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Abstract 

Density functional theory (DFT) calculations were performed on the clusters [Os3(CO)10(α-

diimine)], for α-diimine = 2,2'-bipyridine (BPY), N-isopropyl 2-iminomethylpyridine (IMP), and 

N,N'-diisopropyl-l,4-diaza-1,3-butadiene (DAB), together with their spectroscopic study. This 

important family of clusters is known to convert upon irradiation with visible light into short-lived 

biradicals and long-lived zwitterions from a σπ* (SBLCT) excited state that, however, has not 

been described accurately thus far by quantum mechanical calculations. Based on the combined 

DFT, UV-vis absorption and resonance Raman data, the lowest-lying visible absorption band is 

assigned to a σ(Os1–Os3)-to-π*(α-diimine) CT transition for α-diimine = bpy and IMP, and to a 

strongly delocalized σ(Os1‒Os3)π*-to-σ*(Os1‒Os3)π* transition for conjugated non-aromatic α-

diimine = DAB. The DFT calculations rationalize the experimentally determined characteristics of 

this electronic transition in the studied series: (i) the corresponding absorption band is the 

dominant feature in the visible spectral region, (ii) the CT character of the electronic excitation 
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2 

 

declines from α-diimine = bpy to IMP and vanishes for DAB, (iii) the excitation energies decrease 

in the order α-diimine = DAB > BPY > IMP, (iv) the oscillator strength shrinks in the order α-

diimine = DAB > IMP > BPY. Reference photoreaction quantum yields measured accurately for 

the formation of a cluster zwitterion from [Os3(CO)10(IMP)] in strongly coordinating pyridine, 

demonstrate that the optical population of the lowest-energy 1σπ* and relaxed 3σπ* excited states 

in the DFT model scheme is still capable of inducing the initial homolytic Os1‒Os3 σ-bond 

splitting, although less efficiently than the optical excitation into neighbor higher-lying electronic 

transitions due to a higher potential barrier for the reaction from a dissociative (σσ*) state.  

 

 

Keywords 

Osmium carbonyl, Cluster, α-Diimine, TDDFT, Resonance Raman, Charge transfer, Biradical, 

Zwitterion 

 

Introduction 

Triangular clusters of the type [Os3(CO)10(α-diimine)] possess a diverse and intriguing 

photochemistry that has been thoroughly studied over the last twenty years.1,2,3,4,5,6,7,8,9,10  On 

irradiation with visible light the clusters undergo Os–Os(α-diimine) bond cleavage reactions. 

Controlled by the coordinating ability of the solvent, the nature of the α-diimine ligand and 

temperature, zwitterionic and/or biradical photoproducts are formed, which either regenerate the 

parent cluster or rearrange to stable open-structure isomers with the reactive C=N imino bond in 

N-isopropyl 2-iminomethylpyridine (iPr-IMP), and N,N'-diisopropyl-l,4-diaza-1,3-butadiene (iPr-

DAB) converted to form a bridge between the Os1 and Os3 centres (see Scheme 1). 
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Scheme 1. Photoreactivity of [Os3(CO)10(α-diimine)] from an optically populated σπ* excited 

state; L = Lewis base, e.g., donor solvent, olefin, pedant N-alkylamine side arm at α-diimine. 

Diamagnetic zwitterions are formed either via the ultrafast (ps) exciplex path A or the slower (µs) 

biradical path B. 

 

In analogy with binuclear metal−metal bonded complexes such as [(CO)5Mn‒Mn(CO)3(α-

diimine)],11,12,13,14 irradiation into the lowest-energy absorption band of the triosmium clusters in 

the visible spectral region was initially proposed to populate a dπ(Os)-to-π*(α-diimine) charge 

transfer (MLCT) excited state. This primary event was thought to be followed by intersystem 

crossing to a reactive σπ* state, σ representing a cluster-core bonding orbital, in which an Os–

Os(α-diimine) bond is significantly weakened and finally split. The original description was later 

thoroughly revised,8,10 see below. 

DFT15 and TDDFT16 calculations were performed in order to obtain a deeper insight into 

the electronic structure of [Os3(CO)10(α-diimine)] clusters, where α-diimine = 2,2'-bipyridine 

(BPY), N-isopropyl 2-iminomethylpyridine (iPr-IMP), and N,N'-diisopropyl-l,4-diaza-1,3-

butadiene (iPr-DAB) (see Chart 1). Earlier calculations, using truncated α-diimine models (H-IMP 

and H-DAB for iPr-IMP and iPr-DAB) and BPY, showed limitations in addressing the 

photoreactivity, and the resulting publication dealt only with their molecular and electronic 

structures.17 Indeed, a comparison with the single crystal structures of the iPr-DAB and BPY 
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clusters,18,19 shows that the calculated Os‒Os bond lengths were longer by an amount larger than 

normally accepted (~0.1 Å, see below). On the other hand, it was hardly possible to predict the 

trend of the wavelength of the lowest energy absorption maxima of the three clusters, viz. 558, 

582, and 521 nm for α-diimine = BPY, iPr-IMP and iPr-DAB, respectively. These discrepancies 

limited our trust in the reliability of the interpretation of the experimental results. Considering the 

recent developments in computational methodologies, such as better functionals and basis sets, we 

decided to revisit this problem, and found more satisfying answers that will be compared to the 

previous ones. In this work, DFT and TDFT calculations are used in combination with electronic 

absorption and resonance Raman (rR) spectroscopy to assign the visible absorption bands, 

focusing on the lowest energy electronic transitions, and to evaluate the influence of the α-diimine 

ligand. On the grounds of the DFT calculations and measurements of wavelength- and 

temperature-dependent photoreaction quantum yields of the zwitterion formation, plausible 

models of the latter photoreaction are discussed. This contribution is the last one in a 

comprehensive series, following the insightful time-resolved (ps-µs) spectroscopic (TA, TR-IR) 

studies of the [Os3(CO)10(iPr-IMP)]10 and [Os3(CO)10(iPr-IEP)]8 clusters (Chart 1) published with 

correct mechanistic conclusions but lacking a reliable theoretical support for the explicit 

assignment and detailed description of the optically populated excited states.  

 

 

N N

BPY
2,2'-bipyridine

N N

iPr-IMP (IMP)
N-isopropyl-2-

iminomethylpyridine

N N

iPr-DAB (DAB)
N,N'-di-isopropyl-l,4-diaza-1,3-butadiene

N N

iPr-IEP
N-isopropyl-2-

iminoethylpyridine

 

 

Chart 1. Schematic representation of the α-diimine ligands. Note that in the [Os3(CO)10(α-

diimine)] literature8,10, iPr-IMP is denoted as iPr-PyCa, and iPr-IEP as iPr-AcPy. 
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Results and Discussion 

Molecular and electronic structure  

The geometries of the three studied clusters were obtained by having optimized the accessible 

experimental structures of [Os3(CO)10(BPY)]19 and [Os3(CO)10(iPr-DAB)]18. There are three 

isomers of [Os3(CO)10(iPr-IMP)] and the model considered in this work corresponds to the most 

stable one17 (N.B. iPr-IMP will further be abbreviated in the text, and in Abstract, as IMP, and iPr-

DAB as DAB). The geometries and relative energies are given in Figure S1 (Supporting 

Information). Since the computational approach used earlier17 had severe limitations, we tested 

several functionals and basis sets to find the best methodology and describe both the geometry and 

the electronic absorption spectra of the three clusters. As a result, we have chosen the CAM-

B3LYP functional, with a LANL2TZ(f) basis set for osmium and 6-311++G** for the remaining 

atoms (see Computational Details). The optimized geometries of gas-phase ground state with 

indication of some selected distances are displayed in Figure 1 (top line), along with the two 

single-crystal X-ray structures of the BPY19 and DAB18 clusters (available from the CSD 

database20) and the numbering scheme. 

The agreement between the two experimental structures and the corresponding calculated 

ground-state gas-phase structures is very reasonable, with deviations of the Os‒Os bond lengths 

below 0.04 Å, and far better than the values obtained in the previous study.17 The geometry 

optimization was also carried out for the three clusters, taking into account the effect of the solvent 

(toluene); however, the bond lengths in general increased only slightly and the agreement with the 

experimental values became worse (Table 1).  

We have also optimized the first triplet and singlet excited states (see Computational 

Details). The changes in geometry are not large; therefore, the optimized structures are very 

similar to those presented in Figure 1. The relevant distances are collected in Table 1. The changes 

in bond lengths are almost the same, in the lowest-energy singlet and lowest energy triplet excited-

state structures. Additionally, the patterns for the DAB cluster are also different from the two 

other clusters. In the ground state, the three Os‒Os bonds are approximately of the same length 

(within < 0.1 Å), the shortest Os‒Os bond being Os1‒Os2 (BPY, IMP) or Os2‒Os3 (DAB). In the 

first singlet excited state, these three bonds are elongated in the DAB cluster, while two are 

elongated in the IMP and BPY clusters (Os1‒Os2 and Os1‒Os3) and the third, Os2‒Os3, 

shortens. In the first triplet excited state, the Os1‒Os3 bond (highlighted in bold in Table 1) 

becomes the longest in all three clusters, varying from 2.962 to 2.972 Å in the IMP cluster, from 

2.900 to 3.035 Å in the DAB one, and from 2.941 to 3.012 Å in the BPY cluster. However, Os1‒
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Os2 changes more significantly (from 2.882 to 2.959 Å) in IMP. It is therefore likely that one of 

the Os‒Os bonds adjacent to the α-diimine ligand will cleave after light absorption, both in the 

singlet and triplet excited state.  

 

  

BPY       IMP     DAB 

       

  RIKCIX             GIRDEQ 

 

Figure 1 DFT-optimized geometries of [Os3(CO)10(α-diimine)] (α-diimine = BPY, IMP, DAB) in 

the gas-phase ground state (top), the single crystal X-ray structures, along with their respective 

CSD refcodes,20 of the BPY19 (bottom, left) and DAB18 (bottom right) clusters, and the numbering 

scheme (bottom, centre). 

 

The distances within the chelate ring differ between the DAB and the BPY or IMP clusters, 

reflecting a different participation of the DAB π orbitals in the occupied orbitals (see below). In 

DAB, the C‒C and C‒N distances are similar (1.322, 1.326, and 1.388 Å, respectively), while for 

both BPY and IMP the short C‒N bonds (1.351, 1.352 Å for BPY and 1.354, 1.290 Å for IMP) 

alternate with a long C‒C bond (1.465 Å for BPY and 1.435 Å for IMP). In the excited states, the 

C‒C and C‒N bonds of the DAB cluster keep the same trend (C‒N 1.323, 1.334 Å and C‒C 1.397 

Å in the triplet, for instance) since both the LUMO and HOMO are delocalized over the osmium 
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atoms and DAB (see next section). On the other hand, both in BPY and IMP, the HOMO is 

localized on the metals and the LUMO on the α-diimine ligand. Photoexcitation of one electron 

leads to the population of the LUMO (C‒C bonding and C‒N antibonding, see the next section), 

causing some shrinking of the central C‒C bond (ca. 0.04-0.05 Å) and expansion of the C‒N 

bonds (ca.0.02-0.03 Å). The clusters have no symmetry, but the distances of equivalent ligand 

bonds differ more in IMP (asymmetric ligand) than in BPY. 

 

Table 1. Experimental (RIKCIX and GIRDEQ) and DFT/CAM-B3LYP calculated relevant bond 

distances (Å) in the three clusters [Os3(CO)10(α-diimine)] (α-diimine = BPY, IMP, DAB) in the 

ground state (GS), both in the gas phase and in toluene, and in the gas-phase singlet (S) and triplet 

(T) σπ* (BPY, IMP; Scheme 1) or mixed σσ*/ππ* (DAB) excited states (for details, see the 

following section). 

 

Bond Experimental GS (gas phase) GS (toluene) Excited state (T) Excited state (S) 

[Os3(CO)10(BPY)]  

Os1‒Os2 2.841 2.863 2.889 2.934 2.868 

Os1‒Os3 2.901 2.941 2.972 3.012 3.137 

Os2‒Os3 2.884 2.927 2.940 2.884 2.871 

Os1‒N1 2.089 2.129 2.131 2.103 2.099 

Os1‒N2 2.179 2.196 2.189 2.150 2.157 

[Os3(CO)10(IMP)]  

Os1‒Os2 - 2.882 2.896 2.959 2.906 

Os1‒Os3 - 2.962 2.962 2.972 3.165 

Os2‒Os3 - 2.912 2.920 2.880 2.870 

Os1‒N1 - 2.182 2.195 2.184 2.158 

Os1‒N2 - 2.113 2.122 2.110 2.100 

 [Os3(CO)10(DAB)]  

Os1‒Os2 2.876 2.907 2.920 2.929 2.951 

Os1‒Os3 2.880 2.900 2.926 3.035 3.349 

Os2‒Os3 2.867 2.884 2.921 2.887 2.957 

Os1‒N1 2.066 2.040 2.044 2.103 2.103 

Os1‒N2 2.115 2.087 2.092 2.171 2.109 
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Electronic Absorption Spectra and Excitation Energies 

