Robust algorithm for detecting floodwater in urban areas using Synthetic Aperture Radar images

[thumbnail of Open Access]
Preview
Text (Open Access) - Published Version
· Available under License Creative Commons Attribution.
· Please see our End User Agreement before downloading.
| Preview
Available under license: Creative Commons Attribution
[thumbnail of robust_jars_v2_centaur.pdf]
Text - Accepted Version
· Restricted to Repository staff only
Restricted to Repository staff only

Please see our End User Agreement.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Mason, D. C. orcid id iconORCID: https://orcid.org/0000-0001-6092-6081, Dance, S. L. orcid id iconORCID: https://orcid.org/0000-0003-1690-3338, Vetra-Carvalho, S. and Cloke, H. L. orcid id iconORCID: https://orcid.org/0000-0002-1472-868X (2018) Robust algorithm for detecting floodwater in urban areas using Synthetic Aperture Radar images. Journal of Applied Remote Sensing, 12 (4). 045011. ISSN 1931-3195 doi: 10.1117/1.JRS.12.045011

Abstract/Summary

Flooding is a major hazard in both rural and urban areas worldwide, but it is in urban areas that the impacts are most severe. High resolution Synthetic Aperture Radar (SAR) sensors are able to detect flood extents in urban areas during both day- and night-time. If obtained in near real-time, these flood extents can be used for emergency flood relief management or as observations for assimilation into flood forecasting models. In this paper a method for detecting flooding in urban areas using near real-time SAR data is developed and extensively tested under a variety of scenarios involving different flood events and different images. The method uses a SAR simulator in conjunction with LiDAR data of the urban area to predict areas of radar shadow and layover in the image caused by buildings and taller vegetation. Of the urban water pixels visible to the SAR, the flood detection accuracy averaged over the test examples was 83%, with a false alarm rate of 9%. The results indicate that flooding can be detected in the urban area to reasonable accuracy, but that this accuracy is limited partly by the SAR’s poor visibility of the urban ground surface due to shadow and layover.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/80110
Identification Number/DOI 10.1117/1.JRS.12.045011
Refereed Yes
Divisions Science > School of Archaeology, Geography and Environmental Science > Department of Geography and Environmental Science
Science > School of Mathematical, Physical and Computational Sciences > Department of Mathematics and Statistics
Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
Publisher Society of Photo-optical Instrumentation Engineers (SPIE)
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar