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Abstract

A principal objective in agriculture is to maximise food production; this is partic-

ularly relevant with the added demands of an ever increasing population, coupled

with the unpredictability that climate change brings. Further improvements in pro-

ductivity can only be achieved with an increased understanding of plant and crop

processes. In this respect, mathematical modelling of plants and crops plays an

important role.

In this thesis we present a two-scale mathematical model of crop yield, that

accounts for plant growth and canopy interactions. A system of ordinary differential

equations (ODEs) has been developed for each individual plant, where equations are

coupled via a term that describes plant competition. Both analytical and numerical

methods have been considered to describe this competition. This model has been

formulated for an underutilised African legume called bambara groundnut, a drought

tolerant crop, which is currently being investigated to be used more widely as a

food source in light of climate change and food security. Like many plant species,

bambara groundnut exhibits physiological diversity which may affect the overall

growth dynamics and crop yield. Such plant diversity is not regularly accounted for

in crop scale models. Our model not only allows us to account for plant diversity,

but we can investigate the effect of individual plant traits (e.g. plant canopy size

and growth rates, planting distance) on the crop scale yield.

The mathematical model has been formulated and validated using experimental

data collected from the Tropical Crops Research Unit (TCRU) and Future Crops

greenhouses at the University of Nottingham.
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We find that the mathematical model developed in this thesis is able to predict

the growth of a population of bambara groundnut well and we go on to optimise the

arrangement of individual plants for a series of scenarios. The primary aim of this

is to maximise crop yield.

Whilst formulated specifically for bambara groundnut, our model may also be

extended to other crop species. In this thesis we demonstrate that the model is also

able to simulate the growth of oil palm. We then apply the mathematical model to

maximise crop yield in an intercropping environment; the planting of two or more

species together in the same field area. We again investigate a series of scenarios that

require optimisation and find that the optimisation techniques are able to provide

plausible recommendations.

This work has been undertaken in a multidisciplinary environment involving

interactions with Plant Scientists at the University of Nottingham (Nottingham and

Malaysia) and the Crops for the Future Research Centre, Malaysia.
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Chapter 1

Introduction

The work undertaken in this thesis is part of a larger collaborative effort of the

BamYIELD programme. BamYIELD is one of five international research pro-

grammes of Crops For the Future (CFF) and is dedicated to the research and

development of underutilised legumes using the test species bambara groundnut.

More details of CFF and it’s projects can be found at www.cffresearch.org. The

overall aim of BamYIELD is to optimise the contribution of bambara groundnut

to world food security and poverty alleviation in developing countries. Although

they use bambara groundnut as a focus, the approaches developed as part of their

research are designed to be easily applied to other underutilised legumes.

In this thesis we focus our efforts on optimising the growth of bambara groundnut

in regards to management practices, such as individual plant placement, in order to

maximise crop yield. To do this we develop a multi-scale mathematical model (plant

to crop scale) that describes the growth and yield of bambara groundnut over time.

A model can have many different meanings inside and outside of biology and in

the loosest terms refers to a representation of a construct or organism. This can

be a physical or theoretical representation designed to describe certain aspects of

the particular entity. In Mathematical Biology and particularly in this work, the

focus is on mathematical modelling defined as the use of mathematics to describe

or simulate the behaviour of a physical system.
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Chapter 1. Introduction

A dynamical mathematical model is designed and formulated using a combina-

tion of data found in the literature, experimental data collected from the Tropical

Crops Research Unit (TCRU) at the University of Nottingham and also data col-

lected specifically for this work from the Future Crops greenhouses at the University

of Nottingham. The model consists of a system of ODEs for each individual plant,

where equations are coupled via a term that describes plant competition. Both

analytical and numerical methods are considered to describe this competition. In

line with the principles of BamYIELD, although the mathematical model has been

formulated for bambara groundnut, the design is such that it can be applied to

other species of plants and we demonstrate its robustness in this respect later in this

thesis.

By simulating plant growth at the individual scale, we can investigate the effect

of between plant canopy-canopy interactions. As such, once the model is formulated

we apply it to the investigation of planting arrangements that maximise crop yield.

This is done for both homogeneous (single species) and heterogeneous (multi-species)

planting.

In the remainder of this chapter, we define underutilised crops and discuss the

important role they have in the world’s future, we introduce in more detail the test

species bambara groundnut and describe its growth habits and finally we outline the

content of this thesis.

1.1 Underutilised Crops

There are many challenges that humanity will face in the twenty-first century, in-

cluding the impact that climate change, increasing populations and urbanisation

will have on the world’s food security [4]. There are over 7000 species of plant that,

at some point in time, have been cultivated to provide food [39]. Currently, only

30 species contribute 95% of the world’s food supply [57] and it is not clear if this

currently limited selection of crops will be robust enough to meet future challenges.

The term ‘Underutilised crops’ refers to the plant species that show considerable

2



Chapter 1. Introduction

promise in contributing to the world’s food source but are currently grown at a much

smaller scale than their potential warrants [39]. These crops are often indigenous

and play an important role in the diets and livelihoods of the people that grow

them. Further development and attention to these crops gives a great opportunity

to diversify the world diet, reduce over reliance on the 30 core crops and aid in the

reduction of poverty [39].

1.2 Bambara groundnut

Bambara groundnut is one such underutilised species that has been recognised by

CFF for its considerable ability to produce high yields in drought conditions [4].

The cause of its underutilisation can largely be attributed to the perception that

it has little economic potential internationally. As such, it is largely grown locally,

by female farmers for subsistence only [7]. In this section we describe the growth

behaviour of bambara groundnut. A picture of a typical plant can be found in Figure

1.1.

Figure 1.1: Bambara groundnut (Vigna subterranea (L.) Verdc) [13]

It is an indigenous African legume and it’s main production area is semi-arid

3



Chapter 1. Introduction

Africa, where it is the third most important legume in regards to consumption

and socio-economic impact. Other than semi-arid Africa, it has also become an

increasingly important crop in Indonesia, Thailand and Malaysia [7]. It produces

highly nutritious seeds, which are used for both human and animal consumption

and is able to produce these seeds in nutrient poor soils where many crops would be

unable to grow. It is considered to be a very robust crop that is not only drought

tolerant, but also relatively disease free [36].

There is a wide range of genetic diversity within bambara groundnut species,

largely due to its wide distribution of growth within Africa. This is one such feature

that makes it an attractive candidate for further development as there is much scope

for selection. This genetic diversity impacts upon a wide range of plant traits, such

as leaf, flower and pod number, and also seed size, colour and pattern; all of these

traits have been successfully manipulated using selection processes in previous crop

improvement programmes [7].

Bambara groundnut is often grown in mixed cropping systems, where it is inter-

cropped with cereals, tuber crops, vegetables and other legumes. Its importance in

intercropping systems is attributed to its strong ability to improve soil fertility with

enhanced levels of nitrogen fixation compared to other legumes [36].

Bambara groundnut is an annual herb, that grows to approximately 30cm high.

It is similar to the groundnut (peanut) in morphology in that it grows leaves on

lateral stems just above ground level. It can be categorised into three types; bunched,

semi-bunched and spreading with the internode length determining which category

it lies in. The plant produces pods, which are almost spherical in shape and usually

develop underground. Each pod contains at least one seed, and can sometimes

contain up to four. It is the seeds, both ripe and unripe, that are used for human

and animal consumption in a range of dishes. Immature seeds can be eaten fresh or

grilled, however, mature seeds are hard and are consumed by either pounding into

a flour or boiled into a stiff porridge. Seeds are variable in their shape, colour and

hardness and it is the appearance of the pods along with the plants spreading type

4



Chapter 1. Introduction

which determine which cultivar (plant variety) they belong to [36].

Germination occurs generally between seven and fifteen days depending on water

availability, temperature and genetic variety [20]. Plants begin to produce flowers

between 30-55 days after sowing and fertilised flowers produce pods underground

approximately 30 days after fertilisation [36]. It has been found that the time from

sowing to flowering is not always affected by the number of daylight hours in a day,

however the time to podding is [7].

As an underutilised crop, there has been no rigorous breeding programmes that

give academically established varieties [4]. Instead it is landraces, defined as a locally

adapted variety of a species, that are grown by farmers [32]. In this work, two such

landraces are investigated, Uniswa Red and S19-3. Of these, S19-3 is considered to

have been evolved for hot, dry climates causing it to have a faster life cycle, which

minimises the potential damage caused by droughts. Uniswa Red is more adapted

to wetter, colder climates and has a longer life cycle.

1.3 Aims and objectives

The aim of this PhD is to develop a multi-scale mathematical model that simulates

the growth and development of a single bambara groundnut plant, taking into con-

sideration the interaction of the individual plant with its neighbours. This is done

for multiple plants at one time, with data for each plant aggregated to the crop level.

The design of the model is such that variations in temperature and solar radiation

can be accounted for. The mathematical model is compared to experimental data

to determine the predictive power of the model. Once a reliable model has been

developed, we apply this model to:

1. investigate the effect that individual plant positions have on crop yield;

2. investigate the effect that variation at the individual plant level has on the

crop level;

3. optimise planting arrangement to maximise yield;

5



Chapter 1. Introduction

4. extend the model to investigate the planting of multiple species in one area;

and

5. optimise the arrangement of two species in an area to maximise yield.

1.4 Thesis outline

– Chapter 2 is a review of the existing literature on mathematical modelling

of plants and crops paying particular attention to models that bridge the gap

between individual plant modelling and crop modelling. Here we also describe

previous simulations of bambara groundnut.

– Chapter 3 introduces the initial mathematical model that describes the growth

and development of bambara groundnut. The model is formulated using data

from the literature and Tropical Crops Research Unit (TCRU) experiments.

We then investigate the model analytically and compare the numerical solution

to data.

– Chapter 4 gives an overview of the model revisions that are made to the initial

model. We again compare the numerical solution to experimental data sets

and conduct further investigatory experiments on the mathematical model.

– Chapter 5 gives an overview of the experiments conducted for this work in the

Future Crops greenhouses. Further revisions to the model are then discussed.

– Chapter 6 is a discussion of how to optimise the placement of individual

plants of the same species in order to maximise the final yield of the total

crop. A number of planting arrangements are investigated and an optimisation

algorithm is formulated.

– Chapter 7 is a discussion of how to optimise the placement of individual

plants of two different species in order to maximise yield. Four fictional species

are introduced for which optimisation investigations are conducted. Further to

6



Chapter 1. Introduction

this, an investigation of optimum sowing date is conducted. The mathematical

model is then formulated for oil palm and an investigation on optimum planting

arrangement of bambara groundnut and oil palm is undertaken.

– Chapter 8 summarises the results of this PhD, discusses how this research

has achieved the aims and objectives set out in this chapter and makes recom-

mendations for future research.

7



Chapter 1. Introduction

8



Chapter 2

Review of Literature

2.1 Introduction

A principal objective in agriculture is to maximise food production; this is partic-

ularly relevant with the added demands of an ever increasing population, coupled

with the unpredictability that climate change brings. Further improvements in pro-

ductivity can only be achieved with an increased understanding of plant and crop

processes. In this respect, mathematical modelling of plants and crops plays an im-

portant role. There has been a large amount of work undertaken in this area with

two fundamental aims, firstly, to investigate and develop understanding of plant

processes and secondly, to make predictions. The majority of this work, for either

aim, focuses either on describing processes within a plant such as genetic regulatory

networks [28], descriptions of an entire plant in isolation [60] or the growth of many

plants simultaneously, i.e crop growth [35]. To describe these processes, it may be

useful to utilise a crop or plant model. Crop models provide a quantitative means

of predicting growth, development and yield of a crop [47]. They are useful in mod-

elling the interactions between crop growth and environmental factors, making them

useful for evaluating growth limitation caused by climate factors [3]. Even for one

particular purpose there are many variations in the approaches used. Beyond crop

models (those that deal with the aggregate scale), plant models (those that consider

9



Chapter 2. Review of Literature

the single scale) are tools that can be used to better understand the underlying pro-

cesses of crop development. The process of plant growth can be studied at several

levels of detail, ranging from sub-plant level to the multi-plant level.

At the crop scale, physiological processes at the plant scale are often taken for

granted leaving biomass formation and food yield to be typically taken as a function

of management factors, such as water irrigation and soil tillage [26]. It is a challenge

in science to explain findings at the crop scale in terms of the physiological processes

at the plant scale. As a community, mathematical modellers are beginning to bridge

the gaps between these pieces of knowledge, however our understanding in these

areas is often qualitative and does not explain the more subtle processes of plant

morphology and biochemistry [26].

In this chapter, we aim to summarise the main approaches for mathematically

modelling crops and plants at their different scales, paying particular attention to

methods of incorporating a single plant model within a crop scale one.

2.2 Brief overview of model types

There are many types of approaches to modelling plant/crop growth that span a

vast range of purposes and cover various levels of the growth process of the plant.

Levels can range from biochemical pathways and substance transportation within a

plant to scoping best management practice and yield forecasting [51]. The choice

in approach depends on the purpose of the model and also the resources available,

for example what experimental data are available to parameterise the model or how

much computational power is at one’s disposal to carry out the simulations. We

now describe these model types, describing their limitations and advantages.

