Estimation of water storage changes in small endorheic lakes in Northern Kazakhstan

[thumbnail of Open Access]
Preview
Text (Open Access) - Published Version
· Available under License Creative Commons Attribution Non-commercial No Derivatives.
· Please see our End User Agreement before downloading.
| Preview
[thumbnail of 9-9-2018 RS paper new draft_VY_AV_27.08.2018_final_updated.pdf]
Text - Accepted Version
· Restricted to Repository staff only
· Available under License Creative Commons Attribution Non-commercial No Derivatives.
Restricted to Repository staff only

Please see our End User Agreement.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Yapiyev, V., Samarkhanov, K., Tulegenova, N., Jumassultanova, S., Verhoef, A. orcid id iconORCID: https://orcid.org/0000-0002-9498-6696, Saidaliyeva, Z., Umirov, N., Sagintayev, Z. and Namazbayeva, A. (2019) Estimation of water storage changes in small endorheic lakes in Northern Kazakhstan. Journal of Arid Environments, 160. pp. 42-55. ISSN 0140-1963 doi: 10.1016/j.jaridenv.2018.09.008

Abstract/Summary

Both climate change and anthropogenic activities contribute to the deterioration of terrestrial water resources and ecosystems worldwide, with Central Asia and its endorheic lakes being among the most severely affected. We used a digital elevation model, bathymetry maps and Landsat images to estimate the areal water cover extent and volumetric storage changes for eleven small terminal lakes in Burabay National Nature Park (BNNP) in Northern Kazakhstan from 1986 to 2016. Based on the analysis of hydrometeorological observations, lake water balance, lake evaporation and Budyko equations, driven by gridded climate and global atmospheric reanalysis datasets, we evaluate the impact of historical climatic conditions on the water balance of the BNNP lake catchments. The total surface water area of the BNNP lakes decreased by around 7% for that period, mainly due to a reduction in the extent of three main lakes. In contrast, for some smaller lakes, the surface area increased. Overall, we attribute the decline of the BNNP lakes’ areal extent and volume to the prolonged periods of water balance deficit when lake evaporation exceeded precipitation. However, during the most recent years (2013-2016) precipitation increased and the BNNP lake levels stabilized.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/79389
Identification Number/DOI 10.1016/j.jaridenv.2018.09.008
Refereed Yes
Divisions Science > School of Archaeology, Geography and Environmental Science > Department of Geography and Environmental Science
Publisher Elsevier
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar