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Abstract 

This paper presents a novel evidence combination framework for urban area land cover classification 

by using Light Detection And Ranging (LIDAR) data fused with co-registered near infrared and 

color images. The newly developed combination framework is built with a hierarchical structure 

involving an improved Dempster-Shafer (DS) theory of evidence for decision making. In the 

framework, a fuzzy basic probability assignment (BPA) function with fuzzy classes is firstly 

established based on the DS theory of evidence, and a probability is then assigned to each data 

source, that is derived from the original airborne LIDAR and the co-registered images. Secondly, an 

interesting approach is to introduce noise removal in an interim stage at the output of the probability 

distribution, and then the probability assigned to each data source is redistributed with a designated 

rule. Finally, a decision is made based on a “maximum normal support” rule, leading to the 

classification results. The proposed framework has been tested on two datasets. The testing results 

have shown that it can dramatically reduce the computational time in the classification process, and 

significantly improve the classification accuracy, i.e. 8.22% on Test 1 and 5.76% on Test 2 compared 

to the basic DS method. Due to its non-iterative and unsupervised nature, the proposed method is fast 

in computation, does not require training samples, and has achieved high classification accuracy.  
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1. Introduction 

1.1. Motivation and study goals 

Computational approaches to make use of airborne LIDAR data have made significant 

contributions to many applications, such as forestry modeling [1], road extraction [2], and 3D 

building modeling [3]. Usually data acquired by an airborne LIDAR system include height 

information regarding the land-cover with a high spatial resolution, as well as LIDAR intensity and 

spectral information, such as visible images and near infrared images. These have made the data 

perform well in terrain and land surveying. This study is focused on exploration of the capability of 

LIDAR data, associated with its co-registered spectral images in land-cover classification, especially 

in an urban area with land cover classes such as building, tree, road and grass. The main 

requirements for land cover classification are high classification accuracy and low computational 

cost. In previous studies, researchers focused mainly on improving classification accuracy [4]. 

Nevertheless acquired LIDAR data become more complex with increasing complexity of landscape 

to be surveyed and with high resolution point cloud. These demand advanced computational 

efficiency. For applications such as selecting a bombing target, aircraft landing navigation in extreme 

weather conditions, and rescuing people during natural disasters, a classification method must satisfy 

the requirement of not only high accuracy but must also have high computational efficiency. 



  

 

Furthermore, these situations may not allow a supervised learning process, in which training is 

needed. Thus, developing a fast and high precision land cover classification method with available 

data resources is needed. 

A set of co-registered data can be obtained with LIDAR systems, such as LIDAR first echo (FE), 

LIDAR last echo (LE), LIDAR intensity, aerial images such as red, green, blue (RGB) and 

near-infrared (NIR) images. A number of supervised classification methods have achieved good 

classification accuracy with these data, such as the Markov random field method (MRF) or 

conditional random field method (CRF) [5], support vector machine method (SVM) [6] and random 

forest method (RF) [7, 8].  In recent studies with regards to land cover classification from remotely 

sensed imagery, Xu, et al. used deep learning algorithms in automatic land cover classification [9], 

Chen, et al. employed SVM as a classifier in their study of multi-source remotely sensed data fusion 

for improving land cover classification [10], and Pereira, et al adapted contextual learning into land 

use classification for better representation of their model [11]. However due to the nature of 

supervised learning, these methods are not only computationally expensive in terms of iterative 

training, but also require training samples. The study by Niemeyer et al. [5] reported that it took 202 

minutes and 252 minutes to train the CRF and MRF, respectively, with a study area of 1.93 ha. 

Besides this, these approaches require a large amount of detailed knowledge of the land-cover in a 

scene to start the classification. Yan, et al. summarized the popular classifiers used in urban land 

cover classification in their review paper [4], and it revealed that the majority of the classifiers 

belong to supervised learning in which training samples are always needed.  

Land cover classification methods are sought after for applications where training samples are not 

available. Dempster-Shafer (DS) theory of evidence, as a basic method for dealing with problems of 

uncertainty, requires neither training samples nor priori knowledge of the area in question. Cao et al. 

[12] employed the DS evidence theory as the initial segmentation algorithm in their study on LIDAR 

based land cover classification, and the Markov random field model was further combined into the 

classifier to improve the performance. They used a linear mass function to reduce the impact of 

uncertainty in the initial classification. However the iterative nature of the MRF algorithm caused an 

extended computation time in the further classification. Rottensteiner et al. [13] used the DS 

evidence theory to process a fusion of LIDAR data and multi-spectral images in building detection. A 

three-times-BPA function was proposed as the mass function, and they obtained better classification 

results compared to the basic DS method. Nevertheless the BPA function is still a single function 

without consideration of fuzziness in classification. 

In the previous studies [12, 13, 14], linear mass functions were used to distribute the probability to 

each class based on given thresholds under the DS evidence theory framework. The linear mass 

function fails to solve the problem of those uncertain pixels that reside in the region mixed with 

different classes. In this study, we propose a fuzzy class in the mixed region to classify pixels that do 

not clearly fit into any classes, hence the distribution of probability values solves the problem of 

uncertainty over that region. Classification accuracy is improved effectively by integrating the 

median filtering and a hierarchical combination framework proposed in this study.  

The rest of the paper is laid out in the following order. Section 2 introduces the hierarchical 

Dempster-Shafer (DS) evidence combination framework, as well as features used in the study. The 

detailed approach and related techniques are presented in Section 3. We demonstrate the 

experimental results and discuss them in Section 4. Finally Section 5 concludes the study. 

 



  

 

 

2. The framework and the feature space 

The source data used in this study are the LIDAR first echo elevation image (FE), the last echo 

elevation image (LE), intensity image (IN), RGB images and near infrared image (NIR). Other two 

images, HD and NDVI, are obtained from the following formula: 

HD = FE − LE                              

NDVI =
NIR − Red

NIR + Red
 

HD is the height difference between the first and the last echo elevation images. It is used to 

separate trees and buildings according to the penetration characteristics of LIDAR to trees; NDVI, 

derived from NIR and Red image, is the Normalized Difference Vegetation Index image, which is 

conventionally used for vegetation identification. In this study, based on the physical properties of 

the data, FE, IN, HD and NDVI are selected as features to classify land covers into four classes: 

building (B), grass (G), road (R), and tree (T).  
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Figure 1. Framework of the land cover classification 



  

 

 

The framework of the land cover classification is demonstrated in Figure 1. With consideration of 

each feature’s characteristics and its contribution to the four classes, instead of applying all features 

at the same time, a hierarchical framework is established. The process is divided into two stages, and 

the details are described as follows.  

Stage 1: Since HD and IN have complementary functions in identifying trees from other classes 

observed from our experiments, the framework accepts these two features to separate trees 

from other classes (including fuzzy classes). First, the mass functions are established 

according to the basic probability assignment (BPA) function, and the results are expressed 

as PAHD ,PBHD ,PA∪BHD,PAIN ,PBIN and PA∪BIN. Next, a median filter is applied to the output 

of the mass functions of IN, based on an interesting observation showing sparse noise 

introduced by the process as well as the original data. HID, the output of Stage 1 is the 

combinational feature of HD and IN, and obtained from a support function through the 

Dempster-Shafer evidence theory. HID is also one of the three input features to Stage 2.  

Stage 2: The inputs of Stage 2 compose of three features FE, NDVI and HID. Mass functions to FE 

and NDVI are: PAFE , PA∪BFE , PBFE , PANDVI , PBNDVIand PA∪BNDVI . Then median filtering is 

conducted to reduce noise of mass function outputs of FE, NDVI and HID individually. 

The parameters of BPA function are different from those used in Stage 1 and the details of 

choosing parameters are discussed in Section 4. The final classification results are 

achieved by the DS evidence combination method and decision rules, which are denoted 

as the F-DS-FH method in Figure 1 and will be explained in details in Section 3.4. 

 

3. Combination method 

3.1. Dempster-Shafer evidence theory 

The Dempster-Shafer evidence theory is frequently applied for fusion of data from multiple 

sensors [15]. Unlike Bayesian probabilistic reasoning, it offers tools to represent partial knowledge 

about a sensor’s contribution to the classification process.  

Let us assume a classification problem in which input data are to be classified into mutually 

exclusive classes. The set Θ of these classes is called the frame of discernment. 2Θ is a power set of 

Θ which contains both the classes and all their possible unions. In Dempster-Shafer theory, a 

probability mass 𝑚(𝐴) is assigned to each class 𝐴 ∈ 2Θby a sensor such that 0 ≤ 𝑚(𝐴) ≤ 1, 

𝑚(Ø) = 0, and ∑ 𝑚(𝐴)𝐴∈2Θ = 1, where Ø denotes an empty set. 𝑚(𝐴) can be computed by a 

function, i.e. a BPA function, from the data provided by a sensor. 

Imprecision of knowledge can be handled by assigning a non-zero probability mass to the union of 

two or more classes. Two parameters, support Sup(A) and plausibility Pls(A), can be defined for all 

𝐴 ∈ 2Θ: 

Sup(𝐴) = ∑ 𝑚(𝐵S)𝐵S⊆𝐴                              (1) 

Pls(𝐴) = ∑ 𝑚(𝐵PL) = 1 − Sup(𝐴̅)𝐴∩𝐵PL≠∅               (2) 

where 𝐵S, 𝐵PL ∈ 2
Θ. The support of a class is the sum of all the probability masses directly assigned 



  

 

to that class by a data source, whereas the plausibility is the sum of all the probability masses not 

assigned to the complement of the class. 𝐴̅ is the complementary hypothesis of A. Sup(𝐴̅) represents 

the degree to which the evidence contradicts a proposition. 

If p data sources are available, probability masses 𝑚𝑖(𝐵𝑗) have to be defined for each data source 

i with 0 ≤ 𝑖 ≤ 𝑝 and for all classes 𝐵𝑗 ∈ 2
Θ. Dempster-Shafer theory allows the combination of 

these probability masses from several data sources to compute a combined probability mass for each 

class 𝐴 ∈ 2Θ: 

𝑚(𝐴) =
∑ (∏ 𝑚𝑖(𝐵𝑗)1≤𝑖≤𝑝 )𝐵1∩𝐵2⋯∩𝐵𝑝=𝐴

1−∑ (∏ 𝑚𝑖(𝐵𝑗)1≤𝑖≤𝑝 )𝐵1∩𝐵2⋯∩𝐵𝑝=∅
        (3) 

 

The sum in the denominator of Equation (3) is a measure of the conflict in the evidence. As soon 

as the combined probability masses 𝑚(𝐴) have been derived from the original masses, both Sup(A) 

and Pls(A) can be computed. Finally, a decision rule must be defined in order to determine the 

accepted simple hypothesis [16]. 

There are several ways of defining such a decision rule with hypothesis of (i) maximum support, 

(ii) maximum plausibility, (iii) maximum support without overlapping of uncertainty intervals, or (iv) 

maximum normal support. We use the rule of maximum normal support as it is a commonly used 

rule. The definition of normal support is shown in Equation (4). 

 Mn(A) = ∑
m(Bj)

|Bj|
A⊆Bj

          (4) 

where Bj ∈ 2
Θ, is the focus element and |Bj| is the number of elements in subset Bj.  

3.2. Definition of fuzzy probability masses 

The definition of the probability masses is the most crucial step in the application of 

Dempster-Shafer evidence theory [17]. In this study, we establish a new BPA function to fulfil the 

classification purpose, in which each feature distinguishes two complementary subsets, A and B, and 

the frame of discernment is {∅, A, B, A∪B}. m(A ∪ B) = 1 − m(A) − m(B). Probability masses are 

obtained by defining a BPA function PAi(x) for A, and PBi(x) for B, respectively, hence each data 

source i with mi(A) = PAi(x) and mi(B) = PBi(x). PAi(x) is interpreted as the probability of an 

image pixel belonging to class A when the output of source i is x. It can also be interpreted as the 

result of an initial classification using only source i to distinguish classes A and B. The distinguished 

complementary subsets for each feature in this work are shown in Table 1, where B stands for 

building, G for grass, R for road, and T for tree. 

 

Table 1. Complementary subsets for each feature 

Features 
Classes 

A B 

FE B∪T G∪R 

HD T B∪G∪R 

IN B∪G∪R T 

NDVI T∪G B∪R 

 



  

 

𝑃𝐴𝑖(𝑥) = {
𝑃2                        𝑥 < ℎ1

𝑃2 −
𝑃2−𝑃1

ℎ12−ℎ1
(𝑥 − ℎ1) ℎ1 < 𝑥 ≤ ℎ12

      (5) 

𝑃𝐵𝑖(𝑥) = {
𝑃1 +

𝑃2−𝑃1

ℎ2−ℎ12
(𝑥 − ℎ12)     ℎ12 < 𝑥 < ℎ2

𝑃2                            𝑥 ≥ ℎ2
     (6) 

𝑃𝐴∪𝐵𝑖(𝑥) =

{
 
 

 
 

𝑃1                       𝑥 ≤ ℎ1

𝑃1 +
𝑃2−𝑃1

ℎ12−ℎ1
(𝑥 − ℎ1) ℎ1 < 𝑥 ≤ ℎ12

𝑃2 −
𝑃2−𝑃1

ℎ2−ℎ12
(𝑥 − ℎ12) ℎ12 < 𝑥 < ℎ2

𝑃1                       𝑥 ≥ ℎ2

     (7) 

 

 

 

 

 

 

 

 

 

Figure 2. Curves of the BPA function 

 

In this study, the BPA function is built empirically as expressed in Equations (5) to (7). The curves of 

the BPA function are shown in Figure 2. Unlike the original BPA function used in [12] and [13], we 

define a new class A ∪ B to represent the fuzzy class between classes A and B, and it is not certain 

which class the elements of class A ∪ B belong to. PA∪Bi(x) is interpreted as the probability of an 

image pixel belonging to class A ∪ B when the output of source i is x [18]. As shown in Figure 2, if 

the input x is less than the threshold h1, we can assume that the assignment of a pixel to class A or 

class 𝐴 ∪ 𝐵 is almost certain, and we can obtain PAi(x) and PA∪Bi(x) according to Equations (5) 

to (7). PBi(x) is zero as it represents the probability of class B. The equation of PA∪Bi(x) = 1 −

PAi(x) − PBi(x) which can also be expressed as m(A ∪ B) = 1 −m(𝐴) −m(𝐵) is satisfied. If the 

input x is greater than the threshold h2, PAi(x) is zero and we can have PBi(x) and PA∪Bi(x) 

worked out according to Equations (5) to (7). 

In Figure 2, the information from a sensor should never be assumed to be 100% certain. Therefore 

we use P1=2%, P2=98% as the lower and upper boundaries in practice to reflect this uncertainty. We 

call the proposed BPA function as a “Fuzzy BPA Function”, while the DS method with a fuzzy BPA 

function is expressed as F-DS. The advantages of the fuzzy BPA function are listed as follows: 

(i)  It is reliable to classify those pixels whose values reside between h1 and h2into a fuzzy 

category which is a new fuzzy class belonging neither to A nor to B. 

𝑃𝑖(𝑥) 

PAi(𝑥) 

h1 h12 h2 x 

P1 

P2 

0 

1 

 

PBi𝑥) PA∪Bi(𝑥) 



  

 

(ii) This method reduces the degree of uncertainty in data processing with the fuzzy class and it can 

take the advantages of DS theory to deal with the uncertainty problem better compared with the 

simple DS method. 

 

3.3. Median filtering 

When we classify image pixels with a BPA function, it is observed that there are isolated pixel 

points scattered in an area representing another class. For example, when scattered “road” pixel 

points reside among a grass area, these pixel points should be eliminated to reduce classification 

errors [19]. It is our initiative to apply filtering in the interim result in the DS combination process 

for performance improvement. Considering the nature of the noise, we have attempted both median 

filtering and contraharmonic mean filtering [20, 21]. Based on their performance and the 

computational cost, median filtering is chosen to tackle the problem. 

In this study, the targets of median filtering process are the probability images obtained by BPA 

functions, as shown in Figure 1. 

  

3.4. Hierarchical structure 

The two-stage hierarchical structure is considered based on an observation that when using HD 

feature to distinguish trees from other classes, there is misclassification due to dense leave areas and 

tree stems where the LIDAR penetration fails [22]. Moreover an edge of building is easily confused 

with the trees in the HD feature [23]. Interestingly LIDAR intensity, the IN feature, is 

complementary to the HD feature in this sense. In the study, the combination of HD and IN dedicates 

to Stage 1 in tree and non-tree classification, and stage 2 accepts the output from Stage 1 as its input, 

joined with other two features FE and NDVI for further classification. This two-stage hierarchical 

structure effectively combines features with different characteristics in land cover classification for 

the four designated classes. It aims to reduce classification errors hence to improve the classification 

accuracy. The proposed method with both the fuzzy BPA function and the hierarchical structure is 

called F-DS-FH in the later discussion. 

 

4. Experiment and discussion 

4.1. Experiments and results 

  The proposed method given in Sections 2 and 3 is evaluated by experiments in order to verify its 

performance. MATLAB R2013a is chosen as the software platform for the testing experiments and 

result analysis. Two data sets used in the tests are shown in Figure 3 and Figure 5, respectively, with 

carefully established ground truth. The parameters of the BPA function are set empirically as shown 

in Table 2. The window size in median filtering is 33 in the first stage and 55 in the second stage 

as these window sizes tend to deliver the best result. 

 

Table 2. Parameters of BPA function 

 h1 h12 h2 

HD 76.00 136.00 178.50 

IN 72.00 138.00 180.00 

 FE 51.00 70.00 122.40 

NDVI 102.00 132.00 200.00 



  

 

 

In the experiments, four classification methods were compared on two testing data sets. They are: 

(a) simple DS evidence theory (S-DS), (b) DS evidence theory with a fuzzy BPA function (F-DS), (c) 

DS evidence theory with medium filtering and a fuzzy BPA function (F-DS-F), and (d) the proposed 

hierarchical approach (F-DS-FH). Based on the observations stated in Section 3.4 that feature IN 

complements feature HD in tree identification, the hierarchical F-DS-FH is designed and feature IN 

is specifically used to support HD for distinguishing trees from other classes in the F-DS-FH. The 

classification results on the two testing datasets of the four methods with the ground-truth are shown 

in Figure 4 and Figure 6, respectively.  

 

   
(a)                           (b)                             (c) 

   

(d)                                (e)                             (f) 

Figure 3．The initial data used in Test 1. (a) FE, (b) IN, (c) LE, (d) NDVI, (e) HD, (f) RGB image 

 

4.2. Evaluation of the results and discussion 

For the results demonstrated in both Figure 4 and Figure 6, we use “black” color for building, “dark 

grey” for trees, “light grey” for grass, and “white” for road. The results of Test 1 in Figure 4 show 

that, from the methods of S-DS to F-DS-FH, the classification accuracy increases when compared to 

the ground-truth. Two observations which favor the F-DS-FH method are explained as follows. 

(1)  As can be seen from the S-DS and F-DS results, the most confusing groups are trees and 

buildings. A large number of black points which should have been classified as trees was 

misclassified as buildings. This is because laser beams may not penetrate in the dense leaf 

cover and tree stem areas. This made HD failed to distinguish trees from other classes, 

especially buildings in the scene. The IN feature is the intensity of the laser reflection. The 

F-DS-FH method takes advantage of the complementary information provided by HD and IN 

for tree identification, and synthesizes them in the hierarchical framework. It significantly 



  

 

reduced the isolated black points in the tree area, and the corresponding result closely reflects 

the ground-truth. 

(2)  Another pair of classes which are easily confused is “road” and “grass” classes. This occurs as 

there are small bare areas between blades of grass. Under this circumstance, the pixel-based 

classification made the NDVI feature not working to connect a grass area as a solid connected 

component. The results, as we can see from Figure 4(a) the S-DS image and Figure 4(b) the 

F-DS image, have shown that “road” class points scattered in grass areas and vise verse. 

Median filtering is able to eliminate these scattered noise pixels and treat grass areas as a solid 

connected component. As a result, in the F-DS-F and F-DS-FH images which are demonstrated 

in Figures 4(c) and 4(d), respectively, the scattering points are largely eliminated. 

 

       

(a)        (b)                                (c) 

    

(d)                                 (e) 

Figure 4．The classification results of Test 1. (a) S-DS, (b) F-DS, (c) F-DS-F, (d) F-DS-FH, (e) Ground-truth 

 

Table 3 presents the classification accuracy of Test 1. The data shown in the table represent the 

percentage of the pixel number correctly classified by the corresponding method in a class with 

comparison to the relevant pixel number in the ground-truth. We can see from Table 3 that F-DS-FH 

method has achieved 83.95% accuracy in the “tree” class, much higher than the accuracy of 68.18% 

obtained by using the S-DS method or the 72.48% obtained with the F-DS-F method. It proves that 

the hierarchical framework of F-DS-FH method has higher competence in distinguishing the “tree” 

class from other classes. Comparison of the average classification accuracy values for each method 

also shows that the F-DS-FH method gives the best average classification accuracy. Table 3 also 

gives the average growth rate based on S-DS for classification accuracy. 

 

 

Tree 

Road 

Grass 

Building 



  

 

Table 3. Classification accuracy (%) on test data set 1 

  building tree  Grass Road Average average growth rate 

S-DS 86.07 68.18 84.28 87.24 81.81    0 

F-DS 87.33 72.85 87.23 85.70 83.59   2.17 

F-DS-F 92.55 72.48 91.33 88.08 86.58   5.83 

F-DS-FH 91.77 83.95 89.50 87.96 88.54   8.22 

 

In addition, both classification accuracy and computational time of the experiment were compared 

with the result obtained in [12]. An indirect comparison was conducted, in which the growth rate of 

classification accuracy to the S-DS is used. The EBF-MRF method proposed in [12] shows increases 

in accuracy of 6.62% compared to the S-DS method, while the accuracy of the F-DS-FH method 

developed in this study shows an increase in accuracy of 8.22% compared with the S-DS method. 

The computational time of the F-DS-FH method proposed in this paper is also compared with the 

time required for the methods reported in [12], as shown in Table 4. From the table we can see that 

the fastest method considered in [12] is the ICM-MRF method, with a computational time of 13.16 

second, but F-DS-FH method proposed in this paper only required 0.65s. This shows that, with the 

non-iterative nature, the F-DS-FH method not only achieves better accuracy but also more efficient 

for land-cover classification with LIDAR data and co-registered NIR and RGB images. 

 

Table 4. Comparison of the computational time in Test 1 (image size: 220*220) 

  Method  Methods in [12] 

Method F-DS-FH ICM-MRF SA-MRF BP-MRF EBP-MRF 

computational 

time (second) 
0.65 13.16 38572.49 468.4 127.85 

 

Test 2 was carried out in order to verify the robustness of proposed method. The size of the data 

used in Test 2 is 200200, and the data and results are shown in Figure 5 and Figure 6, respectively. 

 

   

                    (a)                              (b)                           (c) 



  

 

   

                      (d)                         (e)                            (f) 

Figure 5．The initial data used in Test 2. (a) FE, (b) IN, (c) LE, (d) NDVI, (e) HD, (f) RGB image 

 

   

(a)                        (b)                           (c) 

  

     (d)                          (e) 

Figure 6．The classification results of test 2. (a) S-DS, (b) F-DS, (c) F-DS-F, (d) F-DS-FH, (e) Ground-truth 

 

The classification accuracy and computational time of Test 2 are presented in Table 5 and Table 6, 

respectively. 

 

Table 5. Classification accuracy (%) of Test 2 

  building tree  grass Road average average growth rate 

S-DS 90.89 75.44 88.07 85.03 84.83   0 

F-DS 90.41 79.58 89.29 83.02 85.71   0.88 

F-DS-F 94.56 82.77 93.46 83.73 88.90   4.07 

F-DS-FH 93.78 92.90 87.74 83.29 89.71   5.76 

 

Tree 

Road 

Grass 

Building 



  

 

Table 6. Comparison of the computational time in Test 2 (image size: 200*200) 

  Method  Methods in reference [12] 

method F-DS-FH ICM-MRF SA-MRF BP-MRF EBP-MRF 

computational 

time (second) 
0.19 21.65 40841.08 786.53 199.84 

 

5. Conclusions  

Focused on classification in which there is no training sample available, this study employed the 

Dempster-Shafer evidence theory, and established a combination framework in the hierarchical 

structure for land-cover classification for urban areas, where building, tree, road and grass field 

dominate land covers. The proposed method has been tested on two datasets with LIDAR first echo 

(FE), last echo (LE) and intensity (IN) fused with co-registered near infrared (NIR) and color images. 

Compared to other methods [12, 24], the proposed framework is superior in both computational 

efficiency and classification accuracy. Confirmed by the experimental results, not only the 

computational time is dramatically reduced but also the classification accuracy is significantly 

improved. It has achieved results that match or are better than results by other state-of-the-arts 

methods [4]. The novelty and the main contributions of this study are summarized in the following 

points: 

(1)  It is a non-iterative approach and doesn’t require training processes. Therefore it can be used in 

applications in which it is difficult to acquire training samples and it requires a rapid response to 

urban area land cover information.  

(2) Instead of using a linear mass function in distributing the probability to each class, a fuzzy class 

was established with a newly developed BPA function to deal with pixel points residing in a 

region mixed with two classes. This is an effective way to reduce misclassification. It takes 

advantage of the DS evidence theory and plays a better role than the original DS theory. 

(3)  Noise inevitably introduced during the probability distribution processing was taken into 

account in the intermediate stages. We applied median filtering to probability image de-noise. 

This is an entirely new idea that has never been seen in the previous studies. Median filtering is 

effectively employed to these interim probability images after the probability distribution 

processing. This has significantly reduced the error rate, and largely improved the classification 

accuracy.  

(4)  In the proposed combination framework, complementary features HD and IN have been jointly 

used to contribute to tree identification in the scene based on observations to the effects 

introduced by the original data. A hierarchical structure was designed to implement the process. 

This makes the classification results more reliable, especially for tree identification. 

  Interesting findings have been presented in the paper. These findings inspired us to build the 

effective framework in which the hierarchical structure was created to incorporate the IN feature in 

the feature space and filtering processes were applied to interim results for performance 

improvement. The experimental results have shown that the proposed method works well in urban 

area land cover classification. The average classification accuracy is up to 88.54%, and it is 8.22% 

higher than that with the basic DS method. Compared with the most accurate iterative method 

EBF-MRF proposed in [12], our method has not only improved the classification accuracy of about 

1.60%, but also reduced the computational time from 127.85 seconds to 0.65 seconds on the first 

testing area, and from 199.84 seconds to 0.19 seconds on the second testing area. This has shown the 



  

 

significant improvement in computational efficiency. 
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