The near-UV–vis absorption spectra of the clusters [Os3(CO)10(α-diimine)] (α-diimine = BPY, 

IMP, DAB) in toluene are presented in Figure 2 and summarized in Table 2. In the visible region, 

the spectra are characterized by a dominant lowest-energy band with the absorption maximum 

between 520 and 600 nm. For α-diimine = BPY and IMP the visible absorptions are strongly 

solvatochromic. To analyze the solvatochromic behavior, the transition energies were plotted 

versus the empirical solvent parameter E*MLCT of Manuta and Lees,21 which is based on the 

solvatochromism of the lowest MLCT transition of [W(CO)4(BPY)]. For the lowest-energy 

absorption band of the three clusters, the solvent dependence is shown in Figure 3. Linear 

regression could well fit all the plots. Their slope reflects the degree of solvatochromism, whereas 

the intercept at E*MLCT = 0 corresponds to the experimental transition energy extrapolated to 

apolar isooctane, a solvent that will similarly interact with ground and excited states. Therefore, 

the extrapolated values for the experimental transition energy, Eexp, are best compared with the 

calculated energies that refer to isolated 'gas-phase' molecules at 0 K (see Tables 2 and 3). 

 

 In the UV-vis spectrum of [Os3(CO)10(IMP)] two shoulders can be distinguished at the high-

energy side (ca. 470 and 530 nm) of the absorption band at 602 nm (see Figure 2). These 

absorptions are also strongly solvatochromic. By contrast, the two shoulders at the low-energy 

side (ca. 395 and 360 nm) of an intense absorption in the near-UV region are not sensitive to 

solvent variation. For [Os3(CO)10(BPY)] the solvatochromism of the intense lowest-lying 

absorption band at 588 nm and the only resolved shoulder at its high-energy side (ca. 495 nm) is 

even stronger than encountered for the IMP derivative. Again, the near-UV set of shoulders at ca. 

400 and 360 nm are not solvatochromic. In contrast to the latter two clusters, none of the near-

UV-vis absorptions of [Os3(CO)10(DAB)] is solvent-dependent, pointing to a negligible change in 

the molecular dipole moment upon the photoexcitation typically accompanying charge-transfer 

transitions. Notably, the lowest-energy absorption band of [Os3(CO)10(DAB)] at 521 nm is 

markedly blue-shifted compared to the clusters with the more basic BPY and IMP ligands. The 

two absorption features at 400 and 360 nm are common in the cluster series.  
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Figure 2. Experimental electronic absorption spectra of [Os3(CO)10(α-diimine)] for α-diimine = 

bpy (——), IMP (····) and DAB (- - - ) in toluene at 293 K. 

 

Figure 3. Solvatochromic behavior of the lowest-energy absorption band of [Os3(CO)10(α-

diimine)] on the empirical solvent scale E*MLCT  according to Manuta and Lees.21 The solvents 

used (with E*MLCT in parentheses) were CCl4 (0.12; not measured for [Os3(CO)10(BPY)] due to its 

poor solubility), toluene (0.30), CHCl3 (0.42), THF (0.59), CH2Cl2 (0.67), acetone (0.82), 

acetonitrile (0.98) and DMSO (1.0). 
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Figure 4. Frontier orbitals (HOMO-2, HOMO-1, HOMO, LUMO, LUMO+1 and LUMO+2) and 

relative energies (in eV) of the three [Os3(CO)10(α-diimine)] clusters (α-diimine = DAB, IMP, 

BPY). 

 

 TDDFT calculations16 were performed to obtain the electronic absorption spectra of the three 

clusters. In the previous study,17 the experimental energy order of the lowest energy band 

absorption of the three clusters (Figure 2) could not be reproduced. To solve this problem, we 

checked a variety of functionals (PBE1PBE, PW91PW91, B3LYP, CAM-B3LYP, M062X, see 

Computational details) and considered the isopropyl substituents on IMP and DAB. The electronic 

absorption spectra were calculated in the gas phase for all the functionals, and in toluene with 

CAM-B3LYP and M062X, on geometries also optimized in toluene. CAM-B3LYP was the only 

functional able to reproduce the observed trend in the gas phase (see Computational Details and 

Table S2 in Supporting Information). It should be added that the nature of the frontier orbitals and 

transitions is qualitatively the same in all the cases tested. The following results were obtained 

with the CAM-B3LYP functional in gas phase. 
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The frontier orbitals differ significantly in the three α-diimine clusters, as can be seen in Figure 4, 

where their relative energy and the 3D representations are depicted (see also the energy values in 

Table S1). 

 

 

Table 2. Maxima and shoulders in the visible and near-UV absorption spectra of the clusters 

[Os3(CO)10(α-diimine)]. 
 

a In toluene. b Extrapolated to E*MLCT = 0 (in isooctane) according to Manuta et al.21  

 

 The HOMO-LUMO gap in the series is not very different, ranging from 5.29 eV in the DAB 

cluster to 4.90 and 4.91 eV in the IMP and BPY, respectively. The HOMO, HOMO-1 and 

HOMO-2 are Os‒Os σ-bonding orbitals, the three electron pairs contributing to the three bonds; 

however, they differ in the contribution of the α-diimine ligand. There is no contribution in the 

case of BPY, and the contribution of IMP is residual, but π2 of DAB is significantly involved, 

participating in a ligand-to-metal (Os1) donation. On the other hand, these three orbitals are also 

Os‒C(O) slightly bonding or non-bonding, although the participation of the carbonyl groups is 

very small (Figure 4), especially for the BPY cluster. The three lowest unoccupied orbitals also 

differ.  LUMO, LUMO+1 and LUMO+2 of [Os3(CO)10(BPY)] are pure π*(BPY) orbitals, with the 

carbonyls participating only in the LUMO+3 (not shown). In the IMP cluster, LUMO and 

LUMO+1 are non-bonding ligand π* orbitals, but LUMO+2 shows a strong contribution from CO 

 λ(nm)a εmax(M
-1cm-1)a λ(nm)b Eexp(eV)b 

Os/BPY 558 4840 588 2.11 

 492(sh)  501(sh) 2.47 

 403(sh)  405(sh) 3.06 

 357(sh)  357(sh) 3.47 

Os/IMP  582 8700 602 2.06 

 534(sh)  548(sh) 2.26 

 467(sh)  486(sh) 2.55 

 394(sh)  394(sh) 3.15 

 358(sh)  359(sh) 3.45 

Os/DAB 521 8900 519 2.39 

 438  437 2.84 

 403  405 3.06 

 367(sh)  364(sh) 3.41 
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π* and Os d orbitals. Finally, one DAB π* and CO π* orbitals contribute significantly to the 

LUMO, while both LUMO+1 and LUMO+2 are exclusively CO π*. These trends are associated 

with the number and extension of the π* orbitals of each α-diimine and the nature of these orbitals 

will determine the absorption features. The HOMO-LUMO gap is not determined by the energy of 

the α-diimine π* orbitals, because some of them remain largely non-bonding (bpy), but others 

(DAB) participate strongly. The calculated (TDDFT) more intense low-energy transitions are 

listed in Table 3, with their composition and oscillator strength. 

 

Table 3. Calculated and experimental excitation energies (eV) and oscillator strengths (OS)  

No. λ/nm E/eV Composition (%) Eexp/eVa OS OSexp
b 

[Os3(CO)10(BPY)] 

1 475 2.61 H→L (94)  2.11c 0.155 0.054 

2 408 3.04 H-2→L(17), H-1→L(66), H-3→L(8) 2.47c 0.027  

3 385 3.22 H-2→L(75), H-1→L(17)  0.013  

4 376 3.30 H→L+1(18), H→L+3(67), H-1→L(3) 3.06 0.013  

5 348 3.56 H-4→L(28), H-1→L+3(29), H-3→L(8),    

H-2→L+3(5) 

 0.017  

6 328 3.78 H→L+2 (81), H→L+1 (5)  0.018  

7 324 3.83 H-2→L+3(49), H-4→L+3(8),  

H-3→L(6),  H-2→L+1(5), H-1→L+3(8) 

 0.033  

[Os3(CO)10(IMP)] 

1 492 2.52 H→L(93), H-1→L(3)  2.06,2.26 c 0.190  

2 438 2.83 H-1→L(84), H-3→L(5), H→L(3) 2.55c 0.017  

3 397 3.13 H-2→L(83), H-3→L(6), H-1→L(4)  3.15 0.030  

4 344 3.61 H-1→L+2 (68), H-4→L(4), H-2→L+2(7) 3.45 0.042  

[Os3(CO)10(DAB)] 

1 452 2.74 H→L (89), H-1→L (5)   2.39 0.168 0.132 

2 369 3.36 H-3→L(25), H→L+1(56), H-2→L(4) 2.84 0.085  

3 366 3.39 H-3→L(35), H-2→L(13), H→L+1(34) 3.06 0.030  

4 301 4.12 H-6→L(16), H-4→L(14), H-3→L+1 

(10), H→L+3 (12), H-5→L(8),  

H-1→L+2 (8) 

 0.050  
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5 298 4.16 H-1→L+2 (57), H→L+2 (14)  3.41 0.020  
a Experimental excitation energies, obtained by extrapolation (see Table 2).21 b Experimental oscillator 

strengths calculated according to f = 4.319.10-9 × ε × ∆ν , with the molar absorption coefficient ε  and ∆ν 

(the width of the absorption band at half height) in toluene. c Corresponding absorptions show significant 

negative solvatochromism. 

 

The calculated lowest-energy transition is shifted towards higher energies for all clusters, 

but the maxima follow the order 452 nm (DAB) < 475 nm (BPY) < 492 nm (IMP) as observed 

experimentally (521 < 558 < 582 nm, respectively). This transition is assigned as a σ(Os1–Os3)-

to-π*(α-diimine) for [Os3(CO)10(BPY)]. It results from a pure HOMO→LUMO excitation (Table 

3) and, considering the nature of the HOMO and LUMO (Figure 4) and the electron density 

difference maps, EDDM (Figure 5), it is an SBLCT band. Examples of CT transitions are Metal-

to-Ligand (MLCT or dπ→π*),22,23,24 Halide (X)-to-Ligand (XLCT)25,26 or Sigma Bond-to-Ligand 

(SBLCT or σπ*)14 excited states. 

 

 

 

 

Figure 5. TD-DFT calculated excitations (vertical lines) and simulated electronic spectrum of 

[Os3(CO)10(BPY)]. The EDDM plots for the relevant excitations (highlighted vertical lines) are 

also shown, green and red corresponding to a decrease and increase in electron density, 

respectively.  
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Figure 6. TD-DFT calculated excitations (vertical lines) and simulated electronic spectrum of 

[Os3(CO)10(IMP)]. The EDDM plots for the relevant excitations (highlighted vertical lines) are 

also shown, green and red corresponding to a decrease and increase in electron density, 

respectively. 

 

In the IMP cluster (Table 3, Figure 6), the lowest-energy transition results essentially from 

a HOMO→LUMO excitation (93 %), with a small contribution of HOMO-1→LUMO. The 

σ(Os1–Os3)-to-π*(α-diimine) character is not as pronounced as for the BPY cluster, since the 

HOMO is slightly localized on the α-diimine, and the LUMO is slightly Os1‒IMP π-antibonding. 

In summary, this transition can still be assigned as SBLCT (σπ*), in line with its 

solvatochromism, which is less marked than determined for BPY (see Figure 3). 

 

Finally, for [Os3(CO)10(DAB)], the HOMO and LUMO are strongly delocalized (Table 3, 

Figure 4), both having contributions from osmium atoms (Os1‒Os3 σ and σ*, respectively), DAB 

π3* and Os3 carbonyls, while the HOMO-1 is essentially Os1‒Os2 σ. The lowest-energy transition 

will therefore have a strongly mixed character, namely σ-to-σ* (Os1–Os3) and π-to-π*(Os2‒

DAB), with a negligible SBLCT (or MLCT) character and nearly zero dipole moment change (see 

Figure 7).  

 

Page 14 of 33

ACS Paragon Plus Environment

Submitted to Inorganic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



15 

 

 

Figure 7. TD-DFT calculated excitations (vertical lines) and simulated electronic spectrum of 

[Os3(CO)10(DAB)]. The EDDM plots for the relevant excitations (highlighted vertical lines) are 

also shown, green and red corresponding to a decrease and increase in electron density, 

respectively. 

 

The decrease in the SBLCT character of the low-energy transition is apparent in the 

EDDM plots in Figures 5, 6, and 7, when going from BPY to IMP to DAB, respectively. It reflects 

the difference in the solvatochromic behavior of the low energy transition observed for the BPY 

and IMP clusters (Table 3), but not for the DAB one. These different features, arising from the 

characteristics of the frontier orbitals, are also responsible for the surprising energy order of the 

lowest energy transition, which does not follow the “expected” extension of the α-diimine π 

system, but results from a delicate balance of several factors.  

The higher-energy absorption bands also depend on the α-diimine. In the cluster 

[Os3(CO)10(BPY)], both L, L+1, and L+2 are BPY π* orbitals (Figure 4), while the three highest 

occupied MOs correspond to the Os‒Os σ-bonds. Therefore, the second and third transitions 

(entries 2,3 in Table 3) have the same nature as the first one (SBLCT) and can be assigned to the 

band experimentally observed at 2.47 eV, which displays solvatochromism.  In the next calculated 

absorptions (entries 4,5,7), the excitation to L+3 is most important. The orbital L+3 is both Os‒Os 

σ* and Os‒C(O) π*, with a residual contribution from the α-diimine. Therefore, it is very similar 

in nature to the occupied orbitals (from H to H-4), and the transitions from H, H-1, H-2, H-3 and 

H-4 to L+3 can no longer be considered SBLCT. They should not exhibit solvatochromism and 
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can be assigned to the band observed at 3.06 eV. The EDDM plots depicted in Figures 5 are in 

line with this character.  

The calculated excitations 1, 2, and 3 of [Os3(CO)10(IMP)] involve the same orbitals, 

namely, starting in H, H-1, H-2 or H-3 and ending always in the LUMO. Their essentially SBLCT 

nature should be very similar; they probably correspond to the bands experimentally observed at 

2.06, 2.2, and 2.55 eV, all of them having significant solvatochromism. The excitation 4 (Table 3) 

is 68 % H-1 to L+2. As can be seen in Figure 4, antibonding L+2 is delocalized over the carbonyl 

groups (Os‒C(O) π*) and the three osmium atoms (σ*), like core-bonding H-1, so that the 

excitation 4 has lost the SBLCT character of the lower-lying electronic transitions. The EDDM 

plots depicted in Figure 6 are consistent with these assignments.   

In [Os3(CO)10(DAB)], the higher-energy transitions involve the HOMO and other occupied 

orbitals (H-2, H-3, H-4, H-5, H-6, with a strong contribution from the metal (Os‒Os bonding) and 

carbonyls (Os‒C(O) bonding) in some of them. The excitation ends in the LUMO, but, as the 

energy rises, with a higher weigh of L+1, L+2, and L+3 (no significant contribution from the α-

diimine) and an increasing localization on the carbonyls along with a decreasing localization on 

DAB. The role of the carbonyls is well visible in Figure 7, the colors indicating, as a global effect, 

a charge transfer from Os to the carbonyls.   

 

Resonance Raman Excitation Profiles 

The resonance Raman (rR) spectra of the clusters [Os3(CO)10(α-diimine)] (α-diimine = BPY, IMP 

and DAB) were measured at various excitation wavelengths of the Ar+- and dye lasers between 

457.9 and 610 nm.27
 The rR spectra were recorded in KNO3 pellets to avoid the photochemical 

isomerization of the α-diimine ligand in [Os3(CO)10(IMP)] and [Os3(CO)10(DAB)] taking place in 

the solution.3 The corresponding rR excitation profiles are presented, giving the intensity-

dependence of the rR bands on the excitation wavelength. With their aid, the assignment of the 

different absorptions in the visible region of the absorption spectra is facilitated. The rR spectra of 

the clusters with α-diimine = BPY and IMP show enhanced Raman bands in the 1400-1600 cm-1 

region belonging to mixed skeletal ν(CC) and ν(CN) vibrational modes of the α-diimine ligand. 

The frequencies and band patterns compare well with those reported for related mononuclear α-

diimine complexes, e.g., [Ru(BPY)3]
2+ (ref.28), [Cr(CO)4(BPY)] (ref.29), [W(CO)4(IMP)] (ref.30) 

and [Ru(I)(Me)(CO)2(IMP)] (ref.25). In addition, the resonantly enhanced Raman band around 

2080 cm-1 is attributed to the highest-frequency ν(CO) stretching mode. The rR excitation profiles 

for the two most intense ν(CC)/ν(CN) modes and for the ν(CO) mode are given in Figure 8. The 
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profiles show that all three vibrational modes are resonantly enhanced on excitation into the 

lowest-energy absorption band. The excitation profiles for [Os3(CO)10(IMP)] (Figure 8b) 

reproduce the first shoulder of the lowest-energy absorption band, but not the second one. Those 

for [Os3(CO)10(BPY)] (Figure 8a) decrease more steeply at the high energy side of the first 

absorption band. In the rR spectrum of [Os3(CO)10(DAB)] the νs(CN) vibrational band at 1478 cm-

1 has only a low intensity, while the DAB deformation modes31 at 958 and 843 cm-1 and the δ(Os–

CO) mode at 613 cm-1 are very strong. The rR excitation profiles for the δ(DAB) and νs(CN) 

modes (Figure 8c) reproduce the lowest-energy band of the absorption spectrum. It should be 

noted that this lowest-energy band is shifted to longer wavelengths in the solid state (λmax = 559 

nm in KBr vs 521 nm in toluene). 

 

 

 

Figure 8. Resonance Raman excitation profiles for selected vibrational modes of 

[Os3(CO)10(BPY)] (a), [Os3(CO)10(IMP)] (b) and [Os3(CO)10(DAB)] (c) in KNO3 pellets. The 

intensities Irel are given relative to the 1050 cm-1 peak of KNO3. The corresponding solid-state 

visible absorption spectra were recorded in KBr pellets.  
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 The LUMO of [Os3(CO)10(α-diimine)], for α-diimine = BPY and IMP, has mainly the 

α-diimine π* character; the same applies for L+1 and L+2 of the BPY cluster, and for L+1 of the 

IMP cluster. Consequently, the first group of electronic transitions introduces a significant charge 

transfer character (SBLCT) responsible for the solvatochromic behavior of the lowest-lying 

absorption band and the shoulders on its high-energy side. This charge transfer assignment agrees 

with the strongly resonantly enhanced Raman intensities of the α-diimine (BPY, IMP) skeletal 

stretching modes. On the other hand, L+2 of [Os3(CO)10(IMP)] is delocalized over the triosmium 

carbonyl core and the H-1→L+2 transition does not belong to the SBLCT group. Notably, no 

resonance Raman effect was observed for the α-diimine-localized νs(CC)/νs(CN) stretching modes 

upon light excitation into the high-energy shoulder of the lowest absorption band of 

[Os3(CO)10(BPY)]. At present, there is no straightforward explanation for this observation.32 The 

strong resonant enhancement of the DAB deformation modes and the δ(Os–CO) mode in the 

Raman spectra of [Os3(CO)10(DAB)] corresponds with the strongly delocalized nature of the 

HOMO and LUMO in this case (Figure 4) and the negligible charge transfer nature of the H→L 

transition dominating the lowest-energy electronic excitation (Table 3, Figure 7). 

 

Photochemistry: Wavelength-Dependent Quantum Yields 

The clusters [Os3(CO)10(α-diimine)] produce open-triangle zwitterions upon irradiation with 

visible light in pyridine as the strongly coordinating solvent.1,2 At room temperature, these 

zwitterions largely react thermally back within a few minutes, but at sufficiently low temperatures 

they remain stable and the photoreaction quantum yields Φλ of their formation can smoothly be 

determined, using a cryostatted cell (see Experimental Section). For α-diimine = iPr-IMP (or IMP 

in this work) and N-isopropyl 2-iminoethylpyridine (iPr-IEP; Chart 1), the values of Φλ were 

reported previously only for Ar+-laser excitation wavelengths ranging between 457.9 and 514.5 

nm.2 These excitation wavelengths merely cover the higher-energy shoulders and not the intense 

lowest-energy absorption band of the clusters.  

 The quantum yields Φλ, presented in Table 4 and Figure 9, were measured in pyridine at 263 

K and represent the photogeneration of pyridine-stabilized zwitterion by dye-laser irradiation into 

the low-lying absorption band of [Os3(CO)10(IMP)]: λirr = 514.5, 541.6, 577.0 and 596.0 nm. 

Under the experimental conditions, the maximum of this band lies at 555 nm. The excitation at λirr 

= 577.0 nm and 597.0 nm falls exclusively into the lowest-energy electronic transition (No.1 in 

Table 3), while the λirr = 514.5 nm excitation mainly into the electronic transition No.2 (Table 3) 

seen as the poorly resolved shoulder at ca 512 nm (Figure 9). An intermediate situation applies for 
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the 541.6 nm excitation. It is expected that for higher-energy excitation the quantum yields for the 

zwitterion formation are identical to Φ514.5. This expectation is based on the wavelength-

independent (457.9 ≤ λirr ≤ 514.5) quantum yields for the IMP-based photoisomerization of this 

cluster in THF, and those for the zwitterion formation in case of closely related [Os3(CO)10(iPr-

IEP)] (and other derivatives of these clusters).2,3,4 In addition to the wavelength-dependence, the 

quantum yields for the zwitterion formation from [Os3(CO)10(α-diimine)] (α-diimine = IMP, R-

IEP; λirr ≤ 514.5 nm) proved to be temperature-dependent, corresponding to activation energies 

ranging between 440 and 718 cm-1 (Table 4). These quantum yields are compared with the values 

previously determined for [Os3(CO)10(IMP)] and [Os3(CO)10(iPr-IEP)].2,3 The quantum yields 

Φ514.5 and Φ541 are ca. 0.21, exceeding significantly the Φ577 and Φ596 values of ca. 0.13. The 

quantum yield determined for the 514.5 nm excitation is about 20 % higher than the value 

reported earlier.2 This difference reflects the different experimental set-up used for the two 

measurements (see Experimental Section). 

 

Table 4. Quantum yields Φλ (× 102) for the photochemical formation of pyridine-coordinated 

zwitterion and α-diimine (IMP) photoisomerization of selected [Os3(CO)10(α-diimine)] clusters. 

λirr (nm) 457.9 488.0 514.5 541.6 577.0 596.0 reaction  

Os/IMPa,b   20.0(0.4) 21.1(2.0) 12.6(0.8) 13.8(0.8) i 

Os/IMPa,c   16.2e  i 

Os/iPr-IEPa,c 29.2f 28.3 28.2g  i 

Os/nPr-IEPa,c   18.3h  i 

Os/IMPc,d 0.295 0.319 0.299    j 

a Quantum yields determined in pyridine at 263 K. b This work. c Values taken from ref. 2. d Quantum 

yields determined in THF at 298 K. e 
Ea(514.5 nm) = 718 cm-1. f Ea(457.9 nm) = 511 cm-1. g

 Ea(514.5 nm) = 

440 cm-1. h Ea(514.5 nm) = 689 cm-1. i Zwitterion formation. j IMP ligand isomerization (see Scheme 1). 
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Figure 9. Plot of the UV-vis absorption spectrum of [Os3(CO)10(IMP)] and the wavelength-

dependent quantum yields Φλ  for the zwitterion formation in pyridine at 263 K. 

 

 As highlighted in Introduction, the clusters [Os3(CO)10(α-diimine)] undergo a variety of 

photochemical reactions depending on the α-diimine ligand (π* LUMO energy, aromaticity), 

solvent coordinating ability, and temperature. The common initial step is the cleavage of an 

Os−Os(α-diimine) σ-bond (see Scheme 1), namely Os1‒Os3 (Figure 1, Table 1), as confirmed by 

the DFT calculations in the preceding section. This reaction was argued to occur from a repulsive 

σσ* state separated by a potential barrier from an optically populated σπ* (SBLCT) excited state, 

for α-diimine = R-BPY, R-IMP.8,10 The existence of the potential barrier may also explain the 

wavelength dependence of the photoreaction quantum yield (Figure 9). It needs to be noted, 

however, that the zwitterions can form via two independent routes, viz. (A) a heterolytic Os−Os 

bond cleavage from an exciplex (solvated excited cluster), and (B) a homolytic Os−Os bond 

cleavage to form a biradical intermediate undergoing an intramolecular charge-separation upon 

solvent coordination (see Scheme 1).8,10 The height of the potential barrier, determining the 

branching between the decay to the ground state and the dissociative state, will also vary on going 

from the non-relaxed to relaxed σπ* excited state on the ps time scale. The direct optical 
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population of the repulsive state of [Os3(CO)10(IMP)] below 500 nm can be excluded on the 

grounds of the results in the preceding theoretical section. 

 

  

 

     

   

 

Figure 10. DFT-calculated structures of the photogenerated open-core biradicals (triplet state) 

derived from [Os3(CO)10(IMP)], with selected distances (Å): top – reactive species with (α-

diimine●‒)Os1+*Os3●; bottom – solvent-stabilized species with (α-diimine●‒)(py)Os1+*Os3● 

(py = pyridine). The spin density distribution is shown on the left. 

 

 To enlighten the photochemical behavior using the theoretical approach, we have optimized 

several relevant intermediates. We started by obtaining the geometries and energies of the lowest-

energy (gas-phase) singlet (S) and triplet (T) excited states (Scheme 1). As discussed above (Table 

1), the major geometric change in both states is the lengthening of the (α-diimine)Os1‒Os3 bond, 

suggesting that the electron excitation favors the Os‒Os bond cleavage. Although this result may 

not be too evident from the observation of the HOMO, in the open shell excited states the α and β 

molecular orbitals may change relative to the orbitals of the ground-state cluster, and therefore, the 

optimized excited states give a better description of the potential reactivity. The triplet excited 

state can be labelled as 3σπ*, corresponding to (α-diimine●‒)Os1+‒Os3● according to the spin 
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density plot. It relaxes to a lower-energy open triplet state, (α-diimine●‒)Os1+*Os3●,  with a very 

large Os1…Os3 distance of 4.524 Å and an Os1‒Os2‒Os3 angle of 99.4° (Figure 10, top). This is 

the theoretical representation of initial processes along the dominant homolytic (biradical) path B 

in Scheme 1. We have also optimized the geometry of the biradical formed by the reaction with 

pyridine (py) in the 3σπ* excited state (Figure 10, bottom). Although these two structures are very 

similar, the two remaining Os‒Os bonds differ by almost 0.1 Å. The shorter one is spanned by 

Os2-Os3 in the triplet state. The Os1‒Os2‒Os3 angle is 103°, and the (α-diimine●‒

)(py)Os1+*Os3● distance reaches 4.717 Å. The diagram with the relative energies of all these 

species is shown in Scheme 2, which can now be compared with Scheme 1. The absorption at 492 

nm leads to a vibrational excited singlet state, which relaxes to the lowest-energy vibrational state, 

and may further convert to a 16.6 kcal mol-1 more stable triplet by intersystem crossing. In both 

the singlet and triplet σπ* excited states, the Os1‒Os3 bond (Figure 1) has been significantly 

weakened (the dashed line in Scheme 2). A new biradical intermediate with a much longer 

Os1…Os3 distance (no bond) and a lower potential energy is obtained. The reaction with the 

donor pyridine solvent may yield a lower-energy open-core triplet biradical containing pyridine at 

Os1. These species may convert back to the ground state. The spin density plots shown in Figure 

10 help to confirm their biradical nature. The concomitant intramolecular electron transfer 

converting the pyridine-stabilized biradical to the corresponding long-lived diamagnetic zwitterion 

(see Scheme 1 and the above Photochemistry section) was not modelled in this DFT study. The 

alternate photoisomerization path for IMP (Scheme 1) was not observed in pyridine and therefore 

also not considered here. Both processes, originating in the open-core biradical state, require 

dynamic interaction between the photoreduced α-diimine ligand and the Os3 radical site.  
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Scheme 2. Calculated biradical photoreactivity path (cf. Scheme 1, path B) of [Os3(CO)10(IMP)] 

in pyridine. Based on experimental evidence, the transformation of the cluster core in the relaxed 
3
σπ* (T1) excited stated to the triplet biradicals involves crossing a small potential barrier to a 

dissociative state. 

 

Conclusions 

This study presents the first accurate density functional theory description of the optically 

populated lowest excited states of the clusters [Os3(CO)10(α-diimine)], for α-diimine = 2,2'-

bipyridine (BPY), N-isopropyl 2-iminomethylpyridine (iPr-IMP, or IMP in this work), and N,N'-

diisopropyl-l,4-diaza-1,3-butadiene (iPr-DAB, or DAB in this work), which has been achieved 

with the Coulomb-attenuating method CAM-B3LYP. The strongly σ-π mixed character of the 

frontier orbitals in the case of α-diimine = DAB explains the negligible charge-transfer character 

of the low-energy excited stated and corresponding near to zero change in the cluster dipole 

moment upon visible photoexcitation proven experimentally by the resonance Raman excitation 

profile and insensitivity of the visible electronic absorption to solvent dipole variation. It is now 

fully understood why [Os3(CO)10(DAB)] absorbs in the visible region photons of a higher energy 

than [Os3(CO)10(IMP)] and [Os3(CO)10(bpy)] despite the lowest energy of the DAB π* LUMO 

compared to the IMP and bpy ligands with aromatic pyridyl rings. The strong SBLCT, σ(Os‒Os)-

to-π*(α-diimine), character of the low-energy excited states for α-diimine = IMP was investigated 

in a greater detail by modelling the lengthening of one of the Os‒Os(IMP) σ-bonds. The 

subsequent cleavage of this bond was shown to produce triplet biradicals as the dominant 
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photochemical path from the 3σπ* excited state revealed by time-resolved molecular spectroscopic 

studies in the past. The slower homolytic biradical pathway was appreciably well modeled with 

DFT in the presence of pyridine coordinating at the electron-deficient Os+-(IMP) site, which 

causes an ultimate intramolecular transformation into a long-lived zwitterion. The wavelength 

(and temperature2) dependence of the photoreaction quantum yields for the light-induced 

formation of the open-core zwitterion (CO)4Os-‒Os(CO)4‒Os+(py)(CO)2(IMP) has provided an 

additional evidence for a small reaction barrier10,11 separating the optically populated 1σπ* and 

relaxed 3σπ* excited states (S1 and T1 in Scheme 2) from a repulsive state. 

 

Experimental Section 

Computational Details 

All DFT calculations were performed with Gaussian09.33 The triple-ζ basis set augmented with an 

f polarization function, LANL2TZ(f), was used for osmium along with the associated effective 

core potential (ECP),34 both downloaded from the EMSL Basis Set Library.35 For the remaining 

elements, the standard 6-311++G** basis set, comprising both polarization and diffuse functions, 

was employed. Geometry optimizations were performed without symmetry constraints in the gas 

phase and in toluene (IEFPCM calculation with radii and non-electrostatic terms from the SMD 

solvation model36). 

 Given that in the previous study17 it was impossible to reproduce the experimental order of the 

lowest energy band absorption of the three [Os3(CO)10(α-diimine)] clusters, a series of DFT 

functionals were tested in TD-DFT calculations, namely, the hybrids PBE1PBE (also known as 

PBE0),37 and the popular B3LYP,38 the pure PW91PW91 functional,39 the hybrid 

exchange−correlation functional using the Coulomb-attenuating method CAM-B3LYP,40 and the 

Minnesota functional M06-2X.41 From the tested functionals, CAM-B3LYP was the only capable 

of reproducing the experimental trend in the gas phase and was therefore used throughout this 

work. The calculated lowest-energy transitions for all tested functionals are given in SI (Table S2). 

Notice that the M06-2X functional (gas phase calculations) gave the second-best results, however, 

the predicted order (IMP < BPY = DAB) no longer reproduces the experimental trend (IMP < 

BPY < DAB). Introduction of solvent effects (toluene) on TD-DFT calculations using the 

previously solvent optimized structures leads to even poorer results (Table S2) as the previous 

correct trend obtained for CAM-B3LYP is lost, whereas the M06-2X results also become worse.     
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 The lowest-singlet excited state was optimized using a TDDFT optimization as implemented 

in Gaussian09, whereas the optimization of the triplet state was performed by defining the 

correspondent multiplicity on the calculation.      

 The scripts to plot the electron density difference maps (EDDMs) were retrieved from the 

GaussSum package.42 The experimentally determined oscillator strengths (fexp) for the visible 

absorption band were calculated using the equation fexp= 4.319 x 10-9 εmax ∆ν. Structures were 

drawn using Chemcraft43 and the orbitals with Molekel.44 

 

Materials and Preparations 

The clusters [Os3(CO)10(α-diimine)] (α-diimine = 2,2'-bipyridine (BPY), N-isopropyl 2-

iminomethylpyridine (IMP), and N,N'-diisopropyl-l,4-diaza-1,3-butadiene (DAB)) were 

synthesized according to published procedures.1,2 Their purity was checked by IR and 1H NMR 

spectroscopies. The solvents used for UV-vis spectroscopy were of spectroscopic grade (Merck: 

CCl4, toluene, CHCl3, CH2Cl2, acetone, acetonitrile, DMSO, THF), and were used as purchased. 

Pyridine and toluene (Aldrich) used for the photochemical experiments were freshly distilled 

before use under an atmosphere of dry nitrogen from CaH2 and a sodium wire, respectively. All 

photochemical samples were prepared under careful exclusion of light and using standard inert-

gas techniques. 

 

Spectroscopic Measurements 

Electronic absorption spectra were recorded on Varian Cary 4E and Hewlett-Packard 8453 diode 

spectrophotometers. Resonance Raman spectra of the studied triosmium clusters dispersed in 

KNO3 pellets were recorded on a Dilor XY spectrometer equipped with a Wright Instruments 

CCD detector. A Spectra Physics 2040E Ar+-laser was used as the excitation source and as a pump 

for Coherent Radiation Model 590 and 490 dye lasers with Rhodamine 6G or Coumarin 6 dye 

solutions. Intensities of the resonantly enhanced Raman bands were measured relative to the 1050 

cm-1 Raman band of KNO3. 

 

Photoreaction Quantum Yield Measurements 

Quantum yields for the light-induced disappearance of [Os3(CO)10(IMP)] in pyridine were 

determined by measuring the decay of the absorption band of the cluster at 555 nm with a Varian 

Cary 4E spectrophotometer. Corrections were made for the absorbance of the photoproduct. The 

quartz sample cuvette was cooled using an Oxford Instruments DN 1704/54 liquid nitrogen 

cryostat equipped with quartz optical windows. The sample was irradiated inside the sample 
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compartment of the spectrophotometer by the laser lines of a Spectra Physics Model 2040E Ar+-

laser, or by those of the dye lasers (vide supra). The photon flux was determined in front of and 

behind the sample cuvette with two Applied Photophysics quantum counter detectors, thereby 

allowing direct determination of the number of photons absorbed. Corrections were made for 

reflection of light at the cuvette windows. The quantum counters were calibrated before and after 

each single quantum yield measurement with standard solutions of fulgide dyes Aberchrome 

540P45 or Aberchrome 999P 46 in dry degassed toluene, prepared on a vacuum line. For each 

excitation wavelength, the quantum yield was determined at least in duplicate; each measurement 

typically involved ten irradiation intervals during which the solution was stirred. 

 

 

Suppporting Information 

The Supporting Information is available free of charge on the ACS Publications website at DOI:  

Energies of the frontier orbitals (in eV) of the three [Os3(CO)10(α-diimine)] clusters (α-diimine = 

DAB, IMP, BPY) – Table S1. Calculated lowest-energy electronic transitions for all tested 

functionals – Table S2. Molecular structures of the three [Os3(CO)10(IMP)] isomers and their 

relative energies in kcal mol-1 – Figure S1. Coordinates of all the calculated species, available as 

an XYZ file. 

 

Author Information 

Corresponding authors 

* E-mail: f.hartl@reading.ac.uk 

* E-mail: mjc@fc.ul.pt or mjc@ciencias.ulisboa.pt 

 

ORCID 

František Hartl: 0000-0002-7013-5360 

Vanessa Farelo Santos: 0000-0001-8564-0952  

Paulo Costa: 0000-0002-0492-6666  

Maria José Calhorda: 0000-0002-6872-3569  

 

Acknowledgements 

We thank the Fundação para a Ciência e a Tecnologia, Portugal, for financial support 

(UID/MULTI/00612/2013).  P.J.C. acknowledges FCT, Fundo Social Europeu, and Programa 

Page 26 of 33

ACS Paragon Plus Environment

Submitted to Inorganic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



27 

 

Operacional Potencial Humano for the Investigador FCT contract (IF/00069/2014), project 

(IF/00069/2014/CP1216/CT0006), and M.J.C. grant SFRH/BSAB/135473/2017.  This work was 

also co-financed by Programa Operacional Regional de Lisboa (Lisboa 2020), Portugal 2020, 

FEDER/FN, and European Union under project number 28455 (LISBOA-01-0145-FEDER-

028455).  The experimental work, carried out by M.J.B. at the University of Amsterdam, was 

financially supported by the NWO Council for Chemical Science, NWO-CW (F.H., Project No. 

348-032).  The work on this manuscript (F.H.) was co-funded by the spin-out project 

Spectroelectrochemistry at the University of Reading.  

  

Page 27 of 33

ACS Paragon Plus Environment

Submitted to Inorganic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



28 

 

For Table of Contents Only 

 

ToC Gaphics 

 

 

 

ToC Synopsis 

The CAM-B3LYP DFT method was employed successfully to reproduce the experimental low-

energy electronic absorption and describe accurately the corresponding optically populated excited 

states of three selected triangular clusters [Os3(CO)10(α-diimine)]: for (a) the least π-delocalized 

system with 2,2'-bipyridine (BPY), (b) the strongly π-delocalized system with N,N'-diisopropyl-

l,4-diaza-1,3-butadiene (DAB), and (c) the intermediate case with N-isopropyl 2-

iminomethylpyridine (IMP). For the IMP cluster, the biradical photoreactivity path towards open-

core zwitterions has also been calculated. 
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