the “Octave” methodology as developed by Carnegie Mellon’s Software Engineering Institute:  

http://www.cert.org/octave/  and the U.S. National Institute of Standards and Technology Special Publication 800-30 “Risk 
Management Guide for Information Technology Systems” http://csrc.nist.gov/publications/nistpubs/800-30/sp800-30.pdf . Although 

these and other approaches allow for both qualitative and quantitative risk assessment, most methods advocate the use of risk 

assessment and control selection based on quantitative measurement wherever possible as a means of objectively evaluating, 
communicating and managing information security risks.    

http://www.cert.org/octave/
http://csrc.nist.gov/publications/nistpubs/800-30/sp800-30.pdf
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are a familiar player in equally risky financial markets) may be simply gambling against ultimately losing 

odds, putting the entire firm at risk of potentially catastrophic security losses. Identifying and correcting for 

these scenarios would seem to be increasingly important for now universally networked business 

computing infrastructures.      

 

From a research design perspective, the field of behavioural economics has made significant and recent 

contributions to the empirical evaluation of psychological theories of decision making under uncertainty 

(Andersen, Harrison et al. 2007) and provides salient examples of lab experiments which can be used to 

elicit and isolate a range of latent decision-making behaviours for choice under risk and uncertainty within 

relatively controlled conditions versus those which might be obtainable in the field (Harrison and Rutström 

2008). My research builds on recent work in the domain of information security control choice by 1) 

undertaking a series of lab experiments incorporating a stochastic model of a simulated information 

management system at risk which supports the generation of observational data derived from a range of 

security control choice decisions under both risk and uncertainty (Baldwin, Beres et al. 2011); and 2) 

modeling the resulting decisional biases using structural models of choice under risk and uncertainty (El-

Gamal and Grether 1995; Harrison and Rutström 2009; Keane 2010). The research contribution consists of 

the novel integration of a model of stochastic system risk and domain relevant structural utility modeling 

using a mixed model specification for estimation of the latent decision making behaviour. It is anticipated 

that the research results can be applied to the real world problem of ‘tuning’ quantitative information 

security risk management models to the decisional biases and characteristics of the decision maker 

(Abdellaoui and Munier 1998).    
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Uncertainty must be taken in a sense radically distinct from the familiar notion of risk, from which 

it has never been properly separated.... The essential fact is that 'risk' means in some cases a 

quantity susceptible of measurement, while at other times it is something distinctly not of this 

character; and there are far-reaching and crucial differences in the bearings of the phenomena 

depending on which of the two is really present and operating... It will appear that a measurable 

uncertainty, or 'risk' proper, as we shall use the term, is so far different from an unmeasurable one 

that it is not in effect an uncertainty at all. 

Frank H. Knight, Risk, Uncertainty, and Profit (1921) 

 

 

In real life you do not know the odds; you need to discover them, and the sources of uncertainty are 

not defined. Economists, who do not consider what was found by non-economists worthwhile, draw 

an artificial distinction between Knightian risk (which you can compute) and Knightian uncertainty 

(which you cannot compute), after one Frank Knight, who rediscovered the notion of unknown 

uncertainty and did a lot of thinking but perhaps never took risks, or perhaps lived in the vicinity of 

a casino. Had he taken financial or economic risk he would have realized that these "computable" 

risks are largely absent from real life! They are laboratory contraptions. 

“The uncertainty of the nerd” Nassim Nicholas Taleb, The Black Swan (2007) 

 

 

Even apart from the instability due to speculation, there is the instability due to the characteristic of 

human nature that a large proportion of our positive activities depend on spontaneous optimism 

rather than mathematical expectations, whether moral or hedonistic or economic. Most, probably, 

of our decisions to do something positive, the full consequences of which will be drawn out over 

many days to come, can only be taken as the result of animal spirits - a spontaneous urge to action 

rather than inaction, and not as the outcome of a weighted average of quantitative benefits 

multiplied by quantitative probabilities. 

Keynes J. M., 1936, 

The General Theory of Employment, Interest and Money, McMillan University Press. 

 

 

Noise makes financial markets possible, but also makes them imperfect.' 

Black F., 1986,”Noise,” Journal of Finance, 41, 529-543. 

 

 

If I don't know I don't know, I think I know. If I don't know I know I know, I think I don't know.  

R.D. Laing, 1927 - 1989 

 

 

Chance discovers direction, impulse discovers intention, design discovers structure. 

Seamus Heaney 

 

  

There is no general principle that prevents the creation of an economic theory based on other 

hypotheses than that of rationality 

Kenneth Arrow (1986)  

 

It is quite surprising and disappointing to me that almost 40 years after the establishment of the 

concept of risk aversion by Pratt and Arrow, our profession has not yet been able to attain a 

consensus about the measurement of risk aversion. Without such a consensus, there is no hope to 

quantify optimal portfolios, efficient public risk prevention policies, optimal insurance deductibles, 

and so on. It is vital that we put more effort on research aimed at refining our knowledge about risk 

aversion. For unclear reasons, this line of research is not in fashion these days, and it is a shame. 

Gollier, C. (2001). The Economics of Risk and Time. Cambridge, MA: MIT Press. 

 

 

Essentially, all models are wrong, but some are useful 

George Box and Norman Draper (1987) 
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1 – Introduction: Research Problem, Hypotheses and Contribution 

 

Institutions and their information technology service providers are increasingly faced with a wide range of 

ethical, legal and contractual obligations to protect the security of the information management systems and 

the information which they collect and then use and disclose to customers, other service providers, 

governments and other 3
rd

 parties during the provision of services. This research builds on the academic 

and practitioner literature concerning the ‘economics of information security’ and investigates security 

control selection in the context of information security risk management objectives under specified 

conditions of risk and uncertainty. Specifically, I consider that any ‘optimal’ selection of policy, procedural 

and technical security controls intended to prevent or compensate for loss of the confidentiality, integrity or 

availability of systems or information requires decisions by information managers under circumstances 

which are characterized by the inherent uncertainty of the likelihood and impact of prospective business 

outcome scenarios based, in part, on the perceived ex ante and actual ex post efficacy of the selected 

controls. These circumstances may be generalized as complex, ‘multi-stakeholder, multi-objective, multi-

attribute’ decision problems involving control decisions resulting in endogenous risks to the information 

assets involved and can be modeled using stochastic system simulations coupled with multi-criteria 

decisional utility functions (Keeney 1982; Keeney 1993; Baldwin, Mont et al. 2009; Sen 2010) from which 

decisional biases can be estimated using experimental economics laboratory approaches for eliciting risk 

attitude and preference under uncertainty (Harrison and Rutström 2008). It is hypothesized that control 

decisions will, for example, depend on the subjective perception of risk involving the potential loss of 

system performance and versus the expected lifecycle costs of control. Decisions made in conditions of 

both known risk factors and those involving uncertain risk have been demonstrated, within both the 

psychological and economics literature, to be subject to decisional biases including economic agency 

effects, bounded rationality, self-interest, heuristics and risk framing. I propose that structural modeling of 

these decisional biases can improve our understanding of the descriptive and normative theories of 

information security control decisions where observational data is based on ‘behavioural economics’ 

experiments which generate quantitative data under conditions which  permit a broad range of testing for 

decisional biases under uncertainty. This research is therefore intended to better describe and potentially 

allow ‘correction’ for bias in management control decisions and contributes to the integration of 

experimental design and empirical research into quantitative institutional risk management approaches for 

information privacy and security control. 

 

Privacy vs. Security Control 

As a primary dichotomy for this research, I make a fundamental distinction between information privacy 

versus security control selection, both of which motivate this research and are important dimensions of 

modern institutional information management goals and objectives. The information privacy literature is 

essentially concerned with the legal, contractual and practical obligations and capabilities of an individual 
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(or their agent) to control personal information, whereas information security literature is more generally 

concerned with institutional control over all of the institutional entity’s information systems and data often 

including, but not limited to, the personal information of its clients and employees which are considered to 

be held in ‘trust’ by the individuals to whom the data pertains (Gordon and Loeb 2006). Privacy, as an 

individual human right with corresponding legal requirements, is recognized in an increasing number of 

regional national and international jurisdictions and is, in this respect, antecedent to the resulting 

contractual confidentiality obligations between the data owner and the institution which collects, uses or 

discloses the data, and forms but a subset of the overall institutional motivation for the selection and 

management of security controls generally. Information security management, in this respect, is 

fundamentally concerned with maintaining not only the confidentiality (appropriate access to and use of 

systems and information), but also the integrity (accuracy, reliability, verifiability, completeness, 

computability) and availability (continuous accessibility, recoverability) of data and data management 

systems using policy, procedural and technical controls which may be considered appropriate in the 

circumstances under which systems and information operate (Anderson 2001; Gordon and Loeb 2002; 

Gordon and Richardson 2004; Appari 2010)
2
. 

 

Consistent with this view, information security research is primarily concerned about the resulting vector of 

control choices made by data and system custodians who address confidentiality, integrity and availability 

goals. The perspective shift from individual privacy (or even personal security) control selection to 

institutional security assurance allows us to take into account the goals, objectives and decision making 

activities of the institutional data custodian or manager whose risk attitude regarding prospective system or 

data loss and the associated control choices to prevent or recover from loss may be aligned with, but is also 

inherently distinct from, that of the individual seeking data protection over their own personal information 

and which may be further biased by other business objectives within the institution (Berg 2005). 

Furthermore, where the control decision may be based on multiple individual decision makers, we might 

expect latent decisional biases to be compounded, offset or perhaps subject to strategic behaviour between 

institutional decision makers or between institutions.  

 

Information Security and Security Risk Management 

Practitioner selection of information security controls in the field is typically undertaken as a response to 

the perceived risk to business value anticipated resulting from the continuous operation of information 

management systems that are intended to create value for the business. Networked computing systems may 

be considered inherently risky from a security perspective since the absolute assured operation of the 

systems can be generally expected to decline from ‘error free’ operation as business dependency and 

                                                                        
2
 For an introduction to information security theory, see: Deborah Russell and G. T. Gangemi, Sr., Computer Security 

Basics (New York: Thunder Mountain Press,1994) or John D. Howard, An Analysis of Security Incidents on the 

Internet 1989–1995, Ph.D. thesis, Department of Engineering and Public Policy, Carnegie Mellon University, April 7, 

1997. 
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system complexity increases, errors which directly or indirectly impact the security attributes of the system 

(Avižienis, Laprie et al. 2004; Nicol, Sanders et al. 2004). Security risk in terms of declining prospective 

confidentiality, integrity or availability can therefore be characterized as the divergence from an expected 

level of operation (even if not perfect operation) and the associated degradation of business value attributed 

to the otherwise successful operation the systems. Notionally, management is expecting some overall level 

of successful systems operation in order to support business needs. The divergence from expectation is 

what I will consider to be understood as risk, regardless of whether that risk can be measured or not. Stated 

another way, if there is no anticipated divergence in the actual performance or business outcome, there is 

no risk to manage. Operationally, practitioners accept that that the system will, within a defined period of 

time, likely operate either better than or worse than ‘expected’ and it is this inherent variability that I will 

characterize as ‘security risk’ (Rockafellar and Uryasev 2013). This research attempts to both model this 

risk, which is of growing interest in itself for security practitioners, and to consider how managers react to 

this risk in practice. 

 

 ‘Risk management’ for information security, is therefore a growing field of interest for business operators, 

system providers and customers since it represents a fiduciary duty within the institution to address the 

prospective liability of operating inherently risky systems to generate business value. Security risk 

management is typically based on some form of ‘threat and risk assessment’ approach which indicates that, 

for an assumed risk neutral decision maker, controls anticipated to be effective prospective data or system 

losses should be employed up to the value of the expected loss being protected against, whether that value 

is calculated quantitatively or qualitatively, and whether the loss is even stated explicitly since most 

operators accept that the resulting business operations will not turn out exactly as ‘expected’. 

 

It is axiomatic that the cost of a control should not exceed the expected value of the loss it is intended to 

protect. In practice, the prospective nature of both the control effectiveness and any associated attributable 

resulting loss is what essentially underpins the commonly understood notion of an ‘expected’ value and, for 

the purposes of this research, is what makes the decisional considerations interesting from both a 

psychological and economic perspective
3
. I will refer to the inputs to the loss value calculation as ‘risk 

factors’ (Fama and French 1993) consisting of a vector of business environmental and usage conditions and 

system states affecting the resulting probability and magnitude of a prospective business loss. In the 

prospective case, the value of an expected loss is understood as the probability of a threat acting on a 

system, process or control vulnerability likelihood, multiplied by the anticipated impact of the resulting 

business loss translated into a monetary measure should the threat actually be successful. It should be noted 

                                                                        
3 In practice, determining ex post, ‘root cause’, attribution between failed control(s) and business impacts is itself problematic in most 

cases where multiple controls are involved and where alignment between system monitoring and associated business operations may 

be weak. This will be discussed in the [next section] as a component of the decision maker’s inherent uncertainty over ex ante control 
selection and also presents challenges for lab experiments based on models which, while inherently causal in construction (even if 

stochastic or non-deterministic) may not be entirely accepted by lab participants as valid representations of connections between 

security controls and modelled losses. I will also return to this issue in Section [XX} in a discussion of Smith’s valuable cautions 
regarding divergence between theory and experiment (Harrison 2010; Smith 2010) 
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that, in this common information security risk model
4
, the absolute absence of one or more of these factors 

means that there is no meaningful qualitative or quantitative prospective loss to be anticipated. This is 

important from the perspective of risk modelling and the testing of decisions using risk models since 

particular controls involving absolute avoidance of certain system or business activity risk factors may be 

effectively employed in some circumstances which can effectively eliminate the risk. Disabling certain 

types of system networking, media use, or not engaging with third party suppliers, for example, are 

examples which essentially eliminate the associated risks (since the specific threat is not expected to occur 

if the activity generating the threat is not undertaken), although in practice this is recognized as either 

reducing business value (since some value generating activity may not be undertaken as a result) or leading 

to substitute activities which involve alternate risks. 

 

It is therefore fundamental to this research to recognize that the security risk management process – the 

identification of risk factors, qualitative or quantitative risk measurement, risk treatment via the ex-ante 

selection of controls, and ultimately risk acceptance by stakeholders - is fundamentally subject to inherent 

uncertainty, meaning that the actual stream of operational events and the performance of the selected 

controls should be expected to vary from the ‘average’ or typical outcome at the point of control selection 

due to a range of exogenous and endogenous factors which may occur over a specified future time period, 

and for which the probability distribution of occurrence may be essentially uncertain. For example, the 

threat to the data may be greater or less than expected (e.g. from a threat perspective, no one was actually 

interested in stealing the data, or did not attempt to do so with the frequency or intensity anticipated; or 

from a physical protections perspective, no fire actually broke out in the computer server room; etc.), or 

because the vulnerability of the data management system turns out to be greater or lesser than expected (i.e. 

the incumbent system or process to which the controls were applied is actually more or less vulnerable to 

misuse than estimated due to the actual efficacy of the control; etc.), or because the impact of any actual 

loss (as measured in, for example, dollars or operational time lost, embarrassment to the institution, 

inconvenience suffered by the customers, etc.) turns out to be greater or less than what was expected at the 

time the control was selected (Conrad 2005).  

 

As a matter of pure definition and also the implication for management’s consideration of risk factors, I 

will discuss the distinction between probability and likelihood at several junctions in the paper - for now I 

consider the term ‘probability’ to be descriptive for purposes of defining risk in the management context I 

am primarily concerned with. From management’s perspective, I also note that risk calculations are 

typically undertaken as, and therefore only yield, point estimates of ‘expected loss’ and, in my experience, 

risk is not well understood by practitioners to be represented using the 2
nd

 or higher moments of probability 

distributions, or as a range of random values generated from the joint probabilities of the threats, 

vulnerabilities and impacts or, even more generally, as a series of prospective, iterative outcomes. The 

                                                                        
4 http://www.nist.gov/cyberframework/  

http://www.nist.gov/cyberframework/
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immediate direct analog between daily system performance and attributable business losses to a time series 

of financial market returns, for example, where both are generated by combinations of known and unknown 

stochastic processes (even if the processes can be modelled) was a key insight and motivator for this 

research. From that perspective, it is my observation that few dominant practitioner security frameworks5 

take into consideration the inherent stochastic nature of the threat, vulnerability or impact risk factors or the 

resulting documented potential for bias in a practitioner decision maker attempting to prospectively select 

controls under conditions characterized by either known or uncertain risk factor probabilities. My overall 

hypothesis is therefore that due to the inherent prospective uncertainty of the risk factors in practice, 

information security controls may in fact be selected in a psychologically biased manner measured from 

some normative comparator and so careful consideration should therefore be given to the behavioural 

aspects of control selection under these conditions6.  

 

The uncertainty of the risk factors, within what is otherwise a valid information security risk management 

approach (Appari 2010), is what makes the task of control selection a process of decision making under 

conditions of uncertainty. Misperception of the moments of the frequency distribution of the incidence of 

any or all of the risk factors, or particularly of the joint probability distribution of the factors is likely to 

result in outcomes which make the investment in controls a risky bet. The analogous ‘asset allocation’ 

problem, here applied to security control ‘portfolio selection’ has strong analogs in behavioural finance 

experiments in connection with equity premia and portfolio optimization problems (Benartzi and Thaler 

1995) and the solution has characteristics similar to ‘dynamic asset allocation’ models which similarly 

incorporate ‘investor’ risk attitudes under conditions of market uncertainty (Dantzig and Infanger 1993; 

Infanger 2006). I am therefore interested in the extent to which management ‘bets’ on controls over time 

(where there are, practically, many of these bets involved, often in sequence, often informed sequentially as 

new controls become required and old controls perform or fail in the overall information risk management 

process) can be modeled as a series of economic trade-offs made under conditions of uncertainty, and 

whether the resulting descriptive theory of decision making can be modeled and the models estimated 

based on choice data derived from experimental lab procedures which reveal both the type and degree of 

decisional bias described in both the psychological and emergent behavioural economics literature. The 

overall research question addressed and the resulting contribution of this research is: Are information 

security managers biased and to what extent when making security control decisions under risk and 

uncertainty?  

                                                                        
5 See, for example,  http://www.cert.org/octave/  
6 Some alternative economic approaches to information security control selection are notable. See, for example, (Gordon and Loeb 

2002) who argue that there is a natural threshold level of optimal control selection regardless of the system risk profile. While they do 
not take into consideration a ‘behavioural’ approach to control selection, they do take an ‘economic approach’ to security outcome 

value maximization and argue that managers should generally concentrate on data and systems with midrange vulnerabilities, 

concluding that “…to maximize the expected benefit from investment to protect information, a firm should spend only a small fraction 
of the expected loss due to a security breach.”    

http://www.cert.org/octave/
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Considered Hypotheses 

Following the approaches of Antoniou, Andersen and Sen (Andersen, Harrison et al. 2006; Andersen, 

Harrison et al. 2007; Antoniou, Harrison et al. 2010; Sen 2010), several relevant hypotheses regarding 

security manager’s decision making biases have been considered in order to develop the associated lab 

experiments proposed in this research:  

 

1) Risk attitude and subjective estimates of security risk are equal under conditions of exogenous and 

endogenous risk (Sen 2010) 

2) Risk aversion is not equal over prospective operational gains versus security losses. (Sen 2010) 

3) Managers exhibit loss aversion and probability weighting over low vs. high probability security 

risks. (Andersen, Harrison et al. 2006) 

4) The strength and weight of quantitative estimates of security risk influence a manager’s subjective 

expected utility over control decisions. (Antoniou, Harrison et al. 2010) 

5) Managers are ‘ambiguity averse’ over quantitative estimates of security risk. (Andersen, Fountain 

et al. 2009) 

6) Prior outcomes affect a manager’s current security decisions. (Andersen, Harrison et al. 2006) 

7) A manager’s experience of significant security losses increases their risk aversion. (Sen 2010) 

8) A manager’s subjective prior estimate of risk declines over time. (Sen 2010) 

9) Managers integrate control choices over accumulated security gains or losses. (Andersen, Harrison 

et al. 2006) 

10) A manager’s reference point for control choices is not the marginal value of the current choice. 

(Andersen, Harrison et al. 2006) 

11) Loss averse managers tend to be more successful over time than non-loss averse managers. 

(Andersen, Harrison et al. 2006)   

12) Unitary groups of security decision makers exhibit less risk aversion than single decision makers. 

(Sen 2010)  

13) (A): Unitary groups of security decision makers operating without coordination over time (free-

riding) conditions exhibit more risk aversion than single decision makers. 

13) (B): Quasi-unitary groups of security decision makers operating without coordination over time 

(free-riding possible) conditions exhibit less risk aversion than consensus decision makers. 

14) Symplectic groups of security decision makers (i.e. with competing goals) exhibit more risk 

aversion than single decision makers.(Gordon, Loeb et al. 2008) 

15) Security managers behave according to RDU power utility for reported vs. recovered beliefs over continuous 

security loss distributions.  

 

16) Individuals who prefer lower risk will choose the more efficient risk management method (precaution vs. 

insurance) to accomplish this goal. 

 

 

 

Although certain hypotheses concerning risk attitudes can be potentially tested across different 

experiments, certain hypotheses are better tested using specific experiments which control for particular 

aspects of the risk and uncertainty associated with stochastic systems. The goal for this business 
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management research was to test a reasonable range of behavioural decision making hypotheses while also 

replicating a range of experiments that would be able to directly incorporate IT system simulation and the 

practitioner-relevant context of business losses attributable to security incidents. The resulting range of 

hypotheses, experiments and treatments have achieved a balance across these objectives which showcase 

the potential for this experimental approach to decision making under risk and uncertainty in the 

information security domain. The hypotheses specifically undertaken for this research are reviewed in 

detail in Section 7 and have been assigned to individual lab experiments detailed in Section 8. The results 

of all experiments are reported in Section 9.   
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2 – Literature Review 

 

This research involves a microeconomic approach to evaluating decision making over security controls 

which permits the modeling and estimation of decisional biases under conditions of uncertainty 

(Kunreuther and Heal 2003; Grossklags, Christin et al. 2008; Grossklags, Christin et al. 2008; Camp 2009; 

Grossklags, Johnson et al. 2010; Grossklags, Johnson et al. 2010; Johnson, Grossklags et al. 2010). Current 

legal and contractual information protection regimes require institutional administrators to interpret privacy 

and security requirements and to thereafter deploy controls over information assets which would be 

considered ‘appropriate’ from the normative perspective of these regimes within the specific operational 

circumstances of the firm controlling the information. The ‘uncertain’ circumstances include, but are not 

limited to: uncertainty with respect to the normative intent of the law; subjective interpretation of legal and 

contractual control requirements and compliance obligations; and an uncertain set of future system 

characteristics, internal and external system threats, and control performance results, most if not all of 

which are inherently stochastic. This uncertainty in operational results, combined with inherent decision 

maker risk attitudes and preferences is hypothesized to result in ‘biased’ decisions over controls otherwise 

designed to reduce attributed business losses resulting from uncertain system performance. My focus for 

investigation in this research is to determine how administrators can make better information security 

control decisions in the presence of these uncertainties and given the inherent decisional biases that may be 

present. The following literature review informs the construction of a formal, researchable research 

question and the resulting research methodology, data collection, compilation and analysis approach.  

 

Individual vs. Institutional Perspectives on Information Privacy and Security Assurance 

The modern legal rights of a person to control information about themselves arose out of the liberal 

democratic recognition of the liberty and dignity of the individual and were specifically interpreted within 

an American legal context at the end of the 19
th

 century to include a conception of the ‘inviolate 

personality’ (Warren and Brandeis 1890), including the privacy of the physical person, sanctity of the 

home, and the right to both personal and informational concealment and secrecy (Westin 1967; Richards 

and Solove 2007). Comparatively, English and European law has traditionally recognized (and continues to 

emphasize) a distinct individual right to control information about one’s private affairs or circumstances 

under conditions of disclosure to others which have been ‘undertaken in confidence’, thereby leading to 

expectations of ‘confidential relations’ and which therefore establish a corresponding fiduciary obligation 

or ‘trust within relationships’ between the individual to whom the information pertains and the receiving 

party in respect of the information exchanged (Schwartz 1994; Richards 2006; Richards and Solove 2007). 

Since the beginning of the 20
th

 century, Anglo-American jurisprudence and the resulting regulatory and 

contractual frameworks for privacy protections have diverged substantially over the inherent differences 

therefore arising between decisional privacy rights (the right to control or make decisions affecting the self) 

and informational privacy rights (the right to control personal information). The intersection of these 
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approaches continues to inform and shape scholarly debate regarding the objective and subjective 

valuations of personal information and the extent to which personal information ought to and can be 

practically controlled by the individual to whom the information pertains and, correspondingly, by those 

who are expected to use and disclose it under conditions of trust or confidence (Bennett 2000; Schwartz 

2000; Richards and Solove 2007). 

 

Driven by large scale commercial and non-commercial collection, use and disclosure of personal 

information by individuals, businesses and governments using increasingly networked electronic 

information management systems, the issue of how to enforce personal information rights from an ethical, 

legal, contractual and technological control perspective has resulted in a large body of information privacy 

and security literature developed by legal scholars, economists, sociologists, psychologists, institutional 

theorists, and information systems and security theorists, architects and technologists. My literature review 

references, as a starting point, the ‘privacy economics’ research being undertaken, for example, by 

Allesandro Acquisti at Carnegie Mellon
7
 and the ‘security economics’ research undertaken Ross Anderson 

at the University of Cambridge
8
 beginning in the late 1990s. Seminal papers referenced by these authors 

have been reviewed for connections across the fields of law, economics, economics and law, privacy, 

security, decision theory, and information and technology management. Given the diversity of both the 

social and technical sciences represented across my topic of interest, I have purposefully explored both the 

theoretical and empirical literature for all relevant topics since the emergent microeconomic models under 

examination explicitly attempt to account for institutional, psychological and decisional biases in the 

context of legal, contractual and operational information management risks. 

 

Opportunities for Information Privacy and Security Research in Healthcare Institutions  

My professional background is as the chief privacy officer in a large academic health sciences (research 

and teaching) hospital in Canada. Healthcare delivery markets are of increasing interest to privacy and 

security stakeholders since they manifest, and often magnify, many of the information risk management 

considerations which may be expected to motivate privacy concerns in the first place (Schwartz 1997): 1) 

the presence of subjectively sensitive, personally identifying information which is inherently required for 

the provision of healthcare services and the control of which impacts the informational privacy rights of 

individuals; 2) the increasing scale and scope of demand for healthcare services and associated service 

delivery infrastructures which are dependent on aggregated personal health information data banks 

involving millions of records; 3) the increasing demand for secondary use of personal information by 

governments and private institutions for research and planning purposes which, while often motivated from 

a public health or system planning perspective, is typically unrelated to the original purposes or contractual 

conditions under which the information was originally supplied by the patient to the healthcare provider 

(Bregman-Eschet 2006; Bellamy 2010); 4) increasingly decentralized but electronically networked health 

                                                                        
7 http://www.heinz.cmu.edu/~acquisti/economics-privacy.htm  
8 http://www.cl.cam.ac.uk/~rja14/econsec.html  

http://www.heinz.cmu.edu/~acquisti/economics-privacy.htm
http://www.cl.cam.ac.uk/~rja14/econsec.html
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information management systems and databanks which increase the inherent risk of the information 

management system as a whole, and therefore of privacy breaches resulting from loss of ‘security’ (loss of 

data or system confidentiality, integrity, accuracy or computability, or availability) (Appari 2006; Johnson 

2009; Appari 2010); and 5) the advent of specific statutory, regulatory, contractual and institutional policy 

regimes which seek to balance the privacy individuals with the flow of information necessary to support an 

optimally functioning healthcare delivery system and the realization of secondary social benefits such as 

public health tracking and chronic disease management (Anderson 1996; Schwartz 1997; Sage 1999; Sage 

2008; Miller and Tucker 2009; Bansal, Zahedi et al. 2010; Hall 2010). 

 

In terms of the amount and sensitivity of personal information involved, and the inherent security risks 

presented to the information by increasingly networked electronic medical records, healthcare information 

systems therefore present a valuable opportunity for research into how both individuals and institutions 

make decisions over the control of the information. Indeed, as a specific area for information security 

research, healthcare appears to be relatively under-examined to date versus traditional security research 

domains. As Appari notes: “Despite [this] growing stream of research on information security, very limited 

research has focused on studying information security risks in the healthcare sector, which is heavily 

regulated and calls upon business models different from other industries…Surprisingly, very little attention 

has been given to the economics of information security risks…” (Appari 2010).  

 

The Economics of Privacy 

From both a positive and normative perspective, the economics literature has been particularly instrumental 

in framing information privacy and security issues from the standpoint of a resource allocation problem, 

and offers valuable insights and methodologies for analyses of the problem of personal information 

protection and the associated prescriptive legal, policy, procedural and technological controls which would 

be appropriate under certain market conditions, all under the heading of the ‘economics of privacy’ 

(Posner 1978; Stigler 1980; Posner 1981; Laudon 1993; Varian 1996; Bennett 2000; Acquisti 2004; 

Hermalin and Katz 2004; Hui and Png 2005; Zhan and Rajamani 2008; Acquisti 2010; Appari 2010). 

 

According to Allesandro Acquisti: 

 

“Privacy economics deals with informational trade-offs: it tries to understand and sometimes 

quantify the costs and benefits that data subjects (as well as potential data holders) bear or enjoy 

when their personal information is either protected or shared. Privacy economics also tries to 

understand how to use market mechanisms, technology or policy to achieve a desirable balance 

between information revelation and protection, with satisfaction shared among the individual, 

organization and society as a whole”. (Acquisti 2009) 

 

In seeking a ‘balance between information revelation and protection’, the recognition here is that that data 

holders play a perhaps equally important part in both making decisions over and experiencing the results of 

controls, and that ‘satisfaction’ (possibly understood as ‘utility’ vs. ‘value’) is somehow divisible between 
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the decision makers. The claim is that microeconomic approaches to privacy assurance (and many existing 

legal and regulatory regimes which recognize individual information rights) essentially consider the 

effectiveness and efficiency of the market in internalizing Coasean-style ‘privacy externalities’ among the 

participants and must therefore proceed to specify optimal remedies from both the information supplier’s 

point of view (for example, a commercially transacting consumer using the Internet) and the person or 

organization obtaining access to the information for business purposes but whose custody and control 

potentially present an inherent information privacy risk to the owner of the information (for example, a 

bank or airline which shares information with marketing companies) (Coase 1960; Dahlman 1979; Acquisti 

2010). I will briefly review the essential aspects of this market mechanism before turning to the 

comparative economics of security.   

 

The microeconomic analysis of economic externalities has been undertaken in many markets including 

environmental protection and telecommunications regulation where unintended costs resulting from the 

underlying economic activity are incurred by a party who did not agree to the action, leading to several 

types of market inefficiencies (Pigou 1932; Coase 1960; Buchanan 1962; Baumol 1972; Dahlman 1979; 

Haddock 2003; Eagle 2004; Haddock 2007; Barnett 2009). From this economic analysis perspective, loss 

of control of personal information can be viewed as an unintended cost to the individual resulting from the 

underlying economic activity involving the use of the information and, in situations where losses affect 

many individuals, might be considered analogous to, for example, pollution production during 

manufacturing. From a privacy perspective, loss of control over information is therefore an externalized, 

non-priced cost imposed on the individual to whom the information pertains and who, in the absence of a 

legal or contractual means to assign the costs of the loss to the data custodian (i.e. without a corresponding 

ability to either charge the custodian for the loss or pay the custodian to prevent the loss), suffers the entire 

and often unforeseen consequences of the loss. Market ‘inefficiencies’ may also result from the expectation 

of loss on the part of the individual whom, in the absence of an ex ante ability to transfer liability for 

potential costs or an ex post ability to charge the data custodian for actual costs incurred may, for example, 

ex ante restrict the amount of socially optimal data provided to the market (Shapiro 1997). Healthcare 

regulators typically warn that patients who mistrust healthcare providers’ ability to confidentially manage 

their personal health information may restrict the supply of information or obfuscate key facts about 

themselves which may be perceived to be at greater risk creating unintended healthcare or other 

consequences for both the care provider and the patient.  

 

On the other hand, it has been argued that the achievement of optimal privacy protection does not require 

the establishment of legal or contractual property rights over the information, as long as the parties are able 

to successfully contract over the avoidance of loss and the costs to contract are (sufficiently) low or non-

existent (Hermalin and Katz 2004; Chellappa and Shivendu 2006). In reality, the ability of an individual or 

groups of persons to effectively contract for ex ante control over or ex post compensation for loss of their 
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confidential information is not costless (and may be entirely impracticable) in many markets and may 

therefore result in suboptimal welfare for either the individual or society in general, if not outright market 

failure (Kahn, McAndrews et al. 2000; Noam 2002; Schwartz 2004). Where markets for personal 

information subsequently fail due to inordinate transactions costs, lack of information symmetry or other 

factors
9
, and where the cost of failure is considered to be too large for one or more of the transacting parties 

to bear or is considered sub-optimal from a social welfare perspective, regulators have seen fit to rebalance 

interests by assigning specific regulatory property rights to individuals in their personal information with, 

at minimum, associated privacy assurance control obligations assigned to data custodians. The leading 

example of this has been the evolution of fair information handling practices (FIPs) which originated from 

OECD concerns over the privacy assurance of transnational data flows and has resulted in a set of 

principles, legislation and regulations governing the collection, use and disclosure of personal information 

within and between most Western jurisdictions since the early 1980’s. FIPs continue to strongly influence 

jurisdictional control over the institutional handling of personal information in both commercial and non-

commercial markets (Bennett 1992; Schwartz 1994; Rotenberg 2001; Prins 2006; Anderson, Böhme et al. 

2009; Mendez and Mendez 2010; Schwartz 2010). 

 

Several authors have concluded that some assignment of property rights over personal information, 

including legal rights of alienability (the ability to sell the rights to the information), and the associated 

incentives to protect personal information through the individual employment of controls (e.g. personal 

data encryption technologies or explicit contracting for the imposition of custodial controls) are necessary 

for the optimal management of personal information (Lessig 2000; Litman 2000; Samuelson 2000; Lessig 

2002; Schwartz 2004; Hall 2010). Others have argued that absolute assignment of property rights over 

personal information is impracticable and would result in pareto-inferior results for both individuals and 

society within the current context of interconnected electronic information sources and uses especially 

where prospective losses are difficult to estimate and liabilities cannot therefore be reliably assigned to 

individual custodial actors or institutions. A number of prominent authors argue that some restricted 

combination of property rights and industry regulation requiring the establishment of controls by 

custodians is pareto-superior to a purely market-based approach to data protection involving personal 

information (Schwartz 1997; Schwartz 2000; Rotenberg 2001; Rodwin 2010), and personal health 

information specifically (Schwartz 1997), although the effectiveness of ex ante regulation vs. ex post 

liability in achieving desired outcomes is unclear (Romanosky, Telang et al. 2008; Romanosky and 

Acquisti 2009; Romanosky 2010). Significantly, for the purposes of establishing my central hypotheses, it 

                                                                        
9
 Noam (2002) indicates several market requirements for ‘privacy transactions’ to materialize: 1) sufficiently low 

transaction costs; 2) a legal environment that permits transactions to be carried out; 3) an industry structure that permits 

transactions to occur; 4) symmetry of information among the transacting parties; and 5) no "market failure." Examples 

of market failure include the presence of externalities, free riding and moral hazards. For example, in a market where 

customers could pay to avoid telemarketing calls, it is possible that some unscrupulous marketers might call customers 

just to get them to pay to avoid the calls. The market ‘fails’ because the number of socially optimal unwanted calls 

would actually increase.    
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should be noted that most, if not all, of these studies do not consider whether the actors involved may be 

biased in their risk preferences and attitudes and therefore over prospective decisions over privacy or 

security outcomes and associated controls. This is important to this research since Coasean predictions of 

preference and behaviour have been tested and found wanting (Kahneman, Knetsch et al. 1990) and should 

therefore be taken into consideration, if not explicitly modelled, when predicting behaviour under 

circumstances where existing privacy and security regulations may affect transactions costs, informational 

rights endowments and opportunity costs of control for both individuals and information custodians. Jolls et 

al comment on the failure of Coase in making predictions in situations where there may be real differences 

in the way people react to perceived wealth effects and opportunity costs: “Many economists and 

economically oriented lawyers think of the Coase theorem as a tautology; if there were really no transaction 

costs (and no wealth effects), and if an alternative allocation of resources would make some agents better 

off and none worse off, then of course the agents would move to that allocation. Careful empirical study, 

however, shows that the Coase theorem is not a tautology; indeed, it can lead to inaccurate predictions. 

That is, even when transaction costs and wealth effects are known to be zero, initial entitlements alter the 

final allocation of resources. These results are predicted by behavioural economics, which emphasizes the 

difference between opportunity and out-of-pocket costs. (Jolls, Sunstein et al. 1998) 

 

The Economics of Security 

The potential failure to protect individual privacy can also be viewed uniquely from the perspective of the 

data custodian with the associated change in emphasis from that of individual privacy assurance to one of 

institutional data security assurance, associated risk management approaches and managerial decision 

making over data management controls. The selection of perspective is instrumental in understanding 

emerging opportunities for information privacy and security research where the control decision criteria 

and control selection methods used by data custodians, as well as the actual resulting controls and control 

performance, may be expected to be inherently different than that of an individual (or groups of 

individuals) who have a claim to only a portion of the data under institutional custody at any one time. The 

information security literature is also based on several considerations which permit an economic analysis of 

the relevant information control issues based on: 1) the managerial decision makers’ relative valuations of 

the information in use; 2) the implied or expressed ethical, legal and contractual ‘property rights’ over the 

information within the context of a confidential relationship; 3) the managerial decision makers’  

interpretations of the resulting business outcome objectives and normative information control obligations 

and; 4) the managerial decision makers’ subjective expectations over prospective information threats, 

vulnerabilities and the likelihood and impact of experiencing an information loss scenario; and 5) the 

respective the managerial decisions regarding the means to control and thereby optimize the expected net 

benefits derived from the use and sharing of confidential information under secure conditions. 
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The shift in perspective from individual privacy to institutional security assurance therefore allows for an 

analysis of managerial, firm and industry implications from the broader (and for my purposes, more 

practical) perspective of the ‘economics of security’ (Soo Hoo 2000; Anderson 2001; Gordon and Loeb 

2002; Cavusoglu, Mishra et al. 2004; Anderson and Moore 2006; Gordon and Loeb 2006; Cavusoglu, 

Raghunathan et al. 2008; Acquisti, John et al. 2009; Appari 2010). Ross Anderson and others define the 

economics of security in terms of the incentives to secure data and systems from loss (Anderson and Moore 

2006; Camp 2006; Anderson and Moore 2007): 

 

According to one common view, information security comes down to technical measures. Given 

better access control policy models, formal proofs of crypto-graphic protocols, approved firewalls, 

better ways of detecting intrusions and malicious code, and better tools for system evaluation and 

assurance, the problems can be solved. … I put forward a contrary view: information insecurity is at 

least as much due to perverse incentives. Many of the problems can be explained more clearly and 

convincingly using the language of microeconomics: network externalities, asymmetric information, 

moral hazard, adverse selection, liability dumping and the tragedy of the commons. (Anderson 2001)   

      

Approaching this research from the perspective of the economics of security further differentiates this work 

from studies of privacy assurance by the fact that businesses and government employ managers who are 

responsible and accountable on behalf of the institution for making decisions over the selection, 

specification, deployment, management and performance of information controls and who might therefore 

be expected to introduce subjective decisional perspectives including risk preferences and attitudes 

regarding the control of the information (Hirshleifer 1971; Hirshleifer 1980; Stigler 1980; Eisenhardt 1989; 

Robey and Boudreau 1999; D’Arcy 2009). In this research, I am therefore interested in examining 

managers’ decisional perspectives, attitudes and decision making methods which may be subject to 

institutional effects including agency bias and other behavioural economic factors which have been 

demonstrated in other institutional management settings to impact portfolio allocation decisions (here 

notionally represented by a prospective portfolio of security controls) by affecting risk attitudes and 

associated risk behaviours. A number of behavioural and functional models can be employed which have 

direct application to the topic, including institutional and agency theory (Meyer and Rowan 1977; 

DiMaggio 1983; Zucker 1987; Eisenhardt 1989; Robey and Boudreau 1999; Appari 2009); actor-network 

theory (Bonner and Chiasson 2005; Latour 2005; Bonner, Chiasson et al. 2009; Law 2009); behavioural 

economics, including behavioural law and economics (Jolls, Sunstein et al. 1998; Mullainathan 2000; 

Acquisti and Grossklags 2006) and decision making under uncertainty (Ellsberg 1961; Kahneman 1979; 

Thaler 1981). Furthermore, I propose that many of the emergent theoretical and experimental approaches to 

analyzing the economics of privacy which incorporate behavioural influences on decision making under 

conditions of uncertainty undertaken by Acquisti and others (Acquisti 2004; Acquisti 2005; Acquisti and 

Grossklags 2005; Acquisti and Grossklags 2006; Acquisti, John et al. 2009; Bansal, Zahedi et al. 2010) 

might be applicable to the study of the control selection behaviour of security managers as they attempt to 

balance informational management priorities with other institutional objectives. 
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Apart from purely theoretical economic models of security management, from an operational standpoint 

there are numerous emerging models for both qualitative and quantitative decision making regarding 

security controls. Immediate issues arise in practice when attempting to evaluate either inputs or outcomes 

from security alternatives, some of which are inherent in the complexity of the systems that are under 

control. On the other hand, it would seem that, regardless of the explicit approach taken, there is an 

increasing need for quantification of the problem, and a need to express degrees of ‘satisfaction’ across 

alternatives in the context of what are inherently uncertain circumstances. Quantification remains 

stubbornly elusive in many non-trivial institutional settings.  “[Actual] decision makers need information 

about the utility, such as the reliability or estimated costs and impacts, of different security options to make 

appropriate decisions. Quantification has been suggested as a solution to such needs” (Soo Hoo 2000; 

Verendel 2009). Methodologically, quantitative approaches to system security evaluation represent a 

relatively recent area of study and the relevant survey literature indicates that many quantitative approaches 

have grown out of comparatively static system dependability/fault models which, for example, do not 

generally incorporate core features of the ‘security problem’ such as stochastic, external threat models or 

control attributes (Nicol, Sanders et al. 2004; Conrad 2005) or ‘strategic’ approaches to managerial 

decision making within real life security contexts (Kunreuther and Heal 2003; Verendel 2009).  In addition, 

there are basic challenges in establishing meaningful security metrics which would support robust 

quantification of security risks. Verendel’s survey work reviewed 90 quantitative security papers between 

1981 and 2008 to evaluate whether security can be represented using quantitative information and 

concluded that “…quantified security is a weak hypothesis: for most cases it is unknown if the methods are 

valid or not in representing operational security.” (Verendel 2009).  There are also relatively few recent 

examples of quantitative approaches to security risk management involving conceptions of economic trade-

offs under conditions of loss uncertainty (Grossklags, Johnson et al. 2010; Johnson, Grossklags et al. 2010), 

or which explicitly include managerial decision bias in the perception of security risk (Blakley, McDermott 

et al. 2001; Schechter 2004; Conrad 2005; Schechter 2005; Schroeder 2005; Huang, Hu et al. 2006; 

Sklavos 2006; Grunske and Joyce 2008; Verendel 2008; Beres, Casassa Mont et al. 2009; Verendel 2009).  

 

There are, nonetheless, recent and specific approaches in the literature to qualitative and quantitative 

security risk management models which incorporate some of the behavioural and institutional bias effects 

noted above (Cavusoglu, Mishra et al. 2004; Cavusoglu 2006; Poindexter, Earp et al. 2006; Beautement, 

Sasse et al. 2008; Cavusoglu, Raghunathan et al. 2008; Beautement, Coles et al. 2009; Beautement and 

Pym 2010). In addition, certain qualitative approaches to examining individual decisional bias from the 

economics of privacy literature can be modified to specifically address security decision making by 

institutional managers. Acquisti, for example, has been instrumental in developing novel experimental 

designs demonstrating decisional bias for individuals faced with making privacy control decisions, 

although his focus is almost exclusively on the person to whom the information pertains (Acquisti 2004; 

Acquisti 2005). I propose that there are also seminal examples of economic lab experiments undertaken to 
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determine general deviations from expected utility theory and rational choice assumptions which could be 

modified and used as a basis for determining risk preference and decisional bias in security managers 

(Kagel and Roth 1995; Jolls, Sunstein et al. 1998). 

 

There are several representative studies of the qualitative analysis and quantitative modeling of information 

security decision bias in the recent literature which have been reviewed in depth for their applicability to 

this research.  Soo Hoo presents one of the earliest security decision analyses which questions the 

traditional use of established “annual loss expectancy” form quantitative estimates of risk (Soo Hoo 2000). 

Schroeder conducted a qualitative survey for security control selection using non-professional subjects 

(Schroeder 2005) utilizing virtually the identical questionnaire panel originally utilized in Kahneman and 

Tyversky’s seminal work on prospect theory (Kahneman 1979), modified for an information security 

context. Verendel directly addresses a prospect theory approach to security decision making under 

conditions of uncertainty which reframes the decisions explicitly in terms of the perceived security risk. 

(Verendel 2008). This approach, acknowledging the limitations of obtaining accurate security metrics, 

indicates that, even with accurate metrics, there is value in understanding the potential for bias in the 

decision maker in order to make accurate predictions of utility maximization. This seems to be an 

appropriate approach within this research for describing how managers do and ought to make privacy and 

security decisions under conditions of uncertainty.  As noted by Jolls et al, an emphasis on the predictive 

value of the chosen model without the practical ability to generate accurate security risk measures is an 

important aspect of taking a behavioural approach to positive economics: “The difference between 

conventional and behavioural [law and] economics is not just a difference in the validity of the assumptions 

about human behaviour. While the [traditional] assumptions of unbounded rationality, willpower, and self-

interest are unrealistic, the force of behavioural economics comes from the difference in its predictions … 

In this sense [this approach] is consistent with the precept originally proposed by Milton Friedman: 

Economics should not be judged on whether the assumptions are realistic or valid, but rather on the quality 

of its predictions.” (Jolls, Sunstein et al. 1998). 

 

Antoniou’s (Antoniou 2010; Antoniou, Harrison et al. 2010) doctoral dissertation undertook considerable 

research within the seminal and recent decision making literature which establishes the perspective that 

behavioural decision research challenges traditional neoclassical economic assumptions of expected utility 

maximization (von Neumann 1947): specifically, the assumption that decision makers are able to 

consistently apply Bayes Rule to estimate unobservable probability distributions and that they update their 

expectations of, in this case, future financial asset prices by accurately incorporating new market 

information over time, leading to alternative models of utility and risk attitude formation (Simon 1955; 

Savage 1971).  Antoniou, Harris and (and others) appropriately note that ‘experimental economics’ 

approaches specifically seek to qualify many of the psychological experimental methods (e.g. by providing 

monetary incentives to subjects to avoid hypothetical decisions, etc.) and, even if sound, are inherently 
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revisionist compared to much of the established decision making research literature. For the core of the 

empirical studies undertaken, Antoniou correctly cites three biases from the seminal literature which may, 

in fact, be observed to operate in financial and here, I propose, with direct analogs in security ‘markets’ 

involving decision making under uncertainty (Hirshleifer 2001) and provides relevant theoretical and 

empirical research references for each bias discussed and directly addresses each of these in turn: 1) 

heuristic simplification (Tversky and Kahneman 1974), specifically involving subjective estimates of the 

strength and weight of information (Griffin and Tversky 1992) and leading to over or under reaction and 

associated pricing changes (Barberis, Shleifer et al. 1998; Sorescu and Subrahmanyam 2006); 2) self-

deception, manifesting as investor ambiguity aversion to noisy information (Gilboa and Schmeidler 1989) 

leading to ‘market’ pessimism and correction (Camerer and Weber 1992); and 3) investor sentiment, 

resulting from decision maker optimism and overconfidence (Johnson and Tversky 1983) and resulting in 

serially correlated price changes and price momentum (Daniel, Hirshleifer et al. 1998). 

 

The most basic of the biases is risk attitude or preference, generally expressed as the degree to which a 

decision maker is either relatively ‘risk averse’ or ‘risk seeking’ over either risky or uncertain prospects. 

Bernoulli proposed and Von Neumann formalized the axioms under known probabilities in which a 

decision maker would reveal the ‘certainty equivalent’ of the expected value of a risky lottery which 

defined the ‘expected utility’ of the risky decision for the decision maker (von Neumann 1947). 

Correspondingly, a person, when asked to choose between either a sure money equivalent or a lottery based 

on probabilities of outcomes in which the two choices have the same expected value, who subsequently 

chooses the sure money equivalent is deemed ‘risk averse’, whereas the one who chooses the lottery is 

deemed ‘risk seeking’ (at least for the single choice presented). What is revealed is the person’s subjective 

valuation of the expected value of the lottery which, if the decision maker correctly understands the game, 

will never actually occur in practice: rather, one of the discrete risky outcomes will occur and the decision 

maker understands it will never be equivalent to the sure money option (except as an average measure over 

many repeated games or unless the lottery choice is trivial where one of the outcomes will occur with a 

100% probability and is technically equal to the sure money outcome). Savage proposed that this subjective 

calculation will occur even in the absence of certain probabilities i.e. under conditions of uncertainty, 

where the decision maker will behave ‘as if’ he or she held consistent beliefs regarding the underlying 

probabilities and will always hold a subjective expected utility over the prospect. If the game were 

repeated, Savage also proposed that the decision maker would update their beliefs regarding the underlying 

probabilities in a manner consistent with Bayes theorem. This normative perspective on decision making 

under uncertainty was tested by Allais and Ellsberg who showed that individual violations of one or more 

of the axioms indicated that subjective expected utility did not in fact hold in all decision cases and that 

other decisional biases (Ambiguity aversion, probability weighting, Loss aversion, etc.) were in play, 

leading to alternative theories of choice (e.g. Ranked Dependent Utility). 
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In the context of ambiguity aversion for example, Antoniou cites seminal work by Fischer Black which first 

identified the problem investors face attempting to separate market signal from noise (Black 1986) and 

which leads to decision making using information they believe to be true using heuristics identified in both 

the psychological and behavioural economics literature. Antoniou also references the seminal theoretical 

psychological and economic literature on ambiguity aversion (Ellsberg 1961; Savage 1971), provides 

substantive references for more recent theoretical and empirical literature surveys (Camerer and Weber 

1992) and outlines the psychological and economic experiment foundations for explaining the bias 

phenomenon (Keren and Gerritsen 1999). He also cites similar studies which incorporate ambiguity 

aversion within asset markets and which inform several market anomalies such as the equity premium 

puzzle (Mehra and Prescott 1985). If ambiguity bias is indeed present, then decision makers should be 

expected to predictably respond pessimistically to noisy signals and ‘market’ investors (here taken as 

control decision makers in a security setting) can therefore expect a period of price declines (under 

investment in control) followed by a correction as ‘prices’ (the value of control investment) adjust to actual 

information received over time (DeBondt and Thaler 1985). 

 

From a bias quantification perspective, Glenn Harrison has been particularly prolific in developing 

experimental methods for testing and modelling risk attitudes and biases using lab experiments (Harrison 

and McKee 1985; Harrison 1994; Harrison and Rutström 2008). His contributions to my approach are 

many and form a significant basis for both methodology and analysis, here directly applied within the 

context of information security control selection. First, he emphasizes that experimental methods in 

behavioural economics must be carefully matched to the theoretical model of decision making being 

hypothesized since the subject’s experience of the experiment may not be the same as that intended by the 

researcher (Harrison 2010; Smith 2010). Second, rather than assuming risk attitude, he argues that risk 

attitude should (almost always) be estimated within a structural
10

 utility model, since other model 

parameters will be biased if the subject’s risk attitude is incorrectly assumed (Harrison 1986; Wilcox 2008; 

Keane 2010; Quinn 2011). Third, he advocates the use of mixed structural models of latent choice, for 

example combining expected utility theory (EUT) and prospect theory (PT) specifications within the same 

structural model, with a weighting function, to allow for heterogeneity between theories of choice within a 

sample (Harrison and Rutström 2009). Fourth, he advocates the joint estimation of the parameters of a 

complete structural model rather than using non-nested approaches for model selection and hypothesis 

testing (Harrison and Rutström 2008). He also provides important guidance on the treatment of model 

errors which, in an experimental context concerning latent choice modeling, likely reflect a much wider 

range of effects aside from stochastic sampling errors (Harrison 2010). Finally, Harrison has fully 

                                                                        
10

 Quinn: “There is no single, simple definition of what constitutes a structural model…we will consider a structural 

model to be any economic model that specifies a theory about how agents optimize and then use the implications of 

that theory literally as a basis for empirical estimation. In doing so, structural models often try to estimate ‘deep 

parameters’ governing human behaviour (for example, the return to capital, or preferences over risk) rather than merely 

identifying particular causal relationships in a particular context (for example, the ‘average treatment effect’ of a given 

policy on some outcome)”. (Quinn 2011) 
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documented many of his experiments, including detailed specification of ‘linking functions’ in the context 

of binary choice experiments which permit the maximum likelihood estimation of the proposed structural 

choice models and form the crucial bridge between theory and econometrics in his experiments. Through 

personal correspondence he has also provided source code and data from his experiments for estimation of 

the models using STATA (Harrison 2008), and has provided me with guidance regarding appropriate 

customization of the code in practice and advice on sampling and statistical testing. Details of the Harrison 

approach and the applicability within this research are described in more depth in Section 3.  

 

Control Choice Under Risk and Uncertainty Using System Simulation 

As noted above, the drive for quantification of security risk and the associated economic evaluation of 

control choice alternatives is valuable for management in terms of providing a better means to compare 

control alternatives, even if perception of the risks and the resulting control choices may be subject to 

individual psychological bias or institutional decision making effects. A key problem with the approach is 

therefore to obtain sufficient and robust enough operational data to establish a risk profile of the security 

operation in question. Several authors have recently argued for the use of system simulation to solve the 

problem, both in the field and in the lab. A collection of researchers connected with HP labs in the UK have 

contributed to the use of both simulation models in the context of ‘complex, multi-attribute” decision 

theory for security control research. Following on the multi-attribute trade-off modeling of Keeney 

(Keeney 1982; Keeney 1993), and the formalized information systems modeling work of Collinson 

(Collinson, Monahan et al. 2009), Beautement undertook several studies involving the specification of a 

system at risk incorporating a utility framework for decision over control selection where the trade-off 

between system confidentiality and availability given that a level of investment in security control is 

analogous to the trade-off between inflation and unemployment based on setting interest rates (Beautement, 

Coles et al. 2009; Beautement and Pym 2010). Ioannidis has also explored security control selection as a 

utility maximization problem under uncertainty incorporating loss aversion (Ioannidis, Pym et al. 2011) and 

specifically analyses the trade-offs in a security CIA context using quadratic loss functions  (Zellner 1986; 

Ioannidis, Pym et al. 2009). Beres also specifies the control selection problem in terms of ‘loss functions’ 

and conducts a qualitative survey of risk preferences and compares these to ‘optimal’ solutions obtained by 

a Monte Carlo simulation of the HP “Gnosis” security simulation model (Beres, Casassa Mont et al. 2009; 

Beresnevichiene, Pym et al. 2010). Baldwin also conducted a qualitative decision experiment which 

divided 12 decision makers between a control group and an ‘intervention’ group that undertook decisions 

after using a decision support tool driven by an HP simulation model of the relevant system risks (Baldwin, 

Beres et al. 2011). The intervention group gave markedly higher weight to the ‘economic’ trade-offs 

incorporated into the simulation between control cost, productivity and security outcomes than the control 

group.   
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The use of simulations as the setting for control decisions has also been explored in areas of public policy, 

notably environmental policy in which the underlying system at risk may be relatively complex and where 

endogeneity of risk is a factor. In his doctoral dissertation supervised by Harrison, Sen (Sen 2010) has 

replicated a study by Fiore (Fiore, Harrison et al. 2009) which provides a lab experiment methodology 

incorporating binary choice over “endogenous risk” and is directly applicable for my purposes. Risk is 

endogenous when an individual is able to undertake mitigation or self-protection actions, including self-

protection and self-insurance, that reduce the risk that he faces and is therefore a valid frame for economic 

decisions over security controls which mitigate risk (Ehrlich and Becker 1972; Shogren and Crocker 1991; 

Quiggin 2002). Indeed, the relatively recent increased attention being paid to ‘cyber-insurance’ is itself 

indicative of a maturing market for security control selection in which decision makers may be expected to 

balance a portfolio of controls between traditional self-protection (e.g. detective or preventative security 

controls) and insurance (including self-insurance) ranging from compensating and recovery controls to  

business or operational loss cyber insurance. I will return in depth to this aspect of the control portfolio in 

Game 5 concerning the cyber insurance experiment. 

 

Controlling for endogeneity of risk is therefore important within this management domain and includes 

psychological aspects of decisional bias such as moral hazard effects and overconfidence (Antoniou 2010). 

The use of system simulation to generate a wide range of risk scenarios which supports specific risk inputs 

and outputs and which can incorporate specific panels of controls presents a valuable platform for security 

control experimentation. The analog to established experiments in other domains also supports the ability to 

benchmark against similar decisional bias hypotheses, here applied to the domain of information security. 

Sen, for example (Sen 2010), utilizes a computer based, 3D ‘virtual reality’ simulation of a forest ‘system’ 

at risk of wildfire within which the decision maker owns a house, and for which the subject must decide 

whether to purchase a fire prevention control (in this case a ‘controlled burn’ to decrease the proximate fire 

fuel from the area surrounding the house) which lowers but does not eliminate the likelihood that the house 

will burn down if there is a wildfire. As a matter of overall approach, Sen’s hypotheses, experimental setup, 

data modeling and analyses are highly appropriate as a methodological guide for my research model and 

design, with the noted modifications I detail in Section 3. Sen’s approach also concerns both individual and 

group decision making under conditions involving known and unknown (subjective) risk estimation and 

employs Harrison’s generalized approach to modeling and estimation of risk attitude.  

Sen’s inclusion of group decision making treatments and allowance for the possibility of decisional biases 

is also motivated by relatively recent research interest in the area of behavioural economics. In his survey 

of the area, Kugler notes that 

 

Traditional game theory, the science of rational behaviour in interactive [group] settings, makes a 

few assumptions—mostly based on the concept of homo-economicus…If one accepts these 

assumptions, comparing the behaviour of individual decision makers and the behaviour of unitary 
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groups11 seems almost dull. When there is a unique game-theoretic equilibrium or optimal choice, 

both individuals and groups should follow the normative prediction, and [aside from the relatively 

small number of multiple equilibria scenarios] their choices should not differ at all…Considering 

the enormous recent body of literature on individual behaviour in interactive contexts, it becomes 

clear that while traditional game theory is still very useful as a normative theory, it fares less well as 

a descriptive tool. If game theory is expected to provide a realistic account of human behaviour, its 

assumptions have to be adjusted. One should take into account heterogeneity in levels of rationality, 

different extents of other-regarding preferences, and different forms of uncertainty attitudes among 

decision makers. Once these assumptions are integrated into classical game theory, the analysis of 

group decision making becomes interesting and important. Therefore, investigating group decisions 

in games has slowly picked up in the late 1990s and after the turn of the century, leading Camerer 

in his widely-used textbook Behavioural Game Theory to conclude that the study of group 

decisions making is among the top ten research programs in behavioural and experimental 

economics. (Kugler, Kausel et al. 2010)  

 

Finally, an interesting extension of the ‘unitary group’ model for decision making is that premised on 

principal-agent theory (Myerson 1982). Gordon suggests a principal-agent model based on CFO monitoring 

of security risk profiles and associated compensation incentives for security officers as a check against 

‘empire building’ i.e. over spending on controls (Gordon, Loeb et al. 2008). This approach recognizes that 

group members may have different objectives in terms of utility maximization and that unitary decision 

experiments may not be the best model to represent actual security decision tasks Gordon has also proposed 

several other conditioning factors on the control allocation task, including real options considerations 

(Gordon, Loeb et al. 2003) and their controversial finding that for certain classes of vulnerabilities, the 

optimal control investment does not exceed a 1/e fraction (about 36%) of the total value at risk (Gordon 

and Loeb 2002). Willemson and others have commented on the sensitivity of the Gordon and Loeb model 

to underlying assumptions regarding the specific functional form of the effect of controls on the 

vulnerability (i.e. typically, increasing at a decreasing rate) and show that the conclusion may not be robust 

for all plausible vulnerability models. 

  

                                                                        
11 A unitary group is a group that has to come up with a joint decision and does not face any internal conflicts of interests in terms of 
payoffs.   
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3 – Methodology 

 

Empirical Approaches to Decision Research 

The framework for understanding and choosing an appropriate research model applicable to my research 

topic starts with a specific perspective on the philosophy of science and the philosophy of research. The 

philosophy of science involves both an epistemology (What is knowledge? How is knowledge acquired? 

How do we know what we know?) and a methodology for the actual acquisition of knowledge. According 

to Karl Popper, a scientific approach to knowledge requires a ‘logically consistent portrait of the world’ 

with validation based on evidence and empirical falsification of theory, a view originally proposed by 

David Hume in the 1740s. For Hume, everything else is natural philosophy or metaphysics: non-

observational and, therefore, to Hume, largely ‘nonsense’. 

 

In my field of interest, the paradigm of the decision maker – in this case, of an information manager with 

both a fiduciary and (we assume) a personal interest in the prospective success of the security controls to be 

decided upon - is normatively based on the established economic theory of the rational utility maximizer 

(von Neumann 1947). This theory has encountered substantial challenges since the early 1950s (Simon 

1955) and has, arguably, undergone a substantial paradigm shift (Kuhn 1962) with the increased interest in 

descriptive vs. normative theories of decision making.
12

 That is, based on the actually observed evidence of 

decisions being made ‘in the field’, we start by questioning whether the presumed decision theory is sound 

and are therefore open to its testing and possible revision with specific implications for our view of the 

security  administrator and his/her ‘administrative’ world. The starting point for consideration of the 

security decision problem is to essentially recognize the difference between decisions made under known 

probabilities of outcomes (risk) and that class of problems involving unknown probabilities (uncertainty) 13. 

What I am examining, here in the context of security control choice, is therefore alternate theories of 

decision making which are required to explain a particular class of decisional problems including, but not 

restricted to, choice under uncertainty where, for example, the expected utility of a discrete decision (as in 

Bernoulli’s St. Petersburg Paradox) is observed to measurably deviate from its expected value (as proposed 

in Pascal’s Wager)
14

. The overall question is whether and to what degree these ‘deviations’ may be present 

                                                                        
12 According to Simon: “Recent developments in economics, and particularly in the theory of the business firm, have raised great 

doubts as to whether this schematized model of economic man provides a suitable foundation on which to erect a theory - whether it 

be a theory of how firms do behave, or of how they “should” rationally behave. It is not the purpose of this paper to discuss these 

doubts, or to determine whether they are justified. Rather, I shall assume that the concept of “economic man” (and, I might add, of his 
brother “administrative man”) is in need of fairly drastic revision, and shall put forth some suggestions as to the direction the revision 

might take…Broadly stated, the task is to replace the global rationality of economic man with a kind of rational behaviour that is 

compatible with the access to information and the computational capacities that are actually possessed by organisms [emphasis 
added], including man, in the kinds of environments in which such organisms exist.” (Simon 1955)  
13 According to the economist Frank Knight, uncertainty is different from risk, in which there is a specific probability assigned to each 

outcome (as when flipping a fair coin). Uncertainty involves a situation that involves unknown probabilities, and where the estimated 
probabilities of a closed set of possible outcomes need not add to unity from the perspective of the decision maker. See Knight, F.H. 

(1921) Risk, Uncertainty, and Profit. Boston, MA: Hart, Schaffner & Marx; Houghton Mifflin Company 
14 Generally, this class of decisions include: single choice under uncertainty ((Brooke 2010); intertemporal choice (Acquisti and 
Grossklags 2003); strategic decision making, generally with two or more decision makers either cooperatively or in competition 



  23  

in the domain of security control choice. The pertinent scientific questions for this research are therefore: 1) 

Which philosophy of research and which research methodology, including the choice of quantitative and 

qualitative methods for data collection and analysis, is appropriate for describing these decision making 

processes?; and 2) within the context of organizations who need to make security choices, what are the 

normative implications of these research findings for managers and institutions who, presumably, want to 

make better informational control decisions?  

 

The dominant research approaches for assessing theoretical claims are positivism and, variously, 

interpretivism
15

 and its philosophical and practical middle ground, relativism. Positivist approaches assume 

that the researcher can objectively collect data, form hypotheses, test hypotheses and either accept or reject 

hypotheses on the basis of the data and that the results are generalizable outside of the research frame. 

Interpretivism assumes that human behaviour cannot be observed (or described) objectively and so the 

researcher should not presuppose a causal structure (or therefore propose a hypothesis based on an 

assumed causal structure), but rather seek to reveal the ‘hidden generative structures’ of what are (at least 

within business research) essentially social phenomena. Results of interpretivist research may therefore not 

be generalizable outside of the observed behaviour, but are also not expected to be since there are no 

presupposed generalized phenomena to discover. Extensions of the interpretivist approach essentially reject 

the empirical approach to measuring social phenomena entirely, and are exemplified by Jurgen Habermas’ 

view that social science and ‘described’ history (and so business research) can only have a “…situation-

specific understanding of meaning that can be explicated only hermeneutically... access to a symbolically 

pre-structured reality cannot be gained by observation alone”
 16

 (Habermas 1967). Interpretivist research 

into economics, business and, specifically, information technologies is, however, well represented in the 

research literature and include agency theory (Eisenhardt 1989), institutionalism and neo-institutionalism 

(Meyer and Rowan 1977; DiMaggio 1983) and actor-network theory (Latour 2005; Bonner, Chiasson et al. 

2009; Law 2009). Relativism appears as a compromise between positivism and interpretivism for business 

research and assumes that structure is, to a certain extent, discoverable, objectively describable, somewhat 

causal and, possibly, generalizable, but requires the researcher to carefully balance both positivist and 

interpretivist approaches within the study.  

 

As will be noted below, the observed gaps between the normative theory and the descriptive realities of 

decision making led early researchers to the development of lab experiments in both psychology and 

economics which directly supported empirical decision research and which forms the basis for quantitative 

                                                                                                                                                                                                                     
involving Nash or non-Nash equilibria  (Rosenthal 1989); and ‘complex decisions’ where the optimal behaviour or outcome is 

dependent on ‘multi-stakeholder, multi-objective, multi-attribute’ models (Keeney 1993).      
15 This branch is also referenced, variously, under the topics of Phenomenalism, Subjectivism, Subjective Idealism, Anti-Positivism, 
Post-Positivism, Subjective Idealism, Sociological Interpretivism, Interactionism, and others.  
16 Hermeneutics refers to the interpretation of texts or events which can only be understood as a product of the culture, symbols and 

signs which produce them. It is also one of the bases of critical theory postmodern critical research in which the rejects the idea that a 
researcher’s work is considered an “objective depiction of a stable other” (Lindlof and Taylor 2002) 
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experimental economics. This research will therefore take a positivist (quantitative) approach using an 

experimental strategy following Yin indicated in Table 1:      

 

Table 1 - Research Strategies 

 
Type of Research 

Question 

Control Over 

Event 

Contemporary 

Event 
Used in this thesis 

Experimental How, why Yes Yes Yes 

Archival 
Who, what, where, 

how many/much 
No Yes No 

History How, why No No No 

Case Study How, why No Yes Yes 

(Yin 2013) from (Johansson 2005) 

 

The following sections outline this evolution, identify seminal experimental approaches relevant to my 

topic and provide a basis for my proposed experimental approach based on integrating current work in both 

experimental economics and the economics of information security.     

 

 

Psychological and Economic Considerations for Decision Making Under Uncertainty  

This research addresses the potential for, modeling, parameter estimation and implications of the presence 

of cognitive biases
17

 in decision making, generally under conditions of uncertainty, in the context of 

information security control selection. My literature review to date documents that bias can be expected to 

be present in decisions made by individuals over control of their own personal information (Acquisti 2010; 

Baddeley 2010; Rivenbark 2011), however my focus is exclusively on institutional agents, specifically 

privacy, security or chief information/technology officers. These persons are tasked with the appropriate 

selection of institutional information security controls which are intended to protect the information 

entrusted to them by other individuals, and who may encounter both endogenous and exogenous constraints 

(whether perceived or otherwise) within the applicable decision making environments and processes. One 

of the most significant endogenous constraints identified in the literature and successfully experimentally 

elicited in both lab and field settings is the potential bias of the decision maker, for which the literature 

identifies several dimensions (Jolls, Sunstein et al. 1998): 1) bounded rationality, as first introduced by 

Herbert Simon, involving natural and situational limitations of human computation skill or flawed memory 

(Simon 1955), and particularly the experimentally observed use of heuristics – short cuts or ‘rules of 

thumb’ to solve non-trivial problems and to make decisions using subjective assessments of event 

probabilities (Tversky and Kahneman 1974; Griffin and Tversky 1992); 2) bounded willpower, including 

limitations to undertake decisions which may be in the decision makers self-interest; and 3) bounded self-

interest, including aspects of both altruism and spitefulness. This research focuses exclusively on an 

identified class of bounded rationality biases by quantitatively modeling and testing for decisional bias 

                                                                        
17 https://en.wikipedia.org/wiki/List_of_cognitive_biases  

https://en.wikipedia.org/wiki/List_of_cognitive_biases
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under conditions of uncertainty within a lab setting and will thereby attempt to identify the implications of 

these biases specifically within the domain of information security control selection supporting institutional 

risk management.  

 

The testing of individual probability estimates concerning the risk of an information system, for example,  

is of core interest to this research since the business context in which security control decisions are 

undertaken inevitable requires some subjective estimation of probabilities over security risks which are 

inherently uncertain but which may be revealed in operations to some degree over time and therefore may 

reasonably be understood from the perspective of the decision maker as a type of ‘repeated game with 

learning’ (involving a series of individual repeated choices which are possibly, although not necessarily, 

interdependent). This problem setting is analogous to established experimental economics approaches for 

eliciting attitudes over uncertain bets based on subjective risk modeling and favors a Bayesian updating
18

 

approach to decision making as the baseline model of individual behaviour for the personal estimation of 

the actual underlying probability of the system at risk (Antoniou, Harrison et al. 2010). In an institutional 

security operational setting, a range of subjective probability estimates updated over time are required for 

managing the risk of the information management system, and are therefore directly analogous to the 

documented experimental approaches noted below, whereby the decision maker is assumed to: 1) form 

some prior estimate of the probability of risk; 2) makes control choices (i.e. ‘purchases’ controls with 

uncertain efficacy over uncertain risks producing uncertain outcomes – essentially a ‘bet’ that the control 

will pay off as expected) based on their subjective probability estimate(s) of the risk factors; 3) observes 

some operational data over time (e.g. the degree to which the controls are actually effective); and 4) repeats 

the ‘betting’ process iteratively (i.e. control selection) to attempt to better her chances of avoiding further 

information loss over time.  

 

Quantitative Approaches to Information Security Simulation and Control 

While many authors have addressed the theoretical, institutional and operational aspects of information 

security risk management (Anderson 2001; Camp 2006; Anderson and Moore 2007; Verendel 2008; 

Beautement and Pym 2010), comparatively few have attempted to quantitatively examine the behavioural 

economics of decision making specifically within the managerial information security control selection 

process (Soo Hoo 2000; Schechter 2004; Schroeder 2005; Ioannidis, Pym et al. 2009; Appari 2010; 

Beresnevichiene, Pym et al. 2010; Baldwin, Beres et al. 2011). Verendel’s literature review of over 90 

quantitative security studies suggests that, while ‘quantified’ – or quantifiable – security measurement itself 

may be a ‘weak hypothesis’, a key determinant of an appropriate modeling, policy and operational 

approach to control selection, even assuming accurate security performance metrics, would inevitably need 

to take into consideration  the potential for bias in the security decision maker (Verendel 2009). 
                                                                        
18 This theorem is named for Thomas Bayes and often called Bayes' law or Bayes' rule. Bayes' theorem expresses the conditional 

probability, or "posterior probability", of a hypothesis H (that is, its probability after evidence E is observed) in terms of the "prior 

probability" of H, the prior probability of E, and the conditional probability of E given H. It implies that evidence has a confirming 
effect if it is more likely given H than given not-H. http://en.wikipedia.org/wiki/Bayes'_theorem  

http://en.wikipedia.org/wiki/Bayes'_theorem
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Furthermore, while the problem of bias may be fundamental to any decision making setting, it is 

particularly salient to decisions made under conditions where the prospective risk factors may be uncertain. 

This applies directly to the information security setting where the underlying probability of information 

system threats, vulnerabilities and impacts contributing to information security risks may all be uncertain to 

some degree and whose ‘likelihood’ is only revealed to the decision maker over time19. Quantitative 

economic approaches for testing this type of subjective learning on the part of a decision maker typically 

start from the assumption of the rational use of Bayes Rule on the part of the decision maker and proceed to 

test the degree to which this assumption is in fact violated in practice under experimental conditions. As a 

positivist approach undertaken within a lab setting designed to control for identifiable confounding factors 

such as risk framing or event ordering effects, methodologies for quantitatively examining decisions made 

under these conditions require the researcher to have an understanding of the theoretical bases of 

behavioural decision research, the ability to formulate and integrate microeconomic models of expected 

utility and revealed risk attitude and the capability to appropriately undertake empirical lab experiments 

using valid models of information systems at risk which are designed to elicit quantitative estimates of bias 

under conditions which can be expected to produce reliable, consistent and generalizable results outside of 

the lab setting. The combination of these methods for risk attitude elicitation within information security 

settings is a new area of research which represents opportunity for quantitative models representing both 

system simulation and decision theory.    

 

 

Specification of Structural Models for Choices Under Uncertainty  

Traditional security assurance models seek to optimize nominal measures of the system’s “CIA” outcomes 

over a defined period for a given level of control investment: Confidentiality (unauthorized access and data 

loss prevention), Integrity (data and system accuracy and completeness) and Availability (accessibility 

when required for purpose). Assuming some ability to attribute outcome metrics to these states and given 

the stochastic nature of the system states and transitions, the objective control decision is therefore a multi-

attribute trade-off problem under uncertainty recognizing that, for example, increased availability can be 

expected to lower confidentiality, but not always or to the same extent, and depending on the level of 

control investment affecting one or both attributes. Baldwin’s theoretical model assumes that the decision 

maker has preferences over certain prospective states of the system, which can be evaluated based on the 

decision maker’s expected utility of the quantifiable business and operational outcomes generated by the 

system in an observed future period. 

                                                                        
19

 ‘Likelihood’ addresses unknown facts, whereas probability addresses unknown prospects. Likelihood is the 

hypothetical probability that an event that has already occurred would yield a specific outcome. The concept differs 

from that of a “probability” in that a probability refers to the occurrence of future events (which obviously have not yet 

occurred and are therefore inherently probabilistic), while a likelihood refers to past events with definite but unknown 

outcomes. http://mathworld.wolfram.com/Likelihood.html . For example, if a coin is flipped 10 times and it is known 

to be a fair coin, what is the probability of it landing heads-up every time? Likelihood is used when describing a 

function of a parameter given an outcome. For example, if a coin is flipped 10 times and it has landed heads-up 10 

times, what is the likelihood that the coin is fair? https://en.wikipedia.org/wiki/Likelihood_function#Historical_remarks   
 

http://mathworld.wolfram.com/Likelihood.html
https://en.wikipedia.org/wiki/Likelihood_function#Historical_remarks
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The choice of the specific utility function used to model the decision maker’s latent preferences over these 

trade-offs is important since a number of theoretical assumptions must be made prior to the chosen 

structural specification and this will have implications for both the resulting descriptive and normative 

models of choice. The most significant assumption is that of the decision maker’s form and degree of risk 

aversion. A common structural utility function incorporating risk aversion over gains is the Constant 

Relative Risk Aversion (CRRA) power function which generally takes the form 

 

 U(x) = x
 1-r

 / (1-r) (3.1) 

 

where “r” is the ‘coefficient of risk aversion’ and “x” is the monetary value of the outcome (>0), where r=0 

corresponds to risk neutrality, r<0 to risk loving, and r>1 to risk aversion.  The coefficient of risk aversion 

is constant for the power function family. ‘Expected utility’ is then specified as the probability conditioned 

utility, 

 

 EU = [ p × U(x) ] (3.2) 

 

where p is the probability of the outcome and U(x) is the CRRA specified utility function. 

 

This specification allows the expected utility of the outcome to be greater or less than its expected value 

based on the degree to which the person is averse to the uncertainty of the outcome (von Neumann 1947). 

This is particularly relevant to the information security context where the underlying risk of the system may 

be unknown and trade-offs between prospective outcomes of the system involve subjective estimates of the 

probabilities of the resulting system and outcome states. In this context, the utility model may also be 

extended to allow for subjective expected utility (Friedman, Savage 1948) in which the decision maker’s 

estimate of the likelihood of the prospective outcome becomes salient (Antoniou, Harrison et al. 2010).  

 

Variations on the power function permit the specifications of utilities which vary in the degree of relative 

(versus constant) risk aversion being assumed. Harrison and others have extensively reviewed the 

appropriate specification of utility functions under different circumstances. For example, the Expo-Power 

function (Saha 1993) incorporates an income effect as well as risk aversion:   

 

 U(x) = [1-exp(-αx
1-r

 )]/α (3.3) 

 

where  and r are parameters to be estimated (Pratt 1976; Saha 1993). Relative Risk Aversion (RRA) is 

then 

 

 r + (1-r)x
1-r 

(3.4) 
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so RRA varies with income if  ≠ 0. This function ‘nests’ CRRA (as →0) and CARA (Constant Absolute 

Risk Aversion) as r→0 (Harrison, Lau et al. 2010). 

 

Domain appropriate selection of the objective utility function is a major concern in the recent economics of 

security literature since the security trade-offs are proposed to be multi-attribute CIA preferences on 

prospective system states and outcomes conditioned by investment in a vector of controls. Further, rather 

than being a single attribute utility function of the system state as noted above, several recent authors have 

proposed a number of utility variations appropriate for a security context, but which generally assume risk 

aversion instead of structurally estimating it. Beautement (Beautement, Coles et al. 2009) proposes the 

security analog of the ‘Central Bank Problem’ where policy makers attempt to set interest rates to control 

trade-offs between inflation and unemployment: the Bank is able to accurately set interest rates, but the 

resulting inflation and unemployment levels are stochastic and cannot be accurately predicted in a future 

period based on the control choice. The analog expected utility over outcomes in terms of security is 

therefore, for example, a stochastic loss function of system or information confidentiality (C) and 

availability (A) (which move in opposite directions for a given level of control) and where Availability is a 

function of the level of control investment I : 

 

 C = -λA + ԑC  (3.5) 

 

 A = -ψI + ԑA (3.6) 

 

 E(U(C,A)) = E(((exp[αA] – αA – 1)/ α
2 
+ 

𝜑

2
 C

2 
(3.7) 

 

 
In this specification, the assumed objective is to maximize the expected utility of availability and 

confidentiality which trade-off over a feasible set of outcomes. Beautement later simplifies the 

specification to 

 

 U(C,A) = (A - βC) (3.8) 

 

where  and β are parameters to be estimated and represent a simple ratio between confidentiality and 

availability.  

 

As noted above, modifications of the structural form of the utility function should also be considered since 

violations of EUT model assumptions have been well documented in both the psychological and economics 

literature (Allais 1953; Ellsberg 1961) in which the EUT specification fails to be descriptive of actual 

decisions made under uncertainty, notably the Independence Axiom underlying the linearity in 

probabilities. Deviations from the behaviour prescribed by EU Theory have become known as “decision 
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theoretic” paradoxes (Ben-Tal and Ben-Israel 1991), in particular: the Allais paradox or ‘common 

consequence effect’ (Allais 1953); the common ratio effect (Cubitt, Starmer et al. 1998), over sensitivity to 

small probabilities (Kahneman 1979); and the utility evaluation effect (Machina 1983). In context, Beres 

and other security researchers typically assume that security decision makers are risk averse utility 

maximizers (Verendel 2008; Beresnevichiene, Pym et al. 2010; Ioannidis, Pym et al. 2011), and the 

specification of the resulting utility (or loss) functions used to model preferences follow from that 

assumption without requiring the parameterization of risk aversion. Although plausible in an institutional 

security control context, this is nonetheless a strong assumption within the context of performing 

experiments that are meant to elicit decisional biases which are hypothesized to be dependent on risk 

attitudes and are intended to be descriptive and not normative. Andersen indicates that the assumption of a 

certain risk attitude (perhaps even risk neutrality) may be expositionally useful,  but in general risk attitude 

should be jointly estimated within the specified structural model (Andersen, Harrison et al. 2006). An 

exception appears to be Ioannidis who specifies a modified prospect theory model where institutional loss 

aversion (not necessarily risk aversion), for example, may be reasonably assumed but which explicitly 

parameterizes risk attitudes over gains versus losses. Other theoretical aspects of the PT specification 

(reference dependence and probability weighting) may also be reasonably salient within the security 

context and so the associated structural model should ideally be constructed and tested for variations in 

these factors, not their a priori assumption or omission. This approach is consistent with Harrison’s view to 

the experimental elicitation and modeling of risk attitudes under uncertainty: 

 

Two broad methods of estimating risk attitudes have been used. One involves the calculation of 

bounds implied by observed choices, typically using utility functions which only have a single 

parameter to be inferred. A major limitation of this approach is that it restricts the analyst to utility 

functions that can characterize risk attitudes using one parameter. This is because one must infer the 

bounds that make the subject indifferent between the switch points, and such inferences become 

virtually incoherent statistically when there are two or more parameters. Of course, for popular 

[single parameter] functions such as CRRA or Constant Absolute Risk Aversion (CARA) this is not 

an issue, but if one wants to move beyond those functions then there are problems. It is possible to 

devise one-parameter functional forms with more flexibility than CRRA or CARA in some 

dimension, as illustrated nicely by the one-parameter Expo-Power function developed by 

Abdellaoui, Barrios and Wakker [2007; §4]. But in general we need to move to structural modeling 

with maximum likelihood to accommodate richer models. (Harrison, Lau et al. 2010) 

 

In the context of Beautement, this would involve, for example, utility functions which infer some type of 

discount rate which is hypothesized to be separate from risk aversion. Harrison emphasizes the connection 

between theory and method within lab experiments which illustrates the endogenous nature of the 

parameter estimation, here in the context of a choice over expected income M1 in time t, versus M2 in time 

t+n, where an n-period discount rate is assumed:     

    
As one relaxes the assumption that the decision maker has a linear [risk neutral] utility function, it 

is apparent… that the implied discount rate decreases if U(M) is concave in M. Thus one cannot 

infer the level of the individual’s discount rate without knowing or assuming something about their 

utility function. This identification problem implies that discount rates cannot be estimated based 

on discount rate experiments with choices defined solely over time-dated money flows, and that 

separate tasks to identify the extent of diminishing marginal utility must also be implemented. 
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…Thus there is a clear implication from theory to experimental design: you need to know the non-

linearity of the utility function before you can conceptually define the discount rate. There is also a 

clear implication for econometric method: you need to jointly estimate the parameters of the utility 

function and the discount rate, to ensure that sampling errors in one propagate correctly to sampling 

errors of the other. In other words, if we know the parameters of the utility function less precisely, 

due to small samples or poor parametric specifications, we have to use methods that reflect the 

effect of that imprecision on our estimates of discount rates. (Harrison, Lau et al. 2010) 

 

Following Harrison, I therefore propose that the risk factors within the security control selection context 

should be estimated using a structural model of the latent choice processes in which the core parameters 

defining risk attitudes are jointly estimated. 

 

Use of Binary Lotteries for Estimating Decisional Bias 

As detailed in Section 4 below, I am proposing to generate data using a series of lab experiments requiring 

participants to make individual choices over what are essentially binary lotteries, representing two 

probabilistic outcome states which are characterized by known, uncertain or mixed outcome probabilities. 

The core hypothesis is that the choices made by the respondent consistently reflect and can therefore be 

used to model a) the respondent’s degree of risk aversion; and 2) other decisional biases, based on the 

degree to which they are statistically observed to select one lottery of a pair over the other, in the context of 

the information available to the participant in each experiment. Respondents consistently (but perhaps not 

perfectly consistently) choosing a lower risk, lower value lottery over another higher expected value but 

risky lottery is, for example, hypothesized to prefer the ‘certainty equivalent’ of the lower value lottery 

versus the higher expected value (but less certain outcome) of the alternative lottery (Hershey and 

Schoemaker 1985). The following example lottery pair in Table 1 indicates the prototypical choice problem 

with known probabilities, or risk, facing the participant. The participant must pick either the ‘left’ or ‘right’ 

lottery. In this case, the Left lottery pays $50 for sure, while the Right Lottery has a 50% chance of paying 

out $40, and a 50% chance of paying out $80: 

 

Table 2 - Binary Lottery Choice Under Risk (Known Probabilities) 

 Left Lottery Right Lottery 

Probability 100% 50% 50% 

Payout $50 $80 $40 

Expected Payout $50 
$40 $20 

$60 

 

In this simplified example under single play (‘one shot game’) conditions, a hypothesized risk neutral 

person would choose the Right Lottery since the expected value of the payout is higher than that of the Left 

Lottery. However a risk averse person is hypothesized to prefer the Left (L) lottery, where the guarantee of 

winning $50 represents a ‘certainty equivalent’ compared to the expected, but risky, payout of the Right 

(R) Lottery. Under Expected Utility Theory (EUT), the lower the observed choice of a certainty equivalent 

for a given expected value outcome, the greater is the hypothesized risk aversion of the participant. For the 

purposes of estimating risk aversion, it is however necessary to repeat the game in order to generate enough 
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observations to make statistical inferences about the degree of risk aversion. Theory demands that we make 

assumptions (or, specifically, relax assumptions) regarding either or both the participant’s understanding of 

the particular game and of the nature of their risk attitude and preference over one shot vs. ‘compound 

lotteries’. For example, we assume that the decision maker understands the mechanics of the lottery 

payouts enough to be consistent in their decisions given their latent risk preference. That is, that the 

participant realizes that, in a one shot game under the Right lottery, the expected value ($60) is never 

actually realized and that they are essentially choosing between 3 discrete outcomes: a sure $50, or an 

unsure $80 vs. $40.  Conversely, in a repeated game context, we assume that the participant understands 

that the long run average (expected) Right Hand payout is absolutely larger than that of the Left lottery and, 

all else considered equal, their risk aversion should diminish towards risk neutrality with the increasing 

length of the game. It is also generally assumed that, in an experiment consisting of a series of one shot 

games in which one of the chosen lottery pairs is actually chosen at random to be played out for money, the 

decision maker effectively ‘reduces’ the series of potential lottery outcomes to a single lottery and that their 

preference across the sub-lotteries is consistent with their overall risk attitude. A discussion of the 

assumptions behind this ‘reduction of compound lotteries’ and its potential impact on the design and 

outcome of the experiments will be presented below (Harrison, Martínez-Correa et al. 2015). 

 

Under the assumption of expected utility maximization therefore, the elicitation of attitudes over repeated 

lottery choices using various levels of certainty equivalents permits the estimation of the respondent’s 

‘coefficient of risk version’ That is, given enough observed choices, we should be able to estimate the 

likelihood of observing the actual choices made given a) utility dependent upon a value of risk aversion r 

and b) other parameters of an assumed latent structural model of choice specified using a given utility 

model. Generically, following Harrison, this is done econometrically by creating an ‘index’ (denoted here 

by ‘∇’) of the difference in the expected utilities of each lottery pair, assuming an initial level of risk 

aversion: 

 

 ∇EU = (EUR – EUL) (3.9) 

 

where EU is a functional specification of expected utility dependent on a risk aversion parameter r. For 

example,  

 U(x) = x
 1-r

 / 1-r (3.10) 

 

where “r” is the ‘coefficient of risk aversion’ and “x” is the monetary value of the outcome, where r=0 

corresponds to risk neutrality, r<0 to risk loving, and r>1 to risk aversion. The estimated value for r can be 

benchmarked against known values for r in general populations (Hey and Orme 1994; Antoniou, Harrison 

et al. 2010) and used in subsequent experiments either as a constant to estimate subjective probabilities, or 
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compared to the value of r when, for example, jointly estimated with subjective probabilities to test 

whether r changes under different utility preference assumptions.  

 

The resulting index (which is scaled from –∞ to +∞) is then used to define the cumulative probability of the 

observed choice (right or left lottery) using the cumulative normal distribution function (.).  The agent 

chooses lottery ‘R’ if 

 

 ∇ EU + ԑ > 0 (3.11) 

 

 

Where  is a normally distributed error term with mean zero and variance 
2
. Thus we can establish a 

‘probit link function’, showing the probability that lottery R is chosen given a value of the index, as 

 

 prob(choose R) = P (∇EU + ԑ) > 0 =  P(ԑ / σ > -∇ EU / σ) = Φ(∇EU / σ) (3.12) 

 

The figure below illustrates the ‘linking’ of the index value y* (the difference in expected value between 

the right and left lotteries) to the probability of observing the index value using both a probit (cumulative 

normal) and a logit (logistic) specification: 

 

Figure 1 - Normal and Logistic Cumulative Density Functions 

 

(Andersen, Harrison et al. 2007) 

 

The Probit functional specification with x representing the index is  

 

 F (x; μ, σ
2
) = Φ(

𝑥−μ

σ
) = 

1

2
[1 + erf (

𝑥−μ

σ√2
)] , 𝑥 ϵ ℝ (3.12) 
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where “erf” is an error function 
𝑥−μ

σ√2
  for positive x values. The corresponding logit functional specification 

would be 

 

 G(∇ EU) = Λ(∇ EU) = exp(∇EU) / [1 + exp(∇ EU)] (3.13) 

 

By assuming different values of risk aversion, we can then iteratively estimate the linking function to 

determine statistically that value of r which would maximize the likelihood of observing the actual choices 

made (Pratt 1976).
20

  

 

The estimation of r is assumed to structurally depend on the latent characteristics of the decision maker 

which are hypothesized to influence her degree of risk aversion. This also permits pooling of the data 

across subjects where otherwise r would only be estimable per subject. This approach is important to this 

research since we are fundamentally interested in whether and how an individual decision maker’s risk 

attitude may affect their control choices even in the presence of objective or ‘good’ information about 

prospective security outcomes. As noted by Andersen,  

 

It is [a] simple matter to generalize this ML [maximum likelihood] analysis to allow the core 

parameter r to be a linear function of observable characteristics of the individual or task. For 

example, assume that we collected information on the sex of the subject, and coded this as a binary 

dummy variable called Female. In this case we extend the model to be r = r0 + r1 × Female, where r0 

and r1 are now the parameters to be estimated. In effect the prior model was to assume r = r0 and 

just estimate r0. This extension significantly enhances the attraction of structural ML estimation, 

particularly for responses pooled over different subjects, since one can condition estimates on 

observable characteristics of the task or subject.(Andersen, Harrison et al. 2007) 

 

 

The conditional log-likelihood to be estimated using maximum likelihood methods, assuming a vector of 

demographic characteristics X would then be 

 

 ln L(r ; y, 𝐗) =  ∑ [(lnΦ(∇EU) × 𝐈(yi = 1))  + (ln(1 − Φ(∇EU)) × 𝐈(yi = −1)) ] i  (3.14) 

                                                                        

20
 “In non-technical parlance, "likelihood" is usually a synonym for "probability" but in statistical usage, a clear 

technical distinction is made. One may ask "If I were to flip a fair coin 100 times, what is the probability of it landing 

heads-up every time?" or "Given that I have flipped a coin 100 times and it has landed heads-up 100 times, what is the 

likelihood that the coin is fair?" but it would be improper to switch "likelihood" and "probability" in the two sentences. 

If a probability distribution depends on a parameter, one may on the one hand consider—for a given value of the 

parameter—the probability (density) of the different outcomes, and on the other hand consider—for a given outcome—

the probability (density) this outcome has occurred for different values of the parameter. The first approach interprets 

the probability distribution as a function of the outcome, given a fixed parameter value, while the second interprets it as 

a function of the parameter, given a fixed outcome. In the latter case the function is called the "likelihood function" of 

the parameter, and indicates how likely a parameter value is in light of the observed outcome.” 
http://en.wikipedia.org/wiki/Likelihood_function  

 

http://en.wikipedia.org/wiki/Likelihood_function
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where I(.) is the indicator function (i.e. indicating choice of Right versus Left, yi =1(-1) denotes the choice 

of the Option R (L) lottery in choice task i. In this specification, X is a vector of individual characteristics 

reflecting age, sex, race, and so on. The parameter r is thus defined as a linear function of the 

characteristics in vector X. (Harrison and Rutström 2009) 

 

The figure below illustrates the resulting simple estimate of r as a constant (i.e. not a function of X) 

graphically for Harrison’s replication of the seminal Hey and Orme binary choice study (Hey and Orme 

1994), using 158 subjects making 60 choices each for over 9,000 observations. The maximum likelihood 

estimate of r assuming a power utility function is .777 with a std. error = .025, p<0.001 and is illustrated by 

the resulting ‘kernel density function’ for r across all participants:  

 

Figure 2 - Example Kernel Density Function of Risk Attitudes 

 

(Andersen, Harrison et al. 2007) 

 

In the context of the power function estimate for r, the experiment concludes that participants are relatively 

risk averse in lotteries involving prospective gains.  It should be noted that there are some observations in 

which the inferred risk attitude would be ‘risk seeking’, but not many, and for lotteries defined in terms of 

prospective gains this finding is consistent with most research outcomes (Harrison and Rutström 2008). In 

this example the prospects were gains, but the experiment can be replicated using losses, or mixed 

outcomes that allow the ability to test for risk aversion over both gains and losses. In a real world security 

context typically defined in terms of prospective ‘business losses’ (whether actual transactional losses or 
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attributed losses due to the inability to transact due to lack of system availability or integrity, or attributed 

loss of information confidentiality), we will need to take care in making assumptions about how the 

decision maker ‘frames’ the choice and whether, when they do so, the choice is actually perceived as a 

marginal loss. Kahneman’s simple example of two symmetric choice lotteries “A”: zero stake with a 

prospective gain of $100 (either through a $100 sure win or a 50/50 prospect of $200 or nothing) and “B”: 

a stake of $200 with a sure loss of $100 or a 50/50 loss of $200 or nothing), each producing the same 

expected ‘gain’ or ‘loss’ depending on the wealth reference point and whether the observer frames the 

outcome as a gain or a loss, illustrates how the perception of marginal loss or gain can change based on the 

reference point of the decision maker (Tversky and Kahneman 1992). I will explicitly test for differences in 

this ‘framing effect’ in Game #1, and particularly whether the decision maker is subject to ‘asset 

integration’ i.e. decision from a wealth perspective of cumulative gains or losses over time.     

 

 

Handling Model Errors 

Harrison emphasizes the need for careful handling of the linking function error term noted above. This is 

because the structural choice model explicitly makes the statistical assumption that the probability of 

choosing a lottery is not 1 when the EU of that lottery exceeds the EU of the other lottery. Indeed, if there 

were no errors from the perspective of EUT (i.e. if the subject was in fact behaving perfectly according to 

EUT), this function would be a step function, as in Figure 3: zero for all values of y*<0, anywhere between 

0 and 1 (i.e. indifference) for y*=0, and 1 for all values of y*>0: 

 

Figure 3 - Hardnose Theorist Cumulative Density Function 

 

(Fréchette and Schotter 2015) 
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A popular form of incorporating structural error into the model according to Harrison is the Fechner error 

term: 

 

 ∇EU = (EUR – EUL)/μ (3.15) 

 

where  is a structural “noise parameter” used to allow some errors from the perspective of the 

deterministic EUT model (Harrison and Rutström 2008). If we assume no error in a subject’s ability to 

distinguish the higher EU lottery choice, then  would be assumed to have a value of 1. If this is not 

assumed, then we must allow for this error in the structural model of choice and jointly estimate the error 

along with the other parameters of the model. Conceptually, the error term in this specification takes into 

account a number of potential ‘errors’ associated with not only the choices but the choice task itself and has 

been discussed at length by Smith (Smith 2010) and commented on by Harrison (Harrison 2010). This is a 

crucial caution from the perspective that, in moving from the theory to the empirical testing of theory, we 

are making inferences about an appropriate model which will in fact represent the theory under 

consideration. The insight here is that we cannot infer risk aversion, or other bias, using tests of binary 

choice, with a model that assumes away the possibility of error in the test methodology. The specification 

of the structural error term is therefore important for making any subsequent statements about decision bias 

which are clearly conditional on the model assumed to elicit the risk attitude of the subject. According to 

Harrison,  

 

“…some specifications place the error at the final choice between one lottery or after the subject 

has decided which one has the higher expected utility; some place the error earlier, on the 

comparison of preferences leading to the choice; and some place the error even earlier, on the 

determination of the expected utility of each lottery …In short, one cannot divorce the job of the 

theorist from the job of the econometrician, and some assumption about the process linking latent 

preferences and observed choices is needed. That assumption might be about the mathematical form 

of the link, but it cannot be avoided. Even the very definition of risk aversion needs to be specified 

using stochastic terms unless we are to impose absurd economic properties on estimates (Wilcox 

2008; Wilcox 2010)” (Harrison, Lau et al. 2010). 

 

The error term is also potentially the repository for deeper theoretical issues concerning the nature of risk 

preference itself as represented by the concept of risk ‘aversion’ and its implication of subjective lower 

utility over risky prospects i.e. concave Bernoulli utility functions (Harrison 2010). In a contrarian view, 

Friedman and Isaac have recently undertaken and extensive review of the lack of resulting prediction power 

associated with the assumption of non-linear individual utility curves and the inference of what is supposed 

to be latent in the specification of a utility curve itself: risk aversion (Friedman, Isaac et al. 2014).  

 

Mixed Structural Model Specifications 

Harrison advocates the specification of mixed structural utility models involving both EUT and PT latent 

choice models, particularly in situations where there is theoretical reason to believe that more than one 

latent decision making process may be present in the generation of choices within and across decision 
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makers (Harrison and Rutström 2009). In the domain of information security, it may be plausible, for 

example, to assume that professional security managers are predominantly loss averse (the strong 

preference for avoiding losses as opposed to acquiring gains
21

) and that the specified utility model should 

therefore structurally allow for loss aversion and not simply risk aversion; or that subjects may be allowing 

for probability weighting when perceiving risky or uncertain prospects i.e. the overweighting of low  

probabilities and the underweighting of high probabilities (Kahneman 1979). Incorporating loss aversion 

would then involve using a utility model based on prospect theory. Following the example above, a power 

utility function can be defined separately over gains and losses: 

 

 U(x) = x

 if x ≥ 0, and (3.15) 

 

 U(x) = -(-x)
β
 for x < 0 (3.16) 

 

In the above equation  and β are the risk aversion parameters, and  is the coefficient of loss aversion. We 

can see immediately that the assumption of this model either invalidates the assumption of the EUT 

specification (since r in EUT actually depends on whether the choice is a gain or a loss in utility) or, per 

Harrison, requires us to allow the structural model to incorporate both latent choice theories. “Cumulative 

PT” (CPT) also incorporates probability weighting as noted above. The form of the weighting function 

proposed by Tversky and Kahneman (Tversky and Kahneman 1992) assumes weights  

 

 w(p) = p

/[ p


 + (1-p)

 
 ]

1/ 
(3.17) 

 

The PT utility function can be used instead of the EUT utility function, and w(p) is used instead of p, but 

the steps are otherwise identical to that described above for EUT. The same ‘error’ process is assumed to 

apply when the subject forms a PT-based preference for one lottery over the other. The difference in 

prospective utilities is defined similarly as 

 PU = PUR - PUL (3.18) 

 

where PU is an analogous index of the difference in the expected values of the choices. Thus the 

likelihood, conditional on the PT model being true, depends on the estimates of , β,  and  given the 

above specification and observed choices. Similarly, the conditional log-likelihood is 

 

                                                                        
21 We recognize that a security control decision can be framed as a gain – or at least a ‘net gain’ – problem instead of a loss avoidance 

scenario, where it is recognized that security controls, like IT systems generally, are implemented to support business goals which 
fundamentally involve generating income for the business (where no business is in business to simply ‘avoid losses’). This framing is 

more obvious with certain types of controls (e.g. authentication swipe cards) that have some direct user benefits such as improving 

speed to log onto systems for which positive business value can be clearly attributed but, we argue, is not the typical frame of 
reference for a security practitioner. Admittedly, the focus on ‘business value’ is an increasingly common frame of reference for all IT 

systems design and implementation and for ‘IT governance’ and risk management generally. A separate study would be needed to 

compare control decisions made in terms of gains vs. those framed here as pure loss and is discussed in the section on Future 
Research.   



  38  

 ln 𝐿𝑃𝑇(α, β, λ, 𝛾 ; 𝑦, 𝑋) =  ∑ 𝑙𝑖
𝑃𝑇 = 𝑖 ∑ [(ln G(∇PU) | 𝑦𝑖 = 1) +  𝑖 (ln(1 − G(∇PU)) | 𝑦𝑖 = 0)] (3.19) 

 

If we let 
EUT

 denote the probability that the EUT model is correct, and 
PT

 = (1-
EUT

) denote the 

probability that the PT model is correct, a ‘grand likelihood’ function can then be written as the probability 

weighted average of the conditional likelihoods. Thus the likelihood for the overall model estimated is 

defined by 

 

 ln 𝐿(𝑟, α, β, λ, 𝛾, πEUT; 𝑦, 𝑋) =  ∑ 𝑙𝑛[(πEUT × 𝑙𝑖
EUT)𝑖 + (πPT × 𝑙𝑖

PT)] (3.20) 

 

This log-likelihood can be econometrically maximized using observed choice data to find estimates of the 

specified parameters. 

 

Model and Hypothesis Testing 

We are able to test the estimated results of each structural model in three ways and apply the results to our 

hypotheses. First, standard sign and confidence interval tests can be applied to most parameter estimates. 

Second, we consider the parameter estimates of the various specifications in the context of the hypotheses 

being tested. This would include (variously): 

 

 For EUT specifications, the presence and strength of risk aversion in both income and non-income 

utility specifications.  

 For PT specifications, that the risk aversion over gains versus losses is different, and that the 

participants exhibit loss aversion and probability weighting. For PT results generally, the results 

can also be compared to benchmarks from established studies  (Tversky and Kahneman 1992) 

 For mixed EUT/PT models, that the weighting between the models is different from .5 (i.e. that 

one data generating process dominates the other) and whether and to what extent the other 

parameter estimates change from the pure EUT/PT specifications. The distribution of parameter 

estimates can also be examined graphically using kernel density diagrams (essentially smoothed 

histograms) to illustrate multi-modal distributions of parameter effects across and within subjects.   

 Whether and to what extent professional and demographic factors affect the various parameter 

estimates. This allows us to test for the heterogeneity of risk attitudes within the sample and 

therefore help to characterize classes of decision makers and their biases based on those factors 

(e.g. male, math degree, more than 10 years in the business, etc.).  

 For subjective utility specifications, the difference between estimation of subjective probabilities 

using assumed versus jointly estimated risk attitudes, and the effect of strength and weight on the 

subjective probabilities.  
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Third, we can employ a range of ‘goodness of fit’ tests for the non-nested (separately specified and 

estimated) EUT and PT models and ‘likelihood-ratio’ tests of one model against another. STATA produces 

a ‘Wald Chi-squared statistic’ which approximates an F-statistic type of test on the overall model fit based 

on the optimized maximum likelihood value derived for the model.  ‘Likelihood ratio’ tests may then be 

used to compare the likelihood values from two estimated models (Quinn 2011). Harrison reviews the 

seminal test literature but emphasizes that mixed model specification inherently embeds the testing of one 

model against another by virtue of the specification of model weighting parameters and is considered 

superior to non-nested specifications since non-nested models implicitly assume only one data generating 

process: 

 

An issue that comes up when estimating choice models is how to discriminate between them. The 

answer we prefer is “not to,” in the sense that one should allow the data-generating process to admit 

more than one choice model and estimate a mixture model…But how does [the mixed model 

specification] response compare to more classical responses, using formal tests to discriminate 

between models? 

 

The first [non-nested test] is due to Cox (Cox 1961; Cox 1962), and assumes that one of two 

models is the true model for all data. His test compares the difference between the actual likelihood 

ratio of the two models with the expected likelihood ratio, suitably normalized by the variance of 

that difference, under the hypothesis that one of the models is the true data generating process. The 

statistic is applied symmetrically to both models, in the sense that each takes a turn at being the true 

model, and leads to one of four conclusions: one model is the true model, the other model is the true 

model, neither model is true, or both models are true…The ambiguity in the resulting inference has 

bothered many who might otherwise use the test.  

 

The next step in the statistical literature was the development by Atkinson  (Atkinson 1970)…The 

main problem with this exposition, noted by virtually every commentator in the ensuing discussion, 

was the interpretation of [a] mixing parameter. Atkinson focused on testing the hypothesis that this 

parameter equaled ½, “which implies that both models fit the data equally well, or equally badly.” 

There is a colloquial sense in which this is a correct interpretation, but it can easily lead to 

confusion if one maintains the hypothesis that there is only one true data generating process, as the 

commentators do. In that case one is indeed confusing model specification tests with model 

selection tests [emphasis added]. If instead the possibility that there are two data generating 

processes is allowed, then natural interpretations of tests of this kind arise. 

 

Perhaps the most popular modern variant of the generalized LRT approach of Cox is due to Vuong 

(Vuong 1989). He proposes the null hypothesis that both models are the true models, and then 

allows two one-sided alternative hypotheses. The statistic he derives takes observation-specific 

ratios of the likelihoods under each model, so that …the ratio for observation i is the likelihood of 

observation i under EUT divided by the likelihood of observation i under PT. It then calculates the 

log of these ratios, and tests whether the expected value of these log-ratios over the sample is zero. 

Under reasonably general conditions a normalized version of this statistic is distributed according to 

the standard normal, allowing test criteria to be developed. Thus the resulting statistic typically 

provides evidence in favor of one of the models which may or may not be statistically significant. 

 

The third test is due to Clarke (Clarke 2007), and is similar in motivation to the Vuong test but ends 

up using a non-parametric sign test to discriminate between the models. The Vuong and Clarke 

tests can be compared in terms of their asymptotic efficiency as tests, and it turns out that when the 

distribution of the log of the likelihood ratios is normally distributed that the Vuong test is better. 

But if this distribution exhibits sharp peaks, in the sense that it is mesokurtic, then the Clarke test is 

better... Many of the likelihood ratios we deal with have the latter shape, as we will see using the 

EUT and PT example from above, so it is useful to be armed with both tests. (Harrison 2008) 
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I undertake these various non-nested model tests in the context of the respectively applicable model 

scenarios in Game #2.   
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4 – Research Design 

 
Overview 

Using recent information system simulation work (Baldwin, Mont et al. 2009; Fenz, Tjoa et al. 2009; 

Collinson, Monahan et al. 2010; Tjoa, Jakoubi et al. 2011; Sommestad, Mathias et al. 2013; Holm, Shahzad 

et al. 2015), together with guidance on utility models appropriate to the modeling of preferences over 

security control choices (Beautement, Coles et al. 2009; Beresnevichiene, Pym et al. 2010), and using a 

modified version of both Antoniou and Harrison’s (Antoniou, Harrison et al. 2010) 22 replication of Griffin 

and Tversky’s multiple price list lab experiment (Griffin and Tversky 1992) with additional multi-period 

decision features which incorporate asset integration (Andersen, Harrison et al. 2006) and endogeneity into 

both the experiment and the mixed EUT/PT model framework (Shogren and Crocker 1994; Fiore, Harrison 

et al. 2009; Sen 2010), I propose to implement a multi-part experiment to elicit risk attitudes where the 

perceived risk is stochastic but may also be endogenously controllable by the subject over multiple decision 

periods by making successive risk control ‘wagers’ to affect either or both likelihood (using ‘self-

protection’) or impact (using insurance, including ‘self-insurance’ or internal resources reserves to be used 

in case of actual breach). Individual decisions are hypothesized to be based on individual subjective 

perceptions of whether and to what extent the simulated system appears to be at risk and the perceived 

prospective efficacy of the proposed control option(s). In the experiment, ‘successful’ control wagers and 

outcomes inherently depend on the respondent’s ability to update their subjective prior estimates of the 

apparent system risks over a one shot or series of selection rounds which vary by both the strength (i.e. the 

perceived influence of ‘extreme’ risk factor observations,) and weight (i.e. the number of data points 

making up a factor observation)23 and where the latent decision making model is allowed to vary between 

EUT and PT utility specifications (Harrison and Rutström 2009) permitting probability weighting and loss 

aversion (Tversky and Kahneman 1992). The proposed experiments generate robust data on both each 

respondent’s risk attitude and their subjective beliefs of the actual risk profile of the simulated system at 

risk which then enables the modeling and testing of the presence of various decisional biases within a 

relevant context of professional interest to the subjects.   

  

Experimental Research Methodologies for Behavioural Economics Studies 

‘Behavioural decision research’ involving lab experiments is a well-established branch of psychological 

research and its methods have, more recently, been increasingly represented in theoretical, and empirical 

economic studies of decision making under conditions of both risk and uncertainty (Savage 1954; Machina 

1992; Abdellaoui, Baillon et al. 2008; Cox and Sadiraj 2008; Harrison and Rutström 2008; Wilcox 2008; 

Andersen, Fountain et al. 2009).  Early psychological studies focused on qualitative approaches including 

                                                                        
22 See pp. 138-191. Antoniou’s doctoral dissertation experiment is used to incorporate subjective decisional bias into asset pricing 
theories in order to inform the behaviour of financial asset prices. The balance of Antoniou’s thesis addresses other issues within 

behavioural finance which also look specifically at non-Bayesian updating behaviours, but my focus will be on his experiment which 

specifically replicates the Griffin and Tversky study (Griffin and Tversky 1992).   
23 Ibid. pp. 144-145 
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normative analysis, descriptive studies, and prescriptive interventions (Edwards 1954; Simon 1955; 

Edwards 1961). Early contributions by economists (Allais 1953; Ellsberg 1961; Savage 1971) took the 

established economic theories of rational decision making into the lab and their findings formed the basis 

of the modern economic considerations of risk and uncertainty in decision making. Herbert Simon, who 

won the Nobel prize in 1978 for his work on decision making within organizations, pioneered the theory of 

‘bounded rationality’ which changed the dominant economic paradigm from homo economicus rational 

utility maximization to that of individual ‘satisfaction seeking’ through the use of heuristics (Simon 1955). 

This was also the basis for Kahneman and Tyversky’s work (earning these psychologists the Nobel Prize in 

Economics in 2002) which identified, through experimental means, the presence of asymmetric risk 

attitudes in decisions made under conditions of outcome uncertainty (Kahneman and Tversky 1972; 

Kahneman 1979; Kahneman, Knetsch et al. 1990). Griffin and Tversky’s seminal psychological 

experiments also demonstrated the possibility of non-Bayesian updating by subjects (Griffin and Tversky 

1992; Holt 2002) and, as noted below, continues to be the basis for experimental economic studies which 

both support and refute their findings depending on the experimental controls and models employed by the 

researcher (Antoniou 2010).  

 

The concept of bounded rationality and the possibility of alternatives to unbiased expected utility 

maximization has therefore formed the basis of much subsequent theoretical and empirical work in 

economic decision making and continues to inform an emergent body of experimental research under the 

banners of both ‘empirical decision research’ and ‘experimental economics’. Cox (Cox and Sadiraj 2008) 

surveyed five essential decisional theories and the associated utility models and testing approaches: 

expected value theory (Bernoulli 1738 (1954)); expected utility theory (von Neumann 1947); cumulative 

prospect theory (Tversky and Kahneman 1992); rank dependent utility theory (Quiggin 1982) and dual 

theory of expected utility (Yaari 1987). The motivation for Cox’s work is to attempt to “develop a 

distinction between “normative” and “descriptive” theories of choice…and their common problems when 

viewed as ‘positive (that is, testable) theories” – i.e. their inability to predict the actual behaviour of 

experimentally tested subjects without accounting for risk aversion. The most recent experimental 

economic approaches are therefore explicitly designed to assist in the modeling, parameter estimation and 

testing of various decisional utility models and involve lab experiments which generate robust data derived 

from subject choices concerning systems at risk. (Holt and Smith 2007; Fiore, Harrison et al. 2009; 

Antoniou, Harrison et al. 2010; Sen 2010)).  

  

Seminal experimental methods for measuring subjective economic utility and bias include Becker, 

DeGroot, and Marschak (Becker, Degroot et al. 1964) and Savage (Savage 1971) who established 

experimental wagering schemes to infer personal (subjective) probability estimates over uncertain 

prospects. Experimental economists continue to use variations on these approaches employing a range of 

devices including paired choices (including binary lotteries), multiple price lists, auctions, multi-party 
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bargaining or similar schemas to elicit subjective risk attitudes and to test for decisional bias in situations 

involving uncertain probabilities and payoffs (Machina and Schmeidler 1992; Hey and Orme 1994; Holt 

2002). Vernon Smith originally developed the concept of ‘induced value’ – the elicitation of revealed 

utilities or values within an experimental ‘game’ - in which motivated subjects could be made to reveal 

their preferences over outcomes under conditions which replicated aspects of real world markets, but in a 

laboratory setting (Smith 1976; Smith 1982; Smith 2010). Smith’s experimental work built on Leonid 

Hurwicz’ earlier work in ‘mechanism design’ (for which Hurwicz eventually won a Nobel prize in 1997 as 

the oldest recipient of the award at the time) whereby economic systems were modeled as games within a 

laboratory setting. Smith also established a formalized empirical approach to laboratory experiments 

directed at economic decision makers which could be used to observe behaviour under controlled settings 

and employ methods designed to quantify and test traditional models of rational utility maximization. 

Grether and Plott (Grether and Plott 1979) and Grether (Grether 1980; Grether 1992) are credited with 

developing seminal experimental economic methods for validating the psychological findings of Griffin 

and Tversky, including the degree to which the subject may be violating Bayes rules by employing 

heuristics within the decisional process. 

 

Variants of these foundational experimental methods continue to be employed by economic researchers 

with distinct changes to the experimental design and the employed utility maximization models to be 

estimated depending on the context of the decision problem, the nature of the latent decision making 

process(es) assumed and the specific decisional bias which is under examination and are described at length 

in Harrison and Rutström’s 2008 survey of lab experiments for risk aversion (Harrison and Rutström 2008). 

While earlier seminal surveys noted by Harrison reviewed methods employed for the elicitation of expected 

utility (Fishburn 1967; Farquhar 1984), Harrison and Antoniou (Antoniou 2010) also note that early 

experimental methods often made inappropriate risk aversion assumptions (i.e. risk neutrality) or failed to 

take into account the need for appropriate experimental controls which would ensure accurate measurement 

of preferences, for example failing to provide monetary incentives to properly induce subjects to make bets 

consistent with their presumed latent risk attitudes and preferences and their ‘true’ subjective probability 

estimates  (i.e. participants have to be betting with and for real money outcomes, or generally incented to 

make non-arbitrary bets which reliably reveal personal probability estimates (Holt 2002)). Criticism of the 

risk attitude elicitation procedures undertaken taken by Griffin and Tversky are well documented in the 

economics literature and include: the lack of appropriate financial incentives for the decision maker; the 

likely presence of ‘hypothetical bias’24; and the study’s assumption of ‘risk neutrality’ (Antoniou 2010). 

The appropriate design and employment of experimental controls to compensate for these issues is an 

important consideration for researchers undertaking these types of experimental studies and are well 

                                                                        
24 For example, the explicit testing of ‘hypothetical bias’ in lab conditions where probabilistic event outcomes are only described but 

not demonstrated to the subject, say by describing a biased coin flip or dice roll instead of actually flipping a biased coin or rolling 
actual dice. 
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documented in the relevant experimental economics literature (Antoniou, Harrison et al. 2010; Harrison, 

Lau et al. 2010).  

 

The data gathering experiments typically feature subjects making monetary bets over risky (known 

probability) or uncertain (unknown probability) prospective outcomes in the context of, variously, binary 

lotteries (Grether 1992), multiple price lists (Holt 2002; Harrison, Johnson et al. 2005) and, in two person 

experiments testing for Nash equilibria, first price sealed bid auctions (Vickrey 1961; Harrison 1989; 

Harrison 1990). The resulting data from the experiments may be used to quantitatively model and test 

theories of decision making both within the context of the experiment and, possibly, to predict ‘out-of-

context’ behaviour under certain specified conditions (i.e. outside of the experimental frame, choice types 

or tasks and range of values over which decisions are made) (Rabin and Thaler 2001; Cox and Sadiraj 

2008; Wilcox 2010).  

    

In summary, recent experimental economics research has employed experiments consisting of ‘binary 

‘choices’, under conditions characterized by both risk and uncertainty, to generate choice data and to then 

undertake the econometric estimation of stochastic, mixed structural models of latent decision-making 

processes which allow for the specification, joint estimation and weighting over n>1 decision making 

processes and of the associated parameters of those processes (Lopes and Oden 1999; Andersen, Harrison 

et al. 2006). At the same time, recent advances in the mathematical modeling of information systems 

supports the construction of increasingly realistic simulations of those systems under conditions which can 

be characterized in terms of risk and uncertainty which can be employed to provide the quantitative inputs 

and simulated outcomes over which experiments involving decisions, binary choice or otherwise, regarding 

system control can be designed. The combination of these two fundamental constructs – quantitative 

decision scenarios based on stochastic system simulation and established formats for decisional 

experiments based on simulated quantitative choices - permits the testing of both established and 

innovative hypotheses within the decision research domain to proceed within the specific context of 

information security decision making under uncertainty. 

 

The following two sections describe 1) the development of the system simulator which operates on inputs 

and outcomes which are readily recognizable by security practitioners; and 2) the development of 

experiments which use are based on well documented choice experiments but which have been translated 

into the domain specific context of information security control choice.       

 

Overview of the Use of Simulation in the Context of Binary Choice Experiments 

The format of lab experiments for decision research have been typically based on the use of very simple 

physical systems including pre-calculated pie-chart lotteries, the use of dice, coloured balls in transparent 

urns, bingo cages with numbered or coloured balls or other stylized ‘systems’ at risk, aspects of which the 
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participant can directly observe and able to represent both risky and uncertain probabilistic prospects. 

These systems are used to represent or dynamically generate decision scenarios within which participants 

are asked to then make decisions regarding preferences over binary choices involving the prospective 

outcomes based on the choices they make. In some cases the participant may be paid to play and the 

outcome of the played out choice is paid to the participant in some form of either points or money. In the 

example given above, the participant is asked to choose between two pre-determined ‘binary’ lotteries in 

which the participant indicates their preference for one lottery over the other and the chosen lottery is then 

‘played out’ to determine the payoff for that choice. In order to generate sufficient choice data to estimate 

the decisional parameter of interest (say risk aversion), the participant may make a series of independent 

choices over several rounds and then one of the choice pairs is randomly selected to be ‘played out’ for a 

payoff to the participant. Variations on this format may, alternatively, involve a ‘multiple price list’ format 

indicating at what ‘price’ the player would choose one prospect over the other. In both of these examples, 

the ‘crossover point’ between choosing one lottery over the other is used to econometrically determine 

degree to which the participant prefers a ‘sure thing’ to a relatively risky prospect.  

 

The ‘lotteries’ can involve both known and unknown probabilities depending on what aspect of decisional 

bias are being tested. For example, seminal experiments regarding risk aversion typically used a series of 

paired binary lotteries, with one lottery being ‘played out’ at random for money at the end of the series. The 

premise is that, if properly incentivized, the participant will make consistent (even if biased) choices 

throughout the series on the prospect of being paid to maximize their potential earnings and that the 

resulting choice data is inherently reflective of the underlying risk preferences, decisional biases and latent 

decision making model of the participant
25

. Scenarios can also involve gains, losses or a mixture of gains 

and losses in order to test preference variance in the context of gains and losses. In loss scenarios, 

participants may be provided with a ‘stake’ so that a reference point is established in the context of 

prospective loss. This also allows gain and loss scenarios to be compared such that scenarios can be 

constructed in which the expected value of a prospective gain (without stake) is equivalent to the expected 

value of a prospective loss (with a stake). In their seminal research, Kahneman and Tversky showed that 

under these conditions, persons are generally risk averse in gains, but risk seeking in losses (Tversky and 

Kahneman 1992). The construction of similar ‘equivalence’ tests for decisional biases using carefully 

constructed outcome scenarios is a fundamental construct in designing these experiments and its 

application in my experimental context will be explained in the next section.                  

 

Since I am proposing to test for decisional bias in the context of the real world problem of choosing 

information security controls, I propose that the ‘system at risk’ should be appropriately sophisticated to 1) 

reflect an adequate contextual validity for both the inputs and outcomes of the system to an experienced 

                                                                        
25 The selection of one lottery pair at random to pay out after a series of lottery pair choices creates what is referred to as a ‘compound 

lottery’ and has implications for the way in which decision makers process final decision probabilities and prospective outcomes. 

Harrison et al review the theoretical and experimental implications of this ‘reduction of compound lotteries’ problem and its potential 
impacts on decision making biases (Harrison, Martínez-Correa et al. 2015).    
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practitioner; and 2) permit the construction of a sufficient range of decision scenarios which support the 

desired range of decisional biases to be tested. This means that the system generating the choice scenarios 

should ideally be one which the practitioner acknowledges to be an acceptable representation of an 

information system at risk based on both their subjective experience of information systems in the real 

world and its appropriateness in the context of the decision task being presented in the experiment. On the 

other hand, the main objective of this research is to test for decisional bias, not to develop a model of an 

information system at risk. This means that I have had to limit the scope of scale of the system model to 

that which is manageable for the purposes of supporting the experiments. In addition, while the system 

generating the prospective outcomes should be sufficiently sophisticated in terms of generating plausible 

stochastic outcomes, the experiments themselves should likely employ choice scenarios that can be 

benchmarked directly to established experiments involving simpler physical analogs in order to ensure 

methodological comparability. This requires that the simulation model be able to generate ‘constructed’ 

scenarios that permit the incremental testing of choices in which (possibly) only specific inputs are changed 

between scenarios. 

 

For example, as an analog, Antoniou (Antoniou, Harrison et al. 2010) performed a choice experiment 

consisting of two bins containing an equal number of 10-sided dice whose individual faces are either 60% 

‘blue’ or 60% ‘white’ and where each bin contains predominantly blue-faced or white-faced dice 

respectively. A set number of dice are then selected at random and in secret by the experimenter from one 

of the two bins and the dice are rolled in secret. The numbers of resulting blue and white faces are then 

announced to the player who then places ‘bets’ with a fixed stake amount according to a ‘bookie table’ 

offering varying odds that the dice were in fact selected from the predominantly blue-faced or white-faced 

die bin respectively. By observing the betting ‘crossover point’ at which participants expect that 

predominantly blue dice results are subjectively expected to have in fact come from the white bin (and, 

symmetrically, vice versa), and by varying the number of dice selected per roll, the experimenter is able to 

econometrically estimate, variously: the participants’ subjective probability estimation of the likelihood of 

dice coming from either box; the participants subjective expected utility of a given bet; and the 

participants’ subjective weighting between the ‘strength’ (percentage of blue vs. white faces on any roll) 

and ‘weight’ (number of dice rolled or evidence ‘points’) of evidence presented in each experiment. 

 

To test this ‘strength/weight hypothesis’ in the context of information security, I propose an analogous 

experiment in which participants are required to subjectively estimate whether a sample of daily business 

transaction losses due to system degradation are generated from a ‘yellow’ (relatively high risk) or an 

‘orange’ (relatively low risk) information system, where the (known) probability of observations being 

above/below a certain dollar threshold are 60%/40% for the yellow system and 40%/60% for the orange 

system respectively. To my knowledge this is the first experiment of this type to be made specifically in the 

context of information security using security professionals instead of lay participants (or MBA students). 
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Using the analogous simulation of an information system at risk, the experiment permits the testing for 

decisional biases based on the strength of the evidence (i.e. what percentage of observations are above the 

threshold and by how much) and by the weight of the evidence (i.e. the number of observations sampled 

across in a series of experiments involving 3, 5, 9, 12 and 17 observations respectively). Assuming the 

construction and presentation of an appropriately realistic and flexible system at risk, similar experiments 

based on established decision research studies can be constructed to test an appropriate range of decisional 

behaviours of interest in the context of both psychological decisional biases and information security. 

 

Important methodological progress was achieved from my continued in-depth review of Harrison’s work 

on choice under uncertainty in lab settings and the referenced seminal publications in the experimental 

economic field generally. As noted previously, significant conceptual analogs for the system at risk and the 

resulting choice experiments was initially motivated by Antoniou (Antoniou 2010) and then by both Fiore 

(Fiore, Harrison et al. 2009) and Sen (Sen 2010). Fiore (Fiore, Harrison et al. 2009), conducted a lab 

experiment in which participants are presented with a computer simulation of a forest fire and are asked to 

make a series of decisions about how to prevent a house within the forest from burning down. The 

participants are given ownership over the ‘virtual’ house of nominal value located within the virtual forest 

which is stochastically subject to forest fire and are asked whether they prefer to purchase a government 

provided ‘controlled burn’ around the house from a staked cash fund that would reduce (by an unknown 

amount), but not eliminate, the chance that the house would burn if a forest fire broke out during the 

simulation. The forest fire ‘system’ (including 3D visuals of the fire that could be played forward and 

backward by the participants) and the determination of whether the house burns is simulated in computer 

software and participants are paid out at the end of the simulation based on the net value of the house (if it 

still exists) and their individual net cash left over after paying (or not paying) for the control. The 

associated econometric joint estimation of subjective risk attitude and subjective beliefs over the likely 

behaviour and outcome of the system specifically incorporating the endogenous efficacy of the (single) 

control provided an excellent example of a relatively complex simulation of a system at risk over which 

subjects are asked to make binary choice control bets under both risk and uncertainty. Sen extended Fiore’s 

work using the same simulation system (Sen 2010) but performed a series of experiments that have 

informed my hypothesis development.  

 

 I will now turn to the consideration of what constitutes an ‘appropriate’ simulation of an information 

system at risk within the context of this research and describe my specific choice of an approach and a 

software platform to generate the required simulations.  

 

Considerations for Use of System Simulation in a Lab Setting 

Although lab experiments can be and are increasingly delivered via computer interface, Harrison stresses 

the need to conduct computerized experiments in person within a formal lab setting in order to establish 
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instructional certainty of the choice task for each participant, eliminate or minimize cheating or collusion 

and, for this particular class of experiments, to ensure transparency of the stochastic outcome generation 

process for payoffs as a key element of satisfying participants of the fairness of the experimental 

methodology (Harrison almost always uses dice rolling in his experiments) (Harrison and Rutström 2008). 

All of Harrison’s doctoral candidates whose dissertations I have been able to review in depth have 

implemented experiments in person (Antoniou 2010; Antoniou, Harrison et al. 2010; Rivenbark 2010; Sen 

2010) although both Rivenbark’s and Sen’s experiments were still comparatively complex for the genre. 

For the purposes of the proposed research, use of non-simplistic computer simulations, while increasingly 

popular in experimental settings because they provide a factor-rich analog to the real world decision 

problem under study, remain challenging to implement from a number of perspectives and will have to be 

carefully specified prior to undertaking any actual programming or implementation (Andersen, Harrison et 

al. 2006; Fiore, Harrison et al. 2009; Crookall 2010; Lawson and Lawson 2010). At the same time, while 

Baldwin’s system model (and the proposed simulation model for my experiment) is complex, he was not 

running binary choice experiments and, aside from the simulation model, the data generation methods were 

comparatively simple survey tasks. While the simulation is a core part of my proposed research, it is 

nonetheless ‘background’ to the choice tasks and subsequent econometric modeling and these aspects 

deserve due consideration, possibly at the expense of a more robust simulation. The research can always 

utilize a simpler system at risk, but it cannot compromise on the data generation and modeling.    

 

Simulation of an Information System at Risk 

Significant research was undertaken on my part between October 2012 and October 2013 to determine the 

appropriate logical model and (physical) software platform for a simulated information ‘system at risk’ that 

would 1) incorporate enough real-world factors to be considered valid from the perspective of an 

information security practitioner, 2) incorporate endogenous risk factors (Shogren and Crocker 1991) 

which the participant would potentially i.e. interactively be able to influence, although not 

deterministically, to affect the outcome of a risk scenario simulation; and 3) was sufficiently manageable 

from a programming perspective to permit me to create a system and associated controls that represented 

the stochastic outcomes I was interested in using as the basis for choice under uncertainty. The following 

section reviews my research regarding three potential candidate platforms, each of which approach the 

problem of system modelling from a different perspective and whose review provided perspective on the 

‘best’ approach for my purposes.  
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5 - Modelling Overview: System Simulation and Choice Modelling   

 

My proposed research model for security control choice builds on theoretical work undertaken by 

Collinson (Collinson and Pym 2009) for discrete process simulation in the context of system security 

modelling, and associated theoretical work on utility maximization under uncertainty within the 

information security domain (Beresnevichiene, Pym et al. 2010). My own simulation model forms the basis 

for subsequent behavioural economics lab experiments which present participants with an information 

system at risk and permits participants to make domain relevant choices over specified controls under 

conditions involving both risk and uncertainty. The experiment generates individual participant choice data 

which permits consideration of multi-criteria utility functions, specifically involving loss functions (Zellner 

1986; Beautement, Coles et al. 2009; Ioannidis, Pym et al. 2009) and the specification and econometric 

estimation of choice models which allow for a possible combination and weighting between multiple latent 

models of choice (‘mixed models’) (Harrison and Rutström 2009). The research contribution is to specify 

structural models of latent decision making behaviour as generally proposed by Harrison which permit the 

joint estimation of a range of relevant biases within the context of information security including, 

variously: the risk aversion of the subject and the weighting between EUT and PT decision models 

(Harrison and Rutström 2009) in the context of multi-period decisions involving asset accumulation (Game 

1) (Thaler and Johnson 1990; Cubitt and Sugden 2001; Andersen, Harrison et al. 2006); subjective 

Bayesian updating based on the strength and weight of the quantitative evidence presented system 

simulation (Game 2) (Antoniou, Harrison et al. 2010); decisions over exogenous versus endogenous 

simulated risk (Game 3) (Fiore, Harrison et al. 2009; Sen 2010); the recovery of subjective probability 

estimates for continuous distributions of simulated security losses (Game 4) (Harrison and Ulm 2015); 

decisions over security precaution versus insurance using system simulation (Game 5) (Bajtelsmit, Coats et 

al. 2015).  

 

1 - HP Labs GNOSIS System 

Collinson (Collinson, Monahan et al. 2009) outlines the essential theoretical modeling approach (Figure 4) 

undertaken in the context of system simulation. Beres and then Baldwin correspondingly specify a logical 

model (Figure 5) which incorporates both stochastic system simulation and utility modeling:       

 

 

 

 

 

 

 

 



  50  

Figure 4 – Theoretical System Simulation Modeling Approach  

 

(Collinson and Pym 2009) 

 

In this approach, a theoretical discrete process system model is proposed based on induction from real 

world observations of actual systems. The model permits the simulation, manipulation and analysis of 

stochastic discrete system states and transitions and the subsequent deduction of the system’s causal 

interactions and outcomes which may be complex and not obvious depending on the model’s specification 

and underlying event joint probability distributions. In the security context, the system model includes 

security risk factors (assets, threats, vulnerabilities, and economic and operational impacts of discrete 

operational states) and component control interventions over vulnerabilities based on decision maker 

economic preferences. Decision maker behaviour and the resulting system states (attributed outcomes) are 

then interpreted as having real world implications (transactional losses) which can be reasonably compared 

to observed outcomes by professional participants for actual systems and decision makers in real work 

contexts. The degree of alignment between the simulation with real world behaviours and attributed 

outcomes permits continuous adjustment of the system and the desired utility models to capture additional 

components, interactions or hypothesized choice models as required.  

 

Baldwin (Baldwin, Beres et al. 2011) specifies a descriptive research model for security control choice 

based on Collinson’s system modeling work which was appropriate for my purposes as a starting platform 

for the analysis of the control selection problem under both risk and uncertainty. The proposed 

mathematical model permits the stochastic representation of the objective system at risk which permits 

generation of non-deterministic and therefore uncertain outcomes for the decision maker and supports the 

elicitation of economic preferences and utilities representative of ‘multi-objective, multi attribute’ decision 

problems under uncertainty. The establishment of appropriate binary discrete choice experiments under 

scenario-based the prospective outcomes under both risk and uncertainty can then be used to evaluate 

specific risk attitude and preference models. 
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Figure 5 - Economic Framing and System Model 

 

(Baldwin, Beres et al. 2011) 

     

Choosing a specific system model to represent the security aspects of the system at risk was a key 

consideration for this research since the achievement of the model itself was only an input to the 

development of the experiments and not the ultimate goal of this research. An early insight was based on 

prior work which analyzed system component risks as opposed to overall system risk (Beres, Griffin et al. 

2008; Baldwin, Mont et al. 2009; Beautement, Coles et al. 2009; Beresnevichiene, Pym et al. 2010), but 

which was applied to a ‘whole system’ view of a specific set of decision problems. Beres (Beresnevichiene, 

Pym et al. 2010) describe the key conceptual components of the system as defined by Collinson and their 

mathematical instantiation in a proprietary modeling language based on prior work undertaken in 

conjunction with HP Labs in the UK (Collinson and Pym 2009). The Gnosis modeling language and toolset 

developed by HP labs (Collinson, Monahan et al. 2010) is a discrete process simulation language which 

enables stochastic, Monte Carlo simulation of the system at risk and, although not designed specifically for 

security system modeling, has been successfully applied in the security domain and is freely available for 

research use
26

. Figure 6 illustrates the essential system model deployed by Baldwin for use in his work 

which is representative of a typical discrete process simulation involving external security threats, in this 

case a component vulnerability and an associated malware threat:  

 

 

 

 

 

 

 

                                                                        
26 http://www.hpl.hp.com/research/systems_security/gnosis.html  

http://www.hpl.hp.com/research/systems_security/gnosis.html
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Figure 6 - Representative schematic of a discrete process system model (Baldwin) 

 

(Baldwin, Beres et al. 2011) 

 

In this model, the boxes represent process ‘event’ generators and decision points for controls with 

connectors representing transition paths between located system resources and processes. After the 
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specification of an initial system state and an attack vector, the system can then be simulated, allowing the 

paths to run concurrently and to generate quantitative metrics representing the states of the various 

resources and processes over time. Additional dynamic or stochastic parameters can then be specified, for 

example with respect to how long control activities take to activate or the activation gradient. In Baldwin’s 

example, nine discrete measurements were generated representing various aspects of system risk based on 

prior qualitative surveying of a panel of respondents’ economic and operational concerns: 

 

 Machine-days exposed to know malware - # of machines x  # days each of them is exposed 

from the time that malware is known in the wild  

 Exposure window – # of day’s workstation environment is exposed (vulnerability not mitigated) 

from vulnerability discovery time  

 Malware infection - # of machine infections  

 Helpdesk calls – number of helpdesk calls per each vulnerability.  

 Productivity of operational staff – number of hours spent by operational staff doing security 

tasks  

 User satisfaction – level of user satisfaction between 0-4.  

 Policy violations - % of vulnerability cases where mitigations took longer to be deployed than 

policy dictated timeline  

 Capital cost – one off dollar value of controls  

 Operational cost – dollars spent yearly on a control.  

 

Using the Gnosis system, Baldwin was able to display simulated outcomes to respondents with comparison 

to one of four control interventions to permit the respondent to interactively consider potential tradeoffs 

based on control choice and expected results.  

 

Model Pros and Cons 

After reviewing the conceptual and logical modelling examples from the associated body of work based on 

the Gnosis system, I gave strong consideration to the apparent feasibility of my learning and then 

manipulating the Gnosis system to create an appropriate system at risk for my own purposes. The Gnosis 

platform, while conceptually and logically modelling discrete events of an information system, is 

physically based on an object oriented modelling language. While freely available for research use, use of 

this platform would have involved the need to learn the Gnosis language and then develop a model which, 

at that point, potentially required a wide range of unknown system features, inputs and outputs appropriate 

for my emerging set of hypotheses and choice experiments. The system also apparently lacked any kind of 

graphical user interface which would make implementing the code prospectively more feasible since I was 

not familiar with the modelling language or the coding environment. This prompted me to explore 
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alternative software platforms that, while involving discrete system simulation, might provide a similarly 

robust but more flexible and ‘user friendly’ modelling environment.     

 

The HP research essentially established a formal mathematical model of an information system at risk 

consisting of a series of temporally parallel and dependent processes, the steps of which could be specified 

in terms of discrete events. Importantly, the discrete event model can be simulated in order to evaluate 

alternative operational input and output modes of the system (Collinson, Monahan et al. 2009; Collinson 

and Pym 2009; Collinson, Monahan et al. 2010).  While the modelling platform developed for this was not 

immediately suitable for my purposes, the HP work indicated that I should likely explore alternative 

discrete event modelling environments to identify a more feasible platform for my use. Additional literature 

search for “discrete event simulation” led to a review of several candidate platforms
27

 that were superior in 

terms of apparent learning curve and ease of use. Platforms that did not directly employ a graphical user 

interface were rejected as were those which did not provide a readily deployable demonstration version that 

I could try before buying. Schriber (Schriber, Brunner et al. 2013) provides a short guide to DES models 

and reviews several popular platforms. His review includes an overview of the ExtendSim platform 

discussed below. 

 

At the same time as I was exploring platforms generally, I continued to search for research combining 

‘security’ and ‘discrete event simulation” generally. Felde (Felde 2010) wrote a Master’s thesis which, of 

particular interest in my specific research context, modelled and simulated a hospital information system 

process using the ExtendSim platform, a commercial platform indicated by my other search
28

. Felde was 

able to demonstrate a reasonably complex model of a discrete event process in the context of information 

security decision making concerning the deployment of system access smartcards vs. passwords for 

hospital physicians. Felde’s work contributed to my key understanding of modeling for discrete event 

simulation and platform choice. Felde indicates that there are specific steps in the overall modelling process 

according to Banks and as represented by the platform vendor themselves (Banks 1984) :  

 

 

 

 

 

 

 

 

 

 

                                                                        
27 https://en.wikipedia.org/wiki/List_of_discrete_event_simulation_software  
28 http://www.extendsim.com/  

https://en.wikipedia.org/wiki/List_of_discrete_event_simulation_software
http://www.extendsim.com/
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Table 3 - Comparing modelling and simulation methodologies 

Source: Felde (2010) 

 

Felde represents the modelling and simulation steps indicated above by a flow diagram indicating several 

stages of model verification and validation: 

 

Figure 7 - Categorization of steps found in modelling and simulation methodology 

 

Source: Felde (2010) 

 

 

Felde concludes by indicating that his work will only cover the first 3 Phases above, translated into 5 

distinct steps: 

 

1. Preparation (Phase 1) 

2. Design and data collection (Phase 2) 

3. Model building (Phase 2) 

4. Simulation parameter estimation (Phase 3) 

5. Analyzing the simulation output (Phase 3) 

 

This outline guided my preparation for model development and continued through the actual model 

development indicated below.   
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Felde also presented a decision matrix that assisted in my consideration for the various available DES 

platforms: 

 

Table 4 - Comparing simulation environments 

Simulation 

Environment 
Price 

Ease of 

Use 
Applicability 

Combining drag 

and drop 

customization 

Support 
Area 

Specific 

AnyLogic High Yes Yes Yes Yes No 

ExtendSim Free Yes Yes Yes Yes No 

FlexSim High Yes No Yes Yes Yes 

Micro Saint High Yes Yes Yes Yes Yes 

OMNet + + High Yes Yes Yes Yes Yes 

 

Source: Felde (2010) 

 

Felde indicated that the ExtendSim platform was offered to him for free during his research which 

presented a possible support path for my own research. 

 

On further examination of Felde’s work, I elected to review the platform and Felde’s implementation in 

greater depth as a reference point for my simulation approach. Felde’s work was initially attractive because 

it dealt specifically with security control decisions within a hospital context - a security issue and business 

setting which I was familiar with professionally: whether to deploy smart cards or passwords to physicians 

and to what extent each mechanism affected patient service times overall, and specifically in the event of a 

lost card or password reset support process. This was also the first model I had encountered in the literature 

which expressly set out to model the ‘business impact’ of a security related IT process ‘at risk’. A key 

motivation emerged while pursuing ExtendSim and his modelling approach: the prospect of being able to 

directly benchmark my sufficient understanding of the platform through a direct replication of his model 

which was available from the ExtendSim website as a sample of academic work accomplished using the 

platform. Proceeding with my own modelling without a core understanding of a platform’s specific features 

and limitations was considered a significant risk to this research and I retained this perspective throughout 

the selection of my ultimate modelling approach. Sufficient mastery of the modelling environment was also 

particularly important since, as noted, my achievement of a simulation of a system at risk was only an input 

to the ultimate goal of the research. I thus made the assumption that I would likely discover elements of the 

simulation over time that would need to be added or modified after initial modelling and simulation results 

were incorporated into one or more lab experiment interfaces. The uncertainty of that necessarily iterative 

design approach indicated that I would need to be absolutely sure of the platform before proceeding. At this 

time, I had also anticipated that I would possibly need to run the simulation in real time (i.e. on demand, as 

was apparently the case in Fiore noted above) even if in the ‘background’ via some type of participant user 

interface and so understanding how this could be achieved with any specific tool was considered an early 

key to overall success.  
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While I was able to obtain and run the model in ExtendSim, unfortunately his flowchart descriptions of the 

model in his thesis were not available in English and the prospect of decoding this underlying guide to the 

realized electronic model did not appear realistic. Significantly, Felde also describes several rounds of 

model simplifications of the control provisioning, use and reset model, eventually indicating that “…we 

will only focus on how the [provisioning and reset control] security measures affect the time use on a 

business activity…the security measure which yields the lowest time related KPI value is considered the 

‘best’ security measure.” (pg. 40) This was unfortunately overly restrictive for my purposes since I was 

interested in determining whether the subjective selection of controls (even if not considered optimal or 

‘best’) is biased taking into account both the cost of the control and the prospective business losses under 

varying control scenarios. Felde’s sole focus on provisioning and support effects of the ‘controls’ mirrored 

some aspects of the HP approach, and were similarly not wide enough in their applicability to enterprise 

level security decision making. 

 

Given the lack of direct documentation for his implemented model and the incompleteness of the scope of 

the ‘security model’, I elected to pursue Felde’s reference to Neubauer’s work, particularly given the 

indication of the incorporation of costing factors into the system modelling. Neubauer introduced a model 

in which business downtime costs are explicitly related to the level of security control investment and sets 

out to model the trade-offs between security costs and the attributed business losses from security related 

incidents: 

 

Figure 8 - IT Dependent Business Process Model 

 

(Neubauer, Klemen et al. 2005) 
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In terms of a normative decision regarding control selection, the ‘optimal’ selection of controls can then be 

represented by the point at which the sum of business losses and control costs are minimized, where losses 

are assumed to be inversely proportional to control investments: 

 

Figure 9 - Security Cost vs. Benefit Trade-off 

 

(Neubauer, Klemen et al. 2005) 

 

A literature search for related Neubauer papers took my research in several complementary directions. 

First, Neubauer has collaborated with colleagues at both the SBA Research in Austria
29

 and the Vienna 

University of Technology (TUWEIN)
30

, focusing variously on multi-objective security control selection 

(Neubauer, Stummer et al. 2006; Neubauer, Ekelhart et al. 2008), business process modelling for IT 

investment decision making (Neubauer and Stummer 2007), and a survey of methods for the evaluation of 

IT security investments (Neubauer and Hartl 2009). Notably, Neubauer also collaborated on a ‘roadmap’ 

for risk aware business process modelling (Jakoubi, Neubauer et al. 2009) and a survey of methods for the 

integration of security risk into business process modelling (Jakoubi, Tjoa et al. 2009). This body of work 

supported my review of business process modelling and the integration of security controls within process 

models which has subsequently informed the ontological and structural basis for my understanding of 

security risk modelling. 

 

The resulting ‘roadmap’ indicates the incremental components of risk aware business process modelling 

incorporating security risks: 

 

 

 

 

                                                                        
29 http://www.sba-research.org/  
30 http://www.ifs.tuwien.ac.at/  

http://www.sba-research.org/
http://www.ifs.tuwien.ac.at/
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Figure 10 - Risk-Aware Business Process Management 

 

(Jakoubi, Tjoa et al. 2009) 

 

Their ‘survey’ indicates which method supports simulation and economic evaluation , which they term the 

‘ROPE’ (Risk Oriented Process Evaluation) approach: 

 

Figure 11 - Survey of Methods for Security Simulation and Economic Evaluation 

 

(Jakoubi, Tjoa et al. 2009) 
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Similar to aspects of the HP business process modelling methods described above, Neubauer et al 

contributed to work on methodologies for ‘risk aware business process’ modelling (Jakoubi, Tjoa et al. 

2007; Jakoubi, Goluch et al. 2008; Tjoa, Jakoubi et al. 2008) and specifically the formulation of the ROPE 

methodology and the use of discrete event simulation based on the ROPE approach (Jakoubi, Tjoa et al. 

2010; Tjoa, Jakoubi et al. 2010; Tjoa, Jakoubi et al. 2011). Separately, other Neubauer colleagues have 

pursued the development of security ontologies (Fenz and Weippl 2006), and the application of security 

ontologies in the generation of Bayesian networks for security threat risk determination (Fenz, Tjoa et al. 

2009; Fenz, Ekelhart et al. 2011; Fenz 2012). The use of both discrete event simulation and Bayesian 

networks, while related in terms of their incorporation of risk elements and specifically security risks into a 

business process model, approach the modelling solution from separate perspectives. A significant insight 

for this research has been to combine elements of each approach, together with Monte Carlo techniques as 

is explained below, to achieve a tractable, flexible and valid simulation of an information system at risk for 

my lab purposes. The following three sections describe these core modelling approaches, my insights from 

each and the fourth describes my synthesis of the key aspects of these approaches which resulted in my 

own simulation model.      

 

2 - ROPE Methodology Using Matlab and SimuLink for Discrete Event Simulation  

Research conducted at the Vienna University of Technology and SBA Research in Austria
31

 undertakes 

discrete event simulation modelling of a ‘risk aware business process’ with a specific focus on system 

availability and integrity (Tjoa, Jakoubi et al. 2011; Fenz 2012; Fenz, Ekelhart et al. 2012). In contrast to 

HP labs, their approach utilizes the commercially available MatLab
32

 platform, which incorporates a robust 

graphical user interface (GUI) to build a complex, multi-layered mathematical model expressing the 

relations between threats, detection mechanisms, safeguards, recovery measures and their effects on 

business processes, the simulation of which can directly generate any number of system outputs that would 

be of interest to the decision maker looking at control alternatives. 

 

The risk aware business process modelling approach recognizes that business processes generally, and 

business processes dependent on information systems specifically, are at risk from disruptions caused by 

‘threats’ to one or more of the process actions (e.g. call centre call processing) performed by one or more 

resources (e.g. information systems, call operators) in a specified environment. The following figure 

indicates the conceptual model of a business process at risk from threat disruptions and the corresponding 

detection, counter measure and recovery controls that mitigate potential and realized threats to the business 

process: 

 

 

 

                                                                        
31 Ibid  
32 http://www.mathworks.com/discrete-event-simulation/  

http://www.sba-research.org/
http://www.mathworks.com/discrete-event-simulation/
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Figure 12 - Detection, Counter and Recovery Model of Security Control 

 

Source: Tjoa, Jakoubi 2010 

   

Jakoubi et al (2008) introduce their “ROPE” (Risk Oriented Process Evaluation) methodology to explicitly 

combine business process optimization with risk management and present a methodology to simulate the 

effects of business process security risks over time. The ROPE Methodology consists of three modelling-

layers: 

• Business process (BP) modelling layer: Representation of the company’s business processes – 

business process activities serve as linkage to the next modelling-level. 

• CARE (Condition, Action, Resource and Environment) modelling layer: Identification of a 

business process activity’s elements (Action, Resource and Environment) and their coherences 

(Condition). 

• TIP (Threat Impact Process) modelling layer: Identification of potential threats as well as their 

management- and recovery strategy:. 

 

The ROPE methodology extends the conceptual ‘process at risk’ model by adding in process resource 

dependencies: 
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Figure 13 - Risk Aware Business Process Model: It Resource Dependencies 

 

Source: Tjoa, Jakoubi 2010 

 

A logical representation of the extended ROPE approach is indicated in the following figure: 
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Figure 14 - Logical model of a risk aware business process 

 

(Jakoubi et al. 2007) 

 

Since the discrete event model is intended to support simulation over time, the unavailability of impacted 

resources, modelled as a percentage degradation of absolute (100%) availability affects the temporal 

performance of the business process which continues to degrade overtime depending on 1) the efficacy of 

the threat detection, which impacts 2) how long the threat is active in the environment before detection; 3) 

once detected, how long it takes to counteract the threat; and 4) how long it takes to recover the degraded 

resource to full performance. 

 

The following figure indicates a repeated business process consisting of three sequential sub-processes (A, 

B, C) where, in the third iteration, a threat becomes effective on process B shortly after process B begins, 
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delaying its completion until recovered, and subsequently delaying process C in the third iteration and the 

subsequent start of process B in the fourth iteration:  

 

Figure 15 - Time dependent business activity model with security incident 

 

(Jakoubi, Goluch et al. 2008) 

 

In the above example, while the B sub-process recovers in the third iteration, the interruption in the timing 

of the process is permanent (i.e. even though A starts on time, it is subsequently always waiting extra time 

for B to complete its prior execution before it can start B) and the system would have to somehow ‘speed 

up’ in a single cycle in order to return to an equivalent temporal state in which no interruption had 

occurred. In business process systems which are dealing with exogenous demand (e.g. calls arriving at a 

call centre) the process would effectively create an inventory or backlog of calls that could not be 

eliminated without conceptually either speeding up or adding some type of efficiency in the A/B/C sub 

processes. Dynamically modelling the business process backlog from period-to-period improves the ability 

of the model to account for the both the presence and effectiveness of the controls (here the incident 

manager) over time and permits the differentiation between prevention, detection, counteraction and 

recovery controls: 
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Figure 16 - Graphical representation of a business process backlog 

 

(Jakoubi et al. 2008) 

 

The authors go on to present a contextual scenario of a travel agency dealing with customer booking orders 

where agency’s internal booking system depends on a single information system server providing essential 

order processing services for the employees. A second ongoing business process of the agency is first level 

IT support, which is performed by the agency’s incident manager. The model simulates the introduction of 

a computer virus degrading the computing resources and the impact on both call backlog and resource 

requirements to recover the process.  The following figure indicates the logical impact of a computer virus 

affecting the agency’s server resource and the subsequent response process of the first level support 

resource to detect, counteract and recover the server: 
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Figure 17 - Logical model of a successful virus attack on a travel agency (ROPE) 

 

(Jakoubi et al. 2008) 

 

Although not undertaken by Jakoubi et al in the above example, the approach is significant since it permits 

the determination of the (temporary) backlog in call processing the resulting increased resource 

requirements (activities) to return the process to a normal state, both of which represent additional costs to 

the business over time.  

 

Tjoa et al proceed to illustrate three additional detailed scenarios that demonstrate the effectiveness of this 

approach using the SimuLink discrete event simulation tool within MatLab to both model the business 

process at risk and to simulate the dynamic action of the system to prevent, detect, counter and recover 

from disruption. The following reviews these three models in some depth in order to demonstrate the 
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applicability and flexibility of the modelling approach and to illustrate key aspects of specific platform 

reviewed in the course of this research. The first example is not security centric but illustrates the basic 

activity and resource-dependency approach of this method, and introduces two key concepts of risk aware 

business process activity modelling which have carried through to my model: 1) the concept of an activity’s 

degree of completion (DC) and its integrity loss (IL), and 2) the concept that the system has memory such 

that any incomplete prevention, detection, counteraction or recovery of a sub-process or resource attribute 

in the previous time period affects the starting attributes of the sub-process or resource in the current time 

period. Degree of completion is modelled indirectly via the ‘availability’ of the resource’, whereas integrity 

is modelled directly, both measured between 0 and 100%. In environments characterized by stochastic 

demand for resources, this modelling approach presents an opportunity to reflect not only average process 

activity over several time periods but the variability of the process’ ability to meet demand across the time 

period. If business costs can be attributed to unfulfilled process demand (whether due to lack of availability 

or integrity or both), the system can more accurately reflect the impact of availability and integrity threats.               

 

In terms of overall usability or throughput, both availability and integrity loss ultimately impact system 

output, although a distinction between availability and integrity at the process level needs to be 

maintained
33

 depending on the system purpose, the desired type of risks (threats) to be modelled and the 

resulting effects to be estimated. For example, systems that are less than 100% available continue to 

process every request accurately, although at a lower rate (or ‘degree’) of completion and can result, 

variously, in increased system user wait times, request abandonment and overall lower productivity. 

Integrity compromised systems (as especially assuming full availability) potentially produce erroneous 

outputs (and where each unit of output may in fact be erroneous) at the given availability or capacity. 

Depending on the type of business purpose and computing environment, integrity may in fact be more 

important than availability and result in, for example, rework or output accuracy liabilities where service 

level agreements may be applicable (e.g. the return of imperfect goods to the manufacturer). In other cases 

such as healthcare or industrial control (e.g. SCADA) systems where the quality or safety of the output is 

carefully controlled, even small degrees of integrity loss may be absolutely unacceptable, resulting in the 

shutdown of the resource or sub-system despite the otherwise availability of the resource itself (in which 

case, availability itself goes to zero even though not directly threatened). These security distinctions based 

in the CIA triad permits the risk aware system to dynamically reflect ‘backlogs’ of process and dependent 

resource demand and reflect real world conditions in which the impacts of security incidents may persist 

within a system for several time periods before being fully resolved. 

 

                                                                        
33 See https://www.tofinosecurity.com/blog/scada-security-basics-why-industrial-networks-are-different-it-networks for examples of 

the consideration between availability and integrity in industrial control applications versus other IT systems. The subsequent 

discussion regarding the work by Ekstedt et all elaborates on their considerations for integrity over availability in their application to 
SCADA systems.   

https://www.tofinosecurity.com/blog/scada-security-basics-why-industrial-networks-are-different-it-networks
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Case #1: Dynamic Resource Allocation: 

Tjoa et al modelled a call centre using discrete event simulation with dynamic resource allocation 

properties to determine the optimal configuration of human resources between call queues (Tjoa, Jakoubi et 

al. 2010). The conceptual model consists of three increasing levels of call support ‘actions’ performed by 3, 

2 and 2 human resources respectively, where the second and third level support human resources can be re-

allocated to the prior level under conditions where the backlog of calls at the prior level exceeds a certain 

threshold and the resources are returned to their original position if the backlog of their original position 

exceeds a certain threshold. 

 

The following diagram represents the ‘conceptual’ model of the process. The incoming queue of calls, and 

the call resolution determination are stochastic based on historical data and indicating that one-third of the 

Level One calls are typically escalated to Level 2, and 1/2 of Level 2 calls are escalated to Level 3, with 

100% of Level 3 calls being resolved at Level 3: 

 

Figure 18 – Discrete Event Simulation Example #1: Call Centre Resourcing 

 

(Tjoa, Jakoubi et al. 2010) 

 

The corresponding logical model, expressed in MathWorks using Simulink illustrates the modelling of the 

process, actions and resource inputs and outputs at various levels of abstraction. The following diagram 

indicates the “Main Layer” of the model which represents the logical instantiation of the conceptual model, 

with the corresponding single server, 7 human resources and their computer workstation resources and the 

three levels of call processing activity: 
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Figure 19 – Example #1 Instantiated Model in MathWorks/SimuLink (Main Layer) 

 

 (Tjoa, Jakoubi et al. 2010) 

 

The model monitors the inputs and outputs of the process and displays results of the simulated process 

overtime using display ‘Scopes’ connected to the activities. The model can be simulated under risk 

scenarios in which a generic security threats affect the availability or integrity of the PC and /or Server 

resources and can be used to determine the effectiveness of both controls to prevent/detect/counter/recover 

from the threats and, specifically as is the goal of this model, to determine whether dynamic human 

resource reallocation between call levels is a valuable control. The process has one financial attribute which 

is ‘proceeds’ (the cumulative attributed business value of completed calls); each activity has three output 

attributes: degree of completion (DC), integrity loss (IL) and call backlog (BL), and three inputs: PC 

resource availability (RG_AV), PC resource integrity (RG_IN) and the presence of a call (Call). The DC 

attribute depends on the availability (“AV”) attribute of the PC resources and the IL attribute depends on 

the integrity attribute (“IL”) for the server resource. Lower AV and IL lowers DC and increases BL. 

Conceptually, decreases in AV cause direct decreases in DC due to a fewer number of (here a percentage 

lower level of) resources available per period, while decreases in IL causes decreases in DC due to a lower 

level of activity cycles (speed of completion) per available resource . 

 

The embedded Activity blocks are identical other than their respective per period input and output levels, 

including any re-allocated human resource instances which are dependent on queue lengths. The activities 

take three inputs:  
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Figure 20 - Example #1 Instantiated Model (Activity Layer) 

 

(Tjoa, Jakoubi et al. 2010) 

 

The model also includes an “Allocation” process which monitors the call backlog of each activity and 

dynamically re-allocates a single human resource plus PC to a lower service activity level (increasing the 

number of “Active” resources at that activity level and decreasing the number of “Active” resources at the 

source activity level) as required: 

 

Figure 21 - Example #1 Instantiated Model (Resource Allocation Layer) 

 

(Tjoa, Jakoubi et al. 2010) 

 

The system is then simulated to reflect the impact on, respectively, activity backlogs and overall proceeds. 

In the following output, a threat impacts an Activity 1 PC resource at time step 400 and persists until the 

threat begins to be countered at step 730 and is fully recovered around step 980. In this case, no dynamic 

allocation is permitted and results in essentially stagnant business proceeds between initial impact and 

recovery: 
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Figure 22 - Example #1 system simulation output: No dynamic reallocation of resources 

 

(Tjoa, Jakoubi et al. 2010) 

 

In the alternative scenario permitting dynamic reallocation of resources between Activity levels, a Level 2 

resource is reallocated to level 1 around step 510 as Activity 1’s backlog reaches a predefined threshold. 

The reallocated resource stays in Activity 1 (increasing Activity 1’s throughput) until Activity 2’s backlog 

increases to its threshold at which point the Activity 2 resource returns to Activity 2. After reducing 

Activity 2’s backlog the Activity 2 resource again returns to Activity 1 but cannot effectively reduce the 

backlog, and a resource from Activity 3 is reallocated to Activity 1 around time 750. This increases 

Activity 3’s backlog but decreases Activity 2’s backlog (because more calls are completed at Activity 1): 

 

Figure 23 - Example #1 system simulation output: No dynamic reallocation of resources 

 

(Tjoa, Jakoubi et al. 2010) 

 Business Revenues 

 Activity 1 Backlog 

 Activity 2 Backlog 

 Activity 1 (3 resources) 

 Activity 2 (2 resources) 

 Activity 3 Backlog 

 Activity 3 (2 resources) 

 Business Revenues 

 Activity 1 Backlog 

 Activity 2 Backlog 

 Activity 1 (3 +1 resources) 

 Activity 2 (2 -1 resources) 

 Activity 3 Backlog 

 Activity 3 (2 resources) 
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In this scenario, Tjoa et al successfully demonstrate that proceeds are largely unaffected under simulation 

conditions characterized by stochastic security threat risk to computing resources using dynamic resource 

allocation.  

 

Case #2: System Availability Simulation: 

In the case presented above, Tjoa et al were able to demonstrate the impact of generic threats on computing 

resources and the computer dependent human resources, introducing the concept of degree of completion of 

a process activity based on the availability and integrity of the underlying resources. The case does not 

however directly illustrate the modelling of the core security control factors that they advocate as part of 

their ROPE conceptual and logical model: prevention, detection, counter, and recovery.  In the following 

case, they fully implement these control sub-processes within the process model and demonstrate the 

mitigation of impacts on resource availability and integrity. These concepts support the modelling of real 

world security ‘defense in depth’ where unprevented but detected attacks must first be countered to 

eliminate the threat after which the impacted systems can then recovered over time, gradually restoring 

business processing to a  normal, pre-attack state. The business cost of the impact on system availability 

from realized threats must necessarily also take into account these counteraction and recovery costs which 

may be significant depending on the severity and persistence of the attack and the effectiveness of the 

controls. Their contribution in the following case consists of the ability to model and then simulate the 

required system process and security control components and directly informed my subsequent modelling 

approach using these conceptual modelling and simulation components: 

 

1) Modelling Concepts: 

 Business Process Activities 

 Required Resources 

 Threats endangering these resources 

 Detection, counter and recovery measures 

 Relations between these components 

2) Simulation-based determination of risk impacts (e.g. time, control costs, backlogs, etc.): 

 

In the following model, Tjoa et al also formally specify two further ‘proactive’ controls: preventive 

measures and blocking measures. Together, these controls further extend the defense in depth concept by 

reducing, respectively, the probability of a threat occurring and the probability of fully stopping a threat 

before it impacts the system. These additional control factors correspond to established threat and risk 

modelling approaches wherein risk can be measured a product of the likelihood of a threat affecting an 

asset’s (resource) control vulnerabilities, multiplied by the impact on the asset should the threat be effective 

within the system. Under this model, likelihood itself can be decomposed into the probability of the threat 
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occurring multiplied by the likelihood of the vulnerability being present
34

. It should be noted that in this 

model, the lack of a threat or of a corresponding vulnerability (or of both) effectively reduces the expected 

risk qualitatively or quantitatively to zero. The following diagrams indicate the impact of a threat on the 

availability of an activity, which is degraded for a period of time due to the availability impact on the 

underlying resource: 

 

Figure 24 - Resource Availability and Impact on System 

 

(Tjoa, Jakoubi et al. 2011) 

 

In the above example, an activity begins processing at time 410 until a threat becomes effective around 

time 435 when the availability of the underlying resource begins to degrade. The resource degradation 

continues until the threat is countered around time 480 at which point the resource begins recovering. Here 

activity availability is degraded resulting in fewer executions (completions) per cycle. Similar effects are 

modelled for integrity threats which, as noted above, degrade the cycle time per activity execution. Both 

                                                                        
34 As noted above, we distinguish between probability of a prospective event and the likelihood or degree of belief that a state pre-

exists. In this model, we are required to estimate the probability that a threat will occur and the degree of belief that a vulnerability 

actually exists i.e. the threat will occur with some expected propensity, whereas the vulnerability is in fact either present or absent with 
some degree of uncertainty. Both estimates are expressed as a percentage between 0 and 100, however the concepts are distinct. As 

noted, probability is typically estimated based on the historical frequency of the threat action whereas degree of belief in the presence 

of a vulnerability may be better estimated using Bayes rule based on both prior expectations of the presence of the vulnerability and 
available evidence indicating that a vulnerability may be present.       
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impacts result in attributed business losses where proceeds are measured in terms of total transactions 

completed per period of time. 

 

The demonstrated case study again involves a call centre with two levels of support, however this time the 

model incorporates two computing resources (a shred server and individual PCs) and proactive controls for 

threat prevention and blocking, and reactive controls for detection, counteraction and recovery. The 

objective of the case was to demonstrate decision support capability for two prospective control 

improvement scenarios: the selection of an anti-virus toolkit where each kit varied in acquisition costs 

($12,000 vs. $22,000) and availability threat blocking detection rates (75% vs. 95%) respectively. In 

addition, each kit had a similar integrity threat blocking capability of 84%. The Main layer of the model is 

illustrated below: 

 

Figure 25 - Example #2 Instantiated Model in MathWorks/SimuLink (Main Layer) 

 

(Tjoa, Jakoubi et al. 2011) 

 

Each Activity layer is identical and takes as inputs the server integrity and the blended availability level of 

both the server and the Activity’s PC resource. The Activity’s degree of completion of a call in queue is 

monitored from start (DC = 0) until it completes the call (DC = 1). A decision block “2
nd

 level?” 

stochastically determines whether a level one call is escalated to Level 2:   
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Figure 26 - Example #2 Instantiated Model (Activity Layer) 

 

(Tjoa, Jakoubi et al. 2011) 

 

The resources contain sub-processes for 1) determination of unprevented and unblocked threats, which 

proceed to impact resource either or both of availability and integrity; and 2) detection, counter and 

recovery processes that relieve the system of the threat and recover the resource to full availability and/or 

integrity overtime. The impact on the resource depends on 1) the current threat impact level, which is based 

on whether the threat has been detected and, once detected, the level of threat counteraction acting on the 

threat; and 2) the level of resource recovery that is being effected after counteraction has been completed:  

 

Figure 27 - Example #2 Instantiated Model (Resource Layer) 

 

(Tjoa, Jakoubi et al. 2011) 
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Figure 28 - Example #2 Instantiated Model (Threat Layer) 

 

(Tjoa, Jakoubi et al. 2011) 

 

Figure 29 - Example #2 Instantiated Model (Detection, Counter and Recovery Layer) 

 

(Tjoa, Jakoubi et al. 2011) 

 

Conceptually, the per period effectiveness of the detection, counter and recovery activities and the resulting 

reduction in threat impact and resource availability are modelled essentially as deterministic parametric 

functions, although effectiveness could be modelled as stochastic probability distributions as required.  

 

The resulting simulations indicate the effects of the two different proposed blocking controls. The 

following simulation outputs illustrate the differences on outcomes: 
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Figure 30 - Example #2 Control Scenario Comparison 

 

 Simulation #1: Availability Blocking Measure: 75%  Simulation #2: Availability Blocking Measure: 95% 

 

(Tjoa, Jakoubi et al. 2011) 

 

 In the first simulation, two successful (unblocked) threats enter the system, first at approximately time 150 

and again at time 380, and the Availability attribute declines to zero within about 50 time units until the 

counter measure is completely effective. At that point the Recovery measure initiates and takes nearly 150 

time units to fully recover the availability of the resource. The Backlog and Income plots indicate that the 

DCR controls take some time to counteract the threats leading to an increasing (i.e. unrecoverable at 

current resources) call backlog and fluctuating income due to sustained business losses during the periods 

when the activities are compromised. Comparatively, the second simulation indicates that all threats were 

successfully blocked resulting in no decrease in resource availability. Correspondingly, call backlog 

fluctuates but does not increase over time and income rises over the simulation period. Since there are no 

Availability impacts in simulation 2, the impact of the single integrity threat can be seen clearly beginning 

at time 180 which, due to the relative shorter counteraction and recovery times, temporarily slows degree of 

completion but does not have significant resulting impact on either call backlog or income. The authors 

conclude by indicating that the model has demonstrated the ability to support decisions regarding security 

controls in a way that is informed by the incorporation of security-related control elements into the model 

which affect the availability and integrity of the underlying resources on which business processes depend.     
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Discussion and Implications for Application within this Research  

This modelling approach was significant in my research for several reasons: 1) Contrary to the procedural 

modelling approaches suggested by the HP research, it provided an intuitive, GUI-based approach to 

discrete event simulation (DES) for a business process at risk of security threats; 2) the approach 

incorporated relatively realistic threat impact and security control sub-processes for the computing 

resources which could be easily replicated within other prospective models involving business process 

resource and risk dependencies. Specifically, I liked their incorporation of the 

prevent/block/detect/counter/recover schema which directly reflected practitioner experience in designing 

‘defense in depth’ security control systems; 3) the models , although only minimally dependent upon 

stochastic inputs in these cases (i.e. for the call queues and the threat incidence generation) clearly 

supported the stochastic determination of any or all inputs (e.g. control efficacy) as might be required to 

increase the realism of the control sub-processes; 4) the outputs of the model were time based and could be 

set up to produce any length of simulation that might be required; 5) the platform on which the models 

were built (MatLab and its DES sub-platform, Simulink) is commercially available at a reasonable cost for 

exploration at the decision stage in which I was considering its effectiveness for my purposes. This was 

particularly important since I had at that point not decided on a platform since the implications for ‘locking-

in’ were significant at that point in time and required careful consideration; 6) it was reasonable to assume 

that the modelled examples (i.e. as modelled within MatLab by the authors themselves) might be readily 

available from the academic authors for academic review and further research use, unlike the HP models 

which were essentially proprietary and commercial in nature. 

 

On this basis, I decided to pursue the platform further to determine whether I could modify the existing 

models for my purposes. Through personal correspondence with the authors, I was able to obtain the 

MatLab model for Case #2 above to understand the benefits and limitations of working with the platform 

and the prospect for modifying it for my own purposes. While the model presented a valid simulation of an 

information system at risk from a practitioner perspective, as implemented there were several significant 

considerations for improvements that would have to be overcome before it would be considered an 

appropriate modelling approach and platform for my use: 1) the model was essentially deterministic (i.e. 

other than the stochastic queues and threat instances it always produced the same output results) since it did 

not yet incorporate any type of realistic sub-component threat attack model or otherwise stochastic 

attributes for security threats, vulnerabilities or controls. This meant it would likely require significant 

modification to achieve any degree of input and output ‘uncertainty’ profiles appropriate for my lab 

purposes and it was not immediately clear how those modifications would be accomplished in a reasonable 

period of development time, despite the GUI nature of the tool, since I was not familiar with the Matlab 

environment; 2) It was not clear at that stage of my review whether or how the model could be reasonably 

run in ‘real time’ within a lab setting that would facilitate an adequate level of user interaction between the 

simulation (i.e. interactive control over control types or levels of control) and the individual decision 
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scenarios 
35

; 3) it was not clear how individual instances of the simulation could be run on independent 

participant workstations (and if performed in the field, possibly using their own corporate workstations) at 

a reasonable software licensing cost; 4) even if multiple versions of the software were available to me, it 

was not clear how the software would be conveniently installable in the field on workstations I did not own 

or control prior to the lab sessions;  5) it was not clear whether or how the model could be modified to run 

with a suitable ‘front end’ overlay onto the MatLab modelling environment itself that users could thereafter 

manipulate themselves during the labs; 6) It was not clear whether or how input selection parameters could 

be easily changed by a user using some type of user friendly/user-controllable ‘widget’ (e.g. such as a slider 

or press buttons) or whether the outputs which (as illustrated above) could be abstracted from the 

monitoring ‘scopes’ used within the MatLab environment so far. From my perspective, there was likely a 

need to be able to create input tools (sliders, buttons, etc.) and graph outputs that mode closely matched 

something available in Visual Basic in Excel – the comparative devices in MatLab were at that point 

unknown to me.  

 

For these reasons, after reviewing and manipulating the available model for some weeks, I decided that I 

should continue to explore alternative platforms to address the potential issues noted. On the plus side, the 

model did, however, provide invaluable perspective on the suitable conceptual framework for security 

control grouping that I would eventually incorporate consisting of ‘preventive’, ‘blocking’ and ‘reactive’ 

(detection, counter-measures and recovery) controls (Tjoa, Jakoubi et al. 2011).   

 

3 – Use of Security Ontologies and Bayesian Networks for Threat Probability Determination 

The research by Tjoa et al (Tjoa, Jakoubi et al. 2011) led to my review of related but different approaches 

by other members of the SBA Research group. Fenz et al have undertaken extensive research in threat 

determination (Ekelhart, Fenz et al. 2006), security ontologies (Ekelhart, Fenz et al. 2006) , the use of 

security ontologies for threat determination (Fenz and Neubauer 2009), the use of security ontologies 

within Bayesian networks ((Fenz, Tjoa et al. 2009; Fenz 2012) and the construction of Bayesian networks 

based on security ontologies using a prototype modelling tool (Ekelhart, Fenz et al. 2009; Fenz, Ekelhart et 

al. 2011; Fenz 2012). Their approach is essentially characterized by the integration of two relatively recent  

security modelling approaches, each addressing a specific aspect of the security risk modelling problem: 1) 

the specification of a security ontology which formally defines the relationship between threats, assets,  

vulnerabilities, and controls (Fenz and Ekelhart 2009); and 2) threat probability (success) determination 

based on the calculation of the conditional probability of the system attributes using Bayesian networks 

(Fenz and Tjoa 2008; Fenz and Neubauer 2009; Fenz, Tjoa et al. 2009). In addition, the authors implement 

a prototype of a software construction of the Bayesian network using the defined security ontology based 

                                                                        
35 As it turned out, this would not have been an issue for any of the simulation platforms reviewed since the lab interfaces themselves 
were eventually built using pre-calculated simulation outputs. This was done to accommodate models which ultimately could not be 

simulated in a short enough time to be realistically accommodated on a standard desktop computer within a lab setting and to 

eliminate the need for the acquisition and deployment of a proprietary simulation platform, and likely requiring multiple copies to 
accommodate group trials setting, within the lab interface itself.     
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on the Aurum platform
36

. The conceptual ontological approach and the Bayesian determination of threat 

probabilities are reviewed below. I then discuss my consideration for using this modelling approach and the 

key insights that led to further research and ultimately the adoption of conditional probabilities directly 

within my chosen model and software platform.  

 

In the first instance, the authors advocate for the use of security ontologies to enable the definition, 

formalization, reuse and machine computability of security relationships. An ontology “…defines the basic 

terms and relations comprising the vocabulary of a topic area, as well as the rules for combining terms and 

relations to define extensions to the vocabulary” (Neches, Fikes et al. 1991) or is “…a hierarchically 

structured set of terms for describing a domain that can be used as a skeletal foundation for a knowledge 

base.” (Swartout, Patil et al. 1997). Most notably, from the perspective of developing a security ontology 

that can be incorporated into a software model of system risk, an ontology is “…a formal, explicit 

specification of a shared conceptualization.” (Studer, Benjamins et al. 1998), where 

 

 “formal” means machine-readable 

 “explicit specification” means entity concepts, properties, relations, functions, constraints, and 

axioms  are explicitly defined 

 “shared” means consensually based knowledge of the explicit specification; and 

 “conceptualization” means an abstract model and simplified view of some phenomenon in the world 

that we want to represent  

 

On reflection, these definitional criteria are important for my consideration of a security model which will 

need to 1) demonstrate real world validity (i.e. it is both ‘explicit’, defining structured elements and their 

logical relationships over which relations and therefore calculations can be made; and shared, such that it is 

representative of a recognizable standard within a professional practitioner or academic community on 

which members rely for a common understanding of events and causal inference); 2) be both 

conceptualized (simplified) enough to sufficiently define and be implementable within a constrained time 

or resource modelling approach; and 3) be convertible into a machine readable and calculable format – i.e. 

in some type of modelling software - which supports scaled and scoped simulation of the model in some 

available (consumer grade) computing system. 

 

The logical security relationships on which the ontology is built are illustrated below: 

 

 

 

 

 

                                                                        
36 AURUM is a proprietary information security risk management platform originally developed by the SBA group and now offered as 
part of the consulting services of XYLEM Group - http://www.securityontology.com/  

http://www.securityontology.com/
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Figure 31 - Logical Security Concept Relationships 

 

(Fenz, Tjoa et al. 2009) 

 

In the above diagram, the logical relationships between the security components correspond to established 

security practitioner standards (NIST October 1995): system and process assets, which are subject to threats 

which affect the assets security attributes (confidentiality, integrity and availability, etc.) due to inherent or 

control effectiveness vulnerabilities, which can be mitigated using security controls affecting threat 

prevention, blocking, detection, counteraction and asset recovery (Fenz, Tjoa et al. 2009). An example of 

the logical specification of the risk of  a ‘fire threat’ would be as follows where the practitioner guidance 

for the threat, control and impact relationships can be traced to both the GSHB
37

 and ISO/IEC 27001
38

  

standards (Fenz and Ekelhart 2009):  

 

 

 

 

 

 

 

 

 

 

 

                                                                        
37 IT Grundschutz Manual, 2004 - a German standard for IT security based on the British Standards Institute   

https://www.bsi.bund.de/EN/Topics/ITGrundschutz/itgrundschutz_node.html  
38 ISO/IEC. ISO/IEC 27001:2005, Information technology - Security techniques – Information security management systems - 
Requirements, 2005 http://www.iso.org/iso/home/standards/management-standards/iso27001.htm  

https://www.bsi.bund.de/EN/Topics/ITGrundschutz/itgrundschutz_node.html
http://www.iso.org/iso/home/standards/management-standards/iso27001.htm
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Figure 32 - Fire Threat Example 

 

(Fenz and Ekelhart 2009) 

 

 

The logical expression of the ontology allows the calculation of the threat probability for any associated 

asset: 

1) Attacker motivation and capability affect attacker effectiveness. 

2) Attacker effectiveness combines with the a prior probability of the threat occurring and affects the 

probability of exploiting a vulnerability. 

3) The probability of exploiting a vulnerability is also a function of combined control effectiveness 

across the relevant asset controls.  

4) The resulting vulnerability exploitation probability is summed over all vulnerabilities and is 

combined with the additional probability of threats resulting from predecessor threats to determine 

the overall threat probability,  

5) and any ensuing successor threat probabilities 

 

The order of operation of the logical relationships are illustrated below: 
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Figure 33 - Logical Security Model Order of Operation for Threat Determination 

 

(Fenz and Ekelhart 2009) 

 

The fully encoded ontology consists of the concepts (‘component nodes’), relations (‘linking functions’ 

expressing relationships between the nodes) and axioms (‘node scales’ – potential states of the node, and 

‘node weights’ – parent/child weights, equal unless specifically weighted for certain vulnerabilities) 

representing the full security schema which will be used to construct the Bayesian network itself: 

 

Figure 34 - Concepts Nodes for Security Ontology 

 

(Fenz and Ekelhart 2009) 

 

1 

2 

3 

4 

5 
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Figure 35 - Security Ontology Concept Relations 

 

(Fenz and Ekelhart 2009) 

 

Figure 36 - Security Ontology Child-Parent Relationships 

 

(Fenz and Ekelhart 2009) 

 

The concepts are then ‘instanced’ by indicating relevant known real world evidence for each node using 

Likert scales or probabilities: presence/absence; high/medium/low; attacker motivation; attacker capability; 

control implementation effectiveness; a priori threat probability, etc.  

 

Use of Bayes Theorem for Determination of Security Threat Probabilities 

In standard security risk models, the expected value of a security risk to an asset is based on the probability 

of a threat successfully impacting the asset multiplied by the attributed impact given a successful threat. 

The resulting expected loss can be plotted as a 2 dimensional ‘heat map’ indicating relative expected risks 

across all threat and asset combinations: 
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Figure 37 - Security Risk Assessment ‘Heat Map’ 

  

(Schmittling and Munns 2010) 

 

The probability of threat success is assumed to be conditional based on the underlying nature of the 

system’s risk factors: the presence and interaction of attacker motivations, asset vulnerabilities, control 

effectiveness, etc. In this model, certain combinations of factors are assumed to generally (but not 

necessarily) produce more ‘successful’ threats than others: systems with a given vulnerability and a 

relatively weaker control (or no control) produce more successful threats than systems with the same 

vulnerability but with a relatively stronger control. The combination of risk factors can be considered as a 

vector of factors which combine to create the likelihood of a threat occurring and is essentially a causal 

model of threat occurrence. If the relationship between the risk factors and successful threats were purely 

deterministic (i.e. if the presence of a particular vector of risk factors always/never caused a successful 

threat) then, given information about the presence of those risk factors, we would be sure of the probability 

of a successful threat (100% or 0% respectively).  

 

In the absence of sufficient information about the underlying risk factors (or the absence of a posited model 

of threat probability), the best we can do to estimate the probability of a successful threat is to observe the 

frequency of successful threats in an actual system over time. The longer we observe, given the law of large 
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numbers, the better is our estimate of the true probability although we can say nothing about the underlying 

cause of the threats or how the probability might differ if, or as, the risk factors change. Presuming that the 

factors do in fact change over time in a real world setting, the probability based on frequency or proportion 

of outcomes (successful threats over total system activity periods observed) simply reflects the average of 

all types of possible risk factor effects and their resulting threat probability. The problem of threat 

probability determination asks: can we do better? 

 

As a useful analogy for what follows, we can think of a 10-sided die as being the ‘system at risk’, where the 

die has faces that either say “Successful Threat” or “Unsuccessful Threat” and a roll of the die produces a 

random binary outcome: Successful or Unsuccessful. Imagine that you do not know what the proportion of 

‘Successful’ to ‘Unsuccessful’ faces is or how the faces are assigned to the die – how would you estimate 

the probability of rolling a ‘Successful’ face on a single throw (i.e. by analogy, experiencing a ‘successful 

threat’ to the system)? In the absence of other information, intuitively, the best guess is 50/50. On the one 

hand, if you could run an experiment, you might roll the die a thousand times and compare the proportion 

of ‘Successful’ to ‘Unsuccessful’ faces and conclude that this proportion is a good approximation for the 

‘underlying’ probability of a successful threat. This might be satisfactory, but only if you: 1) had the luxury 

of running experiments (observing outcomes without intervening) – note this might be costly in a real 

world setting with an actual information system at risk or, analogously, even with dice if you were betting 

on the outcomes; or 2) had no chance to examine the die or some portion of the die directly in order to 

know fully or estimate what the actual proportion of ‘Successful’ to ‘Unsuccessful’ faces might be i.e. how 

risky the system was in fact; or 3) to understand or (better) somehow influence the way in which the values 

‘Successful’ and ‘Unsuccessful’ are ‘assigned’ to the faces. In the latter case, we might imagine some 

malevolent die painter who prefers to paint Success or Unsuccessful, but we don’t know which. In a real 

world security setting, we can certainly imagine both malevolent attackers and lazy security control 

managers where each would have an effect on the underlying probability of successful threats.      

 

If you could examine the die, purely from the perspective of determining the probability of successful 

threat, it would not matter by what means the faces had been assigned, only that there was a specific 

proportion representing the objective probability of ‘successful’ assuming the proportion did not change 

over the course of the experiment. In this case, you do not need to know anything more about the creation 

of the die and, in fact, don’t need to roll the die at all to forecast the probability of events related to its 

possible outcomes: the probability of ‘successful’ can be known for sure. Comparatively, having to roll the 

die one roll at a time is equivalent to randomly examining the individual faces on the die, but without ever 

knowing the true underlying proportions. In this latter case, additional information on the general nature of 

the die could provide some guidance as to its magnitude e.g. if you knew roughly how many ‘successfuls’ 

were on the die (i.e. the presence or absence of some but not all risk factors) or by what mechanism the 

faces were ‘assigned’ “Success” over “Unsuccessful”. Notice that this knowledge or assumption of the 
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underlying ‘mechanics of assignment’ is especially valuable if we only have a limited number of rolls in 

which to subjectively forecast the probability. How would knowledge of this mechanic improve the ability 

to estimate the probability of a successful threat?   

 

In reality, what is generally observed are systems that have certain risk factors present but which 

experience varying probabilities of successful threats, and for the same system over time. This means that 

the probability of a successful threat must somehow be statistically inferred from the relationship between 

successful threats and the presence and interaction of the risk factors. The inference of the probability 

depends on a subjective interpretation of what this probability represents: either as a proportion of 

outcomes as noted above or, alternatively, as a degree of belief based on the conditional relationship 

between threat success and the risk factors. A frequentist approach to the calculation of the probability of a 

successful attack P(A) is simply the long run relative frequency or proportion of outcomes of, “A” out of all 

possible outcomes assuming some underlying threat generation mechanism of the system, “B” (i.e. without 

the ability to see or influence the threat generation, or simply ignoring it). On the other hand, from an 

epistemological perspective, taking evidence of the risk factors into account, a better alternative 

interpretation of the probability of A can be understood as the probability of A conditional on the evidence 

of B. The probability of A would then be derived as follows: 

 

By the commutative property
39

,  

 𝑃(𝐴 𝑎𝑛𝑑 𝐵) =  𝑃(𝐵 𝑎𝑛𝑑 𝐴) (4.1) 

 

If A and B are independent events, then 

 𝑃(𝐴 𝑎𝑛𝑑 𝐵) =  𝑃(𝐴) ∗ 𝑃(𝐵) = 𝑃(𝐵) ∗ 𝑃(𝐴) (4.2) 

 

If B depends on A, we write 

 𝑃(𝐵|𝐴) (4.3) 

 

And the probability of A and B is then  

 𝑃(𝐴 𝑎𝑛𝑑 𝐵) =  𝑃(𝐴) ∗ 𝑃(𝐵|𝐴) (4.4) 

 

Similarly, if A depends on B then 

 𝑃(𝐵 𝑎𝑛𝑑 𝐴) =  𝑃(𝐵) ∗ 𝑃(𝐴|𝐵) (4.5) 

 

Since the right sides of 4.0 and 5.0 above are equal, then 

 𝑃(𝐵) ∗ 𝑃(𝐴|𝐵) =  𝑃(𝐴) ∗ 𝑃(𝐵|𝐴) (4.6) 

 

                                                                        
39 http://mathworld.wolfram.com/Commutative.html  

http://mathworld.wolfram.com/Commutative.html
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Dividing both sides by P(B), we get Bayes’ Theorem: 

 

 𝑃(𝐴|𝐵) =  
𝑃(𝐴)∗𝑃(𝐵|𝐴)

𝑃(𝐵)
 (4.7) 

 
Bayes Theorem says that the probability of a threat P(A) is a matter of a degree of belief conditional on 1) a 

prior assumption of the probability of the threat P(A); 2) the likelihood of the presence of the risk factors 

given a successful threat P(B|A); and 3) the probability of the risk factors occurring P(B). This allows the 

probability of a successful threat to vary depending on the likelihood of the underlying stochastic process of 

how the risk factors create threats, when a threat actually occurs. This model itself, not just the risk factors, 

can vary and thus contributes to the probability of a threat occurring.  Comparing this approach to the 

frequentist approach, P(B) can be thought of as evidence of risks which are not considered when simply 

observing the frequency of threats P(A) but when introduced, imply a risk model and change your belief in 

the underlying probability of threats. The factor 
𝑃(𝐵|𝐴)

𝑃(𝐵)
 therefore represents the ‘total’ impact of B (i.e. both 

the underlying risk model combined with the existence of the risks factors) on the probability of A. 

 

The Bayesian approach can dramatically change the estimation of probabilities depending on the incidence 

of the threat and the presence of the risk factors. By another analogy, if a coin is flipped 99 times, and each 

time a head comes up, what would you expect to be the probability of a head turning up on the 100
th

 flip? 

The answer is that it depends on whether you believe the coin is fair (and therefore that the probability of 

heads is 50%).  If you are a frequentist and you assume the coin is fair, you would bet that the probability is 

50% regardless of the evidence to the contrary. You would correspondingly believe that the probability of 

99 heads is a row is possible, but highly unlikely (also since you assume the coin is fair). If you are a 

Bayesian, you would incorporate the evidence of the 99 heads to update your assumption of a fair coin (i.e. 

a 50% chance of flipping heads) in estimating the probability of heads on the next flip. In the context of 

threat determination, the analog is that we have a system (a coin) that produces successful threats (heads) 

with some probability based on the underlying threat producing characteristics of the system (fairness of 

the coin). The probability of a threat is then analogous to the probability of tossing a head which depends 

on our belief in the nature of the risk producing system (fairness of the coin). 

 

For example, if the prior expectation of the probability of successful threats P(A) = 1.1% (a successful 

threat occurring 4 days in 365) but the probability of a vulnerability being present is P(B) = 3.3%  

(vulnerabilities occur 12 days in 365) and the probability of a vulnerability being present given a successful 

threat is P(B|A) = 99% (i.e. vulnerabilities nearly always cause threats), then 

  

𝑃(𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑡ℎ𝑟𝑒𝑎𝑡|𝑣𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦) =  
𝑃(𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑡ℎ𝑟𝑒𝑎𝑡)𝑃(𝑣𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦|𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑡ℎ𝑟𝑒𝑎𝑡)

𝑃(𝑣𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦)
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𝑃(𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑡ℎ𝑟𝑒𝑎𝑡|𝑣𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦) =  
. 011 ∗ .99

. 033
= .33 = 33% 

 

Assume instead that the vulnerability is only found to occur in 75% of the threat cases. Then  

𝑃(𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑡ℎ𝑟𝑒𝑎𝑡|𝑣𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦) =  
. 011 ∗ .75

. 033
= .25 = 25% 

 

For the purposes of modelling threats which are assumed conditional on the presence of risk factors, this is 

a much more valuable approach to threat probability determination since it incorporates both a model of 

threat determination and the evidence of the incidence of risks and threats.  

 

Use of Bayesian Networks for Modelling Complex Security Threat Probabilities 

In the above examples, threat probability was determined by a single risk factor notionally represented by a 

‘vulnerability’ which is unrealistic for the purposes of modelling even a small scale real world system at 

risk. In reality, threats are caused by combinations of risk factors (including vulnerabilities) that influence 

the probability of a threat occurring. To incorporate a more realistic approach, researchers have proposed 

the use of Bayesian networks to model ‘attack graphs’ which can be used to compute the joint conditional 

probabilities of threats for entire systems (Holm, Ekstedt et al. 2012; Kiesling, Ekelhart et al. 2014). The 

approach is based on Bayesian probabilities but supports deeper risk relationships between the risk factors. 

Bayesian networks are ‘graphical structures for representing the probabilistic relationships among a large 

number of variables and doing probabilistic inference with those variables’ (Neapolitan 2004). 

 

For example, suppose that a successful threat is essentially the result of a malicious actor attack (e.g. the 

introduction of a computer virus) acting on an asset vulnerability (e.g. an unpatched operating system) in an 

organization that has an associated virus control (e.g. patching procedures) which reduces but does not 

eliminate all potential viruses. The resulting risk relationships leading to the probability of a successful 

threat can be expressed as a Bayesian network and a set of conditional probabilities representing the 

relationship between the risk factors. Here the probability of a successful threat is conditional on the 

presence of a virus (the ‘threat’) acting on a present system vulnerability (C), but possibly mitigated by the 

presence of a vulnerability patching control (B). The conditional probabilities between the risk factors can 

be represented in binary lookup tables indicating the result of the presence or absence of the factors on the 

dependent network node: 
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Figure 38 - Three Node Bayesian Network 

 

 

Note that the sophistication of the inferred system model has increased substantially: 1) if there is no virus 

present (A=F), the system vulnerability cannot lead to a successful threat; 2) if there is a virus present but 

no patching is present, there is an 80% chance that the virus will act on the vulnerability and create a 

successful threat(C=T=.8); 3) on the other hand, if both a virus and patching is present, there is still a 

chance that a virus can act on the vulnerability and subsequently cause the threat to be successful, but with 

less probability (C=T=.2). 

 

The modelling question we are interested in is ‘what is the probability of a successful threat given the 

presence of one or more risk factors?’. P(C|A,B) can be directly calculated by summing over the exhaustive 

set of conditions of A, B and the resulting C: 

 

Table 5 - Conditional Probability Calculation 

 

 

Here the probability of a successful threat over all possible combinations of risk inputs is 20.4%. This 

percentage (like any average) is interesting but not overly helpful to a decision maker more interested in 

making specific control choices than understanding what the average probability of success would be over 

all possible combinations of threats and controls. A more interesting question from an interventional 

T,T,T T,F,T F,T,T F,F,T

P(A) 0.3 0.3 0.7 0.7

P(B) 0.3 0.7 0.3 0.7

P(C )= T 0.4 0.4 0.4 0 Sum

P(A)*P(B)*P(C ) 0.036 0.084 0.084 0 0.204

A,B,C



  91  

perspective is: “What is the probability of a successful threat given the presence of patching?’ In this case, 

we use the Bayesian probability calculation noted above: 

 

 𝑃(𝐶|𝐵) =  
𝑃(𝐶)∗𝑃(𝐵|𝐶)

𝑃(𝐵)
 (4.8) 

  

 

The question here is how to estimate the likelihood function P(B|C) since C is also dependent on A. 

 

P(B|C) can be written as a conditional probability and summing over all nuisance variables (in this case A), 

where T equals the condition “TRUE”:  

 

 𝑃(𝐵|𝐶) = 𝑃(𝐵 = 𝑇|𝐶 = 𝑇) =  
𝑃(𝐶=𝑇,𝐵=𝑇)

𝑃(𝐶=𝑇)
= 

∑ 𝑃(𝐶=𝑇,𝐴,𝐵=𝑇)𝐴∈{𝑇,𝐹}

∑ 𝑃(𝐶=𝑇,𝐴,𝐵)𝐴,𝐵∈{𝑇,𝐹}
 (4.8) 

 

Using the conditional probability tables above, we can then evaluate each of the terms in the sums - in the 

numerator: 

 

𝑃(𝐶 = 𝑇, 𝐴 = 𝑇, 𝐵 = 𝑇) 

 = 𝑃(𝐶 = 𝑇|𝐴 = 𝑇, 𝐵 = 𝑇) ∗ 𝑃(𝐴 = 𝑇) ∗ 𝑃(𝐵 = 𝑇) (4.9) 

 = .4 ∗ .3 ∗ .3 

 = 0.036 

 

𝑃(𝐶 = 𝑇, 𝐴 = 𝐹, 𝐵 = 𝑇) 

 = 𝑃(𝐶 = 𝑇|𝐴 = 𝐹, 𝐵 = 𝑇) ∗ 𝑃(𝐴 = 𝐹) ∗ 𝑃(𝐵 = 𝑇) (4.10) 

 = .4 ∗ .7 ∗ .3 

 = 0.084 

 

In the denominator: 

 

𝑃(𝐶 = 𝑇, 𝐴 = 𝑇, 𝐵 = 𝑇) 

 = 𝑃(𝐶 = 𝑇|𝐴 = 𝑇, 𝐵 = 𝑇) ∗ 𝑃(𝐴 = 𝑇) ∗ 𝑃(𝐵 = 𝑇) (4.11) 

 = .4 ∗ .3 ∗ .3 

 = 0.036 

 

𝑃(𝐶 = 𝑇, 𝐴 = 𝑇, 𝐵 = 𝐹) 

 = 𝑃(𝐶 = 𝑇|𝐴 = 𝐹, 𝐵 = 𝑇) ∗ 𝑃(𝐴 = 𝐹) ∗ 𝑃(𝐵 = 𝑇) (4.12) 

 = .4 ∗ .3 ∗ .7 
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 = 0.084 

 

𝑃(𝐶 = 𝑇, 𝐴 = 𝐹, 𝐵 = 𝑇) 

 = 𝑃(𝐶 = 𝑇|𝐴 = 𝑇, 𝐵 = 𝑇) ∗ 𝑃(𝐴 = 𝑇) ∗ 𝑃(𝐵 = 𝑇) (4.13) 

 = .4 ∗ .7 ∗ .3 

 = 0.084 

 

𝑃(𝐶 = 𝑇, 𝐴 = 𝐹, 𝐵 = 𝐹) 

 = 𝑃(𝐶 = 𝑇|𝐴 = 𝐹, 𝐵 = 𝑇) ∗ 𝑃(𝐴 = 𝐹) ∗ 𝑃(𝐵 = 𝑇) (4.14) 

 = .4 ∗ .7 ∗ .3 

 = 0.0 

 

 𝑃(𝐵|𝐶) = 𝑃(𝐵 = 𝑇|𝐶 = 𝑇) =  
.036𝑇𝑇𝑇+.084𝑇𝐹𝑇 

.036𝑇𝑇𝑇+ .084𝑇𝑇𝐹+ .084𝑇𝐹𝑇+ 0.0𝑇𝐹𝐹
 (4.15) 

𝑃(𝐵|𝐶) =  
. 12 

. 204 
=  .588 

 

We can now calculate the probability of a successful threat, given the actual presence of patching P(B).  

This allows the model to incorporate available evidence for the various risk factors in place and not just the 

likelihood of their effect. For example, if we determine that P(B) = .8 (i.e. that patching is highly likely to 

be present), then 

 

 𝑃(𝐶|𝐵) =  
𝑃(𝐶)∗𝑃(𝐵|𝐶)

𝑃(𝐵)
 (4.16) 

 

𝑃(𝐶|𝐵) =  
1 ∗ .588

. 8
=  .73 

 

This indicates that if the known probability of patching was 80%, and the prior expectation of successful 

breach (regardless of whether patching is present) was 100%, the posterior or conditional probability of a 

successful breach given an 80% level of patching would only be 73%. Intuitively, as the actual probability 

(or presence) of patching P(B) falls, the probability of a successful threat increases. The factors are 

constrained based on the underlying likelihood function P(B|A). Note on the one hand that the probability 

that patching is actually present has a lower limit based on the product of P(A) * P(B|A). More intuitively 

(and in the context of estimating the probability of threat, not the probability of patching which can be 

observed), we can recognize that the posterior probability of threat (i.e. conditional on patching) has an 

upper limit (i.e. less than 100%) based on the ratio of P(B|A)/ P(B), where this represents the effect of 

patching on threat success. This demonstrates a methodology for the determination of the conditional 

probability of successful threat in a multi risk factor model and illustrates the sensitivity of the posterior 
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probability of successful threat to both the underlying prior probability of threat regardless of condition, the 

likelihood of risk factor effects and the presence of the risk factors.  

 

Model scaling and considerations for use within a risk management context 

The example of a Bayesian network for threat determination provided above has only three nominal risk 

factors (one attack, one control, and one vulnerability) the attribution of the conditional probabilities 

between the factors and the resulting threat probability calculation is therefore relatively straightforward. 

Clearly, in a more complex model representing an integrated business process involving multiple sub 

processes, multiple information assets (each with multiple attack vectors, vulnerabilities and associated 

controls) and multiple asset dependencies (i.e. successful threats on one asset possibly influencing 

successful threats on another) the construction of the Bayesian net itself and the network node relationships 

is also relatively complex. In their research, Fenz et al have specified the use of multiple tools to support 

model creation, including an open-source security ontology, a commercially available Bayes net generation 

platform (Norsys Netica
40

) and SBA group’s proprietary risk management platform (AURUM) which is not 

currently available for open research use. While the ontology itself is potentially valuable for my specifying 

the relationships between the risk factors, the ontology is only valuable to me to the extent that 1) a 

representative Bayesian network can be practically specified from it and 2) the resulting threat probabilities 

can be appropriately used within a subsequent risk model that suits my simulation purposes. It should be 

noted that the Bayesian network itself does not produce a simulation of the system at risk in the same 

manner as a discrete event simulation which embeds the conditional relationships of the security factors but 

which essentially can produce a simulation of the system as the relationships are constructed (i.e. the core 

result of a DES model is the representation of repeated time period system states based on the underlying 

conditional probabilities). The consideration for me was whether to spend time constructing a Bayes 

network only to have to also then construct the simulation model as well as a separate representation of the 

security risk model. Since the goal of the research was to construct a set of lab experiments based on 

simulated results and not a superior simulation itself, this seemed to be prospectively not worth the effort. 

Although SBA has made the resulting Bayes net employed in their work available for research review 

(Fenz 2012) because of the size of the model it does not run on a free copy of Norsys Netica, I was not 

prepared to invest additional funds and time into the platform without further consideration of alternatives.   

 

More importantly for my purposes in desiring to express inherent uncertainty in the model inputs (i.e. the 

risk factors) as well as the outputs, it should be noted that the Bayesian network described by Fenz et al 

effectively calculates an overall probability of threat success per asset node, where each node is a Boolean 

value indicating the presence or absence of the corresponding risk factor. Conceptually, this limits the 

model’s ability to capture qualitative risk factor attributes and corresponding concepts like control 

‘effectiveness’ where, even if the control is present, it may not be entirely effective and the effectiveness at 

                                                                        
40 http://www.norsys.com  

http://www.norsys.com/
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any point in time could range, qualitatively, from “Very Low” to “Very High” and points in between or, 

quantitatively, at some percentage level across a continuous probability distribution from 0 to 100%. In the 

model described above, the presence of the control is determined (1/0) and the conditional impact on the 

dependent risk factor (e.g. vulnerability) is then also determined to be 1 or zero, where the effectiveness 

and the resulting impact could, conceptually, be any value between 1 and zero. Fenz acknowledges this 

limitation and indicates a possible solution proposed by Fenton et al involving the use of ‘ranked’ Bayesian 

network nodes which represent, for example, Likert scale qualitative variables that are abstractions of the 

underlying continuous quantities (Fenton, Neil et al. 2007). Recent applications of Fenton’s approach 

include software development fault prediction (Perkusich, Soares et al. 2015) and smartphone security 

(Herland 2015). In Fenton’s conception, ranked nodes allow both the incorporation of qualitative node 

values and weighting between nodes. For example, using the Bayesian network described above and 

weighting within and between nodes where the probability of the virus and the associated patching control 

offset each other but are now reported on a 5 point Likert scale perhaps representing the qualitative 

‘strength’ of the Virus and the associated Patch respectively (instead of either being simply present or 

absent – ‘TRUE’ or ‘FALSE), we can instead produce a more realistic alternative specification: 

 

Figure 39 - Weighted Bayesian Network Example: Matched Virus vs. Patching Effectiveness 

 

 

In the above example, in the absence of evidence, we expect  that both viruses and patching controls will be 

generally well matched in profile with the strength of the factors having a central tendency varying from 

“Very Low” to Very High” as indicated. If we assume a certain amount of variability (mismatch) in virus 

strength vs. patch, the patch blocks the virus 91% of the time but does not 8.27% of the time. On the other 
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hand, if we expected the virus profile to be relatively ‘stronger’ (i.e. skewed towards “Very High”), we get 

the following result, where the probability that the patch does not block the virus rises to 16.5% since it is 

more likely that a stronger virus is not matched by an equally strong patch: 

 

Figure 40 - Weighted Bayesian Network Example: Skewed Virus Strength 

 

 

All Bayesian network models are able to incorporate evidence based on the probability that the node exist 

i.e. P(Virus) or P(Patching Control) regardless of the scale on which the node is represented. If we now 

assume that a ‘Very High’ level virus is actually present in the system, we can incorporate this evidence 

into the model which results in the probability of unsuccessful blocking rising to 36%: 
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Figure 41 - Weighted Bayesian Network Example: Evidence of ‘Very High’ Virus Strength 

 

 

 

Finally, if we again assume a relatively ‘stronger’ Virus pattern, but discover evidence of ‘Very Low’ 

patching, the probability of a successful virus jumps to 58% since the patch is largely ineffective in all but a 

handful of ‘Very Low’ virus cases where most anticipated Viruses are relatively stronger than ‘Very Low’:    
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Figure 42 - Weighted Bayesian Network Example: ‘Very High Virus vs. Very Low Patching 

 

 

 

Discussion and Implications for Application within this Research  

This modelling approach was significant in my research for several reasons: 1) The approach incorporates 

both a security ontology and the use of Bayesian networks based on a security ontology to model threat 

success probabilities, a key component in the specification of a business risk model based on information 

security risk; 2) the security ontology was developed based on recognized and standardized security risk 

practitioner frameworks (Fenz and Ekelhart 2009) and was potentially amenable to alternative control 

framework mappings with which I am professionally familiar (e.g. ISO/IEC 27002) (Alcazar and Fenz 

2012); 3) The developed ontology had been used directly within a commercially available Bayesian 

network modelling platform to generate a demonstrable threat probability model (Fenz 2012); 4) the 

Bayesian threat probability calculation had been integrated into an overall system risk model (AURUM) 

which was demonstrably used to determine overall business risk based on attributed control and business 

impact costs (Ekelhart, Fenz et al. 2009; Fenz, Ekelhart et al. 2011).      

 

While Bayesian network modelling based on a security ontology provides a superior threat determination 

approach versus that employed by Tjoa et al, there are several practical considerations in implementation: 

1) the example Bayesian network model employed by Fenz et al was freely available for research use, 

however the network modelling platform employed (Norsys Netica), although free for small scale (i.e. low 
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number of nodes) models, was not freely available for the scale of model used by Fenz and I was reluctant 

to commit to further software platforms without understanding more about the feasibility of using the 

described ontology within the indicated platform since there were alternatives present in the literature.  I 

was therefore not able to review the actual Bayesian network described by Fenz; 2) the business risk 

modelling platform used by Fenz (AURUM) was proprietary and not currently available for either research 

or commercial use
41

 (it now apparently forms the basis for a commercial consulting service operated, in 

part, by Fenz et al); 3) as with the DES approach, it was not clear at that stage of my review whether or 

how the threat probability model (a subset of the overall security risk model itself) could be reasonably run 

in ‘real time’ within a lab setting on consumer grade workstations. Bayesian networks are classed an “NP 

hard’ computing problems implying potentially long computational times that scale exponentially with the 

number of conditionally dependent nodes and attributes  (Charniak 1991; Kiesling, Strauß et al. 2012; 

Kiesling, Ekelhart et al. 2014)
42

. Without the ability to test the computation time of models of the size 

implied by Fenz et al (or even minimally valid from a practitioner perspective), I was reluctant to commit 

to the Bayesian network approach without some readily determined baseline for both computation time and 

resulting ease of lab handling.      

 

For these reasons, I proceeded to evaluate analogous threat modelling approaches to ensure that I was 

pursuing an approach that would support my overall modelling goal without unnecessarily committing to a 

proprietary software modelling platform. Having reviewed the Bayesian network security modelling 

literature so far, it became apparent that different academic researchers were pursuing similar approaches 

(i.e. use of Bayesian networks with security ontologies) but were either not familiar with or at least not 

citing each other’s work. At this stage it became clear that, at least for the purpose of validating this 

particular approach, a review of a comparative research effort was required.   

 
                                                                        
41 Personal correspondence with the authors 
42 NP-hardness (non-deterministic polynomial-time hard), in computational complexity theory, is a class of problems that are, 

informally, "at least as hard as the hardest problems in NP" https://en.wikipedia.org/wiki/NP-hardness . In computational complexity 
theory, NP is one of the most fundamental complexity classes. The abbreviation NP refers to "nondeterministic polynomial time." 

Intuitively, NP is the set of all decision problems for which the instances where the answer is "yes" have efficiently verifiable proofs 

of the fact that the answer is indeed "yes". More precisely, these proofs have to be verifiable in polynomial time by a deterministic 
Turing machine. In an equivalent formal definition, NP is the set of decision problems where the "yes"-instances can be accepted in 

polynomial time by a non-deterministic Turing machine. The equivalence of the two definitions follows from the fact that an 

algorithm on such a non-deterministic machine consists of two phases, the first of which consists of a guess about the solution, which 
is generated in a non-deterministic way, while the second consists of a deterministic algorithm that verifies or rejects the guess as a 

valid solution to the problem. Because of the many important problems in this class, there have been extensive efforts to find 

polynomial-time algorithms for problems in NP. However, there remain a large number of problems in NP that defy such attempts, 

seeming to require super-polynomial time. Whether these problems are not decidable in polynomial time is one of the greatest open 

questions in computer science. However, in practical uses, instead of spending computational resources looking for an optimal 

solution, a good enough (but potentially suboptimal) solution may often be found in polynomial time. Also, the real life applications 
of some problems are easier than their theoretical equivalents. https://en.wikipedia.org/wiki/NP_(complexity) . An algorithm is said to 

be of polynomial time if its running time is upper bounded by a polynomial expression in the size of the input for the algorithm… 

Problems for which a deterministic polynomial time algorithm exists belong to the complexity class P, which is central in the field of 
computational complexity theory. Cobham's thesis states that polynomial time is a synonym for "tractable", "feasible", "efficient", or 

"fast".[9] https://en.wikipedia.org/wiki/Time_complexity#Polynomial_time  An algorithm is said to take superpolynomial time if T(n) 

is not bounded above by any polynomial. It is ω(nc) time for all constants c, where n is the input parameter, typically the number of 
bits in the input. For example, an algorithm that runs for 2n steps on an input of size n requires superpolynomial time (more 

specifically, exponential time). An algorithm that requires superpolynomial time lies outside the complexity class P. Cobham's thesis 

posits that these algorithms are impractical, and in many cases they are. 
https://en.wikipedia.org/wiki/Time_complexity#Superpolynomial_time  
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4 – Enterprise Architecture Modelling Approach - KTH Group (Sweden) 

An alternative approach to modelling threat risk determination as incorporated by Sommestad et al 

(Sommestad, Ekstedt et al. 2008; Sommestad, Ekstedt et al. 2013) involves an information security 

modelling platform called “CySeMoL” (Cyber Security Model)
43

 based on the construction of a 

‘probabilistic relational model’ (PRM) (Friedman, Getoor et al. 1999; Liu and Man 2005; Löf, Stomberg et 

al. 2010; Buschle, Ullberg et al. 2011; Sommestad 2012; Buschle 2014) which generates an associated 

Bayesian network from which modelled risk attributes can be inferred. According to Sommestad, 

 

“A PRM specifies how a Bayesian network should be constructed from a reference object model 

which has been instantiated from a class diagram representing security relationships. Classes have 

attributes and security relational references. The ‘child’ attributes in the PRM are associated with a set 

of ‘parents’. The parents of a given attribute are other attributes in the object model that it depends on. 

Each attribute is associated with a conditional probability table that defines the attribute’s value given 

all possible combinations of states in the attribute’s parents. The probabilistic model enables the value 

of attributes in an instantiated object model to be inferred. Such inference can also infer values for 

attributes with no assigned state. In essence, a PRM defines how a Bayesian network shall be 

generated using the attributes of an object model. Thus, a PRM constitutes a formal machinery for 

calculating the probabilities of object properties in various architecture instantiations. For example, a 

PRM could be used to assess the availability of systems given that certain administrators are assigned 

to the systems.” (Sommestad, Ekstedt et al. 2013).   

 

Motivations for their approach involve the concept of ‘enterprise architecture’ modelling and its various 

applications to information technology decision making for IT governance and business alignment (Prado 

2009), system quality analysis (Närman, Johnson et al. 2007), system maintainability (Lagerström and 

Johnson 2008), enterprise software architecture design and integration (Johnson 2002), critical 

infrastructure design and risk management (Ekstedt 2004), system availability (Närman, Franke et al. 2012; 

Franke, Johnson et al. 2014), architectural fault tree analysis using Bayesian networks (Franke, Flores et al. 

2009) security control selection (Johansson 2005; Johnson, Ekstedt et al. 2007), and the use of Bayesian 

networks for security defense graphs (Sommestad, Ekstedt et al. 2008; Sommestad, Ekstedt et al. 2009). 

The authors have focused much of their research to date on critical infrastructure risk modelling for the 

Swedish electricity generation industry (Sommestad, Ekstedt et al. 2010; Sommestad, Ekstedt et al. 2010; 

Sommestad, Holm et al. 2011) although the evolved modelling platform is conceptually applicable to any 

enterprise security risk model.    

 

From my perspective this approach is similar to that of the SBA group (Holm 2014) in that a security 

‘reference model’ consisting of security object ‘classes’ and relationships between objects (essentially , an 

ontology, as described) is specified from which a Bayesian risk network can be constructed to represent the 

probabilistic relationships between the objects. In Sommestad’s approach, the construction of an 

instantiated business process at risk is facilitated by an enterprise architecture modelling platform called  

EAAT  (Johnson, Johansson et al. 2007; Franke, Hook et al. 2009) which incorporates both the system’s 

                                                                        
43 https://www.kth.se/en/ees/omskolan/organisation/avdelningar/ics/research/cc/cysemol/description-1.432380  

https://www.kth.se/en/ees/omskolan/organisation/avdelningar/ics/research/cc/cysemol/description-1.432380
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physical component relationships and the conditional probabilities of attributes (dependent on logical 

relationships between component attributes) and can be used to directly estimate probabilistic ‘states’ of the 

individual attributes and the system overall. While similar to both the HP and SBA approach in terms of 

utilizing an underlying security ontology concept, the integrated modelling platform in this case is freely 

available from the authors as a research platform and an instantiated information system can be directly 

modelled using predefined assets, threat and control classes using a relatively straightforward graphical 

user interface. Once again, in correspondence with the authors, I was able to obtain both the software 

platform and, importantly, documented instantiated model samples from several of their papers and I was 

subsequently successful in manipulating the model and in running simulations to observe the behaviour of 

the model inputs and outputs. In addition, the conditional probability tables for the individual system 

components are described in full detail via the reference documentation also supplied by the authors.      

 

The platform’s architecture template or ‘metamodel’ defines the classes of the possible model assets 

together with class ‘attributes’ and ‘reference slots’ to other classes and attribute parent references. The 

classes in the CySeMol metamodel consist of Asset, Owner, Threat, ThreatAgent, AttackStep, and five 

types of Countermeasure: ContingencyCountermeasure, PreventiveCountermeasure, 

DetectiveCountermeasure, ReactiveCountermeasure and AccountabilityCountermeasure. Sommestad also  

describes how the model can be extended to incorporate utility or other decision attributes of interest such 

as Availability or Business Loss (Hsu and Joehanes 2004). In the following metamodel example, the 

‘Availability’ attribute of class ‘System’ is dependent on both the System’s own ‘Reliability’ attribute and 

the ‘Competence’ attribute of the class ‘System Administrator’. The addition of the conditional probability 

tables for each attribute completes the definition of a PRM which can now be calculated within a Bayesian 

network to determine the conditional probability states of the system attributes:   

 

Figure 43 - Example CySeMol metamodel asset dependencies 

 

(Sommestad, Ekstedt et al. 2010)   
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Once the metamodel is sufficiently complete from an ontological perspective, a specific architecture can 

then be concretely ‘instantiated’ by specifying desired objects in a specific system using both the 

predefined conditional probabilities of the metamodel and, if available, evidence for the attributes of 

concrete (physical) system assets present in the specific business situation under study. The high level 

metamodel for CySeMol is depicted below: 

 

Figure 44 - CySeMol abstract-PRM metamodel for security risk 

 

 (Sommestad, Ekstedt et al. 2010) 

 

The complete CySeMol metamodel comprises 22 classes, 102 attributes, and 32 class relationships 

(reference slots) and is depicted below: 
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Figure 45 - P2CySeMol Class Model* 

 

*The upper box of an asset contains the defenses associated with it. The lower box contains the attack steps associated 

with the asset. Colors are used only to make asset relations more clear. 

 

(Holm, Shahzad et al. 2014) 

 

 

In this metamodel, for example, if an attacker attempts to log on to a SoftwareInstance, the attacker may be 

required to bypass an AccessControl- Point, i.e., if the SoftwareInstance has a relationship to an 

AccessControlPoint such as a desktop computer. An AccessControlPoint is associated with an 

AuthenticationMechanism and Accounts that belong to Persons who are authorized to access the system 
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and who may have taken security awareness training through a functioning SecurityAwarenessProgram. An 

Account’s password may be compromised by being guessed online, offline, or through social engineering 

(Sommestad, Ekstedt et al. 2013). The model user is required to specify real-world appropriate concrete 

security object concepts such as network zones, data flows, and software installations and assign values to 

attributes that determine whether countermeasures such as DNSSEC and non-executable memory are 

functioning. 

 

For my purposes, CySeMol essentially represents a model for determining the conditional probability of a 

successful threat on individual systems asset attributed. Threats impact assets through the class 

‘AttackStep’ which is determined at each asset node of the system, the success of which is dependent on 

preventative/detective and counter/recovery controls. The abstract class ‘Countermeasure’ allows for the 

specification and detailed quantification regarding how countermeasures depend on each other and how 

they influence risk. Five subclasses of Countermeasure are defined in CySeMol which permit me to model 

a system at a level of granularity reasonably recognizable by practitioners: PreventiveCountermeasure (e.g. 

firewalls), DetectiveCountermeasure (e.g. an intrusion detection system), ReactiveCountermeasure (e.g. 

incident handling by administrators), ContingencyCountermeasure (e.g. system or data backups) and 

Accountability- Countermeasure (e.g. system logging). Indeed, one of the key attractions of the Sommestad 

model for my purposes is its similar use of the Preventive/Detective and Counter/Reactive control 

components as utilized by Tjoa et al described above, where this represents a reasonable practitioner 

grouping of real world control components. The CySeMol platform also ensures that any concretely 

specified system model describing only the in-scope business system assets and their functional 

relationships will always produce a valid Bayesian network: from a modelling perspective, the system 

designer is only required to use the metamodel classes provided when specifying concrete assets which 

ensures that only valid connections between instantiated objects are created and that the resulting 

conditional probabilities are therefore always calculable (Sommestad, Ekstedt et al. 2010). Although loss 

attributes are specifiable as scalar values in CySeMol, my intention was to specify these outside of the 

model based on further business process risk dependencies. Consideration for how this linking would be 

accomplished within a system simulator appropriate for use within a lab setting that potentially 

incorporated both CySeMol and another yet unspecified model which would take the output of CySeMol as 

its input is described in the next section of this paper. 

 

Using the CySeMol Modelling Platform in this Research 

The software platform for CySeMol and its 2
nd

 generation version, P2CySeMol (“Predictive, Probabilistic 

Cyber Security Model”), have been described in detail by Sommestad et al. (Johnson, Ullberg et al. 2013; 

Holm 2014; Holm, Shahzad et al. 2015). P2CySeMol also incorporates a number of improvements 

supporting the practical use of the platform, including: calculation of all possible attack paths (previously 

these needed to be specified); eliminating the need to specify attack path depth and designated targets of 
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attacks; and greatly improved computation speeds. P2CyseMol also adds an additional number of 

practitioner recognizable ‘real world’ logical attacks and defenses specifically regarding web applications, 

arbitrary code exploits, network vulnerability scanning, and signature-based network intrusion detection. 

The authors have also carefully documented their extensive validation of the platform at both the system 

level and at the class component level to verify the conditional probability tables over the course of the 

model development (Holm, Ekstedt et al. 2012; Holm, Ekstedt et al. 2013; Holm, Shahzad et al. 2015). As 

indicated earlier, the potential computational speed of a Bayesian network has been a consistent concern in 

the literature and is also a concern in this research given that the absolute size of my model was not yet 

determined and the prospect of wanting to use any resulting model within an interactive lab simulation 

environment. Holm et al indicate the significant speed increases of P2CySeMol over CySeMol although, 

depending on the model size, prospective calculation times were still a key consideration in my 

employment of this platform (Holm, Shahzad et al. 2015).   

 

As noted above, the P2CySeMol object modelling platform is freely available and the authors make 

available the validated instantiated object model described above through the KTH website
44

 (Holm, 

Shahzad et al. 2014). The interface for P2CySeMol permits drag and drop modelling which allows 

interactive design of a system model based on user knowledge which may be limited to the logical system 

architectural specifications. The following screenshot indicates the basic workspace with my instantiated 

model, derived from their validated example model: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                        
44 https://www.kth.se/en/ees/omskolan/organisation/avdelningar/ics/research/cc/cysemol/downloads-1.432383 (Checked December 
2015) 

https://www.kth.se/en/ees/omskolan/organisation/avdelningar/ics/research/cc/cysemol/downloads-1.432383
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Figure 46 - Instantiated CySeMol model with end user access nodes highlighted 
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On the left of the screenshot is a list of templated Class objects which allows the user to drag and drop 

system objects into the open workspace on the right. An object can only be logically connected to another 

object based on the child object’s attribute parent references. For example, in the above model in the lower 

right corner, there are three human user groups (“Clinicians”, “Researchers” and “Administrators”) 

represented by a <<Person>> object, each of whom belong to a <<SocialZone>> (which is susceptible to 

Social Engineering attacks), each of whom receive “Security Training” via a 

<<SecurityAwarenessProgram>> , have “Accounts” with individual passwords (<<PasswordAccount>>) 

that allow them to log onto workstations (“Interface Office System”) requiring password authentication  

(<<AccessControlPoint>>) which is connected to a web-based “Clinical Management System” 

(<<WebApplication>>): 
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Figure 47 - Instantiated CySeMol model: end user access node detail 
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Connections between the model nodes are one-way depending on the relationship (e.g. <<Person>> has a 

<<PasswordAccount>> account, not the other way around) and from a security perspective may be 

“Trusted” or “Untrusted” (e.g. between Network Zones) which implies attacker access to a connected 

Trusted node. Each object has a set of specified Attacks and Controls whose state can be viewed by 

expanding the Box label to show this detail: 
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Figure 48 - Instantiated CySeMol model: node attacks and countermeasures 
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Once again looking at the same overall model but with Attack and Control attribute details shown, we see 

that <PasswordAccount>> has three potential Attack types: ‘Guessing Credentials Offline’, ‘Guessing 

Credentials Online’ and ‘Social Engineering Credentials’. The Office <<SocialZone>> is susceptible to 

‘Sharing Portable Media’, and ‘Security Training’ may or may not be conducted to prevent ‘Social 

Engineering’ attacks. The <<PasswordAuthenticationMechanism>> has one attack 

(“ExtractPasswordRepository”) and 6 corresponding controls (“BackoffTechnique”, 

“DefaultPasswordRemoved”, “Functioning”, “HashedRepository”, “HashedRepositorySalted” and 

“ProactivePasswordChecker”:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  111  

Figure 49 - Instantiated CySeMol model: end user access nodes detail 
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Each of the Objects potential conditional relationships, Attacks and Controls are described in the CySeMol 

manual, and include descriptions of the associated attribute conditional probability tables for successful 

attack and references for expert determination of the attack/control dependencies and probabilities of 

compromise. For example, the Object <<WebApplication>> has three potential connections: 

<<WebApplicationFirewall>>, <<Datastore>>, and <<ApplicationServer>>:  

 

Figure 50 - CySeMol Web application class dependencies 

 

(Holm, Ekstedt et al. 2013) 

 

In CySeMol, the” WebApplication” must have an “ApplicationServer” connected to it in order to run the 

Application, but may have either or both of a “Datastore” and a “WebApplicationFirewall”, each of which 

have their own attack vectors and defense controls. Each attack vector for the WebApplication object is 

then described as being conditionally successful based on the ontologically specified and logically related 

attack and control attributes both within and external to WebApplication. For example, the attack “Exploit 

Command Injection” in the above has the following conditional dependencies: 
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Figure 51 - CySeMol Web Application class ‘Exploit Command Injection’ vulnerability 

 

(Holm, Ekstedt et al. 2013) 

 

 In this case, if the attacker is able to either manually discover a novel command injection, cross-site 

scripting (XSS) vulnerability, remote file inclusion (RFI) vulnerability, or SQL injection (SQLi) 

vulnerability, or find a publicly known Command Injection vulnerability for the WebApplication, the attack 

has a chance of being successful; otherwise it fails (FALSE). If one or more of these vulnerabilities is 

present and there is no WebApplicationFirewall present, the attack automatically succeeds (TRUE). The 

presence and configuration of a “Web Application Firewall” attached to the Web Application otherwise 

further conditionally determines the probability of successful attack and is itself expressed as a conditional 

probability table according to the indicated controls present for the firewall: the presence of a watchful 

human Operator (“Operator”); a ‘tuned’ configuration (“BBT”); configuration tuning done by a 

professional technician (“Experience”), and configuration tuning beyond default settings (“Effort”). The 

specific combinations of the presence or absence of these controls is then associated with the probability of 

the attack being successful which is evaluated as an exponential distribution based on the amount of 

Attacker Time:   

 

 

 

 

 

 

 



  114  

Figure 52 - CySeMol Web Application class ‘Exploit Command Injection’ vulnerability: conditional 

probability of successful attack in the presence of a Web Application Firewall 

 

(Holm, Ekstedt et al. 2013) 

 

The prior probability of the presence of each firewall configuration item (e.g. the presence of a watchful 

firewall administrator operator) is proposed as a default state (e.g. FALSE) in the documentation based on 

expert judgement and experience (Holm, Ekstedt et al. 2013). In my application, each modelled control can 

be turned on or off interactively based on a qualitative selection of the general level of intended control 

(None, Low, Medium, High, Very High) which is converted to a relative percentage of average 

effectiveness and then evaluated as a Boolean value (TRUE or FALSE) using a Bernoulli function. For 

example, a “Low” control profile may not include the presence of a watchful firewall operator at all (0% 

probability of TRUE = always FALSE), while a “High” or “Very High” control profile (e.g. 80% or 90% 

effective) may result in this control being effectively present most of the time (TRUE) but with some 

degree of stochasticity (i.e. the Operator may be present, but not very ‘watchful’). The resulting conditional 

probability tables are then constructed for each Object attribute based on presence or absence or absence of 

its parent attribute dependencies. In the example of the “WebApplication” attack “Exploit Command 

Injection”, we obtain a 2
n
 column by n row CPT, where n equals the number of conditional attributes (so: 

2
6
 = 64 columns x 6 rows in this case) which allows us to lookup the indicated conditional probability of a 

successful attack being “TRUE” or “FALSE” for all possible Boolean combinations of the attribute 

dependencies. The following table indicates the first 10 columns of that table:  
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Figure 53 - CySeMol Web Application class ‘Exploit Command Injection’ vulnerability: conditional 

probability table 

 

(Holm, Ekstedt et al. 2013) 

 

Since the model objects (WebApplications, PasswordAccounts, etc.) are specifically linked based on their 

logical security relationships and the objective logical architecture of the modelled system, the conditional 

probability of any given attribute can be evaluated by determining the associated attribute values in the 

object’s conditional probability table. For any arbitrarily complex instantiated model, since the associated 

attribute values themselves may be conditionally complex (that is, any single input attribute may have 

numerous linked conditional attributes which need to be evaluated first, and where each of these have 

similar but distinct conditional states based on their inherent object relationships and the architectural 

complexity of the model), the resulting Bayesian calculations quickly become complex and typically 

require both computational horsepower and specific algorithmic sampling methods to ensure that a 

reasonably approximated (i.e. not exact) solution can be reached in a reasonable amount of time (Cooper 

1990; Dagum and Luby 1993; Welch 1996; Ellis and Wong 2008; Larrañaga, Karshenas et al. 2013)
45

. To 

address this issue, P2CyseMol has lowered the required computation time greatly from its predecessor 

CySeMol, but this time remains significant for anything but arbitrarily small models and/or relatively high 

powered desktop computers: 

 

Figure 54 - CySeMol vs. P2CySeMol computation times 

 

(Holm, Shahzad et al. 2015) 

                                                                        
45 See note above re: NP-hardness of this problem 

1 2 3 4 5 6 7 8 9 10

DiscoverVulnerability T T T T T T T T T T

FindPublicCommandInjection T T T T T T T T T T

WebApplicationFirewall.MonitoredByOperator T T T T T T T T F F

WebApplicationFirewall.TunedUsingBlackBoxTool T T T T F F F F T T

WebApplicationFirewall.TunedByExperiencedProfessional T T F F T T F F T T

WebApplicationFirewall.TunedWithSignificantManualEffort T F T F T F T F T F

Index TTTTTT TTTTTF TTTTFT TTTTFF TTTFTT TTTFTF TTTFFT TTTFFF TTFTTT TTFTTF

TRUE 0.25 0.47 0.13 0.17 0.12 0.19 0.18 0.23 0.07 0.11

FALSE 0.75 0.53 0.87 0.83 0.88 0.81 0.83 0.77 0.93 0.89

Result 0.251736 0.467408 0.126 0.167 0.12 0.192 0.175 0.229 0.066 0.112
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In my model with just under 50 objects, the calculation time is just under two minutes. While this is  

reasonably fast during my iterative development of the overall model, the prospect of having lab 

participants waiting two minutes or longer (based on the anticipation of using lowered powered laptops) 

between trial simulations of the model so that they can then select controls - the main point of the choice 

experiments - remained potentially problematic.  

 

Discussion and Implications for Application within this Research  

At this point in model development I was reasonably sure that the conditional probability approach was 

appropriate for the purpose of representing the required logical security model relationships that would be 

valid from a practitioner perspective and that CySeMol/P2CySeMol was a promising platform for this 

purpose. In addition to the computation time issue noted above, however, several additional modelling 

considerations remained that were not directly addressable via CySeMol. Since the objective of the 

modelling effort was to generate business losses attributable to system CIA states over which participants 

would make prospective control decisions, the calculation of successful attacks, however valid, was only a 

precursor to the required risk outputs and substantial model modification would be required beyond simply 

calculating successful attack probabilities:  

 

1) Representation and interactive manipulation of stochastic control effectiveness: A core element of 

my modelling approach is that the attributes of both the business process model and particularly the 

logical security model are inherently stochastic, making the conditions involving security control 

choice subject to both risk (objective and known) and uncertainty (unknown and therefore subjective) 

regarding the likelihood and probability of most model attributes and outcomes. One of the features of 

P2CySeMol, and an improvement over CySeMol, is its ability to incorporate uncertainty in the model 

whereby attributes values are made stochastic using probability distributions instead of fixed 

percentages and where the existence of nodes and links between nodes may also be uncertain (Johnson, 

Ullberg et al. 2013). While this was promising within P2CyseMol, its implementation was not obvious 

from the available documentation and presented a substantial learning curve. More importantly, it was 

also not clear how variations on control effectiveness (average and variance of effectiveness) would be 

manipulable within the proposed lab setting where, despite the platform’s GUI, the unlikely prospect 

of lab participants changing individual or groups of attribute probability distributions directly within 

P2CySeMol was a substantial barrier to its use in the lab. This highlighted the need for consideration of 

the incorporation of the system simulation model within some type of secondary participant end-user 

interface, similar to that undertaken by Fenz et al using their AURUM tool noted above (Ekelhart, 

Fenz et al. 2009) although it was not immediately clear how that would be best accomplished. This 

highlighted the need to begin prototyping the lab experiment interface itself and to consider linkages or 

the embedding of the simulation within that interface. 
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2) Expression of the system risk impacts: Consistent with all of the logical security models presented 

above, successful attacks are proposed to affect attribute states (operability, accessibility, etc) and 

therefore the process performance of system components expressed in terms of standard ‘CIA’ 

attributes (Confidentiality, Integrity and Availability) which in turn affect the dependent business 

processes. As described in the HP and Tjoa models for example, successful attacks are posited to lower 

the level of system or component availability based on an assumed negative functional relationship 

between a successful attack and attributes affecting the component’s availability attribute. Lower 

system or component availability then diminishes the ability of the dependent business process. Tjoa 

proposes that a given business process has a ‘degree of completion’ in the range (0,1) which is a 

function of time t and where degree of completion is a function of the required computing resource 

availability and integrity. The amount of decline in the availability of a required computing resource is 

itself a function of a ‘threat impact function’ which is mitigated by a factor representing the amount of 

the threat ‘counter’ control. (Tjoa, Jakoubi et al. 2011). Conceptually, decreases in component 

availability ‘cause’ business processes to slow down per unit of time but the processes nonetheless 

eventually complete, whereas decreases in component integrity (either data or system computational 

accuracy) essentially cause process output errors requiring process rework, requiring re-computation 

once the system recovers sufficient integrity and similarly lowering ‘acceptable’ output per unit of 

time. While this model presents a clear causal relationship between attacks, system 

availability/integrity and business losses, it does not present a granular model of the way that attacks 

specifically degrade the CIA attributes of affected components or sub-components. 

CySeMol/P2CySeMol on the other hand, explicitly models the effect of attacks on vulnerabilities at 

the sub-component level (Holm, Ekstedt et al. 2012; Sommestad, Ekstedt et al. 2013) however it does 

not directly calculate the resulting CIA impact of the successfully attacked component or of the system 

overall on a designated business process. From that perspective the Tjoa approach is more useful in 

terms of generating business losses, but CySeMol presents a much more valid model of a system at 

risk of attack.  

 

3) Attribution of business losses: my proposed lab experiments are based on participants making 

choices over controls faced with risky or uncertain prospective monetary business losses directly 

attributed, in the case of attack’s affecting component availability, to the inability of system users to 

undertake transactions which would otherwise have been completed were the system fully available. 

Tjoa specifies an ‘income function’ which enables the attribution of business income to the degree of 

completion of a business process in each time period and where declines in process degree of 

completion correspondingly diminish income. While the CySeMol documentation conceptually 

explained how utility or business losses could be incorporated using the EAAT modelling framework 

generally (Johnson, Iacob et al. 2013; Johnson, Lagerstrom et al. 2013), the examples indicated that 

substantial additional programming would be required to accomplish this directly within the tool which 
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presented an unknown effort and timing risk to my work. In correspondence with Ekstedt, he indicated 

that the incorporation of the above elements 1-3, while underway within his own team, “…would 

constitute a full bingo on his [research] scorecard…”, currently represented by multi-doctoral work at 

the KTH Institute, and was therefore considered ambitious within my own research agenda. I resolved 

that this would have to be  

 

4) Appropriate expression of business losses in the context of decision making over controls: 

Simultaneous with my review of the conditional probability and Bayesian network models noted 

above, it became apparent that I would need to more appropriately represent business losses attributed 

to security posture in a context which allowed participants to make relatively ‘interactive’ control 

choices affecting losses. As noted above, the Bayesian network models themselves, while 

appropriately representing the logical relationship between system components and attack success, do 

not generate associated business losses directly – these would have to be ‘attributed’ to processes 

dependent on system availability. More importantly, while the Bayesian network estimation of attack 

success probability is recognized as a stochastic process which can be (must be) estimated based on 

Monte Carlo simulation (since an entire network, being NP-hard, is typically not directly estimable 

but can only be approximated) and produce probability distributions for component attribute states, 

Bayesian networks are not time series simulation models per se and do not produce time-based or 

even discrete observations of the network component or states. Simulation in that context is used to 

produce observations on attribute states, but there is no direct way of producing observations across 

all attributes for individual simulation periods, nor are the observations considered temporal. In 

essence,  as present above, CySeMol can only tell you what the distribution of attack success is for 

each node of the network, not what the actual (or simulated) attack success was for a day, or over an 

entire year: 
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Figure 55 – CySeMol Histogram representing the probability of successful node attack 

 

 

In contrast, the various DES models reviewed are based on temporal input/output business processes 

and associated control activities operating sequentially and repeatedly over discrete time intervals 

(minutes, hours, days) where the probability of successful attack is repeatedly simulated at each 

interval over some chosen time horizon (a year). Importantly, the DES approach can incorporate 

system ‘memory’ and can therefore represent inter-period dependencies that more realistically reflect 

real-world business and security control processes. For example, the Tjoa model explicitly models the 

current period level of attack strength based on the prior period’s attack strength diminished by the 

level of counter controls present at the start of the current period. This approach permits the decision 

maker to naturally observe the inter-period (day to day) and overall behaviour of the stochastic system 

much as a real world operator would if they were running the designated business process. 

 

More importantly, in the context of losses attributed to security CIA postures in which the distribution 

of attribute states and business losses may not be normal, a decision maker is not (should not be) only 

concerned with the total or average of a series of attribute states and losses, but the nature of these 

observations expressed as a probability density function. In these cases, we should be particularly 

concerned with the higher moments of the distribution of losses - variance, skewness and kurtosis – 

and not simply the mean. This also becomes apparent when we consider emerging alternatives to 

security ‘self-protection’ (control investments to lower the probability of loss) and alternatively 

consider investments in ‘self-insurance’ to lower the impact of losses that may actually occur and 

which typically exceed some defined upper threshold. Simulating and expressing security related 

business losses in this context lead to my review of modelling approaches supporting value-at-risk 

(VaR) and conditional value at risk (CVaR) methodologies familiar in financial engineering, insurance 

and information security (Duffie and Pan 1997; Artzner, Delbaen et al. 1999; Rockafellar and Uryasev 
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2000; Wang, Chaudhury et al. 2008; Herath and Herath 2011). The following section details my 

review of the literature concerning the nature of coherent risk measures, and the potential for 

application of VaR and CVaR measures of risk within this research. The subsequent sections then 

returns to the issue of modelling and simulation of security losses whose probability distributions 

exhibit characteristics which can be expected to reflect real world results and are appropriate for the 

control choice experiments within this research.                    
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5 - Using VaR, CVaR and Monte Carlo Modelling Approaches for Simulation of Systems at Risk  

Alternative models for information security risk simulation have been presented relatively recently in the 

information security literature using VaR and CVaR concepts to more appropriately express risk measures 

for stochastic systems (Jaisingh and Rees 2001; Conrad 2005; Ozcelik and Rees 2005; Conrad, Oman et al. 

2006; Wang, Chaudhury et al. 2008; Thomas 2009; Gheorghe 2012; Sawik 2013; Thomas, Antkiewicz et 

al. 2013; WEF 2015). This quantitative approach to risk modelling borrows from both enterprise finance 

and operations risk management
46

, incorporates Monte Carlo simulation for stochastic model inputs and 

expresses risk in terms of a probability distribution of loss outcomes. This approach, which enables the 

representation of the potential distribution of information security risk outcomes, has appeal for my 

purposes since it explicitly incorporates uncertainty in both model input and outputs and the model results 

are demonstrably non-deterministic across time periods making the fact of uncertainty clear to the decision 

maker. As noted in the above section, representation of historical or simulated losses relevant for stochastic 

systems which can be expected to exhibit non-normal outcome profiles and for which risk decisions should 

approached using concepts drawn from extreme value theory (Embrechts, Resnick et al. 1999). For this 

research I undertook significant literature review to understand the potential application of VaR/CVaR 

concepts to information security risk and associated literature review in the area of ‘coherent risk 

estimators’ and decision making under uncertainty for risk management (Artzner, Delbaen et al. 1999; 

Acerbi, Nordio et al. 2001; Acerbi 2002; Acerbi and Tasche 2002; Klinke and Renn 2002). Importantly, 

this literature review also prompted the concept of adding ‘self-insurance’ as an endogenous security 

control alongside traditional information security ‘self-protection’ controls (Shogren and Crocker 1991) 

which I have successfully incorporated into the lab experiments using an analogous experiment from the 

literature (Bajtelsmit, Coats et al. 2015) but incorporating my simulation of a system at risk. 

 

In terms of simulation and presentation of data, since the system at risk in our context is operating 

continuously across time, this requires not point estimates but time series or converted probability 

distributions of losses that capture the nature of the system risk being considered. Capturing these 

differences in a practitioner security context implies presenting not just the average risk level (i.e. the 

expected value of loss) but also the distribution (variance) of losses over some designated time period.  

 

The downside of this modelling approach is that the utilized attack/threat and impact models within the 

existing VaR/CVaR security literature generally lack a level of logical attack/vulnerability model validity 

from a practitioner perspective and so additional work on that aspect was be required in order to pursue this 

approach in a way that avoided unnecessary simplicity and contributed to the field. Positively, my selected 

approach permits relative flexibility and extensibility, ease of implementation and of portability and use 

within a lab setting though the use of Excel with associated commercial Monte-Carlo plug-in tools which 

                                                                        
46 See for example “A New Approach for Managing Operational Risk - Addressing the Issues Underlying the 2008 Global Financial 
Crisis, Society of Actuaries 2009 http://www.soa.org/Files/Research/Projects/research-new-approach.pdf  

http://www.soa.org/Files/Research/Projects/research-new-approach.pdf
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significantly reduced the required simulation programming effort without compromising the potential 

validity of the information security model being presented. 

 

The following sections briefly review the literature regarding the use of ‘coherent’ measures of risk for 

stochastic systems which exhibit ‘tail losses’. I then explain my resulting modelling and system simulation 

approach which borrows from both the Bayesian/conditional probability approaches and recent literature on 

modelling of security risks using Monte Carlo simulation techniques.  

 

Coherent Risk Measures for Security Control Choice 

The core hypothesis of this research is that information security decision makers may be subjectively 

biased when choosing controls to reduce risk and that the biases can be tested using experiments involving 

choices made under controlled presentations of risk information. The latent biases are assumed to manifest 

when there is uncertainty in the available information requiring subjective interpretation of the risk factors 

on the part of the decision maker, and that subjective interpretation may be involved even when the 

information is known or demonstrably certain. In practice, since security risks may contain both known and 

unknown/uncertain information, security control selection presents a potentially ideal context in which to 

test for decisional biases. At the same time, the question of what security risk information should be used 

and how the information should be presented to test for decisional bias arises due to the specific nature of 

the risk model being presented. As noted above, traditional qualitative and quantitative risk models often 

present risk as a point estimate measured as the probability of a loss event multiplied by the business 

impact should the loss event actually occur. Qualitative measures of risk involve assigning a relative rating 

scale for the risk factors representing the likelihood of loss and the amount of impact (Low, Medium, High, 

etc.) and may either represent ranges of quantified factors (i.e. a conversion of known probabilities into 

qualitative ranges) or management’s relative estimates of the factors without direct quantification. This 

approach also requires some ordering convention to combine the inputs into the final risk rating (e.g. that 

Low probability x Low impact = Low Risk, but that Low x Medium = Medium, etc.). Quantitative risk 

measures are comparatively more robust since risks are automatically ranked on a continuous numerical 

scale based on quantified probabilities and impacts measured in ‘expected loss’ units (e.g. dollars). Both 

approaches require that management agree on how to measure impacts that may not necessarily be 

quantifiable in monetary terms e.g. assigning a value to ‘loss of business reputation’. In both approaches, 

the measure of risk can be calculated over any time period but in either method are always considered as a 

point estimate of the average or expected value of loss over that period. 

 

One of the main practitioner criticisms of this approach is that neither method distinguishes effectively 

between “high probability/low impact” and “low probability/high impact” risks and therefore cannot 

directly inform appropriate control strategies that differentiate between the frequency and impact of these 

risks. The distinction is important since the impact of low probability/high impact events that actually 
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occur can be potentially catastrophic to a business, while the impact of high probability/low impact events 

may presumably be reasonably absorbed by a business for a short period of time until their incidence can 

be brought under control. The choice of specific controls that lower the probability of successful attack 

versus those that lower the impact of successful attacks are inherently different choices from a managerial 

perspective. Low probability/high impact risks, for example, generally favour some type of recovery 

control (such as cyber insurance) which reduces impact, while high probability/low impact risks favour 

administrative or technical controls that directly affect the system at risk in order to reduce the probability 

of occurrence itself. Although one can think of scenarios in which many small impacts may also have 

catastrophic results taken as a whole, we restrict our view here to a single realized risk event and the 

associated impact if the risk is experienced once. In qualitative risk models this aversion towards high 

impact events may be reflected by ranking the low probability/high impact risk ratings relatively higher 

than the otherwise quantitatively equivalent high probability/low impact risks. From a perspective that 

generally assigns negative utility to loss, it is clear that low probability/high risks are of a different, if not 

greater concern, even if taken as an equivalently ‘expected’ value for the purposes of decision making. The 

following section explores approaches to quantifying these risks in the context of a stochastic system 

generating losses in which a decision maker must decide on a portfolio of control inputs that affect the 

losses non-deterministically.      

 

Quantitative modelling considerations for systems exhibiting low probability/high impact events originated 

in the context of extreme value theory for financial risk modelling (Embrechts, Resnick et al. 1999; Gilli 

and Këllezi 2006) and has been more recently extended to operational loss modelling for catastrophic 

events (Berliner 1985; Kunreuther, Novemsky et al. 2000; Kunreuther and Heal 2003), catastrophe 

insurance (Kunreuther and Pauly 2004; Kunreuther and Michel-Kerjan 2012; Kunreuther and Pauly 2015) 

and information security or ‘cyber’ risk insurance coverage (Biener, Eling et al. 2015; Eling and Wirfs 

2015). What is common to these approaches is the decision maker’s latent concern for the distributional 

characteristics of losses which are generally not normal and exhibit long ‘tails’, what Uryasev refers to as 

“non-symmetric return-loss distributions” (Uryasev 2000). In operational circumstances characterized by 

infrequent but large losses, it is the ‘downside risk’ exceeding some limit that becomes of most concern 

since individual losses can be catastrophic (Nawrocki 1999). The focus on downside risk was formalized 

by Roy who, contra to Markowitz, proposed that investors faced with potentially asymmetric and 

catastrophic losses (i.e. the loss of the entire portfolio) are primarily concerned not with the overall 

mean/variance return of a portfolio, but rather with the downside risk of their portfolio as compared to 

some benchmark loss and would therefore adopt a ‘safety-first’ approach to investing which ensures that 

losses do not exceed some ‘disaster level’ (Markowitz 1952; Roy 1952). The safety first principle and 

various derivations of it have been broadly tested in the context of choice over uncertain prospects (Levy 

and Sarnat 1972; Levy and Levy 2009; Zeisberger 2013; Zeisberger 2014) and include studies indicating 
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both over – (Lopes and Oden 1999)  and underweighting (Camerer 2000; Hertwig, Barron et al. 2004) of 

small probabilities and the concept of ‘regret’ over those losses (Loomes and Sugden 1982). 

 

The following diagram illustrates the typical frequency distribution of business ‘portfolio’ losses in this 

context, bounded by zero on the left and, depending on the business context, with potentially no upper limit 

on the right. Two risk statistics reflecting the low probability right hand ‘tail loss’ are introduced: ‘Value at 

Risk’ (VaR) and ‘Conditional Value at Risk” (CVaR):  

 

Figure 56 - Typical frequency distribution of losses with VaR and CVaR measures 

 

(Uryasev 2000) 

 

According to Uryasev: 

Probabilistic and quantile (percentile) functions are commonly used for the analysis of models with 

uncertainties or variabilities in parameters. In financial applications, the percentile of the losses is 

called Value-at-Risk (VaR). VaR, a widely used performance measure, answers the question: what 

is the maximum loss with a specified confidence level? Percentiles are also used for defining other 

relevant performance measures, such as Conditional Value-at-Risk (CVaR). CVaR (also called 

Mean Excess Loss, Mean Shortfall, or Tail VaR) is the average loss for the worst x% scenarios 

(e.g., 5%). (Uryasev 2000) 
 

VaR is typically expressed as the maximum loss (or other measure of the performance of a system) at a 

specified confidence level (e.g. at the 95% level of the probability distribution of losses), typically 

representing some catastrophic or ‘disaster’ level of concern to management. CVaR is then defined as the 

average or expected value of losses exceeding the selected disaster threshold where the business operator is 

concerned with the nature of all possible losses exceeding the chosen threshold (Uryasev 2000). Risk 

measures that are similar to CVaR and/or may coincide with it, are Expected Shortfall and Tail VaR 
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(Acerbi and Tasche 2002; Krokhmal 2007). In terms of associated internal controls concerned with 

mitigating impact in the context of credit losses, for example, CVaR would represent the capital coverage 

required to meet individual account losses exceeding a management chosen maximum threshold or 

confidence level:   

 

Figure 57 - CVaR as the expected value of losses exceeding the VaR threshold 

 

(Uryasev 2000) 

 

From an information security perspective, CVaR could be used to represent the expected value of business 

losses attributed to successful attacks from security incidents exceeding a chosen VaR loss level (Jaisingh 

and Rees 2001; Conrad 2005; Ozcelik and Rees 2005; Conrad, Oman et al. 2006; Wang, Chaudhury et al. 

2008; Thomas 2009; Gheorghe 2012; Sawik 2013; Thomas, Antkiewicz et al. 2013; WEF 2015). From a 

security controls perspective, CVaR could also represent the expected value of insurable losses for a single 

firm resulting from security incidents exceeding a chosen VaR. Boehmer has indicated the use of VaR and 

CVaR in security operations management in the development of security outcome scenarios for SCADA 

systems critical infrastructure risks based on the stochastic properties of these systems: 
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Figure 58 – Downside ‘risk corridor’ for the time interval (T) 

 

(Boehmer 2011; Boehmer 2012) 

 

The distributional characteristics of losses attributed to security incidents are therefore a key consideration 

for the decision maker choosing between controls that affect either or both the probability or impact of the 

logical security risk factors. Biener has recently demonstrated that cyber risk losses share the asymmetric 

distributional characteristics of operational business losses although the tail risk itself may not be as wide 

as that of operational losses generally: 
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Figure 59 - Boxplots of cyber and non-cyber risk business losses 

 

(a) non-cyber risk vs cyber risk; (b) cyber risk by event category 

(Biener, Eling et al. 2015) 

 

Although attributed information security losses may not be of the same scale as operational losses 

generally, the distribution of security losses and the specific risk measures associated with that distribution 

should be of concern to managers since the average and variance of losses do not capture the potential for 

large or catastrophic losses (Artzner, Delbaen et al. 1999; Krokhmal 2007; Krokhmal, Zabarankin et al. 

2011). 

 

The notion of stochasticity in the business process and security model itself may also be a cause for poor 

management uptake and use of representative information about the distribution of losses. Krokhmal 

illustrates the essential conceptual transition required for a decision maker from a deterministic situation 

without ‘risk’ (and therefore without uncertainty), to a prospective situation inherently involving ‘chance’ 

and which defines the decision problem from a behavioural economic perspective based on, among other 

biases, risk attitude or preference (Krokhmal, Zabarankin et al. 2011). He first introduces the general 

deterministic optimization case where we choose a decision or design vector x (in our case, a portfolio of 

security controls) to maximize some objective function (e.g. losses, or perhaps net gains) f(x) (>=0), subject 

to some costs g(x) (<=0), and then introduces ‘uncertainty’ described by a random element ξ, which leads 

to situations where, instead of just f(x) and g(x) we have f(x, ξ) and g(x, ξ) and where ξ can be represented 

as a probability that is known or can be estimated. This brings us back to the essential decision problem in 

the context of risk and uncertainty, but informed by the inherent nature of stochastic systems: 

  

A serious difficulty, however, is that the decision x must be chosen before the outcome from this 

distribution can be observed. One cannot then simply replace f(x) by f(x, ξ), because a choice of x 

only produces a random variable X = f (x, ξ) whose realization is not yet known, and it is difficult to 
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make sense of “minimizing a random variable” as such. Likewise, g(x) cannot just be replaced by 

g(x, ξ)…Over the years, a number of approaches have been developed to address these issues; a 

familiar and commonly used approach is to replace functions f(x, ξ) and g(x, ξ) with their expected 

values, e.g., f(x, ξ) → Eξ[f(x, ξ)]. 

 

Being intuitively appealing and numerically efficient, this generic method has its limitations, which 

have long been recognized in literature. In particular, replacing a random objective function with its 

expected value implies that (i) the decision obtained as a solution of the stochastic programming 

problem will be employed repeatedly under identical or similar conditions (also known as the “long 

run” assumption); and (ii) the variability in realizations of the random value f(x, ξ) is not significant 

[emphasis added]. As it poses no difficulty to envisage situations when these two assumptions do 

not hold, a work-around has to be devised that will allow for coping with models that do not 

comply with (i) and (ii). 

 

A rather general remedy is to bring the concept of risk into the picture, with “risk” broadly defined 

as a quantitative expression of a system of attitudes, or preferences with respect to a set of random 

outcomes.(Krokhmal, Zabarankin et al. 2011) 

 

Two key insights can be drawn from this. First, there is the reminder that we are dealing with prospective 

and (either) risky or uncertain circumstances which essentially defines the problem in terms of the 

perspective of the decision maker i.e. consideration of a choice in which the chooser seeks ‘optimization’ 

of the future state must either assume some type of risk preference or seek to describe risk preference in 

terms of decisions made in the face of such risky or uncertain prospects. From descriptive point of view, 

this is the basis for the behavioural economics and lab experiment approach to testing for decisional biases. 

Second, Krokhmal reminds us that metrics based on the expected valuation of risky or uncertain outcomes 

implies  that we assume either that the decision maker would make the same choice across all potential 

outcomes (i.e. as if deciding only over a sufficiently large number of repeated choices approaching ‘the 

long run’) or that the decision maker effectively ignores the variability in outcomes for any sub-set of 

choices smaller than that which would produce a near approximation to the long run outcome itself. Since 

this is clearly not generally the case with human decision makers in experience, what emerges is a 

definition of ‘risk’ as not the description of an inherently stochastic process itself, but rather as the 

“…quantitative expression of a system of attitudes, or preferences with respect to a set of random 

outcomes.” i.e. essentially a description of the decision maker him/herself in terms of their epistemological 

view of the stochastic system. To my knowledge this is the only such description of risk in the literature 

and directly informs the contribution of this study in the description of biases in the context of security 

control choice under risk and uncertainty.     

 

From a practitioner’s point of view, this is another way of saying that probability times impact itself is not a 

very good measure of risk in a security context and may be expected to lead to poor control decisions as a 

result. A number of questions arise from this insight including whether and to what extent management 

may be focused on ‘expected’ or average losses versus the higher moment distributional characteristics of 

those losses and the bias introduced by risk measures which, in that sense, are not ‘coherent’ in the sense 

introduced by Artzner et al from a decision making perspective (Artzner, Delbaen et al. 1999). This also 

leads to considerations for the generation and representation of loss information that is appropriate for 
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management to use in making control decisions in these circumstances. The following discussion will relate 

the general notion of the ‘coherency’ of a risk measure (Artzner, Delbaen et al. 1999; Rockafellar 2007) to 

the topic of this research which is whether and to what extent uncertainty potentially affects the decisions 

of security risk managers.  

 

The focus on tail risk in a security context is therefore important since, when we refer to risk, we are clearly 

referring to variability in business outcome ‘losses’ and not gains, and generally not some measure of ‘net’ 

losses where operational gains from a particular system security posture (e.g. low authorization thresholds 

and therefore relatively more efficient access to corporate information by insiders versus some benchmark) 

are seen to offset operational losses from a security incident (e.g. theft of corporate information by an 

unauthorized insider) based on the same security control posture. Although the ‘net’ outcome of the 

security posture could certainly be calculated, it’s not clear that this would represent a practical measure 

against which management would typically make decisions regarding deployed controls intended to 

primarily prevent losses and not, in the first order, to produce gains. In this sense, we define security losses 

and the ‘disutility’ that they create as the opposite’ of the utility generated from business gains and 

conceptually equivalent to a measure of ‘regret’ over potential uncertain losses (Rockafellar and Uryasev 

2002; Rockafellar and Uryasev 2013), where regret V(X) of a stochastic loss X in dollars “…can be the 

compensation deemed appropriate for taking on the burden of the uncertain loss X’ (Rockafellar and 

Uryasev 2013). In the context of decisions over prospective losses this is, conceptually, the ‘mirror’ case of 

the equity premium required to induce investors to undertake a risk position in gains. ‘Regret’ has been 

proposed as an expression of negative utility over losses compared to a benchmark (Dembo and King 1992) 

and a fundamental element of a ‘risk quadrangle’ supporting the estimation and optimization of decisions 

involving inherent loss or hazards (Rockafellar and Uryasev 2013). In this conception, ‘risk’ of loss can be 

decomposed into four elements which together define the overall model of prospective uncertain loss over 

which questions regarding both optimization and estimation/description can be formulated: 

 

The context is that of random variables [X] that can be thought of as standing for uncertain “costs” 

or “losses” in the broadest sense, not necessarily monetary (with a negative “cost” corresponding 

perhaps to a “reward"). The language of cost gives the orientation that we would like the outcomes 

of these random variables to be lower rather than higher, or to be held below some threshold 

[emphasis added]. All sorts of indicators that may provide signals about hazards can be viewed 

from this perspective. The quadrangle elements provide numerical “quantifications” of them (not 

only finite numbers but in some cases infinity (∞) which can be employed for various purposes. 

 

 

R(X) provides a numerical surrogate for the overall hazard in X, 

D(X) measures the “nonconstancy” in X as its uncertainty, 

Ɛ (X) measures the “nonzeroness” in X, 
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V(X) measures the “regret” in facing the mix of outcomes of X, 

S(X) is the “statistic” associated with X through E and V. 

 

(Rockafellar and Uryasev 2013) 

 

The idea of a ‘risk measure’, R(X), is then based on 1) the inherent stochasticity of the losses; and 2) the 

idea that the risk measure must reflect the desire for losses to be ‘adequately’ (i.e. from a decision makers 

point of view, ranging from ‘some of the time’ to ‘most of the time’ or equivalently ‘adequately’) below 

some chosen value: 

  

In denoting a random cost by X and a constant by C, a key question is how to give meaning to a 

statement that X is “adequately” ≤ C with respect to the preferences of a decision maker who 

realizes that uncertainty might inescapably generate some outcomes of X that are > C. The role of a 

risk measure R, in the sense intended here, is to answer this question by aggregating the overall 

uncertain cost in X into a single numerical value R(X) in order to 

 

model “X adequately ≤ C” by the inequality R(X) ≤ C. 

  

There are familiar ways of doing this. One version could be that X is ≤ C on average, as symbolized 

by µ(X) ≤ C with µ(X) the mean value, or in equivalent notation (both are convenient to maintain), 

E(X) ≤ C with E(X) the expected value. Then R(X) = µ(X) = E(X). A tighter version could be µ(X) 

+ λσ(X) ≤ C with λ giving a positive multiple of the standard deviation σ(X) so as to provide a safety 

margin reminiscent of a confidence level in statistics; then R(X) = µ(X) + λσ(X). The alternative 

idea that the inequality should hold at least with a certain probability α ϵ (0, 1) corresponds to qα(X) 

≤ C with qα(X) denoting the α-quantile of X. 

 

…A choice of R corresponds to an expression of preferences toward risk, but it might not yet be 

clear why some measures of risk are better motivated or computationally more tractable than others. 

The key challenge is that most applications require more than just looking at R(X) for a single X, 

as far as optimization is concerned. Usually instead, there is a random variable that depends on 

parameters x1, … ,xn. We have X(x1, … ,xn) and it becomes important to know how the numerical 

surrogate R(X(x1, … ,xn)) depends on x1, … ,xn. This is where favorable conditions imposed on R, 

like convexity and monotonicity [emphasis added], are indispensable. 

 

…Suppose next, though, that these cost-like expressions are uncertain through dependence on 

additional variables - random variables - whose realizations will not be known until later. A 

decision x merely results then in random variables…which can only be shaped in their distributions 

through the choice of x, not pinned down to specific values. Now there is no longer a single, 

evident answer to how optimization should be viewed, but risk measures can come to the rescue. 

 

(Rockafellar and Uryasev 2013) 

 

Here we have the idea that the expected value of loss could be a risk measure but is better informed by 

incorporating the variance of loss. Rockafellar then introduces the idea that losses themselves are normally  

understood to be a function of some decision variable x, representing costs which, in our context, represent 

some vector of security controls, over which the decision maker chooses in order to ‘optimize’ losses 

expressible in R(X): 

 

A typical situation in optimization that illustrates the compelling need for measures of risk revolves 

around a family of random “costs” that depend on a decision vector x belonging to a subset … 
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 Xi(x) for i = 0, 1, …,m; where x = (x1, …,xn).  (1.1) 

 

The handicap is that x can usually do no more than influence the probability distribution of each 

of the “costs” [emphasis added]. A potential aim in choosing x from S [a subset of all possible 

choices of x] would be to keep the random variable Xi(x) adequately ≤ ci for i = 1, … ,m, while 

achieving the lowest c0 such that X0(x) is adequately ≤ c0. The way “adequately” is modeled could 

be different for each i, and the notion of a risk measure provides the perfect tool. A selection of risk 

measures Ri that pins down the intended sense of “adequately” in each case leads to an optimization 

problem having the form 

 

 choose x ϵ S to minimize R0(X0(x)) subject to Ri(Xi(x)) ≤ ci for i = 1, … ,m (1.2) 

 

(Rockafellar and Uryasev 2013) 

 

The nature of the specific deviation of X, D(X), is then introduced as a generalization of σ(X), where such 

measures include standard deviation as a special case but need not be symmetric with respect to losses 

versus gains. More importantly, measures of D(X) can be chosen to reflect the risk preference of the 

decision maker, particularly where the primary interest is in losses, and catastrophic losses in specific 

contexts (Rockafellar, Uryasev et al. 2006; Grechuk, Molyboha et al. 2009) and have been motivated by 

experience in financial portfolio selection, here mapped to the idea of a portfolio of security controls 

instead of the selection of individual financial securities: 

 

In portfolio theory, the rate of return of the portfolio is a random variable X(x) depending on the 

vector x that gives the proportions of various securities included in the portfolio. Bounds are placed 

on σ(X(x)) or this quantity is minimized subject to side conditions on x. Such an approach can be 

justified when the random variables have normal distributions, but when the heavy tail behaviour of 

non-normal distributions enters the scene, doubts arise. It may be better, then, to replace standard 

deviation by a different deviation measure, which perhaps could even act on X(x) asymmetrically. 

 

(Rockafellar and Uryasev 2013) 

 

One of the most interesting components of this approach is then the inclusion of the concept of regret 

which endogenizes the concept of utility theory within the model of risk and reflects the consideration that 

decision makers will generally exhibit loss aversion relative to a prior state of wealth as a benchmark 

(Tversky and Kahneman 1992) and which makes intuitive sense from a security practitioner’s risk 

perspective. This also reinforces the idea that the ‘correct’ risk statistic in the context of operational gains 

and losses may be one that primarily, if not exclusively, reflects losses and not gains or even net 

losses/gains and can be thought of as an ‘expectation-bounded risk measure’ (Rockafellar, Uryasev et al. 

2002). The introduction of ‘expectations’ within the risk model is an attempt to fundamentally incorporate 

the decision makers’ consideration of prospective choice under risk and uncertainty, where, as noted by 

Krokhmal above, the decision maker faces an inherently uncertain system at risk where the objective 

function f(x, ξ) and the corresponding control choices g(x, ξ) are both stochastic and the decision maker 

must necessarily therefore possess states of belief, ω, with some probability P, over the randomness of the 

objective function and, underlying that, of the controls logically affecting losses. Risk aversity in the 

context of loss is then defined as a latent condition of the ‘regret’ of the decision maker who desires to 

specifically and routinely avoid losses under these circumstances: Rockafellar notes that:    
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Recall that [in the simplest case] R(X) =E(X) for constant X ≡ C. Aversity has the interpretation that 

the risk of loss in a nonconstant random variable X cannot be acceptable unless, in particular, 

X(ω)<0 on average [emphasis added]. Note that relations to expectation, and consequently to the 

particular choice of P, have not entered axiomatically until this point (Rockafellar 2007). 

 

In a measure of regret V, the value V(X) stands for the net displeasure perceived in the potential mix 

of outcomes of a random “cost” X which may sometimes be > 0 (bad) and sometimes ≤0 (OK or 

better). Regret comes up in penalty approaches to constraints in stochastic optimization and, in 

mirror image, corresponds to measures of  “utility” U in a context of gains Y instead of losses X 

[emphasis added]…Regret obeys V(0) = 0, so…we have to focus on utility measures that have 

U(0) = 0; we say then that U is a measure of relative utility…Focusing on relative utility in this 

sense is a positive feature of the quadrangle scheme because it can help to capture the sharp 

difference in attitude toward outcomes above or below a benchmark that is increasingly 

acknowledged as influencing the preferences of decision makers.  

 

Measures of regret V, like measures of deviation D, are profoundly related to measures of risk R… 

Especially important will be a one-to-one correspondence between measures of deviation and 

measures of risk under “aversity,” regardless of coherency [of the risk measure]. A powerful 

property of measures of regret, which soon will be discussed, is their ability to generate measures of 

risk through trade-off formulas. By means of such formulas, an optimization problem in the form of 

(1.2) [above] may be recast in terms of regret instead of risk [emphasis added], and this can be a 

great simplification. Furthermore, by revealing a deep connection between risk measures and utilty, 

regret reconciles the seemingly different approaches to optimization based on those concepts. 

 

(Rockafellar and Uryasev 2013). 

 

Finally, the model introduces a ‘measure of error’ in X, Ɛ(X), “…that quantifies the nonzeroness in X” and 

reflects the inherently stochastic nature of X, where X is a non-deterministic function of some vector of 

inputs x. In the quadrangle model, the error term is fundamental to both the concept of deviation 

(uncertainty) and the concept of regret over the outcome of a random variable based on x: 

 
Given an error measure Ɛ and a random variable X, one can look for a constant C nearest to X in the 

sense of minimizing Ɛ(X - C). The resulting minimum “Ɛ-distance,” denoted by D(X), turns out to 

be a deviation measure…The C value in the minimum, denoted by S(X) [emphasis added], can be 

called the “statistic” associated with X by Ɛ…The emergence of a particular deviation measure D 

and statistic S from the choice of an error measure Ɛ has intriguing implications for statistical 

estimation in the sense of generalized regression…There is furthermore a deep connection between 

regression and an optimization problem like (1.2) [above]. The x-dependent random variables Xi(x) 

there might be replaced by convenient approximations X̑i(x) developed through regression…The 

optimization and estimation sides of the quadrangle are bound together not only through such 

considerations, but also in a more direct manner. 

(Rockafellar and Uryasev 2013). 

 

In total, the quadrangle model specifies the relationships between a measure of risk, loss deviation, loss 

error and decision maker regret for both estimation (descriptive) and, in the context of choice, optimization 

(normative) purposes in which, given a measure of decision maker regret and the description of inherent 

error in the system at risk, the decision maker can select a portfolio of controls x in order to ‘optimize’ the 

resulting losses in the context of the decision makers’ utility over losses with reference to a benchmark: 

 

The rule that projects from Ɛ onto D is echoed by a certainty-uncertainty trade-off formula which 

projects a regret measure V onto a risk measure R. This formula, in which C + V(X - C) is 

minimized over C, generalizes a rule in (Rockafellar and Uryasev 2000) and (Rockafellar, Uryasev 

et al. 2002), for VaR-CVaR computations…Under a simple relationship between V and Ɛ, the 

optimal C value in the trade-off is the same statistic S(X) as earlier [emphasis added], but that 



  133  

conceptual bond has been missed. Nothing has hitherto suggested that “error” in its context of 

approximation might be inherently related to the very different concept of “regret” and, through 

that, to “utility”.[emphasis added]. … The paired arrows on the sides of [the diagram], in contrast 

to the two-way arrows on the top and bottom, correspond to the fact that the simple formulas…for 

getting R and D from V and Ɛ are not uniquely invertible. Antecedents V and Ɛ for R and D always 

exist, even in multiplicity, so the real issue for inversion is the identification of natural, nontrivial 

antecedents.  

 

 

 R(X) = E(X) + D(X) ↔ D(X) = R(X) - E(X) 

 ‘Optimization’ ↑↓ ↑↓ ‘Estimation’ 

 V(X) = E(X) + Ɛ (X) ↔ Ɛ (X) = V(X) – E(X) 

 

where 

 

 R(X) = min{C + V(X - C)}  D(X) = min{E(X - C)}  
           C C 

and where 

 

argmin{C + V(X - C)} = S(X) = argmin{C + Ɛ (X - C)} 
 C C 
 

where “argmin” refers to ‘the C value that achieves the “min” 

 

 

 

This theorem integrates, in a new and revealing way, various results or partial results that were 

separately developed elsewhere…Although the parallel between E → D and V → R, which ties the 

two sides of the quadrangle fully together, is mathematically elementary, it has not come into focus 

easily despite its conceptual significance. That, especially, is where the theorem innovates. What 

was absent in the past was the broad concept of a measure of regret, not limited to an expectation, 

and the realization it could anchor a fourth corner in the relationships, thereby serving as a conduit 

for bringing in “utility” beyond expected utility. 

(Rockafellar and Uryasev 2013) 

 

 

Having defined the relationship between a measure of risk in losses and a decision maker’s regret as a 

function of risk, Rockafellar then proceeds to define VaR and CVaR in terms of these statistics: 

 
The key in this case is provided by the (cumulative) distribution function FX(x) = prob{X≤x} of a 

random variable X and the quantile values associated with it. If, for a probability level α ϵ (0, 1), 

there is a unique x such that FX(x) = α , that x is the α-quantile qα(X). In general, however, there are 

two values to consider as extremes i.e. the lower threshold of losses and the upper bound, 

potentially infinite]: 

 

 𝑞α
+(X) = inf{x | FX(x) > α}       𝑞α

−(X) = sup{x | FX(x) < α} (2:1) 

 

It is customary, when these differ, to take the lower value as “the” α-quantile, noting that, because 

FX  is right-continuous, this is the lowest x such that FX(x) = α. Here, instead, we will consider the 

entire interval between the two competing values as the quantile, 

 

 qα(X) = [𝑞α
−(X), 𝑞α

+(X)], (2:2) 

 

bearing in mind that this interval usually collapses to a single value [i.e. the lower value]. That 

approach will fit better with our way of defining a “statistic” by the argmin notation [noted in the 

boxed figure above]. Also important to understand, in our context of interpreting X as a “cost” or 

“loss,” is that the notion of value-at-risk in finance coincides with quantile. There is an upper value-
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at-risk VaRα
+(X) = 𝑞α

+(X) along with a lower value-at-risk VaRα
−(X) = 𝑞α

−(X), and, in general, a 

value-at-risk interval VaRα(X) = [VaRα
+(𝑋),  VaRα

−(X) ] identical to the quantile interval qα(X). 
 

Besides value-at-risk, the example coming under consideration involves the conditional value-at-

risk of X at level α ϵ (0, 1) as defined by 

 

 CVaRα (X) = expectation of X in its α-tail, (2:3) 

 

which is also expressible by 

 

 CVaRα (X) = 
1

1−α
∫ VaR
1

α τ(X)dτ (2:4) 

 

The second formula is due to (Acerbi 2002) in different terminology, while the first follows the 

pattern in (Rockafellar and Uryasev 2002), where “conditional value-at-risk” was coined. 

 

(Rockafellar and Uryasev 2013) 

 

 

 

The risk quadrangle can then be re-expressed in terms of VaR and CVaR statistics: 

 
 

A Quantile-Based Quadrangle (at any confidence level α ϵ (0, 1), 

 

S(X) = VaRα(X) = qα(X) = quantile 

R(X) = CVaRα(X) = q̅α(X) = superquantile 

D(X) = CVaRα(X-E(X)) = q̅α(X-E(X)) = superquantile-deviation 

V(X) = 
1

1−α
𝐸(X+) = average absolute loss47, scaled 

Ɛ(X) = E[
1

1−α
X+ + X-] = normalized Koenker-Bassett48 error 

(Rockafellar and Uryasev 2013) 

 

 

The choice of R(X) = CVaRα(X) is a well-known result in finance in the consideration for the 

choice of ‘coherent risk measures’ (Artzner, Delbaen et al. 1999) as well as for considerations of 

optimization, whether formally modelled as described here by Rockafellar in terms of ‘stochastic 

optimization’, or considered more practically in the context of day-to-day managerial choice over 

a portfolio of security controls x: 

 

Consider a stochastic optimization problem in the form of (1.2). It is tempting, and common in 

many applications, to contemplate taking Ri to be a quantile 𝑞α𝑖. The constraint Ri(Xi(x))≤ ci would 

require then that x be chosen so that the random “cost” Xi(x) is ≤ ci with probability at least αi. 

However, this apparently natural approach suffers from the fact that 𝑞𝛼𝑖(Xi(x)) may be poorly 

behaved as a function of x as well as subject to the indeterminacy, or discontinuity, associated with 

(2.2). That could hamper computation and lead to instability of solutions. 

 

An alternative to a quantile would be to take Ri to be a superquantile 𝑞 
α𝑖

. The constraint Ri(Xi(x))≤ 

ci, as an expression of Xi(x) being “adequately” ≤ ci, is then more conservative and has an 

interpretation in terms of “buffered probability of failure,” cf. (Rockafellar and Royset 2010) . 

Moreover it is better behaved and able to preserve convexity of Xi(x) with respect to x, if present. A 

further advantage in optimization from such an approach is seen from the projection from V to R on 

the left side of the quadrangle: 

 

𝑞 
𝛼𝑖

(Xi(x))≤ ci       Ci + 
1

1−α𝑖
 E[max{0, Xi(x) - Ci}] ≤ ci for a choice of Ci ϵ ℝ 

                                                                        
47 (Dembo and King 1992) 
48 (Koenker and Bassett Jr 1978) 
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Thus, a superquantile (or CVaR) constraint can be reformulated as something simpler through the 

introduction of another decision variable Ci alongside of x [emphasis added]. 

 

(Rockafellar and Uryasev 2013) 

 

‘Coherency’ is important attribute for risk measures since not all risk measures are coherent and portfolio 

choices made with non-coherent risk measures may result in sub-optimal and outcomes inconsistent with 

the decision maker’s risk preferences. Rockafellar discusses the nature and need for coherency in the risk 

measure R and, in the context if the risk quadrangle, his replacement of ‘coherent’ with the term ‘regular’ 

illustrating that, while R(X) = E(X) may be coherent in Artzner’s sense, in the context of uncertainty it lacks the 

normative decisional characteristic of loss aversion and it cannot be used to represent a measure of acceptable loss in 

the context of uncertainty, where ‘acceptability’ means losses typically less than a benchmark: 

 

Specifically, we suppose there is an underlying space Ω with elements ω standing for future states, 

or scenarios, along with a measure which assigns probabilities to various subsets of  Ω…Random 

variables from now on are functions X : Ω →ℝ, but we restrict attention to those for which E[X2] < 

∞, indicating this by X ϵ L2(Ω)49. Here E is the expectation with respect to the background 

probability measure on Ω. Any X ϵ L2(Ω) also has E|X| < ∞, so that E(X) is well defined and 

finite…In many applications Ω may consist of finitely many elements ω, each having a positive 

probability weight. 

 

…. 

 

The quantifiers R, D, V and Ɛ, all of which assign numerical values, possibly including +∞ to 

random variables X, are said to be “functionals” [denoted as ‘Ƒ’] on L2(Ω). Some of the properties 

that come up may be shared, so it is expedient to state them in terms of a general functional Ƒ : 

L2(Ω) → (-∞,∞): 

 

Ƒ is convex if Ƒ((1- τ)X + τ X′) ≤ (1- τ)Ƒ (X) + τƑ (X′) for all X, X′, and τ. 

 

Ƒ is positively homogeneous if Ƒ(0) = 0 and Ƒ(λX) = λƑ(X) for all λ ϵ (0;1). 

 

Ƒ is subadditive if Ƒ(X + X′) ≤ Ƒ(X) + Ƒ (X′) for all X≤ X′. 

 

Ƒ is monotonic (nondecreasing, here) if Ƒ(X) ≤ F(X′) when X≤ X′. 

 

Ƒ is closed if, for all C ϵ ℝ, the set { X | Ƒ (X) ≤ C g is closed. 

 

 

These properties mirror the axioms for coherency proposed by Artzner, where: 

 

  
Convexity will be valuable for much of what we undertake. Positive homogeneity is a more special 

property which, in the study of risk, was emphasized more in the past than now. An elementary fact 

of convex analysis is that 

 

 Ƒ convex + positively homogeneous    subadditive + positively homogeneous. (3:2) 

 

…Other important consequences of convexity emerge only in combination with closedness. One 

that will be applied in several ways is the following rule coming out of convex analysis. 

 

…An immediate consequence, for instance, is that 

 

                                                                        
49 Where, for our understanding, L2(Ω) is a ‘LaPlace transform’ of the expected future states of the system into a probability 
distribution of losses expressible in X. https://en.wikipedia.org/wiki/Laplace_transform   

https://en.wikipedia.org/wiki/Laplace_transform


  136  

 for Ƒ closed convex:    if Ƒ(X) ≤ 0 whenever X ≤ 0, then Ƒ is monotonic. (3:4) 

 

To assist with closedness, it may help to note that this property of Ƒ holds when Ƒ is continuous, 

and moreover, as long as Ƒ does not take on ∞, that stronger property is automatic in broad 

circumstances of interest to us. Namely, 

 

 Ƒ is continuous on L2(Ω) when    {

Ƒ 𝑖𝑠 𝑓𝑖𝑛𝑖𝑡𝑒, 𝑐𝑜𝑛𝑣𝑒𝑥, 𝑎𝑛𝑑 𝑐𝑙𝑜𝑠𝑒𝑑, 𝑜𝑟
Ƒ 𝑖𝑠 𝑓𝑖𝑛𝑖𝑡𝑒, 𝑐𝑜𝑛𝑣𝑒𝑥, 𝑎𝑛𝑑 𝑚𝑜𝑛𝑜𝑡𝑜𝑛𝑖𝑐, 𝑜𝑟
Ƒ 𝑖𝑠 𝑓𝑖𝑛𝑖𝑡𝑒, 𝑐𝑜𝑛𝑣𝑒𝑥, 𝑎𝑛𝑑 Ω is finite

 (3.5) 

 

 

Rockafellar then concludes by explaining ‘regular’ risk measures which are generally closed 

convex and incorporate risk aversity in place of otherwise ‘coherent’ risk measures, or measures 

which are coherent but may not incorporate risk aversity: 

  

 

…The role of a measure of risk, R, is to assign to a random variable X, standing for an uncertain 

“cost” or “loss,” a numerical value R(X) that can serve as a surrogate for overall (net) cost or loss. 

However, the assignment must meet reasonable standards in order to make sense. 

 

The class of coherent measures of risk has attracted wide attention in finance in this regard. A 

functional R belongs to this class, as introduced in {Artzner, 1999 #241}if it is convex and 

positively homogeneous …as well as monotonic, and, in addition, satisfies 

 

 R(X + C) = R(X) + C for all X and constants C. (3.6) 

 

Closedness of R was not mentioned in (Artzner, Delbaen et al. 1999)but the context there supposed 

R to be finite (and actually finite, too), so that closedness and even continuity of R were implied by 

coherency through (3.5) Subsequent researchers considered dropping the positive homogeneity, and 

with it the term “coherent,” speaking then of a “convex measure of risk” or a “convex risk 

function,” cf. Follmer and Schied [2004], Ruszczynski and Shapiro [2006a]. 

 

By a regular measure of risk we will mean a functional R with values in (-∞,∞] that is closed 

convex with 

 

 R(C) = C for constants C (3:7) 

 

and furthermore 

 

 R(X) > E(X) for nonconstant X (3:8) 

 

 

Property (3.8) is aversity to risk.  

 

An example of a coherent measure of risk that is not regular is R(X) = E(X), which lacks aversity. 

On the other hand, R(X) = 𝑉𝑎𝑅α
−(X) fails to be a regular measure of risk by lacking closedness, 

convexity and the aversity in (3.8), in general, although it does have positive homogeneity, satisfies 

(3.6) and is monotonic. It fails to be a coherent measure of risk through the absence of convexity. 

 

(Rockafellar and Uryasev 2013) 

 

 

 

VaR and CVaR Risk Measures for Cyber Insurance Control Choice 

VaR and CVaR measures of risk also have application in insurance since they can be used to reflect both 

the buyer’s preferred benchmark loss level and therefore the deductible level on an insurance policy i.e. the 

maximal level of loss which the firm is routinely willing to absorb and therefore the lowest preferred loss 
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which would be covered were insurance to be purchased to cover losses at this level or higher (Herath and 

Herath 2011). The corresponding CVaR would then represent, from the individual firm’s perspective, the 

average expected loss exceeding the deductible. An insurance premium reflective of this CVaR, (i.e. 

ignoring losses from a market of polled firms and reflecting only this firm) would be deemed ‘actuarially 

fair’ if the cost of insurance equalled the expected value of the loss within a specified time frame. For 

example, assume that the VaR of simulated security losses over 30 years at a 95% confidence level for a 

firm with a relatively “High” level of security control was approximately $22,150 per day and the 

corresponding CVaR was $32,110, then the actuarially fair premium would be $32,110 *5% = $1,605.51. 

This means that, over the long run (i.e. of at least 30 years), and assuming the firm was risk neutral, they 

should be willing to pay $1605.51 per day to insure against any daily loss exceeding $22,150 and the 

annual premium would be $1,605.51 * 365 = $586,012: 
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Figure 60 - High Controls System: Probability Distribution of Simulated Daily Losses over 30 Years 

(n=10,950) 
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The insurable losses are of course dependent on the underlying security loss profile itself, which in turn is 

dependent on the relative security level of the controls intended to prevent losses. In the above example we 

were looking at a firm with relatively ‘high’ strength controls. If the same firm were to deploy relatively 

‘medium’ strength controls, the profile of losses is similar but different in two key aspects: 
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Figure 61 - Medium Controls System: Probability Distribution of Daily Losses over 30 Years 

(n=10,950) 
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First, since the Medium controls prevent fewer successful attacks, the total dollar amount of losses is 

almost double in the medium case. Second, the maximum loss in the medium case is also more than double 

that of the high controls case. This has implications for the trade-off between controls that prevent losses 

and controls that reduce impacts, like insurance, if losses were to actually occur.   

 

Since the losses in any year are stochastic, the annual difference between the premium paid and the losses 

claimed will be either positive or negative, but would be expected to roughly net out over the 30 years 

(since this is the period over which the ‘actuarially  fair’ premiums are calculated. The following table and 

chart represent the simulated losses over 30 years under high control conditions and the corresponding 

annual and cumulative net difference between claims and premiums paid year: 

 

Table 6 - High Controls Case: Annual vs. Cumulative Excess of Claims Paid Less Premium over 30 

Years (VaR @ 95%) 

 (Daily Premium = CVaR Loss amount) 

Year 

Total Loss Claims  
Exceeding 95% VaR in 365 

days (n=~ 18 claimable 
events per year) 

Total Annual Premium: 
based on 95% VAR Loss + 
Average Loss exceeding 
95% VAR, over 30 years 

Annual Excess of 
Claims Paid Less 

Premium 

Cumulative Excess 
of Claims Paid 
Less Premium 

1  $556,966.91 $586,011.98 -$29,045.07 -$29,045.07 

2  $640,254.38 $586,011.98 $54,242.40 $25,197.32 

3  $770,744.48 $586,011.98 $184,732.50 $209,929.82 

4  $558,602.89 $586,011.98 -$27,409.09 $182,520.72 

5  $680,641.01 $586,011.98 $94,629.03 $277,149.75 

6  $580,431.88 $586,011.98 -$5,580.10 $271,569.64 

7  $491,582.91 $586,011.98 -$94,429.07 $177,140.57 

8  $370,963.63 $586,011.98 -$215,048.35 -$37,907.79 

9  $572,136.66 $586,011.98 -$13,875.32 -$51,783.11 

10  $659,259.65 $586,011.98 $73,247.67 $21,464.56 

11  $449,415.28 $586,011.98 -$136,596.70 -$115,132.15 

12  $518,657.61 $586,011.98 -$67,354.37 -$182,486.52 

13  $661,433.67 $586,011.98 $75,421.69 -$107,064.84 

14  $534,074.04 $586,011.98 -$51,937.94 -$159,002.78 

15  $705,593.42 $586,011.98 $119,581.44 -$39,421.35 

16  $479,677.63 $586,011.98 -$106,334.35 -$145,755.70 

17  $297,912.32 $586,011.98 -$288,099.66 -$433,855.37 

18  $646,726.18 $586,011.98 $60,714.20 -$373,141.17 

19  $535,903.64 $586,011.98 -$50,108.34 -$423,249.51 

20  $713,460.81 $586,011.98 $127,448.83 -$295,800.69 

21  $601,462.07 $586,011.98 $15,450.09 -$280,350.60 

22  $600,164.07 $586,011.98 $14,152.09 -$266,198.52 

23  $710,551.48 $586,011.98 $124,539.50 -$141,659.02 

24  $779,110.51 $586,011.98 $193,098.53 $51,439.50 

25  $529,438.30 $586,011.98 -$56,573.68 -$5,134.18 

26  $595,274.19 $586,011.98 $9,262.21 $4,128.02 

27  $614,666.64 $586,011.98 $28,654.66 $32,782.68 
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28  $615,461.09 $586,011.98 $29,449.11 $62,231.79 

29  $561,230.84 $586,011.98 -$24,781.14 $37,450.64 

30  $532,506.22 $586,011.98 -$53,505.76 -$16,055.12 

     

Sum $17,564,304.41 $17,580,359.53 -$16,055.12  

   

 

Figure 62 - High Controls Case: Annual vs. Cumulative Excess of Claims Paid Less Premium over 30 

Years (VaR @ 95%) 

 

 

The results should be interesting to a security practitioner making a decision over controls, in this case over 

cyber insurance covering losses. First, the selection of the VaR level is important since it represents both 

the level of unacceptable losses which should be chosen carefully depending on the operational needs of 

the business and particularly since it represents the insurance deductible level – losses below this level will 

have to be sustained by the business despite paying for insurance. Second, since the resulting CVaR will be 

more heavily weighted towards the more frequent lower losses at a lower VaR, the net benefits of the 

insurance over any sub-series of years less than 30 declines as the VaR increases. Depending on the length 

of the tail losses above the chosen VaR, increasing the VaR will generally cause the CVaR to rise 

exponentially at increasingly higher levels of VaR. At a 99% level for example, the net benefit of the 

insurance is negative for longer stretches of time since insurable losses are less frequent (3.6 per year), 

although over the entire 30 years the benefits still net out to roughly zero. At the 99.9% level (representing 

insurance coverage for only truly catastrophic loss, approximately once every 3 years) and, in this 

particular simulation, the insurance actually only pays off once in 30 years: 
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Figure 63 - High Control Case: Annual vs. Cumulative Excess of Claims Paid Less Premium over 30 

Years (VaR = 99%) 

 

 

Figure 64 - High Control Case: Annual vs. Cumulative Excess of Claims Paid Less Premium over 30 

Years (VaR @ 99.99%) 
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Figure 65 - High Control Case: VaR vs. CVaR Loss Levels and # of Insurable Claims Per Year 

 

 

It is apparent that the potential range of losses and the maximum loss above the VaR changes the overall 

value of the insurance, so the shape of the loss distribution, particularly in the tail which is typically sparse, 

becomes important. Comparing the High and Medium control cases at the 95% VaR level, we see that the 

decision maker under the Medium Controls case although covered for the same number of insurable events 

over 30 years (since by definition the VaR level in both cases represents a level of losses in which only 5% 

of events will exceed the VaR) both the amount of insurance paid and the volatility of the net insurable 

losses is substantially greater than in the High Controls case:  
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Figure 66 - Medium vs. High Control Case: Annual vs. Cumulative Excess of Claims Paid Less 

Premium over 30 Years (VaR = 95%) 

Medium Control Case VaR @95% 

Annual Premium = $958,922 

 

 

High Control Case VaR @ 95% 

Annual Premium = $586,012 

 

 

For the decision maker, a more salient difference arises if, instead of selecting a VaR confidence level in 

terms of a percentage, she selects a minimum absolute dollar loss level (which may be more realistic for 

management to consider, particularly in terms of catastrophic loss levels) and then compares the required 

insurance to accommodate the same level of loss under Medium vs. High controls. For example, if we take 

the Medium Controls case as representing a ‘base case’, at a 95% VaR the loss limit equals $37,051. For 

management to insure losses over this dollar level under the High controls case, the premiums are one-fifth 

of that in the Medium controls case and the volatility of net losses is correspondingly lower (as it would 

always be under High vs. Medium controls): 
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Figure 67 - Medium vs. High Control Case: Annual vs. Cumulative Excess of Claims Paid Less 

Premium over 30 Years (VaR = 95%) 

Medium Control Case VaR @ 95% CVaR = $35,051 

Annual Premium = $958,922 

 

 

High Control Case VaR @ 95% CVaR = $35,051 

Annual Premium = $186,223 

 

 

This type of comparison should prompt management to consider two further decisions: 1) that insurance 

cannot be considered outside of the context of the preventive controls that avoid losses in the first place, 

and 2) the ‘optimal’ level of control, whether frequency or impact reducing depends, among other ‘biases’,  

on the decision makers’ preference for avoiding risk and, in the specific context of loss, the degree of 

‘regret’ involved (Loomes and Sugden 1982; Gollier 2016). 

 

The use of probability distributions to represent stochastic system outcomes and the selection of risk 

indicators based on higher moments of the distribution are therefore important tools for the representation 

of security risk information, although it is not entirely clear to what extent managers are prepared to 
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interpret and act on this type of risk information about stochastic system processes (Lampel, Shamsie et al. 

2009). Dominant organizational discourse on risk may also hamper efforts to portray and evaluate risks in a 

manner that facilitates good decision making (Hardy and Maguire 2016).  From a quantitative perspective, 

the lack of operational information regarding the frequency of security losses means that managers will 

likely resort to subjective assumptions about the frequency of security events and therefore the underlying 

probability distribution of all possible events which will be reflected in their resulting control choices 

(Weston 2014). This is problematic since the assumed shape of the probability distribution (if any is 

assumed) matters when considering what is a ‘rare’ event
50

. Even if representative event information is 

available, organizational context may inhibit the collection of representative samples (Feiler, Tong et al. 

2013). With potentially minimal and unrepresentative data on hand, there is a high likelihood that the 

events are a non-representative sample of the underlying probability distribution, and do not particularly 

represent the likelihood of low probability events (Lopes 1982). 

 

Review of VaR-based Security Risk Modelling Approaches 

Having reviewed the nature of the probability distributional qualities of stochastic systems which are 

subject to extreme values, I now return to the specific issue of modelling and simulation of information 

system security processes and outcomes that are expected to exhibit these characteristics. Limitations of the 

reviewed models to this point included the primary difficulty of incorporating stochastic inputs within 

proprietary modelling platforms where alternative approaches using standard desktop tools with Monte 

Carlo plug ins might support a shorter learning curve and greater flexibility in creating model alternatives 

and scenarios appropriate for the labs. It had also become clear that a standardized presentation of 

simulated results would need to include a time series view and a corresponding probability distribution 

view of the attributed loss results, particularly if the higher moments of the distribution were of interest, 

and if specific risk measures based on VaR and CVaR statistics were to be incorporated into the 

experiments. Since the intention was to model a system at risk without basing these on any particular 

system or actual historical results, I was not constrained by lack of data going into the modelling exercise 

however any simulated results would still have to represent plausible outcomes with distributional 

characteristics that would be readily recognizable by practitioners. This required that the stochastic 

elements of the model be based on plausible expert assumptions for their range of effect. A further 

literature review was initiated to review security modelling efforts that directly incorporated both Monte 

Carlo simulation and VaR/CVaR components. 

 

Alternative models for information security risk simulation have been presented relatively recently in the 

information security literature using VaR and CVaR concepts to more adequately capture the risk profile 

                                                                        
50 Weston uses the example of financial market losses which exhibit ‘fat tail’ distributions and indicates that the “…individual’s 

choice behaviour reflects a distributional assumption whether or not she makes the assumption consciously and/or with explicit 
knowledge of the statistical properties of the distribution. For example, if single-day financial-market drops of 10% were normally 

distributed, they would be considered rare since they would be expected to occur once every 500 years (Buchanan, 2004); in actuality, 

they are merely unusual since they occur two orders of magnitude more frequently, about once every five years (Mandelbrot & 
Hudson, 2004).”  (Weston 2014) 
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risk in business information systems subject to security risks (Soo Hoo 2000; Jaisingh and Rees 2001; 

Conrad 2005; Ozcelik and Rees 2005; Conrad, Oman et al. 2006; Wang, Chaudhury et al. 2008; Thomas 

2009; Gheorghe 2012; Sawik 2013; Thomas, Antkiewicz et al. 2013; WEF 2015). These quantitative 

approaches to risk modelling borrow from both enterprise finance and operations risk management
51

, 

incorporates Monte Carlo simulation for managing stochastic model inputs and typically expresses risk in 

terms of a probability distribution of loss outcomes. Soo Hoo proposed a quantitative approach based on 

simulation of annual loss expectancy (ALE) and reviewed the limitations of ALE in its inability (by 

definition) to distinguish between high/low and low/high probability/outcome risks. To resolve this 

limitation, he advocated incorporating both sensitivity  analysis, which dynamically varied the input 

parameters of a logical risk model to determine control policy ‘crossover points’ and then stochastic 

analysis to determine ‘stochastically dominant’ decision alternatives which characterizes the solutions 

across the cumulative distribution function of an alternative (Soo Hoo 2000). Levy illustrated the use of 

stochastic dominance in a number of decision contexts including experimental tests for prospect theory 

(Levy and Levy 2002) and the ‘safety first’ principle for portfolio selection noted above (Levy and Levy 

2009). Jaisingh (Jaisingh and Rees 2001) and Ozcelik (Ozcelik and Rees 2005) provide conceptual 

descriptions of the calculation and use of VaR in an information security context but do not discuss the 

non-coherency limitations of using VaR as a risk measure. Conrad introduced an explicit Monte Carlo 

method for simulating security risks (Conrad 2005) into a static ‘efficacy model’ for security risk 

assessment following Longstaff  (Longstaff, Chittister et al. 2000). Conrad also applied a Monte Carlo 

simulation approach to the Risk Analysis and Probabilistic Survivability Assessment (RAPSA) process 

(Taylor, Krings et al. 2002) which combines the quantification approach of Probability Risk Assessment 

(PRA) with Survivable Systems Analysis (SSA) (Ellison, Fisher et al. 1997) in order to focus control 

decisions and resources on the mission critical services of a system (Conrad, Oman et al. 2006).Thomas 

presents a conceptual model for stochastic, ‘piecewise’ modelling of the “total cost of security” where 

extreme events need to be modelled separately from everyday protective controls to focus on VaR-based 

insurance approaches to absorbing catastrophic risks (Thomas 2009). He also reviews a ‘dynamic 

branching model’ which incorporates temporal, non-static event trees to simulate security breach costs 

(Thomas, Antkiewicz et al. 2013). The World Economic Forum also extensively promoted the 

quantification of security risk using Monte Carlo methods and VaR for in their 2015 annual report on cyber 

risks (WEF 2015). It appears that many of these models could be executed using Excel with a Monte Carlo 

plug in and so I pursued further detailed study of these methods to be able to contrast the effort required 

and results expected from these approaches compared to the models noted in the previous section.    

 

Simulation using Generalized Probability Distributions with Available Historical Data  

Stochastic modelling and simulation approaches are particularly valuable when historical operating data on 

which to base a model are available but may be limited or poorly understood by management which may 

                                                                        
51 See for example “A New Approach for Managing Operational Risk - Addressing the Issues Underlying the 2008 Global Financial 
Crisis, Society of Actuaries 2009 http://www.soa.org/Files/Research/Projects/research-new-approach.pdf  

http://www.soa.org/Files/Research/Projects/research-new-approach.pdf
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often be the case in practice, particularly for organizations whose security or IT risk management programs 

or expertise are immature (Hardy and Maguire 2016) and where tail observations may be characteristically 

sparse in any case. In these situations, care must be taken to ensure that models, even if based on actual 

operating data, and the resulting simulation results are robust and reliable. Wang describes a loss modelling 

methodology based on an ‘exceedance over thresholds extreme value model’ (Pickands III 1975; Davison 

and Smith 1990) in which attributed security losses are stochastically simulated based on actual incident 

statistics for one year of operations. The objective is to select an extreme loss threshold using maximum 

likelihood methods to estimate a parameterized Generalized Pareto Distribution (GPD) model for losses 

from which a VaR level can reliably be calculated based on sparse operating data (Coles, Bawa et al. 2001), 

and then to employ the resulting model to estimate alternative security policy costs (Wang, Chaudhury et 

al. 2008). Coles method is instructive since it allows management to statistically determine a relevant 

threshold loss level from existing operating data as opposed to selecting some arbitrary VaR value above 

which to model extreme values. Wang’s model first estimates daily losses attributed to stochastic incidents 

resulting from business activities: 

 

Figure 68 - Actual vs. Simulated daily losses due to activity based security events (Wang) 

 

(Wang, Chaudhury et al. 2008) 

 

Since the attributed losses are largely a function of business activity levels, the overall time series of losses 

expectedly aligns closely to the pattern of business activities. In this case the model assumes 15,000 users 

generating approximately 1.13 million (user level) activities per day. Wang then identifies two types of 

activity-based security incidents based on interviews with management, reflecting the high/low low/high 

dichotomy: 

 

•  Type A: High-Frequency/Low-Impact incidents expected once every 15,000 activities, with 

approximately 75 such incidents per day. Attributed losses resulting from incidents of this type include 
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the cost of help-desk calls and loss of individual productivity and [are] estimated to be $100 per incident 

on average. 

 

•  Type B: Low-Frequency/High-Impact incidents, including successful incidents/exploits that cause 

disruptions of network services expected once every 50,000,000 activities; on average, there will be one 

or two such incidents every two months where the cost is approximately $10,000 per incident, which 

includes the loss of user productivity, business disruptions, and possible damage to business reputation. 

(Wang, Chaudhury et al. 2008) 

 

Wang then proceeds to model loss values occurring above a loss threshold using a generalized Pareto 

distribution (Coles, Bawa et al. 2001)
52

. The residuals from the modelled vs. the simulated losses are then 

compared at different threshold levels to determine the minimum threshold level above which there are 

enough observations to ensure reliability of the resulting GPD model of extreme values: the threshold 

should be high enough to justify the assumptions of the GPD model, but low enough to capture a 

reasonable number of observations at the tail end of the distribution (Dupuis 1999). Wang’s resulting 

model selects $8,500 as the threshold value (where the average loss is $7,700) leaving 178 out of 430 loss 

observations on which to model tail losses. The resulting model is indicated in Figure 70 below. The model 

was checked for sensitivity against two threshold levels and using two ‘de-clustering’ factors (r) to ensure 

temporal independence of the observations:    

 

 

 

 

 

 

 

 

 

 

 

 

                                                                        
52 Consider the distribution of X conditionally on exceeding some high threshold u, and let Y = X −u, and Y >0. We know 

 

 Fu(y) = Pr{Y ≤ y | Y>0} 
 

As u → ωF  sup{x: F(x) <1}, we found a limit distribution, 

 

 Fu(y) ≈ G(y; σ, ξ) 

 
where G is Generalized Pareto Distribution (GPD) 

 

 G(y; σ, ξ) – 1 - (1 +  𝜉 
𝑦

𝜎
)
−1/ 𝜉

 
 

defined on {y: y >0 and (1+ ξ y/ σ )>0}, where σ and ξ are the two parameters of the distribution. (Coles, Bawa et al. 2001) 
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Figure 69 – Mean Residual Life Plot for Daily Losses and Generalized Pareto Distribution Parameter 

Estimate (Wang) 

 

(Wang, Chaudhury et al. 2008) 
 

 

Figure 70 – GPD Model Estimation Results (Wang) 

 

(Wang, Chaudhury et al. 2008) 

 

 

 

 

 

 

 

 

 

µ(X) ≈ $8,500 

𝜉 ≈ .21 
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Figure 71 – GPD Model Diagnostic Plots (Wang) 

 

(Wang, Chaudhury et al. 2008) 

 

Wang then compares two control policy decisions to the modelled base case. In addition, he tests the 

model’s sensitivity to inputs using random variables for both probability and loss generated by probability 

distributions as opposed to using fixed values, although he does not explain how this was done: 

 

Control Solution A: Install a firewall. This solution will decrease the probability of both types of incidents 

by half at a daily cost of $550. 

 

Control Solution B: Increase the frequency of backup and introduce detection systems. This solution will 

decrease losses from both incident types by half and reduce the frequency of type A intrusions to 1 per 

20,000 activities [from 1 per 15,000]. It has a daily cost of $2,000. 

 

 

 

 

 

 

 

 

 

 

1 in 100 day ‘return’ 

= (VaR @ 1%) 

≈ $19,710 
1 in 100 day ‘return’ 

= (VaR @ 1%) 

≈ $19,710 
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Figure 72 – Sensitivity Analysis Parameters and Scenario Results (Wang) 

 

 

(Wang, Chaudhury et al. 2008) 

 

The advantage of this approach is that it enables modelling of the distribution of losses above a threshold 

where data may typically be sparse. Here, however, Wang focuses on the resulting VaR for losses and not 

the expected value of losses above VaR (i.e. CVaR) which, as noted above, may substantially exceed VaR 

depending on the underlying loss dependencies. As noted in the section above, management decisions 

based solely on the reduction in VaR vs. the reduction in average losses above VaR may not reflect the 

correct risk measure where the average loss above VaR represents a better measure of extreme losses 

(although we might expect in this model that CVaR would likely also decline in each scenario). This model 

also introduces the use of probability distributions (specifically normal, triangular and uniform distributions 

based on expert judgment) and Monte Carlo simulation methods to calculate stochastic loss outcomes. 
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6 – System Simulation Platform Selection and Modification 

 

Having therefore completed a review of three state of the art information security modelling approaches 

and associated software platforms, I made a final decision to utilize the proprietary enterprise architectural 

modelling approach of the CySeMol tool to model a system at risk which ensures the objective logical 

interconnectivity of the proposed ‘system’ components (attack types, assets, vulnerabilities and controls) 

and which already incorporates independent expert validation of the model components undertaken by 

Ekstedt et al, but to abstract the predefined system component classes and probability relationship factors 

underlying the Bayesian relationships between the components into a form that would permit their 

remodelling and simulation  directly within Excel. Use of Excel thereafter permits me to then incorporate 

both Monte Carlo model simulation and design the necessary data display and control selection tools 

required to generate various simulation scenarios. I also decided to use Excel to manage the ‘front end’ user 

interface for the resulting choice games which would be directly manipulated by the individual participants 

in my lab experiments in order to ensure maximum flexibility in designing the interface and to readily 

manage the necessary data capture and reporting within an already personally familiar platform. On 

reflection, this approach balances several theoretical objectives for model validity and the pragmatic issues 

of prospectively designing and running a lab simulation to generate control choice data. In the case that 

simulations needed to be run interactively (an aspect that was not certain at the time of model selection) 

being Excel based, an Excel based system would also be able to run a complex Monte Carlo simulation 

quickly on a typical late model laptop using an academically available (i.e. cost effective) software add in
53

 

facilitating both lab portability and the anticipated need for individuals to run separate replicated 

simulations on individual computers within the lab at relatively low cost. 

 

Logical Model Specification Using P2CySeMol and Excel 

I began with a P2CySeMol model based on Holm et al which was readily available and well documented 

by the authors (Holm, Shahzad et al. 2015). While their model inherently involved SCADA control 

systems, the model included an extensive “Office Zone” administrative management sub-model which was 

suitable as the basis for a corporate administrative IT ‘system at risk’ for my purposes. I simplified and 

altered their base model to reflect the core components of an enterprise clinical management system that 

might be found at a medium to large hospital, offering both clinical and administrative users web-based, on 

premises and remote access to the system. Use of the P2CySeMol platform ensured that the logical 

architectural connections between the instantiated system components remained appropriately connected in 

terms of both their system functionality and their logical security relationships. Simplification of the 

functional and security architecture of the overall model (but not the components themselves which were 

pre-specified in the CySeMol Class Model) were undertaken in order to ensure that the model size (i.e. 

number of components) remained small enough to practically debug but large enough to reflect an 

                                                                        
53 I will be using Frontline’s Monte Carlo Risk Solver for Excel: http://www.solver.com/risk-solver-platform    

http://www.solver.com/risk-solver-platform
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acceptable minimum scope of functional and non-functional (security) architectural components necessary 

to represent a plausible operational scenario. 

 

As noted above, the anticipated computational requirements for simulation of a conditional probability 

model, as a Bayesian network in CySeMol but to be recreated in Excel, roughly scales exponentially with 

the number of nodes, and at the time it was not known how this would translate once instantiated in Excel. 

The approach was to convert only the number of components needed to produce plausible operational loss 

data that would reflect changes to the control and operational inputs of the model in a way that reflected 

practitioner experience. Several iterations of the model which incrementally added the vulnerability and 

control features of the components as noted in the next section were attempted in order to gauge the 

feasibility of the full target model. Incremental testing indicated that the model simulation time increased 

substantially as additional nodes and their corresponding vulnerability and control elements, each 

represented by probability distributions to support Monte Carlo simulation, were added to the model. While 

supporting the stochastic simulation aspect of the model, these elements added significantly to the 

computation time for a 365 day simulation, rising from nearly instantaneous calculation to over one minute 

with the addition of several core stochastic components. Additionally, and significantly as a contribution of 

this work, the introduction of lag behaviours to the controls meant that each day could not be simulated 

independently, but rather had to be generated as a time series, where one day was dependent on the 

outcome of the previous day. Together with the addition of substantial stochastic attributes for breach 

probability and impact determination, it became clear that the model might not be practically simulated ‘in 

real time’ during the labs and that, if simulations were to be computed during the labs, substantial time 

would have to be allotted for users to compute the model individually. This problem was effectively 

eliminated later in development during the creation of the user interfaces by precomputing the required 

simulations which, at that point, needed to represent only a limited number of control variations to support 

the required lab experiments. Precomputation of the simulations also effectively allowed the creation of 

precise business loss probability distributions representing 30 years of data in each required simulation 

scenario which could be randomly selected by the lab interface to ‘simulate’ business losses over any 

selected time period within the 30 years instantaneously without the need for interactive Monte Carol 

computation. This allowed users to experience stochastic system outputs without the interruption of 

actually computing the scenario results in real time without loss of model fidelity. Although not an 

‘immersive’ simulation environment as utilized by Fiore et al, this approach to the generation of simulated 

results supported the need to focus the users’ attention on the decision making elements of the model rather 

than the computational aspects of the simulation model (Fiore, Harrison et al. 2009).  
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Figure 73 – Instantiated P2CySeMol Model (Curtis) 
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Figure 73 indicates my resulting logical model executed in P2CySeMol. Individual system components are 

based on CySeMol class model objects which have defined attack vectors accomplished through the 

documented component security vulnerabilities: “Has Vulnerability”, “Find Vulnerability” and “Exploit 

Vulnerability”, sub-elements of which can be either ‘True’ or ‘False’ based on ‘evidence’ of their 

existence, either pre-specified or conditionally calculated within the model. Components also have defense 

capabilities – security controls - which are also based on evidence either incumbent, calculated within or set 

by the user using the user interface. The user specified controls are grouped into one of four types 

according to the conceptual framework described above by Tjoa et al (Tjoa, Jakoubi et al. 2011): 

Preventive controls (including Blocking controls), Detective controls, Counter controls and Recovery 

controls. Each type of control can be set to one of 5 levels of effectiveness: None, Minimal, Low, Medium, 

High or Very High. Higher levels of control generally have higher average and lower variance of 

‘effectiveness’ which results in a higher probability score for the effectiveness of the corresponding 

component control element. Each class of control contains one or more administrative (people or process) 

or technical control elements which have been assigned to each component’s ‘Control’ elements where it 

would be reasonably valid to assume that that the level of control would likely be actively set by 

management. The ability to vary the nominal control levels within and across the control types provides the 

ability to generate system simulations of daily business losses reflecting different levels of desired security 

control posture which are used to characterize control choice scenarios for the lab experiments involving 

different security risk and uncertainty levels.  

 

In the following example, I will first illustrate the incorporation of a typical system component, the ‘Web 

Application’ component of the system architecture (the web-based clinical management system software 

application itself), in order to illustrate the logical conversion of the CySeMol components to calculable 

Excel objects. I then explain the nature of the Preventive and Blocking controls applicable to this 

component and to other components generally and the associated determination of ‘successful’ attacks that 

have avoided prevention and are able to affect the confidentiality, integrity and availability attributes of the 

IT system. I then illustrate how successful attacks are possibly Detected in order to initiate both Counter 

and Recovery control of the successful attacks to eliminate the effects of the attacks on the system. The 

section ends with a discussion of the calculation and presentation of business loss impacts attributed to 

successful attacks despite those attacks having been countered and recovered.  

 

Determination of Successful Attacks   

In the CySeMol class model a web-based application is distinct from its database or other supporting 

components like its associated Web Application Firewall, etc. This permits realistic granularity of the 

associated vulnerabilities and controls permitting each component to have its own corresponding attack and 

defense vectors:  
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 Figure 74 - CySeMol Class Object “Web Application” Component Elements including simulated 

element states (T/F) (Curtis) 

 

  

 

In the above example, the clinical management system Web Application component has four potential 

security exploits: “Command Injection”, “Cross-Site Scripting (XSS)”, “Remote File Inclusion”, and “SQL 

Injection”. The state of the component at this point in a simulation is represented by the right hand column, 

indicating whether the component element is present (T = True) or absent (F = False), either by 

incumbency, based on controls set by the user or as a result calculated by the model. As would be expected, 

the presence of Vulnerabilities (T=True) generally increases the probability of successful attack while the 

presence of Controls (T = True) generally lowers the probability of successful attack. The applicable 

vulnerabilities are commonly understood web application vulnerabilities based on expert practitioner 

documented profiles contained within a publicly managed vulnerability database
54

. While the 

vulnerabilities are not exhaustive as instantiated within the CySeMol object class model, they have been 

extensively validated by Holm et al using expert panels and represent sufficiently valid profiles of 

vulnerabilities and attack vectors for my modelling purposes (Holm, Ekstedt et al. 2012; Holm, Ekstedt et 

al. 2013; Sommestad, Ekstedt et al. 2013). ‘Successful’ (T = True) attacks on individual exploitable 

component elements (“Exploit Vul”) which remain either undetected or not Countered in the current or 

                                                                        
54 CVE stands for “Common Vulnerabilities and Exposures”. The CVE database “…is a list of information security vulnerabilities and 

exposures that aims to provide common names for publicly known cyber security issues. The goal of CVE is to make it easier to share 

data across separate vulnerability capabilities (tools, repositories, and services) with this "common enumeration."”  See 
http://cve.mitre.org/  

http://cve.mitre.org/
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subsequent rounds of the simulation will result in some level of attributed security incidents affecting the 

confidentiality, integrity or availability of system components and business processes resulting in 

associated business losses.  

 

The state of each component’s Exploit Vulnerability elements (True or False) are based on the individual 

element’s own corresponding conditional probability table specified in the CySeMol class model. In the 

following example table, we detail the Web Application component’s “Exploit Command Injection” attack 

which has 6 direct dependencies based on the state of two vulnerabilities within the Web Application itself 

(‘Discover Vulnerability’ and ‘Find Public Command Injection’) and four ‘Preventive’ controls based in 

the associated component ‘Web Application Firewall’ (‘Monitored by Operator’, ‘Tuned Using Black Box 

Tool’, ‘Tuned by Experienced Professional’, and ‘Tuned With Significant Manual Effort’). The state of 

‘Discover Vulnerability’ for the Web Application is based on a conditional probability table and depends 

on the Controls set on the Web Application itself (TypeSafeAPI, DeveloperSecurityTraining, 

BlackBoxTesting, StaticCodeAnalysis). ‘Find Public Command Injection’ is based on whether the attacker 

has logical access to the Web Application (determined elsewhere in the model) and whether the element 

‘HasPublicCommandInjection’ is True (i.e. if there is in fact no PublicCommandInjection to discover in the 

Web Application, then it cannot be discovered regardless of the other Control settings or the state of the 

Firewall, etc.): 

 

Figure 75 - CySeMol Class Object “Web Application” ‘ExploitCommandInjection’ Element 

Conditional Probability Table 

 

(Holm, Ekstedt et al. 2013) 

 

In the above example, in the case where each of the Vulnerability and Control conditions is determined to 

be ‘True’ (T), the resulting conditional probability of successfully exploiting the Web Application via 

“Command Injection” is approximately 25% as defined by CySeMol. This probability of success is then 

used as the input probability in a Bernoulli function for the component in order to determine whether the 

exploit is in fact successful (Bernoulli (.25) = 1 True, or 0 False). The Bernoulli function is calculated for 

each specific component exploit (and for each component’s exploits in the logical model) for each iteration 

of the simulation and may result in either success or failure on each iteration based on the condition of the 

input elements and the result of the Bernoulli trial: 

 

1 2 3 4 5 6 7 8 9 … 63 64

DiscoverVulnerability T T T T T T T T T … F F

FindPublicCommandInjection T T T T T T T T T … F F

WebApplicationFirewall.MonitoredByOperator T T T T T T T T F … F F

WebApplicationFirewall.TunedUsingBlackBoxTool T T T T F F F F T … F F

WebApplicationFirewall.TunedByExperiencedProfessional T T F F T T F F T … F F

WebApplicationFirewall.TunedWithSignificantManualEffort T F T F T F T F T … T F

Index TTTTTT TTTTTF TTTTFT TTTTFF TTTFTT TTTFTF TTTFFT TTTFFF TTFTTT …… FFFFFT FFFFFF

TRUE 0.25 0.47 0.13 0.17 0.12 0.19 0.18 0.23 0.07 … 0.00 0.00

FALSE 0.75 0.53 0.87 0.83 0.88 0.81 0.83 0.77 0.93 … 1.00 1.00

Result 0.251736 0.467408 0.126 0.167 0.12 0.192 0.175 0.229 0.066 … 0 0
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Figure 76 - CySeMol Class Object “Web Application” Component Elements: Simulated Element 

States based on Conditional Probability input, Bernoulli function calculation (Curtis) 

 

The probabilities for the “Has Vulnerability” elements indicated in grey are fixed according to the expert 

determination established by Holm et al within CySeMol, although their resulting True/False condition for 

each simulation round is still determined based on a Bernoulli function. The model is recursive to the 

extent that each of the input vulnerability and exploit elements may have its own conditional probability 

table with similar dependencies on other component elements in the logical model. In my resulting logical 

model there are 36 logical and physical architectural nodes (e.g. Web Application, Firewalls, Network 

Zones, Zone Management Policies, Password Management, etc.), 70 individual conditional probability 

tables associated with corresponding component exploits and vulnerabilities, and 64 individual Preventive 

or Blocking component controls of which 44 can be set by the user. 

 

Limitations of the Excel Specification of the CySeMol class model 

It should be noted that while my Excel instantiation of the CySeMol class objects simplifies the overall 

architectural model (while retaining the logical architectural and security relationships of the class objects) 

it also introduces specific difficulties in terms of the recursive calculability of the conditional probability 

relationships since my approach is to approximate the logical relationships calculated as a Bayesian 

network without resorting to Bayesian estimation techniques. The state dependency of each element on a 

conditional probability table which is further composed of input elements that may also have their own 

conditional probability tables presents two practical problems for efficiently modelling the system: 1) the 

number of dependencies rises exponentially with the number of components and 2) the dependencies may 

Bern Input Psi Mean

ExploitCommandInjection F 0 0.25 0.224

ExploitXSS T 1 0.25 0.221

ExploitRemoteFileInclusion F 0 0.25 0.183

ExploitSQLInjection T 1 0.25 0.178

FindPublicCommand InjectionVulnerability T 1 1.00 0.800

FindPublicCrossSiteScriptingVulnerability T 1 1.00 0.748

FindPublicRemoteFileInclusionVulnerability F 0 0.00 0.099

FindPublicSQLInjectionVulnerability F 0 0.00 0.101

DiscoverVulnerability T 1 0.68 0.724

BlackBoxTestingUsed T 1 97%

StaticCodeAnalysisUsed T 1 97%

TypeSafeAPI T 1 97%

DeveloperSecurityTraining T 1 97%

HasPublicCommandInjection T 1 0.8

HasPublicRemoteFileInclusion F 0 0.1

HasPublicSQLInjection F 0 0.1

HasPublicXSS T 1 0.75

Exploit 

Vul

Find Vul

Has Vul

Controls

Clinical Management System

WebApplication
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become self-referential, requiring (ideally) some form of recursive estimation method in order to find the 

solution to the state of the system. This former problem is reasonably managed by making the model as 

small as possible which, in this case was achievable with minimizing the number of required components 

and their associated conditional probability tables that achieve a valid and plausible ‘system at risk’. The 

second problem is not directly addressable within the form of the linear model executed in Excel since the 

model is essentially a spreadsheet based on lookup tables and explicitly not a calculable Bayesian network. 

This translation into Excel presents problems for the Excel model which manifest in specific instances of 

circular references since Excel in this case cannot resolve certain individual component probabilities which 

are recursively dependent on their own (initial or calculated) state. 

 

For example, The “Office Social Zone” component has one exploit ‘Share Portable Media’, meaning that 

there is a potential security risk to the system based on persons who are in the same office ‘social’ setting 

sharing portable media such as USB keys. While the sharing of portable media may, in and of itself, lead to 

a confidentiality impact (i.e. a user may have unintended access to confidential information on the USB 

key), the primary risk in the CySeMol class model derives from the fact that the media may contain 

malware or other security viruses, possibly intentionally implemented by an attacker with access to the 

Social Zone, which could lead to subsequent attack of other system components (Beautement, Coles et al. 

2009). According to CySeMol: “This attack step is TRUE if a Person connected to the SocialZone has a 

PasswordAccount related to an ‘OperatingSystem’ that has been compromised by the attacker [i.e., if the 

Operating system component element ‘OperatingSystem.Access’ = TRUE there is a risk associated with 

subsequently sharing portable media, otherwise sharing portable media would have no effect]. It is FALSE 

in other cases.” The challenge for executing this relationship in Excel is that operating system access is 

itself dependent on whether portable media has already been shared, so that there is a directed but 

simultaneous relationship between the states of operating system access by the attacker and the sharing of 

portable media. This only manifests in the Excel model once the relationship is traced through the ensuing 

conditional probability table dependencies: 

 

Office Social Zone: ‘Share Portable Media’ (True)  OS: ‘OS Access’ (True)  OS: 

‘Execute Malicious Code’ (True)  OS: ‘Access via Portable Media’ (True)  Office 

Social Zone: ‘Share Portable Media’ (True)    

 

where  denotes ‘depends on whether’ 

 

While it is clear that the intended logical relationship in the Bayes network is that ‘sharing portable media 

potentially causes malicious OS Access’ and not the other way around, the expression of the risk of 

‘sharing portable media’ must reflect both the ensuing OS compromise and the dependency of the sharing 

risk on the fact of OS access by other means. This type of relationship would normally be resolved within 

the Bayes network by the logical expression of the conditional probabilities within the calculable model  
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𝑃(𝐴|𝐵) =  
𝑃(𝐴) ∗ 𝑃(𝐵|𝐴)

𝑃(𝐵)
 

 

𝑃(OS Access|Share Portable Media) =  
𝑃(OS Access) ∗ 𝑃(Share Portable Media|OS Access)

𝑃(Share Portable Media)
 

 

Doing so in a spreadsheet without the use of a Bayesian network (or as a system of equations) cannot 

resolve what Excel considers to be a circular reference between the terms  

 

𝑃(OS Access|Share Portable Media) and 𝑃(Share Portable Media|OS Access) 

 

Resolving this directly within the Excel model requires that we ‘break’ the causal link at some point 

between ‘OS Access’ and ‘Share Portable Media’ without substantively changing the necessary potential 

logical relationship between the two components (Operating System and Office Social Zone) and their 

corresponding component exploit and vulnerability elements. Where required, minimal changes to these 

relationships (typically the replacement of conditional probability relationships with fixed or one-way 

dependencies) were made to a number of component attributes to resolve this issue. It is my perspective 

that these changes were not material to the resulting simulated outcomes of the model which does not 

specifically profile, for example, portable media sharing, and is therefore acceptable for the purposes of 

generating simulations within in this research.    

 

Control Specification: Prevention and Blocking of Attacks (Web Application Secure Coding 

Example) 

This section details the incorporation of the various controls into the model components in a way that is 

intended to capture the inherently stochastic nature of the control effectiveness in a real world operational 

setting and which contributes directly to both the resulting probability distribution characteristics of the 

resulting business losses and the diversity of the loss profile scenarios that are required for the lab 

experiments as being characterized as decisions under both risk and uncertainty. While the CySeMol class 

model specified specific controls and the conditional probability relationships between controls and 

vulnerabilities, it does not directly incorporate the inherently stochastic nature of individual control 

effectiveness in a way that sufficiently reflects the real world variability of technical and administrative 

controls in operation. In CySeMol, controls are generally specified as being either present (True) or absent 

(False) and the thereafter the stochastic nature of their effectiveness is essentially captured within the 

conditional probability tables as a total effect together with the other conditional elements of the particular 

table. 

 

In the context of our running example of the Web Application exploit ‘Command Injection’ for example, 

recall that the probability of a successful attack is, in the first instance, dependent on the state of two 
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essential vulnerabilities: 1) whether the Web Application component ‘has’ a publicly discoverable 

command injection vulnerability, which is either strictly true or false, and whether the attacker can ‘find’ a 

public vulnerability, or 2) whether the attacker can discover a novel vulnerability in the Web Application 

which is, form the perspective of specifying controls directly on the Web Application, comparatively more 

complex. If neither of these conditions is ‘True’, then the Command Injection exploit cannot be successful. 

Finding a public command injection only requires logical access to the web application (which itself may 

be complex but is not a function of the Web Application control per se), but in the end is either possible or 

not. Discovering a vulnerability on the other hand is directly conditional on the control posture of the Web 

Application itself determined by whether the attacker can logically connect to the Web Application 

(‘ApplicationServer.ConnectTo’) and, perhaps more importantly, in four different preventive controls 

reflecting the secure coding practices and resulting code of the Web Application software itself:  

 

 

Figure 77 - CySeMol Class Object “Web Application” ‘ExplotCommandInjection’ Element 

Conditional Probability Table and associated ‘Discover Vulnerability’ Element Conditional 

Probability Table 

 

 

 

(Holm, Ekstedt et al. 2013) 

 

The determination of the probabilities of successfully discovering a vulnerability based on the 2
4
 = 16 

possible variations of the four controls are complex within CySeMol and are each based on a Bernoulli 

function of probability of success given the amount of effort expended by the Attacker in days:  

 

 

 

 

1 2 3 4 5 6 7 8 9 … 63 64

DiscoverVulnerability T T T T T T T T T … F F

FindPublicCommandInjection T T T T T T T T T … F F

WebApplicationFirewall.MonitoredByOperator T T T T T T T T F … F F

WebApplicationFirewall.TunedUsingBlackBoxTool T T T T F F F F T … F F

WebApplicationFirewall.TunedByExperiencedProfessional T T F F T T F F T … F F

WebApplicationFirewall.TunedWithSignificantManualEffort T F T F T F T F T … T F

Index TTTTTT TTTTTF TTTTFT TTTTFF TTTFTT TTTFTF TTTFFT TTTFFF TTFTTT …… FFFFFT FFFFFF

TRUE 0.25 0.47 0.13 0.17 0.12 0.19 0.18 0.23 0.07 … 0.00 0.00

FALSE 0.75 0.53 0.87 0.83 0.88 0.81 0.83 0.77 0.93 … 1.00 1.00

Result 0.251736 0.467408 0.126 0.167 0.12 0.192 0.175 0.229 0.066 … 0 0

1 2 3 4 5 6 7 8 9 10

ApplicationServer.ConnectTo T T T T T T T T T T

TypeSafeAPI T T T T T T T T F F

DeveloperSecurityTraining T T T T F F F F T T

BlackBoxTesting T T F F T T F F T T

StaticCodeAnalysis T F T F T F T F T F

Index TTTTT TTTTF TTTFT TTTFF TTFTT TTFTF TTFFT TTFFF TFTTT TFTTF

TRUE 0.68 0.77 0.87 1.00 1.00 1.00 1.00 1.00 0.69 1.00

FALSE 0.32 0.23 0.13 0.00 0.00 0.00 0.00 0.00 0.31 0.00

Result 0.682037 0.769577 0.865601 1 1 1 1 1 0.692609 1
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Figure 78 - CySeMol Web Application class ‘Exploit Command Injection’ vulnerability: conditional 

probability of successful attack in the presence of a Web Application Firewall 

 

(Holm, Ekstedt et al. 2013) 

In this approach, the more controls that are present the longer it takes the attacker to compromise the 

system, ranging from less than a day when none of the four controls are present to approximately 7 days 

when all four controls are present. 

 

While we accept that this appropriately reflects the probability of discovering a vulnerability given the state 

of the controls, it does not account for the state of the controls themselves. In other words, from a decision 

making perspective, whether we assume that a vulnerability can either be found or discovered, from a 

controls perspective the managerial focus for this component should, appropriately for our purposes, shift 

to the determination of the state of the four specific Web Application controls: ‘TypeSafeAPI’, 

‘DeveloperSecurityTraining’, ‘BlackBoxTesting’, and ‘StaticCodeAnalysis’. The default state of these 

underlying control conditions in CySeMol is, respectively, False, False, True and True, as determined 

through expert interviews (Holm and Ekstedt 2012), but could be specified as specific evidence according 

to the operational circumstances of the model (i.e. Developer Security Training could be specified as either 

True or False depending on what we believed to be the case in our specific simulation circumstances). For 

our purposes, simply specifying that ‘Developer Security Training’ is either present or absent is too 

restrictive for the determination of the presence of the controls since, arguably, a qualitative control like 

Developer Security Training, even if undertaken, may be more or less relatively effective or not depending 

on, for example, how well the training was delivered, understood or whether it in fact translated into secure 

coding of the application itself. While the resulting state of the control will always be necessarily either 

True or False for the purposes of calculating the conditional probability of the dependent element(s) of the 

logical security model (here, the ‘DiscoverVulnerability’ element, which is itself a dependency for the 
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‘Command Injection’ Exploit), we require that the probability of a control being ‘True’ should be 

increasing with the a specifiable level of control effectiveness as determined by management i.e. variably 

selectable from None through to Very High by either the researcher or possibly by the lab participant which 

in turn increases the probability that Developer Security Training is in fact ‘True’.   

 

This suggests that an additional layer of control effectiveness should be introduced prior to the 

determination of the state of individual controls, further reflecting the stochastic nature of individual 

control influence in operations. The following describes how this was accomplished within the Excel model 

in the context of our running example.  

 

For the purposes of generating a reasonable range of scenarios we propose to limit the choice of controls 

from ‘Low’ Through ‘High’, eliminating the possibility of ‘Minimal’ or ‘None’ since, through model 

testing, control scenarios involving ‘Minimal’ or None’ tended to produce unstable (i.e. constantly 

increasing) and therefore operationally unacceptable results based on the lag effects built into the model as 

described below. For lab experiment purposes, the differential between Low and Very High is also 

sufficiently broad enough to produce the range of losses that is reflective of the desired lab choice 

scenarios. 

 

A console is built into the simulator enabling the user to specify 4 levels of control across the 4 types of 

control:  

 

Figure 79 – Simulation Controls Console (Curtis) 

 

 

 

Preventive Detective Counter Recovery

Total Staff 13 3 3 3

Staff Cost per Year $1,000,000 $240,000 $450,000 $450,000

Hardware Cost per Year $500,000 $100,000 $100,000 $100,000

1,500,000$      340,000$         550,000$         550,000$         
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Control types include those controls applicable to specific component control elements, here based on those 

described by Jakoubi, Tjoa et al (Jakoubi, Tjoa et al. 2007; Tjoa, Jakoubi et al. 2011) modified here to be 

applicable to specific component controls within the CySeMol class model: 

 

Table 7 – Preventive, Blocking, Detective, Counter and Recovery Control Types   

Preventive/Blocking Detective Counter Recovery 

Reduces the probability of a 
successful threat  

Reduces the Impact of a successful threat 

 Security Policy 

 Security Awareness Training 

 Web Application Secure 
Coding Techniques 

 Cryptography 

 Secure Infrastructure 
Management 

 Blocking: Intrusion 
Prevention System, anti-virus 
controls, etc. 

 Help Desk 
Monitoring 

 Network/Security 
Operations Centre 
monitoring 

 Compliance and 
Auditing monitoring 

 Sandboxing 

 

 Quarantining/isolation 

 System/component 
failover to 
backup/secondary 
system 

 Virus/Malware 
Removal 

 

 Data or system 
restoration from backup 

 Primary system testing 
and restart 

 Restoration of service to 
restored system 

 Cutover to primary 
system  

 

(Jakoubi, Tjoa et al. 2007; Tjoa, Jakoubi et al. 2011) 

 

In anticipation that control costs might be a consideration in some scenarios, costs associated with staffing 

and hardware were attributed to each set of controls although the resulting experiments ultimately did not 

directly utilize these factors. The introduction of control costs, together with the losses produced by the 

system might suggest that the model should be regarded from the decision maker’s point of view primarily 

as an optimization problem similar to the approach of Wang (Wang, Chaudhury et al. 2008) or Sawik 

(Sawik 2013) and others reviewed above (Neubauer and Hartl 2009). While optimization of the controls 

against prospective losses is certainly one application of this type of simulation model, optimization of the 

‘return’ on security investment, or otherwise determining what an ‘optimal’ security posture would be in 

the context of the available controls is not the focus of this research and therefore significant time was not 

dedicated to determining highly realistic costing values either for the controls or for the attributed business 

losses as described in the next section. Some of the lab experiments also require scaling of scenario losses 

to dollar value ranges that support specific dollar value choice trade-offs based on the benchmarked 

experiment where overall gains or losses are in the sub-$100 range and marginal gain/loss values are in the 

-$15 to $15 dollar range. These gain/loss values are clearly not realistic in terms of the operational 

expectations for a real world enterprise system at risk and any associated controls costs, if included as a 

factor in the decision, would need to be similarly scaled to relatively low values again not reflective of any 

security or IT system management budget in the real world.  The overall goal for the model was therefore 

to produce a plausible annual profile of daily business losses characterized by the average, variance, and 

extreme value distribution of the losses based on the behaviour of the system at different nominal control 

levels without attributing realistic costs to the control themselves or introducing the notion of risk neutral 
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optimization. Indeed, the core purpose of the research is to allow participants to reveal their risk attitude 

and decisional biases under informational uncertainty by carefully controlling other decisional factors, 

including examination of the plausibility or optimization of the control costs, that might otherwise 

confound choices over outcomes that are meant to reveal decisional bias and not assume risk neutrality in 

the context of an optimization problem. 

 

Each of the Preventive control elements in the table are then converted to a control widget that could be 

used to interactively set the level of control desired for the simulation scenario. In the following I explain 

the configuration of a typical control using the example of ‘Prevention – Web Application Secure 

Coding techniques’. 

 

Figure 80 – Setting the Desired Level of Control for ‘Web Application Secure Coding Practices’ 

 

1) Using this onscreen widget (Figure 80), the user is permitted to specify one of 6 nominal levels of 

control for a particular simulation: None, Minimal, Low, Medium, High and Very High, although for 

practical purposes only Low through Very High were used for the final lab simulations as noted above. 

2) The widget then looks up the corresponding “Average Effectiveness of Control” from a lookup table 

(Figure 81): 

 

1 

2 

5 

3 

4 

Randomized 
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Figure 81 – Control Effectiveness Lookup Table 

 

 

3) A range of effectiveness for the control is specified, indicating the potential for a standard control to 

vary in its actual effectiveness during the simulation. This reflects the idea that a control’s 

effectiveness in operation may vary, for example, based on the diligence with which it is deployed, the 

number of staff resources applied to manage the control, or the actual acceptance of the control by 

users, etc., although any control has a chance to perform at least as well as was intended by the average 

or expected effect. In the above example, a ‘High’ control which is 95% effective on average would be 

expected to perform no worse than 80% of the average and possibly up to 140% of the average to a 

maximum of 100%. This permits the model to employ controls with lower or diverse average effects 

(e.g. inferior grade policies or software controls) but to also capture the idea that a ‘higher’ or better 

level or quality of deployment is expected to narrow the variance of the control’s actual performance 

results regardless of the anticipated average effectiveness.  

4) The resulting effectiveness range (Min = 76%; Average = 95%; Max = 100%) is then converted to a 

PERT distribution
55

 (Figure 80) which is typically used for the estimation of probability distributions 

with limited information based on expert judgment (Malcolm, Roseboom et al. 1959; Vose 2008).  

5) The PERT distribution is then used to randomize the effectiveness value of the control on each Monte 

Carlo simulation round (i.e. daily) where most of the time the value will reflect performance around 

the average but may vary as low or as high as the minimum or maximum respectively. In this example, 

the randomized value on the day is 94% (Figure 80). This permits the actual effectiveness of the 

control to vary within the anticipated range of effectiveness and reflects the inherent uncertainty of the 

control’s effectiveness in use despite its intended effectiveness. 

6) The randomized effectiveness value (76%-100%) is then used as the input probability in a Bernoulli 

function to calculate whether the controls covered by the widget were in fact effective for the 

simulation round (Figure 82). In this example, the Web Application Secure Coding Practices consist 

of 4 sub controls, each with its own individual model dependencies: ‘Black Box testing’; Static Code 

Analysis’; ‘Type Safe API’; and ‘Developer Security Training’. While as a group these controls are 

considered 94% effective, only 3 of the 4 controls have Bernoulli values resulting in 1 for this 

simulation round: the sub-control ‘TypeSafeAPI’ is considered to be ineffective for that simulation 

                                                                        
55 PERT stands for Program Evaluation and Review Technique (PERT) (Malcolm, Roseboom et al. 1959).  See 

https://reference.wolfram.com/language/ref/PERTDistribution.html for a description of the specification and use of the PERT 

function. 
 

Control level

Min Potential 

Effectiveness 

vs. Average

Average 

Effectiveness of 

Control

Max Potential 

Effectiveness 

vs. Average
Low 60% 95% 120%

Medium 70% 95% 130%

High 80% 95% 140%

Very High 100% 95% 150%
3 

2 

https://reference.wolfram.com/language/ref/PERTDistribution.html


  169  

round (Value = ‘F’ or FALSE) and increases the probability that an attack on a vulnerability associated 

with that control will be successful for that round.        

 

Figure 82 - Conversion of Control Effectiveness Level to Bernoulli Values 

 

 

Attribution of Confidentiality, Integrity and Availability Events 

The system then attributes security incidents to specific successful exploits which are inferred to result in 

associated confidentiality (C), integrity (I) or availability (A) impacts to the component based on CVE 

guidance on
56

. The total number of potential ‘breaches’ in C, I or A per unit of simulation is determined by 

the number of successful exploits multiplied by the chance of exploit. In the following Figure, only the 

‘Exploit Command Injection’ was successful out of the four possible exploits, and has resulted in the 

possibility of both one Integrity breach and one Availability breach:      

 

 

 

 

 

 

 

 

 

                                                                        
56 ibid 

Bern Input Psi Mean

ExploitCommandInjection F 0 0.00 0.218

ExploitXSS F 0 0.25 0.216

ExploitRemoteFileInclusion F 0 0.00 0.177

ExploitSQLInjection F 0 0.00 0.175

FindPublicCommand InjectionVulnerability F 0 0.00 0.800

FindPublicCrossSiteScriptingVulnerability T 1 1.00 0.748

FindPublicRemoteFileInclusionVulnerability F 0 0.00 0.099

FindPublicSQLInjectionVulnerability F 0 0.00 0.099
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BlackBoxTestingUsed T 1 94%

StaticCodeAnalysisUsed T 1 94%

TypeSafeAPI F 0 94%
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HasPublicRemoteFileInclusion F 0 0.1

HasPublicSQLInjection F 0 0.1

HasPublicXSS T 1 0.75
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Figure 83 – Calculation of C, I or A breaches from Successful (non-prevented) Attacks 

 

 

Once the possible types of breaches are determined, the system adds up all of the ‘non-prevented’ breaches 

and passes these to an algorithm which then determines whether the breaches are detected within the 

simulation round. Non-detected breaches are added to the following simulation round’s count of non-

prevented breaches which introduces a one-period lag or system memory effect at this stage in the time 

series. This is considered more realistic than a system in which we assume all non-prevented breaches are 

fully detected in each round and makes the system security performance more sensitive to the level of 

detection controls. 

 

Detection of Successful Exploits  

Detection of breaches is a function of a range of monitoring controls that affect the organization’s ability to 

identify breaches as they are occurring and before they have a chance to have substantial impact on the 

system and the associated dependent business processes. Successful detection lowers the number of 

breaches that can possibly impact the system within the current simulation round. The number of detected 

breaches out of the total number of non-prevented breaches is computed based on the Detection control 

level set by the user and the resulting random control effectiveness percentage calculated in a manner 

similar to the Prevention Controls described above, where each non-prevented breach has a chance of being 

detected in proportion to the effectiveness of the Detection control. Successfully detected breaches are 

passed to the Counter Phase which attempts to eliminate the breach. ‘Non-detected’ breaches are 

subsequently added to the next day’s newly non-prevented breaches and are subject to detection again in 

the next simulation round.  

 

Modelling undetected breaches in this manner introduces a realistic one-period lag effect on the resulting 

time series of losses where undetected breaches continually degrade system performance and must be 

detected before counter controls can be applied. The system at this stage appropriately simulates as 
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expected: if insufficient resources are spent on Detection, the number of undetected breaches increases over 

time and eventually overwhelm the Detection resources which cannot catch up. Underspending on 

detection can therefore cause the number of undetected breaches to increase to the point where the 

attributed impacts exceed a threshold (e.g. system availability dips below a operationally viable level) and 

the business experiences catastrophic losses. Figure 84 indicates the conversion of successful C, I, or A 

breaches into detected and non-detected security incidents respectively: 

 

Figure 84 - Conversion of Non-Prevented Breaches to Detected and Non-Detected Breaches 

    

1. New successful (i.e. ‘non-prevented’) C, I, or A breaches in the current simulation round are 

summed across all exploited system components ( e.g. 8 Availability breaches) 

2. Last period’s ‘Undetected breaches’ are added to the current round’s ‘non-prevented’ breaches 

3. Total current round breaches are then subject to ‘Detection’ based on the effectiveness level of the 

‘Detection’ controls  

4. Successfully detected breaches in current round are passed to the ‘Counter’ phase and do not 

immediately affect system availability in the current round unless subsequently ‘not-countered’. 

Undetected breaches in the current round impact System availability in the current round (see 

section 7 below) 
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Countering Detected Breaches  

In the Counter Phase, detected breaches have a chance of being countered or interrupted by support staff 

assigned to eliminate detected threats in the environment. Similar to the Detection Control, Counter efforts 

add a lag effect to the resulting time series of losses since un-countered breaches in one period must be 

successfully countered in a subsequent period before Recovery controls can be applied and any resulting 

uncountered breaches have a chance to degrade system performance. 

 

For this control, available counter resources (staff) are assumed to be able to attempt to counter all detected 

breaches within the day
57

. Similar to the treatment for Detection, the number of ‘detected but not 

countered’ breaches is then computed based on the Counter control level and the resulting effectiveness 

percentage set for the simulation. The total number of ‘detected-but-not-countered’ breaches is calculated 

and then added to the next day’s newly detected breaches; countered breaches are passed to the Recovery 

Phase. The system at this stage appropriately simulates as expected: if Counter controls are insufficient to 

address the number of detected breaches, the number of un-countered breaches increases over time and 

eventually overwhelms the Counter resources which cannot catch up. Underspending on Countering can 

therefore cause the number of un-countered breaches to increase to the point where the attributed impacts 

exceed a threshold (e.g. system availability dips below an operationally viable level) and the business 

experiences catastrophic losses. Figure 85 illustrates the conversion detected breaches into countered and 

non-countered incidents: 

 

 

 

 

 

 

 

 

 

 

 

                                                                        
57 In a real world setting, individual staff would typically be assigned multiple detected breach ‘tickets’ to work on at the same time 

but may not be able to attempt to counter each detected breach within a given day. In that case, some detected breaches would remain 
automatically ‘uncountered’ (since countering was not even attempted) and would be directly added to the next day’s detected 

breaches. In the current model we assume that we can attempt to counter each detected breach within the day regardless of the number 

of resources assigned to countering. This factor could be easily adjusted to simulate increased or decreased staffing levels, ‘coverage’ 
or throughput by countering personnel, aside from the overall effectiveness assigned to the Counter control itself. For example, if we 

assumed that staff could effectively attempt to counter one breach per day, if the number of detected breaches exceeded the number of 

available staff assigned to counter breaches on the day, the difference between the number of staff and the number of detected 
breaches needing to be countered could be automatically added to the next day’s newly detected breaches. In sensitivity tests of that 

version of the model however, even at high control effectiveness, low non-attempted numbers of breaches quickly add up over several 

rounds and eventually overwhelm the system. Additional tuning of the model would therefore be required to reflect the difference 
between overall Counter control effectiveness vs. resource coverage of open breaches.  
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Figure 85 - Conversion of Detected Breaches to Countered and Non-Countered Security Breaches 

 

1. Current round detected breaches proceed to the ‘Counter’ phase. 

2. Last round’s ‘detected but not countered’ breaches are added to the current round’s detected 

breaches to determine total number of potentially counterable breaches. 

3. The number of countered and non-countered breaches for this round is determined based on the 

effectiveness level of the Counter control.  

4. Countered breaches proceed to ‘Recover’ phase. Non-countered breaches are added to next 

round’s potentially counterable breaches and affect system Availability. 
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Recovering from Countered Breaches  

Finally, in the Recovery Phase, the system has a chance to recover system functionality from detected and 

countered breaches by support staff assigned to the Recovery control function. Similar to the Detection and 

Counter Controls, Recovery efforts add a lag effect to the resulting time series of losses since any 

Countered but un-recovered breaches must be addressed in the next round of Recovery. Similar to the 

treatment for Counter controls, the number of ‘countered but not recovered’ breaches is computed based on 

the Recovery control level and the resulting effectiveness percentage set by the user in a manner similar to 

the Prevention, Detection and Counter Controls. Each Countered breach addressed by the assigned 

Recovery staff member has a chance of being not recovered in inverse proportion to the effectiveness of the 

control. The total number of number of ‘countered but not recovered’ breaches is then added to the next 

day’s newly countered breaches. Recovered breaches are then subtracted from the total number of breaches 

in the day that have a chance to affect C, I or A factors: 
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Figure 86 - Conversion of Countered Breaches to Recovered and Non-Recovered Security Breaches 

 

1. Current round countered breaches proceed to the ‘Recover’ phase. 

2. Last round’s ‘countered but not recovered’ breaches are added to the current round’s countered 

breaches to determine total number of potentially recoverable breaches. 

3. The number of recovered and non-recovered breaches for this round is determined based on the 

effectiveness level of the Recover control. Recovered breaches terminate and are not counted as 

affecting system Availability. Non-recovered breaches are added to next round’s potentially 

recoverable breaches and affect system Availability.  

 

The following figure illustrates the combination of undetected, detected-not-countered and countered-not- 

recovered breaches for a typical High Controls system for one year: 
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Figure 87 – One Year Time Series of System Availability and Daily Business Losses based on 

Effective Breach Counts 
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Calculating Availability (A) Impacts 

In the current model although we calculate breach events attributable to Confidentiality (C), Integrity (I) or 

Availability (A) impacts, we have focused solely on Availability impacts for the purposes of calculating 

business losses. Availability is commonly measured as a percentage of system computing capacity from 

zero to 100% where operating standards are typically expected to be above 95% and where ‘high 

availability’ systems incorporating redundancy are expected to operate in excess of 99.9% or higher. (Gray 

and Siewiorek 1991)Availability generally affects the throughput of computing transactions where in cases 

of less than 100% availability, the average user would experience a range of work slowdown or interruption 

effects (e.g. computational delays leading to the clock cursor, or intermittent lack of connectivity, etc.). In 

contrast, Integrity events are assumed to typically result in computing errors such that transactions would 

require rework. 

 

To calculate the Availability effects, we take a weighted average of the individual Availability impacts of 

the two sets of impactful breaches: 1) Non-Detected and Detected-but-not-Countered breaches (which are 

assumed to have similar availability impact profiles since both are not yet countered in the system); and 2) 

Countered-but-not-Recovered breaches which are assumed to have a different ‘impact rate’ than undetected 

or non-countered breaches where countering controls halt and then diminish the effect of the breach over 

time (Tjoa, Jakoubi et al. 2011). The following lookup table is used to individually determine the impact on 

Availability of the two sets of breaches. The marginal impact decrement from 100% is an exponential 

function of the impact rate, where the impact rate is assumed to be half a large for breaches in Recovery as 

compared to undetected or detected but not countered breaches: 

 

Figure 88 – Availability Impact Lookup Table (Undetected and Detected-but-not-Countered 

Breaches) 
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The resulting Availability impacts are uniquely calculated for each type of breach, for each simulation 

round, based on the number of breaches in that round: 

 

Figure 89 – Availability Impacts based on # of Undetected + Detected-but-not-Countered Breaches 

 

 

Figure 90 - Availability Impacts based on # of Countered-but-not-Recovered Breaches 

 

 

The weighted average Availability % is then calculated based on the number of number of ‘Undetected + 

Not Countered’ and ‘Countered-not-Recovered’ breaches respectively: 

 

 
(Undetected + Detected but not Countered)

UnPrevented+Lag Detected not Countered+Lag Countered not Recovered−Recovered 
 (6.1) 

× Availability % (Undetected + Not Countered) 

 

+ 

 

 
(Not Recovered)

UnPrevented+Lag Detected not Countered+Lag Countered not Recovered−Recovered 
 (6.2) 

× Availability % (Countered not Recovered) 

 

Trial # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 100.00% 99.75% 99.57% 99.53% 99.04% 98.95% 98.52% 98.43% 98.28% 98.07% 97.63% 96.76% 96.52% 96.00% 95.83% 94.81% 94.23%

2 100.00% 99.50% 99.18% 98.94% 97.93% 97.25% 96.94% 96.61% 96.50% 96.28% 96.28% 96.02% 95.56% 95.51% 95.22% 94.77% 94.71%

3 100.00% 99.98% 99.96% 99.48% 99.38% 98.81% 98.59% 98.43% 98.38% 97.95% 97.83% 97.65% 97.45% 97.37% 96.95% 96.43% 96.19%

4 100.00% 99.40% 99.15% 99.12% 99.09% 98.97% 98.75% 98.61% 98.20% 96.09% 96.04% 95.65% 95.52% 95.06% 95.00% 94.81% 94.77%

5 100.00% 99.79% 99.68% 99.61% 99.31% 99.07% 99.05% 98.96% 98.91% 98.80% 98.75% 98.20% 97.80% 97.68% 97.21% 97.15% 97.11%

6 100.00% 99.80% 99.42% 98.24% 98.13% 97.84% 97.66% 97.63% 97.52% 97.27% 97.09% 96.96% 96.13% 96.07% 95.65% 95.56% 94.85%

7 100.00% 99.97% 99.83% 99.82% 99.49% 99.11% 99.01% 98.67% 98.58% 98.52% 98.20% 97.54% 97.50% 97.42% 97.25% 97.00% 96.97%

8 100.00% 100.00% 98.54% 98.50% 98.33% 97.64% 97.27% 96.37% 96.04% 95.43% 95.30% 95.22% 94.79% 94.78% 93.96% 93.94% 93.92%

9 100.00% 99.99% 99.50% 99.16% 99.00% 98.28% 97.94% 97.73% 97.51% 97.31% 96.83% 96.34% 96.31% 95.96% 95.52% 95.16% 95.11%

10 100.00% 98.47% 97.85% 97.77% 97.63% 97.47% 97.05% 96.03% 95.71% 95.66% 95.42% 95.26% 94.99% 94.79% 94.68% 94.48% 93.96%

# of Breaches

Trial # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 100.00% 99.76% 99.76% 99.61% 99.55% 99.53% 99.45% 99.29% 99.01% 98.90% 98.79% 98.79% 98.56% 98.27% 98.11% 97.92% 97.88%

2 100.00% 99.93% 99.67% 99.48% 99.19% 99.07% 99.03% 98.67% 98.63% 98.60% 98.51% 98.43% 97.93% 97.92% 97.16% 97.15% 97.01%

3 100.00% 99.88% 99.67% 99.40% 98.62% 98.53% 98.48% 98.45% 98.39% 98.32% 98.16% 98.12% 98.09% 97.76% 97.71% 97.63% 97.25%

4 100.00% 99.78% 99.59% 99.39% 99.37% 99.36% 98.91% 98.88% 98.88% 98.84% 98.84% 98.73% 98.65% 98.46% 98.40% 98.40% 98.16%

5 100.00% 99.84% 99.83% 99.79% 99.43% 99.19% 98.95% 98.71% 98.63% 98.24% 98.15% 97.95% 97.92% 97.78% 97.60% 97.59% 97.47%

6 100.00% 99.99% 99.90% 99.29% 99.09% 99.01% 98.91% 98.13% 97.88% 97.81% 97.70% 97.51% 97.42% 97.27% 97.01% 96.95% 96.85%

7 100.00% 99.98% 99.79% 99.66% 99.60% 99.30% 99.18% 99.17% 99.11% 98.84% 98.56% 98.50% 98.19% 98.07% 97.99% 97.73% 97.64%

8 100.00% 99.96% 99.93% 99.89% 99.59% 99.52% 99.40% 99.35% 99.34% 99.23% 99.21% 98.96% 98.81% 98.76% 98.76% 98.75% 98.52%

9 100.00% 99.79% 99.78% 99.75% 99.67% 99.64% 99.63% 99.52% 98.92% 98.88% 98.87% 98.85% 98.81% 98.72% 98.18% 98.16% 98.05%

10 100.00% 99.96% 99.86% 99.82% 99.67% 99.39% 99.31% 98.80% 98.75% 98.74% 98.64% 98.52% 98.48% 98.11% 97.96% 97.65% 97.61%

# of Breaches
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Here each set of breaches which can potentially impact the system contribute to a decline in the system 

Availability percentage, with each individual breach in each simulation round and therefore each 

simulation round contributing a stochastically different impact rating, even in rounds with the same breach 

activity level. While the cumulative impact of successful non-recovered breaches is continuously 

increasing, the choice of exponential function is deliberate to reflect the idea that any particular breach has 

an exponentially declining impact on Availability. 

 

The impact percentage itself is arbitrary and can be scaled through the exponential function to suit the 

assumed severity of individual breach impacts. What is primarily important for my purposes is not the level 

of resulting decrement but the stochastic behaviour and distribution of the Availability measure (and 

corresponding loss distribution) as breaches increase since we are primarily interested in the ‘tail loss’ of 

the distribution. Here we see that for a Medium Controls system simulated over 30 individual years, the 

profile of the cumulative number of breaches experienced per year over the first 255 days ranges 

substantially from 100% availability (zero breaches, no impact) to a decrement of several percentage points 

below 100% depending on the number cumulative breaches
58

:  

 

Figure 91 – Monte Carlo Simulation of Cumulative Breaches over 255 days 

 

                                                                        
58 255 days represents the limit at which all 365 day Medium System simulations operated above 95% Availability. Fore a Medium 

Controls system, some simulations result in Availability ratings below 95% beyond 19 cumulative breaches reflecting that, because of 
the one period lag effect introduced to simulate non-detected/countered/recovered breaches, at lower control levels a system can 

become ‘unstable’ where availability continuously declines until reaching unacceptable levels of performance. Comparatively, for 

High and Very High Control systems, the number of cumulative breaches generally remains under 10 per day (i.e. most breaches are 
fully recovered within a day or two at most) and the resulting system Availability level does not degrade below approximately 98%. 
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Using the above model, we are able to simulate daily system Availability for any combination of 

Preventive, Blocking, Detection, Counter and Recovery controls over a single year (365 days), or for 

multiple years. The following figures indicates a resulting example time series of the Availability of the 

system and the attributed business Loss per Day based on all controls set to “High”:  

 

 

Figure 92 - High Controls Time Series (95% Control Effectiveness, 365 Days) 

 

 

With controls set to ‘High’, system Availability generally stays above 99.8% and is mostly above 99.9%, a 

level of reliability that might be routinely expected in most enterprise systems. The resulting business 

losses per day attributed to declines in system Availability can be conveniently displayed as a histogram of 

the probability distribution of losses which supports further analysis and the economic comparison of 

control scenarios that involve the moments of the loss distribution including estimates of the average and 

95% VaR and CVar:  
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Figure 93 - High Controls Probability Distribution (95% Control Effectiveness, 365 Days) 

 

 

The model permits simulation of daily time series for any period between 1 year and 30 years. Expectedly, 

simulating the time series over 30 years produces a smoother probability distribution than doing so for a 

single year and reveals additional information about the underlying nature of the High Control system’s 

loss distribution. 

 

For example, in the one year simulation above, the largest single daily loss was $15,410; in the 30 year 

simulation, the largest single loss is more than double at $39,930, although the proportion of ‘zero-loss’ 

(i.e. Availability = 100%) days stays constant at approximately 30%. In contrast, a ‘Low Controls’ system 

simulated over 30 years has an higher upper loss of $88,030, double that of the High Controls system, and 

has only 18% zero-loss days: 
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Figure 94 – High vs. Low Controls System Probability Distributions (Equal Average Effectiveness) 

(95% Control Effectiveness, 10,950 Days) 
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Even more interesting from the perspective of a decision maker facing shorter term control decisions, the 

one year loss profile of a High Control (Figure 92, above) vs. a Low Control system (Figure 95) indicates 

that both systems are capable of producing similar maximum losses – around $18K and $16K for the Low 

and High Controls system respectively – although this level of losses is infrequent for the High Controls 

system and comparatively common for the Low Controls system:  

 

Figure 95 - Low Controls Time Series (95% Control Effectiveness, 365 Days) 

 

 

Calibration of the Model Parameters 

 

As noted above, the system availability and associated business loss model is clearly sensitive to the mean 

and deviation parameters for the stochastic inputs including control effectiveness factors for the individual 

controls, the number of users and user transactions per day and the attributed transaction values. In the 

examples above, the average effectiveness of each control has been fixed at 95% with variability of 

effectiveness around the average allowed to increase as control levels get weaker. This results in the overall 

profile of the losses being relatively similar across Control levels with most of the difference in the zero 

day percentage and the extreme loss end of the distribution. If we allow the average effectiveness to vary, a 

different pattern emerges which would be of concern to the decision maker, not surprisingly, who is more 

interested in the average effectiveness of the control (and therefore the average loss):   
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Figure 96 - High vs. Low Controls System Probability Distributions (Different Average Effectiveness) 

  

 
L

o
w

 C
o

n
tr

o
ls S

y
stem

 

(4
0

%
 A

v
erag

e E
ffectiv

en
ess, 6

0
%

-1
2

0
%

 V
ariab

ility
, 1

0
,9

5
0

 D
ay

s) 

 

 
H

ig
h

 C
o

n
tr

o
ls S

y
stem

 

(8
0

%
 A

v
erag

e E
ffectiv

en
ess, 8

0
%

-1
4

0
%

 V
ariab

ility
, 1

0
,9

5
0

 d
ay

s) 

 

 
 



  185  

In this case the Low Controls scenario produces no zero days at all and the maximum daily loss balloons to 

just under 10 times the 95% effectiveness case. The High Controls case also produces many fewer zero 

days, although the maximum loss doesn’t quite double compared to the 95% effectiveness case. 

 

Overall, as we lower the average control effectiveness, the distribution shifts to the right (higher average 

losses) and the shape of the distribution, although still heavily skewed right, takes on a more Gaussian 

shape. The insight here is that we must be sensitive to both the absolute and the relative values of the 

stochastic input factors in order to characterize plausible probability distributions within and across control 

levels. On the other hand, it is also apparent that the dollar loss values themselves are essentially arbitrary 

and what is of greater importance is the relative shape of the loss distribution i.e. the moments of the 

distribution and particularly the extreme losses. Although more authoritative factor values could be 

determined, the resulting scale of the losses only materially matters in the context of this research, 

variously, in either the differential between control scenarios i.e. between prospective loss scenarios, or as 

may be related to some benchmark cost of the controls which can be thought of as a stake in a gamble over 

prospective losses. The absolute level of control costs vs. the corresponding loss levels, are otherwise being 

ignored since we are not proposing to model a cost-benefit trade-off or optimization problem for 

management. Rather we are interested in the way that a decision maker perceives the risk of the system and 

the cost-benefit trade-off under different framing scenarios, in controlled circumstances involving both 

known and uncertain loss profiles. ‘Optimization’ in this approach, is subjective and we allow the biases of 

the decision maker to be estimated rather than indicating what an otherwise risk neutral decision maker 

would consider to be the ‘optimal’ choice under risk or uncertainty.    

 

We also note that we are explicitly focusing on attributed dollar losses (which introduces the question of 

appropriate business transaction value averages and variances) when system availability might actually be a 

better (and scale free) measure of system performance from management’s point of view. System 

Availability is often of main concern in practice since it can be directly measurable using relatively 

standardized technologies, although attributing availability degradation to security related events is 

problematic since non-security related events can also affect system availability and performance (e.g. 

network congestion or component mechanical malfunction). As a measure of capacity to transact however, 

availability is often chosen over other performance measures as the basis of service level contracts since 

very high levels of availability (99.99% or higher) can be converted into both downtime measured in 

minutes per year and steady state or throughput transaction measurements (e.g. in systems where 

throughput of high volumes of real time transactions are a primary consideration such as stock exchanges 

or air traffic control). Notwithstanding the attractiveness of Availability as a measure of system 

performance, from a modelling and simulation perspective the problem of how to reflect the ‘effectiveness’ 

of security controls in maintaining system Availability remains a key issue since its logical specification 
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and the choice of parameter values directly affects the behaviour of the model, and therefore the potential 

for attributed losses well before any attribution of transaction rates and value factors. 

 

In the baseline models for the simulations used in most of the lab experiments and as represented above, the 

average effectiveness between controls is fixed at 95% while the variance in effectiveness is allowed to 

decrease and shift positively as higher levels of control are imposed. Alternatively, allowing the average 

effectiveness to vary substantially (i.e. to be substantially lower across controls than some arbitrarily high 

value such as 95% effective) is a questionable premise since it does not seem plausible that an enterprise 

operation would employ lower performing controls on average (i.e. if so, we would have to assume that 

management was either naïve to the average effect or somehow understood that buying ‘lower’ control 

levels means actually buying controls that are known to perform worse on average by design, and prior to 

deployment). To illustrate, assuming the mechanics of our logical security model are reasonably valid, the 

resulting Availability profile under Low Controls would likely be immediately unacceptable to most 

organizations and certainly unacceptable to an enterprise at the scale on which our model is proposed. For 

example, the Low Controls Availability profile at 60% average effectiveness looks like this: 

 

Figure 97 - Low Controls Time Series (60% Average Effectiveness, 365 Days) 

 

 

Even before the attributed losses would be of concern, the availability profile of the system itself is likely 

unacceptable ‘on face’, operating below 95% most of the time and sub-90% much of the time. Looking at 

the undetected, uncountered and unrecovered breach components, we see that the security system 

effectively never ‘catches up’ and always has non-zero lagged breaches. Perhaps because of this, the 

resulting time series’ appear to be non-stationary with non-detected/countered/recovered values rising and 

availability decreasing overall throughout the one year period: 
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Figure 98 – Low Controls Time Series – (60% Average Effectiveness, 365 days) 
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The context of the business operating environment is clearly important in this consideration: we can 

perhaps imagine a small business office having difficulty setting up and consistently running it’s IT 

systems and, correspondingly, being subject to frequent and large security interruptions that would result in 

this kind of profile, but this would likely prompt the business (or most businesses) to simply buy ‘better’ 

controls per se, as reflected in both the average effectiveness (think advertised or vendor promised 

performance level) as well as in the ‘deployed effectiveness’ of the controls (i.e. improvements to the 

variance of the operational effectiveness of the control in practice). 

 

For this reason, setting the average effectiveness between levels closer together, if not equal in value, while 

continuing to allow for variance of effectiveness within and across control levels (reflecting ‘deployed’ 

effectiveness) seems to make better sense from a face validity perspective and this is the approach that has 

been taken generally in the simulations for the lab experiments. It should also be noted that certain 

experiments require that the difference in control scenario losses be calibrated in any case to reflect the 

specific objectives of the experiment with the result that both the average and variance of control 

effectiveness have been manipulated to achieve specific loss scenario results. For example, one of the 

experiments calls for the ‘Low’ controls system to generate losses in excess of a benchmark 60% of the 

time, while the comparatively ‘High’ controls system produces losses above the benchmark only 40% of 

the time. While this may seem arbitrary or contrived from a practitioner’s point of view, it enables a non-

trivial decision making scenario that reflects both risk and a sufficient degree of uncertainty to enable the 

testing of decisional bias. Comparatively, optimization problems such as presented by Wang or Sawik, 

while informative of ‘efficient’ portfolio choices in context, either implicitly assume risk neutrality or 

ignore potential decisional bias altogether. My hypothesis is that, even with full information, if managers 

are psychologically biased then decisions will not be optimal in any case and so the degree of bias should 

be well understood before substantial investment is made in modelling or simulation of actual systems for 

control selection design purposes. The model proposed here achieves a reasonable reflection of a system at 

risk while enabling the framing and testing of biases across a range of decision scenarios based on risk and 

uncertainty.  

 

Attributing Business Operational Losses to Availability Impacts 

As has been noted throughout, the primary objective of the simulation model is to enable the attribution of 

business operational losses to an IT system and the dependent business processes at risk of degraded 

system Availability. Once the model calculates Availability measures per day, we propose a 

straightforward stochastic sub-model of system use, dependent on Availability, based on the number of 

users and an attributed value per user transaction. The following tables illustrate the variability in user 

types, number of users and transactions per user by type, and the resulting range of transactions per day. 

Here we propose three user roles: Clinicians, Researchers and Administrators. As was done for the range of 

control effectiveness, the number of users of the system in each class per day, and the number of 
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transactions per user are stochastic based on PERT distributions specified by the anticipated minimum, 

average and maximum. The total number of daily transactions spans from about 150,000 to well over 1 

million per day with implications for daily losses driven by the scale of system use: 

    

Figure 99 – Daily Transactions Calculator by User Type 

   
Model Inputs: # of Users and transactions per day by User Type 

 

Number of Users per Day 

 

Number of Transactions per User, per Day 

 

Total Number of Transactions per Day 

 

Min Avg Max Pert Min Avg Max Pert Min Avg Max Pert

# of Users 1,000 3,000 4,000 2,445 # of Users 500 750 1,000 603 # of Users 750 1,500 2,000 1,546

Avg Std Dev LogNorm Avg Std Dev LogNorm Avg Std Dev LogNorm

# of Transactions/User/Day 150 50 207 # of Transactions/User/Day 75 50 72 # of Transactions/User/Day 125 50 70

# Transactions / User / Hour 26 # Transactions / User / Hour 9 # Transactions / User / Hour 9

# of Transactions/Day 506,208 # of Transactions/Day 43,153 # of Transactions/Day 107,703

psiMean 423,188 psiMean 57,102 psiMean 181,538

Clinicians Researchers Administrators

Transactions Transactions Transactions
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After calculating the number of transactions per user type, the model then attributes a business value per 

transaction for each user type. Here the average value of a clinician’s transaction is deemed to be the 

highest, followed by research and administrative use. The nominal per transaction value, per day, by user 

type is then made stochastic using a log-normal specification based on a specified average and standard 

deviation: 

 

Figure 100 – System Per-Transaction Value Calculation (Research User Example) 

 

 

The model then multiplies the number of transactions and the value per transaction with the previously 

calculated decrement in system Availability for each day to calculate the daily value of losses attributed to 

system Availability impacts: 

 

Figure 101 – Daily Loss Calculation – All Users 
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Discussion of Simulation Model Results 

The simulation model presented in this section generates realistic daily business losses attributed to 

information security breach events based on the effectiveness of the security controls at preventing, 

detecting, countering and recovering from successful attacks at various levels of control. The resulting 

pattern of generated losses would be reasonably familiar to security practitioners regardless of the scale of 

the enterprise where the typical distribution of losses is bounded by zero on the left and heavily skewed to 

the right. The distributional characteristics of losses is a key feature of stochastic systems generally, where 

the higher moments of the distribution are of particular concern to decision makers seeking to avoid 

catastrophic loss (Acerbi and Tasche 2002; Krokhmal 2007). The losses are attributed to degradation in 

system ‘availability’, a measure of performance which practitioners directly seek to maximize in operation. 

Availability is measured as a percentage of maximal availability (100%), where incremental degradation 

negatively affects users’ ability to transact with the system at a normal rate either through interruption or 

incompletion of transactions or through a slowing of individual transaction completion time. ‘High’ or 

‘Very High’ levels of overall control are expected to result in system Availability levels that meet 99.9% or 

greater availability levels (less than 9 hours of downtime per year) and which are typically a formal ‘service 

level requirement’ for large scale enterprises in which hundreds of thousands to millions of individual user 

system transactions are undertaken daily. 

 

The logical relationship between the individual hardware and software components is based on an expert 

validated security model and is extensible in terms of the number and architecture of the components that 

comprise the overall ‘system’. The model produces a time series of events reflecting a ‘risk aware business 

process’ that is able to prevent, detect and recover from security breaches (Tjoa, Jakoubi et al. 2011).  The 

security ‘threat and risk’ model for each logical component reflects industry accepted profiles for 

individual attacks and component vulnerabilities and utilizes a conditional, probabilistic approach to the 

determination of successful attacks on components, resulting in an inherently stochastic profile of 

component control effectiveness and therefore of attack success likelihood (Sommestad, Ekstedt et al. 

2013). Since we are generally interested in enterprise-level effects, consideration for the variability of day-

to-day business operations that are dependent on the system at risk have been taken into account, where the 

type and number of users, the number of transaction per user and the attributed value per transaction are 

allowed to vary stochastically. This permits the scaling of the model inputs and impacts to suit the business 

of concern, either in terms of the number of users or the attributed value of the transactions affected by 

system performance degradation. Attributed business losses have been restricted to those arising from 

system availability risks where the impact to transaction throughput is reasonably estimated based largely 

on the nominal availability level. In practice, significant business losses would also potentially be 

experienced due to both system Integrity and Confidentiality breaches, however the attribution of these 

types of losses requires further assumptions regarding, for example, business process rework for Integrity 

impacts or costs associated with breach recovery, reputational effects and direct or indirect costs (e.g. 
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litigation) over of loss of privacy for Confidentiality impacts (Thomas 2009). It should be noted that 

Availability risks may also feature all of these additional cost dimensions, however for my purposes 

Availability can be most directly modelled purely as a function of preventive, detective and recovery 

controls. In addition, there is a recognition that Confidentiality risks may be ultimately more appropriately 

compensated for by the use of insurance rather than self-protection where the anticipated impacts are not 

based primarily on the ability to transact but rather on breach recovery or compensation to affected 

individuals to whom the breached information pertains (Acquisti, Friedman et al. 2006).  

 

For the purposes of this research, I also required a simulation model that reflected both these practitioner 

expectations, but which also allowed for the simulation of specific scenarios that controlled for specific 

quantitative performance differences between system control levels in order to support the decision making 

Games presented in the following sections. In Game 2, for example, where we seek to test individual 

subjective probability estimates through Bayesian updating, the user bets on which of two systems has 

produced a non-representative sample of losses. In this scenario, the relatively ‘Low Controls’ system was 

required to generate losses above $10,000 60% of the time, whereas the relatively ‘High Controls” system 

generates losses above $10,000 40% of the time. Similarly in Game 3, where the probability of losses 

across systems is unknown to the Participant, the systems were required to have specific loss percentages 

above a certain level. In Game 5 where we seek to test the willingness to buy cyber insurance and 

precautionary controls, the experiment also required the percentage of losses above a common insurable 

level to be specific across control levels. By tuning both the average and variance of control effectiveness 

in both systems, I was able to successfully simulate the required profiles in each case. The simulation is 

therefore both a practical tool for the demonstration of stochastic system security performance 

characteristics and a platform for generating controlled experiments. On this basis, I am able to propose the 

following experiments which (for Games 2 through 4) depend on system simulation to generate prospective 

loss scenarios in which Participants make context relevant choices under both risk (known probabilities) 

and uncertainty (unknown probabilities) of system performance.   
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7 - Methodological Motivation for Experiments – Overview of 

Experimental Approaches 

 

The majority of the experiments undertaken for this research introduce the simulation of a ‘system at risk’ 

in which Participants make bets on prospective loss outcomes with varying types and degrees of control. A 

major feature of the simulation experiments is that the subject is not directly presented with the 

probabilities of risk occurrence and must subjectively infer these from the presented qualitative and 

quantitative data. This allows us to test both risk preference and risk perception: for example, whether the 

subject is using Bayes rules to accurately form posterior probabilities of risk and to what extent the strength 

and weight of the evidence presented affects the subjective probability estimates (Griffin and Tversky 

1992; Antoniou, Harrison et al. 2015). 

 

Experimental Set-up 

Originally motivated by the experimental setup of ‘virtual reality’ simulation experiments which were 

applied to economic decision making for homeowner protection against fire damage (Fiore, Harrison et al. 

2009; Sen 2010; George, Harrison et al. 2012). I have proceeded to correspondingly modify the simulation 

aspects of this and other decision experiments for a security risk management context while retaining 

Harrison’s overall approach for lab experiments which generate the requisite data on which to undertake 

the structural modeling outlined for each experiment below. To my knowledge this is the first study to 

undertake this type of simulation in support of decision experiments over security controls 

 

Sen’s approach, for example, is an appropriate motivational analog for the security control context because 

the essential feature of the core preference elicitation experiment (aside from the simulation of a particular 

system at risk) is the ability for the subject to alter the risk profile of the system generating the lottery 

results in order to optimize the subjective economic outcomes. In Sen’s experiment, the subject decides 

whether and when to purchase a type of fire prevention control which prevents severity (i.e. impact, but not 

frequency) of a prospective wildfire and the resulting likelihood that their ‘in-game’ house burns down. 

The control selection model is based on endogenous risk models which more generally recognize the role 

of ‘self- protection’ and insurance (including ‘self-insurance’) in situations where the decision maker can 

influence the risk profile of the system (Ehrlich and Becker 1972; Shogren and Crocker 1991).  Whereas 

Sen specifically designed decision making experiments in order to investigate certain aspects of  subjective 

utility and multi-period decision making (McKee, Berrens et al. 2004; Talberth, Berrens et al. 2006; Fiore, 

Harrison et al. 2009), I further modify other Harrison-sponsored research as noted below to incorporate 

domain relevant control over both likelihood (self-protection) and impact (self-insurance) of a security 

incident across multiple control factors reflecting the multi-attribute nature of the security control problem. 
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There are several common features of the resulting experiments that draw motivation directly from the 

reviewed literature: 

 

First, the subject is exposed generally to the factors that comprise the system simulation model and how 

the various combinations of threats, vulnerabilities and possible controls increase or decrease both the 

probability and impact on availability and the attributed business losses as discussed above. 

 

Second, some type of graphical representation of business losses is presented and compared to 

representative control selection scenarios. This overall approach was fundamentally motivated by 

Harrison’s numerous lab studies using a ‘virtual reality’ simulation of a forest fire in which the Participant 

variously chooses to protect by buying a fire reduction control (Fiore, Harrison et al. 2009). In Sen’s 

experiments, for example, aside from the 3D computer representation of a simulated fire resulting in the 

house burning (or not burning), the subject is also shown a histogram of the percentage of acreage burned 

for the 48 possible simulation factors the system is able to model, and indicating the relative impact 

reduction effect of implementing a specific type of fire control. The example is clearly analogous to a 

security control selection decision under uncertainty where the general effect of the control is to improve 

the chances of no catastrophic loss, but not with certainty: 

 

Figure 102 – Example Simulation Outcomes represented as Histograms 

 

(Sen 2010) 
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Third, the subject is then exposed to simulations representing two control and two no-control scenarios. 

This is done to familiarize the subject to discrete outcomes for the simulated model over a single period. 

For example, the model is simulated assuming a random set of associated threats and vulnerabilities 

grouped into qualitative ranges (e.g. low, medium, high) and also simulated at these risk levels either with 

or without a control in place. This is done to provide context for the subsequent control choice without 

revealing the actual underlying probabilities for the threats, vulnerabilities and efficacy of the controls. 

 

Fourth and finally, the subject is presented with betting scenarios in which the objective risk of the system 

may or may not be stated up front and the subject is asked to place bets as to whether there will be a loss 

above a certain threshold outcome. The betting device is generally a multiple price list (MPL) representing 

ranged payoffs from ‘bookies’ offering different odds on the occurrence of ‘catastrophic’ or some other 

arbitrary level of loss (e.g. the percentage of losses above a certain dollar level or the dollar level of losses 

representing a certain percentage of outcomes) where the odds offered are the inverse of the expected 

probability of the outcome (Harrison and Rutström 2008). Alternatively, Participants may be asked whether 

they elect to purchase a control at a range of offered prices. Once the betting selections are made, the 

system is simulated under low and high threat risk assumptions and the outcomes are determined by the 

bets made in each case or the losses incurred at the level of system control purchased. 

 

The following table indicates Sen’s payouts based on the High risk scenario of fire burning the house: 
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Figure 103 – Example MPL Betting Table 

 

(Sen 2010) 

 

In Sen’s example, the following table indicates the prospective outcomes based on the subject’s subjective 

perception of the risk of the house burning down (outcome A) to be 75% or, conversely, the house not 

burning down (outcome B) at 25%: 

 

 

 

 

 

 



  197  

Figure 104 - Betting Task with Stake of $1 (subject believes A will occur with probability 0.75) 

 

(Sen 2010) 

 

In the above example, the (risk neutral) subject would be expected to bet on A for every bookie offering 

odds that corresponded to a lower house probability than 0.75 of A winning, and then switch over to bet on 

B for every bookie offering odds that corresponded to a higher house probability than 0.75 of A winning. In 

the above example at the expected burn rate of 75%, a risk neutral subject would bet on event A for the first 

7 bookies and then switch to event B. 

 

In my version of this 2-part experiment (Game 3) presented below, the subject is fist provided with an 

initial stake amount and is asked whether they wish to prospectively purchase a control (Lottery A) across a 

range of incremental control values ranging from zero up to the value of the catastrophic loss under two 

separate relatively high and low stake/impact simulation scenarios. One of the control levels is then chosen 

at random. If the subject chose to pay for the control at that level, then the cost of the control is deducted 

from their stake and the control is applied to the simulation, otherwise no control is applied, they keep their 

entire stake, and the system is then simulated with or without the control in place. The following Table 

illustrates the payoff matrix that is implied by Sen’s fire simulation, assuming that the subject accurately 

infers the true probabilities of his own property burning when choosing the control (6%). Again, the subject 

does not know this percentage and must subjectively infer it from the exposure to the initial simulations of 

high and low fire risk scenarios: 
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Figure 105 - Inferred WTP Instrument when Initial Credit is $40 and the House is Valued at $18 

 Lottery A (control) Lottery B (no control) EVA EVB Difference 

Control 

Cost 
p(burn)  p(safe)  p(burn)  p(safe)     

$0 0.06 -18 0.94 0 0.29 -18 0.71 0 -1.08 -5.22 4.14 

$2 0.06 -20 0.94 -2 0.29 -18 0.71 0 -3.08 -5.22 2.14 

$4 0.06 -22 0.94 -4 0.29 -18 0.71 0 -5.08 -5.22 0.14 

$6 0.06 -24 0.94 -6 0.29 -18 0.71 0 -7.08 -5.22 -1.86 

$8 0.06 -26 0.94 -8 0.29 -18 0.71 0 -9.08 -5.22 -3.86 

$10 0.06 -28 0.94 -10 0.29 -18 0.71 0 -11.08 -5.22 -5.86 

$12 0.06 -30 0.94 -12 0.29 -18 0.71 0 -13.08 -5.22 -7.86 

$14 0.06 -32 0.94 -14 0.29 -18 0.71 0 -15.08 -5.22 -9.86 

$16 0.06 -34 0.94 -16 0.29 -18 0.71 0 -17.08 -5.22 -11.86 

$18 0.06 -36 0.94 -18 0.29 -18 0.71 0 -19.08 -5.22 -13.86 

 

(Sen 2010) 

 

In the above example, the subject indicates whether they want to purchase control at each dollar cost 

between $0 and $18 in $2 increments. The researcher then randomly determines that the $4 control scenario 

will be played out, and it happens that the subject elected to spend $4 for control (in fact, it happens that 

they elected to spend at each available control level, since they subjectively desired to have control under 

any possible scenario). The resulting Lottery A bet in the 3
rd

 line (green highlight), indicating selection of 

the ‘control choice’  in Sen’s experiment results in a 6% probability of the house burning down (at a cost of 

$18 for the house) and a 94% chance of nothing happening, but cost $4 to purchase in either case. 

Conversely, had the subject not selected control at the $ level, the resulting Lottery B in line 3 increases the 

probability of the house burning down to 29% (at a cost of $18 for the house), but with no loss whatsoever 

(for house or control cost) 71% of the time.  

 

As the core motivational experiment involving simulation with control, I find this treatment somewhat 

unrealistic for the security context: presumably choosing control (at any dollar level other than zero) would 

have some stochastic effect on the security outcome, even if ‘threshold’ mitigation effects are applicable 

for certain types of controls (i.e. in order for the control to be minimally effective, it has to be deployed 

above a certain dollar cost – employee training for example). In my version of Sen’s experiment, the 

subject will be presented with a one-shot decision of whether to implement a security control. For my 

research purposes, the control effectiveness will therefore be incorporated into the system model as a 

stochastic effect i.e. as long as the subject picks some level of control above zero, the control will have 

some mitigation effect on the simulation, although without certainty. This treatment is more realistically 

analogous to budgeting for a specific control level, implementing the control and then subsequently finding 

out whether the level of control chosen was effective for the purpose.  

 

Game 3 introduces risk endogeneity in the form of a one-period control choice over a prospective loss, but 

in this case with known probabilities. In my version of Sen’s experiment, the subject will be presented with 
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a one-shot decision of whether to implement a security control which will, for example, absolutely (i.e. 

deterministically) lower productivity but will eliminate the entire impact of a prospective security incident. 

In Sen’s experiment, the subject chooses between either Lottery A (a relatively safe bet) versus Lottery B 

(a relatively risky prospect) with known probabilities for each of 9 bets for each variation in task: 

 

Inferred WTP Instrument when Initial Credit is $40 and the House is Valued at $18 (Sen 2010) 

 

Lottery A (control) Lottery B (no control) EVA EVB Difference 

p(burn)  p(safe)  p(burn)  p(safe)     

0.06 -18 0.94 0 0.29 -18 0.71 0 -1.08 -5.22 4.14 

0.06 -20 0.94 -2 0.29 -18 0.71 0 -3.08 -5.22 2.14 

0.06 -22 0.94 -4 0.29 -18 0.71 0 -5.08 -5.22 0.14 

0.06 -24 0.94 -6 0.29 -18 0.71 0 -7.08 -5.22 -1.86 

0.06 -26 0.94 -8 0.29 -18 0.71 0 -9.08 -5.22 -3.86 

0.06 -28 0.94 -10 0.29 -18 0.71 0 -11.08 -5.22 -5.86 

0.06 -30 0.94 -12 0.29 -18 0.71 0 -13.08 -5.22 -7.86 

0.06 -32 0.94 -14 0.29 -18 0.71 0 -15.08 -5.22 -9.86 

0.06 -34 0.94 -16 0.29 -18 0.71 0 -17.08 -5.22 -11.86 

0.06 -36 0.94 -18 0.29 -18 0.71 0 -19.08 -5.22 -13.86 

 

 

In the above scenario, risk neutral subjects would be expected to forego the control for the first 3 bets and 

switch to the control choice in the fourth line and thereafter. 

 

A testable hypothesis with this treatment is that the coefficient of risk aversion is equal in both the standard 

lottery loss task with exogenous risk and here where risk is made endogenous (i.e. controllable by the 

subject). Rejection of the hypothesis would indicate that some type of ‘risk framing’ effect is present when 

risk is presented endogenously (Shogren and Crocker 1991).  
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Experiments, Treatments, Hypotheses and Models 

The following table indicates the motivating reference papers, my corresponding hypotheses and the 

resulting experiments undertaken to generate choice data that is appropriate for the estimation of various 

latent models of choice and the estimation of model parameters that reflect the indicated range of decisional 

biases in the participants’ decision making processes: 

 

Table 8 - Experiment Treatments and Hypotheses (Games 1 – 5) 

Experiment # 1 – Choice Behaviour and Asset Integration: 
 

Motivating Reference Paper: 

 

Andersen, S., G. W. Harrison, et al. (2006). Choice Behaviour, Asset Integration and Natural Reference Points. 

Working Paper 06-07,  Department of Economics, College of Business Administration, University of Central Florida. 

In Experiment 1, participants are asked to choose between a risky lottery and a series of ‘sure money’ gain, loss and 

mixed gain/loss payoffs over 20 rounds, where the participant accumulates winnings over the course of the experiment. 

This experiment directly replicates the Andersen experiment and tests whether managers integrate a cumulative wealth 

reference point when making marginal decisions over both gain and loss prospects with objectively known risk. 

Hypotheses include: whether decision makers integrate accumulated wealth into marginal decisions; testing for 

probability weighting; and undertaking a finite mixture model which estimates weighting between EUT and PT latent 

data generating processes.    

Treatment 1: Multi-period gain/loss tasks 

with asset integration 

Exogenous gain/loss/mixed gain and loss risk 

frame, without system simulation; tests for asset 

integration in the context of cumulative payout 

after 20 rounds of choice. 

 

 Hypothesis 6: Prior outcomes affect a 

manager’s current decisions. 

 

 Hypothesis 9: Managers integrate choices 

over accumulated gains or losses. 

 

 Hypothesis 10: A manager’s reference point 

for risky choices is not the marginal value of 

the current choice. 

Modeling: 

 EUT, PT and Mixed EUT/PT models, with asset integration and 

SEU specification 

 PT model incorporates gain, loss risk aversion, probability weights  

 

Selected Parameter tests 

 Model Chi-square test, log pseudolikelihood comparison and 

parameter estimate t-statistics 

 Risk aversion parameters ≠ between gain and loss scenarios 

 Probability weighting parameter estimate ≠ 1 

 Loss aversion parameter < 1  

 Risk attitude  ≠ between SEU and non-SEU cases; r ≠ between 

baseline and joint estimation cases 

 Loss aversion  assuming risk neutrality < loss aversion when loss 

aversion and risk aversion are jointly estimated (i.e. joint 

estimation matters) 

 EUT model weight ≠ PT model weight 

Experiment # 2 – Subjective Expected Utility and Bayesian Updating 
 

Motivating Reference Paper: 

 

Antoniou, C., G. W. Harrison, et al. (2015). "Subjective Bayesian Beliefs." Journal of Risk and Uncertainty 50(1): 35-

54 (Antoniou, Harrison et al. 2015) 

In Experiment 2 participants are asked to bet on whether samples of daily security losses, which vary in both 

‘strength’ (the % of losses above a threshold) and ‘weight’ (the number of samples) are in fact drawn from either a 

‘Low Controls’ or High Controls’ system. This experiment replicates Antoniou’s treatment of Griffin and Tversky’s 

SEUT experiment using ‘low risk’ and ‘high risk’ versions of our simulation model. (Griffin and Tversky 1992; 

Antoniou, Harrison et al. 2010). The experiment specifically tests whether managers violate Bayes rule when making 

decisions that involve updating prior expectations under assumptions of subjective expected utility (SEU) with and 

without the assumption of risk neutrality and allows for testing of the participants’ weighting of both the ‘strength’ and 

‘weight’ of evidence. We also test for the prevalence of the SEUT model over the GT specification.   

Treatment 1: Risk strength / weight testing Modeling: 
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 Loss frame task using system simulation w. 

uncertain posterior probabilities and strength 

and weight variations 

 

Hypothesis 4A: SEUT probability estimates are 

more accurate under an assumption of risk 

neutrality. 

 

Hypothesis 4B: The strength and weight of 

quantitative estimates of security risk influence 

a manager’s subjective expected utility over 

control decisions (GT model is superior to 

SEUT model) 

 SEUT and SEUT probability estimates assuming risk neutrality, 

with and without demographic controls.  

 GT model strength (alpha) and weight (beta)  estimates 

 GT model probability estimates 

   

Selected Parameter tests: 

 Model Chi-square test, log pseudolikelihood comparison and 

parameter estimate t-statistics 

 Risk aversion parameters ≠ between gain and loss scenarios 

 Probability weighting parameter estimate ≠ 1 

 Loss aversion parameter < 1  

 Strength and weight parameters ≠ 1 

Experiment # 3 – Decision Making under Endogenous Risk 
 

Motivating Reference Papers: 

 

Fiore, S. M., G. W. Harrison, et al. (2009). "Virtual experiments and environmental policy." Journal of Environmental 

Economics and Management 57(1): 65-86.(Fiore, Harrison et al. 2009) 

Sen, S. (2010). Behavioural Response to Endogenous Risk in the Laboratory. Department of Economics. Orlando, 

Florida, University of Central Florida. Doctor of Philosophy: 245. (Sen 2010) 

George, J. G., G. W. Harrison, et al. (2012). "Behavioural Responses towards Risk Mitigation: An Experiment with 

Wild Fire Risks.(George, Harrison et al. 2012) 

In Experiment 3 participants play two separate games. In the first game, participants place bets on whether a single 

day’s loss drawn from a Low Controls versus a High Controls system, respectively, will exceed a certain pre-defined 

threshold. One bet is then selected at random and each participant is paid out based on whether they bet that the loss 

would exceed/not exceed the threshold. If they bet correctly, they earn whatever the bookie was offering for that 

particular bet. If they bet incorrectly, they earn nothing. 

 

In the second game, participants are given a budget to spend on additional controls and then choose whether to upgrade 

a ‘Low’ controls system to a ‘High’ controls system across a range of uncertain costs. The actual cost of the controls is 

then chosen at random and either a ‘Low’ or ‘High’ cost system is then simulated for that participant based on whether 

the participant chose to upgrade controls at that cost. A single day’s loss is then drawn randomly from the simulated 

system and the value of any controls purchased plus the loss on the day is subtracted from the starting budget. 

Participants are then paid out based on the net remaining budget. This experiment replicates  a study by Fiore (Fiore, 

Harrison et al. 2009) and then Sen (Sen 2010) incorporating binary choice over both exogenous and endogenous risk 

using system simulation.  

Treatment 1: Simulation benchmarking 

 Exogenous risk loss frame task, with 

simulation 

 Endogenous risk loss frame task, with 

simulation 

 

Hypothesis 1A: Risk attitude is equal under 

conditions of Low vs. High Risk 

 

Hypothesis 1B: Subjective estimates of security 

risk are equally accurate under conditions of 

Low vs. High Risk 

 

Hypothesis 1C: Risk attitude varies according 

to demographic heterogeneity 

 

Hypothesis 1D: Subjective estimates of security 

risk vary according to demographic 

heterogeneity. 

Modeling: 

 Exogenous case (Low and High systems): SEUT model with risk 

aversion and subjective probability, with and without 

demographics 

 Endogenous case (Low Controls vs. High Controls systems): 

SEUT model with risk aversion and subjective probability, with 

and without demographics 

 

Selected Parameter tests 

 Model Chi-square test, log pseudolikelihood comparison and 

parameter estimate t-statistics 

 Risk aversion parameters = between Low and High Risk scenarios 

 Subjective probability estimates are not statistically different from 

actual probabilities. 
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Hypothesis 1E: Risk attitude is equal under 

conditions of exogenous and endogenous risk 

 

Hypothesis 1E: Subjective probability estimates 

of security risk are equal under conditions of 

exogenous and endogenous risk (i.e. no source 

dependence) 

Experiment # 4 – Recovering Beliefs Over Continuous Loss Distributions 
 

Motivating Reference Papers: 

 

Andersen, S., J. Fountain, et al. (2009). "Estimating aversion to uncertainty." Unpublished discussion paper, College of 

Business, Univ. of Central Florida (May)(Andersen, Fountain et al. 2009) 

Harrison, G. W., J. Martínez-Correa, et al. (2013). "Scoring rules for subjective probability distributions." Manuscript, 

Georgia State University.(Harrison, Martínez-Correa et al. 2013) 

Harrison, G. W. and E. R. Ulm (2015). "Recovering Subjective Probability Distributions." Working Paper. (Harrison 

and Ulm 2015) 

In Experiment 4 participants play two separate games. In the first game participants undertake a 50-round binary 

lottery game which tests for the presence of Rank Dependent Utility (RDU), a violation of the common assumption of 

SEU. In the second game we use a Quadratic Scoring Rule device and a range of security loss simulations to allow 

participants to bet on subjective estimates of: 1) the probability of dollar losses above a stated threshold, and 2) the 

dollar value threshold over which a stated probability of losses would occur. Following Harrison et al, reports over 

continuous ranges are known to be close to latent subjective beliefs if we assume the individual obeys subjective 

expected utility (SEU) (Savage 1971; Matheson and Winkler 1976; Harrison, Martínez-Correa et al. 2013). The results 

of these two experiments permit the recovery of subjective beliefs over continuous ranges at the individual level under 

both an assumption of SEU and if the individual is known to distort probabilities into decision weights using Rank 

Dependent Utility (RDU) (Harrison and Ulm 2015).  

Treatment 1: RDU Binary Lottery Choices 

 

 Rank Dependent Binary Lottery Choice 

(n=50) over prospective gains 

 

Hypothesis 15A: Individuals behave according 

to EUT as opposed to RDU for discrete risky 

choices. 

 

Treatment 2: Quadratic Scoring over 

Continuous Probability Distributions 

 

 Reports on percentage of security losses over a 

dollar amount using time series simulation 

representations. 

 Reports on the dollar amount representing 

losses above a certain percentage threshold  

 

Hypothesis 15B: Recovered beliefs over 

continuous probability distributions are 

conditional on the assumed model of individual 

risk preference (SEU vs. RDU). 

 

Hypothesis 15C: Security managers are 

‘reasonably’ able to accurately identify the 

moments of security loss time series and 

probability distribution representations. 

Modeling: 

 EUT model with Fechner error specification   

 RDU model with decision weights: 

 Power probability weighting (Quiggin 1982) 

 

Selected Parameter tests 

 Model Chi-square test, log pseudolikelihood comparison and 

parameter estimate t-statistics 

 Individual RDU power weighting parameter ω(p) = 𝑝𝛾, γ =1, (no 

rank dependency) 

 

Non-Parametric Tests: 

 Histograms of recovered EUT and RDU reports 

 Profiles of report accuracy across all participants 
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Experiment # 5 – Ambiguity Effects in Self-Protection and Self-Insurance for Security Risks  
 

Motivating Reference Papers: 

Bajtelsmit, V., J. C. Coats, et al. (2015). "The effect of ambiguity on risk management choices: An experimental 

study." Journal of Risk and Uncertainty 50(3): 249-280. (Bajtelsmit, Coats et al. 2015) 

 

Laury, S. K., M. M. McInnes, et al. (2009). "Insurance decisions for low-probability losses." Journal of Risk and 

Uncertainty 39(1): 17-44 (Laury, McInnes et al. 2009) 

In Experiment 5 participants play three games. In the first game participants are given a budget and choose whether or 

not to purchase ‘cyber insurance’ against simulated daily business losses exceeding a stated threshold for a system with 

a set control level (‘High’ or ‘Very High’) across a range of insurance loadings. In the second game participants are 

given a budget and choose whether or not to purchase a higher level of system controls for either a ‘Low’ or ‘High’ 

system. In the third game participants are given a budget and choose whether or not to purchase insurance and/or a 

higher level of system controls. If a higher level of system controls is purchased, the associated insurance premium is 

adjusted based on the level of control. Participants play each Game 12 times. At the end of each round in each game, 

the computer selects a daily loss at random, and a payoff is calculated equal to the starting budget minus any insurance 

and/or controls purchased, minus the random loss. The results of this experiment replicate the experiment of Bajtelsmit 

(Bajtelsmit, Coats et al. 2015) and is based on and earlier experiment by Laury et al (Laury, McInnes et al. 2009) 

Treatment 1: Insurance only  

 

 Binary choice of insurance/no insurance over 

uncertain loss time series (n=12 rounds) 

 

Treatment 2: Precaution only  

 

 Binary choice of precaution/no precaution 

over uncertain loss time series (n=12 rounds) 

 

Treatment 3: Precaution and Insurance 

 

 Binary choice of precaution / no precaution 

and insurance/no insurance over uncertain loss 

time series (n=12 rounds) 

 

Hypothesis 16A: Individuals who prefer lower 

risk will choose the more efficient risk 

management method (precaution vs. insurance) 

to accomplish this goal. 

 

Hypothesis 16B: Risk mitigation decisions will 

be consistent in otherwise similar treatments 

with and without insurance. 

 

Hypothesis 16C Risk mitigation decisions will 

be consistent in otherwise similar treatments 

with and without precaution. 

 

Hypothesis 16D: Individuals will exercise more 

precaution when the probability of loss is more 

ambiguous. 

 

Hypothesis 16E: The likelihood of insurance 

purchase will increase when the probability of 

loss is more ambiguous. 

Modeling: 

 Logit regression (dependent variable: decision to purchase 

insurance), as a function of: 

- Probability of loss and insurance premium, when precaution 

unavailable, w. and without demographics 

- Probability of loss and insurance premium, when precaution 

available, w. and without demographics 

- Risk Type (Reference = High Controls; 1 = Low Controls or 

Reference = Very High Controls; 1 = High Controls; 2 = Low 

Controls Risk = 1, Very High = 2)  

-  

 Logit regression (dependent variable: decision to purchase 

insurance or controls when insurance available), as a function of: 

- Taking precaution when insurance available 

- Degree of ambiguity (variance of loss distribution) 

 

Selected Parameter tests 

 Non-parametric grouping of risk averse / risk taking decision 

makers 

 Model Chi-square test, log pseudolikelihood comparison and 

parameter estimate t-statistics 

 % buying insurance for lower probability vs. higher probability 

loss systems are equal holding constant insurance load59 and 

expected loss (McNemar test) 

 

Non-Parametric Results: 

 Percentage of Participants Choosing Precaution at Each System 

Level 

 Percentage of Participants Choosing Precaution or Insurance at 

Each System Level 

 Percentage of Participants Choosing Precaution and Insurance at 

Each System Level 

 

                                                                        
59 ‘Insurance load’ refers to the markup on an otherwise actuarially fair insurance premium. We extend the loading factor from 1x to 

6x the actuarially fair premium.   
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The following section details the general procedures of each experiment and then each of the specific 

treatments and tasks used to generate my research data. The subsequent section presents the results of the 

experiments and describes the analytical methods and estimation results of the structural models used in 

each case. The thesis concludes with a discussion of limitations and reflections on the work and further 

research opportunities.  
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8 – Experiment Procedures 

 

Sampling Frame and Sample Recruitment Considerations 

For generalizability, careful consideration was given to the sample frame, attracting suitable professionals 

who have familiarity and affinity with the general context of the information security decision problems 

being posed since they are, in part, hypothesized to make these control decisions, in context, with biases 

based on both professional and personal attributes. The opportunity cost for these participants is assumed to 

be greater than that for students (who are typically recruited for these studies) and therefore needed to be 

offset with consideration for both increased participation fees and other appropriate incentives, including 

timing and location convenience. Since the labs were to be conducted in person at the participating site’s 

location (to control for the performance of the computer experiments on researcher supplied laptops), 

candidates were selected from the Greater Toronto area in Ontario, Canada as a matter of travel 

convenience to the researcher.       

 

In personal correspondence with Glenn Harrison, he also confirmed the need for panels of possibly 

upwards of 150 participants to support the essential mixed EUT/PT model specifications and the associated 

statistical tests which have been developed for these specifications (Vuong 1989; Clarke 2007), although 

individual experiments have featured as few as 60 participants. Harrison’s clear guidance was to ensure an 

adequate number of participants across gain, loss and mixed treatments and a corresponding adequate 

number of choice tasks within each treatment which, after pooling the data, in turn provide sufficient model 

degrees of freedom across and within subjects.  He has cautioned that ‘power’ requirements for sampling 

purposes in these models are more closely linked to the design of the gain/loss treatment variations, 

followed by the number of subjects, and not the number of choices made by each subject. After these 

considerations and some additional pilot testing of the STATA models using as few as 12 participants, I 

decided to undertake 12 separate labs with 5 participants per lab, resulting in 60 participants in total.     

 

A total of 60 participants were recruited from the information technology, privacy and security staff of 12 

peer academic and community hospitals in the greater Toronto area during March to June 2016. A 

maximum of five participants were recruited from each individual facility. Participants were informed that 

the researcher was conducting research into ‘information security’ and that they would play a series of 

games on a computer that would involve decision making in an information security context. Each subject 

signed an informed consent form on arrival to a meeting room at the host facility and was told to sit at any 

of the 5 numbered laptop computers provided by the researcher. Each laptop had a mouse to facilitate ease 

of clicking on onscreen buttons within the games. The laptops were physically spaced apart by the 

researcher as was practical in each location provided by the host organization and participants were 

instructed to play the games as individuals without collaboration: 
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Figure 106 - Typical Lab Setup 

 

 

All instructions were provided verbally by the researcher who also demonstrated each game demonstration 

of each game on a large screen at the front of the room prior to its being played.  Each game also contained 

an onscreen, written description of that game’s instructions for individual reference during the play. 

Participants were instructed to indicate immediately after the instructions whether they did not understand 

how to play a particular game or if they were having difficulty interacting with the game interface during 

play.  Regardless of whether participants indicated that they understood the game instructions prior to play, 

some participants appeared to require several rounds of play before verbally indicating that they understood 

exactly how to play a game. In any case, no participant was allowed to restart or replay a game. In some 

cases the researcher was required to indicate the order of operation / button pressing in a game to a 

participant who appeared to be struggling or was not making significant progress on the first several 

rounds. Other than indicating the elements of the interface and the order of decision making tasks, no other 

game play guidance was generally provided to the participants.      

 

Participants were instructed that they would be playing five (5) individual games over the course of 

approximately 2.5 hours and that, in the interest of completing all games within the time allotted in the 

session, each game was intended to be completed by all participants within approximately 20 minutes 

before moving on to the next game. Individual participants typically completed games at different times 

and those finishing before others were allowed to leave the room, check email etc. while waiting for others 

to finish. In some instances significantly slower participants were not able to complete a game in sufficient 
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time and were instructed to stop playing a particular game in the interest of the group moving ahead 

together. In a few instances these participants were permitted to return to an incomplete game to finish as 

many rounds of that game as possible.  

 

In Harrison’s experiments in which multiple individual experiments or treatments are undertaken, the 

ordering of the experiments and treatments undertaken by individual participants is typically randomized to 

control for ‘order effects’ which might otherwise influence the way in which participants both learn to play 

and then play a series of games (Harrison, Johnson et al. 2005). Within this research, randomization of the 

order of the individual Games 1 through 5 across individuals was not considered practicable since 

participants were undertaking multiple complex decision games and in pilot sessions it became clear that 

the provision of common instructions at the start of each game immediately followed by playing the game 

just instructed and the provision of one-on-one guidance during the games was required to ensure all 

participants could complete each game within a reasonable period of time. This could only be practicably 

provided by me as the sole facilitator during the sessions. To have each participant sit through 5 different 

sets of instructions and then potentially undertake different games from their peers at the same time risked 

confusion and failure of the sessions and was decided against. Otherwise, the order of the treatments within 

Games 2, 3 and 5 were randomized by reversing the presentation order of the individual sub-games for 

approximately half of the participants. The order of the lotteries in Game 1 is inherently randomized, as are 

the Rank dependent Utility (RDU) pie charts lotteries and continuous distribution questions in Game 4. The 

specific randomization aspects of each game will be explained in the description for each game below. 

While the lack of randomization between games may be a possible confounding element of the data 

generation process within participants, we consider the nature of the games to be sufficiently diverse that 

any ordering effect may not be a significant factor overall. Comparatively, the randomization of rounds 

within each game is considered of primary importance in eliminating order effects for each treatment (i.e. 

we must be able to control whether the ordering of rounds within a game is confounding). Randomization 

within the sub-games is discussed later in the paper.  

 

Games were designed to be ‘incentive compatible’ following consistent Harrison’s guidance on this aspect 

of the experimental design (Harrison 2007).  Participants were told that the games involved making bets on 

security control choices and that, if they chose, they might earn some money in the lab (although they 

might also earn nothing) depending on their choices within the games, although they could not lose any 

money that was not provided to them within the session. They were told that one game would be selected at 

random after the session to be paid out for real money in the form of a debit card for popular coffee shop to 

be emailed to them individually sometime after the session. Payment was indicated as optional, but that 
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they should play the games ‘as if’ playing for the prospective earnings indicated in order to ensure that their 

choices were ‘consistent’ with a general desire to earn money where possible
60

. 

 

Participants were told that each game would be played in an Excel spreadsheet which had been modified to 

eliminate menus and other typical Excel screen features; that they should only use the mouse; that they 

should only click on ‘buttons’ visible onscreen as instructed by me before each game; and that they should 

otherwise not touch the keyboard or, for example, hit the ‘Esc’ button which would stop the game from 

running (in which case they would have to restart that game) and to raise their hand if they had any 

difficulty understanding or operating the game. I explained that I would provide instructions and 

demonstrate on a separate laptop how to play each game before participants commenced each game and 

that we would allow everyone to complete each game before proceeding together to the next game to 

ensure that everyone understood the instructions prior to starting a game. In practice, this meant that the 

actual time allotted to each game effectively depended on the slowest player and there was considerable 

diversity in the finishing times across players. To ensure that participants completed all five games, I 

occasionally had to encourage some laggard players to ‘speed up’ in order to allow everyone to proceed to 

the next game. Finally, they were advised that, where some of the games indicated choices based on 

numerical attributes (percentages or dollar values), in the interest of time, that they were not expected to 

make ‘overly careful mathematical calculations’ or use any calculator supports in order to make choices. 

This coincides with the typical approach in experiments that I have reviewed where the motivation for this 

restriction appears to align with the idea that in these experiments we are generally testing for the presence 

of decisional biases, including the use of heuristics, and not whether someone can accurately calculate an 

expected value or whether that actually affects their decision making (although that certainly is testable). 

Practically, ‘permitting’ calculators would involve either the provision of calculators to all participants (to 

avoid the potentially confounding effects of some participants using and some not using a calculator) of the 

use of an explicit control group with or without calculators – neither approach was practicable for this study 

from either a financial or sample size perspective (Birnbaum 2000; Greiner, Jacobsen et al. 2012; Kairies-

Schwarz, Kokot et al. 2014; McNair and Feeney 2014; Grossman and Eckel 2015) 

 

The participants were then instructed to open a folder on their laptop which presented a series of Excel files 

and were instructed to open the file labelled ‘Demographic Survey’ to begin the session: 

 

                                                                        
60 In practice, a significant percentage of Participants did not provide an email address, although no one was questioned as to whether 
they wished to be paid or why they did or did not provide an email address. A few participants indicated that they did not feel that 

payment was ‘necessary’ in order to induce them to play or to make decisions that were ‘truthful’ or consistent with their desire to 

achieve the indicated payments and accordingly declined payment. Interestingly, I can find no reference to this particular phenomenon 
in any of the hundreds of papers on experimental procedures I have reviewed to date, although Grossman mentions a particularly 

interesting potential confound: approximately 25% of participants practiced a religion that prohibited gambling (Grossman and Eckel 

2015). This could clearly influence their choices even if they elected to play the games. It is also possible that some participants were 
sufficiently concerned about their personal privacy that they preferred to not be paid rather than provide an email address. On the other 

hand, while the games were carefully designed to be ‘incentive compatible’ (Harrison 2007), the random selection of each 

participant’s game to be paid out and actual cash payment to each participant at the conclusion of the lab session was not practicable 
due to resource and time limitations at the time of the session and therefore post-session payment via email was undertaken instead..  
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Figure 107 - Desktop Game Selection 

 

 

 

1 - Demographic Survey 

The Demographic Survey collects personal information and asks a series of questions related to general risk 

preference and several decision examples involving risk. The purpose of the survey was twofold: 1) to 

collect individual demographic information, some of which would be used as independent variables in the 

various econometric models including some qualitative information on their perceptions of their own risk 

preferences which could be used to benchmark individual attitudes towards risk outside of the games; and 

2) to get participants used to using the mouse and the software interface by clicking on the screen ‘buttons’ 

(as opposed to traditional Excel or Windows interface elements) and to initiate their thinking towards risk-

based decision making generally. They were instructed that, if they wished to be paid for the session as was 

indicated in the Instructions, they should include their email address on the Demographics Survey and that 

their email address would only be used to contact them regarding the results of the lab and for payment 

purposes. Participants were told that they could skip a question if they were unsure of the answer or 

preferred not to answer for privacy reasons. Two Participants asked to re-complete the survey after the 

session after reconsidering their willingness to reveal certain personal information. 

 

The following diagram illustrates the form of the survey; a complete listing of the demographic survey 

questions is included in the Appendix: 
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Figure 108 - Demographic Survey Interface 
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2 – Game #1: Asset Integration 

Participants are then instructed to open the ‘Game 1’ file. All rounds of the game are played on a single 

screen (see figure next page).  In this game, each participant is initially endowed with a stake, selected at 

random from a uniform distribution between $1 and $6 in discrete $1 intervals. The subject then faces 20 

lottery choices in a sequence. These lotteries offer the possibility of some gains, but also offer the 

possibility of some losses. Some lotteries mix positive and negative outcomes. The specific lotteries 

presented to each subject are selected ‘more or less’ at random from a set of 36 probability combinations 

and 12 payout combinations. This set replicates virtually all of the lotteries used by Tversky and Kahneman 

(Tversky and Kahneman 1992) as well as several lotteries designed to have outcomes with different signs. 

The selection is non-random only to the extent that we ensure that the first three lotteries all offer non-

negative outcomes, to allow subjects to accumulate some earnings before facing the prospect of losses. 

After these three, each subject receives a random sequence of pie chart draws, with repetition, from the 

possible probability and payout combinations: 
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Figure 109 - Game 1 User Interface 
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Each lottery choice is actually a choice between a specific pie chart lottery and an ordered list of 10 non-

stochastic amounts based on the minimum and maximum payout for that round. The list was ordered in a 

linear manner from the lowest lottery prize to the highest lottery prize. In the example above, consider a pie 

chart lottery with an outcome of gaining $15 with probability 25% (i.e. for the first 1%-25%), an outcome 

of gaining $10 with probability 25% (i.e. for the next 26%-50%) and an outcome of losing $10 with 

probability 50% (i.e. for the last 51%-100%). The first fixed choice would be between the pie chart lottery 

and gaining $15 for sure. The second would be between the pie chart lottery and gaining $12.25 for sure, 

the third would be between the pie chart lottery and gaining $9.50 for sure, and the tenth would be between 

the pie chart lottery and losing $10 for sure. 

 

After the participant chooses between either the pie chart or the Sure Money option for each of the 10 rows, 

they click ‘Press to Confirm Choices’ which ensures that they have made choices in all rows, and then click 

‘Press to Calculate Payout’. The computer then generates a random number between 0 and 10 to select a 

row to play out. If the participant selected the pie chart option for that row, the computer generates a 

random number between 1% and 100% (inclusive), and the result determines their payout from the pie 

chart. If they chose the sure money option for the selected row, the sure money amount is the payout for 

that round. The payout determines the change to their accumulated earnings (‘Balance’) and they are 

informed of the result onscreen. Participants are told that they will be provided an “overdraft limit” of $10 

and may continue to play as long as their balance does not exceed minus $10 on any round; if their 

accumulated earnings drop below minus $10, their game is over. Players continue make choices on each 

round for 20 rounds at which point the Game is over. When completed, participants are instructed to close 

the Excel window which saves the choice results for that player. 

 

Example Simulations 

Participants are then instructed to open the file “Example Simulations’: 
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Figure 110 - Game 1: Example Simulations Introduction 
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Participants are then told that the remainder of the games (including the current game) involve the 

‘simulation’ of an information system modelled at different levels of security control which is at risk of 

security breaches and the daily ‘business losses’ attributed to the breaches due to the resulting lack of 

availability of the system. Participants were encouraged to click on the ‘Simulate’ button for one or more of 

the indicated systems to get a sense of how the system performed under the various control levels and were 

told that they would be able to do similarly within each of the games to come as required. They were told 

that as the indicated levels of control increased from ‘Low Controls’ through to ‘Very High Controls’, the 

average daily loss for that system would generally decrease, although the loss on any particular day could 

exceed a loss level for a lower level of control. In practice, some participants at this point ask questions 

regarding how the availability or the attributed losses are calculated, but generally the participants appeared 

to accept the premise of business or operational losses attributed (in some manner) to the nominal security 

control posture of the indicated information system. Participants were asked whether they understood the 

explanation of the simulation of losses before proceeding and we did not proceed until all participants 

indicated that they understood the concept and use of the charts. 

 

As noted above, results for each of the control level simulations were precomputed daily for 30 years and 

were stored as data values which could be interactively selected in annual samples (n=365 days) and 

displayed as required onscreen in real time. This eliminated the need to interactively compute Monte Carlo 

simulations, taking up to a minute or more to compute, which would have unacceptably interfered with the 

immediacy of the games and ensured that the resulting simulation samples were being drawn from the same 

‘population’ of precomputed simulation results across participants. 
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3 – Game #2: Subjective Bayesian Updating and Strength / Weight of Evidence  

Participants are then instructed to open the ‘Game 2’ file. This game is played over a series of Excel ‘tabs’ 

with each tab representing one round of the game. The game starts with an overview of an information 

system simulated under ‘relatively Low security controls’ and, alternatively, under ‘relatively High security 

controls’: 
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Figure 111 - Game 2: Example Simulations 
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Participants are told that the ‘Low Controls’ system generates losses exceeding $10,000, 60% of the time 

and that the ‘High Controls’ system generates losses exceeding $10,000, 40% of the time and a common 

$10,000 baseline indicator is displayed within the simulated time series for each system. As previously 

indicated, Participants were reminded that they are free to click on the respective ‘Simulate’ buttons to 

observe the simulated business losses of the system under each set of controls, and are told that they can 

return to this tab at any time during the ensuing rounds of the game to re-examine the loss behaviour of the 

systems as they may require. 

 

Participants then proceed to the first game tab which is representative of each of the ensuing game rounds: 
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Figure 112 - Game 2: User Interface 
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For each round of the game, the computer selects either the yellow (Low Controls) or the Orange (High 

Controls) system and then randomly draws a set of observations from a randomized 365 day period within 

30 years of simulation data from that system and displays the number of observations equal to or greater 

than $10,000, and less than $10,000 respectively. In the above example, the computer has selected 1 

observation below $10,000 and 2 observations equal to or greater than $10,000. The Participants then 

places a bet with each of 19 ‘bookies’ offering different odds and corresponding prospective payouts over 

whether the actual source of the observations is a Low or High Controls system. Participants are ‘staked’ 

$3 for each bet and must place a bet with each bookie. The odds and payouts for each bookie are the same 

in each game. The Participant then confirms their choices and the computer selects one row/bookie to play 

out for money. The Participant then proceeds to the next round tab and completes the remaining rounds in 

the same manner. As in Antoniou, each subject participated for 30 rounds of this betting task: 4 rounds with 

N=3 system samples
61

, 14 rounds with N=5 system samples, 6 rounds with N=9 system samples, and 6 

rounds with N=17 system samples. This distribution of sample sizes was chosen to ensure that we observe 

roughly the same number of “extreme” samples. To control for possible order effects within the game, in 

half of the sessions I varied the presentation of sample sizes in ascending order (i.e., first 4 rounds of 3, 

then 14 rounds of 5, etc.) and in descending order (6 rounds of 17, 6 rounds of 9, etc.). 

 

This is a general form of a betting procedure for eliciting choices that depend on subjective probabilities 

(Savage 1971; Antoniou, Harrison et al. 2015): “The recovery of subjective probabilities and beliefs 

requires formal theoretical and parametric assumptions…The essential logic is that this decision sheet is a 

“multiple price list,” just like the decision sheet used to infer discount rates by (Harrison, Lau et al. 2002), 

the decision sheet used to infer risk attitudes by (Holt 2002), and the decision sheet used to infer valuations 

for goods by (Andersen, Harrison et al. 2006). The general “multiple price list” (MPL) betting interface 

employed here was first used by (Fiore, Harrison et al. 2009).” The method is also used to test the degree to 

which the ‘strength’ of evidence (i.e. the proportion of samples indicating one system or the other) and the 

‘weight’ of evidence (the number of samples) affects the Participants’ ability to update their prior 

expectation of the probability of choosing either the Low or High system: 

 

Griffin and Tversky [1992] suggest that, contrary to Bayes Rule, individuals are more sensitive to 

two aspects of the sample evidence. One is the “strength” of the evidence, defined here as how 

many white or blue sides came up as a proportion of the total number of dice that were rolled. The 

other aspect of the sample evidence is its “weight,” defined here as how many dice were rolled in 

total. Our experimental design, directly extending the design of Griffin and Tversky [1992], tests 

this conjecture by comparing subjects’ betting patterns for realized dice patterns that have the same 

posterior but differ in strength and weight. 

                                                                        
61 To generate his ‘samples’, Antoniou employed two sets of primarily blue- and primarily white-faced dice, where each set of dice 

had a 60% and 40% chance of rolling blue/white faces as representing the two ‘systems at risk’. The dice were randomly selected 

from one of the two sets without informing the participant which set they were drawn from and then rolled in front of the participant 
with the resulting faces acting as the ‘samples’ for each round of the game.  I have essentially recreated his experiment in a security 

context using a simulated system at risk in which the loss outcomes are similarly constrained between the ‘Low’ and ‘High’ controls 

systems. Instead of rolling multiple dice for each round of the game, I select multiple corresponding ‘samples’ from the selected 
simulated system population of results.     
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For example, if we roll N=5 dice and get 4 dice with a white face and 1 dice with a blue face, the 

posterior probability of the white box being used is exactly the same (0.77) as when we toss N=9 

dice and get 6 white and 3 blue. Bayes Rule predicts that the elicited subjective probabilities in 

these two cases should be identical. Under SEU, and assuming the correct application of Bayes 

Rule, the realization from the N=5 case and the N=9 dice are equally informative. In each case there 

is a posterior subjective probability, with no uncertainty: the individual does not behave as if he 

thinks that the 0.77 is more likely in the N=9 case than the N=5 case62. 

 

Griffin and Tversky [1992] observe that the strength of the N=5 pattern is greater (since [4/5] > 

[6/9]) and the weight smaller (since 5 < 9) in this example. They hypothesize that subjective beliefs 

will be updated differently when we get 4 white and 1 blue as opposed to 6 white and 3 blue, and 

the two cases will generate different subjective probabilities. Specifically, they hypothesize that 

decision makers will hold subjective probabilities that overshoot Bayes Rule when there is “high 

strength” and “low weight,” and undershoot Bayes Rule when there is “low strength” and “high 

weight.” 

 

  

                                                                        
62 Antoniou: “We say “behave as if” not out of rhetorical ritual. It is apparent that [{Savage, 1971 #31}; p.56ff] was well aware that 

individuals might have uncertain beliefs about some event (e.g., inferring that it could be 0.75 with probability 1/3, 0.77 with 
probability 1/3, and 0.79 with probability 1/3), but he insisted that if they behaved consistently with the axioms he proposed that they 

would behave identically to someone that had the average of that distribution of uncertain beliefs (in this example, 0.77). In other 

words, the two possibilities were observationally equivalent, and one might then impose Occam’s Razor or some other a priori 
argument to whittle down the hypotheses to be tested. (Antoniou, Harrison et al. 2010) 



  222  

4 – Game #3: Decisions Under Exogenous and Endogenous Risk  

Participants are then instructed to open the ‘Game 3’ file. This game is played in 2 separate sub-games: in 

the first sub-game players place bets on to whether a random daily loss will exceed a defined threshold for 

a Low Controls System, and in the second round of the sub-game make a similar bet on a ‘High Controls’ 

System. In the second sub-game, players decide whether to buy security controls that lower the probability 

of a random loss exceeding a defined threshold where the cost of the controls varies by means of a 

‘multiple price list’. Following Sen, using both of these tasks we can jointly estimate subjective perception 

of risk and risk attitude under condition involving endogenous risk (Sen 2010). 

 

The game starts with an overview an information system again simulated under ‘relatively Low security 

controls’ and, alternatively, under ‘relatively High security controls’: 
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Figure 113 - Game 3: Example Simulations 
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Participants are told that the ‘Low Controls’ system typically generates losses greater than the ‘High 

Controls’ system, but are told nothing otherwise about the relative loss probability distributions between 

the two simulations. Participants were reminded that they are free to click on the respective ‘Simulate’ 

buttons to observe the simulated business losses of the system under each set of controls, and are told that 

they can return to this tab at any time during the ensuing rounds of the game to re-examine the loss 

behaviour of the systems as they may require. 

 

Participants then proceed to the first of two game tabs which is representative of the first two sub-game 

rounds: 
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Figure 114 - Game 3A: User Interface 
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In the first sub-game round the screen indicates that the system is a ‘Low Control’ system. The Participants 

then places a bet with each of 9 ‘bookies’ offering different prospective payouts over whether a randomly 

selected daily loss will or will not exceed a $17,000 threshold. For each bookie Participants bet whether the 

random loss will exceed or will not exceed the threshold. Participants are ‘staked’ $5 for each bet and must 

place a bet with each bookie. The Participant then confirms their choices and then press ‘Simulate’ to 

simulate one year’s losses for the Low controls system and they cannot simulate the system again. They 

then press ‘Calculate Payout’ and the computer selects one row/bookie to play out for money. In the above 

example, the computer randomly selected Row 7 and for that row the Participant had bet that the random 

loss would not exceed $17,000. The randomly selected daily loss was $4,734 which is displayed on the 

graph and numerically. In this case since the Participant bet that the loss limit would not be exceeded and it 

was not actually exceeded, the player wins the amount indicated for that scenario for that row/bookie, 

$16.66. This sub-game round is now over and the player proceeds to the next tab/round and plays the same 

game with a ‘High Controls’ system. 

 

Participants then proceed to the second sub-game which is played over three rounds. The following screen 

is representative of the next three sub-game rounds: 
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Figure 115 - Game 3B: User Interface 
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In the first sub-game round Participants are told that they start with a budget of $17,000 and a ‘Low 

Controls’ system. The objective of the game is to maximize the amount of budget the Participant has left 

over after buying (or not buying) controls and then experiencing a random daily loss where the payout for 

the round equals the starting budget less any purchased controls less the random daily loss. 

 

The Participants first choose whether to purchase ‘High Controls’ that convert the ‘Low Controls ‘ system 

to a ‘High Controls’ system at different High Control cost levels between zero and $17,000, or spend 

nothing on High Controls and stay with the Low Controls system. Participants must select either purchase 

High Controls or stay with Low Controls at each indicated High Control cost level. They are told that after 

they make their control selections, the computer will select one control cost level at random which will 

determine whether a ‘Low Controls’ or a ‘High Controls’ system will be used to undertake the simulation 

for the rest of this round based on whether the Participant chose High or Low controls at that cost level. 

Once the type of system for the round is determined, the Participants click ‘Simulate’ and the computer 

selects either the Yellow (Low Controls) or the Orange (High Controls) system (based on the players 

choice of controls) and then randomly draws a set of loss observations from a randomized 365 day period 

within 30 years of simulation data for that system and displays the time series on screen. The computer then 

selects a random daily loss from the 365 day simulation, calculates the budget balance and displays the 

results onscreen. 

 

In the above example, the computer randomly selected a High Control cost of $8,500 and, since the 

Participant had indicated they would buy High Controls at that cost level, the simulation for this round uses 

a High Controls system. Simulated losses are then generated for a High Controls system and a random 

daily random of $6,607 is drawn by the computer. The computer then displays the resulting balance: 

$17,000, minus control costs of $8,500, minus the loss of $6,607, netting a balance of $1,893. The payout 

for the player would be 1/1000 of this amount, or $1.89. This sub-game round is now over and the player 

proceeds to the next tab/round and plays the same game two more rounds with different cost spreads: 
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Table 9 - Game 3 Control Cost Spreads 
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5 – Game #4: Recovering Subjective Probability Estimates and Rank Dependent Utility Bias  

The Participants then proceed to Game 4, which is composed of 2 sub-games. Following Harrison and Ulm, 

we attempt to recover latent subjective beliefs over continuous events (probabilities of loss thresholds and 

loss thresholds representing probability distribution moments) using a quadratic scoring rule (QSR) defined 

over monetary payoffs. The participant reports are evaluated under assumptions of both subjective expected 

utility and rank dependent utility to allow recovery of ‘true’ latent subjective beliefs. 

 

In the first sub-game, the participant undertakes 50 binary lottery choices with objective probabilities using 

a standard pie chart interface where the lottery pairs have been specially designed for the purpose of testing 

whether the individual behaves consistently with EUT or RDU following Harrison (Harrison and Ulm 

2015) as derived from Wakker et al (Wakker, Erev et al. 1994) and Wilcox (Wilcox 2010): 
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Figure 116 - Game 4A: User Interface 
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All lotteries are in the gain frame. In each round, Participants choose either the left or the right lottery and 

then proceed to the next lottery without calculating a payout until all lotteries have been played. Once all 50 

have been played, the Participant clicks ‘Press to calculate payout’ and the computer selects one lottery at 

random to calculate a payout. The computer then generates a random percentage between 1% and 100% 

(inclusive) and based on the Participants choice for that round indicates the payout for that lottery. In the 

above example, the computer selected round #8 in which the Participant chose the right hand lottery which 

pays $3 with probability 65% (i.e. for 1%-65%), $18 with probability 20% (i.e. for 66% – 85%) and $36  

with probability 15% (i.e. for the last 86%-100%). The computer generated 28% and the corresponding 

payout is $3. The results of this game are used to estimate the Participant’s risk preferences under 

assumption of both EUT and RDU which can be subsequently used to infer bias in their subjective reports 

in sub-game #2.  

 

Participants then proceed to the second sub-game which is played over 16 rounds. In each round the 

Participant is shown two screens: one screen displays either a time series or a probability distribution of 

losses for either a single year or for multiple years, and a second screen in which they are asked to bet on 

the answer to a numerical question about the displayed time series/probability distribution. Players answer 

all 16 questions and then the computer selects one question at random to pay out. 

 

The questions are always of one of two forms, based on whether the displayed losses are shown as a time 

series or as a probability distribution: 

 

Time Series: 

For this [Low/Medium/High/Very High] system, [for this year/across all years], what percentage of daily 

loss amounts would exceed [$ dollar amount]? 

 

Probability distribution: 

For this [Low/Medium/High/Very High] system, [for this year/across all years], what daily loss amount 

would be exceeded [X%] of the time? 

 

The following illustrates a typical probability distribution display screen and the corresponding question 

screen: 
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Figure 117 - Game 4B: Low Controls Question Probability Distribution Representation 
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Figure 118 - Game 4A: User Betting Interface 

 



  235  

 

In this example round, the loss display indicates a probability distribution of losses for a ‘Low’ Controls 

system over ‘All Years’ i.e. all possible simulation years. Based on this information, the Participant is then 

asked to bet on their belief regarding the loss amount above which losses would occur 50% of the time (i.e. 

the average loss level). In order to bet on the correct answer, the Participant is told that they have been 

given 100 ‘tokens’ that they can allocate to the range, or several ranges, that they believe corresponds to the 

correct answer to the question using the ‘slider’ interface. The payoff for each range, should the actual 

answer fall within that range, is based on the number of allocated tokens to the range and is interactively 

displayed onscreen as the Participant allocates their tokens between ranges. Participants are told that the 

more tokens they allocate to the correct range, the greater is the payoff. The following example allocation 

indicates that the Participant believes the correct answer most likely falls within one range, allocating 60 

tokens to that range, but they are somewhat unsure and so allocate 20 tokens to each of the ranges 

immediately to the right and left of the middle range: 

 

Figure 119 - Game 4B: User Interface (3 Bin Betting Example) 

 

 

The scoring device which calculates the payoffs is based on a quadratic scoring rule (Matheson and 

Winkler 1976) as described for this experiment in Harrison (Harrison and Ulm 2015). In this scoring rule, 

the subject is rewarded for accuracy of their beliefs, but if that accuracy misses the true interval, “…the 

penalty is severe”. In contrast to the above example, if the Participant was confident that the true answer 

fell within one range, they might allocate all 100 tokens to that single range. The payoff in that case is 

rewards accuracy, but severely penalizes error: 
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Figure 120 - Game 4B: User Interface (1 Bin Betting Example) 

         

Gneiting et al describe the general formulation of ‘proper scoring rules’ (Gneiting and Raftery 2007)
63

, and 

Andersen et al (Offerman, Sonnemans et al. 2009; Andersen, Fountain et al. 2014) describe the use of 

‘quadratic scoring rules’ specifically for eliciting subjective beliefs over continuous probability 

distributions and indicate the required correction for risk attitude when recovering the corresponding 

subjective beliefs: 

 

Subjective probabilities about some event are operationally defined as those probabilities that lead 

an agent to make certain choices over outcomes that depend on that event. These choices could be 

as natural as placing a bet on a horse race, or as structured as responding to the payoffs provided by 

some scoring rule. In order to infer subjective probabilities from observed choices of this kind, 

however, one either has to make some strong assumptions about risk attitudes or jointly estimate 

risk attitudes and subjective probabilities… 

 

If inferred subjective probabilities are conditioned on knowing risk attitudes, then any statistical 

uncertainty in the estimation of risk attitudes would be expected to “propagate” into some 

additional uncertainty about subjective probabilities. Joint estimation allows these effects to occur, 

providing more reliable estimates of subjective probabilities, even if those estimates have large 

standard errors. In other words, it is possible that the choice task for eliciting subjective 

probabilities generates a point response that appears to be quite precise by itself, but which is 

actually not a very precise estimate of the latent subjective probability when one properly accounts 

for uncertainty over risk attitudes… 

 

An important example is the response to a proper scoring rule, such as the quadratic scoring rule 

(QSR). A respondent might select 67% when faced with a QSR, and that would be the exact 

                                                                        
63 “Scoring rules assess the quality of probabilistic forecasts, by assigning a numerical score based on the forecast and on the event or 

value that materializes. A scoring rule is proper if the forecaster maximizes the expected score for an observation drawn from the 
distribution F if she issues the probabilistic forecast F, rather than G 6= F. It is strictly proper if the maximum is unique. In prediction 

problems, proper scoring rules encourage the forecaster to make careful assessments and to be honest. In estimation problems, strictly 

proper scoring rules provide attractive loss and utility functions that can be tailored to the scientific problem at hand.” (Gneiting and 
Raftery 2007) 
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subjective probability if the subject were known to be exactly risk neutral. But if the subject was 

estimated to have risk attitudes in some interval, there would be a corresponding range of subjective 

probabilities to be inferred from that 67% response to the scoring rule task. If the estimate of the 

subject’s risk attitudes spanned the possibility of risk neutrality, then the inferred subjective 

probability would include 67%, but would also include subjective probabilities on either side. If the 

estimate of the subject’s risk attitudes revealed him to be clearly risk averse, with no statistically 

significant chance of being risk neutral, then the risk-adjusted subjective beliefs would actually be 

strictly higher than 67%... 

 

Formalizing this [intuition] requires that one obtain estimates of risk attitudes from a task with 

objective probabilities as well as from a task whose outcomes depend on some subjective 

probability, and then untangle the effects of risk attitudes and subjective probability with a 

structural model of choice. (Andersen, Fountain et al. 2014) 

 

Alternatively, the Participant also faces questions regarding the time series representation of losses. 

Generally, we are also interested in testing whether Participants are better able to estimate the 

characteristics of a stochastic system using either time series or probability distributions, particularly where 

the accurate identification of the likelihood of extreme events is important and where evidence indicates 

that persons may not accurately perceive the probability of unlikely events, even when presented with 

distributional information about those events (Barron and Erev 2003; Hertwig, Barron et al. 2004; Weston 

2014). The following illustrates the presentation of a typical time series based question: 
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Figure 121 - Game 4B: High Controls Question Time Series Representation 
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In this case, the Participant must estimate the percentage of losses exceeding a certain dollar threshold. In 

addition, the information is presented as a series of annual simulations viewable one year at a time, where 

the Participant must click ‘Simulate Multiple Years’ in order to observe some (but not all) potential 

simulations of the ‘High Controls’ system. In this case, the information is potentially ‘doubly ambiguous’: 

not only does the observable profile of losses (maximum, average, etc.) change as more information is 

observed, but the Participant cannot be sure that they have observed the entire population of simulated 

outcomes (Camerer and Weber 1992). This unique multi-year simulation ‘reveal’ approach is employed for 

both multiple single year time series and multiple single year probability distribution presentations. I 

propose that this context likely corresponds to a practitioner’s real world experience where, even when 

some operating loss information may be available to the decision maker, the manager cannot be certain 

(and should be aware that it is uncertain) as to whether the observed data represents a valid sample of the 

range of possible outcomes. We are therefore interested in and able to test the extent to which the 

presentation of partial information (which is reflective of increased ambiguity) may affect the subjective 

probability report. 

 

Participants proceed to answer 16 questions in total covering 4 x 4 x 2 = 16 treatments: 
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Table 10 - Game 4B Question Set 

System 

Type 

Single or Multi- 

Year Simulation 

Time Series  or 

Probability 

Distribution and 

Display Method 

Question Answer 

Low 

Controls 

Single Year Single Time Series 

For this LOW Controls System, FOR THIS 

YEAR, what percentage of daily loss amounts 

exceed $56,444? 

25% 

Multiple Years 
Single Frequency 

Distribution 

For this LOW Controls System, ACROSS ALL 

YEARS, what daily $ Loss amount would be 

exceeded 50% of the time? 
$36,353 

Multiple Years Multiple Time Series 

For this LOW Controls System, ACROSS ALL 

YEARS, what percentage of daily loss amounts 

exceed $98,525? 

5% 

Multiple Years 
Multiple Frequency 

Distributions 

For this LOW Controls System, ACROSS ALL 

YEARS, what daily $ Loss amount would be 

exceeded 5% of the time? 
$98,525 

Medium 

Controls 

Single Year Single Time Series 

For this MEDIUM Controls System, FOR 

THIS YEAR, what percentage of daily loss 

amounts exceed $19,138? 

25% 

Multiple Years 
Single Frequency 

Distribution 

For this MEDIUM Controls System, ACROSS 

ALL YEARS, what daily $ Loss amount would 

be exceeded 50% of the time? 
$11,799 

Multiple Years Multiple Time Series 

For this MEDIUM Controls System, ACROSS 

ALL YEARS, what percentage of daily loss 

amounts exceed $36,222? 

5% 

Multiple Years 
Multiple Frequency 

Distributions 

For this MEDIUM Controls System, ACROSS 

ALL YEARS, what daily $ Loss amount would 

be exceeded 5% of the time? 
$36,222 

High 

Controls 

Single Year Single Time Series 

For this HIGH Controls System, FOR THIS 

YEAR, what percentage of daily loss amounts 

exceed $5,755? 

25% 

Multiple Years 
Single Frequency 

Distribution 

For this HIGH Controls System, ACROSS 

ALL YEARS, what daily $ Loss amount would 

be exceeded 50% of the time? 
$3,026 

Multiple Years Multiple Time Series 

For this HIGH Controls System, ACROSS 

ALL YEARS, what percentage of daily loss 

amounts exceed $13,268? 

5% 

Multiple Years 
Multiple Frequency 

Distributions 

For this HIGH Controls System, ACROSS 

ALL YEARS, what daily $ Loss amount would 

be exceeded 5% of the time? 
$13,268 

Very 

High 

Controls 

Single Year Single Time Series 

For this VERY HIGH Controls System, FOR 

THIS YEAR, what percentage of daily loss 

amounts exceed $1,048? 

25% 

Multiple Years 
Single Frequency 

Distribution 

For this VERY HIGH Controls System, 

ACROSS ALL YEARS, what daily $ Loss 

amount would be exceeded 25% of the time? 
$901 

Multiple Years Multiple Time Series 

For this VERY HIGH Controls System, 

ACROSS ALL YEARS, what percentage of 

daily loss amounts exceed $3,938? 

5% 

Multiple Years 
Multiple Frequency 

Distributions 

For this VERY HIGH Controls System, 

ACROSS ALL YEARS, what daily $ Loss 

amount would be exceeded 5% of the time? 
$3938 
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6 – Game #5: Effect of Risk and Ambiguity on Precaution vs. Insurance Choices  

The Participants then proceed to Game 5, which is composed of 3 sub-games. Following Bajtelsmit, we 

present Participants with choices under uncertainty involving 1) the purchase of ‘cyber insurance’; 2) the 

purchase of additional security controls; and 3) the purchase of both additional controls and insurance, in 

the context of simulated security losses. In this experiment we are interested in testing hypotheses 

regarding the Participant’s risk preference for protection vs. insurance and to what extent these preferences 

change when the ambiguity of the prospects increase (Bajtelsmit, Coats et al. 2015). The experiment is 

based on an extension by Bajtelsmit of an original lab experiment done by Laury et al (Laury, McInnes et 

al. 2009) extended to include the choice of ‘self-protection’ (i.e. controls affecting the endogenous risk of 

the system) as well as insurance and is considered unique in presentation for this research: 

 

Previous laboratory studies have considered the effect of ambiguity on insurance purchases, and on 

underinsurance against low frequency, high severity losses…To our knowledge, we design the first 

experiment that allows for a choice between exercising a level of precaution to achieve a desired 

level of risk of a loss versus insuring against the loss…Laboratory experiments on insurance 

purchase decisions under different risk and ambiguity conditions have been conducted under a wide 

variety of designs and protocols and the results are highly inconclusive (Jaspersen 

2015)…However, the differences in designs, procedures, and parameters employed across the 

studies limits the ability to generalize conclusions from their results. The Laury et al. experimental 

design [adopted for this experiment] implements a choice task to investigate the phenomenon of 

under insurance for low-probability, high-severity losses, and produces results that are counter to 

the notion that individuals ignore very low probabilities…Many studies attempt to explain 

insurance markets by designing the experiments as auctions rather than choice tasks. Although this 

design may work well as a mechanism for eliciting willingness to pay for insurance, and under a 

double auction, studying both sides of the insurance markets, the results are not necessarily 

generalizable to the insurance marketplace in which consumers face choice tasks rather than pricing 

tasks. (Bajtelsmit, Coats et al. 2015). 

 

All sub-games are played over 12 rounds each. In the first sub-game the Participant is shown the following 

interface: 
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Figure 122 - Game 5: User Interface (Insurance Only Treatment) 
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In this sub-game, the Participant is given a budget of $60 for each round and is presented with either a 

‘High’ or a ‘Very High’ controls system and is asked whether they wish to purchase insurance at the 

indicated premium against a randomly selected single daily loss exceeding $17. The Participant can 

interactively simulate the system by clicking ‘Test Simulate’ which, similar to the above experimental 

treatments, randomly draws a year’s worth of loss observations from a randomized 365 day period within 

30 years of simulation data for that system and displays the time series on screen. Once the participant 

chooses to either buy or decline insurance, the computer then randomly selects a 365 day simulation for 

that system and a random daily loss from that sample and calculates the budget balance ($60, less any 

insurance costs, less the loss on the day) and displays the results onscreen. The Participant proceeds to the 

next round and makes 12 insurance-only choices in total. The type of system presented in each round is 

randomly determined, and the insurance premium offered varies with the type of system presented. 

Insurance is generally more expensive for the High Controls system than it is for the Very High controls 

system, although the ‘insurance load’ also varies over the rounds as well where insurance load refers to a 

multiple of the ‘actuarially fair’ insurance premium for the simulated system type
64

. 

 

In the second sub-game, the Participant is again given a budget of $60 for each round and is presented with 

either a ‘Low’ or ‘High’ controls starting system and is asked whether they wish to purchase additional 

controls at the indicated cost. In the ‘Low’ controls starting system case, they can purchase two higher 

levels of control, converting the system into either a ‘High’ or a ‘Very High’ controls system; in the ‘High’ 

controls starting system case, they can only converting the system into a ‘Very High’ controls system: 

  

                                                                        
64 “In the absence of the ability to take precaution against accident, theory suggests that risk-averse individuals will fully insure when 

actuarially fair insurance is available. In situations where insurance is not fairly priced or where precaution is an alternative, the 

optimal choice depends on risk aversion, load and the cost of precaution. In this paper, we show theoretically that, when the 
probability of loss is more ambiguous, the demand for insurance increases. However, ambiguous increases in the probability of loss 

may increase or decrease expenditure on precaution, depending on assumptions related to the cost and benefit of precautionary 

spending. We test these results empirically in a laboratory experiment in which participants make decisions about insurance and 
precaution under different ambiguity conditions. (Bajtelsmit, Coats et al. 2015) 
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Figure 123 - Game 5: User Interface (Precaution Only Treatment) 
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As in the first sub-game, the Participant can interactively simulate the chosen system by clicking ‘Test 

Simulate’. Once the participant chooses to either buy additional controls or stay with the controls of the 

starting system, the computer then randomly selects a 365 day simulation for that system and a random 

daily loss from that sample and calculates the budget balance ($60, less any controls purchased, less the 

loss on the day) and displays the results onscreen. The Participant proceeds to the next round and makes 12 

control-only choices in total. The type of starting system presented in each round is randomly determined, 

and the control costs offered varies with the type of system presented. The control costs are otherwise 

consistent between rounds. 

 

In the third sub-game, the Participant is again given a budget of $60 for each round and is presented with 

either a ‘Low’ or ‘High’ controls starting system and is asked whether they wish to purchase additional 

controls and/or insurance at the indicated cost. The control purchase options are the same as in sub-game 2: 
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Figure 124 - Game 5: User Interface (Insurance + Precaution Treatment) 
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The insurance purchase options and the associated premium loadings are the same as in sub-game 1 with 

two exceptions: 1) insurance can now be purchased for the ‘Low’ controls system; and 2) the insurance 

premium offered is further dependent on the resulting control level of the of system as chosen by the 

Participant e.g. if they buy controls converting a Low system to a High/Very High system, the offered 

premiums are associated with a High/Very High system, with insurance loading as in sub-game 1. 

 

As in the first sub-game, the Participant can interactively simulate the chosen system by clicking ‘Test 

Simulate’. Once the participant chooses to either buy additional controls and /or additional insurance, the 

computer then randomly selects a 365 day simulation for that system and a random daily loss from that 

sample and calculates the budget balance ($60, less any controls purchased, less the loss on the day) and 

displays the results onscreen. The Participant proceeds to the next round and makes 12 control-only choices 

in total. 
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9 - Results 

 
Analytical Methods 

As was noted in Section 3 above, various structural utility models can be estimated using maximum 

likelihood methods which estimate the most likely value of the parameters given the data that is observed. 

(Quinn 2011). This differs from OLS methods, for example, which seek to estimate the parameters by 

minimizing the sum of squared errors between independent variable observations yi and βHATxi, but may not 

represent the most likely value of the parameters given the data observed. This is an important analytical 

distinction since the empirical objective here is to estimate a sufficiently descriptive theoretical model of 

choice under uncertainty for the subjects under study by allowing for observable professional and 

demographic characteristics and ‘non-traditional’ heterogeneity in the data generating process and using 

competing structural model(s) of choice which describe the subjects’ specific risk attitudes and biases.   

 

For my Pilot Study, Harrison provided his own study data and the corresponding STATA code with 

additional personal guidance which I used to learn the rudiments of maximum likelihood estimation of his 

particular EUT/PT mixed model specifications, along with documented support from his published papers. 

(Andersen, Harrison et al. 2007; Harrison and Rutström 2009). This benchmarking was successful to the 

point of confirming similar statistical results to his own and thereby allowing me to fully understand how to 

specify and estimate this form of model in STATA for my own purposes. I then replicated the model using 

my own specifications and data from my Pilot. In addition, another pilot was conducted in February 2016 

using MBA students to generate choice data for all of the indicated experiments. The resulting data from 

the Asset integration experiment were used to run test analyses in STATA for EUT, PT and EUT/PT 

mixture models in order to confirm the ability to extract, clean and code my own experimental data and 

execute the STATA scripts for the baseline Harrison models. This was successful and the resulting STATA 

scripts were used for the analyses presented here. 
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Game 1 Findings 

Analysis 

Following Andersen (Andersen, Harrison et al. 2006) we assume that the observed choices were generated 

by latent data-generating processes, each process corresponding to a different theoretical model of choice 

behaviour. We examine the two most popular models of choice under uncertainty: expected utility theory 

(EUT) and cumulative prospect theory (CPT). We estimate a finite mixture model in which both processes 

are allowed to explain the observed choice behaviour, and allow the data to tell us the relative fraction of 

the sample that each process accounts for. Our analysis assumes that there is a representative EUT 

decision-maker and a representative CPT decision-maker across all participants, in the sense that we do not 

allow any heterogeneity within each type of decision-maker. This focuses attention on the heterogeneity of 

the processes themselves. Andersen considered three further extensions, the first which was undertaken and 

two others which were not undertaken in this paper: 1) Allowing for endogenous reference points for 

determining if some outcome is a gain or a loss; 2) Allowing for heterogeneity over time in the mix 

between EUT and CPT; 3) Allowing for heterogeneity within each of the decision-making processes, so 

that we allow some EUT (CPT) decision-makers to have difference preferences than other EUT (CPT) 

decision-makers. The first extension allows for variability in both the weighting between EUT and PT 

choice models and variability in the model parameter estimates between subjects based on their specific 

demographics which permits testing of a core hypothesis of this paper. For a full review of the other 

approaches we refer the reader to Andersen’s original paper. 

 

A. Expected Utility Theory (EUT) Specification 

We assume that utility of income is defined by the Constant Relative Risk Aversion (CRRA) specification 

 

 𝑈(𝑠, 𝑥) = (𝜔𝑠 + 𝑥)𝑟𝑓𝑜𝑟 (𝜔𝑠 + 𝑥) ≥ 0 (9.1) 

 

and 

 

 𝑈(𝑠, 𝑥) = −[−(𝜔𝑠 + 𝑥)]
𝑟
𝑓𝑜𝑟 (𝜔𝑠 + 𝑥) < 0 (9.2) 

 

where s is the cumulative earnings of the subject at each choice, x is the lottery prize, and ω and r are 

parameters to be estimated. The CRRA for this specification is r, with r=1 for risk-neutral subjects, r<1 for 

risk-averse subjects, and r>1 for risk-loving subjects. When ω=0 this specification collapses to assuming 

that utility is defined solely over the prize for a particular choice; when ω=1 it collapses to assuming that 

utility is defined solely over the cumulative income for the sequence of tasks. Following the general 

arguments of Cox and Sadiraj (Cox and Sadiraj 2006) we also allow ω to take on any values between 0 and 

1, so that we can estimate what arguments of the utility function best account for observed behaviour 

without imposing one or other assumption a priori (Andersen, Harrison et al. 2006).  
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Probabilities for each outcome k, p(k), are those that were induced by the experimental setup (i.e. for each 

choice round, either those probabilities pertaining to the pie chart or the corresponding 100% probability of  

the “sure money’ choices) so expected utility is simply the probability weighted utility of each outcome in 

each lottery. Since there were up to two implicit outcomes in each lottery i, 

 

 EUi = ∑ [𝑝(𝑘)  ∗   𝑈(𝑘)]
𝑛

𝑘=1
 for n= 2 (9.3) 

 

A simple stochastic specification was used to specify likelihoods conditional on the model. The EU for 

each lottery pair was calculated for a candidate estimate of r and ω, and the index 

 

 ∇EU = (EUR – EUL) / µ (9.4)
 

 

calculated, where EUL is the left lottery (pie chart) in the display, EUR is the right lottery (‘Sure Money’), 

and μ is a Fechner noise parameter following Hey and Orme (Hey and Orme 1994). In our case, one of the 

lotteries can be degenerate representing a non-stochastic amount of money (the ‘sure money’ choice). 

Following Harrison, the index ∇EU is then used to define the cumulating probability of the observed choice 

using the cumulative standard normal distribution function: 

 

 G(∇EU) = Φ(∇EU) (9.5) 

 

Thus the likelihood, conditional on the EUT model being true, depends on the estimates of r and ω given 

the above specification and the observed choices. The conditional log-likelihood is 

 

 ln 𝐿𝐸𝑈𝑇(𝑟,𝜔; 𝑦, 𝑋) =  ∑ 𝑙𝑖
𝐸𝑈𝑇 = 𝑖 ∑ [(ln G(∇EU) | 𝑦𝑖 = 1) +  𝑖 (ln(1 − G(∇EU)) | 𝑦𝑖 = 0) (9.6) 

 

Where yi = 1(0) denotes the choice of the right(left) lottery in task i, and X is a vector of individual 

demographic characteristics (e.g. male/female, math degree, smoker, etc.)  

 

We allow each parameter to be a linear function of the observed individual characteristics of 

the participant. This is the X vector referred to above. Out of the demographics surveyed prior to the choice 

experiments, we consider six characteristics: binary (dummy) variables to identify females, the age of the 

participant, participants indicating having ‘business degree’, participants indicating a having ‘mathematics, 

economics or sciences degree’, the number of years the participant has been working in their career, the 

number of IT certifications held, and the participant’s current annual salary level. The estimates of each 

parameter in the likelihood function entails estimation of the coefficients of a linear function of these 

characteristics. So the estimate of r, r̂, to be tested in the model would be 
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r̂ = r̂0 + (r̂FEMALE × FEMALE) + (r̂AGE × AGE) + (r̂BUSINESS × BUSINESS) + (r̂MATH × MATH) + 

(r̂CERTS × CERTS) + (r̂SALARY × SALARY) 

 

where r̂0 is the estimate of the constant over all demographic dummy variables. The same linear function is 

used for ω (weighting parameter for asset integration). If we collapse this specification by dropping all 

individual characteristics, we would simply be estimating the constant terms for each of r (risk aversion) 

and ω asset integration. 

 

The maximum likelihood estimates also allow for the possibility of correlation between responses by the 

same subject
65

, so the standard errors on estimates are corrected for the possibility that the responses are 

clustered for the same subject. The use of clustering to allow for “panel effects” from unobserved 

individual effects is common in the statistical survey literature
66

. 

 

Results: 

 

Figure 125 and Table 11 indicate the evolution of the cumulative earnings of the 57 participants over 20 

rounds of choices. There is considerable variation in the earnings between participants and 7 of the 

participants went bankrupt. Since the first three lotteries were all in the gain frame, by construction, no 

subject could go bankrupt until the fourth choice.  

 

Average earnings for the entire sample, which in this experiment represents all of the participants since no 

one went bankrupt, are $64.23, with a standard deviation of $31.16. There is considerable evolution of the 

distribution of income over the life of the experiment, as expected, and this evolution is ideal for our 

experimental objective of identifying the effect of changes in earnings on reference points i.e. if everyone 

had the same income path, there would be little variation to test. 

 

 

 

 

 

 

 

 

 

                                                                        
65 In my data sets, each individual is labelled with a unique identifier (‘id’) comprised of the concatenation of the hospital site (1-12) 
and a player number (1-5). This permits identification of unique individuals within the data set. In STATA, this permits control over 

errors within each individual using the ‘cluster(id) option in the ml command.  
66 See (Andersen, Harrison et al. 2006) For the original discussion of this treatment in the context of the mixture model specification 
approach, see Harrison (Harrison and Rutström 2009) 
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Figure 125 - Game 1 Cumulating Earnings per Participant 

 

 

Table 11 - Game 1 Cumulative Earnings Across All Participants  

Round Median Mean 
Std. 
Dev. 

Minimum Maximum 

Start $6.00 $6.00 $0.00 $6.00 $6.00 

1 $12.50 $12.74 $4.70 $2.00 $21.00 

2 $22.13 $21.38 $6.84 $6.00 $35.00 

3 $25.00 $23.92 $11.34 $2.00 $50.00 

4 $25.00 $24.55 $13.87 -$10.00 $54.00 

5 $28.25 $26.31 $15.03 -$16.75 $64.00 

6 $28.75 $30.68 $13.65 $5.50 $67.75 

7 $34.00 $33.22 $16.06 $2.00 $71.50 

8 $38.50 $36.95 $18.18 -$9.00 $76.50 

9 $41.50 $40.61 $18.87 $0.25 $91.50 

10 $39.00 $41.19 $19.39 -$14.75 $77.00 

11 $42.13 $40.99 $20.24 $0.00 $91.50 

12 $43.00 $44.54 $23.02 -$5.00 $98.25 

13 $46.63 $48.16 $23.79 $9.00 $111.00 

14 $43.00 $47.44 $26.47 $8.25 $111.00 

15 $43.25 $48.35 $27.00 $7.00 $111.00 

16 $43.00 $48.66 $26.58 $5.00 $101.00 

17 $52.13 $52.06 $28.08 -$4.25 $108.00 

18 $54.75 $53.41 $29.34 -$17.00 $111.00 

19 $57.50 $59.86 $28.32 $10.75 $114.25 

20 $64.25 $64.23 $31.16 $21.00 $127.50 
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Panels A - D report the maximum likelihood estimates of choice models defined by the EUT specification. 

We report results initially with no demographic controls, constraining the effect of asset integration to zero 

(ω=0) in Panel A, ω=1 in Panel B and then, in Panel C, allowing the data to sort out the degree of 

weighting between the accumulated winnings and the marginal prospect letting ω ϵ (0,1). We then report 

results in Panel D when ω ϵ (0,1) and demographic controls are added for both ω and r: 

 

 

Table 12 – Game 1 Panel A1: Maximum Likelihood Estimates Assuming EUT 

Assuming that utility is only defined over prizes: ω=0, with no Fechner error term 

                                                  Number of obs   =      10400 

                                                  Wald chi2(0)    =          . 

Log pseudolikelihood = -6485.3642                 Prob > chi2     =          . 

 

                                    (Std. Err. adjusted for 57 clusters in id) 

------------------------------------------------------------------------------ 

             |               Robust 

             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

       _cons |   .2247362   .0430865     5.22   0.000     .1402882    .3091843 

------------------------------------------------------------------------------ 

 

 

In Table 13, assuming no error process within the decision model, we find that the CRRA estimates 

relatively strong risk aversion (r=0.225<1)
67

 when utility is defined over prizes only. The 95% confidence 

interval for CRRA under this specification is between 0.14 and 0.309. 

 

Adjusting to allow for structural errors by incorporating the Fechner error specification noted above, in 

Panel A2 we re-estimate the model with the error term ‘mu’ and the resulting estimate of risk aversion flips 

to moderately risk seeking (r =1.116,  > 1) although the estimate is not statistically different than 1:  

 

Table 13 - Game 1 Panel A2: Maximum Likelihood Estimates Assuming EUT 

Assuming that utility is only defined over prizes: ω=0, with Fechner error term 

                                                  Number of obs   =      10400 

                                                  Wald chi2(0)    =          . 

Log pseudolikelihood = -5644.2565                 Prob > chi2     =          . 

 

                                    (Std. Err. adjusted for 57 clusters in id) 

------------------------------------------------------------------------------ 

             |               Robust 

             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

r            | 

       _cons |   1.115974    .073428    15.20   0.000     .9720583    1.259891 

-------------+---------------------------------------------------------------- 

mu           | 

                                                                        
67 Recall, in the Power utility model, U(x) = xr, r=1 for risk-neutral subjects, r<1 for risk-averse subjects, and r>1 for risk-seeking 
subjects. 
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       _cons |   10.72508   2.052223     5.23   0.000     6.702792    14.74736 

------------------------------------------------------------------------------ 

 

The incorporation of a parameter allowing for noise or errors in the structural model of choice (‘mu’ or µ) 

is considered to improve the estimation of the risk aversion coefficient and is retained throughout the rest of 

the analysis unless otherwise indicated. In Panel A3 we introduce a single dummy variable indicating 

whether the participant is female (sex = 1). The resulting parameter is not statistically significant, but the 

parameter estimate indicates that females may be somewhat more risk averse than males: 

 

Table 14 - Game 1 Panel A3: Maximum Likelihood Estimates Assuming EUT 

Assuming that utility is only defined over prizes: ω=0, and demographic dummy (sex (Female) = 1) 

 

                                                  Number of obs   =      10400 

                                                  Wald chi2(1)    =       2.54 

Log pseudolikelihood = -5621.3974                 Prob > chi2     =     0.1110 

 

                                    (Std. Err. adjusted for 57 clusters in id) 

------------------------------------------------------------------------------ 

             |               Robust 

             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

r            | 

         sex |  -.1062383   .0666565    -1.59   0.111    -.2368827    .0244061 

       _cons |   1.142971   .0721315    15.85   0.000     1.001596    1.284346 

-------------+---------------------------------------------------------------- 

mu           | 

       _cons |   10.28048   2.032033     5.06   0.000     6.297765    14.26319 

------------------------------------------------------------------------------ 

 

 

In Panel B, we next examine the same data through the lens of an EUT model that assumes that the 

argument of utility is cumulative income, initially with ω=1. Here infer that subjects remain risk-seeking 

although no more so than if cumulative income is ignored as in Panels A above: the point estimate of r in 

this case is 1.15, and the 95% confidence interval does not quite include r=1. The decrease in the log-

likelihood value in Panel B vs. Panel A2 suggests that the inclusion of cumulative income in the total prize 

amounts is a marginally better specification from an EUT perspective.  

 

Table 15 - Game 1 Panel B: Maximum Likelihood Estimates Assuming EUT 

Assuming that utility is defined over cumulative income and prizes: ω=1 

                                                  Number of obs   =      10400 

                                                  Wald chi2(0)    =          . 

Log pseudolikelihood = -5630.6826                 Prob > chi2     =          . 

 

 ( 1)  [omega]_cons = 1 

                                    (Std. Err. adjusted for 57 clusters in id) 

------------------------------------------------------------------------------ 

             |               Robust 

             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 
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r            | 

       _cons |   1.151501   .0671945    17.14   0.000     1.019802      1.2832 

-------------+---------------------------------------------------------------- 

omega        | 

       _cons |          1          .        .       .            .           . 

-------------+---------------------------------------------------------------- 

mu           | 

       _cons |   12.75556   3.240903     3.94   0.000     6.403504    19.10761 

------------------------------------------------------------------------------ 

 

 

In Panel C, ω is allowed to take on any value between 0 and 1. The estimated parameter (‘omega_’) is 

actually the log odds of the term we are interested in (‘omega’), in order to ensure that the resulting weight 

falls between zero and 1, where: 

 

 `omega' = 1 / (1+exp(`omega_')) (9.7) 

 

The log odds parameter estimate is then converted back to the weight in the range (0,1) from the using the 

STATA command ‘nlcom’. This convention is also used throughout wherever a term is required to fall 

within the range (0,1).
68

  

 

Table 16 - Game 1 Panel C: Maximum Likelihood Estimates Assuming EUT 

Assuming that utility is defined over a weighted average of cumulative income and prizes: ωϵ(0,1) 

 

                                                  Number of obs   =      10400 

                                                  Wald chi2(0)    =          . 

Log pseudolikelihood = -5628.9519                 Prob > chi2     =          . 

 

                                    (Std. Err. adjusted for 57 clusters in id) 

------------------------------------------------------------------------------ 

             |               Robust 

             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

r            | 

       _cons |   1.155826   .0688995    16.78   0.000     1.020785    1.290866 

-------------+---------------------------------------------------------------- 

omega_       | 

       _cons |    .701709   .0324723    21.61   0.000     .6380645    .7653535 

-------------+---------------------------------------------------------------- 

mu           | 

       _cons |   13.25913   3.505291     3.78   0.000     6.388891    20.12938 

                                                                        
68 For example, in Games 2 and 3 where we are interested in estimating the subjective probability estimate of the participants, the 

estimated probability is similarly constrained using the log odds form of the parameter within the model, and converted back from the 
log value to evaluate the resulting estimated parameter which is expected to fall between 0 and 1. According to Harrison: 

 

“…we allow non-linear transforms of the core parameter to be estimated. This allows STATA to happily 
maximize over some variable that ranges from -∞ to +∞, but for the underlying parameter in the economic 

model to be constrained. The error term [for example] can be constrained to be non-negative, by estimating the 

(natural) log of the parameter and then converting to the underlying parameter we want using generate double 

`mu' = exp(`LNmu'). Similarly, we can constrain the estimates of [probability estimates] to lie in the open 

interval (0,1) by estimating the log odds transform of the parameters we are really interested in, and converting 

using generate double `u5' = 1/(1+exp(`u5_'))…This transform is one of several used by 

statisticians; for example, see Rabe-Hesketh and Everitt [2004; p. 244].” {Harrison, 2008 #48} 
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------------------------------------------------------------------------------ 

 

. nlcom (omega: 1/(1+exp([omega_]_b[_cons]))) 

 

------------------------------------------------------------------------------ 

             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

       omega |   .3314334   .0071954    46.06   0.000     .3173307    .3455361 

------------------------------------------------------------------------------ 

 

 

In this result participants are similarly risk seeking (r = 1.16, >1) but the estimated omega term (.331) 

indicates that approximately 33% of the decision weight is attributed to the accumulated earnings as 

opposed to the value of the prizes presented on each choice round.  

 

Panel D extends the general specification in Panel C to allow for demographic variation in both ω and r. 

After controlling for demographic effects, participants still appear to be slightly risk seeking (i.e. r_ = 1.11, 

> 1). While only age and sex are significant at the 95% level, age, sex (female), business degrees, and IT  

certifications all increase risk aversion, while a math degree, increased work years and income all lower 

risk aversion on average.  After controlling for demographics, the average weighting for cumulative 

earnings drops to .122, however there is substantial demographic heterogeneity with respect to both the risk 

aversion parameter r and the weighting parameter ω: 

 

Table 17 - Game 1 Panel D: Maximum Likelihood Estimates Assuming EUT 

Assuming that utility is defined over a weighted average of cumulative income and prizes: ωϵ(0,1) 

with demographics 

 

                                                  Number of obs   =      10400 

                                                  Wald chi2(7)    =      11.57 

Log pseudolikelihood = -5541.0479                 Prob > chi2     =     0.1156 

 

                                    (Std. Err. adjusted for 57 clusters in id) 

------------------------------------------------------------------------------ 

             |               Robust 

             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

r            | 

         age |  -.0974969   .0447677    -2.18   0.029      -.18524   -.0097539 

         sex |  -.1796082   .0668553    -2.69   0.007    -.3106423   -.0485742 

         bus |  -.0470725   .0464241    -1.01   0.311    -.1380621    .0439172 

        math |   .0138011   .0425507     0.32   0.746    -.0695968     .097199 

   workyears |   .0460034   .0250433     1.84   0.066    -.0030806    .0950873 

       certs |  -.0215968   .0146979    -1.47   0.142    -.0504042    .0072106 

      income |   .0040181   .0379658     0.11   0.916    -.0703934    .0784297 

       _cons |    1.10624   .0905453    12.22   0.000      .928774    1.283705 

-------------+---------------------------------------------------------------- 

omega_       | 

         age |   56.00383   9.768628     5.73   0.000     36.85767    75.14999 

         sex |   20.10691   2.927977     6.87   0.000     14.36818    25.84564 

         bus |   15.08322   1.751977     8.61   0.000     11.64941    18.51703 

        math |  -10.31344   3.496679    -2.95   0.003     -17.1668   -3.460074 

   workyears |  -20.24997   2.930177    -6.91   0.000    -25.99301   -14.50693 

       certs |  -30.53077   5.313834    -5.75   0.000     -40.9457   -20.11585 

      income |  -30.85692   5.314535    -5.81   0.000    -41.27322   -20.44063 
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       _cons |   1.971869   .1051358    18.76   0.000     1.765807    2.177932 

-------------+---------------------------------------------------------------- 

mu           | 

       _cons |   6.736277    1.53528     4.39   0.000     3.727183     9.74537 

------------------------------------------------------------------------------ 

 

. nlcom (omega: 1/(1+exp([omega_]_b[_cons]))) 

 

------------------------------------------------------------------------------ 

             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

       omega |   .1221883   .0112767    10.84   0.000     .1000864    .1442902 

------------------------------------------------------------------------------ 

 

Figures 126 and 127 illustrate the kernel density functions of the predicted values of CRRA and Omega 

across all participants, indicating significant diversity across participants. CRRA estimates indicate 

participants range from slightly risk seeking to very risk averse. Omega is clearly multi-modal where a 

substantial proportion of participants effectively do not substantially consider cumulative earnings when 

making bets (omega < .2), whereas the next highest proportion of participants weight cumulative earnings 

in excess of 90% (omega >.9): 

 

Figure 126 - Kernel density of the Game 1 CRRA estimates, with demographics 
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Figure 127 - Kernel density of the Game 1 Omega estimates, with demographics 

 
 

 

Cumulative Prospect Theory (CPT) Specification 

The Cumulative Prospect Theory (CPT) model is an extension of the EUT model to account for probability 

weighting and loss aversion relative to a reference point. We assume that utility is defined by the CRRA 

specification 

 

 U(x) = 𝑥𝛼 for x ≥ 𝜒 (9.8) 

 

and  

 U(x) = −𝜆(−𝑥)𝛽 for x ≥ 𝜒 (9.9) 

 

where alpha (α) is the CRRA parameter in the gain domain, beta (β) is the CRRA parameter in the loss 

domain,  lambda (λ) is the loss aversion parameter, and χ is the reference point used to define if lottery 

prize x is a gain or a loss. When χ=0 this specification collapses to assuming that utility is defined solely 

over the prize for a particular choice, and that the subject determines gain and loss frames directly from the 

sign of the prize: that is, the reference point is $0. When χ>0 we allow the subject to characterize prizes x 

as gains or losses even if x>0. We discuss the specification of χ further below. 

 

In the PT model the decision maker is assumed to employ weighted probabilities rather than the 

probabilities induced by the experimenter, although a special case is where the objective probabilities are 

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1
Estimated Omega
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not weighted. Tversky and Kahneman(Tversky and Kahneman 1992) posit a simple weighting function 

proposed by 

 

 w(p) = 𝑝𝛾 /[𝑝𝛾 + (1 − 𝑝)𝛾]
1
𝛾⁄  (9.10) 

 

for induced probabilities p and parameter gamma (γ). When γ=1 this function collapses to the standard 

EUT specification that w(p) = p. When γ<1, the usual case, the decision maker exhibits overweighting of 

low probabilities and underweighting of higher probabilities, with fixed point w(p)=p at p=1/3. 

 

Assuming that SPT is the true model, prospective utility PU is defined in much the same manner as when 

EUT is assumed to be the true model. The PT utility function is used instead of the EUT utility function, 

and w(p) is used instead of p, but the steps are otherwise identical. Under CPT, however, there is an 

additional step required to transform the w(p) values into decision weights. The weighting function is given 

by w(p) above, but the prospective utility of lottery i under CPT is now defined as 

 

 PUi = [ w(p2)U(k2) + (1- w(p2))U(k1)] (9.11) 

 

where k2 > k1. The difference in prospective utilities under CPT is then defined in the same way as under 

EUT. The index 

 

 ∇PU = (PUR – PUL) / µ (9.12)  

 

is calculated, where PU replaces EU in the EUT specification. Again, this index of differences in 

prospective utility can be transformed into a cumulative distribution using 

 

 G(∇PU) = Φ(∇PU) (9.12) 

 

The likelihood, conditional on the CPT model being true, depends on the estimates of α, β, λ and γ given 

the above specification and the observed choices. The conditional log-likelihood is 

 

 ln 𝐿𝑃𝑇(α, β, λ, 𝛾 ; 𝑦, 𝑋) =  ∑ 𝑙𝑖
𝑃𝑇 = 𝑖 ∑ [(ln G(∇PU) | 𝑦𝑖 = 1) +  𝑖 (ln(1 − G(∇PU)) | 𝑦𝑖 = 0)] (9.13) 

 

Again, each parameter can be estimated as a linear function of a vector of characteristics, X. This includes 

the individual demographic characteristics used for the EUT model. 

 

It should be noted that PT differs from EUT in many respects, but one that is important for present 

purposes is the treatment of reference points. PT is quite clear that the argument of the utility function is to 

be the prospect over which the choice is being made and not some broader concept of income or lifetime 
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wealth. Thus, allowing the reference point to be non-zero (χ ≥ 0) is distinct from assuming that the 

argument of the utility function is something other than the immediate prospect. 

 

Panel E reports maximum likelihood estimates of the CPT model assuming homogenous agents (no 

demographics) and a zero wealth reference point: 

 

Table 18 – Game 1 Panel E: Maximum Likelihood Estimates Assuming CPT 

Assuming zero is the wealth reference point: ω=0 

 

                                                  Number of obs   =       9610 

                                                  Wald chi2(0)    =          . 

Log pseudolikelihood = -5747.0906                 Prob > chi2     =          . 

 

                                    (Std. Err. adjusted for 52 clusters in id) 

------------------------------------------------------------------------------ 

             |               Robust 

             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

alpha        | 

       _cons |   .3264526   .0353169     9.24   0.000     .2572329    .3956724 

-------------+---------------------------------------------------------------- 

beta         | 

       _cons |   1.396031   .1464688     9.53   0.000     1.108957    1.683104 

-------------+---------------------------------------------------------------- 

lambda       | 

       _cons |   .0246151   .0127038     1.94   0.053     -.000284    .0495142 

-------------+---------------------------------------------------------------- 

gamma        | 

       _cons |   .9271024   .0411127    22.55   0.000      .846523    1.007682 

------------------------------------------------------------------------------ 

 

 

The first result is that subjects have coefficients for α and β that are generally consistent with them being 

risk averse over gains (α < 1) and risk seeking over losses (β > 1). The second result is that the probability 

weighting parameter gamma (γ) is estimated to be 0.927, indicating that participants probability weight in 

the usual fashion: overweighting low probabilities and underweighting higher probabilities, although the 

estimate is only marginally different than 1 at the 95% level. In this model the loss aversion parameter 

lambda (λ) is estimated to be not statistically different than zero indicating no loss aversion. 

 

Panel F reports maximum likelihood estimates of the CPT model assuming heterogeneous agents and 

allowing for demographic variation in the estimated parameters. The maximum likelihood model specified 

over all possible demographic variables did not converge, so the model was re-estimated for a subset of the 

demographic attributes: sex, bus, math, and income: 
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Table 19 - Game 1 Panel F: Maximum Likelihood Estimates Assuming CPT 

Allowing for Demographic Heterogeneity 

 

                                                  Number of obs   =       9610 

                                                  Wald chi2(4)    =       8.08 

Log pseudolikelihood = -5601.8098                 Prob > chi2     =     0.0888 

 

                                    (Std. Err. adjusted for 52 clusters in id) 

------------------------------------------------------------------------------ 

             |               Robust 

             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

alpha        | 

         sex |  -.1397724   .0724272    -1.93   0.054     -.281727    .0021823 

         bus |  -.0823576   .0821773    -1.00   0.316    -.2434221     .078707 

        math |   .0744085   .0737446     1.01   0.313    -.0701283    .2189454 

      income |   -.098969   .0564576    -1.75   0.080    -.2096239    .0116858 

       _cons |   .5175003   .0855237     6.05   0.000     .3498769    .6851236 

-------------+---------------------------------------------------------------- 

beta         | 

         sex |   .5593686   .3446937     1.62   0.105    -.1162188    1.234956 

         bus |  -.3117955   .2474982    -1.26   0.208     -.796883     .173292 

        math |   .1162828   .2070025     0.56   0.574    -.2894347    .5220002 

      income |   .1251098   .1465526     0.85   0.393    -.1621281    .4123476 

       _cons |     1.0502   .2762887     3.80   0.000     .5086845    1.591716 

-------------+---------------------------------------------------------------- 

lambda       | 

         sex |  -.0472633   .0249525    -1.89   0.058    -.0961692    .0016427 

         bus |    .024558   .0221931     1.11   0.268    -.0189397    .0680557 

        math |   .0040453   .0052592     0.77   0.442    -.0062625    .0143532 

      income |  -.0125178   .0114439    -1.09   0.274    -.0349473    .0099118 

       _cons |   .0665895    .030895     2.16   0.031     .0060365    .1271425 

-------------+---------------------------------------------------------------- 

gamma        | 

         sex |   .0140913   .1129323     0.12   0.901    -.2072519    .2354345 

         bus |  -.0018316   .0900635    -0.02   0.984    -.1783527    .1746895 

        math |  -.1613296   .1167301    -1.38   0.167    -.3901163    .0674572 

      income |   .0916806   .0604511     1.52   0.129    -.0268014    .2101627 

       _cons |   .8313479   .1213022     6.85   0.000        .5936    1.069096 

------------------------------------------------------------------------------ 

 

Here allowing for demographic heterogeneity, coefficients for α and β draw closer together and now 

indicating risk aversion in gains (α < 1). Risk aversion in losses has decreased and is now not statistically 

different than 1 (β = 1). The probability weighting parameter gamma (γ) has also decreased indicating no 

overweighting/underweighting of low/high probabilities respectively. The loss aversion parameter lambda 

(λ) has increased and is now statistically greater than zero indicating a slight tendency towards loss 

aversion.   

 

Figure 128 illustrate the kernel density functions for alpha and beta estimates across all participants, 

indicating significant diversity across participants: 
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Figure 128 - Kernel density for Game 1 CPT alpha and beta estimates, with demographics 

 
 

 

B. Mixture (EUT + CPT) Model Specification 

If we let π
EUT

 denote the probability that the EUT model is correct, and π
PT

 = (1-π
EUT

) denote the 

probability that the PT model is correct, a grand likelihood can be written as the probability weighted 

average of the conditional likelihoods. The likelihood for the overall model is then defined by 

 

 ln 𝐿(𝑟, 𝑤, α, β, λ, 𝛾, 𝜒, πEUT; 𝑦, 𝑋) =  ∑ 𝑙𝑛[(πEUT ∗  𝑙𝑖
EUT)𝑖 + (πPT ∗  𝑙𝑖

PT)] (9.14) 

 

This log-likelihood can be maximized to find estimates of the parameters. 
 
This approach assumes that any one observation can be generated by both models, although it also permits 

extremes in which one or other model wholly generates the observation. One could alternatively define a 

grand likelihood in which observations or subjects are classified as following one model or the other on the 

basis of the latent probabilities π
EUT

 and π
PT

. We will interpret estimates of π
EUT

 and hence π
PT

 as reflecting 

the fraction of the observations consistent with each model, and can interpret these probabilities as the 

fraction of subjects consistent with each model. These interpretations are perfectly consistent with the 

statistical specification above, but they are interpretations and there are others that are possible. 

 

0 .25 .5 .75 1 1.25 1.5 1.75 2
alpha and beta Estimates

alpha beta
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Panel G indicates the maximum likelihood estimates, assuming that the EUT and PT agents are each 

homogeneous where the only heterogeneity that is allowed in this model is with respect to the latent 

decision generating model EUT or PT: 

 

Table 20 - Game 1 Panel G: Maximum Likelihood Estimates for EUT/PT Mixture Model 

Assuming wealth point is a weighted average of cumulative income and prizes: ωϵ(0,1) 

 

                                                  Number of obs   =       6650 

                                                  Wald chi2(0)    =          . 

Log pseudolikelihood = -3319.9808                 Prob > chi2     =          . 

 

                                    (Std. Err. adjusted for 37 clusters in id) 

------------------------------------------------------------------------------ 

             |               Robust 

             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

alpha        | 

       _cons |   1.64e-09          .        .       .            .           . 

-------------+---------------------------------------------------------------- 

beta         | 

       _cons |   .0613272   .2947925     0.21   0.835    -.5164554    .6391099 

-------------+---------------------------------------------------------------- 

lambda       | 

       _cons |  -.4498638   .2762334    -1.63   0.103    -.9912712    .0915436 

-------------+---------------------------------------------------------------- 

gamma        | 

       _cons |   1.013418   .0152242    66.57   0.000     .9835788    1.043257 

-------------+---------------------------------------------------------------- 

r            | 

       _cons |    .911611    .051465    17.71   0.000     .8107414    1.012481 

-------------+---------------------------------------------------------------- 

omega_       | 

       _cons |  -36.86966   10.72313    -3.44   0.001    -57.88662    -15.8527 

-------------+---------------------------------------------------------------- 

kappa        | 

       _cons |  -.6327859   .2171831    -2.91   0.004    -1.058457   -.2071149 

------------------------------------------------------------------------------ 

       omega:  1/(1+exp([omega_]_b[_cons])) 

        pEUT:  1/(1+exp([kappa]_b[_cons])) 

         pPT:  exp([kappa]_b[_cons])/(1+exp([kappa]_b[_cons])) 

------------------------------------------------------------------------------ 

             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

       omega |          1          .        .       .            .           . 

        pEUT |   .6531209   .0492037    13.27   0.000     .5566834    .7495584 

         pPT |   .3468791   .0492037     7.05   0.000     .2504416    .4433166 

------------------------------------------------------------------------------ 

* test probEUT = probPT 

. testnl 1/(1+exp([kappa]_b[_cons])) - 

exp([kappa]_b[_cons])/(1+exp([kappa]_b[_cons])) = 0  

 

chi2(1) =        9.68 

Prob > chi2 =    0.0019 

 

The first result is that the EUT model is estimated to have 65% support (pEUT), indicating that the latent 

data generating process assumed by EUT accounts for approximately 2/3 of the choice observations ,with 

the CHI square test of the difference between the EUT and PT weightings significant at the 95% level. 
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The second result is that EUT subjects tend to be risk averse, with a CRRA of .912. This is lower than the 

estimates shown in Panel C (r = 1.14), which assumed that EUT characterized every observation and not 

just a percentage of the observations. The third result is that the EUT subjects tend to consider the prizes 

they are faced in conjunction with cumulative income when making decisions (omega ~= 1), again in 

marked qualitative contrast to the findings when we assumed that EUT characterized every observation. 

From Panel C we have estimates of ω that are comparatively low (52%), implying that subjects consider 

the utility from both the prizes and cumulative earnings about equally in each lottery. From Panel G we 

have an estimate of ω that implies that a weight of approximately 100% is placed on cumulative income. 

The logic of this difference is immediate from the finding that a large percentage of the observations are 

better characterized by EUT: the analysis that required that 100% of the observations “fit into the EUT 

model” effectively required that the parameters of the EUT model account for the 34% of the data that was 

‘actually’ generated by the PT model. In that case the implicit weight on cumulative income in the utility 

function is 0, by definition, so the EUT model needed to account for those observations as well. 

 

Turning to the parameters from the PT data-generating process estimated in Panel G, we find some robust 

results with respect to the earlier estimates of the PT model when it was assumed to characterize 100% of 

the observations. First, the risk aversion parameters consistently suggest risk aversion over gains and 

losses: α = 0 and β not statistically different than 0.  Second, there is no evidence of significant probability 

weighting, with gamma (γ) now statistically closer to 1 than it was in Panel E when PT was assumed to 

characterize the complete sample. Some shift would have been expected since γ=1 for EUT subjects, and 

PT was required to explain their behaviour in Table 18 Panels E and F; in Table 20 it is “free” to just 

characterize the PT subjects. Third, there is no consistent evidence of loss aversion and the estimated 

parameter would actually indicate loss seeking (lambda = -.44 < 1). Even though the estimate of lambda is 

less than 1 (indicating loss-seeking), this parameter has a standard error of 0.276 and a 95% confidence 

interval between -0.99 and 0.09 and is not significantly different than zero. Thus we find no evidence of 

loss aversion in this case, although the imprecision of the estimate of λ may be due to a combination of the 

participant heterogeneity that is assumed away in this specification and the relatively smaller number of 

observations attributed to PT decision making in a loss frame. The maximum likelihood model was, 

unfortunately, not able to converge using demographic explanatory variables and no further decomposition 

of these estimated variables to account for participant heterogeneity was possible.  
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Game 2 Findings 

1 – Eliciting Subjective Bayesian Beliefs 

 

Analysis 

Following Antoniou (Andersen, Harrison et al. 2006) we assume responses to the belief elicitation task can 

be used to draw estimates about the belief that each subject holds if we are willing to assume something 

about how they make decisions under risk. To allow for the general case in which we have risk aversion, 

we jointly estimate the subjective probability and the parameters of the utility function as noted previously.  

 

As described above,  

 U(x) = x
 1-r

 / (1-r) (9.15) 

 

where “r” is the ‘coefficient of risk aversion’ and “x” is the monetary value of the outcome (>0), where r=0 

corresponds to risk neutrality, r<0 to risk loving, and r>1 to risk aversion.  The coefficient of risk aversion 

is constant for the power function family. ‘Expected utility’ is then specified as the probability conditioned 

utility, 

 

 𝐸𝑈𝑖 = ∑ (𝑝𝑘𝑘=1,𝐾 × 𝑈(𝑥)𝑘) (9.16) 

 

where p is the probability of the outcome and U(x) is the CRRA specified utility function. 

 

In each round, the participant bet as to whether the sample of daily losses were generated by a ‘Low 

Controls System’ or a ‘High Controls System’. Table 21 sets out the lotteries over which the participant 

makes bets with 19 bookies:  
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Table 21 - Game 2 Betting Table 

    Payout 
including stake of $3, if 
you pick right system 

    

  

Odds Offered 

  
Yellow 
System 

(Low 
Controls) 

Orange 
System 
(High 

Controls) 

Yellow 
System 

(Low 
Controls) 

Orange 
System 
(High 

Controls) 
Bookie # Stake 

1 $3.00 20:1 1.05:1 $60.00 $3.15 

2 $3.00 10:1 1.11:1 $30.00 $3.33 

3 $3.00 6.67:1 1.18:1 $20.00 $3.54 

4 $3.00 5:1 1.25:1 $15.00 $3.75 

5 $3.00 4:1 1.33:1 $12.00 $4.00 

6 $3.00 3.33:1 1.43:1 $10.00 $4.29 

7 $3.00 2.86:1 1.54:1 $8.58 $4.62 

8 $3.00 2.5:1 1.67:1 $7.50 $5.00 

9 $3.00 2.22:1 1.82:1 $6.66 $5.46 

10 $3.00 2:1 2:1 $6.00 $6.00 

11 $3.00 1.82:1 2.22:1 $5.46 $6.66 

12 $3.00 1.67:1 2.5:1 $5.00 $7.50 

13 $3.00 1.54:1 2.86:1 $4.62 $8.58 

14 $3.00 1.43:1 3.33:1 $4.29 $10.00 

15 $3.00 1.33:1 4:1 $4.00 $12.00 

16 $3.00 1.25:1 5:1 $3.75 $15.00 

17 $3.00 1.18:1 6.67:1 $3.54 $20.00 

18 $3.00 1.11:1 10:1 $3.33 $30.00 

19 $3.00 1.05:1 20:1 $3.15 $60.00 
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Using the betting table above, the subject that believes the loss data was generated by the Low Controls 

system (event “A” or the ‘left hand’ binary choice) and selecting “Low Controls System” from a given 

bookie ‘b’ receives EU 

 

EULOW CONTROLS SYSTEM = πLOW CONTROLS SYSTEM × U(payout if the system generating the observations was a 

Low Controls system | bet that the system was a Low Controls system) + 

(1- πLOW CONTROLS SYSTEM) × U(payout if the system generating the observations was a High Controls system 

| bet that the system was a Low Controls system) 

(9.17) 

 

where πLOW CONTROLS SYSTEM is the subjective probability that the system generating the losses was a Low 

Controls System. The payouts that enter the utility function are defined by the odds that each bookie offers, 

and are shown in the betting table. For the bet offered by the first bookie, for example, these payouts are 

$60 and $0, so we have 

 

EULOW CONTROLS SYSTEM = πLOW CONTROLS SYSTEM × U($60) + (1- πLOW CONTROLS SYSTEM) × U($0) 

(9.18) 

 

Where the participant potentially earns $60 is correct but nothing if incorrect. 

 

We similarly define the EU received from a bet on a High Controls System (event “B” or the ‘right hand’ 

binary choice) as the complement of event A: 

 

EUHIGH CONTROLS SYSTEM = πLOW CONTROLS SYSTEM × U(payout if the system generating the observations was a 

Low Controls system | bet that the system was a High Controls system) + 

(1- πLOW CONTROLS SYSTEM) × U(payout if the system generating the observations was a High Controls system 

| bet that the system was a High Controls system) 

(9.19) 

 

and this translates for the first bookie in Table 21 into payouts of $0 and $3.15 (i.e. the participant 

potentially earns $0 if incorrect as usual, but $3.15 if correct, so we have 

 

EUHIGH CONTROLS SYSTEM = πLOW CONTROLS SYSTEM × U($0) + (1- πLOW CONTROLS SYSTEM) × U($3.15) 

(9.20) 

 

for this particular bookie and bet. We observe the bet made by the subject for a range of odds, so we can 

calculate the likelihood of that choice given values of r (risk aversion), πLOW CONTROLS SYSTEM and μ. 
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The rest of the structural specification is exactly the same as for the choices over lotteries with objective 

probabilities. Given the specifications for EULOW CONTROLS SYSTEM  and EUHIGH CONTROLS SYSTEM above, we 

can define the latent index as 

 

 ∇EU = (EULOW – EUHIGH) (9.21) 

 

for each of the ‘Low Controls System’ and ‘High Controls System’ bets from Table 21. We then define the 

probability of choosing a Low Controls System as  

 

 prob(choose B) = Φ [ (∇EU) / ν ) / μ ] (9.22) 

 

where ν is a normalizing term for the value of each bookie choice pair and μ >0 is a structural “noise 

parameter” for the belief choices that is used to allow some errors from the perspective of the deterministic 

SEU model
69

. 

 

Writing out the complete likelihood function, we have 

 

ln L(r, πLOW CONTROLS SYSTEM, μ; y, X) = Σi [ (ln Φ(∇EU)×I(yi = 1)) + (ln (1-Φ(∇EU))×I(yi = −1)) ] 

(9.23) 

 

for the observed choices in the experiment defined over subjective probabilities. 

 

It is useful to see how the estimation procedure maps back to the economics of the SEU model. Ignoring 

the behavioural error term μ, we need r to evaluate the utility function, we need πLOW CONTROLS SYSTEM to 

calculate the EU once we know the utility values, and we need both of them to calculate the latent index 

that generates the probability of observing the choice of bet “Low Controls System” or bet “High Controls 

System”. The joint maximum likelihood problem is to find the values of these parameters that best explain 

observed choices in the game.  

 

This formal analysis assumes that we are estimating one subjective probability πLOW CONTROLS SYSTEM. There 

are two simple extensions that allow us to consider a complete design, which involves the 6 posterior 

probabilities shown in Table 22: 

                                                                        
69 Antoniou: “The normalizing term ν is defined as the maximum utility over all prizes in this lottery pair minus the minimum utility 

over all prizes in this lottery pair, and ensures that the normalized EU difference [(EUR - EUL)/ν] remains in the unit interval. As μ → 

∞ this specification collapses ∇EU to 0 for any values of EUR and EUL, so the probability of either choice converges to ½. So a larger 
μ means that the difference in the EU of the two lotteries, conditional on the estimate of r, has less predictive effect on choices. Thus μ 

can be viewed as a parameter that flattens out, or “sharpens,” the link functions implicit in (4). This is just one of several different 

types of error story that could be used, and Wilcox (2008) provides a masterful review of the implications of the strengths and 
weaknesses of the major alternatives.” (Antoniou, Harrison et al. 2010) 
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Table 22 - Game 2 Observations (n=25,327) 

Objective Posterior Probabilities of a Low System generating a given the number of Loss 

Observations vs. the number of observed Loss Observations  

 

Posterior 

Probability of the 

Losses being 

generated by a 

“Low Controls 

System” 

Total Number of 

Loss Observations 

Drawn from 365 

days of simulated 

losses 

Actual Number of 

Loss Observations 

> $17,000 

Actual Number of 

Loss Observations 

<= $17,000 

Number of Rounds 

played with this 

combination 

(n = 25,327 rounds 

total) 

.12 
5 

9 

17 

0 

2 

6 

5 

7 

11 

760 

399 

722 

.23 

3 

5 

9 

17 

0 

1 

3 

7 

3 

4 

6 

10 

589 

2185 

817 

475 

0.4 

3 

5 

9 

17 

1 

2 

4 

8 

2 

3 

5 

9 

1349 

3743 

1292 

722 

0.6 

3 

5 

9 

17 

2 

3 

5 

9 

1 

2 

4 

8 

1425 

3629 

969 

570 

0.77 

3 

5 

9 

17 

3 

4 

6 

10 

0 

1 

3 

7 

551 

2033 

798 

722 

0.88 
5 

9 

17 

5 

7 

11 

0 

2 

6 

399 

532 

646 

 

 The first is to assume symmetry, in the sense that the estimate of πLOW CONTROLS SYSTEM is treated as (1- 

πLOW CONTROLS SYSTEM) when evaluating the choices made for the corresponding task. In other words, if we 

only use the choices for the betting task that has posterior probability 0.60, we could directly apply the 

existing formal analysis. But we can also include the choices for the betting task that has posterior 

probability 0.40, and assume that the subjective probability for those choices is one minus the subjective 

probability for the choices with posterior probability 0.60. Therefore we only need to estimate one 

subjective probability. This seems to be an innocuous assumption, and is directly testable. The second 

extension is then to introduce two extra subjective probability parameters, so we have one for the betting 

task with posterior probability 0.6 (and 0.4 by symmetry), one for the betting task with posterior probability 

0.77 (and 0.23), and one for the betting task with posterior probability 0.88 (and 0.12). Hence we have to 

estimate one risk attitude parameter and three subjective probabilities, along with the one behavioural error 

term. 
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Results 

1 – Eliciting Subjective Bayesian Beliefs 

Panel A1 reports the maximum likelihood estimates of the SEU probabilities with no demographic 

controls: 

 

Table 23 - Game 2 Panel A1: Maximum Likelihood Estimates Assuming SEUT 

Subjective Expected Utility Model with Fechner error term 

 

                                                  Number of obs   =      25327 

                                                  Wald chi2(0)    =          . 

Log pseudolikelihood = -14642.796                 Prob > chi2     =          . 

 

                                    (Std. Err. adjusted for 53 clusters in id) 

------------------------------------------------------------------------------ 

             |               Robust 

             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

r            | 

       _cons |   .0178005   .0319052     0.56   0.577    -.0447326    .0803336 

-------------+---------------------------------------------------------------- 

sprob1_      | 

       _cons |  -.4237312   .1079295    -3.93   0.000    -.6352691   -.2121934 

-------------+---------------------------------------------------------------- 

sprob2_      | 

       _cons |  -.9073699   .2043991    -4.44   0.000    -1.307985   -.5067551 

-------------+---------------------------------------------------------------- 

sprob3_      | 

       _cons |  -.8613967   .2559962    -3.36   0.001     -1.36314   -.3596533 

-------------+---------------------------------------------------------------- 

LNmuB        | 

       _cons |  -.6046584   .2033545    -2.97   0.003    -1.003226    -.206091 

------------------------------------------------------------------------------ 

 

.     nlcom (sprob1: 1/(1+exp([sprob1_]_b[_cons]))) (sprob2: 

1/(1+exp([sprob2_]_b[_cons]))) (sprob3: 1/(1+exp([sprob3_]_b[_cons]))) 

 

      sprob1:  1/(1+exp([sprob1_]_b[_cons])) 

      sprob2:  1/(1+exp([sprob2_]_b[_cons])) 

      sprob3:  1/(1+exp([sprob3_]_b[_cons])) 

 

------------------------------------------------------------------------------ 

             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

      sprob1 |   .6043757   .0258065    23.42   0.000     .5537958    .6549557 

      sprob2 |   .7124617   .0418732    17.01   0.000     .6303917    .7945316 

      sprob3 |   .7029524   .0534547    13.15   0.000     .5981832    .8077216 

------------------------------------------------------------------------------ 

 

 

In Panel A1, we find evidence of risk seeking with r=0.017, >0 but statistically insignificant from zero
70

.  

The estimated subjective posterior probabilities are sprob1 = 0.604 (vs. 0.6); sprob2 = .712 (vs. 0.77) and 

sprob 3 = 0.703 (vs. .88), with only sprob3 being statistically different than the true Bayesian posterior 

                                                                        
70 To check this result we also ran a model with r constrained to zero – the results are not reported here but were essentially identical to 
Panel A.  
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probability at a 95% confidence level. There is general underestimation of the Bayesian posterior 

probabilities that increases with the objective probability but with significant dispersion of the estimates 

across individuals and with precision declining as the posterior gets larger. Correspondingly, these results 

also imply a systematic overestimation of the true Bayesian posterior probability when the posterior is less 

than 0.5, becoming larger as the posterior decreases from 0.4 to 0.23 and 0.12.  

 

If we rerun this model under the assumption of risk neutrality (r=.001), the results do not change 

substantially, indicating that there is no substantial difference in subjective probability estimates under an 

assumption of Risk neutrality: 

 

Figure 129 - Game 2 Panel A2: Maximum Likelihood Estimates Assuming SEUT and Risk Neutrality 

                                                  Number of obs   =      25327 

                                                  Wald chi2(0)    =          . 

Log pseudolikelihood = -14643.255                 Prob > chi2     =          . 

 

 ( 1)  [r]_cons = .001 

                                    (Std. Err. adjusted for 53 clusters in id) 

------------------------------------------------------------------------------ 

             |               Robust 

             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

r            | 

       _cons |       .001          .        .       .            .           . 

-------------+---------------------------------------------------------------- 

sprob1_      | 

       _cons |   -.423196   .1073301    -3.94   0.000    -.6335592   -.2128327 

-------------+---------------------------------------------------------------- 

sprob2_      | 

       _cons |  -.9061668   .2032307    -4.46   0.000    -1.304492   -.5078418 

-------------+---------------------------------------------------------------- 

sprob3_      | 

       _cons |  -.8608141   .2556783    -3.37   0.001    -1.361934   -.3596939 

-------------+---------------------------------------------------------------- 

LNmuB        | 

       _cons |  -.4961234   .1060705    -4.68   0.000    -.7040177    -.288229 

------------------------------------------------------------------------------ 

 

.     nlcom (sprob1: 1/(1+exp([sprob1_]_b[_cons]))) (sprob2: 

1/(1+exp([sprob2_]_b[_cons]))) (sprob3: 1/(1+exp([sprob3_]_b[_cons]))) 

 

      sprob1:  1/(1+exp([sprob1_]_b[_cons])) 

      sprob2:  1/(1+exp([sprob2_]_b[_cons])) 

      sprob3:  1/(1+exp([sprob3_]_b[_cons])) 

 

------------------------------------------------------------------------------ 

             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

      sprob1 |   .6042478   .0256661    23.54   0.000     .5539431    .6545524 

      sprob2 |   .7122151   .0416551    17.10   0.000     .6305726    .7938577 

      sprob3 |   .7028307   .0534009    13.16   0.000     .5981669    .8074945 

------------------------------------------------------------------------------ 

 

This result is contrary to Antonio’s findings where the qualitative effect of risk aversion should follow from 

theory: the more risk averse the subject, the more likely he is to bet as if his subjective probability is 0.5, 
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since this reduces the dispersion in final outcomes from all bets
71

. In our case, we may fail to see any effect 

since, as noted above, the participants appear to be risk seeking to being with. In any case, the log-

likelihood of the risk neutral model (-14643) is nearly identical to the log-likelihood for the general model 

(--14642), and we do not appear to obtain coefficients of sprob shifted to the left allowing for risk aversion. 

 

Panels B1 and B2 extend the specifications in Panels A1 and A2 to allow for demographic variation in r 

and each of the subjective probability estimates. In the model allowing for estimation of r, after controlling 

for demographic effects, participants appear to be slightly risk seeking (r = -.129 <0). While none of the 

demographic parameter estimates are significant at the 95% level, age, sex (female), a business degree, IT 

certifications, and increased income all increase risk aversion, while a math degree and increased number 

of career work years lower risk aversion on average, results which are similar to Game 1: 

 

Table 24 - Game 2 Panel B1: Maximum Likelihood Estimates Assuming SEUT 

Subjective Expected Utility Model with Fechner error term and demographics 

 

                                                  Number of obs   =      25327 

                                                  Wald chi2(7)    =      39.31 

Log pseudolikelihood = -14131.072                 Prob > chi2     =     0.0000 

 

                                    (Std. Err. adjusted for 53 clusters in id) 

------------------------------------------------------------------------------ 

             |               Robust 

             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

r            | 

         age |   .0416305   .0351939     1.18   0.237    -.0273483    .1106092 

         sex |   .0371306   .0549041     0.68   0.499    -.0704794    .1447406 

         bus |   .0390964   .0918374     0.43   0.670    -.1409017    .2190945 

        math |  -.0095796   .0281189    -0.34   0.733    -.0646916    .0455324 

   workyears |  -.0100221   .0312938    -0.32   0.749    -.0713567    .0513126 

       certs |   .0127775   .0196882     0.65   0.516    -.0258106    .0513656 

      income |   .0627921   .0672722     0.93   0.351    -.0690589    .1946431 

       _cons |  -.1287453   .0442458    -2.91   0.004    -.2154655   -.0420251 

-------------+---------------------------------------------------------------- 

sprob1_      | 

         age |   .1046971   .2381458     0.44   0.660    -.3620601    .5714542 

         sex |   .2633251   .2120888     1.24   0.214    -.1523613    .6790115 

         bus |  -.1191181   .3954357    -0.30   0.763    -.8941578    .6559217 

        math |   .0944121   .1644827     0.57   0.566    -.2279682    .4167924 

   workyears |  -.0843451   .1777815    -0.47   0.635    -.4327904    .2641001 

       certs |   .0634325   .0702458     0.90   0.367    -.0742468    .2011118 

      income |  -.2849189   .3547057    -0.80   0.422    -.9801293    .4102914 

       _cons |  -.3018998   .1448808    -2.08   0.037     -.585861   -.0179387 

-------------+---------------------------------------------------------------- 

sprob2_      | 

         age |   .0261102   .6174798     0.04   0.966    -1.184128    1.236348 

         sex |   .8075164   .3517658     2.30   0.022     .1180681    1.496965 

         bus |  -.2125568   1.693283    -0.13   0.900     -3.53133    3.106216 

        math |  -.0298328   .4302981    -0.07   0.945    -.8732015    .8135359 

   workyears |   .0529048   .2698478     0.20   0.845    -.4759871    .5817967 

                                                                        
71 This qualitative result is exactly the same as one finds using a Quadratic scoring rule: see results from my Game# 4 below and  
generally from Andersen et al (Andersen, Fountain et al. 2014). 
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       certs |  -.0436988    .394462    -0.11   0.912    -.8168302    .7294325 

      income |   -.412683   .5061199    -0.82   0.415     -1.40466    .5792937 

       _cons |  -1.008586   .3829995    -2.63   0.008    -1.759252    -.257921 

-------------+---------------------------------------------------------------- 

sprob3_      | 

         age |  -1.044596   1.714596    -0.61   0.542    -4.405143     2.31595 

         sex |   .6343824   1.344349     0.47   0.637    -2.000492    3.269257 

         bus |   .8931119   1.753905     0.51   0.611    -2.544479    4.330703 

        math |   .2364082   .7039048     0.34   0.737     -1.14322    1.616036 

   workyears |   .4890464   .8595074     0.57   0.569    -1.195557     2.17365 

       certs |  -.1264412   .3856509    -0.33   0.743     -.882303    .6294206 

      income |   .0972284   1.241316     0.08   0.938    -2.335706    2.530162 

       _cons |  -1.162614   .9313578    -1.25   0.212    -2.988042    .6628134 

-------------+---------------------------------------------------------------- 

LNmuB        | 

       _cons |  -.7000786   .3679674    -1.90   0.057    -1.421281    .0211244 

------------------------------------------------------------------------------ 

 

sprob1:  1/(1+exp([sprob1_]_b[_cons])) 

sprob2:  1/(1+exp([sprob2_]_b[_cons])) 

sprob3:  1/(1+exp([sprob3_]_b[_cons])) 

 

------------------------------------------------------------------------------ 

             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

      sprob1 |   .5749069   .0354073    16.24   0.000     .5055099    .6443039 

      sprob2 |   .7327434    .075003     9.77   0.000     .5857402    .8797465 

      sprob3 |   .7618074   .1690013     4.51   0.000      .430571    1.093044 

------------------------------------------------------------------------------ 

 

     
Table 25 - Game 2 Panel B2: Maximum Likelihood Estimates Assuming SEUT and Risk Neutrality 

Subjective Expected Utility Model with Fechner error term and demographics 

                                                  Number of obs   =      25327 

                                                  Wald chi2(7)    =      29.57 

Log pseudolikelihood = -14171.009                 Prob > chi2     =     0.0001 

 

 ( 1)  [r]_cons = .001 

                                    (Std. Err. adjusted for 53 clusters in id) 

------------------------------------------------------------------------------ 

             |               Robust 

             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

r            | 

         age |   .0495754   .0500063     0.99   0.321    -.0484352     .147586 

         sex |   .0304329   .0830262     0.37   0.714    -.1322954    .1931612 

         bus |   .0516867   .0953419     0.54   0.588    -.1351801    .2385535 

        math |  -.0210517   .0449941    -0.47   0.640    -.1092386    .0671351 

   workyears |   -.014644   .0469215    -0.31   0.755    -.1066084    .0773204 

       certs |   .0117682   .0194961     0.60   0.546    -.0264434    .0499799 

      income |   .0760817   .0872093     0.87   0.383    -.0948453    .2470088 

       _cons |       .001          .        .       .            .           . 

-------------+---------------------------------------------------------------- 

sprob1_      | 

         age |   .1093948   .2332036     0.47   0.639    -.3476759    .5664655 

         sex |   .2627839   .2291259     1.15   0.251    -.1862947    .7118624 

         bus |  -.1115489   .2813028    -0.40   0.692    -.6628923    .4397945 

        math |   .0813937   .1754596     0.46   0.643    -.2625009    .4252883 

   workyears |  -.0877681   .1700601    -0.52   0.606    -.4210799    .2455436 

       certs |   .0731711   .0591794     1.24   0.216    -.0428183    .1891605 
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      income |  -.2513605   .3226661    -0.78   0.436    -.8837744    .3810533 

       _cons |  -.3207558   .1500612    -2.14   0.033    -.6148704   -.0266412 

-------------+---------------------------------------------------------------- 

sprob2_      | 

         age |   .0704023   .4862412     0.14   0.885    -.8826129    1.023418 

         sex |   .7914908   .4161795     1.90   0.057     -.024206    1.607188 

         bus |  -.2627463   .9519252    -0.28   0.783    -2.128485    1.602993 

        math |  -.0725428   .4167179    -0.17   0.862    -.8892949    .7442093 

   workyears |   .0292257   .2518767     0.12   0.908    -.4644437     .522895 

       certs |  -.0185482     .18492    -0.10   0.920    -.3809848    .3438884 

      income |  -.3419466   .4500247    -0.76   0.447    -1.223979    .5400856 

       _cons |  -1.022145   .4343749    -2.35   0.019    -1.873504   -.1707864 

-------------+---------------------------------------------------------------- 

sprob3_      | 

         age |  -.7826717   1.678502    -0.47   0.641    -4.072476    2.507132 

         sex |   .4688754   1.095068     0.43   0.669    -1.677418    2.615169 

         bus |   .8024294   1.295483     0.62   0.536     -1.73667    3.341529 

        math |   .1623243   .5395229     0.30   0.764    -.8951212     1.21977 

   workyears |   .3452675   .8535333     0.40   0.686    -1.327627    2.018162 

       certs |  -.1110328   .1971383    -0.56   0.573    -.4974168    .2753512 

      income |   .0857451   .8684467     0.10   0.921    -1.616379    1.787869 

       _cons |  -.9554302   .6609176    -1.45   0.148    -2.250805    .3399445 

-------------+---------------------------------------------------------------- 

LNmuB        | 

       _cons |  -1.472139   .3927333    -3.75   0.000    -2.241882   -.7023958 

------------------------------------------------------------------------------ 

 

      sprob1:  1/(1+exp([sprob1_]_b[_cons])) 

      sprob2:  1/(1+exp([sprob2_]_b[_cons])) 

      sprob3:  1/(1+exp([sprob3_]_b[_cons])) 

 

------------------------------------------------------------------------------ 

             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

      sprob1 |   .5795084   .0365667    15.85   0.000     .5078391    .6511778 

      sprob2 |   .7353903   .0845256     8.70   0.000     .5697231    .9010575 

      sprob3 |   .7222059   .1325963     5.45   0.000      .462322    .9820899 

------------------------------------------------------------------------------ 

 

 

Interestingly, after controlling for demographics, the predicted values of the posterior probabilities after 

accounting for the demographics of the participants generally improves for sProb 2 (.77) and sProb 3 (.88) 

in the model allowing for risk aversion, but do not improve in the model assuming risk neutrality: 

 

Table 26 - Game 2 Panel B3: Predicted Probabilities 

Assuming SEUT (Sprob) and SEUT w. Risk Neutrality (RNsprob) 

------------------------------------------------------------------------------ 

Variable |     Obs        Mean    Std. Err.   Std. Dev.   [95% Conf. Interval] 

------------------------------------------------------------------------------ 

Sprob 1 |   25327    .6203263    .0004004    .0637177    .6195415     .621111 

------------------------------------------------------------------------------ 

Sprob 2 |   25327    .7440988    .0006926    .1102165    .7427413    .7454562 

------------------------------------------------------------------------------ 

Sprob 3 |   25327    .7526894    .0008068    .1283984     .751108    .7542708 

 

------------------------------------------------------------------------------ 

Variable |     Obs        Mean    Std. Err.   Std. Dev.   [95% Conf. Interval] 
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---------+-------------------------------------------------------------------- 

RNsprob1 |   25327    .6122906    .0003858    .0613988    .6115344    .6130468 

---------+-------------------------------------------------------------------- 

RNsprob2 |   25327    .7285915    .0006574    .1046183     .727303      .72988 

---------+-------------------------------------------------------------------- 

RNsprob3 |   25327    .7295159    .0007222    .1149335    .7281004    .7309315 

 

 

 

Figures 130 and 131 illustrate the kernel density functions for the estimated subjective probabilities across 

all participants for the SEU and SEU with risk neutrality case, indicating significant diversity across 

participants: 

 

Figure 130 - Kernel density for Game 2 Subjective Probability Estimates under SEUT, with 

demographics 
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Figure 131 - Kernel density for Game 2 Subjective Probability Estimates under SEUT assuming Risk 

Neutrality, with demographics,  

 

 

Following Antoniou, Figure 132 displays the estimated subjective probabilities, pooling the symmetric 

cases, with reference lines showing the corresponding posterior probability using Bayes Rule. The 

dispersion in these distributions reflects the standard errors in the parameter estimates of the subjective 

probabilities, as well as variations across subjects due to differences in demographic characteristics: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.4 .5 .6 .7 .8 .9 1
Estimated Subjective Probability - SEU RN



  277  

Figure 132 – Estimates of Game 2 Subjective Probabilities under SEUT – pooled observations 

Black is 0.60 posterior, Blue is 0.77 posterior and Red is 0.88 posterior 

 

Results here are similar to Antoniou: underestimation of the true Bayesian posterior probability which 

becomes larger as the posterior increases from 0.6 to 0.77 and 0.88. In addition, the precision of the 

subjective probability estimate also declines as the posterior gets larger. 

 

Figure 133 shows the corresponding estimates of subjective probability when we impose risk neutrality 

(r=.001). Finally, Figure 134 superimposes the two sets of results for comparison. In this case, contra 

Antoniou, Bayes Rule does not do better when we allow the data to determine the risk attitudes of subjects. 

In the risk neutral case the subjective estimate of the 0.6 posterior probability is similar, but the estimates 

for the 0.77 and 0.88 posterior probabilities, while not closer to the posterior on average, exhibit less 

dispersion around the Bayesian posterior when we assume risk neutrality: 
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Figure 133 - Estimates of Game 2 Subjective Probabilities under SEUT assuming Risk Neutrality –

pooled observations 

Black is 0.60 posterior, Blue is 0.77 posterior and Red is 0.88 posterior 

 

 

Figure 134 - Estimates of Game 2 Subjective Probabilities Under SEU: The Effect of Risk Aversion – 

pooled observations 

Solid line is general SEU model, and dashed line is SEU assuming risk neutrality 

Black is 0.60 posterior, blue is 0.77 posterior and red is 0.88 posterior 
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2 – Estimating the Effect of Strength and Weight of Evidence on Beliefs 

 

Analysis 

Following Antoniou (Andersen, Harrison et al. 2006) we now estimate the effect of the strength vs. the 

weight of evidence on subjective probability estimates.  

 

In this model we use an example concerning two hypotheses: A (that the observed losses were generated by 

a Low Controls system); and B (that the observed losses were generated by a High Controls system) where 

P(A) + P(B) = 1. The task therefore is to determine the likelihood of A in comparison to the likelihood of 

B. Ceteris paribus our expectation of A is P(A) and of B, P(B). These probabilities in a Bayesian 

framework are called the priors. 

 

Suppose that we now observe an information signal C, which is the number of losses above and below 

$10,000 (i.e., X observations above $10,000 and n-X observations below $10,000). Suppose further that we 

know the prior probability of the Low System generating losses above $10,000 is 60% and the 

corresponding probability for the High Controls system is 40%. Bayes rule is the method with which the 

priors should be combined with the new data, to get a posterior belief in terms of the hypotheses A and B. 

In other words the rule reveals how the occurrence of C should influence our expectation of A and B. 

 

Formally the rule states that: 

 

 𝑃(𝐴|𝐶) =  
𝑃(𝐴)∗𝑃(𝐶|𝐴)

𝑃(𝐶)
 (9.24) 

 

If we divide the above with the corresponding probability of the likelihood of P(B/C) we get: 

 

 
𝑃(𝐴|𝐶)

𝑃(𝐵|𝐶)
= 

𝑃(𝐶|𝐴)

𝑃(𝐶|𝐵)
  (9.24) 

 

This equation shows the likelihood ratio. Each hypothesis is distributed binomially with parameters n (the 

number of observations), and  p (the probability of observing a loss above or below $10,000). In terms of 

our experiment, C is the sample of losses observed from the chosen system. The two competing hypotheses 

are that the observations came from the Low Controls System or the High Controls System. 

 

 𝑃(𝐶|𝐴) =  (
𝑛
𝑤
) 0.6𝑥 ∗  0.4𝑛−𝑥 (9.25) 
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This equation yields the probability of x losses (i.e. losses greater than $10,000) and n-x (y) losses (i.e. 

losses less than or equal to $10,000) from the Low Controls System. P(B/C) is the corresponding 

probability of the particular pattern coming from the High Controls System. Dividing P(C/A) by P(C/B) 

gives: 

 

 
𝑃(𝐴|𝐶)

𝑃(𝐵|𝐶)
= 

𝑃(𝐶|𝐴)

𝑃(𝐶|𝐵)
= 

(
𝑛
𝑤
)0.6𝑥∗ 0.4𝑛−𝑥

(
𝑛
𝑤
)0.6𝑛−𝑥∗ 0.4𝑥

= 
0.6−𝑛+2𝑥

0.4−𝑛+2𝑥
 (9.26) 

 

Taking logs of both sides: 

 

 Log 
P(A|C)

P(B|C)
= (−n + 2x)log (

0.6

0.4
) (9.27) 

 

Because n = x + y, substituting for –n yields: 

 

 Log 
P(A|C)

P(B|C)
= (x − y)log (

0.6

0.4
) (9.28) 

 

Now multiply and divide by n yields: 

 

 Log 
P(A|C)

P(B|C)
= n

w−x

n
log (

0.6

0.4
) (9.29) 

 

The right hand side is the probabilities elicited from subjects’ responses modified to log-odds form. If they 

are Bayesian they should be explained by the right hand side, which was derived from Baye’s Theorem. As 

noted above, the two dimensions that Griffin and Tversky suggest are sample size (weight), n, and strength 

(x – y)/n, i.e., the number of observed losses greater than $10,000 minus the number of observed losses less 

than or equal to $10,000, all divided by the total number observations. In order to decompose we take logs 

of both sides, which yields: 

 

 Log [
Log 

P(A|C)

P(B|C)

Log (
0.6

0.4
)
]  = a log(n) +  β log (

x−y

n
) (9.30) 

 

The coefficients a and β that are derived from the above regression are in effect the importance that the 

individuals have given to strength and weight of the evidence presented to them in the experiment in each 

round. Under the null hypothesis the coefficients should be equal to 1, because Bayes Rule predicts that 

they should affect judgment equally. Under the GT hypothesis α > β. We test this hypothesis directly using 

the choices made in Game 2.  
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Results 

Panel C1 reports the maximum likelihood estimates of alpha and beta, the coefficient of risk aversion and 

the behavioural error term. We also test whether they are statistically different from each other: 

 

Table 27 - Game 2 Panel C1: Maximum Likelihood Estimates Assuming SEUT 

Coefficients of strength (alpha) and weight (beta) of evidence and risk aversion 

 

                                                  Number of obs   =      25327 

                                                  Wald chi2(0)    =          . 

Log pseudolikelihood = -14659.344                 Prob > chi2     =          . 

 

                                    (Std. Err. adjusted for 53 clusters in id) 

------------------------------------------------------------------------------ 

             |               Robust 

             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

r            | 

       _cons |   .0154356   .0318822     0.48   0.628    -.0470523    .0779235 

-------------+---------------------------------------------------------------- 

alpha        | 

       _cons |   .5834962   .1444606     4.04   0.000     .3003586    .8666338 

-------------+---------------------------------------------------------------- 

beta         | 

       _cons |   .5793732   .1578205     3.67   0.000     .2700507    .8886956 

-------------+---------------------------------------------------------------- 

LNmuB        | 

       _cons |  -.5988478   .2082122    -2.88   0.004    -1.006936   -.1907593 

------------------------------------------------------------------------------ 

 

beta_alpha:  [beta]_b[_cons] - [alpha]_b[_cons] 

 

------------------------------------------------------------------------------ 

             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

  beta_alpha |  -.0041231   .1093722    -0.04   0.970    -.2184886    .2102425 

------------------------------------------------------------------------------ 

 

testnl ([alpha]_b[_cons]-[beta]_b[_cons]=0) 

 

  (1)  [alpha]_b[_cons]-[beta]_b[_cons] = 0 

 

chi2(1) =        0.00 

Prob > chi2 =    0.9699 

 

 

The estimated coefficient of risk aversion r is not significantly different than zero indicating risk neutrality. 

The coefficients of both strength (alpha) and weight (beta) are, however, significantly different from 0 

indicating that both strength and weight of evidence affect subjective probability estimates. The strength 

and weight parameters are not, however, significantly different from each other as predicted by the GT 

hypothesis, i.e., that α is generally > β. If we allow demographic diversity in the estimates, Panel C2 reports 

the difference in strength and weight effects between participants and Panel C3 the resulting overall 

predicted alpha and beta values: 
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Table 28 - Game 2 Panel C2: Maximum Likelihood Estimates under Strength/Weight Heuristic (GT 

Model),  w. demographics 

Coefficients of strength (alpha) and weight (beta) of evidence and risk aversion 

 
                                                  Number of obs   =      25327 

                                                  Wald chi2(5)    =      12.75 

Log pseudolikelihood = -14316.316                 Prob > chi2     =     0.0258 

 

                                    (Std. Err. adjusted for 53 clusters in id) 

------------------------------------------------------------------------------ 

             |               Robust 

             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

r            | 

         age |   .0478322    .018737     2.55   0.011     .0111084     .084556 

         sex |   .0425012   .0513579     0.83   0.408    -.0581584    .1431608 

         bus |   .0478112   .0537972     0.89   0.374    -.0576294    .1532517 

        math |  -.0029667   .0468035    -0.06   0.949    -.0946999    .0887665 

       certs |    .015561   .0126961     1.23   0.220    -.0093229     .040445 

       _cons |  -.1077724   .0556866    -1.94   0.053    -.2169161    .0013714 

-------------+---------------------------------------------------------------- 

alpha        | 

         age |  -.1762316   .4895896    -0.36   0.719     -1.13581    .7833464 

         sex |  -.8248275   1.975588    -0.42   0.676    -4.696909    3.047254 

         bus |  -.3880153   .7100424    -0.55   0.585    -1.779673    1.003642 

        math |  -.3748799   1.130587    -0.33   0.740    -2.590789    1.841029 

       certs |   .0775537   .1297196     0.60   0.550    -.1766919    .3317994 

       _cons |   1.209929   1.743057     0.69   0.488    -2.206401    4.626259 

-------------+---------------------------------------------------------------- 

beta         | 

         age |  -.2613067   .5018223    -0.52   0.603     -1.24486     .722247 

         sex |  -.4092002    1.91641    -0.21   0.831    -4.165295    3.346894 

         bus |  -.6702154   .6238307    -1.07   0.283    -1.892901    .5524703 

        math |  -.2566558   .9903567    -0.26   0.796    -2.197719    1.684408 

       certs |   .1366344   .1268109     1.08   0.281    -.1119105    .3851792 

       _cons |   1.194852    1.74027     0.69   0.492    -2.216014    4.605717 

-------------+---------------------------------------------------------------- 

LNmuB        | 

       _cons |  -.7497431   .5320434    -1.41   0.159    -1.792529    .2930428 

------------------------------------------------------------------------------ 

 

 

Table 29 – Game 2 Panel C3 Predicted strength (alpha) and weight (beta) of evidence 

------------------------------------------------------------------------------ 

Variable |     Obs        Mean    Std. Err.   Std. Dev.   [95% Conf. Interval] 

---------+-------------------------------------------------------------------- 

 GTalpha |   25327    .4271979    .0035553    .5658103    .4202292    .4341665 

---------+-------------------------------------------------------------------- 

  GTbeta |   25327      .45317    .0035591    .5664106     .446194     .460146 

------------------------------------------------------------------------------ 

 

 

Figure 135 reports the kernel densities of the estimated alpha and beta values across participants, allowing 

for demographic heterogeneity. Once again we see a wide range of values based on the diversity of the 

participants over the demographic factors indicated above: 
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Figure 135 – Kernel Density for Game 2 strength (alpha) and weight (beta) of evidence, with 

demographics  

 

 

Figure 136 reports the associated estimated subjective probabilities under the strength/weight heuristic:  
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Figure 136 – Estimated Subjective Probabilities using Strength/Weight Heuristic, w. demographics 

 

 

Finally, if we restrict the demographic factors to gender only, we can more easily compare the central 

tendencies of the three subjective probabilities under either SEU or the Strength/Weight heuristic. Figure 

137 reports the kernel densities of the probability estimates for each of the models: 

 

Figure 137 - Estimated Subjective Probabilities using SEU and Strength/Weight Heuristic, (sex only) 
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Distribution with solid line is SEU Model, and distribution
with dashed line is model with Strength/Weight Heuristic.

Black is 0.60 posterior, blue is 0.77 posterior, and red is 0.88 posterior.
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Here we see that the strength/weight model generally performs worse than the SEU model for p=.6 and .77, 

but strength/weight is superior to SEU at p=.88.   

 

Clarke and Vuong Statistical Tests of Model Superiority 

In Game 1 we specified a ‘mixed’ structural model’ of decision making that lets the data generating process 

determine the degree to which decision makers are characterized as either operating under expected utility 

or prospect theory following methods developed by Harrison et al {Harrison, 2009 #9}. The discrimination 

between Subjective Utility and the Strength/Weight ‘heuristic’ models of latent decision making within 

Game 2 can also be undertaken, here using the Vuong and Clarke statistical tests described in Harrison 

(Harrison 2008) and Andersen (Harrison 2008): 

 

Whenever one considers two non-nested models, readers expect to see some comparative 

measures of goodness of fit. …Common measures include R2, pseudo-R2, a “hit ratio,” 

some other scalar appropriate for choice models (e.g., Hosmer and Lemeshow [2000; 

ch.5]), and formal likelihood-ratio tests of one model against another (e.g., Cox 

[1961][1962] or Vuong [1989]). From the perspective [of determining the possible 

mixture of data generating processes], the interpretation of these tests suffers from the 

problem of implicitly assuming just one data-generating process. In effect, the mixture 

model provides a built-in comparative measure of goodness of fit - the mixture 

probability itself. If this probability is close to 0 or 1 by standard tests, one of the models 

is effectively rejected, in favor of the hypothesis that there is just one data-generating 

process. 

 

In fact, if one traces back through the literature on non-nested hypothesis tests, these 

points are “well known.” That literature is generally held to have been started formally by 

Cox [1961], who proposed a test statistic that generalized the usual likelihood ratio test 

(LRT). His test compares the difference between the actual LRT of the two models with 

the expected LRT, suitably normalized by the variance of that difference, under the 

hypothesis that one of the models is the true data-generating process. The statistic is 

applied symmetrically to both models, in the sense that each takes a turn at being the true 

model, and leads to one of four conclusions: one model is the true model, the other model 

is the true model, neither model is true, or both models are true. 

 

Perhaps the most popular modern variant of the generalized LRT approach of Cox 

[1961][1962] is due to (Vuong 1989). He proposes the null hypothesis that both models are 

the true models, and then allows two one-sided alternative hypotheses
72

. The statistic he 

derives takes observation-specific ratios of the likelihoods under each model, so that 

…the ratio for observation i is the likelihood of observation i under SEUT divided by the 

likelihood of observation I under [the strength/weight heuristic]. It then calculates the log 

of these ratios, and tests whether the expected value of these log-ratios over the sample is 

zero. Under reasonably general conditions a normalized version of this statistic is 

distributed according to the standard normal, allowing test criteria to be developed. 

 

Clarke (Clarke 2007) proposes a non-parametric sign test be applied to the sample of 

ratios. Clarke demonstrates that when the distribution of the log of the likelihood ratios is 

normally distributed that the Vuong test is better in terms of asymptotic efficiency. But if 

                                                                        
72

 Andersen: “Some have criticized the Vuong test because the null hypothesis is often logically impossible, but it can also be 

interpreted as the hypothesis that one cannot say which model is correct.” (Harrison 2008) 
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this distribution exhibits sharp peaks, in the sense that it is mesokurtic, then the non-

parametric version is better. … Many of the likelihood ratios we deal with have the latter 

shape…so it is useful to be armed with both tests.  

 

 

In Game 2 we undertake both the Vuong and Clark Tests to determine whether the SEUT or GT model 

better describes the data generating process. The SEUT model was rerun using the same demographics 

used in Panel C2 for the GT model for direct comparison73 and the non-nested model tests were 

undertaken in STATA based on Harrison’s supplied code. The revised SEUT model output (to be 

compared to the Panel C2 output) and the test results are displayed below 74
: 

 

Table 30 – Game 2 Panel D1: Maximum Likelihood Estimates under SEUT, w. comparative 

demographics 

                                                  Number of obs   =      25327 

                                                  Wald chi2(5)    =       9.09 

Log pseudolikelihood = -14242.108                 Prob > chi2     =     0.1054 

 

                                    (Std. Err. adjusted for 53 clusters in id) 

------------------------------------------------------------------------------ 

             |               Robust 

             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

r            | 

         age |   .0472371   .0176056     2.68   0.007     .0127309    .0817434 

         sex |   .0477897   .0858943     0.56   0.578    -.1205601    .2161394 

         bus |   .0774373   .0999445     0.77   0.438    -.1184502    .2733248 

        math |    .008527   .0458962     0.19   0.853    -.0814279     .098482 

       certs |   .0187484   .0307287     0.61   0.542    -.0414788    .0789756 

       _cons |  -.1042465   .0891244    -1.17   0.242    -.2789272    .0704342 

-------------+---------------------------------------------------------------- 

sprob1_      | 

         age |  -.1170676   .0974391    -1.20   0.230    -.3080448    .0739095 

         sex |   .2550122   .2900993     0.88   0.379    -.3135721    .8235964 

         bus |  -.2738571   .5701508    -0.48   0.631    -1.391332    .8436179 

        math |   .0562761   .2635795     0.21   0.831    -.4603303    .5728825 

       certs |   .0418312   .1162265     0.36   0.719    -.1859685    .2696308 

       _cons |  -.3499684   .2654682    -1.32   0.187    -.8702766    .1703398 

-------------+---------------------------------------------------------------- 

sprob2_      | 

         age |   .0763212    .250247     0.30   0.760    -.4141538    .5667963 

         sex |   .8626605   .5970009     1.44   0.148    -.3074398    2.032761 

         bus |  -.7367642   2.930545    -0.25   0.801    -6.480527    5.006999 

        math |  -.0704714   1.092504    -0.06   0.949    -2.211739    2.070797 

       certs |  -.1375253   .8359328    -0.16   0.869    -1.775923    1.500873 

       _cons |  -1.206342   .5860682    -2.06   0.040    -2.355014    -.057669 

-------------+---------------------------------------------------------------- 

sprob3_      | 

         age |  -.0779608    .274798    -0.28   0.777     -.616555    .4606334 

         sex |   .1804514   .5533543     0.33   0.744     -.904103    1.265006 

         bus |   .4541235   1.040351     0.44   0.662    -1.584927    2.493174 

        math |   .2326474    .591559     0.39   0.694     -.926787    1.392082 

                                                                        
73 The SEUT model was able to run using age, sex, bus, math, workyears and income demographic dummies, but the GT ml model 

would not converge without removing workyears and income. The SEUT model was therefore rerun removing workyears and income 

in order to directly compare SEUT with GT using the non-nested tests described in this section.  
74 All STATA results are included in the Appendix. 
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       certs |  -.1653186   .2637817    -0.63   0.531    -.6823214    .3516841 

       _cons |  -.7711871   .5228387    -1.47   0.140    -1.795932     .253558 

-------------+---------------------------------------------------------------- 

LNmuB        | 

       _cons |  -.8331817   .3516986    -2.37   0.018    -1.522498   -.1438652 

 

 

 

Figure 138 indicates the resulting ratio of log likelihoods from the GT and SEU models vs. a normal 

distribution. These results are similar to those found by Antoniou and Harrison for this experiment: we see 

that the empirical distribution (ratio of GT to SEU log likelihoods)  is sharp-peaked compared to a Normal 

distribution fit to the same data and confirms here that the GT model better explains the data: 

 

Figure 138- Distribution of Log Likelihood Ratios for Non-Nested Tests of GT vs. SEU Model 
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Table 31 indicates the result of the two tests and confirms that GT is the better model: 

 
 

Table 31 – Vuong and Clarke Test Results for GT vs. SEU Model Superiority  

Log-likelihood for SEU is -14242.10756685881 and for GT is -14316.31637639697 

 

Vuong statistic for test of SEU and GT is 4.404718065925073 and favors SEU over 

GT if positive (p-value = 5.29607719557e-06 of SEU not being the better model) 

 

Clarke statistic for test of SEU and GT is 13779 and favors SEU over GT if 

greater than 12663.5 (p-value = 5.76207345444e-45 of SEU not being the better 

model) 
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Game 3 Findings 

Exogenous versus Endogenous Risk Beliefs 

 
Analysis 

Following Sen (Andersen, Harrison et al. 2006) we conduct an experiment that involves both the estimation 

of subjective probabilities over exogenous risks and the consideration of these probability estimates when 

the risk is endogenous i.e. in situations where the decision maker can alter the objective probabilities of an 

outcome by taking some action with uncertain effect. Harrison and Rutström (2008) provide an extensive 

review of the procedures used to elicit and estimate risk attitudes in the exogenous risk setting, and we 

build on the toolkit reviewed there to consider what modeling issues have to be considered as one moves to 

model endogenous risk and risk management choice options.    

 

The first extension of the modeling undertaken in Games 1 and 2 above therefore is to consider the possible 

role of endogeneity on risk attitudes, in the sense that attitudes towards risk might be somehow “source 

dependent” on the type of stochastic process generating the outcome (Loewenstein and Issacharoff 1994; 

Tversky and Wakker 1995). It is one thing to make risk averse bets over processes that cannot be 

controlled; it is another to do so when you can (possibly, but uncertainly) alter the stochastic process itself. 

  

The second extension is to consider the implications of risk mitigation on subjective probabilities. I propose 

that, particularly in the context of information security control decisions, it is rare that the agent has a 

reliable expectation regarding the means by which different mitigation actions change the objective 

probabilities of losses, even if the agent could assume that the initial, no-mitigation probabilities were in 

fact objective. So we have to consider the elicitation of subjective probabilities. In principle, so far, this 

involves no radical extension of EUT, interpreted in the sense of Subjective EUT (SEUT). 

 

For both of the following treatments, as in Game 2, we assume that the utility of income is defined by 

 

 U(x) = x
 1-r

 / (1-r) (9.30) 

 

where “r” is the ‘coefficient of risk aversion’ and “x” is the monetary value of the outcome (>0), where r=0 

corresponds to risk neutrality, r<0 to risk loving, and r>1 to risk aversion.  The coefficient of risk aversion 

is constant for the power function family. ‘Expected utility’ is then specified as the probability conditioned 

utility, 

 

𝐸𝑈𝑖 = ∑ (𝑝𝑘
𝑘=1,𝐾

× 𝑈(𝑥)𝑘) 

(9.31) 
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where p is the probability of the outcome and U(x) is the CRRA specified utility function. 

 

Exogenous Risk Treatment 

In the first task, the participant bets as to whether a randomly selected daily loss generated by a Low 

Control System will exceed $17,000. Unlike Game 2 the participant does not know the relative 

probabilities of each system generating losses and these must be inferred subjectively from test simulations 

of the system undertaken prior to the betting task. Table 32 sets out the lotteries over which the participant 

makes bets that a daily loss will exceed $17,000 with 9 bookies:  

 

Table 32 - Game 3A: Betting Table 

Bookie Your Stake 
Scenario A. 

You bet that the daily loss will exceed $17,000. If it… 

Scenario B. 
You bet that daily loss will NOT exceed 

$17,000. If it… 

1 $5 
does, the payout is $50.00 does, the payout is $0.00 

does not, the payout  is $0.00 does not, the payout  is $5.55 

      

2 $5 
does, the payout is $25.00 does, the payout is $0.00 

does not, the payout  is $0.00 does not, the payout  is $6.25 

      

3 $5 
does, the payout is $16.66 does, the payout is $0.00 

does not, the payout  is $0.00 does not, the payout  is $7.19 

      

4 $5 
does, the payout is $12.50 does, the payout is $0.00 

does not, the payout  is $0.00 does not, the payout  is $8.33 

      

5 $5 
does, the payout is $10.00 does, the payout is $0.00 

does not, the payout  is $0.00 does not, the payout  is $10.00 

      

6 $5 
does, the payout is $8.33 does, the payout is $0.00 

does not, the payout  is $0.00 does not, the payout  is $12.50 

      

7 $5 
does, the payout is $7.19 does, the payout is $0.00 

does not, the payout  is $0.00 does not, the payout  is $16.66 

      

8 $5 
does, the payout is $6.25 does, the payout is $0.00 

does not, the payout  is $0.00 does not, the payout  is $25.00 

      

9 $5 
does, the payout is $5.55 does, the payout is $0.00 

does not, the payout  is $0.00 does not, the payout  is $50.00 

 

 

Considering Table 32, the participant that believes the loss will exceed $17,000 from a given system  (event 

“A” or the ‘left hand’ binary choice) and selecting “A” from a given bookie ‘b’ receives EU 

 

EUWILL EXCEED $17K= πWILL EXCEED $17K × U(payout if the loss exceeds $17,000 | bet that the loss exceeds 

$17,000) + 

(1- πWILL EXCEED $17K) × U(payout if the loss does not exceed $17,000| bet that the loss exceeds $17,000) 

(9.32) 
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where πWILL EXCEED $17K is the subjective probability that the loss exceeds $17,000. The payouts that enter 

the utility function are shown in Table 32 above. For the bet offered by the first bookie, for example, these 

payouts are $50 and $0, so we have 

 

 EUEXCEEDS $17K = πWILL EXCEED $17K× U($50) + (1- πWILL EXCEED $17K) × U($0) (9.33) 

 

Where the participant potentially earns $50 if correct but nothing if incorrect. 

 

We similarly define the EU received from a bet that the loss will exceed not exceed $17,000 (event “B” or 

the ‘right hand’ binary choice) as the complement of event A: 

 

 

EUWILL NOT EXCEED $17K= π WILL EXCEED $17K × U(payout if the loss exceeds $17,000  | bet that the loss will not 

exceed $17,000) + 

(1- WILL EXCEED $17K) × U(payout if the loss does not exceed $17,000 | bet that the loss will not exceed 

$17,000) 

(9.34) 

 

and this translates for the first bookie in Table 32 into payouts of $0 and $5.55 (i.e. the participant 

potentially earns $0 if incorrect as usual, but $5.55 if correct, so we have 

 

 EUWILL NOT EXCEED $17K = π WILL EXCEED $17K × U($0) + (1- WILL EXCEED $17K) × U($3.15) (9.35) 

 

for this particular bookie and bet. We observe the bet made by the subject for a range of payouts, so we can 

calculate the likelihood of that choice given values of r (risk aversion), π WILL EXCEED $17K and μ. 

 

The rest of the structural specification is exactly the same as for the choices over lotteries with objective 

probabilities. Given the specifications for EU WILL EXCEED $17K and EU WILL NOT EXCEED $17K above, we can 

define the latent index as 

 

 ∇EU = (EU WILL EXCEED $17K  – EU WILL NOT EXCEED $17K) (9.36) 

 

for each of the ‘Will Exceed’ and ‘Will Not Exceed’ bets from Table 32. We then define the probability of 

choosing “Will Exceed” as  

 

 prob(choose B) = Φ [ (∇EU) / ν ) / μ ] (9.37) 
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where ν is a normalizing term for the value of each bookie choice pair and μ >0 is a structural “noise 

parameter” for the belief choices that is used to allow some errors from the perspective of the deterministic 

SEU model. The normalizing term ν is defined as the maximum utility over all prizes in a lottery pair 

minus the minimum utility over all prizes in a lottery pair, and ensures that the normalized 

EU difference 

 

 (EUWill Exceed – EUWont Exceed) / ν  (9.38) 

 

remains in the unit interval. This normalization allows one to define robust measures of “stochastic risk 

aversion,” in parallel to the deterministic concepts from traditional theory. Notice that when μ = 1 we return 

to the original index specification without error. As μ increases, the index in (9.37) falls until, at μ = ∞, the 

index collapses to zero, so that the probability of either choice becomes ½. In other words, as the noise in 

the data increases, the model has less and less predictive power until at the extreme the prediction collapses 

to fifty-fifty or equal likelihood of both choices
75

. 

 

Writing out the complete likelihood function, we have 

 

 ln L(r, π WILL EXCEED $17K, μ; y, X) = Σi [ (ln Φ(∇EU)×I(yi = 1)) + (ln (1-Φ(∇EU))×I(yi = −1)) ] (9.39) 

 

for the observed choices in the experiment defined over subjective probabilities. 

 

Endogenous Risk Treatment 

In the second task, the participant starts with a Low Controls system and is given a budget of $17,000 with 

which they can choose to invest in upgraded security controls to convert to a High Controls System at 

different price points between $0 and $17,000. After selecting whether to upgrade at each potential price 

point, one of the price points is chosen at random and a single daily loss is generated from either the Low 

or High Controls system based on whether the player’s chose to upgrade at that price point. The player is 

instructed that they will get to keep the net amount of the budget left over after deducting the cost of any 

control purchased less the random loss on the day. Similar to the first treatment, the participant does not 

know the relative probabilities of each system generating losses and these must be inferred subjectively 

from test simulations of the system undertaken prior to the betting task, but in this case with the payoff 

endogenously affected by the player’s choice of system at unknown cost.  The game is played in 3 rounds 

at 5, 15 and 20 levels of control cost between $0 and $17,000. Table 33 illustrates the control costs in the 

                                                                        
75 Antoniou: “The normalizing term ν is defined as the maximum utility over all prizes in this lottery pair minus the minimum utility 

over all prizes in this lottery pair, and ensures that the normalized EU difference [(EUR - EUL)/ν] remains in the unit interval. As μ → 

∞ this specification collapses ∇EU to 0 for any values of EUR and EUL, so the probability of either choice converges to ½. So a larger 
μ means that the difference in the EU of the two lotteries, conditional on the estimate of r, has less predictive effect on choices. Thus μ 

can be viewed as a parameter that flattens out, or “sharpens,” the link functions implicit in (4). This is just one of several different 

types of error story that could be used, and Wilcox (2008) provides a masterful review of the implications of the strengths and 
weaknesses of the major alternatives.” (Antoniou, Harrison et al. 2010) 
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15-level treatment over which the participant must choose to either upgrade to a High Controls System or 

stay with the Low Controls system at zero incremental cost:  

 

Table 33 - Game 3B: 15-Level Control Pricing Table 

 

 

In this game  𝜋LOSS EXCEEDS $17K
𝑆𝑎𝑓𝑒

 is the subjective probability of the loss exceeding $17,000 when High 

Controls are purchased, and  𝜋LOSS EXCEEDS $17K
𝑅𝑖𝑠𝑘𝑦

 is the subjective probability of the loss exceeding $17,000 

when the player stays with the Low Controls system. More generally: 

 

EUSafe = 𝜋LOSS EXCEEDS $17K
𝑆𝑎𝑓𝑒

 × U(payout net of cost of control upgrade if the loss exceeds $17,000) + 

(1- 𝜋LOSS EXCEEDS $17K
𝑆𝑎𝑓𝑒

) × U(payout net of cost of control upgrade if the loss does not exceed $17,000) 

(9.40) 

and  

 

EURisky = 𝜋LOSS EXCEEDS $17K
𝑅𝑖𝑠𝑘𝑦

 × U(payout with no control costs if the loss exceeds $17,000) + 

(1 − 𝜋LOSS EXCEEDS $17K
𝑅𝑖𝑠𝑘𝑦

) × U(payout with no control costs if the loss does not exceed $17,000) 

(9.41) 

 

The latent index in this problem is the difference in EU from paying for upgraded controls and not paying 

for upgraded controls, using the error specification form described for the exogenous risk treatment: 

 

 ∇EU = [(EURisky – EUSafe) / ν ] / μ  (9.42) 

High Control 

Cost

$0

$1,214

$2,429

$3,643

$4,857

$6,071

$7,286

$8,500

$9,714

$10,929

$12,143

$13,357

$14,571

$15,786

$17,000

Choice A:
Purchase High Controls

Choice B:
Stay with Low Controls (Zero extra cost)
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An increase in this index should increase the likelihood of selecting the risky option, i.e. of not paying for 

High Controls. Apart from r, ν we now need to estimate the two beliefs π
Safe

 and π
Risky

.  

 

 

Results 

 

Exogenous Risk Treatment 

Panel A reports the maximum likelihood estimates of the coefficient of risk aversion, the subjective 

probability of a loss exceeding $17,000 for a Low Controls System and the behavioural error term:  

 

Table 34 - Game 3 Panel A: Maximum Likelihood Estimates Assuming SEUT – Low Controls 

System 

Subjective probability of a daily loss exceeding $17,000 under exogenous risk 

 

                                                  Number of obs   =        504 

                                                  Wald chi2(0)    =          . 

Log pseudolikelihood =  -251.7711                 Prob > chi2     =          . 

 

                                    (Std. Err. adjusted for 48 clusters in id) 

------------------------------------------------------------------------------ 

             |               Robust 

             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

r            | 

       _cons |   .1188801   .1213645     0.98   0.327    -.1189899      .35675 

-------------+---------------------------------------------------------------- 

sprob_       | 

       _cons |  -.7446101   .1873644    -3.97   0.000    -1.111838   -.3773826 

-------------+---------------------------------------------------------------- 

LNmuRA       | 

       _cons |  -1.027557   .2329254    -4.41   0.000    -1.484083   -.5710318 

------------------------------------------------------------------------------ 

 

       sprob:  1/(1+exp([sprob_]_b[_cons])) 

 

------------------------------------------------------------------------------ 

             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

       sprob |   .6780031   .0409044    16.58   0.000     .5978319    .7581744 

------------------------------------------------------------------------------ 

 

For the Low Controls System, we see moderate risk aversion (r > 0) although the estimate is not 

statistically different than zero. The subjective probability of a loss exceeding $17,000 is .67, which is more 

than double the actual probability for the Low Controls system (.3).  

 

Panel B reports the maximum likelihood estimates of the coefficient of risk aversion, the subjective 

probability of a loss exceeding $17,000 for a High Controls System and the behavioural error term:  
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Table 35 - Game 3 Panel B: Maximum Likelihood Estimates Assuming SEUT 

Subjective probability of a daily loss exceeding $17,000 

for a High Controls System under exogenous risk 

 

                                                  Number of obs   =        504 

                                                  Wald chi2(0)    =          . 

Log pseudolikelihood =  -275.6472                 Prob > chi2     =          . 

 

                                    (Std. Err. adjusted for 48 clusters in id) 

------------------------------------------------------------------------------ 

             |               Robust 

             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

r            | 

       _cons |  -.1308428   .0755151    -1.73   0.083    -.2788498    .0171641 

-------------+---------------------------------------------------------------- 

sprob_       | 

       _cons |   1.257398   .4949204     2.54   0.011     .2873714    2.227424 

-------------+---------------------------------------------------------------- 

LNmuRA       | 

       _cons |  -.0954333   .3203516    -0.30   0.766     -.723311    .5324443 

------------------------------------------------------------------------------ 

 

       sprob:  1/(1+exp([sprob_]_b[_cons])) 

 

------------------------------------------------------------------------------ 

             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

       sprob |   .2214222   .0853215     2.60   0.009     .0541951    .3886493 

------------------------------------------------------------------------------ 

 

For the High Controls System, we see marginal risk seeking (r < 0) although the estimate is not statistically 

different than zero. The subjective probability of a loss exceeding $17,000 is .22 which, similar to the Low 

case above, is more than double the actual probability for the High Controls system (.10).  

 

We assume that heterogeneity between the participants might account for the variance in both risk aversion 

and the degree of overestimation in the subjective probabilities and rerun the estimates using participant 

demographics as dummy variables: 

 

Table 36 - Game 3 Panel C: Maximum Likelihood Estimates Assuming SEUT 

Subjective probability of a daily loss exceeding $17,000 

for a Low Controls System under exogenous risk, with demographics 

 

                                                  Number of obs   =        504 

                                                  Wald chi2(6)    =      18.68 

Log pseudolikelihood =  -231.6402                 Prob > chi2     =     0.0047 

 

                                    (Std. Err. adjusted for 48 clusters in id) 

------------------------------------------------------------------------------ 

             |               Robust 

             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

r            | 
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         sex |   -.177615   .3184661    -0.56   0.577    -.8017972    .4465672 

         bus |  -.1029661   .2835908    -0.36   0.717    -.6587937    .4528616 

        math |  -.0108591   .2707406    -0.04   0.968    -.5415009    .5197828 

   workyears |    .092381   .0568834     1.62   0.104    -.0191085    .2038705 

       certs |   .0026191    .121615     0.02   0.983    -.2357419      .24098 

      income |  -.4822955   .1513289    -3.19   0.001    -.7788948   -.1856962 

       _cons |   .6607168   .2789322     2.37   0.018     .1140197    1.207414 

-------------+---------------------------------------------------------------- 

sprob_       | 

         sex |   .3464918   .6296705     0.55   0.582    -.8876396    1.580623 

         bus |   .2416479   .3089241     0.78   0.434    -.3638323     .847128 

        math |   .2782034   .4126236     0.67   0.500     -.530524    1.086931 

   workyears |   .0160379   .0968538     0.17   0.868     -.173792    .2058679 

       certs |  -.0442161   .1860682    -0.24   0.812     -.408903    .3204709 

      income |   .0849485   .4910882     0.17   0.863    -.8775666    1.047464 

       _cons |  -.9959447   1.137945    -0.88   0.381    -3.226276    1.234387 

-------------+---------------------------------------------------------------- 

LNmuRA       | 

       _cons |  -1.347072   .5162032    -2.61   0.009    -2.358812   -.3353322 

------------------------------------------------------------------------------ 

 

       sprob:  1/(1+exp([sprob_]_b[_cons])) 

 

------------------------------------------------------------------------------ 

             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

       sprob |   .7302605   .2241526     3.26   0.001     .2909296    1.169591 

------------------------------------------------------------------------------ 

 

 

Table 37 - Game 3 Panel D: Maximum Likelihood Estimates Assuming SEUT 

Subjective probability of a daily loss exceeding $17,000 

for a High Controls System under exogenous risk, with demographics 

 

                                                  Number of obs   =        504 

                                                  Wald chi2(2)    =          . 

Log pseudolikelihood = -248.68661                 Prob > chi2     =          . 

 

                                    (Std. Err. adjusted for 48 clusters in id) 

------------------------------------------------------------------------------ 

             |               Robust 

             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

r            | 

         sex |  -.0047875          .        .       .            .           . 

         bus |  -.4316819   .1536781    -2.81   0.005    -.7328854   -.1304784 

        math |  -.1147367   .1436011    -0.80   0.424    -.3961897    .1667164 

   workyears |   .2521705          .        .       .            .           . 

       certs |   .0003455          .        .       .            .           . 

      income |  -.0668787          .        .       .            .           . 

       _cons |  -.4472493          .        .       .            .           . 

-------------+---------------------------------------------------------------- 

sprob_       | 

         sex |   .1332954   .8934244     0.15   0.881    -1.617784    1.884375 

         bus |  -1.239598   1.104524    -1.12   0.262    -3.404426     .925229 

        math |   1.168815   .7903422     1.48   0.139    -.3802275    2.717857 

   workyears |      .4911   .4855314     1.01   0.312    -.4605241    1.442724 

       certs |  -.3928655    .250548    -1.57   0.117    -.8839305    .0981995 

      income |    .047526   .9640091     0.05   0.961    -1.841897    1.936949 
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       _cons |    1.12994   1.552742     0.73   0.467    -1.913378    4.173257 

-------------+---------------------------------------------------------------- 

LNmuRA       | 

       _cons |   -.163069   .2623071    -0.62   0.534    -.6771816    .3510435 

------------------------------------------------------------------------------ 

 

       sprob:  1/(1+exp([sprob_]_b[_cons])) 

 

------------------------------------------------------------------------------ 

             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

       sprob |   .2441723   .2865619     0.85   0.394    -.3174787    .8058232 

------------------------------------------------------------------------------ 

 

 

Figure 139 illustrates the kernel density function of the CRRA estimates across all participants for the Low 

Controls and High Controls treatments respectively. The results indicate significant diversity in the CRRA 

across participants, ranging from very risk seeking to risk averse: 

 

Figure 139 - Kernel density of the Game 3 CRRA estimates 

High Controls vs. Low Controls System under exogenous risk, with demographics 

 

 

Figure 140 illustrates the kernel density of the subjective probability estimates across all participants for the 

Low Controls and High Controls treatments respectively functions. The results indicate significant diversity 

in the subjective probabilities across participants: 

 

 

 

 

-1 -.75 -.5 -.25 0 .25 .5 .75 1
Estimated CRRA - High vs. Low Controls System
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Figure 140 - Kernel density of the Game 3 Subjective Probability Estimates 

High Controls vs. Low Controls System under exogenous risk, with demographics 

 

 

These results indicate that while some participants correctly estimate the probability of the High Controls 

system generating losses above $17,000, most over-estimate the probability by a factor of 2 to 4 times 

which is much higher than the results found by Sen. All participants over-estimate the Low Controls 

probability of generating losses above $17,000. There may be several explanations for this. It clear from the 

raw data, for example, that some participants may not sufficiently understand the betting mechanism or, 

more importantly, the implications of the betting mechanism for their payout prospects, or may have simply 

have ignored the instructions when betting, or may be betting randomly in some cases. For example, some 

participants do not indicate a single ‘switch point’ in the multiple price list and many switch more than 

once between bookies. This is a commonly experienced issue with multiple price list elicitations which 

strictly violates the monotonicity of the bets and results in larger model errors. Harrison and others discuss 

the issue at length and, although they report that multiple switch points may not cause significant errors, I 

suspect that it may do so in my data set given the smaller number of participants and resulting observations 

undertaken (Holt 2002; Andersen, Harrison et al. 2006; Harrison and Rutström 2008; Dave, Eckel et al. 

2010; Bruner 2011; Charness, Gneezy et al. 2013; Freeman, Halevy et al. 2015). Clear violations of 

expected utility maximization theory are apparent. In the Game 3 Endogenous Risk treatment below, for 

example, we find many participants electing to expend all of their control budget on a High Controls 

upgrade (in 30% of these choices) which absolutely ensures no net gain should that prospective outcome 

occur or, conversely, not electing to upgrade at no cost (in 18% of these choices) i.e. apparently preferring 

to pay for a control that is being offered, potentially, for free. In this way, we observe that participants are 

not consistent in what are otherwise ‘obvious’ choices, and we conclude that the data may be noisier than it 

otherwise should be. Controlling for this is not straightforward: while Harrison and other stress the 

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1
Estimated Subjective Probability of Random Daily Loss Exceeding $17K

High Controls System Low Controls System
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importance of ensuring that Participants understand how to play the games, they generally stop short of 

providing any ‘strategic’ guidance that would indicate ‘logical’ or consistent choices to Participants, 

however objective that choice might be or seem to be.  In these experiments I did not attempt to coach 

players other than indicating that some choices might be more obvious than others in terms of maximizing 

payouts.  

 

Endogenous Risk Treatment 

Panel E reports the maximum likelihood estimates of the coefficient of risk aversion, the subjective 

probability of a loss exceeding $17,000 for a Low Controls System (“sprobRisky”) and High Controls 

System (“sprobSafe”) respectively and the behavioural error term, where the participant can select to 

purchase High Controls and therefore endogenously affect the payouts:  

 

Table 38 - Game 3 Panel E: Maximum Likelihood Estimates Assuming SEUT 

Subjective probability of a daily loss exceeding $17,000 

for a High Controls System under endogenous risk 

 

                                                  Number of obs   =       2242 

                                                  Wald chi2(0)    =          . 

Log pseudolikelihood = -1230.4956                 Prob > chi2     =          . 

 

                                    (Std. Err. adjusted for 58 clusters in id) 

------------------------------------------------------------------------------ 

             |               Robust 

             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

r            | 

       _cons |   .9996453   .0000436 22919.54   0.000     .9995598    .9997308 

-------------+---------------------------------------------------------------- 

sprobRisky_  | 

       _cons |  -1.957071   .0002403 -8143.10   0.000    -1.957542     -1.9566 

-------------+---------------------------------------------------------------- 

sprobSafe_   | 

       _cons |   1.958812          .        .       .            .           . 

-------------+---------------------------------------------------------------- 

LNmuRA       | 

       _cons |  -8.813299          .        .       .            .           . 

------------------------------------------------------------------------------ 

 

  sprobRisky:  1/(1+exp([sprobRisky_]_b[_cons])) 

 

------------------------------------------------------------------------------ 

             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

  sprobRisky |   .8762156   .0000261        .   0.000     .8761645    .8762667 

------------------------------------------------------------------------------ 

 

   sprobSafe:  1/(1+exp([sprobSafe_]_b[_cons])) 

 

------------------------------------------------------------------------------ 

             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

   sprobSafe |   .1235956          .        .       .            .           . 

------------------------------------------------------------------------------ 
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In this treatment we see relatively strong risk aversion (r > 0) and the estimate is statistically significant at 

the 95% level. The subjective probability of a loss exceeding $17,000 for the Low Controls (risky) System 

is now .88 which greatly exceeds the actual probability (.3). The subjective probability of a loss exceeding 

$17,000 for the High Controls (risky) System on the other hand is .12 which is very close to the actual 

probability (.1) although no standard error statistics are calculable. The interpretation of the subjective 

probabilities requires careful consideration in the endogenous case particularly since participants only 

opted for Higher Controls 32% of the time. The maximum likelihood estimator was unable to converge 

when controlling for demographic variable, and we are therefore only able to report average subjective 

probabilities for this treatment.  
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Game 4 Findings 

Recovering Subjective Probability Distributions 

 

Analysis 

Following Harrison and Ulm  (Harrison and Ulm 2015) we conduct an experiment that involves the 

estimation of subjective probabilities over continuous distributions. Participants report subjective beliefs 

over continuous events using a Quadratic Scoring Rule (QSR). Under some mild additional assumption, it 

has been known since Matheson and Winkler (Matheson and Winkler 1976) that these reports reflect latent 

subjective beliefs if the individual is risk neutral and obeys Subjective Expected Utility Theory (SEUT). It 

is also now known that these reports are “close” to latent subjective beliefs if the individual obeys SEU and 

has a concave utility function in the range observed over typical payments in experiments (Harrison, 

Martínez-Correa et al. 2013). Following Harrison, we extend these theoretical results in the context of 

recovering latent subjective beliefs about security outcome represented as times series and probability 

distributions if the individual is known to distort probabilities into decision weights using Rank Dependent 

Utility (RDU) theory (Quiggin 1982). 

 

Recovering Subjective probability Estimates Using Quadratic Scoring Rules 

Let the decision maker report his subjective beliefs in a discrete version of a quadratic scoring rule (QSR) 

for continuous distributions (Matheson and Winkler 1976). Partition the domain of response into K 

intervals (here we use 10), and denote as rk the report of the participant of the likelihood that the event falls 

in interval k = 1, … , K. Assume for the moment that the decision maker is risk neutral, and that the full 

report consists of a series of reports for each interval, { r1, r2, …, rk , …, rK } such that rk ≥ 0 ∀  k and ∑ i = 1 

…K (ri) = 1. 

 

If k is the interval in which the actual value lies, then the payoff score is defined by Matheson and Winkler 

[1976; p.1088, equation (6)]: 

 

 S = (2 × rk) - ∑ i = 1 …K (ri)
2 

(9.43) 

 

So the reward in the score (2 × rk) is a doubling of the report allocated to the true interval, and the penalty 

depends on how these reports are distributed across the K intervals ( ∑ i = 1 …K (ri)
2
 ).  The subject is 

rewarded for accuracy, but if that accuracy misses the true interval the punishment is severe. The 

punishment includes all possible reports, including the correct one.
76

 

                                                                        
76 Harrison “Take some examples, assuming K = 4. What if the subject has very tight subjective beliefs and allocates all of the weight 

to the correct interval? Then the score is S = (2 × 1) - (12 + 02+ 02+ 02) = 2 - 1 = 1, and this is positive. But if the subject has tight 
subjective beliefs that are wrong, the score is S = (2 × 0) - (12 + 02+ 02+ 02) = 0 - 1 = -1, and the score is negative. So we see that this 

score would have to include some additional “endowment” to ensure that the earnings are positive [in order to calculate the 

participant’s EUT CRRA]. Assuming that the subject has very diffuse subjective beliefs and allocates 25% of the weight to each 
interval, the score is less than 1: S = (2 × ¼) - ((¼)2 + (¼)2 + (¼)2 + (¼)2 ) = ½ - ¼ = ¼ < 1. So the tradeoff from the last case is that 
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To ensure complete generality, and avoid any decision maker facing losses, allow some endowment, α, and 

scaling of the score, β. We then get the following scoring rule for each report in interval k 

 

 α + β [ (2 × rk) - ∑ i = 1 …K (ri)
2
] (9.44) 

   

where we initially assumed α=0 and β=1. We can assume α>0 and β>0 to get the payoffs to any positive 

level and units we want. Let pk represent the underlying, true, latent subjective probability of an individual 

for an outcome that falls into interval k. Figures 141 and 142 illustrate the QSR which we use in the Game 

4 experiment, for α = β = 25 and K=10: 

 

  

                                                                                                                                                                                                                     

one can always ensure a score of ¼, but there is an incentive to provide less diffuse reports, and that incentive is the possibility of a 
score of 1. 
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Figure 141 - Game 4B: Quadratic Scoring Rule Response Device w. Multi-Bin report 

Example Report (r4 = 20%, r5 = 60%, r6 = 20%, all rk = 0%) 

 

 

Figure 142 - Game 4B: Quadratic Scoring Rule Response Device w. Single Bin Report 

Example Report (r5 = 100%, all rk≠5 = 0%)  
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For the following treatments, as in Game 2, we assume that the utility of income is defined by 

 

 U(x) = x
 1-r

 / (1-r) (9.45) 

 

where “r” is the ‘coefficient of risk aversion’ and “x” is the monetary value of the outcome (>0), where r=0 

corresponds to risk neutrality, r<0 to risk loving, and r>1 to risk aversion.  ‘Expected utility’ is then 

specified as the probability conditioned utility, 

 

𝐸𝑈𝑖 = ∑ (𝑝𝑘
𝑘=1,𝐾

× 𝑈(𝑥)𝑘) 

(9.46) 

 

where p is the probability of the outcome and U(x) is the CRRA specified utility function. 

 

Rank Dependent Utility 

The Rank Dependent Utility (RDU) model of Quiggin (Quiggin 1982) extends the EUT model by allowing 

for decision weights on lottery outcomes i.e. where the decision maker possibly distorts subjective 

probability estimates based on the rank of the probabilities across outcomes, typically overweighting low 

probability events. The specification of the utility function is the same parametric specification considered 

above for EUT. To calculate decision weights under RDU one replaces expected utility with RDU: 

 

𝑅𝐷𝑈𝑖 = ∑ [ 𝑤 (𝑝(𝑀𝑗))

𝑗=1,𝐽

×  𝑈(𝑀𝑗)] =  ∑ [ 𝑤𝑗  ×  𝑈(𝑀𝑗)]

𝑗=1,𝐽

 

(9.47) 

 

where 

 

 wj = ω(pj + … + pJ ) - ω(pj+1 + … + pJ) (9.48) 

 

for j=1, ... , J-1, and 

 

 wj = ω(pj) (9.49) 

 

for j=J, with the subscript j ranking outcomes from worst to best (i.e. in a ‘decumulative’ ranking), and ω(.) 

is some probability weighting function. 
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Several probability weighting functions can be considered
77

 – in this study I consider the “Power” 

probability weighting function popularized by Quiggin with curvature parameter γ: 

 

 ω(p) = p
γ 

(9.50)
 

 

So γ≠1 is consistent with a deviation from the conventional EUT representation. Convexity of the 

probability weighting function is said to reflect “pessimism” and generates, if one assumes for simplicity a 

linear utility function, a risk premium since ω(p) < p ∀ p and hence the “RDU EV” weighted by ω(p) 

instead of p has to be less than the EV weighted by p. 

 

Recovering subjective probabilities under EUT and RDU: 

Let pk represent the underlying subjective probability of an individual for outcome k and let rk represent the 

reported probability for outcome k in a given scoring rule. Let θ(k) = α + β2rk - β∑ i = 1 …K (ri)
2
 be the 

(Quadratic) scoring rule that determines earnings θ if state k occurs. Assume that the individual uses some 

probability weighting function ω(.), leading to decision weights w(.) defined in the ‘decumulative’ fashion 

noted above. Assume that the individual behaves consistently with RDU, applied to subjective 

probabilities. If the individual has a utility function u(.) that is continuous, twice differentiable, increasing 

and concave and maximizes rank dependent utility over weighted subjective probabilities, the actual and 

reported probabilities must obey the following system of equations: 

 

 w(pk) × ∂u/∂θ |θ = θ(k) - ∑ j = 1,K  { w(pj) × rj × ∂u/∂θ |θ = θ(j) } = 0, ∀  k = 1, ... , K (9.51) 

 

The application of this system of equations is straightforward. If the reports rk are given from observation 

of experimental data, the partial derivatives are fixed and independent of the decision weights w(pk), so this 

is a linear system of equations in the unknown decision weights. These equations can be solved 

using standard linear algebra techniques. Although it turns out the equations are linearly dependent, we can 

replace any one of them with ∑ k = 1,K { w(pk) } = 1 to remove the redundancy and obtain a 

unique solution
78

. 

 

 

 

 

 

 

 

                                                                        
77 Harrison and Ulm employ three utility functions: Power, “inverse-S” and Prelec (Harrison and Ulm 2015) 
78 Ibid. Harrison and Ulm present a numerical example for greater exposition – the reader is referred to their example for that detail.  
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Results: 

CRRA and RDU Weight Estimation Using Objective Lotteries 

Panel A reports the maximum likelihood estimates of the coefficient of risk aversion, and the behavioural 

error term elicited across all participants:  

 

Table 39 - Game 4A Panel A: Maximum Likelihood Estimates Assuming EUT 

Estimate of the CRRA, all participants 

 

                                                  Number of obs   =       1750 

                                                  Wald chi2(0)    =          . 

Log pseudolikelihood =   -1205.26                 Prob > chi2     =          . 

 

                                    (Std. Err. adjusted for 35 clusters in id) 

------------------------------------------------------------------------------ 

             |               Robust 

             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

r            | 

       _cons |   .3097792   .6381193     0.49   0.627    -.9409116     1.56047 

-------------+---------------------------------------------------------------- 

LNmuRA       | 

       _cons |    .259151   .3252643     0.80   0.426    -.3783552    .8966573 

------------------------------------------------------------------------------ 

 

        muRA:  exp([LNmuRA]_cons) 

 

------------------------------------------------------------------------------ 

             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

        muRA |    1.29583   .4214871     3.07   0.002     .4697301    2.121929 

------------------------------------------------------------------------------ 

 

Across undifferentiated participants we see moderate risk aversion (r >0) although the estimate is not 

statistically different than zero. In Panel B we assume that heterogeneity between the participants might 

account for the variance in risk aversion and rerun the estimates using participant demographics as dummy 

variables: 

 

Table 40 - Game 4A Panel B: Maximum Likelihood Estimates Assuming SEUT 

Predicted values of the CRRA for all participants, with demographics 

 

                                                  Number of obs   =       1750 

                                                  Wald chi2(2)    =          . 

Log pseudolikelihood = -1202.2823                 Prob > chi2     =          . 

 

                                    (Std. Err. adjusted for 35 clusters in id) 

------------------------------------------------------------------------------ 

             |               Robust 

             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

r            | 

         sex |   .3729342          .        .       .            .           . 

         bus |  -.3419725   1.653118    -0.21   0.836    -3.582025     2.89808 

        math |    .435237          .        .       .            .           . 
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   workyears |   .1050916          .        .       .            .           . 

       certs |  -.2141195   .4998308    -0.43   0.668     -1.19377    .7655309 

      income |  -.3187145          .        .       .            .           . 

       _cons |    .302607          .        .       .            .           . 

-------------+---------------------------------------------------------------- 

LNmuRA       | 

       _cons |    .197197   .4905171     0.40   0.688    -.7641989    1.158593 

------------------------------------------------------------------------------ 

 

        muRA:  exp([LNmuRA]_cons) 

 

------------------------------------------------------------------------------ 

             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

        muRA |   1.217984   .5974419     2.04   0.041     .0470192    2.388949 

------------------------------------------------------------------------------ 

 

 

Figure 143 illustrates the kernel density function of the CRRA estimates across all participants. The results 

indicate significant diversity in the CRRA across participants, ranging from risk seeking to risk averse: 

 

 

Figure 143 - Kernel density for Game 4A CRRA estimates for all participants, with demographics 

 
 

 

 

To evaluate RDU preferences, we estimate an RDU model across all participants and for each individual, 

following procedures explained by Harrison and Rutström (Harrison and Rutström 2008). We consider the 

CRRA utility function and the Power probability weighting function defined above. For our purposes, the 

only issue is at what statistical confidence level we can (or cannot) reject the EUT hypothesis that ω(p) =p. 

After estimating γ (gamma) for each individual, we run t-tests on the hypothesis ω(p) = p, or γ = 1. 

Unfortunately, only three of the 60 individuals generate plausible gamma values where the hypothesis 

-1.5 -1.25 -1 -.75 -.5 -.25 0 .25 .5 .75 1 1.25 1.5
Estimated CRRA - All Participants



  308  

could be rejected at the 10% level. Figure 144 indicates the kernel density function of the p-values for the 

RDU estimates – vertical red lines indicate p-values of .01, .05 and .1, left to right respectively: 

 

Figure 144 - Kernel density of Game 4A p-values of test of EUT 

H0: (ω(p) = p, or γ = 1) 

 
 

To demonstrate the potential effect of RDU on recovered beliefs, we select results from one of the 

participants where the gamma parameter estimate is significant at the 5% level. Panel C reports the 

maximum likelihood estimates of this participant’s coefficient of risk aversion, and the behavioural error 

term:  

 

Table 41 - Game 4A Panel C: Maximum Likelihood Estimates Assuming SEUT 

Estimates of the CRRA, participant ID 52 

 

                                                  Number of obs   =         50 

                                                  Wald chi2(0)    =          . 

Log likelihood = -34.245068                       Prob > chi2     =          . 

 

------------------------------------------------------------------------------ 

             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

r            | 

       _cons |   .9995994   3.643209     0.27   0.784    -6.140959    8.140158 

-------------+---------------------------------------------------------------- 

muRA         | 

       _cons |   .8203305   1.660168     0.49   0.621    -2.433539      4.0742 

------------------------------------------------------------------------------ 

 

0 .25 .5 .75 1
p-value on test for no Probability Weighting - All Participants
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The CRRA estimate itself is not significant, however when we run an RDU model for this participant, we 

get a significant estimate for gamma at the 5% level. Panel D reports the maximum likelihood estimates of 

this participant’s gamma coefficient (under Power Utility), the CRRA term and the behavioural error term: 

 

 

Table 42 - Game 4A Panel D: Maximum Likelihood Estimates Assuming SEUT 

Estimates of CRRA and Gamma (RDU Model), participant ID 52 

 

 

                                                  Number of obs   =         50 

                                                  Wald chi2(0)    =          . 

Log likelihood = -31.664484                       Prob > chi2     =          . 

 

------------------------------------------------------------------------------ 

             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

r            | 

       _cons |  -3.978473   3.367166    -1.18   0.237      -10.578    2.621051 

-------------+---------------------------------------------------------------- 

gamma        | 

       _cons |   3.892763   1.611483     2.42   0.016     .7343152    7.051211 

-------------+---------------------------------------------------------------- 

muRA         | 

       _cons |   .2605455   .1565854     1.66   0.096    -.0463563    .5674473 

------------------------------------------------------------------------------ 

 

. test [gamma]_b[_cons]=1 

 

           chi2(  1) =    3.22 

         Prob > chi2 =    0.0726 

 

In order to demonstrate the effect of assuming different models of risk preference on recovering subjective 

probabilities, we use the gamma estimate, together with the CRRA estimate from Panel D to recover the 

subjective beliefs of Participant #52 based on their original reports for 3 questions regarding the 

characteristics of a particular distribution of business losses attributed to security breach. Our results 

confirm those of Harrison and Ulm: 

 

The figures illustrate a central theme that goes back to Savage (Savage 1971): one cannot recover 

subjective beliefs without making some assumptions about the underlying model of risk 

preferences. Those assumptions might take the form of designing an elicitation procedure that is 

assumed to “risk neutralize” the individual (e.g. (Koszegi and Rabin 2008) and (Karni 2009)), 

applying a payoff procedure that is assumed to “risk neutralize” the individual (e.g., (Smith 1961)] 

and (Harrison, Martínez-Correa et al. 2014)), or just assuming, contrary to the evidence, that 

individuals are risk neutral. (Harrison and Ulm 2015) 

 

In this case there are positive reports for 3 or 4 ‘bins’ in each question, and neither the EUT or the RDU 

model of risk preferences assigns any subjective belief to the bins that have zero reports. The first bar of 

each bin in the following figures shows the observed report. The second bar of each bin shows the 

recovered belief assuming that this individual behaved as if they were an EUT decision-maker, and further 

had a CRRA coefficient of .99. This coefficient was estimated for this individual from the separate task of 
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50 lottery choices noted above. Again, as expected from the theoretical results of Harrison et al (Harrison, 

Martínez-Correa et al. 2013), we do not see a significant difference between the beliefs recovered under 

EUT from the reported beliefs. 

 

The third bar of each bin show the dramatic effect of assuming different RDU models, where the difference 

derives solely from different assumptions about the probability weighting function. Here we see a large 

shift in subjective probabilities if we assume the individual is an RDU decision maker with a power 

probability weighting function. 

 

Hence the bottom line for this subject and his recovered subjective beliefs about these three questions 

regarding the probability distributions is to compare the reported belief to the final bar within each bin.  
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Figure 145 - Game 4B Sample Question #1 

 

Q
u

estio
n

 #
1

:  

“
F

o
r th

is H
IG

H
 C

o
n

tro
ls S

ystem
, A

C
R

O
S

S
 A

L
L

 Y
E

A
R

S
, w

h
a

t d
a

ily $
 L

o
ss a

m
o

u
n

t w
o

u
ld

 b
e exceed

ed
 5

0
%

 o
f th

e tim
e?

 

A
ctu

a
l A

n
sw

er
: $

3
,0

2
6

 (red
 lin

e) 

 

Th
is is a H

igh
 C

o
n

tro
ls Syste

m

Fo
r th

is H
IG

H
 C

o
n

tro
ls System

, A
C

R
O

SS A
LL Y

EA
R

S, w
h

a
t d

a
ily $

 

Lo
ss a

m
o

u
n

t w
o

u
ld

 b
e exceed

ed
 5

0
%

 o
f th

e tim
e?

attrib
u

te
d

 d
aily b

u
sin

e
ss 'lo

sse
s' d

u
e

 to
 

(Lo
w

, M
e

d
iu

m
, H

igh
, V

e
ry H

igh
) le

ve
l o

f 

d
ep

lo
yed

 in
fo

rm
ation

 secu
rity co

n
trols, 

P
re

ve
n

tive
, B

lo
ckin

g, D
e

te
ctive

, C
o

u
n

ter 

h
igh

e
r th

e
 le

ve
l o

f co
n

tro
l in

d
icate

d
, th

e
 

o
f co

n
tro

l affe
cts th

e
 

ave
rage

 le
ve

l 

T. So
m

m
e

stad
, M

. Ekste
d

t, an
d

 P
. Jo

h
n

son, 

0

20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

Lo
ss P

er D
ay (C

o
u

n
t) -

A
ll Y

ears



  312  

Figure 146 – Game 4B: Recovered Belief for Participant #52, Question #1 

 “For this HIGH Controls System, ACROSS ALL YEARS, 

what daily $ Loss amount would be exceeded 50% of the time? 

 

Actual Answer: $3,026 (yellow bar) 

 

EUT: r: .99   RDU: Power Utility r= -3.98, gamma = 3.9 

 

Here we see that the Participant missed the actual answer by a substantial margin and in fact did not report 

any weighting whatsoever to the true answer. The recovered beliefs based on EUT estimates are similar to 

those of the raw reports. However, assuming RDU probability weighting increases the recovered 

probabilities substantially, although retaining the overall shape of the reported values. Looking across all 

reporting Participants, we also note that most participants got the answer wrong, and many by a substantial 

margin of error. Many of the responses are in fact completely out of the range of plausible responses and 

we might question whether participants understood either or both the scoring device or the nature of the 

questions being asked. We report similar results for the other two question results profiled in detail for this 

experiment and discuss these results in the Conclusions section below: 
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Figure 147 - Game 4B: Recovered Belief for All Participants, Question #1 

“For this HIGH Controls System, ACROSS ALL YEARS, 

what daily $ Loss amount would be exceeded 50% of the time? 

Actual Answer: $3,026 (yellow bar) 
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Figure 148 - Game 4B Sample Question #2 

 

  Q
u

estio
n

 #
2

: 

  F
o

r th
is M

E
D

IU
M

 C
o

n
tro

ls S
ystem

, A
C

R
O

S
S

 A
L

L
 Y

E
A

R
S

, w
h

a
t d

a
ily $

 L
o

ss a
m

o
u

n
t w

o
u

ld
 b

e exceed
ed

 5
%

 o
f th

e tim
e?

 

  A
ctu

a
l A

n
sw

er
: $

3
6

,2
2
2

 (red
 lin

e) 

 

Th
is is a M

e
d

iu
m

 C
o

n
tro

ls Syste
m

Fo
r th

is M
ED

IU
M

 C
o

n
tro

ls System
, A

C
R

O
SS A

LL Y
EA

R
S, w

h
a

t 

d
a

ily $
 Lo

ss a
m

o
u

n
t w

o
u

ld
 b

e exceed
ed

 5
%

 o
f th

e tim
e?

Sim
u

late M
u

ltip
le Y

ears
attrib

u
te

d
 d

aily b
u

sin
e

ss 'lo
sse

s' d
u

e
 to

 

(Lo
w

, M
e

d
iu

m
, H

igh
, V

e
ry H

igh
) le

ve
l o

f 

d
ep

lo
yed

 in
fo

rm
ation

 secu
rity co

n
trols, 

P
re

ve
n

tive
, B

lo
ckin

g, D
e

te
ctive

, C
o

u
n

ter 

h
igh

e
r th

e
 le

ve
l o

f co
n

tro
l in

d
icate

d
, th

e
 

o
f co

n
tro

l affe
cts th

e
 

ave
rage

 le
ve

l 

T. So
m

m
e

stad
, M

. Ekste
d

t, an
d

 P
. Jo

h
n

son, 

0 5 10 15 20 25 30 35

Lo
ss P

er D
ay (C

o
u

n
t) -

Sin
gle Y

ear



  315  

Figure 149 – Game 4B: Recovered Belief for Participant #52, Question #2 

For this MEDIUM Controls System, ACROSS ALL YEARS, 

what daily $ Loss amount would be exceeded 5% of the time? 

Actual Answer: $36,222 (yellow bar) 

EUT: r: .99   RDU: Power Utility r= -3.98, gamma = 3.9 

 

Here we see that the Participant reported much closer to the actual answer. The recovered beliefs based on 

EUT estimates are again similar to those of the raw reports. One again, the RDU probability weighting 

increases the recovered probabilities substantially, significantly modifying the overall shape of the reported 

values. Looking across all reporting Participants, we again note that most participants got the answer 

wrong, and even the pooled average maximal response was incorrect, again with a substantial margin of 

error within and across responses: 
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Figure 150 - Game 4B: Recovered Belief for All Participants, Question #2 

For this MEDIUM Controls System, ACROSS ALL YEARS, 

what daily $ Loss amount would be exceeded 5% of the time? 

Actual Answer: $36,222 (yellow bar) 
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Figure 151 - Game 4B Sample Question #3 
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Figure 152 – Game 4B: Recovered Belief for Participant #52, Question #3 

For this HIGH Controls System, FOR THIS YEAR, 

what percentage of daily loss amounts exceed $5,755? 

Actual Answer: 25% (yellow bar) 

 
EUT: r: .99   RDU: Power Utility r= -3.98, gamma = 3.9 

 

Here we again see that the Participant reported close to the actual answer, although as in each of the 

examples reported here, she was unable to select the correct answer. Once again, the RDU probability 

weighting increases the recovered probabilities substantially, significantly modifying the overall shape of 

the reported values. Looking across all reporting Participants, we note that most participants got the answer 

wrong, although pooled responses were right on average, but again with a substantial margin of error: 

 

Figure 153 - Game 4B: Recovered Belief for All Participants, Question #2 

For this HIGH Controls System, FOR THIS YEAR, 

what percentage of daily loss amounts exceed $5,755? 

Actual Answer: 25% (yellow bar) 
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Game 5 Findings 

 

The Effect of Ambiguity on Self Precaution and Cyber Insurance Choice  

 

Analysis 

Following Bajtelsmit, Coates et al (Bajtelsmit, Coats et al. 2015) we conduct an experiment involving  

choices between self-precaution and insurance over security risks. In this experiment, we extend the 

literature on cyber-insurance by introducing a model which includes system performance and the level of 

security control as sources of ambiguity underlying the decision between precaution and insurance and by 

replicating an established experimental design to examine lab participant choices between protection and 

insurance. To my knowledge, this is the first study to explicitly incorporate the context of simulated 

security losses on precaution and insurance in this way. The experimental design allows us to test certain 

theoretical findings of the Bajtelsmit and Thistle (2008) model of the choice between precaution and 

insurance with high versus low probabilities of loss. We employ a design, parameters, and framing which 

allow us to contribute additional evidence to existing mixed results of experimental studies of the decision 

to insure against low-probability, high-severity losses. 

 

In the absence of the ability to take precaution against accident, theory suggests that risk-averse individuals 

will fully insure when actuarially fair insurance is available. In situations where insurance is not fairly 

priced (and presumably where individuals can recognize this disparity) or where precaution is an 

alternative, the optimal choice depends on risk aversion, load and the cost of precaution. In this experiment, 

we confirm that, when the probability of loss is more ambiguous, the demand for insurance increases. 

However, ambiguous increases in the probability of loss may increase or decrease expenditure on 

precaution, depending on assumptions related to the cost and benefit of precautionary spending. We test 

these results empirically in a laboratory experiment in which participants make decisions about insurance 

and precaution under different ambiguity conditions represented by an IT system at risk of business losses 

attributed to security breach where the system is characterized as having relatively Low, High or Very High 

effectiveness security controls and where the outcomes are increasingly ambiguous the lower the level of 

control i.e. the apparent dispersion of results are greater and the probability of outcome is therefore harder 

to subjectively estimate.  

 

The underlying theory is based on the standard model of accidents in the law and economics literature. In 

the absence of the ability to take precaution against accident, theory suggests that risk-averse expected 

utility maximizers will fully insure when actuarially fair insurance is available. In general, the assumption 

of risk aversion implies that individuals will be willing to pay some level of load or risk premium to avoid 

risk. Thus, when insurance is not fairly priced, the optimal choice depends on the level of risk aversion and 

the insurance loading factor. We assume that individuals are expected utility maximizers with increasing 

concave von Neumann Morgenstern utility u. Individuals have exogenous initial wealth w and face a 
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potential loss d < w with probability π. Expenditure on precaution or care is denoted c (c ≥ 0) and the risk 

of a loss is a deceasing, convex function of c. Individuals have either a high or low probability of loss, 

where πH(c) > πL(c) for any expenditure on precaution. We assume 0 < π(c) < 1, that is, it is possible to 

reduce the risk of loss but not predictably to zero
79

. We also assume precaution has a lower marginal 

impact on the probability of loss for low-probability risks (L) than for high probability risks (H), 0 > π'L(c) 

> π'H(c). We assume each person knows whether they face high or low risk and understands how the level 

of precaution ‘generally’ affects the probability of loss
80

. An insurance policy consists of a premium, pi, 

paid whether or not loss occurs, and an indemnity, qi, paid in the event that the loss occurs. In the complete 

coverage case, the first best levels of precaution are ci* = argmin ci + πi(ci)d, i = H, L
81

. 

 

If insurance is not available, then expected utility is 

 

 Ui(ci) = (1 – πi(ci))u(w – ci) + πi(ci)u(w– ci – d) (9.52) 

 

The individual chooses the level of precaution, ci
0, that maximizes expected utility. Because the individual 

is risk averse, she is willing to pay some amount PiU to avoid the risk of loss. The results in Bajtelsmit and 

Thistle (2008) imply that the willingness to pay to avoid the risk is given by u(w – PiU) = Ui(ci
0). 

‘Willingness to pay’ can be written as PiU = ci
0+ πi(ci

0)d + ρiU, where ρiU is a risk premium. 

 

Now assume that insurance is available, that insurers can determine risk type ex ante, and that the 

expenditure on precaution is observable. In general, the insurance premium can be written as p i = λπi(ci)qi, 

where λ is the premium ‘loading factor’ (i.e. X times the ‘actuarially fair’ premium and the insurance 

premium is actuarially fair if λ = 1). The individual who buys the insurance policy (p i, qi) and spends ci on 

care has expected utility given by 

 

 Ui(pi, qi, ci) = (1 – πi(ci))u(w – pi – ci) + πi(ci)u(w – pi – ci – d + qi) (9.53) 

 

for i = H, L. 

 

Generally, individuals will not choose to insure if the cost of doing so is greater than the cost of precaution 

which meets the insurance negligence standard. The size of the insurance loading factor relative to 

expected loss and cost of precaution therefore makes a difference in the predicted decision between 

                                                                        
79 This assumption differs from Bajtelsmit, Coates et al who assume 0 ≤ π(c) < 1, i.e. risk of loss may be reduced to zero through 

either ‘perfect’ control or insurance against complete loss. Although convenient for their study, I consider this unrealistic in the 
context of this study since we are incorporating system simulation in which the precautionary controls are inherently stochastic and 

the available insurance product at writing is unlikely to cover total loss under any circumstances. In general, I hypothesize that this 

this adds appropriate ‘ambiguity’ to the decision making context which is expected to be reflected in the empirical results.   
80 In our experiment, participants can interactively simulate the system at risk to experience the effect of the precaution and insurance 

choices on net losses at the chosen level of system control and insurance (i.e. their stake amount, less any purchased controls andéor 

insurance premium, less a randomly selected daily loss).   
81 argmin[f,x] gives a position xmin at which function f is minimized. https://reference.wolfram.com/language/ref/ArgMin.html  

https://reference.wolfram.com/language/ref/ArgMin.html
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insurance and precaution. For example, for low frequency, low severity risks, expected loss may be so 

small that even a modest insurer profit and risk charge will tilt the scale toward taking care instead of 

buying insurance. In most analyses of liability, as in the analysis described above, the probability of an 

accident is a function of care or precaution and is deterministic. Now suppose that it is possible for the 

system to experience security breaches that, despite expenditure on care, can result in, sometime 

catastrophic, business losses. This is analogous, in our context, to organization personnel committing 

operational errors or omissions affecting security control efficacy. Further, as noted above, the inherent 

effectiveness of the controls is assumed to be stochastic such that the vector of control performance 

attributes cannot be absolutely determined ex ante. Following Bajtelsmit et al, we therefore model the case 

in which individuals know that there is a random chance of system ‘error’ - in this case, controls that do not 

perform as expected relative to an alternate level of control - but they do not know exactly how it will 

impact the probability of loss or the loss amount. The fact that the probability of an error is unknown 

introduces ambiguity into the precaution vs. insurance decision making process. Bajtelsmit et al show that 

if an individual decision maker is ambiguity neutral, then a utility function incorporating a measure of the 

probability of ‘mistake’ reflecting ambiguity of the system outcome is linear and if the individual is 

ambiguity averse then the function is concave. An ambiguity-averse individual (like a risk averse 

individual) is therefore willing to pay to eliminate the risk and they show that ambiguity aversion increases 

the willingness to pay to avoid the risk (i.e. to increase control levels) and that ambiguity aversion is shown 

to increase the demand for insurance (i.e. we expect that participants will be more willing to pay for 

insurance the lower the control level). 

 

On the other hand, the effect of ambiguity aversion on the optimal level of precaution is theoretically 

indeterminate and depends on the fine detail of the chosen theoretical model. Snow (Snow 2011) shows 

that if individuals have unbiased beliefs (E{π(c,m̃)}, where π equals the objective loss probability, c is the 

loss and m̃ is the occurance of a ‘mistake’), then the loss probability must be either multiplicatively 

separable (π(c, m̃) = α(c)π(m̃)) or additively separable (π(c, m̃) = π(m̃) + β(c)). Snow further shows that 

multiplicative separability, implying ambiguity aversion, increases the expenditure on care. Snow and 

Alary, Gollier and Treich (Alary, Gollier et al. 2010) on the other hand, show that additive separability 

decreases the expenditure on care. The effect of ambiguity aversion on the expenditure on care is therefore 

an empirical question. However, decreased willingness to pay for small reductions in risk seems at odds 

with an increased willingness to pay to avoid the risk and implies a discontinuity in behaviour between 

small risk reductions and risk elimination. This suggests that ambiguity will lead to lower expenditures on 

care. 
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Results 

 

1 - Non-Parametric Analyses 

Panels A1, A2, and A3 report the three treatments for the experiment with their respective system 

probabilities of insurable loss exceeding a stated threshold ($17), and the respective insurance loading 

factors and premia: 

 

Table 43 – Game 5 Panel A1: Treatment #1 (Insurance Only)* 

Insurance 

Load Factor 

High Controls System 

Prob of Daily Loss >$17 = 10% 

Average Daily loss = $8.20 

Very High Controls System 

Prob of Daily Loss >$17 = 2.3% 

Average Daily loss = $4.14 

1x 

(= ‘actuarially fair’ premium for 

the simulated system’s 30 year loss 
profile) 

$2.57 $0.57 

2x $5.14 $1.13 

3x $7.71 $1.70 

4x $10.28 $2.27 

5x $12.85 $2.83 

6x $15.42 $3.40 

 

* No insurance-only scheme was proposed for a Low Controls system in this experiment since this would effectively 

cover losses occurring 30% of the time and was considered unrealistic in this context.   
 

Table 44 - Game 5 Panel A2: Treatment #2 (Precaution Only) 

Control Cost to Upgrade 

to Higher system profile* 

LOW 

CONTROLS SYSTEM 

Prob of Daily Loss >$17 = 30% 

Average Daily loss = $15.11 

HIGH 

CONTROLS SYSTEM 

Prob of Daily Loss >$17 = 10% 

Average Daily loss = $8.20 

VERY HIGH 

CONTROLS SYSTEM 

Prob of Daily Loss 

>$17 = 2.3% 

Average Daily loss = $4.14 

Upgrade from Low to: N/A $6.91 $10.97 

Upgrade from High to: N/A N/A $4.06 

Upgrade from Very High 

to: 
N/A N/A N/A 

 

* Upgrade costs represent the differential in the average daily loss between the systems e.g. upgrading from a Low 

Controls system to a High Controls system = Average Loss/day LOW – Average Loss/Day High = $15.11 - $8.20 = 

$6.91. These are therefore ‘actuarially fair’ costs to change the expected daily loss of a system. No ‘downgrades’ were 

permitted. 
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Table 45 - Game 5 Panel A3: Treatment #3 (Insurance + Precaution) 

Control Cost to Upgrade to 

Higher system profile* 

LOW 

CONTROLS SYSTEM 

Prob of Daily Loss >$17 = 30% 

Average Daily loss = $15.11 

HIGH 

CONTROLS SYSTEM 

Prob of Daily Loss >$17 = 10% 

Average Daily loss = $8.20 

VERY HIGH 

CONTROLS SYSTEM 

Prob of Daily Loss 

>$17 = 2.3% 

Average Daily loss = $4.14 

Upgrade from Low to: N/A $6.91 $10.97 

Upgrade from High to: N/A N/A $4.06 

Upgrade from Very High to: N/A N/A N/A 

    

Insurance Premium $8.62 $2.57 $0.57 

 

* Upgrade costs represent the differential in the average daily loss between the systems e.g. upgrading from a Low 

Controls system to a High Controls system = Average Loss/day LOW – Average Loss/Day High = $15.11 - $8.20 = 

$6.91. These are therefore ‘actuarially fair’ costs to change the expected daily loss of a system. No ‘downgrades’ were 

permitted. 

 

Figure 154 indicates the percentage of insurance choices for the High vs. Very High systems overall and 

the percentage of insurance choices at each insurance premium for the ‘Insurance Only’ treatment: 

 

Figure 154 – Game 5: Insurance Only Treatment - Percentage of Participants Choosing Insurance at 

Each Premium Load Factor 

 

 

Panel B presents the data from the Insurance-Only treatment and McNemar tests for the differences in 

insurance purchases by individual participants under the Low Controls vs. High Controls cases: 
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Table 46 – Game 5 Panel B: McNemar Test for Difference in Insurance Purchase based on System 

Control Level  

Insurance Load Controls % Buying Insurance McNemar p value 

1 High 73% 
3.250 0.071 

1 Very High 65% 

2 High 62% 
0.417 0.519 

2 Very High 56% 

3 High 48% 
0.011 0.915 

3 Very High 48% 

4 High 29% 
5.513 0.019 

4 Very High 50% 

5 High 31% 
1.125 0.289 

5 Very High 38% 

6 High 31% 
3.924 0.048 

6 Very High 48% 

 

The results suggest that participants are more inclined to pay for insurance for the Lower control system as 

expected, but only until the loading for the premium on the lower controls system becomes exorbitant 

relative to the higher controls system, with the percentage of participants opting for insurance declining for 

both systems up to Load =  3. Thereafter, the percentage of participants opting for insurance is greater for 

the higher controls system than for the low controls system. As expected, participants do respond to the 

price of insurance in the predictable direction, generally purchasing less insurance as price (load) increases. 

While the percentage of choices opting for insurance declines as insurance load increases, participants 

continue to opt for insurance more than 30% of the time even at 6x load, where the expected value of the 

loss being avoided is much less than the cost of insurance. We conclude this represents substantial risk 

aversion on the part of participants opting for coverage at higher levels of load regardless of control levels. 

 

Figure 155 indicates the percentage of choices opting for a system precaution upgrade at both the Low and 

High Controls base system levels for the ‘Precaution Only’ treatment 
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Figure 155 – Game 5: Precaution Only Treatment - Percentage of Participants Choosing Precaution 

at Each System Level 

 

 

Here the percentage of choices opting for a precaution upgrade is greater for the Low Controls System than 

for the High Controls System, indicating that participants are more likely to take precaution as loss 

ambiguity increases. This is also shown in the marginal cases for Low upgrades where participants choose 

precaution nearly twice as often for the Low-to-High vs. the Low-to-Very High or the High-to-Very High 

upgrade (the cheapest upgrade).  Since the cost of the upgrade is equal to the expected value of the upgrade, 

we conclude that participants appear to be essentially risk averse in losses i.e. they are generally willing to 

pay more than the expected value of the upgrade to avoid losses.  

 

Figure 156 indicates the percentage of choices opting for either a system precaution upgrade or insurance at 

both the Low and High Controls base system levels for the ‘Insurance + Precaution’ treatment: 
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Figure 156 - Game 5: Insurance + Precaution Treatment - Percentage of Participants Choosing 

Precaution or Insurance at Each System Level 

 

 

Here the percentage of choices opting for a precaution upgrade continues to be greater for the Low Controls 

System (81%) than for the High Controls System (32%) and is consistent with the Precaution only case, 

indicating that participants are more likely to take precaution as loss ambiguity increases even if insurance 

is available. The percentage of choices opting for insurance is nearly identical between the Low System 

(56%) vs. the High System (57%) although slightly higher than the insurance-only case, indicating that 

participants are not more likely to take insurance as loss ambiguity increases where precaution is available. 

This appears to contradict Bajtelsmit’s Hypothesis 2 but confirms our hypothesis that Participants’ level of 

risk mitigation (i.e. precaution) will be different across treatments with and without insurance. On the other 

hand, the presence of precaution does not appear to strongly affect the likelihood of insurance purchase. 

Figure 157 indicates the percentage of choices opting for both system precaution and insurance at both the 

Low and High Controls base system levels for the ‘Insurance + Precaution’ treatment: 
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Figure 157 - Game 5: Insurance + Precaution Treatment - Percentage of Participants Choosing 

Precaution and Insurance at Each System Level 

 

We conclude that precaution and insurance are likely seen as complements by Participants rather than 

substitutes for lowering the expected losses. 

 

 

2 - Parametric Analyses 

 

1 - Insurance-only Treatment 

We perform a series logit regressions in which the dependent variable is the decision to purchase insurance 

(variable: ‘buyins’, 1 =Yes, 0 = No) in the treatments where it is available. All estimated coefficients 

represent the change in the odds of buying insurance with a one unit change in the respective dependent 

variable. Significant coefficients > 1 indicate that a one unit increase in the independent variable increases 

the odds of buying insurance, while significant coefficients < 1 indicate that a one unit increase in the 

independent variable decreases the odds of buying insurance. All regressions report a Chi-square statistic 

and an associated p-value which tests whether the model is significantly explanatory compared to an 

intercept only model. Models are considered statistically significant at the 95% level where the reported p-

value is less than .05. The reported log-likelihood value is used to compare the goodness of fit between 

models. 

 



  328  

For the Insurance-Only treatment, we include an independent categorical variable for the risk level of the 

(probloss: 0 = High Controls, 1 = Very High Controls) and the insurance premium (insprem), which varies 

by load and the risk level of the system. Panel C reports the results of this model: 

 

Table 47 – Game 5 Panel C1: Logit Model - Insurance Only, All participants 

buyins = f (probloss, insprem) 

Logistic regression                               Number of obs   =        642 

                                                  LR chi2(2)      =      35.99 

                                                  Prob > chi2     =     0.0000 

Log likelihood = -426.47933                       Pseudo R2       =     0.0405 

 

------------------------------------------------------------------------------ 

      buyins | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

    probloss |   2.268318   .5563492     3.34   0.001     1.402588    3.668408 

     insprem |   .8590246   .0233938    -5.58   0.000     .8143757    .9061214 

------------------------------------------------------------------------------ 

 

 

This logistic regression model reports a Chi-square value of 35.99 indicating that the model is significant at 

the 95% confidence level. Across undifferentiated participants we see that Low System case (probloss = 1) 

increases the odds of choosing insurance by a factor of 2.3 and a one dollar increase in the insurance 

premium lowers the odds of choosing insurance by a factor of .86, or about -15%. Both coefficients are 

significant at the 95% level. This is in line with the expectation that, in the absence of other controls, higher 

risk drives a need for insurance while higher insurance costs lowers the demand for insurance. We assume 

that heterogeneity between the participants might account for the variance in the decision to purchase 

insurance and rerun the model using participant demographics as dummy variables: 

 

Table 48 - Game 5 Panel C2: Logit Model - Insurance Only, w. Demographics 

buyins = f (probloss, insprem, demographics) 

 

Logistic regression                               Number of obs   =        642 

                                                  LR chi2(11)     =      89.33 

                                                  Prob > chi2     =     0.0000 

Log likelihood = -399.80694                       Pseudo R2       =     0.1005 

 

------------------------------------------------------------------------------ 

      buyins | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

    probloss |   2.442494   .6257121     3.49   0.000     1.478342    4.035453 

     insprem |   .8474133   .0241621    -5.81   0.000     .8013554    .8961183 

         age |   1.378752   .2389122     1.85   0.064     .9817227     1.93635 

         sex |   1.844341   .3729744     3.03   0.002     1.240812    2.741427 

     married |   1.158529   .2621331     0.65   0.515     .7435513    1.805107 

         bus |   .6250157   .1176931    -2.50   0.013     .4321217    .9040154 

        math |   1.217469   .2245995     1.07   0.286     .8480625    1.747786 

   workyears |   .9177905   .0953831    -0.83   0.409     .7486534    1.125139 

   privyears |   1.003724   .0690874     0.05   0.957     .8770514    1.148691 

       certs |   .8750753   .0443052    -2.64   0.008     .7924082    .9663666 

      income |   .9973649   .1487469    -0.02   0.986     .7445708    1.335987 

------------------------------------------------------------------------------ 
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Including demographic variables appears to add explanatory power to the model with increased Chi-square, 

significant at the 95% level, and a lower log-likelihood value. Across demographically differentiated 

participants we find similar direction and levels of effect on the odds of selecting insurance (buyins) for 

both the risk level of the system (probloss) and the price of insurance (insprem). In addition, increased age, 

and gender (female) also increase the odds of choosing insurance while a business degree and increasing 

levels of IT professional certification lower the odds of choosing insurance. All other demographic 

variables are not statistically significant at the 95% level and will be excluded form subsequent models. 

 

Figure 158 indicates the resulting predicted probability of buying insurance across both low and high risk 

scenarios after taking into account participant demographics:  

 

Figure 158 – Game 5: Predicted probability of Buying Insurance, All Cases, Insurance only 

 

 

Figure 159 indicates the predicted probability of buying insurance in the low vs. the high control case. Here 

we see clearly that there is a slight increased central tendency to purchase insurance across participants in 

the high controls case after controlling for premium load and demographics, although the distribution of 

purchase probabilities is fairly similar between the Low and High Controls case: 
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Figure 159 - Game 5: Kernel Densities of Predicted Probability of Buying Insurance - Insurance 

only, Low vs. High Controls 

 
 

2 - Precaution Only Treatment: 

For the Precaution-only treatment, we include an independent categorical variable for the presence of any 

system precaution upgrade (upgrade: 0 = no upgrade; 1 = some upgrade), and include all demographic 

variables. Panels C3 and C4 and C5 report the results of this model run for all cases and for the Low and 

High controls cases respectively. Figures 161, 162 and 163 then indicate the corresponding histograms and 

kernel densities for the probability of buying precautions under each case. Here we see clearly that the 

probability of buying precautions is bimodal based on the risk level of the system and confirm that there is 

a much greater tendency to purchase precautions in the Low Controls (more ambiguous ) case after 

controlling for demographics:  
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Table 49 - Game 5 Panel C3: Logit Model – Precaution Only, All Cases, w. Demographics 

Logistic regression                               Number of obs   =        671 

                                                  LR chi2(10)     =     175.77 

                                                  Prob > chi2     =     0.0000 

Log likelihood = -367.31451                       Pseudo R2       =     0.1931 

 

------------------------------------------------------------------------------ 

     upgrade | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

vhighcontr~t |   1.377059   .0384525    11.46   0.000     1.303719    1.454525 

         age |   .9936376   .1822209    -0.03   0.972     .6936304    1.423403 

         sex |   1.258921   .2800605     1.04   0.301     .8140285    1.946962 

     married |   1.789422   .4456738     2.34   0.019     1.098278    2.915501 

         bus |   .8909425   .1799588    -0.57   0.568     .5996778    1.323675 

        math |     1.0038   .1980015     0.02   0.985     .6819394    1.477571 

   workyears |   1.035613   .1130438     0.32   0.749      .836148     1.28266 

   privyears |   .7951459   .0591998    -3.08   0.002     .6871849    .9200682 

       certs |   .9280657   .0491361    -1.41   0.159      .836589    1.029545 

      income |   1.036535    .167644     0.22   0.824     .7549439    1.423157 

------------------------------------------------------------------------------ 

 

Table 50 - Game 5 Panel C4: Logit Model – Precaution Only Low Case, w. Demographics 

upgradelow = f (age sex married bus math workyears privyears certs income) 

 

Logistic regression                               Number of obs   =        317 

                                                  LR chi2(9)      =      18.70 

                                                  Prob > chi2     =     0.0278 

Log likelihood = -136.91118                       Pseudo R2       =     0.0639 

 

------------------------------------------------------------------------------ 

  upgradelow | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         age |   1.087061    .342384     0.27   0.791     .5863501    2.015352 

         sex |   .9919333   .3832403    -0.02   0.983     .4651734    2.115193 

     married |   2.042215   .8746359     1.67   0.095     .8821664    4.727727 

         bus |   .5889586   .1910038    -1.63   0.103      .311913     1.11208 

        math |   .6164988   .2060777    -1.45   0.148     .3201844    1.187037 

   workyears |   .8967541   .1723109    -0.57   0.571     .6153403    1.306867 

   privyears |   .8314714    .107633    -1.43   0.154     .6451495    1.071604 

       certs |   .9478136   .0846532    -0.60   0.548     .7956069    1.129139 

      income |   1.935894   .5530141     2.31   0.021     1.105922    3.388744 

------------------------------------------------------------------------------ 

 

Table 51 - Game 5 Panel C5: Logit Model – Precaution Only High Case, w. Demographics 

upgradehigh = f (age sex married bus math workyears privyears certs income) 

 
Logistic regression                               Number of obs   =        354 

                                                  LR chi2(9)      =      21.89 

                                                  Prob > chi2     =     0.0092 

Log likelihood = -222.33727                       Pseudo R2       =     0.0469 

 

------------------------------------------------------------------------------ 

 upgradehigh | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         age |   .9476658   .2239956    -0.23   0.820      .596294    1.506087 

         sex |   1.315247   .3642411     0.99   0.322     .7643249    2.263273 

     married |   1.728906   .5474998     1.73   0.084     .9294328    3.216066 

         bus |   1.186526   .3110221     0.65   0.514     .7098279    1.983359 



  332  

        math |   1.353779    .341551     1.20   0.230     .8256469    2.219736 

   workyears |   1.120518   .1558329     0.82   0.413     .8531799    1.471626 

   privyears |   .7731091   .0723806    -2.75   0.006     .6435006    .9288223 

       certs |    .906085   .0630851    -1.42   0.157     .7905058    1.038563 

      income |   .7146272   .1508554    -1.59   0.111     .4724912     1.08085 

------------------------------------------------------------------------------ 

 

 

Figure 160 – Game 5: Predicted probability of Buying Precaution, All Cases, Precaution only 
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Figure 161 - Game 5: Kernel Densities of Predicted Probability of Buying Precaution – Precaution 

only, Low vs. High Controls 

 

 

3 - Insurance + Precaution Treatment 

For the Insurance+Precaution treatment, we include an independent categorical variable for the presence of 

any system precaution upgrade (upgrade: 0 = no upgrade, 1 = some upgrade), the insurance premium 

(insprem), and the cost of the Very High upgrade (vhigh_cost) which varies depending on whether you are 

upgrading from a Low system or a High system and include all demographic variables. 

 

 Panel D1 reports the results of this model where the dependent variable is the decision to buy insurance: 

  

Table 52 - Game 5 Panel D1: Logit Model – Insurance + Precaution, w. Demographics 

buyins = f (upgrade, vhigh_cost, insprem, demographics) 

 

Logistic regression                               Number of obs   =        624 

                                                  LR chi2(12)     =      65.82 

                                                  Prob > chi2     =     0.0000 

Log likelihood = -393.94161                       Pseudo R2       =     0.0771 

 

------------------------------------------------------------------------------ 

      buyins | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

     upgrade |   1.770722   .3647647     2.77   0.006      1.18251    2.651526 

  vhigh_cost |   .9512445   .0270293    -1.76   0.079     .8997162    1.005724 

     insprem |   1.022668   .0283346     0.81   0.419     .9686144    1.079738 

         age |   1.711166    .297443     3.09   0.002     1.217116    2.405758 

         sex |   2.821718   .6117119     4.79   0.000     1.844948    4.315619 

     married |   1.130525   .2609771     0.53   0.595     .7190909    1.777365 
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         bus |   1.340957    .260539     1.51   0.131     .9162883    1.962446 

        math |   1.005219   .1887956     0.03   0.978      .695652    1.452545 

   workyears |   .8773843   .0970691    -1.18   0.237     .7063459    1.089839 

   privyears |   .9864618   .0701631    -0.19   0.848     .8580997    1.134026 

       certs |   1.072008   .0551602     1.35   0.177      .969169     1.18576 

      income |   1.146994   .1768121     0.89   0.374      .847903    1.551587 

------------------------------------------------------------------------------ 

 

 

Figures 163 and 164 indicate the resulting predicted probability of buying insurance when the option of 

buying precaution is also present as compared to the previously estimated probabilities of buying insurance 

when no precaution was available. We compare the overall probability regardless of Low or High Controls 

cases and then between Low and High Controls cases after taking into account participant demographics:  
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Figure 162 – Comparison of Predicted Probability to Purchase Insurance: with and w/o Precaution, 

All Cases  
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Figure 163 - Comparison of Predicted Probability to Purchase Insurance: with and w/o Precaution, 

Low vs. High Controls Case 
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Here we see that, in a situation where both precaution and insurance options are available, the presence of a 

precaution upgrade increases the odds of choosing insurance, although there continues to be a wide 

dispersion of probabilities across participants. This result is reflective of the percentage of participants 

choosing both precaution and insurance in both the Low and High system cases in Figure 157. Variation in 

the cost of the very high upgrade (which applies to the decision to upgrade from either the Low or the High 

Controls system) does not appear to significantly affect the odds of choosing insurance, perhaps reflecting 

the fact that the upgrades costs are equal to the expected value of the loss prevented at each upgrade level, 

and indicating that, in the combined Precaution+Insurance case, participants may be risk neutral about 

upgrades overall. The cost of the insurance premium is also not significant. This may be because only the 

Load=1 level of premium was offered in this experiment - we might expect that increased premium load 

would have the same overall negative effect as was shown in the insurance only treatment.   

 

Turning to the decision to buy precaution in the context of available insurance, Panel D2 reports the results 

of the model where the dependent variable is the decision to buy precaution: 

 

Logistic regression                               Number of obs   =        624 

                                                  LR chi2(12)     =     192.92 

                                                  Prob > chi2     =     0.0000 

Log likelihood =  -323.2546                       Pseudo R2       =     0.2298 

 

------------------------------------------------------------------------------ 

     upgrade | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

      buyins |   1.726156   .3535383     2.67   0.008     1.155429    2.578794 

  vhigh_cost |   1.387045   .0420044    10.80   0.000     1.307113    1.471864 

     insprem |   1.013632   .0318835     0.43   0.667      .953029    1.078089 

         age |   .6867515   .1358047    -1.90   0.057     .4660956    1.011869 

         sex |    1.08657   .2645092     0.34   0.733     .6742879    1.750935 

     married |   1.718685   .4576586     2.03   0.042     1.019847    2.896395 

         bus |   .5968645   .1307994    -2.35   0.019     .3884542    .9170893 

        math |    1.03445    .219483     0.16   0.873     .6825069    1.567877 

   workyears |   1.450012   .1821674     2.96   0.003     1.133532    1.854853 

   privyears |   .7185959   .0574013    -4.14   0.000     .6144563    .8403855 

       certs |   .9154705   .0510632    -1.58   0.113     .8206651    1.021228 

      income |   .8450392   .1467473    -0.97   0.332      .601256    1.187666 

------------------------------------------------------------------------------ 

 

Figures 165 and 166 indicate the resulting predicted probability of buying precaution when the option of 

buying insurance is also present as compared to the previously estimated probabilities of buying precaution 

when no insurance was available. We compare the overall probability regardless of Low or High Controls 

cases and then between Low and High Controls cases after taking into account participant demographics: 
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Figure 164 - Comparison of Predicted Probability to Purchase Precaution: with and w/o Insurance, 

All Cases 
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Figure 165 - Comparison of Predicted Probability to Purchase Precaution with Insurance, Low vs. 

High Controls Case 
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10 – Conclusions and Reflection on Results 

 

Game 1 Conclusions 

In Game 1 we test whether and to what degree security managers may integrate accumulated asset/wealth 

positions into marginal choice decisions over outcomes under assumptions of both EUT and CPT decision 

making, allowing for both gain and loss prospects. 

 

In a model assuming EUT decision making over marginal outcomes only, we confirm relatively strong risk 

aversion (r=0.225<1) although the model is sensitive to the specification of ‘errors’ where risk aversion 

flips to moderately risk seeking (r =1.116, > 1). If we assume that the argument of utility is only cumulative 

income, we infer that subjects remain risk-seeking although no more so than if cumulative income is 

ignored. These results suggest that the inclusion of cumulative income in the total prize amounts is a 

marginally better specification from an EUT perspective.  

 

If we allow the data to decide the weighting between asset integration and marginal outcomes, participants 

are similarly risk seeking (r = 1.16, >1) but the estimated weighting term (.331) indicates that 

approximately 33% of the decision weight is attributed to the accumulated earnings as opposed to the value 

of the prizes presented on each choice round. After controlling for demographic effects, participants still 

appear to be slightly risk seeking (i.e. r_ = 1.11, > 1). While only age and sex are significant at the 95% 

level, age, sex (female), business degrees, and IT certifications all increase risk aversion, while a math 

degree, increased work years and income all lower risk aversion on average.  After controlling for 

demographics, the average weighting for cumulative earnings drops to .122, however there is substantial 

demographic heterogeneity with respect to both the risk aversion parameter r and the weighting parameter 

ω.  

 

These results have potential implications for the composition of security teams based on the way individual 

practitioners frame business losses (regardless of whether losses are defined as pure gains, pure losses or 

mixed results) where some may focus on accumulated performance over time versus others who may pay 

more attention to the marginal decision. Potentially substantial (i.e. catastrophic) marginal loss prospects 

might be treated differently by the former decision maker without compensating controls for short term 

performance outcomes and management should therefore carefully consider how performance outcomes 

are framed in this context.     

 

In a model assuming CPT decision making, we allow for separation of decision biases over gains versus 

losses including loss aversion and probability weighting which are both violations of EUT model 

assumptions. Using this model, we confirm most experimental results in which participants are risk averse 

over gains (α < 1) and risk seeking over losses (β > 1). Furthermore, participants probability weight in the 
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usual fashion: overweighting low probabilities and underweighting higher probabilities, although the 

estimated probability weights are only marginally different than 1 at the 95% level. In this model the loss 

aversion parameter lambda (λ) is estimated to be not statistically different than zero indicating no loss 

aversion. Allowing for demographic heterogeneity, average coefficients for α and β draw closer together, 

indicating risk aversion in gains (α < 1) but no significant risk aversion in losses and no overweighting/ 

underweighting of low/high probabilities respectively. Loss aversion increases and is statistically greater 

than zero, however there is substantial diversity in individual estimates for all three parameters. These 

results therefore also have potential implications for the framing or decomposition of security outcomes 

where some individuals may treat decisions over outcomes framed as net gains (e.g. management focused 

on productivity improvements supported by security controls) differently than personnel who may frame 

daily performance in terms of pure losses (e.g. security operations personnel who tend to focus on losses as 

declines from 100% system availability etc.). Divergence in control decisions could occur if these 

perspectives are not aligned or decisions are permitted solely based on one frame or the other.    

 

Following Harrison, we are also interested in whether there is diversity in the assumed model of decision 

making itself, so we allow for weighting between EUT and CPT models in the same specification. In the 

case of homogeneous agents we confirm that the EUT model accounts for approximately 2/3 of the choice 

observations. We also confirm that participants characterized by EUT tend to be risk averse but less so than 

when we assumed EUT characterized every observation and not just a percentage of the observations. We  

also confirm that EUT subjects tend to consider the marginal outcomes they are faced in conjunction with 

cumulative income when making decisions (omega ~= 1), in contrast to results that assume EUT 

characterizes every observation where subjects consider the utility from both the prizes and cumulative 

earnings about equally. This improves the models estimates for EUT by not forcing the EUT specification 

to account for observations that are better characterized by CPT. This result will be revisited in the context 

of participant reports over continuous time series and probability distributions of security losses where 

perspectives on catastrophic losses may be biased depending on the assumption of EUT versus a 

specification permitting probability weighting. The potential for distortion of low probability events such as 

catastrophic security losses is therefore an important consideration when practitioners are making decisions 

over low probability risky prospects.     

 

For the PT part of the mixture model, the risk aversion parameters consistently suggest risk aversion over 

gains and losses: α = 0 and β not statistically different than 0.  There is also no evidence of significant 

probability weighting, with gamma (γ) now statistically closer to 1 than it was when PT was assumed to 

characterize the complete sample. Some shift would have been expected since γ=1 for EUT subjects, and 

PT was required to explain their behaviour in Table 18 Panels E and F; in Table 20 it is “free” to just 

characterize the PT subjects. There is also no consistent evidence of loss aversion and the estimated 

parameter would actually indicate loss seeking (lambda = -.44 < 1). Even though the estimate of lambda is 
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less than 1, this parameter is not significantly different than zero and we can conclude find no evidence of 

loss aversion in this case, The imprecision of the estimate of λ may be due to a combination of the 

participant heterogeneity that is assumed away in this specification and the relatively smaller number of 

observations attributed to PT decision making in a loss frame. 

 

Overall, we confirm Hypotheses 6, 9 and 10 that prior outcomes affect a manager’s current decisions. We 

draw three major conclusions: First, expected utility theory accounts for a large fraction of the observations 

despite this experimental setting providing a reasonable for testing prospect theory and accounts for 

between 1/2 and 2/3 of the observations, depending on controls for demographic characteristics. Second, 

subjects behaving in accordance with expected utility theory appear to have utility functions defined over 

their cumulative income over the sequence of tasks, rather than defined over the prizes in each individual 

lottery choice. Finally, we identify demographic characteristics which differentiate risk aversion over gains 

vs. losses. Women are much more risk averse in gains and in losses than men, as are those with math 

degrees and higher incomes. Our results provide insight into the domain of applicability of each of the 

major choice models, rather than assuming one to be the sole, true model and the results are relevant for a 

security contexts which can be characterized by management from both a gains and a loss perspective.  

 

 

Game 2 Conclusions 

Following Antoniou, we establish a “base camp” for exploring the fundamental characteristic of subjective 

Bayesian beliefs in the context of uncertainties regarding simulated IT system outcomes. We consider that 

the stochastic process that generates posterior probabilities (in this experiment a simulated IT system at risk 

of security breach) should be viewed as more uncertain than a process that generates risk when the 

probability of final outcomes is directly given. In other words, the posterior probability should be viewed as 

a subjective probability which may be seen by the decision-maker as subject to “uncertainty aversion” that 

exacerbates the effect of traditional “risk aversion.” If this hypothesis is correct then the decision-maker 

will make choices that differ from those that would be made if she was neutral towards uncertainty. 

Consequently, the subjective posterior probability inferred from observed choices will differ depending on 

whether one allows for the possibility of uncertainty aversion. Previous analyses of subjective Bayesian 

decision-making, including our own here, have assumed that the subject is neutral towards the uncertainty 

that is involved in the use of an inferred posterior probability. 

 

Quoting Antoniou:  

“Our approach is motivated by the same puzzle that has spurred the development of models towards 

uncertainty. It seems intuitive that behaviour towards an event that has a 50% chance of occurring 

with probability 0 and a 50% probability of occurring with probability 1 could reasonably differ 

from behaviour towards an event that has a 100% chance of occurring with probability 0.5. Yet, by 

some readings and axioms, these are not even two different states of the world, even though one can 

easily envisage distinct physical processes for each. Our version of this puzzle is that one could 

reasonably expect behaviour to differ when a decision-maker is credibly told that the probability of 
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some event is 0.87 compared to when he is credibly given priors and sample realizations that imply, 

under Bayes Rule, a posterior probability of 0.87. We hypothesize that the reasons for differences in 

behaviour in these two puzzles are fundamentally the same.”  

 

 

We report SEU probability estimates with no demographic controls and find evidence of risk seeking 

behaviour, although not statistically different than risk neutrality.  While participants do a reasonable job of 

estimating three posterior probabilities greater than 50%, there is consistent underestimation of the 

Bayesian posterior probabilities that increases with the objective probability and with significant dispersion 

of the estimates across individuals and with precision declining as the posterior gets larger. These results 

also imply a systematic overestimation of the true Bayesian posterior probability when the posterior is less 

than 0.5, becoming larger as the posterior decreases from 0.4 to 0.23 and 0.12 and is reflective of small 

probability overweighting. This result is contrary to Antonio’s findings where the qualitative effect of risk 

aversion should follow from theory: the more risk averse the subject, the more likely he is to bet as if his 

subjective probability is 0.5, since this reduces the dispersion in final outcomes from all bets. In our case, 

we may fail to see any effect since, as noted above, the participants appear to be risk seeking to being with. 

There is no substantial difference in these results if we assume risk neutrality. After controlling for 

demographic effects, predicted values for the posterior probabilities improve although participants still 

appear to be slightly risk seeking if we allow for risk aversion,  where age, sex (female), a business degree, 

IT certifications, and increased income all increase risk aversion, while a math degree and increased 

number of career work years lower risk aversion on average, results which are similar to Game 1 findings. 

In contrast to Antoniou’s findings, Bayes Rule does not do better when we allow the data to determine the 

risk attitudes of subjects. In the risk neutral case the subjective estimate of the 0.6 posterior probability is 

similar, but the estimates for the 0.77 and 0.88 posterior probabilities, while not closer to the posterior on 

average, exhibit less dispersion around the Bayesian posterior than when we do not assume neutrality. 

 

We also estimate the effect of the strength (alpha) vs. the weight (beta) of evidence on subjective 

probability estimates and find support for risk neutrality. The coefficients of both strength (alpha) and 

weight (beta) are, however, significantly different from 0 indicating that both strength and weight of 

evidence, while affecting subjective probability estimates are not significantly different from each other as 

predicted by the GT hypothesis, i.e., that α is generally > β. Allowing for demographic diversity in the 

estimates results in a wide range of predicted values for alpha and beta. Non-nested test results of model 

superiority are similar to those found by Antoniou and Harrison for this experiment: we see that the 

distribution of the ratio of GT to SEU log likelihoods is sharp-peaked compared to a Normal distribution fit 

to the same data and confirms here that the GT model better explains the data: strength and weight matter 

when estimating subjective probabilities. 
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Game 3 Conclusions 

 

Virtually all information security settings in which there is risk involve what is referred to as endogenous 

risk whereby the decision maker can affect the risk outcome by making a control, in contrast to exogenous 

risk that is not controllable by the decision maker but is more commonly studied. Our design contributes a 

security practitioner context involving uncertain but controllable risks in which the structural decision 

factors can be untangled. Following Sen, our results provide evidence that participant risk attitudes and 

subjective probability estimates are different in these two environments. In the exogenous risk case for a 

Low Controls System, we see moderate risk aversion although the estimate is not statistically different than 

zero and the estimated subjective probability of loss is more than double the actual probability of loss for 

the system. For the High Controls System, we see marginal risk seeking although again the estimate is not 

statistically different than zero and the subjective probability of a loss is more than double the actual 

probability. After controlling for demographic variation, we see a wide range of risk attitudes from risk 

aversion to risk seeking. Subjective probability estimates also exhibit wide distribution around the mean, 

although the errors are more pronounced for the High Controls case. These are much greater dispersions 

than reported by Sen although similar (if reversed for the two cases) to those reported by Fiore.   

 

In the Endogenous risk treatment we see relatively strong risk aversion (r > 0) and the estimate is 

statistically significant at the 95% level, similar to Fiore’s findings but contrary to Sen’s results which 

found no difference in risk aversion between the two treatments. On the other hand we confirm that the 

subjective probability for the High Controls (risky) System on the other hand is .12 which is very close to 

the actual probability (.1), reflecting an improved ability to estimate risk when risk is endogenous.  Some of 

this may be due to the ‘source dependence’ of the risk: which is resulting in a ‘focusing’ effect by the 

participant in the context of this specific experiment which allows for participant control, in contrast to 

Treatment 1 and to all of Game 2 which similarly involves system simulation but where risk is exclusively 

exogenous. In practice, security risk is generally ‘source dependent’ and the implications are mixed for 

practitioners concerned about making better security choices. On the one hand, stronger risk aversion 

implies that participants may be over spending on controls (i.e. willing to spend more than required to 

obtain the desired lower subjective loss percentage). On the other hand, we see evidence that subjective 

probability estimates for ‘low probability risks’, which should be of particular concern to security 

professionals, may be more accurate than ‘average’ loss estimates. As noted in this thesis, the average 

happens all of the time in operations and likely should not be the particular concern of managers seeking to 

avoid risk, rather they should be paying attention to controlling tail risks by choosing controls that 

specifically lower higher end losses. The ability of managers to estimate the degree of prospective loss in 

the low probability cases versus the cost of control without bias is therefore a key insight supported by the 

findings of this thesis.     
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Game 4 Conclusions 

Following Harrison and Ulm, we demonstrate how to recover latent subjective beliefs if an individual is 

known to distort probabilities into decision weights using Rank Dependent Utility theory. Using a standard 

binary lottery choice experiment, across undifferentiated participants we see moderate risk aversion (r >0) 

although the estimate is not statistically different than zero. Allowing for demographic diversity, the results 

indicate significant diversity in the CRRA across participants, ranging from risk seeking to risk averse, 

where females, those with math degrees and increased work years all increase risk aversion. The diversity 

in individual risk attitudes once again illustrates the benefit of specifying decision models that account for 

this diversity before inferring general risk attitudes. We also estimate a Rank Dependent Utility 

specification to detect probability weighting since we are interested in how decision maker may distort 

subjective beliefs over the moments of security loss distributions. Indication of report distortion based on 

rank dependent probability weighting should signal to management that decision makers may not either be 

correctly perceiving loss probabilities or reporting subjective probabilities accurately. This has implications 

for security control decisions taken in the context of quantified operational risks (which in and of itself is a 

positive approach to decision making) where the perception of losses across a distribution of outcomes is 

an important factor in evaluating and choosing controls. 

 

We confirm Harrison’s results for the individual example undertaken: The effect on recovered beliefs 

assuming SEUT is minimal, but the probability distortions assuming RDU is shown to be significant, with 

large changes in the location and shape of subjective belief distributions. Our results allow the recovery of 

subjective belief distributions over security operations metrics that exhibit long tails which are increasingly 

important for security practitioners making control decisions that depend on accurate perception of tail risk. 

This experiment demonstrates that we should consider alternative models of risk preference and measure 

the effects of probability weighting when recovering subjective beliefs over the distributional 

characteristics of stochastic system attributes. Errors in reports versus subjective beliefs may be significant 

between decision makers and correcting for these perceptions would be important in situations involving 

accurate subjective perceptions of risk.  

 

We also note that the data resulting from this experiment is surprisingly rather noisy: 16 of 60 participants 

failed to complete all 50 RDU lottery choice rounds, making some RDU model estimations not numerically 

feasible or valid. Furthermore, only three of the remaining individuals generate plausible rank dependency 

parameter estimates where the hypothesis of EUT could be rejected at the 10% level. This is not 

unexpected based on similar reports from Harrison’s benchmark experiment for this Game where he notes, 

in some cases, ‘…none of the RDU models can be estimated for numerical reasons’ and where certain 

extreme RDU Power function gamma results are rejected as implausible (gamma >5), in his case resulting 

in 65 of 71 available reports being usable. At only three of 44, our rejection rate is clearly much higher. I 

suspect this may be partially due to the nature of the binary lotteries used for the experiment which, while 
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only being in the gain domain, are specifically designed to detect rank dependence by carefully varying 

either only the payouts or the probabilities, but rarely both between individual lottery pairs in order to 

induce decisions that possibly reflect probability weighting. While a rough calculation of expected value 

may still be possible for a typical participant, my observation of participants indicated that many found the 

lotteries challenging to complete compared to their experience in Game 1. I conclude that some participants 

may have been making arbitrary choices, resulting in difficult-to-fit RDU models for many individuals. For 

the purposes of confirming the effects of RDU weighting, we nonetheless recover subjective beliefs for one 

of these individuals under both EUT and RDU assumptions and successfully confirm our hypothesis that 

RDU distorts reports over continuous distributions of both time series and probability distributions for 

security losses.  

 

Another issue identified with this Game is the potential reliability of the QSR method and the reported 

results. As noted, the dispersion of report results within any single question across participants is 

surprisingly large, where only one or two participants was able to identify (if not accurately report) the true 

answer across most questions. We also detect violations of transitivity (preference reversals between 

ranked answers) and therefore monotonicity violations in the reports of most (but not all) participants. This 

may be an indication of one or more confounds in this experiment: 

 

1. Participants simply did not care enough about providing ‘correct’ or ‘consistent’ responses i.e. 

responses were possibly arbitrary. This is a possible confound for any Game but may have been a 

particular factor for this Game where, at this stage of the overall lab session (approximately 1.75 hours 

in) the Participants were possibly running out of energy for this level of Game concentration and 

complexity. As noted above, we did not vary the order of the Games to ensure that ‘simpler games’ 

were played first as a teaching method, so this remains a particular possible confound. 

2. Participants were seeking to report indifference over individual bin reports: this is possible, but 

the QSR device has a built in way to permit this: Participants should simply allocate equal weightings 

to all 10 bins, or to a relevant sub-range of bins containing what they believe to be the actual. 

Examination of the data does not reveal any consistent equalization across bins for any particular 

question.    

3. Insufficient participant understanding of the nature of the question and therefore where an 

error is made in formulating a dominant, plausible answer. This does not include those who 

understood the question but who may be truly uncertain and therefore sought to report a bi-modal 

answer for example, or for those who are simply mistaken about the answer, but we cannot be sure of 

this based solely on the reports themselves. The implication here is that the participants may be 

particularly ‘innumerate’ in this task, at least in estimating the moments of probability distributions 

and time series. If this is true, it represents an interesting finding for this research and is a possible area 
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for further research, as it directly relates to the ability to perceive probability distributions generally 

and tail risk circumstances specifically (Weston 2014). 

4. Insufficient understanding of the QSR scoring device mechanics or how to translate their 

answers into reports. This is a possible confound of the QSR device noted by Harrison and others 

(Loomes, Starmer et al. 1991; Harrison and Rutström 2008). According to Artinger: 

The accurate elicitation of subjective expectations has become an important methodological 

concern in experimental economics. The Quadratic Scoring Rule (henceforth QSR) is currently the 

most widely used elicitation method. Part of the success of the rule is its theoretical incentive 

compatibility2 satisfying the principles set by Induced Value Theory, namely, monotonicity, 

salience and dominance Smith (1976). Of particular focus in this paper is the issue of salience: that 

subjects understand the payoff consequences of their actions given the rules of the game. Due to the 

mathematical formulation underlying the QSR, it is not a trivial matter for the experimental subjects 

to infer what a certain action means for their payoffs. However, should the subjects not understand 

the payoff consequences resulting from the formula, the comparative advantage of the mechanism 

no longer holds. When using the QSR, researchers face a trade-off between keeping the experiment 

as simple as possible vs. maintaining salience of the payoff mechanism…The possible loss of 

experimental control due to methodological complexity is not a new concern. Albeit theoretically 

incentive compatible, experimental subjects often find it difficult to correctly understand the 

incentives these mechanisms offer.3 With respect to the QSR, the old concern is illustrated anew in 

(Read 2005), pg. 273]: “I suspect that participants either more-or-less ignore the rule [QSR] or else 

get so caught up in understanding it that it becomes the focus of their activity”. (Artinger, 

Exadaktylos et al. 2010) 

 

The QSR device (and the associated presentation of evidence in the form of probability distributions) is 

arguably the most complex game interface in the entire experiment. My observation of the Participants 

indicated that they likely had the most difficulty with the QSR interface across all of the games, despite its 

being late in the lab session overall where we might expect participants to be more adept at manipulating 

the onscreen elements. Simplification of this Game and its components    

 

 

Game 5 Conclusions 

 

Following Bajtelsmit, Coats et al (Bajtelsmit, Coats et al. 2015) we undertake a model of the decision 

between precaution and insurance under an ambiguous probability of loss and replicate an experimental 

design to test its predictions.  

 

We generally confirm the results of Bajtelsmit across Insurance Only, Precaution Only and Insurance with 

Precaution treatments with noted exceptions. For the Insurance Only treatment, our results confirm 

Bajtelsmit’s Hypothesis 5 and our Hypothesis that participants are more inclined to pay for insurance for 

the Lower control (more ambiguous) system as expected, but only until the loading for the insurance 

premium becomes exorbitant and absolutely much greater relative to premia for the higher controls system, 

with the percentage of participants opting for insurance declining for both systems up to a loading factor of 

3x the actuarially fair premium. Thereafter, the percentage of participants opting for insurance is greater for 

the Higher controls (less ambiguous) system than for the Low controls system. As expected, participants do 
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respond to the price of insurance in the predictable direction, generally purchasing less insurance as 

premium load increases. While the percentage of choices opting for insurance declines as insurance load 

increases, participants continue to opt for insurance more than 30% of the time even at 6x load, where the 

expected value of the loss being avoided is much less than the cost of insurance. We conclude this 

represents substantial risk aversion on the part of participants, opting for coverage at higher levels of load 

regardless of loading or control levels. Controlling for expected loss under insurance-only treatments, we 

find that participants neither underweight nor overweight low probability-high severity losses. Ambiguous 

increases in loss probability increase insurance uptake by more than objective increases in loss probability, 

suggesting evidence in favor of ambiguity aversion. Our results suggest that the tendency to over-insure 

against liability rather than meet a ‘standard of care’ through precaution may be partially explained, as 

suggested by our model, by sources of ambiguity surrounding liability losses. The results also lend further 

support to the Laury et al. (2009) findings that probability misperceptions is not an adequate explanation 

for observed under-insurance against catastrophe which is increasingly important in the context of 

information security breach. 

 

For the Precaution Only treatment, we see clearly that the probability of buying precautions is bimodal 

based on the risk level of the system and confirm that there is a much greater tendency to purchase 

precautions in the Low Controls (more ambiguous ) case after controlling for demographics:  This is also 

shown in the marginal cases for Low upgrades where participants choose precaution nearly twice as often 

for the Low-to-High vs. the Low-to-Very High or the High-to-Very High upgrade (the cheapest upgrade).  

Since the cost of the upgrade is equal to the expected value of the upgrade, we conclude that participants 

appear to be essentially risk averse in losses i.e. they are generally willing to pay more than the expected 

value of an upgrade to avoid losses.  

 

For the Insurance + Precaution treatment, we confirm the presence of a precaution upgrade option increases 

the odds of choosing insurance, although there continues to be a wide dispersion of probabilities to 

purchase insurance across participants. This result is reflective of the percentage of participants choosing 

both precaution and insurance in both the Low and High system cases. On the other hand, we do not 

confirm Bajtelsmit’s Hypothesis 2: in our experiment the probability of opting for a precaution upgrade is 

greater in the absence of insurance than when insurance is available, and is also markedly different for the 

Low Controls System than for the High Controls System in both cases, indicating that participants are more 

likely to take precaution as loss ambiguity increases. We conclude that participants perceive that 

precautions and insurance are complementary at higher levels of control, possibly since the likelihood that 

the insurance will be needed is lower, even assuming zero load i.e. although the insurance is priced 

efficiently, its value is somehow greater than at lower system risk levels. This also reflects an emerging 

market perception for cyber insurance as complementary to precaution controls generally (Böhme 2005; 
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Baer and Parkinson 2007; Herath and Herath 2011; Johnson, Böhme et al. 2011) 
82

.  Variation in the cost of 

the very high upgrade (which applies to the decision to upgrade from either the Low or the High Controls 

system) does not appear to significantly affect the odds of choosing insurance, perhaps reflecting the fact 

that the upgrades costs are equal to the expected value of the loss prevented at each upgrade level, and 

indicating that, in the combined Precaution+Insurance case, participants may be risk neutral about upgrades 

overall. The cost of the insurance premium is also not significant. This may be because only the Load=1 

level of premium was offered in this experiment - we might expect that increased premium load would 

have the same overall negative effect as was shown in the insurance only treatment.    

 

As also noted by Bajtelsmit, there are important policy implications for cases in which security 

practitioners (and the firms they represent) may substitute cyber risk liability insurance in place of meeting 

a precautionary standard of care for security control. High transparency and consistency regarding 

compliance with a standard of care, when possible, may increase precaution and decrease the risk of loss 

due to accidents, whereas unclear standards and relatively unpredictable enforcement may deter 

expenditure on loss prevention. This is important, especially under arising cyber security loss liability, 

where investment in precaution may be more expensive and damages more extensive, and yet liability 

standards are currently relatively unclear and vary greatly by jurisdiction. 

 

 

 

 

 

 

  

                                                                        
82 See” Cyber insurance is a good complement to a high level of information security controls, says Aon Risk Solutions”, Computer 

Weekly, July 2014 http://www.computerweekly.com/news/2240224437/Cyber-insurance-complements-security-controls-says-Aon 

and “Cyber Insurance as one element of the Cyber risk management strategy, Deloitte LLC, downloaded July 2016   
http://www2.deloitte.com/content/dam/Deloitte/lu/Documents/risk/lu-cyber-insurance-cyber-risk-management-strategy-03032015.pdf  

http://www.computerweekly.com/news/2240224437/Cyber-insurance-complements-security-controls-says-Aon
http://www2.deloitte.com/content/dam/Deloitte/lu/Documents/risk/lu-cyber-insurance-cyber-risk-management-strategy-03032015.pdf
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11 – Limitations and Further Research 

 

This research has approached the specific problem of evaluating decision making under risk and 

uncertainty for security control selection using lab experiments to generate individual choice data. The 

experiments permit the analysis of important but very specific hypotheses drawn from a potentially much 

richer range of questions and issues relevant to business managers operating enterprise information systems 

at risk of security attack and breach. Indeed, paraphrasing Harrison and others, we question whether and to 

what extent lab results regarding security control choice ‘in the small’ have relevance ‘in the large’.  We  

propose that the additional hypotheses noted in Section 1 can and should be explored using the experiments 

and methods developed here given more time and resources to refine and extend these analyses. I suggest 

that the combination of system simulation and experimental choice tools developed here combined with 

additional elements of managerial decision making found in practice are a clear opportunity to extend this 

research. 

 

This research also focuses intentionally on the quantification of risk since quantification of business 

operations is considered to improve the objective evaluation and management of risk including security 

risks. On the other hand, qualitative security risk management approaches continue to dominate in practice 

(particularly in healthcare in my experience) because they often make more intuitive sense to busy 

managers. Some further consideration of the qualitative setting in which security risk management actually 

occurs, and the translation of quantified results by management into action would therefore extend and 

complement this study, notwithstanding the direct benefits of the illustrated quantified results and insights 

on security risk quantification presented here. Overall, we consider that the tools and methods developed 

here may be better applied in the field rather than the lab to reflect specific institutional circumstances and 

system architectures at risk, deepening both the simulation and decision making analyses to address more 

complex real-world environments. 

 

This research also does not directly address more complex security ‘optimization’ problems that necessarily 

involve the modelling and trade-offs between corporate level security budgets and business outcomes, 

although some of these approaches have been well reviewed within this work in the preparation of the 

simulation modeling. When confronted with ‘system simulation’ and the associated quantification of 

security outcomes beyond typical system ‘uptime’ statistics, we expect that some or most practitioners 

would want to know what the model suggests as an ‘optimal’ security posture along the lines of Wang or 

Sawik {Wang, 2008 #13}{Sawik, 2013 #91}, and regardless of individual choice i.e. minimally, from a 

risk neutral posture. We suspect that, in practice, many managers might not welcome information that they 

are in fact biased and might prefer to know what the ‘risk neutral system says’ and leave it at that, and 

separating  the simulation aspects from the decisional aspects might be a strong consideration (indeed this 

is what appears to be happening with many of the simulation platforms explored for this research). 



  351  

Incorporation of optimization components into the simulation platform developed here would be an 

obvious extension of this work to balance the perception that ‘there is no optimum, it’s all relative to risk 

attitude’. From my perspective, this emphasizes the value of security risk modeling itself since it is only 

when information systems are presented as being at quantifiable risk that we can start to ask meaningful 

questions about very quantified costs and operational outcomes. Particularly, the introduction of 

stochasticity and associated Monte Carlo methods in a practitioner context elevates the security risk 

discussion to a new level of analysis and reflection, however the concepts are not particularly native to the 

sector in my opinion, although that is now changing, in no small part because of regulation and the 

maturing of cyber insurance products and markets. Additional work should be undertaken in either the lab 

or the field to ensure that practitioners encountering these methods have a solid grounding in and 

appreciation for the quantitative nuances and elements of these approaches before the tools are introduced 

in a practitioner setting.            

 

A number of the practical aspects of this experimental approach have required careful planning and 

limitations of scope to ensure feasible, adequate and reliable data collection within the resources available 

to this researcher. While we were successful in accomplishing the intended study, additional work 

regarding assuring the incentive compatibility of the experiments would be necessary to ensure valid results 

in alternative experimental settings and contexts.  In the first place, a particular feature of these behavioural 

economics lab experiments which distinguishes them from psychological decision making approaches is 

the explicit recognition of the need to ensure that decision makers are in fact making ‘honest’ (if not always 

economically or psychologically consistent) choices over risky prospects (Grether 1980; Grether 1992). 

This is formally intended to avoid what is termed ‘hypothetical bias’: the documented tendency for 

experimental subjects to make hypothetical choices which are inconsistent with how they would tend to 

behave under field or ‘real world’ circumstances (Neill, Cummings et al. 1994; Cubitt and Sugden 2001; 

Holt 2002; Ajzen, Brown et al. 2004; Harrison 2005). The experimental economics solution for this is to 

provide clear economic incentives within the experiment that are, at minimum, internally consistent with 

the decision choice tasks and treatment variations undertaken by the respondents. 

 

There are documented theoretical and methodological considerations for this incentive compatible 

approach which would need to be addressed to extend this research. First, using cash payments is intended 

to generally incent participants to make non-arbitrary choices, although this is no absolute guarantee 

against arbitrary decision making within the lab setting and, as we report, may be a continuing source of 

error within the approach. One fix for that might be to make decisions consensual, reflecting the fact that, 

in practice, significant security control decisions are rarely made individually.  This would ‘correct’ for any 

arbitrary decisions made by individuals although clearly at the cost of individual risk attitude profiling. The 

benefit would be possibly a richer and more practical domain for ‘risk decisioning’ while still based on 

system simulation and with clear controls and measurement for the effects of uncertainty. Second, as noted 
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above, the incentives employed are also necessarily nominal versus those which may be expected under 

typical field conditions involving control decisions perhaps worth tens of thousands of dollars (in either 

control costs or various business outcomes to be optimized) (Pratt 1964; Cox and Sadiraj 2008)). Scaling of 

experiment payoffs or simply extending the research scope to more sites would require significant funding 

and is an ongoing, particular consideration for this type of research. Third, one could question whether 

these experiments are validly testing the subject’s actual preferences over analogous real world control 

decisions (since the amounts in play are nominal), and therefore whether the subject perhaps considers that 

they are just ‘playing a game’ and not making analogous ‘consequential’ control decisions, notwithstanding 

the monetary incentives, or indeed whether they are, in any objective sense, actually playing the ‘game’ 

that you intend them to be playing (Smith 1982; Harrison 2010; Smith 2010). Again, this could be possibly 

better controlled by placing the experiments in professional settings beyond the ones explored here to 

induce participants to make more considered choices. Fourth, bets placed using non-personal funds and 

‘windfall’ gains (however nominal) may also be treated differently by subjects across experimental and 

field settings (Carlsson, He et al. 2009; Chakravarty, Harrison et al. 2011). In the context of enterprise 

information security, placing the simulations in a field setting reflective of an actual enterprise and asking 

participants to then make choices that may affect real business decisions and performance would likely 

provide an opportunity to test for appropriate practitioner incentives vs. incentives that are typically 

developed for use with either the ‘general public or MBA students (no matter how much I appreciate MBA 

students). Fifth, the predictability of ‘out-of-context’ decisions (i.e. the ability to make predictions outside 

of the experimental setting, either within or across subjects) may also be lower than within experiment 

results (Wilcox 2010; Friedman, Isaac et al. 2014). This research was unable to explore this aspect of 

analysis and additional study could be undertaken with guidance from Harrison and others regarding the 

econometric robustness of the experimental results beyond the participating sample. 

 

Lastly, we recognize that the specific system simulation environments developed here were necessarily a 

hybrid of the best practice platforms and approaches reviewed. Some work could be undertaken to 

‘replatform’ the simulation to allow it to run natively in P2CySeMol so that maximal advantage is taken of 

the Bayesian network approach to component attack and incident determination while retaining the ability 

to translate incidents into stochastic business losses. I remain encouraged by comments received from 

Mathias Ekstedt during the development of this work who, when I described my research agenda 

concerning security decision making under uncertainty and its potential use of CySeMol, commented that 

this research would constitute “…a full bingo on his scorecard’. I can think of no better continued 

motivation for further research from a valued colleague.    
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Appendix 1 - Game Instructions 

 
Game 1: Asset Integration 

 

 

Game Interface: 

 

 
 

Instructions: 

 

“This game is played for 20 consecutive 'rounds'. You start with a random amount between $1 and $6 and 

you may win or lose money on each round of the game. You have an overdraft limit of -$10.00. If your 

Total Earnings at the end of a round is less than minus $10.00, the game ends. The objective of the game is 

to maximize your winnings over 20 rounds.  Press "Start" to begin the game. 

 

For each round of the game, choose either the Lottery Option ("Choice A") or the Sure Money Option 

("Choice B") for each of the 10 rows indicated. You must choose either option A or B for each row on each 

round of the game. Press "Press to confirm choices for this round" and then OK to confirm your final 

choices for the round. 

 

After confirming your choices for a round, press "Press to calculate payout". The computer will select one 

row at random to pay out. The payout for the round are based on your choice for that row: 

 

If you chose the Lottery Option (Choice A)  for that row, the computer will generate a random percentage 

between 1% and 100%  and pay out an amount according to the corresponding pie chart payout percentage 

indicated. 

 

If you chose Sure Money (Option B), the payout will correspond to the Sure Money amount in the random 

row selected for that round. 

 

After the payout is displayed, press "Play Next Round" to go to the next round of the Game. Repeat this for 

all 20 rounds of the Game.” 
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Game 2: Subjective Bayesian Updating and Strength / Weight of Evidence 

 

 

1 - Example Simulations Screen: 

 

 
 

Instructions: 

 

“The simulations at right indicate attributed daily business 'losses' due to security incidents which affect the 

availability of a business' corporate information system. The information system has either relatively LOW 

Controls ("Yellow System") or HIGH Controls ("Orange System"). 

 

The deployed information security controls consist of a combination of Preventive, Blocking, Detective, 

Counter and Recovery types of controls*. The higher the level of control indicated, the higher is the overall 

effectiveness of each of these controls. 

 

The "LOW controls" (Yellow) system will generate losses exceeding $10,000 per day on average 60% of 

the time . 

 

The "HIGH controls" (Orange) system will generate losses exceeding $10,000 per day on average 40% of 

the time.  

 

Although the level of control (Low/High) affects the overall level of security incidents and the resulting 

system availability, the connection between control effectiveness , system availability, and actual business 

losses is stochastic i.e. the actual level of effectiveness on a given day for a given control may vary from 

day to day. Both the average level of control effectiveness and the variation in control effectiveness differs 

between control levels generally and on any given day.  

 

* T. Sommestad, M. Ekstedt, and P. Johnson, “A probabilistic relational model for security risk analysis,” 

Comput. Security, vol. 29, no. 6, pp. 659–679, Mar. 2010.” 
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2 – Game Interface: 

 

 
 

Instructions: 

 

“There are 30 rounds in this game - one round per tab. Each round is played separately. When you have 

played this round/tab, move on to the next round/tab. The objective of the game is to maximize the payout 

from a randomly selected bookie. 

 

The payout for a round will depend on your choice with that bookie for that round and from which system 

the losses were actually generated. If you guess the right system, the maximum payout per round is $60. If 

you guess the wrong system, the payout is always $0.  

 

You know the following two facts: 

 

The 'LOW controls' (Yellow) system will generate losses exceeding $10,000 per day on average 60% of the 

time .  

 

The 'HIGH controls' (Orange) system will generate losses exceeding $10,000 per day on average 40% of 

the time.  

 

On each round, press "Simulate". Now place a $3 bet with each bookie on which system you believe 

generated the losses by selecting either "I bet it's a Yellow System" or "I bet it's an Orange System".  You 

must place a bet with each Bookie.  

 

Once all of your bets are placed for the round, press "Press to enter all bets" and "OK". Then press 

"Calculate a Payout" to view the payout for that round. When you have played this round/tab, move on to 

the next round/tab.” 
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Game 3: Subjective Bayesian Updating and Strength / Weight of Evidence 

 

 

1 – Introductory Screen: 

 

 
 

Instructions: 

 

“There are 5 rounds in this game - one round per tab. Each round is played separately. When you have 

played one round/tab, move on to the next round/tab. 

 

Each round involves the simulation of attributed daily business 'losses' due to security incidents which 

affect the availability of a business' corporate information system. The information system has either 

relatively LOW Controls ("Yellow System") or HIGH Controls ("Orange System"). 

 

You can simulate the daily losses generated by each system using the "Example Simulations" tab. The 

losses in each game are drawn randomly from these simulations.  

 

The objective of each round are described on the tab for that round.” 
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2 - Example Simulations Screen: 

 

 
 

Instructions: 

 

“The simulations at right indicate attributed daily business 'losses' due to security incidents which affect the 

availability of a business' corporate information system. The information system has either relatively LOW 

Controls ("Yellow System") or HIGH Controls ("Orange System"). 

 

The deployed information security controls consist of a combination of Preventive, Blocking, Detective, 

Counter and Recovery types of controls*. The higher the level of control indicated, the higher is the overall 

effectiveness of each of these controls. 

 

Although the level of control affects the overall level of security incidents and the resulting system 

availability, the connection between control effectiveness , system availability, and actual business losses is 

stochastic i.e. the actual level of effectiveness on a given day for a given control may vary from day to day. 

Both the average level of control effectiveness and the variation in control effectiveness differs between 

control levels generally and on any given day.  

 

* T. Sommestad, M. Ekstedt, and P. Johnson, “A probabilistic relational model for security risk analysis,” 

Comput. Security, vol. 29, no. 6, pp. 659–679, Mar. 2010.” 
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3 – Game Interface (Low Controls System) 

 

 
 

Instructions: 

 

“This round is played with a LOW Controls system.  

 

In this round, place a bet with each of 9 'bookies' who are offering different odds on whether a randomly 

selected daily loss for this LOW Controls system will exceed $17,000 . The objective of the game is to 

maximize the payout from a randomly selected bookie. 

 

You have $5 to place with each bookie on either Scenario A or Scenario B. You must place a bet with each 

bookie. Payouts include the $5 stake. 

 

Once your bets are placed, press "Simulate" to simulate 365 days of losses for this system. The daily results 

will be displayed in the graph at right. You can only press "Simulate" once per round. 

 

After Pressing "Simulate",  Press "Calculate a Payout" to view the payout.  The computer will randomly 

select one bookie and then one daily loss in the simulated year to calculate a payout.  The payout will 

depend on your choice with that bookie and whether the randomly selected loss exceeds $17,000.  

 

The payout is at least $5.55 if the scenario you bet on actually occurs.  The payout is $0 if the scenario you 

bet on does not actually occur.” 
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4 – Game Interface (High Controls System) 

 

 
 

Instructions: 

 

“This round is played with a HIGH Controls system.  

 

In this round, place a bet with each of 9 'bookies' who are offering different odds on whether a randomly 

selected daily loss for this HIGH Controls  system will exceed $17,000 . The objective of the game is to 

maximize the payout from a randomly selected bookie. 

 

You have $5 to place with each bookie on eother Scenario A or Scenario B. You must place a bet with each 

bookie. Payouts include the $5 stake. 

 

Once your bets are placed, press "Simulate" to simulate 365 days of losses for this system. The daily results 

will be displayed in the graph at right. You can only press "Simulate" once per round. 

 

After Pressing "Simulate",  Press "Calculate a Payout" to view the payout.  The computer will randomly 

select one bookie and then one daily loss in the simulated year to calculate a payout.  The payout will 

depend on your choice with that bookie and whether the randomly selected loss exceeds $17,000.  

 

The payout is at least $5.55 if the scenario you bet on actually occurs.  The payout is $0 if the scenario you 

bet on does not actually occur.” 
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5 – Game Interface (Multiple Price List Control Selection – 5 Price Levels Example) 

 

 
 

Instructions: 

 

“This round is played with both a LOW Controls (Yellow) and HIGH Controls (Orange) system.  

 

In this game, you start with a budget of $17,000 and a LOW Controls System.  

 

For each indicated HIGH Control cost, choose whether you would purchase additional HIGH Controls or 

stay with the existing LOW Controls at no incremental cost.  

 

The objective of the game is to maximize the Ending Budget after purchasing additional controls (if you 

purchase HIGH Controls) and after experiencing a randomly selected daily business loss based on the 

system you chose.  Daily losses will be capped at $17,000. 

 

Note that if you may still end up with a negative budget if losses and control costs exceed $17,000. 

 

Once you have chosen whether to purchase HIGH Controls at each control cost, press "Determine 

Simulation Scenario". The computer will randomly select a HIGH CONTROL COST level for this round. 

 

If you chose to purchase HIGH Controls at the  randomly selected HIGH Control cost level, the system will 

be simulated using HIGH Controls.  If you chose to stay with LOW Controls the randomly selected HIGH 

Control cost level, the system will be simulated using LOW Controls. Then press "Simulate!" to simulate 

one year of daily losses using the system selected for the scenario. 

 

The computer will then randomly select one loss from the simulation and deduct both the incremental 

control cost (if any) and the daily loss from your Starting budget to determine your Ending Budget.” 
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Game 4: Recovering Subjective Probability Estimates and Rank Dependent Utility Bias 

 

1 – Binary Lottery Game Interface 

 

 
 

Instructions: 

 

“This game is played for 50 consecutive 'rounds'. You start with no money. You can only gain money in 

this game, although you may gain nothing depending on the choices you make.  

 

Press "Start" to begin the game. 

 

For each round of the game, the computer will display two pie chart Lotteries. Choose either Lottery A or 

Lottery B based on your preference if that Lottery were to be actually played out for money. You must 

choose either Lottery A or B for each round of the game.  

 

After selecting either Lottery A or Lottery B, press "Press to confirm choices for this round" and then 

"OK".  Then press "Play Next Round" to proceed to the next pair of Lotteries.  

 

After 50 rounds of choices, press "Press to calculate payout" for this game. The computer will select one 

round at random for payout. The computer will then generate a random percentage between 1% and 100% . 

The computer will then calculate a payout based on the Lottery choice you made for that round and the 

random percentage generated.” 
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2A – QSR Scoring Device 

 

 
 

Instructions: 

 

“This game is played for 16 'rounds'. You will be presented with 16 questions about the security losses 

displayed in the "Example Simulations" tab. For each question, look at the simulation tab chart to 

determine the correct answer to the question and then allocate 100 'tokens' to the sliders at right that 

represent what you believe to be the range of the correct answer. As you allocate the tokens, the payoffs 

displayed on the screen will change. The more tokens you allocate to a slider, the more payoff will be 

received if the correct answer to the questions falls into the range represented by that slider. The maximum 

possible payout is $50. 

 

After allocating all of the tokens for a question, press "Press to confirm choices for this round" and then 

"OK". Press "Next Question" to proceed to the next question.   

 

After answering all 16 question,  press "Payout" - the computer will randomly select one question for 

payout.” 
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2B – Question Detail Screen (Probability Distribution Example) 

 

 
 

Instructions: 

 

“The simulations at right indicate attributed daily business 'losses' due to security incidents which affect the 

availability of a business' corporate information system. 

 

Each simulation is based on a nominal (Low, Medium, High, Very High) level of deployed information 

security controls, consisting of a combination of Preventive, Blocking, Detective, Counter and Recovery 

types of controls*. The higher the level of control indicated, the better is the overall effectiveness of each of 

these controls. 

 

Although the level of control affects the overall level of security incidents and the resulting system 

availability, the connection between control effectiveness , system availability, and actual business losses is 

stochastic i.e. the actual level of effectiveness on a given day for a given control may vary from day to day. 

Both the average level of effectiveness and the variation in effectiveness differs between control levels 

generally and on any given day.  

 

* T. Sommestad, M. Ekstedt, and P. Johnson, “A probabilistic relational model for security risk analysis,” 

Comput. Security, vol. 29, no. 6, pp. 659–679, Mar. 2010.”      
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Game 5: Effect of Risk and Ambiguity on Precaution vs. Insurance Choices 

 

 

1 – Insurance-Only Treatment Interface 

 

 
 

Instructions: 

 

“This game is played for 12 'rounds'. Each round is played separately. You start with $60 each round and 

you may lose money from the starting amount of $60 on each round of the game. The objective of the game 

is to maximize your winnings in each of the 12 rounds. Press "Start" to begin. 

 

In this game, imagine an information system at risk of generating daily business interruption losses due to 

security incidents. The system may have either relatively HIGH or VERY HIGH controls already in place, 

and will generate losses relative to the level of control indicated. Press "Test Simulate" at any time to 

display losses generated by the indicated system. 

 

In each round of this game, choose whether to purchase 'insurance' against security losses at the indicated 

cost. Purchasing insurance for a round will eliminate any loss above $17. If you purchase insurance, the 

indicated cost of the insurance will be deducted from the payout for that round regardless of whether a loss 

of $17 occurs on that round. Press "Press to confirm choices for this round" and "OK" when you have made 

your final selection for the current round.    

 

After confirming your insurance choice for a round, press "Press to calculate payout".  The computer will 

randomly select one of the days in a year and that daily loss amount, less any purchased insurance cost, will 

be deducted from the $60 you start with.  

 

After the payout is displayed for a round, press "Play Next Round" to go to the next roun . Repeat this for 

all 12 rounds of this Game.” 
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2 – Precaution-Only Treatment Interface 

 

 
 

Instructions: 

 

“This game is played for 12 'rounds'.  Each round is played separately. You start with $60 each round and 

you may lose money from the starting amount of $60 on each round of the game. The objective of the game 

is to maximize your winnings in each of the 12 rounds. Press "Start" to begin. 

 

In this game, imagine an information system at risk of generating daily business interruption losses due to 

security incidents. The system may have either relatively LOW or HIGH controls already in place, and will 

generate losses relative to the level of control indicated. Press "Test Simulate" at any time to display losses 

generated by the indicated system. 

 

In each round of the game, choose whether to purchase 'better' security controls at the indicated cost. 

Purchasing better controls will generally lower the typical daily loss. If you purchase better controls, the 

cost of the better controls will be deducted from the payout for that round. Press "Press to confirm your 

choices for the round" and "OK" when you have made your final selection for the current round.       

 

After confirming your control choice for a round, press "Press to calculate payout".  The computer will 

randomly select one of the days in a year and that daily loss amount, less any purchased control cost, will 

be deducted from the $60 you start with.  

 

After the payout is displayed for a round, press "Play Next Round" to go to the next round. Repeat this for 

all 12 rounds of this Game.” 
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3 – Insurance + Precaution Treatment Interface 

 

 
 

Instructions: 

 

“This game is played for 12 'rounds'. Each round is played separately. You start with $60 each round and 

you may lose money from the starting amount of $60 on each round of the game. The objective of the game 

is to maximize your winnings in each of the 12 rounds. Press "Start" to begin. 

 

In this game, imagine an information system at risk of generating daily business interruption losses due to 

security incidents. The system may have either relatively LOW or HIGH controls already in place, and will 

generate losses relative to the level of control indicated. Press "Test Simulate" at any time to display losses 

generated by the indicated system. 

 

In each round of the game, you may purchase insurance and/or better security controls. Purchasing 

insurance for the round will eliminate any loss above $17. Purchasing better controls will generally lower 

the typical daily loss. The cost of purchased insurance and purchased better controls will be deducted from 

the payout for that round. Press "Press to confirm your choices for the round" and "OK" when you have 

made your final selection for the current round. 

 

After confirming your choices for a round, press "Press to calculate payout".  The computer will randomly 

select one of the days in a year and that daily loss amount, less any purchased insurance and control costs, 

will be deducted from the $60 you start with.  

 

After the payout is displayed for a round, press "Play Next Round" to go to the next round. Repeat this for 

all 12 rounds of this Game.” 
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Appendix 2 - Demographic Survey Questions 

 

1 What is your age in years? 

Under 25 

25-34 

35-44 

45-54 

55-64 

65-74 

75 or older 

  
 

2 What is your gender? 
Male 

Female 

  
 

3 What is your marital status? 

Never Married 

Not married but living with a significant partner 

Married 

Separated or divorced 

Widowed 

Independent shared living arrangement 

  
 

4 
What is/was your main field of study 

in school? 

Accounting 

Economics 

Finance 

Business Administration, other than Accounting, 

Economics, or Finance 

Education 

Engineering 

Health and Medicine 

Biological and Biomedical Sciences 

Math, Computer Sciences, or Physical Sciences 

Social Sciences or History 

Law 

Psychology 

Modern Languages and Cultures 

Other Fields 

  
 

5 
Do you have a business degree from 

a College or University? 

Yes 

No 

  
 

6 

Do you have a mathematics, 

economics or sciences degree from a 

College or University? 

Yes 

No 

  
 

7 
What is the highest level of education 

you have completed? 

High School 

Community College Diploma 

University Bachelor’s degree 

Master’s degree 

Doctoral degree 

  
 

8 
How many years have you been 

working full time (entire career)? 

Less than 1 year 

1 - 5 years 

6 - 10 years 

11 - 15 years 

16 - 20 years 



  393  

21 - 30 years 

more than 30 years 

  
 

9 

How many years have you been 

working in a professional privacy or 

security role? 

I have never worked in a privacy or security role 

Less than 1 year 

1 - 5 years 

6 - 10 years 

11 - 15 years 

16 - 20 years 

21 - 30 years 

More than 30 years 

  
 

10 
How many people report to you 

directly? 

None 

1 to 2 

3 to 5 

6 to 10 

11 to 20 

21 to 50 

more than 50 

  
 

11 
Do you earn a performance related 

bonus as part of your salary? 

Yes 

No 

  
 

12 
What is your current household 

income before taxes? 

$15,000 or under 

$15,001 - $35,000 

$35,001 - $50,000 

$50,001 - $75,000 

$75,001 - $100,000 

$100,001 - $150,000 

$150,001 - $200,000 

over $200,000 

  
 

13 
What is/was your parents highest 

household income? 

$15,000 or under 

$15,001 - $35,000 

$35,001 - $50,000 

$50,001 - $75,000 

$75,001 - $100,000 

$100,001 - $150,000 

$150,001 - $200,000 

over $200,000 

  
 

14 

What was the highest level of 

education that your father (or male 

guardian) completed? 

Less than high school 

High School Equivalency 

High school 

Vocational or trade school 

College or university 

  
 

15 

What was the highest level of 

education that your Mother (or 

female guardian) completed? 

Less than high school 

High School Equivalency 

High school 

Vocational or trade school 

College or university 

  
 

16 
Do you work part-time, full-time, or 

contract? 

Part-time 

Full-time 
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Contract (full time or part time) 

  
 

17 
Would you call yourself an avid 

player of video games? 

Yes 

No 

  
 

18 
What is the ownership / legal 

structure of your current employer? 

Government 

Private Company 

Publicly Traded Company  

Other 

  
 

19 

Which industry does your current 

employer belong to? Pick one only, 

and choose the industry representing 

the main revenue source if more than 

one category applies. 

Publishing, Broadcasting, Communications 

Information Technology and Related Services 

Financial Services and Insurance 

Professional, Scientific and Technical Services 

Government 

Educational Services 

Health Care and Social Assistance 

Retail and Wholesale Trade 

Manufacturing 

Utilities 

Transportation and Warehousing 

Mining, Agriculture, Forestry, Fishing and Hunting 

Construction, Real Estate, Rental and Leasing  

None of the Above 

  
 

20 
How many employees does your 

organization have? 

1-49 

50 - 249 

250 - 499 

500 - 749 

1,000 - 2,499 

2,500 - 4,999 

5,000 - 9,999 

10,000 - 19,999 

20,000 - 49,000 

50,000 or more 

Don't Know 

  
 

21 

What was your organizations 

approximate annual revenue or total 

budget last year? 

< $1 million 

$1 million-$24 million 

$25 million-$99 million 

$100 million-$499 million 

$500 million-$999 million 

$1 billion-$1.99 billion 

$2 billion-$10 billion 

> $10 billion 

Don’t Know 

  
 

22 

What percentage of your 

organization’s employees uses a 

laptop to access business 

applications/data? 

<10% 

11-20% 

21 - 30% 

31 - 40% 

41 - 50% 

51 - 60% 

61 - 70% 

71 - 80% 
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81 - 90% 

91 - 100% 

  
 

23 

What percentage of your 

organization’s employees uses a 

smartphone (e.g. Blackberry, iPhone, 

Android device) to access business 

applications/data? 

<10% 

11-20% 

21 - 30% 

31 - 40% 

41 - 50% 

51 - 60% 

61 - 70% 

71 - 80% 

81 - 90% 

91 - 100% 

  
 

24 

Does your company allow the use of 

personal mobile devices (i.e. mobile 

devices not provisioned directly by 

the company to the employee)? 

Yes 

No 

  
 

25 
Please choose the job title that most 

closely matches your own: 

Chief Executive Officer 

Chief Technology Officer 

Chief Information Officer 

Chief Privacy Officer 

Chief Security Officer 

Chief Information Security Officer 

VP of IT or Security or Risk Management 

Director 

Manager 

Security Analyst, Consultant, Auditor 

System Administrator 

Other 

  
 

26 
How many IT-related professional 

certifications do you have? 

None 

1 

2 

3 

4 

5 

more than 5 

  
 

27 
How long have you been with your 

current employer? 

< 6 months 

6 months to 1 year 

1-3 years 

4-6 years 

7-9 years 

10 years or more 

  
 

28 

Which range contains your current 

annual salary (including any 

bonuses)? 

$15,000 or under 

$15,001 - $35,000 

$35,001 - $50,000 

$50,001 - $75,000 

$75,001 - $100,000 

$100,001 - $150,000 

$150,001 - $200,000 

over $200,000 
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I prefer not to answer 

  
 

29 

Approximately how many full time 

equivalent staff (FTEs) does your 

organization devote to IT privacy and 

security (including operations, audit 

and policy functions)? 

0 FTEs 

1 FTE 

2-10 FTEs 

11-50 FTEs 

51-100 FTEs 

101 - 200 FTEs 

201 - 500 FTEs 

>500 FTEs 

  
 

30 

What is the % share of your 

organization's annual total budget 

dedicated to information technology? 

1% - 1.5% 

1.6% - 2% 

2.1% - 5% 

5.1% - 10% 

More than 10% 

I don't know 

  
 

31 

What is the % share of your 

organization's annual IT Budget 

dedicated to information security 

1% - 2% 

2.1% - 5% 

5.1% - 10% 

10.1% - 20% 

More than 20% 

I don't know 

  
 

32 

What is the most senior role in your 

organization dedicated to information 

security? 

Chief Executive Officer 

Chief Technology Officer 

Chief Information Officer 

Chief Privacy Officer 

Chief Security Officer 

Chief Information Security Officer 

VP of IT or Security or Risk Management 

Director 

Manager 

Security Analyst, Consultant, Auditor 

System Administrator 

Other 

  
 

33 

Does your organization outsource any 

aspect of its Security Program or 

Security Operations? 

Yes 

No 

  
 

34 

How satisfied are you with your 

organization's overall IT security 

posture? 

Very dissatisfied 

Dissatisfied 

Neutral 

Satisfied 

Very satisfied 

Not Sure/Don’t Know 

  
 

35 

How would you rate your 

organization's 'people' security 

control performance? 

Significant weakness 

Slight disadvantage 

Neutral 

Slight advantage 

Significant strength 
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36 

How would you rate your 

organization's 'process' security 

control performance? 

Significant weakness 

Slight disadvantage 

Neutral 

Slight advantage 

Significant strength  

  
 

37 

How would you rate your 

organization's 'technology' security 

control performance? 

Significant weakness 

Slight disadvantage 

Neutral 

Slight advantage 

Significant strength 

  
 

38 

How would you rate your 

organization's 'prevention/blocking' 

security control performance? 

Significant weakness 

Slight disadvantage 

Neutral 

Slight advantage 

Significant strength 

  
 

39 

How would you rate your 

organization's 'detection/monitoring' 

security control performance? 

Significant weakness 

Slight disadvantage 

Neutral 

Slight advantage 

Significant strength 

  
 

40 

How would you rate your 

organization's 'counter/recovery' 

security control performance? 

Significant weakness 

Slight disadvantage 

Neutral 

Slight advantage 

Significant strength 

  
 

41 

Considering your IT security 

environment, staffing, budget, and 

mandate, how would you rate the 

overall complexity of your IT 

environment? 

Very Low Complexity 

Low Complexity 

Medium Complexity 

High Complexity 

Very High Complexity 

  
 

42 

How many data and application 

servers does your organization have 

in its environment? 

1 - 10 

11 - 50 

51 - 100 

101 - 250 

251 - 500 

501 - 1000 

1000 or more 

Don't Know 

  
 

43 

How many internally reportable 

privacy and security incidents do you 

estimate your organization has 

experienced in the past 12 months? 

1 - 5 

6 - 20 

21 - 50 

51 - 100 

100 - 250 

250 - 500 

more than 500 

  
 

44 
How confident are you that your 

organization could detect an 

Very unconfident 

Somewhat unconfident 
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information security breach as it was 

happening? 

Confident 

Very confident 

Extremely confident 

  
 

45 

How confident are you that your 

organization could detect an 

information security breach after it 

had happened? 

Very unconfident 

Somewhat unconfident 

Confident 

Very confident 

Extremely confident 

  
 

46 
How willing are you to take risks in 

your professional  life? 

Very unlikely 

Not likely 

Somewhat Likely 

Very Likely  

Highly likely 

  
 

47 

Does your job position allow you to 

make independent information 

security decisions? 

Never 

Very Rarely 

Sometimes 

Frequently 

Almost all of the time 

  
 

48 

How concerned are you that a severe 

or significant  security incident might 

materialize in your organization 

despite the existing protective 

measures? 

Unconcerned 

Slightly concerned 

Somewhat concerned 

Very concerned  

Highly concerned 

  
 

49 

Have you personally experienced any 

severe or significant security incident 

at work in the past? 

Never 

Once 

A few times 

More than a few times 

Many Times 

  
 

50 

How closely related do you think 

investment in information security is 

to the achievement of overall 

business objectives? 

Not related 

Slightly related 

Somewhat related 

Very related  

Highly related 

  
 

51 

How much does your organization 

focus on business operations versus 

security? 

Always favours business operations over security 

considerations 

Somewhat favours business operations over security 

considerations 

Treats business operations and security about equally 

considerations 

Somewhat favours security considerations over business 

operations 

Usually favours security considerations over business 

operations 

  
 

52 
How likely are you to take risks in 

your personal life? 

Very unlikely 

Not likely 

Somewhat Likely 

Very Likely  
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Highly likely 

  
 

53 Do you currently smoke cigarettes? 
Yes 

No 

  
 

54 Do you buy lottery tickets? 
Yes 

No 

  
 

55 
Do you engage in high risk sports or 

other recreational activities? 

Never 

I have once or twice 

I do once in a while 

Frequently 

Very frequently 

  
 

56 
Do you think skydiving is a risky 

activity? 

Not at all risky 

Slightly risky 

Somewhat risky 

Very risky 

Extremely risky 

  
 

57 
Do you think flying on a commercial 

aircraft is a risky activity? 

Not at all risky 

Slightly risky 

Somewhat risky 

Very risky 

Extremely risky 

  
 

58 
Do you own a life insurance policy 

on yourself? 

Yes 

No 

  
 

59 
Do you own a life insurance policy 

on someone else? 

Yes 

No 

  
 

60 

When purchasing a computer or a 

smartphone for personal use, do you 

buy an 'extended warranty'? 

Never 

Occasionally 

Usually 

Most of the time 

Always 

  
 

61 
In general, how would your best 

friend describe you as a risk taker? 

A real gambler 

Willing to take risks after completing adequate research 

Cautious 

A real risk avoider 

  
 

62 

You are on a TV game show and can 

choose one of the following. Which 

would you take? 

$1,000 in cash 

A 50% chance at winning $5,000 

A 25% chance at winning $10,000 

A 5% chance at winning $100,000 

  
 

63 

You have just finished saving for a 

"once-in-a-lifetime" vacation. Three 

weeks before you plan to leave, you 

lose your job. You would: 

 Cancel the vacation 

 Take a much more modest vacation 

 Go as scheduled, reasoning that you need the time to 

prepare for a job search 

 Extend your vacation, because this might be your last 

chance to go first-class 
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64 
If you unexpectedly received $20,000 

to invest, what would you do? 

 Deposit it in a bank account, money market account, or an 

insured CD 

 Invest it in safe high quality bonds or bond mutual funds 

 Invest it in stocks or stock mutual funds 

  
 

65 

In terms of experience, how 

comfortable are you investing in 

stocks or stock mutual funds? 

Not at all comfortable 

Somewhat comfortable 

Comfortable 

Very comfortable 

Extremely comfortable 

  
 

66 

When you think of the word "risk" 

which of the following words comes 

to mind first? 

Loss 

Uncertainty 

Opportunity 

Thrill 

  
 

67 

Some experts are predicting prices of 

assets such as gold, jewels, 

collectibles, and real estate (hard 

assets) to increase in value; bond 

prices may fall, however, experts 

tend to agree that government bonds 

are relatively safe. Most of your 

investment assets are now in high-

interest government bonds. What 

would you do? 

 Hold the bonds 

 Sell the bonds, put half the proceeds into money market 

accounts, and the other half into hard assets 

 Sell the bonds and put the total proceeds into hard assets 

 Sell the bonds, put all the money into hard assets, and 

borrow additional money to buy more 

  
 

68 

Given the best- and worst-case 

returns in each of these investment 

choices, which would you prefer? 

$200 gain best case; $0 gain/loss worst case 

$800 gain best case; $200 loss worst case 

$2,600 gain best case; $800 loss worst case 

$4,800 gain best case; $2,400 loss worst case 

  
 

69 Choose between the following: 

 A sure gain of $500 

 A 50% chance to gain $1,000 and a 50% chance to gain 

nothing 

  
 

70 

In addition to whatever you own, you 

have been given $2,000. You are now 

asked to choose between: 

A sure loss of $1000 

A 50% chance to lose the $2,000 and a 50% chance to lose 

nothing 

  
 

71 

Suppose a relative left you an 

inheritance of $100,000, stipulating 

in the will that you invest ALL of the 

money in ONE of the following 

investment choices. Which one 

would you select? 

A savings account or money market mutual fund 

A mutual fund that owns stocks and bonds 

A portfolio of 15 common stocks 

Commodities like gold, silver, and oil 

  
 

72 

If you had to invest $20,000, which 

of the following portfolios would you 

find most appealing? 

 60% low-risk investment, 30% medium-risk investment, 

10% high-risk investment 

 30% low-risk investment, 40% medium-risk investment, 

30% high-risk investment 

 10% low-risk investment, 40% medium-risk investment, 

50% high-risk investment 
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73 

Your trusted friend and neighbor, an 

experienced geologist, is putting 

together a group of investors to fund 

an exploratory gold mining venture. 

The venture could pay back 50 to 100 

times the investment if successful. If 

the mine is a bust, the entire 

investment is worthless. Your friend 

estimates the chance of success is 

only 20%. If you had the money, how 

much would you invest? 

Nothing 

One month's salary 

Three month's salary 

Six month's salary 

 