All models can be split into two categories; static and developmental. Static

models are independent of time and designed to capture the physical state of the

plant/crop at a particular point. In contrast, developmental models map growth

and behaviour over time.

Within these two categories, modelling approaches can further be broken down

10



Chapter 2. Review of Literature

into a number of subsets with a lot of overlap between them, hence, a mathematical

model describing plant growth is likely to contain a combination of model types.

Developmental models can be descriptive or mechanistic. Descriptive models

integrate the results of measurements over time whilst mechanistic models attempt

to describe the underlying processes of the plant system [52]. Descriptive models are

useful for re-enacting plant development [51] but reflect little or none of the mecha-

nisms behind crop growth [40]. Mechanistic models provide more insight into how a

plant functions. These mechanistic (or explanatory) models contain sub-models for

at least one hierarchical level deeper than the response that we are trying to describe

[51]. For instance, we may wish to describe the crop level behaviour and to do this

mechanistically we would describe the crop in terms of the individual plants within

it. Despite including an extra layer of detail, even a very comprehensive mechanistic

model cannot describe all of the underlying mechanisms as designing and running

such a model would be impractical [40]. Mechanistic models may also be referred to

as virtual plants or functional-structural models. Both mechanistic and descriptive

models can be thought of as either scientific, designed to improve our understanding

of crop growth, or engineering, designed to provide sound management practice for

farmers.

Cornede et al. [19] describes functional-structural models as those that combine

the architecture of a plant and also include the biological processes that describe

plant growth. These types of models may also be referred to as individual based

models [52]. At the individual plant scale, these models allow for a very detailed

description of plant architecture allowing for more accurate insight into plant de-

velopment. These detailed models allow for an enhanced awareness of a plant’s

micro-climate sensed by sub-parts of a single plant or even the micro-climate expe-

rienced by a single plant within a field of neighbouring plants. Attaining a model

of this detail can only be achieved through the computationally intensive process of

plant digitalisation. In addition, this detailed work is only a good representation of

the plant in question and can not be easily generalised. Despite these complications
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there is a real need to study the extension of individual functional-structural models

to plant populations, such as multi-scale crop models. Further details of such models

can also be found in the works of Prusinkiewicz and Yan et al [?, 60] in addition to

many other sources.

Patricia et al. [51] characterises empirical, deterministic and stochastic plant/

crop models in the following way. Empirical models are directly informed by ob-

served data and can be used for several scales of growth ranging from sub-plant to

crop level. The correlation and regression analysis of these models do provide some

qualitative understanding of variables, but they are often site and plant specific and

not easily generalised. Thus using these models to aid decision making is severely

limited. Deterministic models provide estimates of crop yield or biomass without

any associated probability distribution and typically make no attempt to estimate

an associated level of uncertainty in the parameter values or input data (e.g. en-

vironmental). Models such as these can be useful when these inputs are known,

however in cases where there exists large amounts of uncertainty in parameters or

input data, the models can become unreliable. In contrast stochastic models allow

for more random variation in parameters, although these come at the cost of being

much more complicated to formulate.

Mathematically speaking, there are three types of models, algebraic, which con-

nects variables and parameters; differential, which connect rates of change with

variables and parameters and finally, stochastic, which introduces an element of

probability. In this thesis it is largely dynamical differential models that we con-

sider.

2.3 The practical use of mathematical models

There has been much debate about the practical use of mathematical modelling

in agriculture and there is no consensus as to the value of computational models.

However, there are many who recognise the increasing importance of mathematical

models in the area [52]. Over the past few decades, steps have been taken to improve
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mathematical models [1] and there is an increasing demand to bridge the gap between

mechanistic models of individual plants and the crop population scale. These can

be used to not only estimate crop yield but also to investigate how to optimise

management practices to maximise yield.

A mathematical model cannot include all of the processes for fear of becoming

intractable. This means that a plant model will not cover the full spectrum of

behaviour experienced in reality [26].

Aggarwal [1] outlines how uncertainties in data (e.g. solar radiation, tempera-

ture, water availability) affect mathematical models. Deterministic models in par-

ticular are heavily dependent on inputs. The outputs, such as yield, evapotranspira-

tion and nitrogen uptake experience inaccuracy due to uncertainties in both model

structure and input data. This data uncertainty is largely comprised of incomplete

information on input variables, for example, weather variables often experience a

lot of spatial and temporal variation. Generally, bias in outputs such as yield data,

evapotranspiration and nitrogen uptake is low and within model error, however for

a water or nitrogen limited environment, bias is considerably more. Progress in

eliminating uncertainties in input data is limited by the availability of reliable in-

struments. Over the past 20 years there have been considerable improvements to

instruments and many new tools have been developed. The driving force behind

these developments in data collection and the instruments used is the insatiable

demand from crop modellers for data [47].

2.4 Modelling individual plant growth

A more thorough understanding of plant growth and development is fundamental

in improving crop yield. As such, there has been an increase in mathematical mod-

els that describe growth in terms of plant processes and abiotic factors in recent

years [21]. We now discuss mathematical models that describe such growth at the

individual plant level.

Many models that work on the individual plant scale examine the allocation of
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assimilated nutrients for cell reproduction, hereby referred to as assimilates. Ma

et al. [44] discusses the growth of an individual plant in regards to its source-sink

relationships, paying specific attention to competition between assimilates within the

plant and plant topology, but does not discuss competition between plants. In this

work, a functional-structural model is developed to simulate fruit-set patterns among

Capsicum cultivars. Plant biomass was described using a single ordinary differential

equation (ODE) that was dependent on solar radiation and leaf area index. Plant

biomass was then partitioned to the various sinks using empirically based equations.

The topological structure of this model was incorporated by defining physiological

ages to predetermined sections of the plant, for example the lower stem of the tomato

plant had the oldest physiological age and secondary branches had the youngest.

More examples of models of this nature can be found in Marcelis [40]. These types

of models have been found to show good correlation with experimental data, but

their use in predicting total crop yield is limited due to their complexity and the

difficulties of parameter estimation.

There has been an ever increasing importance placed on including plant architec-

ture within models [21]. Godin [24] provides us with several methods of representing

plant architecture with a range of complexities to be used in functional-structural

models. Many representations are explored, such as plant topology described in

the context of graph theory. The complexity of the plant architecture ranges from

course level representations such as modelling an entire plant structure as a single

module, to much finer levels where the trees structure is split into many repeated

components (e.g. branches, stems and leaves). At the most basic level, geometric

representations of tree crowns can be used efficiently to model light interception.

These geometric representations can take the form of a cylinder or sphere, but can

also take more flexible and complex representations that come at ‘intermediate’ com-

putational cost between simpler geometric shapes and more elaborate computational

representations. More complex representations of a plant’s topological structure can

help to refine the knowledge of developmental processes within the plant, such as

14



Chapter 2. Review of Literature

the transportation of nutrients. It is important to stipulate however that Godin [24]

focuses on the single plant scale with a lot of detail. Using such a model on the

many plant scale would become very computationally intensive.

Cournede et al. [19] discusses a zone of influence model in the context of agri-

culture, where the zone of influence is the area a single plant impacts upon. This is

a variety of the mechanistic approach that is functional-structural modelling, where

individual plant biomass is described using a discrete system whereby the zone of

influence is represented by a circle. Plant growth at the individual plant level is

described by empirical mathematical functions, which are solved computationally.

Competition between two plants is given by the geometric overlap between the two

circles that represent their canopies. This is an extension of much earlier studies

that investigate mathematical models concerning competition between individual

trees [9]. The zone of influence can change over time as the plant grows, however it

can also be set to a constant value equalling the plot area divided by the number of

plants in that area, this would give the average area available for one plant. This

concept is used in several other works with some success [8, 53]

In contrast to the generalised approach of Cournede et al [19], Godin [25] de-

scribes a more detailed topological method. In this case the plant is divided into its

individual components and interactions between these are modelled using tree-graph

structures. The components can be divided into spatial or mechanical ones. These

models can be allowed to vary in time, however the process of doing this is some-

what arbitrary and consists of piecing together separate ‘snap-shots’ of the plants’

topological structure.

Models that investigate the more precise aspects of canopy structure are useful

in examining processes such as the optimisation of photosynthesis. This can be

useful in designing breeding programs to increase a plant’s yield ability [56]. The

application of these detailed architectural models to predicting whole crop yield is

less obvious. The complexity of individual plant models is such that they provide

a computationally intensive model in their own right, thus including them as a
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sub-module of a higher-level crop model can be impractical.

2.5 Modelling crop growth

The concept of modelling crop growth can have different meanings. To some, mod-

elling growth can mean modelling the development of the crop through its phenono-

logical phases. It can also mean simulating crop yield, biomass, nitrogen uptake or

fixation. For all these cases, modelling may refer to simulating over time or singu-

larly at maturation. In this work we focus on simulating growth in terms of yield

and biomass in response to environmental factors such as temperature and solar

radiation over time. As such, we restrict the review of the extensive amount of

literature to this area.

Typically, above-ground biomass is predicted as a function of leaf area index

(LAI), the extinction coefficient (which relates to the crop canopy geometry) and

the radiation use efficiency [19, 20, 32]. Leaf growth is an important factor in this

type of model, but despite this the processes behind it are not fully understood by

crop modellers [40]. There are two main schools of thought for modelling the leaf

area or leaf appearance rate. Marcelis [40] describes a method of predicting leaf area

development as a function of canopy biomass. He also discusses the simulation of

leaf area as a function of leaf appearance rate, to be calculated separately from the

biomass equation. Both approaches are general and can be applied to many types

and species of plant and we explore both later in this work.

It is common in crop level models to treat all plants within the crop as a single

entity and simulate a uniform field of crops making predictions on an area basis [60].

In doing so intra-specific competition is included using density factors so that an

empirical relationship between plant density and final yield is formulated.

In the cases where all plants within the crop are not treated as a single entity,

an individual-based approach is used where the growth of each plant is described.

Bauer et al. [8] discusses the importance of including spatial positioning and a zone

of influence where interactions with neighbours occur in individual-based methods.
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In this work, the growth rate of individual plant size is determined using non-linear

mathematical functions. In addition to the growth of individual plants, Bauer mod-

els the change in population of a field of plants. Here, plant reproduction rate is

determined by a linear relationship relating to individual plant size and the spatial

positioning of newly introduced plants is determined using a two-dimensional expo-

nential probability function. Plant mortality is determined by plant age and also

the degree of competition so that once the combined affect of these two variables

meets a certain threshold, the plant is assumed to die. The aim of this work was to

investigate the cyclic dynamics in perennial plant populations.

The zone of influence model described by Cournede et al. [19] is another individual-

based model that describes crop scale. Here, both the growth of individual plants

and interactions between them is addressed and aggregated to the many plant level.

The growth of a population of plants is simulated where individual plants are cou-

pled together with the inclusion of neighbour-neighbour competition for light. Here,

competition is calculated as being a function of spatial overlap between two plant

canopies. Plant shadowing is calculated using a Poisson probability model that de-

termines whether an infinitesimally small element of a plant’s surface area is shad-

owed by a neighbouring plant. The model assumes strictly vertical irradiance and

canopy foliage is uniformly distributed amongst the zone of influence. Despite these

generalisations, the method gives a good general approach and applications of this

methodology are far reaching.

The way in which competition is included in an individual-based model can vary.

Schneider et al. [53] explores a number of methods of incorporating inter-plant

competition, which are referred to as competition kernels. These kernels included,

but were not limited to, spatial overlap between two circular canopies, where canopy

area was taken to be a function of biomass. The inter-plant competition for all

kernels is limited to pairs of plants and does not explore the case of multiple plants

overlapping at the same point. The interactions that one plant has with others

is summed over all neighbouring plants. It was found in this work that zone of
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influence models were significantly more efficient at capturing crop behaviour and

also that there existed a large amount of asymmetry in competition whereby if one

of the two competing plants was significantly larger than the other, the smaller plant

experiences the majority of competition.

Cournede et al. [19] and Scneider et al. [53] both explore the case of a zone

of influence that varies over time, however Cournede et al. [19] also discusses the

impact of forcing a constant zone of influence. It was shown that the constant zone

of influence approach works well for high density crops, but fails for low density

crops and does not give a good fit to data for the early stages of growth.

2.6 Modelling Bambara Groundnut

Although the literature surrounding crop modelling is extensive, that which relates

directly to bambara groundnut is significantly sparser. There has been much work

done in quantifying external (e.g. weather) and crop management effects on the yield

of bambara groundnut [6, 45], however there is a limited amount of information on

simulating the behaviour of the crop. Many of the current models are mechanistic in

approach and largely consider crop maturation rates [11]. Fewer still have examined

biomass and yield development. Those that do, do not examine in detail the effect of

canopy interactions on biomass production. The total number of crops is treated as

a single entity and competition is incorporated using a density factor [20, 31]. This

works like a dampening factor so that growth is limited by a parameter ranging

between 0 and 1, where a 1 would indicate no competition and 0 would indicate

that competition has prevented further growth.

Current bambara groundnut models show reasonable similarities between simu-

lations and experimental data, however these simulations are often site specific and

underestimate above ground dry matter production in the greenhouse. It is theo-

rised that this could be due to underestimating the photosynthetic potential of the

plant [20]. It may also be that the dampening factor included for competition is

too strong. This gives rise to further need for a mathematical model that includes
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a more detailed description of plant architecture on the single plant scale, which is

then scaled up to the many plant, or crop, scale.

Karunaratne et al. [31] discusses the importance of temperature in modelling

bambara groundnut. Like many of the major crops such as wheat, cowpea and

rice, bambara groundnut has been shown to be strongly affected by extremes in

temperature. In the thesis of Karunaratne [32], the BAMGRO model was developed

that uses a system of dynamical equations to simulate the leaf development, plant

biomass and pod mass of the entire crop. This work pays particular attention to the

effect that temperature and drought have on growth at the crop level.

The BAMGRO model [31] operates between two interconnected processes: the

crop maturation rate and the rate of biomass acquisition. Crop maturation rate, or

crop phenology, is the movement of the plant through the different developmental

phases of crop growth. Movement through these phases is considered non-reversible

and strongly dependant on temperature. The developmental stages can largely be

described with respect to two major phases: vegetative and reproductive. Unlike

many grains used for food, where the change between vegetative and reproductive

acts like a switch, the phases overlap for the bambara groundnut. Thus the plant

continues to develop new leaves in the reproductive stage.

The rate of leaf appearance is measured as a function of cumulative thermal time

where the thermal time is the sum of the average daily temperature [20, 31]. This can

be done in a number of ways, either the leaves per cumulative thermal time can be

measured as a series of piecewise linear relationships [20] or a Gaussian relationship

can be used to model the new leaf rate [31]. This approach has also been used in

mathematical models of other plant species [16]. The advancement in developmental

(phenological) age, i.e. the stages of growth, is also measured in terms of thermal

time. This is one of the most widely used approaches in crop models [5, 18, 27, 31].

It has been shown that phenological stages such as emergence, leaf initiation and

leaf appearance rate occur at a precise thermal time after germination [18].

In the BAMGRO model [31], the leaf appearance rate and hence the leaf number
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and leaf area are calculated as a function of thermal time. This is then incorporated

into the biomass acquisition equation to simulate the green biomass and crop yield.

We explore this method, as well as the method of calculating leaf area as a function

of canopy biomass, in Chapters 3 and 4.

Brink et al. [11] recognises the strong link between photo-period and temper-

ature on the phenological development but applies it in a different way. Here a

relatively simple method is applied to modelling bambara groundnut. The rate of

progress towards a phenological stage is calculated using a combination of three

linear equations that depend on temperature and photo-period. A benefit of this

method is that the interaction of photoperiod and temperature on the influence on

the crop disappears. This is beneficial as the study Brink also demonstrates that not

all of the plants are affected by long photo-periods and has been applied to several

types of annual crops such as soya bean, cowpea, chickpea, lentil and barley in the

work of Summerfield et al. [55].

2.7 Intercropping

Intercropping is defined as a practice of growing two or more different species of

plants together in the same area. The position of individual plants in an inter-

cropped environment in addition to sowing time, time of emergence and time to

maturation can have a significant impact on the competition between plants [22].

There are many ways in which plant species can be arranged in relation to each

other, ranging from adjacent patches of species to cropping systems that replicate a

more natural ecosystem. Malezieux et al. [46] describes in more detail the different

forms of species mixtures with varying complexity and gives examples of where dif-

ferent arrangements are typically applied. Using physical experiments to investigate

the effect different planting arrangements of two species has on yield is costly and

time-consuming and can be greatly reduced with the application of mathematical

models.

The practice of intercropping has several advantages, ranging from ensuring the
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best use of available resources to promoting biodiversity. A key benefit of inter-

cropped systems is the enhanced robustness to total crop failure in unpredictable

environments [46]. As a nitrogen fixing crop with high drought tolerance, bambara

groundnut is considered to be a particularly suitable crop for intercropping. It is

most frequently mixed with crop species such as cowpea, maise and sorghum [6].

As such, being able to mathematically model bambara groundnut growth within an

intercropping environment was an important part of this work. In this section we

discuss some of the literature surrounding current intercropping models.

There are many models that simulate competition for various resources in in-

tercropped environments [10, 23, 17]; in these models the inclusion of competition

for light is a frequent feature [10]. Graf [17] discusses such an approach for sim-

ulating competition for light, which involves splitting the total crop canopy into a

number of horizontal layers. This approach requires knowledge of respective plant

heights of individual species and the vertical distribution of leaf area. The num-

ber of layers is determined by the plant heights of each species and competition for

light is calculated at each horizontal layer of canopy for each species. In the top

layer only the light intercepted by the tallest plants is calculated, at a lower level

the light intercepted by some of the shorter plants and also the lower leaves of the

taller plants is calculated and so on. All plants of the same species in this model

are treated as one entity and the position of species in relation to each other are

not taken into account. This approach is common with crop-weed models where the

position of the competing plants is not user determined and thus cannot be assumed.

A similar approach to this has however been applied to competing crops, such as

in [10], although it is necessary to make the assumption that the arrangement of

species is horizontally homogeneous i.e. that plant spacing is uniform. Gou et al.

[23] describes an approach to simulating the competition between two species that

are separated into rows in an arrangement referred to in the literature as relay strip

planting. Some horizontal heterogeneity is included here as the distance between

rows can change. In this work, plants are solely competing for light and the daily
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intercepted light is calculated for each species individually. All plants belonging to

the same species are treated identically here.

Zone of influence models, where architectural representations of individual plants

are aggregated to the crop scale, are another method of simulating intercropped

systems [46]. Garcia-Barrios et al. [22] describes an example of such a model where

a system of ODEs is used to mathematically model the canopy biomass of a number

of individual plants which are aggregated to the multi-plant level. The impact that

one plant has on another is a function of the distance between them and empirically

found values. Plant interactions are limited to two plants at a time, and so the

case where three or more plants competing at one point is not considered. In this

work the canopy biomass of Radish and Bushbean in an inter-cropped environment

is investigated, it was found that this model was able to predict the canopy biomass

of each species satisfactorily.

These spatially explicit methods allow for the heterogeneity of the system and

include the architectural organisation of different species, however, they are more

often applied to simulating tree growth and are rarely applied to annual crops [46].

2.8 Applications of crop growth models/ model valida-

tion

Even if a mathematical model demonstrates a robust ability to simulate crop be-

haviour it may come across problems concerning uptake and validation by farmers.

Some of the issues facing crop modellers are summarised in this section.

Agronomic trials are often expensive and so validating a mathematical model

can often be financially infeasible [37]. In contrast to traditional experiments, crop

experiments are often testing several hypotheses at once [51]. In addition, field

experiments, and even greenhouse experiments, are rarely precise, thus giving indef-

inite results to compare with the model [51].

It is a problem for crop modelling in general to attain rigorously designed and

well documented long-term experiments to validate crop models [35].
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Model performance is limited to the quality of the input data and so without

accurate parameter values, it is unlikely that any model will give accurate results for

a variety of scenarios. Furthermore, not all the processes of plant development are

fully understood, meaning that crop modelling parameters are approximated based

on empirical estimations rather than physiological understanding of the underlying

processes. The problem with this is that the empirical values are often site specific

and are not always transferable to other sites. In addition to this, many crop models

rely on meteorological data, which is in itself difficult to model. Hence modelling

future crop yield based on estimations of future weather data can be unreliable [51].

The pros and cons of highly detailed crop models are examined by Yan et al

[60]. Complex models may be able to provide a dynamic representation of crop

growth, however this has the cost of higher computational times. In addition, more

complicated models have a larger number of parameters in need of calibrating. It

is not always possible to measure these parameters directly and finding values for

them requires model data optimisation. It is possible to attain a good fit of the

experimental data with even a flawed model if using extensive optimisation on many

unknown model parameters. In addition, the accuracy of the optimisation method

needs to be taken into account in order to assess the accuracy of the parameter

estimates.

One issue for increasing the uptake of mathematical models is that overly com-

plex models with difficult input requirements, such as weather data, can make it

difficult for researchers in developing countries to run the models [37]. This is par-

ticularly relevant when working with underutilised crops, as these are typically grown

in developing countries.

2.9 Chapter summary

In this chapter a summary of the different approaches to mathematically modelling

plants and crops was presented and, in particular, approaches that have been applied

to bambara groundnut. A brief overview of the many categories was given, followed
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by a more detailed discussion of approaches that consider individual plants within

the crop scale.

The review of single plant modelling focused on work ascertaining to underly-

ing plant processes and involved a level of detail that would be impractical when

applied to a multi-plant model. In particular, plant architecture of varying levels

of complexity was considered, ranging from the simplest form being a circular zone

of influence that a plant impacts upon, to the most complex form where individual

stems and leaf positions are considered. We found that the best approach depended

on the aim of the work.

Within the discussion of population scale mathematical models, we found that

there were two main approaches, one where all plants were treated as a single entity

and another where an individual-based approach was applied. The former demon-

strated a strong predictive ability, however the latter was able to provide more

insight into how certain management practices could affect yield. It was found that

for modelling bambara groundnut, only the first approach has been considered.

A discussion of intercropping was then undertaken and it was found that the

spacing of individual plants in relation to each other was not always taken into ac-

count and the plant canopy was treated homogeneously. Individual-based zone of

influence models provided a spatially explicit approach that are able to incorporate

irregular plant spacing. In these models there is no consensus on how to incorpo-

rate competition and approaches range from linear empirical relationships to the

consideration of geometric overlap.

In the remainder of this thesis we discuss an individual-based zone of influence

approach to modelling bambara groundnut, paying specific attention to competition

for light. A series of ordinary differential equations (ODEs) are used to simulate

the growth of a single plant within a multi-plant environment. We begin with the

minimal number of ODEs possible to describe the growth of one plant so as to keep

the system as simple as possible. More ODEs are introduced over time so that

enough detail is provided within the model to allow us to make recommendations
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for best management practices. We assume a simplified plant architecture where

the plant canopy is described by a cylindrical canopy raised on a core stem. The

competition between plants is calculated as a function of the geometric overlap

between plant canopies and we allow for more than two plants to compete for light

at one point.
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Chapter 3

A Mathematical Model of

Bambara Groundnut

In this chapter, an individual-based mathematical model of bambara groundnut is

formulated. We begin with a description of plant growth at the single plant scale.

Following this, interactions between two competing plants are examined, which is

later scaled to the multi-plant (crop) scale. The single and multi-plant scales are

linked via canopy interactions that an individual plant has with its neighbours.

Model parameters are informed and the model tested using literature and green-

house experimental data.

3.1 A single plant model

Consider a single plant growing without competition from neighbouring plants; there

are countless processes occurring within this plant that all play a part in its growth

and development. A mathematical model designed to simulate all of these processes

is infeasible as it would be impractically complex. Instead, certain processes are

selected depending on what one hopes to gain from mathematically modelling the

growth of this plant. The motivation of this work is to investigate the effect that

variation at the individual plant scale has on the crop scale. This is done using the

primary output of crop yield. In particular, we are interested in understanding plant
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canopy interactions and their impact on plant growth and overall crop yield.

In order to formulate the model, we first consider the plant structure. Leaves

grow on multiple lateral stems that spread along the ground, as illustrated in Figure

3.1. The spread of the plant canopy ranges from bunched to spreading for different

species. For the purposes of this model, the plant canopy is simplified to a disc

representing the layers of leaves, raised above the ground by a core stem. This

approximation accounts for all main aspects of the plant’s geometry we wish to

include, while simplifying the mathematical modelling process. In addition, this

simplified plant geometry is transferable to many other plant physiologies such as

other legumes and also oil palm, which is particularly relevant in Chapter 7 when

we apply the model to other species.

(a) (b)

Figure 3.1: (a) is a schematic of the plant canopy of bambara groundnut; and (b) is
a birds-eye view of a single bambara groundnut plant 51 days after sowing.

The growth of a plant in the absence of competition will depend on other envi-

ronmental conditions external to the plant, such as solar radiation, nutrients in the

soil, water and temperature. In this study, we limit our investigation to competition

for light, as such water and soil nutrients are assumed to be non-limiting, leaving
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temperature and solar radiation to be the primary influencers of plant growth.

It is acknowledged that the gain in biomass of a plant is directly dependent on the

absorbed radiation, which is absorbed through sunlight [40]. In this work, sunlight

is assumed to be constant and does not vary in space or time. It is known that

radiation is absorbed through the leaves and so to calculate the energy gained from

sunlight, leaf area needs to be calculated. Marcelis [40] discusses the advantages

and disadvantages of simulating leaf area independently or as a function of canopy

biomass. He stipulates that calculating leaf area as a function of canopy biomass is

appropriate when simulating a greenhouse environment, however shifts the problem

from simulating leaf area to simulating specific leaf area (the leaf area per unit

ground cover) over time [40]. In this model we adopt this approach and assume that

leaf area and canopy biomass have a uniform relationship; this method eliminates

the need for a further equation describing leaf area.

We now introduce a method of determining leaf area from canopy biomass. A

relationship between leaf mass LM(t) and total leaf area A(t) known as the specific

leaf area φ, gives an associated ratio between leaf area and canopy biomass

φ = A(t)
LM(t) , (3.1)

which is assumed to be constant over time for simplification. In addition, the rela-

tionship between leaf mass and stem mass SM(t) can be described by a constant of

proportionality ψ given by

SM(t) = ψ × LM(t). (3.2)

Evidence of this can be found in Figure 3.6 in Section 3.4.1 where parameterisation

is discussed more thoroughly. The total canopy biomass c(t) is equal to the sum of

the leaf and stem mass so that

c(t) = SM(t) + LM(t) = (1 + ψ)LM(t). (3.3)
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Substituting equation (3.1) and (3.2) into (3.3) and rearranging for A(t) gives

A(t) = φc(t)
1 + ψ

. (3.4)

Leaf area, leaf, stem and canopy biomass vary over time, however ψ and φ are

assumed constant.

Now that leaf area can be described as a function of canopy biomass, the inter-

cepted radiation a plant canopy is able to absorb per unit surface area R can be

calculated. The light transmitting through the canopy decreases exponentially with

canopy thickness, given by leaf area index. A well established approximation for a

plant’s radiation absorption is given by the Beer-Lambert law [15]

R = R0(1 − exp(−κγ(t))). (3.5)

Here R0 is the available photosynthetically active radiation above the canopy, κ is

the extinction coefficient, which relates to the geometry of the leaf position (e.g. for

flat leaves this will be equal to one) and γ(t) denotes the leaf area index, which is

the leaf area per unit ground surface area. This method of calculating the absorbed

radiation is common in plant models and typically γ(t) is calculated so that the total

leaf area of all plants is divided by the total plot area. In our case, where plants are

considered on an individual basis, an adaptation of this is used. Here, a local leaf

area index is defined, which is the ratio of plant leaf area and ground area per plant

such that

γ(t) = A(t)
G(t) , (3.6)

where G(t) is the ground cover of the plant’s canopy. Here, γ(t) can be thought of

as the thickness of the disc that represents a plant canopy; a large γ(t) value would

mean a high ratio of leaf area to plant ground cover and so more layers of leaves

and thus a thicker disc. Conversely, a small γ(t) would indicate a lower leaf area to

plant ground cover value and so fewer layers of leaves.

Ground cover can be determined in terms of the leaf area using an established
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empirical relationship [19] given by

G(t) = G
(1−B)
0 A(t)B, (3.7)

where G0 is the initial ground cover, A(t) is the leaf area and B is an empirical value

that relates to the spread of the plant and ranges between zero and one.

To find the total radiation that has been absorbed by a plant, the total radiation

per area R, given in equation (3.5), needs to be multiplied by the surface area of

the plant’s canopy which intercepts radiation i.e. the ground cover G(t). After

absorbing the photosynthetically active radiation, the plant must then convert that

energy to biomass. This is incorporated into the model by including an efficiency

coefficient ck, which describes the mass gained per unit radiation. In addition, no

matter how much radiation the plant is exposed to, there is a maximum size the

plant can reach. This limiting factor is incorporated via the inclusion of a carrying

capacity kc, so that as biomass approaches kc, growth rate decreases.

Combining the total incoming radiation with the plant’s ability to convert radi-

ation into mass gives the canopy biomass growth rate as

Canopy growth rate = RckG(t)
(

1 − c(t)
kc

)
. (3.8)

There is also some amount of canopy decay due to leaf senescence and pests. This

is assumed proportional to the size of the canopy and is given by

Canopy decay rate = dcc(t), (3.9)

where dc is the biomass decay rate and is assumed constant. By combining the

relationships described in equations (3.8) and (3.9) the change in canopy biomass

over time can be written as

dc(t)
dt

= R0ckG(t)(1 − e−κγ(t))
(

1 − c(t)
kc

)
− dcc(t). (3.10)
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This newly devised equation is similar to previous mathematical models [32, 19],

however with the addition of a carrying capacity.

Substituting equation (3.4) into (3.6) and (3.7) and then substituting equations

(3.6) and (3.7) into (3.10) leads to a non-linear ODE describing the growth of a

single plant in terms of c(t),

dc(t)
dt

= R0ckG
(1−B)
0

(
φc(t)
1 + ψ

)B
1 − e

−κ

(
φc(t)

G0(1+ψ)

)1−B(1 − c(t)
kc

)
−dcc(t). (3.11)

The initial condition for this equation is the mass of one single leaf and its associated

stem such that c(0) = c0.

3.2 Quantifying competition between plants

In order to scale the single plant to the many plant scale, competition between

plants must be included. To do this, we first consider interactions between two plant

canopies and a means of quantifying canopy-canopy competition between them is

introduced here. Before doing so we discuss necessary assumptions that have been

made regarding the plant canopies.

It has been previously stated that plant canopies are assumed to be circular discs

raised above the ground by a central stem. The disc represents the layers of leaves

within the canopy. A schematic diagram of two such interacting plants is shown in

Figure 3.2. Similarly, it has been stated that light and temperature are the only

limiting growth factors. Since temperature is not a competitive resource, the only

form of competition we are interested in is the competition for light as a result of

canopy-canopy shadowing. A plant that shadows another plant blocks sunlight from

reaching the shorter plant’s canopy so that competition for sunlight between plants

will depend on which plant is taller. There are thus three scenarios which may occur

for two adjacent plants:

1. The two plants grow at the same height for all time until they reach their

32



Chapter 3. A Mathematical Model of Bambara Groundnut

maximum size; or

2. Plant 1 grows higher than Plant 2 and its canopy overshadows that of Plant

2; or

3. Plant 2 grows higher than Plant 1 and its canopy overshadows that of Plant

1.

Scenario 3 is illustrated in Figure 3.2(a), a birds-eye view of two interacting

plants is illustrated in Figure 3.2(b), where the distance between the centre of each

plant is denoted by D.

The inter-plant competition can then be described by the proportion of the lower

canopy that is shadowed by the taller one.

3.2.1 Calculating canopy-canopy shadowing/overlap

Here we calculate the overlap of two intersecting plant canopies where overlap O is

defined as the fraction of area that the shorter plant’s canopy has shadowed by the

taller plant.

The two plant canopies are represented by Circle 1 (c1) and Circle 2 (c2) with

radii r1 and r2, respectively, as shown in Figure 3.3. Since we assume that sunlight

comes from directly above the plants, the area of Plant 1’s canopy that is shadowed

by Plant 2 is given by the area of intersection of these two circles, denoted by I. To

calculate I in terms of r1, r2 and D we need to determine how these are related. To

do this we subtend lines from the centre of each circle to points on their circumference

where they intersect. This leads to the shaded rhombus in Figure 3.3. We will now

demonstrate how we calculate I for several varying states of intersection.

Figure 3.3 shows two segments s1 and s2 of c1 and c2 divided into three regions

A, I, and B, where A+ I is a segment of c1, B + I is a segment of c2 and I is the

area of intersection that we wish to determine. The sum of segments s1 and s2 is

given such that

s1 + s2 = A+ 2I +B, (3.12)
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(a)

(b)

Figure 3.2: Two competing plants, where D is the distance between the centre of
the two circles that represent the interacting plant canopies. (a) is a side view of two
competing plants, where Plant 2 has grown higher than Plant 1 thus overshadowing
part of its canopy. (b) is a birds-eye view of two competing plants, where Plant 2 has
grown higher than Plant 1 thus overshadowing part of its canopy. The intersection of
the two circles gives the spatial overlap between the plants and thus the proportion
by which Plant 2 shadows the canopy of Plant 1.

Rearranging (3.12) for I gives

I = s1 + s2 − (A+B + I). (3.13)
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Figure 3.3: Two circles representing the canopies of two competing plants. A segment
of each circle is highlighted so that s1 = A + I is the segment s1 of Circle 1 and
s2 = B + I is a segment s2 of Circle 2. The area of intersection of the two circles is
given by I.

The area of A + B + I can now be found in terms of the distance between plant

centres D and the vertical distance between the two intersecting points (See Figure

3.4).

To determine I it is necessary to find the area of segments s1 and s2 and the

distance between the two points of intersection of the two circles. We now find

the points of intersection. Let the centre points of c1 and c2 be (0, 0) and (D, 0)

respectively, with radii r1 and r2 so that the two circles can be described by

x2 + y2 = r2
1, (3.14)

(D − x)2 + y2 = r2
2. (3.15)

Combining equations (3.14) and (3.15) and rearranging for x we obtain

x = D2 − r2
1 + r2

2
2D , (3.16)
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which gives the perpendicular distance between the two intersection points and the

centre point of Circle 1. Similarly the perpendicular distance between the points

of intersection of the two circles and the centre of Circle 2 is given by D − x, as

illustrated in Figure 3.4.

Figure 3.4: Two circles representing the canopies of two competing plants. The
angles made by subtended lines from the points of intersections and the centre
points of Circles 1 and 2 are given by θ and φ, respectively.

It follows that for x > 0 then

θ = cos−1
(
x

r1

)
(3.17)

where θ, is the angle shown in Figure 3.4. The area of A+ I is then given by

s1 = r2
1
2 θ. (3.18)
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Bringing equations (3.16), (3.17) and (3.18) together gives

s1 = A+ I = r2
1 cos−1

(
D2 − r2

2 + r2
1

2Dr1

)
.

Similarly,

s2 = B + I = r2
2 cos−1

(
D2 + r2

2 − r2
1

2Dr2

)
.

All that is left is to find the area of A+ B + I. The area of a rhombus is given

by 1
2pq where p is the length of the longest diagonal, given here by D and q is the

length of the shortest diagonal, given here by 2y, which is the distance between the

two points of intersection. This can be found by rearranging for y in equation (3.14)

such that

y = 1
2D

√
6D2r2

1 −D4 − 2D2r2
2 + 2r2

1r
2
2 − r4

1 − r4
2,

which leads to

A+B + I = 1
2pq = Dy

= 1
2

√
6D2r2

1 −D4 − 2D2r2
2 + 2r2

1r
2
2 − r4

1 − r4
2. (3.19)

Finally, substituting equation (3.19) into equation (3.13) leads to

I = r2
1 cos−1

(
D2 + r2

1 − r2
2

2Dr1

)
+ r2

2 cos−1
(
D2 + r2

2 − r2
1

2Dr2

)

−1
2

√
6D2r2

1 −D4 − 2D2r2
2 + 2r2

1r
2
2 − r4

1 − r4
2. (3.20)

We now consider various scenarios regarding this interaction. If:

• r1 + r2 < D then the canopies of the two plants do not interact;

• D + r1 < r2 then c2 completely covers c1 and so the overlap area is equal to

the area of c1; and

• D + r2 < r1 then c1 completely covers c2 and so the overlap area is equal to

the area of c2.
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The area of overlap between the two circles given in equation (3.20) works for the

case x > 0; however, if the points of intersection of the two circles are not between

the centre points of the two circles, a different formula must be obtained.

In a case such as this, one of the circles would be much larger than the other.

We now consider the case where Circle 2 is much larger than Circle 1. Therefore

x < 0, which causes the points of intersection to be placed to the left of Circle 1’s

centre point, as illustrated in Figure 3.5.

Figure 3.5: Two circles representing the canopies of two competing plants. Here
Circle 2 is considerably larger than Circle 1. In this case, the points of intersection
of the two circles occurs to the left of the centre point of Circle 1. The chords of
the two circles are denoted by ch1 and ch2 respectively. The area I is marked with
hashed lines.

In this case I is a large proportion of Circle 1’s canopy. We define ch1 and ch2

as areas limited by a chord of Circle 1 and Circle 2 respectively, as illustrated in

Figure 3.5. To find I, ch2 needs to be subtracted from the ch1 and the sum of this
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needs to be subtracted from the area of Circle 1 A1 such that

I = A1 − (ch1 − ch2). (3.21)

The area of ch1 and ch2 are given such that

ch1 = r2
1cos

−1
(

−D2 + r2
1 − r2

2
2Dr1

)
−

r2
1 −D2 − r2

2
4D2

√
6D2r2

1 −D4 − 2D2r2
2 + 2r2

1r
2
2 − r4

1 − r4
2, (3.22)

and

ch2 = r2
1cos

−1
(
D2 + r2

1 − r2
2

2Dr2

)
−

D2 + r2
1 − r2

2
4D2

√
6D2r2

1 −D4 − 2D2r2
2 + 2r2

1r
2
2 − r4

1 − r4
2. (3.23)

Substituting ch1 and ch2 into equation (3.21) gives

I = c1 − r2
1cos

−1
(
D2 + r2

1 − r2
2

2Dr1

)
+ r2

2cos
−1
(
D2 + r2

1 − r2
2

2Dr2

)

−D
√

6D2r2
1 −D4 − 2D2r2

2 + 2r2
1r

2
2 − r4

1 − r4
2. (3.24)

Similarly if Circle 1 was much larger than Circle 2 so that x > D then the chord

area of Circle 1 needs to be subtracted from the chord area of Circle 2 giving

I = c2 − r2
1cos

−1
(
D2 − r2

1 + r2
2

2Dr1

)
+ r2

2cos
−1
(

−D2 − r2
1 + r2

2
2Dr2

)

−D
√

6D2r2
1 −D4 − 2D2r2

2 + 2r2
1r

2
2 − r4

1 − r4
2. (3.25)

The circles that symbolise plant canopies are designed to represent the area that

the canopy biomass described in equation (3.11) occupies, or in other words, the

zone of influence. As the circle size changes over time with canopy biomass, then I

also changes over time. We therefore apply a time dependency to equations (3.20),
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(3.24), and (3.25) which gives

I(t) =



r2
1(t) cos−1

(
D2+r2

1(t)−r2
2(t)

2Dr1(t)

)
+ r2

2(t) cos−1
(

D2+r2
2(t)−r2

1(t)
2Dr2(t)

)
− 1

2

√
6D2r2

1 −D4 − 2D2r2
2 + 2r2

1r
2
2 − r4

1 − r4
2, 0 < x < D

c1(t) − r2
2(t)cos−1

(
D2+r2

1(t)−r2
2(t)

2Dr2(t)

)
+ r2

2(t)cos−1
(

D2−r2
1(t)−r2

2(t)
2Dr2(t)

)
+D

√
6D2r2

1 −D4 − 2D2r2
2 + 2r2

1r
2
2 − r4

1 − r4
2, x < 0

c2(t) − r2
1(t)cos−1

(
D2−r2

1(t)+r2
2(t)

2Dr1(t)

)
+ r2

2(t)cos−1
(

−D2−r2
1+r2

2
2Dr2

)
−D

√
6D2r2

1 −D4 − 2D2r2
2 + 2r2

1r
2
2 − r4

1 − r4
2 x > D.

(3.26)

This concludes the formulation of I and we now wish to apply this to our math-

ematical model. In order to find the proportion of a plant’s canopy that is shad-

owed by a taller plant (O), the shadowed plant needs to be identified and therefore

plant height need to be determined. Thus, a new equation that describes the plant

height over time is introduced. We assume that plant height is unaffected by canopy

biomass and is assumed to grow logistically and decay exponentially so that the

heights of Plant 1 and Plant 2 are given by

dh1(t)
dt

= αhh1(t)
(

1 − h1(t)
kh1

)
− dhh1(t), (3.27)

dh2(t)
dt

= αhh2(t)
(

1 − h2(t)
kh2

)
− dhh2(t), (3.28)

where hi(t), i ∈ [1, 2] is the plant height of Plant 1 and Plant 2, respectively at

time t, αh is the height growth rate (assumed the same for each plant), kh1 and kh2

are the maximum plant heights for Plant 1 and Plant 2, respectively. We allow this

parameter to be different between the two plants so that we can impose a difference

in heights between Plants 1 and 2. Finally, dh is the degradation rate for the height

of the plant (also assumed the same for each plant). The initial condition for height

is the same for both plants and equivalent to that of one fully emerged leaf and
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stem, given by h0. This decoupled empirical approach to modelling plant height is

adopted as the level of detail required is to compare heights across a population. As

such, determining height in a mechanistic way would add an unnecessary level of

complexity.

Over time, the height of two neighbouring plants is compared, so that the taller

and shorter plant can be established as illustrated in Figure 3.2. Once the heights

of the plants has been calculated, the overlap of Plant 1 O1 can be calculated such

that

O1(t) =


I(t)

G1(t) , h1(t) < h2(t)

0, h1(t) > h2(t).
(3.29)

Similarly, the overlap of Plant 2 can be calculated such that

O2(t) =


I(t)

G2(t) , h2(t) < h1(t)

0, h2(t) > h1(t).
(3.30)

This concludes the discussion of the method of mathematically quantifying compe-

tition between two plants. The manner in which it is included into the individual

plant model to make the two plant model is now considered.

3.3 Two-plant competition model

Before moving onto the many plant scale we consider our model in the context of two

interacting plants. The biomass growth rate, as described in equation (3.8), relates

to the total amount of radiation that the exposed plant canopy can absorb and

how efficient the plant is at converting energy into mass. If a plant is shadowed by

another the amount of exposed plant canopy decreases and so too does the biomass

growth rate. The amount that the growth rate decreases is equal to the proportion

of canopy that is shadowed. Then the two non-linear ODE model that describes the
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growth of the two competing plant canopies is given by

dc1(t)
dt

= R0ckG
(1−B)
0

(
φc1(t)
1 + ψ

)B

(1 − e
−κ

(
φc1(t)
G0(1+ψ)

)1−B

) (1 −O1(t))
(

1 − c1(t)
kc

)
−dcc1(t), (3.31)

dc2(t)
dt

= R0ckG
(1−B)
0

(
φc2(t)
1 + ψ

)B

(1 − e
−κ

(
φc2(t)
G0(1+ψ)

)1−B

) (1 −O2(t))
(

1 − c2(t)
kc

)
−dcc2(t), (3.32)

with

c1(0) = c0 and c2(0) = c0.

Here parameters for both plants are identical with the only difference between the

c1(t) and c2(t) equations being that incurred by competition. The heights of Plant

1 and Plant 2 are described by equations (3.27) and (3.28), respectively, where

kh1 6= kh2.

3.3.1 Non-dimensionalisation

Non-dimensionalisation is the process of rescaling a dimensional system into non-

dimensional variables using a suitable variable scaling. It is accomplished by dividing

each variable by a constant scaling parameter. By non-dimensionalising, parameters

are grouped giving a simplified view of the model equations. This causes the anal-

ysis of the model equations to be simpler, including but not limited to a sensitivity

analysis and parameterisation.

For the model described in this section, let the dimensional variables h1, h2, c1,

c2 and t be rescaled such that

hi(τ) = h0ĥi(τ), ci(t) = c0ĉi(τ) with i ∈ [1, 2] and t = τ

αh

where a hat signifies a non-dimensional physical variable and τ denotes non-dimensional

time. Then equations (3.27), (3.28), (3.31) and (3.32) can be non-dimensionalised
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to

dĥ1(τ)
dτ

= ĥ1(τ)
(
1 − K̄h1ĥ1(τ)

)
− dhĥ1(τ), (3.33)

dĉ1(τ)
dτ

= αcĉ1(τ)
(
1 − exp

(
−κ̄ĉ(1−B)

1 (τ)
)) (

1 −O1(ĥ1, ĥ2, τ)
)

×(
1 − K̄cĉ1(τ)

)
− d̄cĉ1(τ), (3.34)

dĥ2(τ)
dτ

= ĥ2(τ)
(
1 − K̄h2ĥ2(τ)

)
− dhĥ2(τ), (3.35)

dĉ2(τ)
dτ

= αcĉ2(τ)
(
1 − exp

(
−κ̄ĉ(1−B)

2 (τ)
)) (

1 −O2(ĥ1, ĥ2, τ)
)

×(
1 − K̄cĉ2(τ)

)
− d̄cĉ2(τ), (3.36)

where

K̄h = h0
kh
, d̄h = dh

αh
, αc = R0ckG

(1−B)
0

αh

(
φ

1 + ψ

)B

c
(B−1)
0 ,

κ̄ = e

(
φc0

1 + ψ

)(1−B)
G

(B−1)
0 , K̄c = c0

kc
and d̄c = dc

αh
.

The initial conditions are

ĥ1(0) = ĉ1(0) = ĥ2(0) = ĉ2(0) = 1.

Equations (3.34) and (3.36) describe the non-dimensional system of equations de-

vised to simulate the growth of two plants. Henceforth this will be the system of

equations that we will consider, however, hereafter the hats and bars will be dropped

for notational convenience.

3.3.2 Two-plant model analysis

This section details the steady-state analysis of the two-plant model and the nec-

essary simplifications that have been made in order to perform the analysis. The

two plants are arranged with distance D between canopy centres, where D has been

chosen so that the two canopies will interact.

The change in plant height over time is assumed to be unaffected by canopy
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biomass and as such equations (3.33) and (3.35) de-couple from equations (3.34)

and (3.36) and can be solved analytically to give

h1(τ) = h0(1 − dh)exp((1 − dh)τ)
1 − dh − kh1h0 + kh1exp((1 − dh)τ)h0

, (3.37)

h2(τ) = h0(1 − dh)exp((1 − dh)τ)
1 − dh − kh2h0 + kh2exp((1 − dh)τ)h0

. (3.38)

We assume the following simplifications so that the system becomes more amenable

to mathematical analysis. Firstly, it is assumed that there is a constant leaf area

index given by γ1 = 1 = γ2, which means that the ground cover is equal to the leaf

area, i.e. single layer of leaves. As γ is no longer a variable then (1 − exp(−κγ))

can be absorbed into the constant αc. In addition, since the ground cover is equal

to the leaf area then B = 1. Finally we assume that Plant 1 is taller than Plant 2,

(i.e. kh1 > kh2) and the plants are positioned close enough so that their canopies

interact. We therefore no longer consider equations (3.37)-(3.38) and instead focus

on the equations for canopy biomass. Since Plant 2 is being shadowed, its biomass

growth will be affected whereas Plant 1 will be unaffected by the presence of Plant 2.

With these assumptions we reduce the system given by equations (3.34) and (3.36)

to

dc1(τ)
dτ

= αcc1(τ) (1 −Kcc1(τ)) − dcc1(τ). (3.39)

dc2(τ)
dτ

= αcc2(τ)
(

1 − O(h1, h2, τ)
βc2

)
(1 −Kcc2(τ)) − dcc2(τ). (3.40)

Given the complexity of the overlap expression of equation (3.26), it is necessary

to approximate the overlap with an appropriate simplification. By observing that

I ∝ r2, where r is the radius of the area of ground that the plant covers and also that

leaf area is equal to the ground cover, it can be seen that I ∝ A, where A denotes

leaf area. Thus overlap is approximated using a linear function of c1, namely

O(t) = σ(c1(t) − λ)
G2(t) , (3.41)

44



Chapter 3. A Mathematical Model of Bambara Groundnut

where σ is the overlap growth rate and λ is the canopy biomass for which plant-plant

overlap begins. The values for both parameters are yet to be determined. We

later show, when numerical simulations of the system are conducted, that this is an

appropriate approximation by comparing the approximation with the exact solution

in Figure 3.11 of Section 3.4.

The linear approximation for O is only applicable when overlap exists, therefore

it is necessary for

σ =



0, if c2 = 0,

0, if c1 ≤ λ,

σ1, c1 > λ,

where λ > 0.

The approximate canopy biomass of Plants 1 and 2 are thus given by

dc1(τ)
dτ

= αcc1(τ) (1 −Kcc1(τ)) − dcc1(τ) = f(c1, c2), (3.42)

dc2(τ)
dτ

= αcc2(τ)
(

1 − σ(c1(τ) − λ)
βc2(τ)

)
(1 −Kcc2(τ)) − dcc2(τ)

= g(c1, c2), (3.43)

where

β = G0

(
φc0

1 + ψ

)
,

is constant. The initial conditions are given by

c1(0) = 1 = c2(0).

Since equation (3.43) cannot both be solved in closed form analytically, we in-

stead determine the steady states of the model equations and their stability in order

to determine the system behaviour. The system steady-states are found by setting
dc1
dτ = dc2

dτ = 0 so that
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f : αcc
∗
1 (1 −Kcc

∗
1) − dcc

∗
1 = 0, (3.44)

g : αcc
∗
2

(
1 − σ(c∗

1 − λ)
βc∗

2

)
(1 −Kcc

∗
2) − dcc

∗
2 = 0, (3.45)

and solving for the steady-state canopy biomass c∗
1 and c∗

2, respectively. By solving

equation (3.44) for c∗
1 it can be seen that

c∗
1 = 0 or c∗

1 = αc − dc

αcKc
.

Substituting c∗
1 = 0 into equation (3.45) and solving for c∗

2 yields

c∗
2 = 0 or c∗

2 = αc − dc

αcKc
.

Substituting c∗
1 = αc−dc

αcKc
into equation (3.45) and solving for c∗

2 yields

c∗
2 = 0, c∗

2 =
−β1 +

√
β2

1 − 4β2

2 or, c∗
2 =

−β1 −
√
β2

1 − 4β2

2 ,

where

β1 = dc − αc

αcKc
− β

(
σ(αc − dc)
αcKc

− σλ

)
, (3.46)

β2 = β

Kc

(
σ(αc − dc)
αcKc

− σλ

)
. (3.47)
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To summarise, equations (3.44) and (3.45) have the following five steady-states

(c∗
1, c

∗
2)1 = (0, 0), (3.48)

(c∗
1, c

∗
2)2 =

(
0, αc − dc

αcKc

)
, (3.49)

(c∗
1, c

∗
2)3 =

(
αc − dc

αcKc
, 0
)
, (3.50)

(c∗
1, c

∗
2)4 =

αc − dc

αcKc
,
−β1 +

√
β2

1 − 4β2

2

 , (3.51)

(c∗
1, c

∗
2)5 =

αc − dc

αcKc
,
−β1 −

√
β2

1 − 4β2

2

 . (3.52)

We now consider parameter bounds for these steady-states to be real and positive.

For steady-states (3.49)-(3.52) to be positive, which is a necessary condition for the

plants to be physical, we require the growth rate αc to be larger than the decay rate

dc. For steady states (c∗
1, c

∗
2)4 and (c∗

1, c
∗
2)5 we can see that since σ(αc−dc)

αcKc
−σλ refers

to the overlap, which by definition is greater than or equal to 0, β2 ≥ 0, therefore we

require β1 < 0 for (c∗
1, c

∗
2)4 and (c∗

1, c
∗
2)5 to be positive. We also require β2

1 − 4β2 > 0

for both steady-states to be real.

It is of interest to determine the linear stability of the system when a perturbation

is applied to the steady-states [43]. In order to determine the stability of each

steady-state we must solve ∣∣∣Â− ΛI
∣∣∣
(c∗

1,c∗
2)

= 0, (3.53)

for the eigenvalue Λ, where Â is the community matrix calculated such that

Â =

 ∂f
∂ĉ1

∂f
∂ĉ2

∂g
∂ĉ1

∂g
∂ĉ2

 . (3.54)

Note that for stability, we require Re(Λ) ≤ 0 [43].

The community matrix for the system of equations described by equations (3.44)
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and (3.45) is constructed such that:

∂f

∂ĉ1
= αc − 2αcKcc1 − dc, (3.55)

∂f

∂ĉ2
= 0, (3.56)

∂g

∂ĉ1
= −αcβσ(1 −Kcc2), (3.57)

∂g

∂ĉ2
= αc − 2αcKcc2 + αcKcβσ(c1 − λ) − dc. (3.58)

We can now solve equation (3.53) for Λ giving two solutions

Λ1 = αc − 2αcKcc1 − dc and Λ2 = αc − 2αcKcc2 + αcKcβσ(c1 − λ) − dc. (3.59)

We now use this result to determine the linear stability of each of the five steady-

states by substituting solutions (3.48) to (3.52) into equations (3.59).

For steady-state 1, c∗
1 = 0 = c∗

2 and σ = 0 (as there is no plant shadowing). Thus

Λ1 = αc − dc, (3.60)

and

Λ2 = αc − dc. (3.61)

For this steady-state to be stable we require Λ1 < 0 and Λ2 < 0 and hence

αc − dc < 0. If this is the case then the remaining steady-states do not exist in

the positive quadrant as they are not real, positive values. Hence (ĉ∗
1, ĉ

∗
2)1 is only

a stable steady-state if no other steady-states exist and the canopy growth rate of

each plant is less than the decay rate.

For (c∗
1, c

∗
2)2 we again have σ = 0 since there is still no plant shadowing. Substi-

tuting yields

Λ1 = αc − dc and Λ2 = −(αc − dc). (3.62)

If Λ1 < 0 and Λ2 < 0, then αc − dc < 0 and −(αc − dc) < 0, which is clearly a

contradiction and so steady-state 2 is unstable for all values of αc and dc.
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Likewise for (c∗
1, c

∗
2)3 and σ = 0 as again there is no plant shadowing. Substituting

(ĉ∗
1, ĉ

∗
2)3 into equations Λ1 and Λ2 yields

Λ1 = −(αc − dc) and Λ2 = αc − dc. (3.63)

To be stable we require Λ1 < 0 and Λ2 < 0, hence −(αc−dc) < 0 and αc−dc < 0,

which again is clearly a contradiction and so steady-state three is also unstable for all

values of αc and dc. Therefore for our system of equations it is not possible to have

one single plant as a stable steady-state since all parameter values, barring those

ascertaining to height, are equal and so if one plant grows so will the other. Note

that this may not be the case if variation was applied to individual plant parameters.

Substituting (ĉ∗
4, ĉ

∗
2)4 yields the eigenvalues

Λ1 = −(αc − dc), (3.64)

and

Λ2 = αc − dc − αcKc

(
−β1 +

√
β2

1 − 4β2

)
+ αcKc

σ

β

(
αc − dc

αcKc
− λ

)
. (3.65)

For Λ1 < 0 we require −(αc − dc) < 0, which is a requirement for steady-state

four to exist. To establish the sign of Λ2 we must substitute β1 from equation (3.46)

into equation (3.65) such that

Λ2 = αcKc

(
dc − αc

αcKc
− σ

β

(
αc − dc

αcKc
− λ

)
−
√
β2

1 − 4β2 + σ

β

(
αc − dc

αcKc
− λ

))
+αc − dc,

= −αcKc

√
β2

1 − 4β2. (3.66)

Since we require
√
β2

1 − 4β2 to be real for (ĉ∗
4, ĉ

∗
2)4 to be real, then if (ĉ∗

4, ĉ
∗
2)4 exists

Λ2 < 0 and it is stable.

Substituting the fifth steady-state, (ĉ∗
1, ĉ

∗
2)5 =

(
αc−dc
αcKc

,
−β1−

√
β2

1−4β2
2

)
, into equa-
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tions Λ1 and Λ2 yield the following eigenvalues:

Λ1 = −(αc − dc), (3.67)

and

Λ2 = αc − dc − αcKc

(
−β1 −

√
β2

1 − 4β2

)
+ αcKc

σ

β

(
αc − dc

αcKc
− λ

)
. (3.68)

For Λ1 < 0 we require −(αc − dc) < 0, which is a requirement for steady-state

four and five to exist. To establish the sign of Λ2 we must again substitute β1 from

equation (3.46) into equation (3.68) such that

Λ2 = αcKc

(
dc − αc

αcKc
+ σ

β

(
αc − dc

αcKc
− λ

)
+
√
β2

1 − 4β2 + σ

β

(
αc − dc

αcKc
− λ

))
+αc − dc,

= αcKc

√
β2

1 − 4β2). (3.69)

From equation (3.69) it is clear that Λ2 > 0 since
√
β2

1 − 4β2 being real and positive

is a condition for steady-state five to exist. Hence, steady-state five is unstable.

To summarise, there is only one real positive stable steady-state, which is either

(c∗
1, c

∗
2)1 or (c∗

1, c
∗
2)4 depending on the relationship between αc and dc. Hence, there is

only one pair of values the system will tend towards. The pair of values is non-zero if

and only if the canopy decay rate is smaller than the growth rate. Clearly (c∗
1, c

∗
2)1 is

the case where both plants do not grow and is not of interest to us when investigating

the interaction of two competing plants. Thus we will only consider (c∗
1, c

∗
2)4 as it is

the only non-trivial stable steady-state.

3.4 Numerical simulations

In this section a numerical investigation of two interacting plants described by equa-

tions (3.34) and (3.36) is conducted. The parameterisation of the model equations is

described in Section 3.4.1. We compare the steady-state solution for two interacting

plants to the numerical simulation to confirm that the numerical solver applied to
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our model equations is appropriate.

In our model t = 0 corresponds to fourteen days of total plant growth, which

is approximately the time of emergence of bambara groundnut, to 150 days, which

is approximately the time that the plant matures. The two plants are arranged

side by side with a distance that allows their canopies to interact. The system

of equations is solved numerically using the inbuilt MATLAB ODE solver ode15s,

which is specifically designed for stiff systems. This solver allows for relative and

absolute tolerances to be predetermined, by the user, and adjusts the time step so

that the tolerances are met; in this case, both tolerances have been set to 1 × 10−6.

These simulations use the test species Uniswa Red and S19-3, the parameters of

which can be found in Table 3.1. This validity of this numerical method is checked

in Section 3.4.2.

3.4.1 Parameterisation

The model described by equations (3.33) to (3.36) have been parametrised using a

range of techniques including values sourced from the literature, informed estimates

of unknown parameters and model data fitting. We began parametrisation by using

those values directly available from the literature. Where such values were not

available, estimates were made to parameters based upon their role in the growth

and development of the plant. This approach was then refined by comparing the

model with data, however data on individual plant growth were not available. The

experimental data available to us for parameterisation are from the Tropical Crops

Research Unit (TCRU) greenhouse experiments conducted in 2003 and 2006. A

detailed description of the experimental methodology can be found in [32]. The data

consist of two species: Uniswa Red and S19-3, undergoing temperature treatments

of 23◦C, 28◦C, and 33◦C. Leaf number, leaf area, leaf mass, stem mass, root mass,

pod mass and total biomass have been monitored over sixteen day intervals starting

at thirty three days. The distance between plants is constant with 35cm between

columns and 20cm between rows and the supply of water is non-limiting. The
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Parameter Value Description Source
αh 0.75 The height growth rate

(day−1)
This study

kh 20∗, 30† The carrying capacity for the
height of plant j (m)

This study

dh 0.02 The decay rate of the plant
height (day−1)

This study

R0 8 The total photosynthetically
incoming radiation that
penetrates the greenhouse
(MJm−2day−1)

Met Office [41]

ck 3.02∗, 2.02† Radiation use efficiency
(gMj−1)

This study

κ 0.6 The light extinction coeffi-
cient

Cornelissen [20]

kc 188.31∗, 184.92† The maximum carrying ca-
pacity for the canopy biomass
of a plant (g)

This study

dc 1.2 × 10−3∗, 5 ×
10−4†

The decay rate of the canopy
biomass (day−1)

This study

φ 1.65 × 10−2∗,
1.62 × 10−2†

Specific Leaf Area, the leaf
area per gram of leaf mass
(m2g−1)

This study

ψ 0.55∗, 0.56† Partitioning coefficient, the
fraction of above ground
biomass appropriated to the
stem.

This study

B 0.7∗, 0.71† Canopy spreading parameter This study
h0 0.05 The initial conditions for

plant height (m)
This study

c0 0.24∗, 0.19† The initial conditions for
plant canopy (g)

This study

Table 3.1: Table of parameter values and descriptions for informing equations (3.37) to
(3.40). For parameters that are species specific, ∗ denotes the species S19-3 and † denotes
Uniswa Red.

distance between plants is such that they experience competition from multiple

plants at one point, data are collected using a destructive process and so the growth

of one plant in isolation can not be attained. As such, the parameters ck, kc and

dc have been found by taking a model-data least squared fit using the scaled up

multi-plant model described in Section 3.7. A summary of all parameters used in

this model for species’ Uniswa Red and S19-3 can be found in Table 3.1.
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(a) The relationship between leaf area and leaf mass.

(b) The relationship between leaf mass and stem mass.

Figure 3.6: The experimental data that provided the parameter values φ and ψ for
the species Uniswa Red. The data provided are from plants arranged in three rows
of five with a distance of 0.2m between rows and 0.35m between columns, for three
temperature regimes of 23◦C, 28◦C, and 33◦C.

The parameters R0, and κ have been taken directly from the literature, the

values and sources of which can be found in Table 3.1.

The parameters φ and ψ have been approximated directly from TCRU experi-

mental greenhouse data, which are given in Figures 3.6 and 3.7 for species Uniswa

Red and S19-3, respectively. The specific leaf area φ is assumed constant over time

and is given by the ratio between leaf area and leaf mass. From Figures 3.6(a) and

3.7(a) we can see that there is a linear relationship between leaf area and leaf mass,

which is consistent with our assumption made in equation (3.1) and so for each plant
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(a) The relationship between leaf area and leaf mass for each plant of
the experimental data.

(b) The relationship between leaf mass and stem mass for each plant
of the experimental data.

Figure 3.7: The experimental data that provided the parameter values φ and ψ for
the species S19-3. The data provided are from plants arranged in three rows of
five with a distance of 0.2m between rows and 0.35m between columns, for three
temperature regimes of 23◦C, 28◦C, and 33◦C.

in the experiment, labelled with a subscript i, we find

φi = Ai

LMi
.

Then φi is averaged over all plants in the experiments to give φ. Similarly the stem

mass partitioning coefficient ψ is assumed constant over time and is given by the
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ratio between leaf mass and stem mass. From Figures 3.6(b) and 3.7(b) we can

see that there is a linear relationship between leaf mass and stem mass, which is

consistent with the assumption made in equation (3.2) and so for each plant in the

experiment, labelled with a subscript i, we find

ψi = SMi

LMi
.

Then ψi is averaged over all plants of each species to give ψ. To find φ and ψ,

the outliers, defined as being more than 1.5 times the interquartile range above the

upper quartile or below the lower, have been removed.

Figure 3.8: A birds-eye view of plants simulated to demonstrate the plant layout of
the experiments. Distance between plants in a row is 20cm; the distance between
rows is 35cm.

The values for the parameters kc, ck, B and dc are not readily available from the

literature or the experimental data. In order to determine them we took a least-

squares fit of the TCRU experimental greenhouse data against a model simulation
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of the growth of fifteen plants given by

dci(τ)
dτ

= αcci(τ)
(
1 − exp

(
−κc(1−B)

i (τ)
))

(1 −Oi(h1, h2, ...hN , τ)) (1 −Kcci(τ))

−dcci(τ)

for i ∈ [1, 15].

For both the experiments and simulations, plants are arranged with a distance

between columns of 0.35m and a distance between rows of 0.2m, the temperature is

28◦C as this is the closest to the optimum temperature for both species Uniswa Red

and S19-3.

In the experimental dataset the canopy biomass of 15-20 plants had been col-

lected and averaged for eight time points, where the plants were randomly selected

from a larger set of experimental plants. For the simulations, we average the canopy

biomass of 15 plants the arrangement of which is given in Figure 3.8. The inbuilt

MATLAB function lsqcurvefit which is a nonlinear least-squares solver is then used

to conduct the least-squared fit.

There is no experimental data for the heights of the plants and so the model

parameter values have been approximated using biological knowledge from the lit-

erature [20]. We assume that all plant heights are the same so that competition is

shared over two interacting plants as described in Section 3.5.3. We choose this ap-

proach since observations of plants in the field showed that although plants are not

exactly the same height, all plants experience competition in the form of shadowing

from neighbours to a similar degree. This is because the leaves of adjacent plants

mingle with the multi-layered canopy. We assume each plant takes 50% of the total

competition.

In this section it is assumed that parameters for all plants are the same, however

it is possible to add random variation to each parameter and we explore this case in

the following chapter.

The non-dimensional parameters are found using the relationships described in

Section 3.3.1 and can be found in Table 3.2.
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Non-dimensional
parameters

Value

Kh 0.0025∗, 0.0016†

dh 1.3 × 10−2

αc 0.30∗, 0.22†

κ 0.6
Kc 1.95 × 10−3∗,1.58 × 10−3†

dc 1.6 × 10−3∗, 6.67 × 10−2†

Table 3.2: Table of non-dimensional parameter values. For parameters that are
species specific, ∗ denotes the species S19-3 and † denotes Uniswa Red.

3.4.2 Simulation of two interacting plants

A simulation is conducted of the two plants that are described by equations (3.33) to

(3.36) separated by a distance of 0.3m. All parameter values except Kh are the same

for these two plants. Figure 3.9 shows a birds-eye view of the two plant canopies

over six time points of the simulation and Figure 3.10 shows the evolution of canopy

biomass and plant height over time for the two plants.

As can be seen from Figures 3.9 and 3.10 the two plants grow side by side with

their canopies growing large enough to interact. Plant 1 is taller than Plant 2 and

when the plant canopies begin to interact, the canopy growth rate of Plant 2 slows.

In this case the overlap is calculated analytically as in equation (3.26), which

we will now refer to as OExact. We now wish to compare this case with that when

overlap is approximated as in the steady-state analysis given in equation (3.41);

we will refer to this as OApprox. This will allow us to confirm the validity of the

findings of the steady-state analysis. To use the approximate formula for overlap,

parameters σ and λ must be found. To do this a data fit has been applied to

equation (3.41). A numerical simulation of two plants with planting distance of

D = 0.3m and parameter values found in Table 3.2 for Uniswa Red is conducted.

The canopy-canopy overlap O is calculated as described in equation (3.26) and

recorded over time. Then σ and λ are found so that equation (3.41) best fits OExact

calculated within the simulation. The non-linear least-squares MATLAB solver,

lsqcurvefit, is used to fit the data. The advantage of lsqcurvefit is that it is simple
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(a) 25 days (b) 50 days

(c) 75 days (d) 100 days

(e) 125 days (f) 150 days

Figure 3.9: The spread of the canopy surface area for two competing plants over 6
time points. The growth of the two plants is described by equations (3.33) to (3.36)
with the overlap given by equation (3.26). The taller plant (Plant 1) is indicated
with a solid line, whereas the shorter plant (Plant 2) is given by a dashed line.

to implement; a disadvantage is that it is not as robust as other methods and can

converge to a local minima.

A comparison of the overlap calculated as in equation (3.26) and the approxi-

mated overlap calculated as in equation (3.41) can be found in Figure 3.11(a). The

parameters σ and λ have been found to be 7.6×10−4m g−1 and 34.93g, respectively.

The residual norm is a measure of the goodness of fit and in this case is found to
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(a) Canopy Biomass

(b) Plant Height

Figure 3.10: (a) The change in canopy biomass of two competing plants, the growth
of which is described by equations (3.33) to (3.36). The overlap is calculated analyt-
ically as in equation (3.26). (b) The respective height of each plant. The taller plant
is indicated with a solid line, whereas the shorter plant has a dashed line. Time is
measured in days after sowing, otherwise referred to as DAS.

be 7.1 × 10−4, where a plot of the residuals can be found in Figure 3.11(b). The

goodness of the fit depends on O. Despite this, the residual norm is small enough

that we are satisfied with the goodness of fit for the purposes of comparing the full

and approximate overlap.

Now that the framework for conducting simulations has been established, we are

able to compare the affect that the different types of overlap have on canopy biomass

and therefore the validity of our steady-state analysis. Note that the taller plant is

entirely unaffected as it does not depend on O and so it is only the shorter plant

that we wish to compare. Figure 3.12 shows the evolution of canopy biomass of the
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(a) A comparison of the two overlap calculations as functions of the
canopy biomass of Plant 2

(b) The residuals of the least-squared fit.

Figure 3.11: A examination of the goodness of fit when approximating the analytical
overlap as calculated in equation (3.26) with an approximated overlap as given in
equation (3.41).

shorter plant for both OApprox and OExact. Clearly the impact of approximating

overlap has not had a significant effect on the model with only a 0.01% change to

the canopy biomass of the shorter plant when using the approximate overlap when

compared with the exact. Thus the approximation works well.

We now wish to compare the numerical simulations with the steady-state analysis

to determine whether the numerical solver being used is appropriate. To do this,

it is required that the numerical and analytical simulations are comparable, hence

the simplifications made to the model equation so that the steady-state analysis

was possible must also be applied to the model equation used for the numerical
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Figure 3.12: The evolution of canopy biomass for the shorter of two competing
plants for when overlap is described by OApprox and OExact.

approximation.

In the steady-state analysis the leaf area index was set to a constant value of

1; this would cause the plants’ canopies to have a wider spread and so the plant-

ing distance is increased from 0.3m to 0.8m. We use the approximate overlap from

equation (3.41) and so once again we must apply a data fitting process to equation

(3.41) to find parameters σ and λ since these parameters change for different scenar-

ios. We repeat the process of finding σ and λ using the same non-linear least-squares

MATLAB solver as before.

With these new values of σ = 6.1 × 10−3m g−1 and λ = 70.25g we conduct a

numerical simulation of equations (3.42) and (3.43) using equation (3.41) to calcu-

late the overlap. The numerical solution at 600 days is then compared with the

steady-state result given by equation (3.51), where both methods use the parameter

values for Uniswa Red found in Table 3.2. The simulation results for the two plant

scenario can be found in Figure 3.13.

Table 3.3 compares the analytic values for the canopy biomass values of Plants 1

and 2 with the numerical simulations. It is clear that the numerical simulation and

the analytical method produces similar results, with a relative error of 3.64×10−5%
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(a)

(b)

(c)

Figure 3.13: Simulation of the two plant model, where Plant 1 is taller than Plant 2,
with a distance between each plant of 80cm. Overlap has been approximated using
equation (3.41) and the leaf area index is constant and equal to one. The taller
plant is indicated with a solid line, whereas the shorter one by a dashed line. Here,
(a) is the simulated canopy biomass of two plants; (b) is the simulated plant height
of two plants; and (c) is the birds-eye view of two plants at 150 days.
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for Plant 1 and 0.04% for Plant 2. Thus the numerical method used is suitable for

future simulations.

Now that this has been established we remove the simplifications applied to the

model equations that made the system more amenable to analysis, i.e. leaf area

index returns to being a variable which can take a value larger than 1. As such

the plant ground cover reduces and so too does the minimum planting distance that

allows two plants to interact.

Canopy Biomass (g)
Plant 1 Plant 2

Analytical results 184.7974 184.7974
Numerical results 184.7974 184.7260

Table 3.3: Comparison of simulation and steady-state values given in equation (3.51)
at 600 days. The simulation and steady-state values are for two plants, where Plant
1 is taller than Plant 2.

The parameters σ and λ only apply to particular cases since a change in D with

no change to plant canopy size would still require a change in O. This has not

been accounted for in the approximate expression for O, therefore any change in

model parameters such as planting distance, the number of plants, or the carrying

capacity would require σ and λ to be recalculated. We therefore conclude that it is

not appropriate to replace equation (3.26) with equation (3.41) permanently.

3.5 Refining the model

In the previous sections a two plant model has been formulated and solved both

analytically and numerically. We now consider how our results compare to reality

and identify flaws in the mathematical model that need refining.

3.5.1 Including the effect of competition in the carrying capacity

Bambara groundnut is assumed to reach plant maturity one hundred and fifty days

after sowing. By observing Figure 3.10, it is clear that the affect of competition on

Plant 2 at the time of maturity is very small, with approximately 11.30% difference
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in canopy biomasses. Kouassi et al. [34], discusses the effect that sowing density

has on bambara groundnut yield. They found that the difference between plants

arranged in a square grid that experience no competition (with a planting distance

of 80cm by 80cm) and plants that experience moderate competition (with a planting

distance of 40cm by 40cm) is approximately 23%. Although this case is for multiple

neighbours at once it causes us to realise that in the case of our two competing plants,

we would expect a plant that is shadowed by only one neighbour to be significantly

more affected than our current model predicts. As such we now revise the way that

competition between plants is described in the model.

Assuming one plant overshadows the other, it would not only reduce the growth

rate of its neighbour but also stunt its final canopy size. Thus the carrying capacity of

the canopy being shadowed should decrease proportional to the degree of shadowing

such that

kci(Oi(t)) = max (kmin, kc (1 −Oi(t))) , (3.70)

where kmin is the carrying capacity of a plant that is fully shadowed, kc is the

carrying capacity without plant-plant competition and Oi is the proportion of area

that Plant i has shadowed. If equation (3.70) replaces kc in equations (3.34) and

(3.36) the non-dimensional system of equations becomes

dc1(τ)
dτ

= αc

(
1 − exp

(
−κc(1−B)

1 (τ)
))(

1 − c0
ci(τ)

kc1(O1(τ))

)
− dcc1(τ). (3.71)

dc2(τ)
dτ

= αc

(
1 − exp

(
−κc(1−B)

2 (τ)
))

(1 −O2(h1, h2, τ))
(

1 − c0
c2(τ)

kc2(O2(τ))

)
−dcc2(τ). (3.72)

The description of plant height has not changed and is described by equations (3.37)

and (3.38).

The simulation of the model equations (3.71) and (3.72) can be found in Figure

3.14. We choose a distance between plants of 0.4m for this example as this is the

planting distance Kouassi et al. [34] reported to cause moderate competition. The

simulation is run to 150 days as this is the time of maturity. The shorter plant
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(Plant 2) is affected by competition, however the taller plant (Plant 1) is not. The

difference between the two plant canopies at 150 days is now approximately 21.32%,

which is clearly a more significant difference and more in line with that observed

experimentally. The change in plant height over time has not changed and is given

in Figure 3.13(b).

Figure 3.14: Simulation of the two plant model, where Plant 1 is taller than Plant 2
and the distance between plants is 0.4m. Overlap has been calculated using equation
(3.26), leaf area index varies over time and canopy carrying capacity varies with
overlap. The taller plant is indicated with a solid line, whereas the shorter plant has
a dashed line.

3.5.2 Including the effect of temperature into the governing equa-

tions

It is well established that temperature has an important impact on canopy devel-

opment [32]. Greenhouse experiments have been conducted that have allowed the

canopy biomass to be recorded for a number of plants for three temperatures. Fur-

ther details of these experiments can be found in [32]. Figure 3.15 depicts how

temperature affects the average canopy biomass over time for three temperature

regimes of the experimental data for species Uniswa Red and S19-3. Clearly, a
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temperature of 28◦C yields the highest canopy biomass, followed by 33◦C and then

23◦C.

(a)

(b)

Figure 3.15: The canopy biomass over time as found in the Tropical Crops Research
Unit (TCRU) greenhouse experiments for temperatures of 23◦C, 28◦C and 33◦C for
the two species of bambara groundnut: (a) Uniswa Red; and (b) S19-3.

The two-scale mathematical model described by equations (3.71) and (3.72) does

not include temperature as a variable. Instead we have indirectly assumed that the

incoming radiation R and temperature positively correlate, i.e. varying values of R

indicate variations in temperature. This may not always be the case, particularly

in controlled greenhouse conditions where a constant temperature is imposed. In

this section a method of incorporating temperature into the governing equations is

discussed.

66



Chapter 3. A Mathematical Model of Bambara Groundnut

In order to incorporate the effect of temperature into the model, a temperature

stress is introduced. Let the critical temperature Tcrit be defined such that it is the

minimum temperature required for plant growth. If the ambient temperature falls

below Tcrit then the plant is sufficiently stressed and unable to grow. Similarly, an

optimum temperature Topt is defined such that it is the temperature that provides

the most favourable conditions for canopy growth. Finally, Tceil is defined to be

the upper limit for temperature. Then the temperature stress Ts is calculated as a

function of the critical temperature, the optimum temperature, and the actual daily

temperature T (t) so that as the daily temperature deviates from the optimum the

more stress is put upon the plant. Therefore Ts is a parameter that ranges between

0 and 1 and given by

Ts(T ) =


1 −

∣∣∣1 − T (t)−Tcrit
Topt−Tcrit

∣∣∣ if Tcrit < T < Tceil,

0 otherwise.
(3.73)

Here a 1 would indicate no stress and 0 would indicate considerable stress. This

method is a novel adaptation of the common method of determining the phenological

age. To our current knowledge, it has not been used in the form of a temperature

stress.

Given incoming radiation is the only environmental factor in our model that is

linked to temperature we choose to modify this parameter such that

R(t) = R0(1 − exp(−κγ(t)))
[
1 −

∣∣∣∣∣1 − T (t) − Tcrit

Topt − Tcrit

∣∣∣∣∣
]
. (3.74)

For simplicity we have assumed that temperature T (t) remains relatively constant

over time and within the range [Tcrit, Tceil], which is the case for the (TCRU) green-

house experiments that we compare the model results to.

Substituting equation (3.74) into equations (3.71) and (3.72) gives the modified

governing equations
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dc1(τ)
dτ

= αc

[
1 −

∣∣∣∣∣1 − T − Tcrit

Topt − Tcrit

∣∣∣∣∣
] (

1 − exp
(
−κc(1−B)

1 (τ)
))

×(
1 − C0

c1(τ)
kc1(O1(τ))

)
− dcc1(τ), (3.75)

dc2(τ)
dτ

= αc

[
1 −

∣∣∣∣∣1 − T − Tcrit

Topt − Tcrit

∣∣∣∣∣
] (

1 − exp
(
−κc(1−B)

2 (τ)
))

(1 −O2(h1, h2, τ))
(

1 − C0
c2(τ)

kc2(O2(τ))

)
− dcc2(τ). (3.76)

The initial conditions have not changed and are given by

c1(0) = c10 and c2(0) = c20.

Parameter values of Tcrit and Topt for species Uniswa Red and S19-3 have been

taken directly from the thesis of Karunaratne [32] and can be found in Table 3.4.

Parameter Uniswa Red S19-3
Tcrit (◦C) 8.5 12
Topt (◦C) 28 30
Tceil (◦C) 38 45

Table 3.4: The critical and optimum temperatures for Uniswa Red and S19-3 as
found in the thesis of Karunaratne [32].

Figure 3.16 shows the simulation of equations (3.75) and (3.83) averaged over

the two plants, where Plant 1 is taller than Plant 2 and the critical and optimum

temperature for Uniswa Red and S19-3 can be found in Table 3.1. There is a distance

of 0.3m between plants and the simulations have been run for three temperatures of

23◦C, 28◦C, and 33◦C. In this case, canopy biomass has been averaged for the two

plants in the simulation, the difference between the two plants here is similar to that

found in Figure 3.14. As seen in Figure 3.16 the further the temperature is from the

optimum, the slower the development in canopy biomass. At 150 days, the point

at which the plant reaches maturity, the canopy biomass is less for the non-optimal

temperatures. Since the simulation is for two plants we can not compare it with

experimental data as the data are for the many plant population.

We later compare our many plant model with experimental data in Section 3.7.5
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where we show that the impact temperature has on canopy biomass is well pre-

dicted by the model. We can also see from Figure 3.16 that canopy biomasses for

temperatures 23◦C and 33◦C are identical for Uniswa Red. This is because tem-

peratures 23◦C and 33◦C have the same difference between them and the optimum

temperature 28◦C, hence their temperature stresses are identical.

(a) Uniswa Red

(b) S19-3

Figure 3.16: Incorporating temperature variation: average canopy biomass of two
plants described by equations (3.75) and (3.76) for the species Uniswa Red and
S19-3, where Plant 1 is taller than Plant 2. The critical and optimum temperature
can be found in Table 3.1 for each species. There is a distance of 0.30m between the
two plants for all simulations for three temperatures of 23◦C, 28◦C, and 33◦C.
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3.5.3 Light penetrating through the canopy

When the canopies of two (or indeed more) plants interact, it is not always the case

that one plant canopy grows higher than the other. In fact, with short spreading

plants such as bambara groundnut, it is more common for leaves within interacting

plant canopies to mingle and cause mutual shading. In addition, it could also be the

case that light penetrates through the canopy of the taller plant onto the shorter

plant. In this work so far the method for calculating competition is for when one

plant is shadowed and the extent of shadowing is equal to the intersection area of

the two intersecting circles that represent plant canopies. In this section, the case

of mutual shading is introduced as well as the case of light penetrating through the

taller canopy.

Consider two plants grown together with a planting distance that allows their

respective canopies to interact. It might be the case that the leaves that comprise

the canopies intermingle. Thus some leaves of both plants will be shadowed, whilst

others are exposed to light. It might also be the case that light can penetrate through

a neighbours canopy. Therefore the effect competition has on a plant is no longer

(1 −Oi(t)) but

1 − ωiOi(t), (3.77)

where ωi is a coefficient to be determined that ranges between 0 and 1 depending

on the amount of mutual shading, the respective plant heights and the amount of

light that can penetrate through the canopy.

There are several cases to now consider. Firstly, consider the case when Plant

1 is definitively taller than Plant 2 but some light is able to penetrate through the

canopy of Plant 1. We then have ω1 = 0 since, as the taller plant, it is not being

shadowed, however ω2 can take any value between 0 and 1 depending on the amount

of light that can penetrate through the canopy. Clearly, a value of 1 would be the

case that has so far been considered and a value of 0 would indicate no effect by

being shadowed. This would cause Plant 2’s light interception to be equal to Plant
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1.

Figure 3.17: Schematic of two competing plant canopies, where both plants are the
same height and the leaves intermingle across canopies.

The second case we consider is if both plants grow continuously at the same

height and there is mutual canopy border interactions (i.e. intermingling) between

their canopies. A schematic of this case can be found in Figure 3.17 where the

leaves of two plant canopies intermingle in such a way that it is not immediately

clear which leaves belong to which plant, it is clear however that parts of both plants

are shadowed by it’s neighbour. Here we assume that no light penetrates through

either canopy, therefore light blocked from one plant is not blocked from the other

so that

ω1 = 1 − ω2. (3.78)

If we assume that leaves of two canopies intermingle in such a way that the leaves of

the two plants are in equal parts shadowed and exposed, then ω1 = 0.5 = ω2. This

would mean that both plants will be affected by the competition, and each plant

will be affected exactly half as much as if it was being shadowed by a definitively

taller plant. Since both Plant 1 and Plant 2 are now affected by overlap we restate

the model equations here with the adjustment that the growth rate of c1(t) is now

71



Chapter 3. A Mathematical Model of Bambara Groundnut

affected by O given by

dc1(τ)
dτ

= αc

[
1 − abs

(
1 − T − Tcrit

Topt − Tcrit

)](
1 − exp

(
−κc(1−B)

1 (τ)
))

×

(1 − ω1O1(h1, h2, τ))
(

1 − C0
c1(τ)

kc1(O1(τ))

)
− dcc1(τ), (3.79)

dc2(τ)
dτ

= αc

[
1 − abs

(
1 − T − Tcrit

Topt − Tcrit

)](
1 − exp

(
−κc(1−B)

2 (τ)
))

(1 − ω2O2(h1, h2, τ))
(

1 − C0
c2(τ)

kc2(O2(τ))

)
− dcc2(τ). (3.80)

Henceforth, we will assume that ω1 = 0.5 = ω2 and absorb this into Oi.

Figure 3.18: Simulation of two plants of the same height, temperature is 28◦C and
the planting distance is 0.3m. Plant 1 is indicated with a solid line, whereas Plant
2 has a dashed line.

Figure 3.18 shows the canopy biomass over time of two plants of the species

Uniswa Red. Plants have the same height with ω1 = 0.5 = ω2, the temperature

is 28◦C and the planting distance is 0.30m. We only investigate Uniswa Red here,

however the results also apply to S19-3. From Figure 3.18, we can see that the

canopy biomass over time for the two plants for both species is indistinguishable

from each other. This is because each plant is affected by competition in exactly the

same way. In the scenario where neither plant experiences competition we would
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see both plants behave in the same way, but grow to a larger canopy biomass.

If ω1 and ω2 were to change it would no longer be the case that they have the

same canopy biomass over time. We investigate the effect ω1 and ω2 have on canopy

biomass in Figure 3.19. Here c1(t) and c2(t) are shown at t = 150 days for ω2 ranging

between 0 and 1; the value of ω1 is determined by ω2. We choose t = 150 days here

as this is the time at which the plants would be harvested.

Figure 3.19: Canopy biomass of two interacting plants at 150 days for a range of
values of ω2. Here the temperature is 28◦C and the planting distance is 0.3m. Plant
1 is indicated with a solid line, whereas Plant 2 is by a dashed line.

We can see that the canopy biomass is equal for Plants 1 and 2 when ω2 = 0.5,

we also see that as ω2 increase c2 decreases and c1 increases. There is a change of

approximately 15g to the biomass of each plant as ω2 varies. The affect that ωi has

on canopy biomass may become more complex with the addition of more plants.

We now consider the combination of the previous two cases where light can

penetrate through the canopy’s foliage and also Plant 1 and Plant 2 are of similar

heights. It is now not necessarily the case that ω1 = 1 − ω2 as ωi can now take a

whole range of values. We explore this space in Figure 3.20. Here both ω1 and ω2

range between 0 and 1 and the canopy biomass of Plant 1 and Plant 2 are recorded

in Figures 3.20(a) and 3.20(b), respectively.
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(a) Canopy biomass of Plant 1 (b) Canopy biomass of Plant 2

(c) Sum canopy biomass of Plants 1 and 2

Figure 3.20: The canopy biomass of Plants 1 and 2 for a range of values of ω1 and
ω2. The species is Uniswa Red, the temperature is 28◦C, planting distance is 0.3m
and both plants are the same height.

Realistically ωi would be a function of plant height, plant distance and leaf area

index. To include this into the model would require experimental data we do not

have access to. As such, going forward we will assume that

ωi =



1 if hj > hi,

0.5 if hj = hi,

0 if hj < hi,

(3.81)

where hj is the height of the neighbouring plant.
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3.6 Sensitivity Analysis

It is of interest to learn how robust the model is to variation in parameters. In this

section we discuss the results of a local sensitivity analysis applied to the system of

equations for two plants described by equations (3.79) and (3.80). The sensitivity

analysis is applied to each non-dimensional parameter of the two plant model in turn.

These are summarised in Table 3.5 along with their original values for convenience.

Parameters are the same for both plants throughout the sensitivity analysis and

when variations are applied to parameters they are applied for both plants at the

same time. Plants of the species Uniswa Red are arranged at a distance of 30cm

and the temperature used for the simulation is 28◦C. Simulations begin at fourteen

days, the predicted time of emergence, and are run to one hundred and fifty days, the

estimated time of maturity. The original value of each non-dimensional parameter

(denoted by x) is both increased and decreased by an order of magnitude of ten,

this is done to one parameter at a time. The canopy biomass at one hundred and

fifty days is averaged over both plants for each parameter variation. The results are

recorded in Table 3.5.

Parameter Parameter Origi-
nal Value

Average Canopy Biomass (g)

x 0.1x x 10x
αc 0.223 0.77 86.84 151.31
κ 0.6 1.07 86.84 113.53
Kc 1.58 × 10−3 135.83 86.84 17.68
dc 6.67 × 10−2 87.05 86.84 84.80

Table 3.5: Sensitivity analysis of the non-dimensional system given by equations
(3.75) and (3.76). The average canopy biomass at 150 days of two plants has been
recorded for a tenfold increase and decrease to the non-dimensional parameters
denoted here by x. The temperature of the simulations is set to 28◦C and the
species is Uniswa Red. There is a 30cm distance between plants.

The system is particularly sensitive to the non-dimensional growth rate αc, ex-

tinction coefficient κ and carrying capacity Kc. There is more sensitivity to decreases

in these parameters than increases. Note that an increase in Kc is equivalent to a

decrease in kmax. The system is not particularly sensitive to the decay rate dc.
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The effect that variations in plant parameters have on canopy biomass make

sense qualitatively. We see that as the growth rate αc for both plants increases,

canopy biomass approaches the carrying capacity kc faster and thus c is larger at

150 days. Similarly, a decrease in αc slows biomass growth causing the canopy

biomass to be further from the carrying capacity at 150 days. As expected this is

the opposite effect to increases and decreases in dc, where an increase in dc causes c

to be further from it’s maximum and a decrease causes c to be larger.

Changes to κ relate to changes in the angle of the leaves. A larger value of κ

indicates flatter leaves which are more open to capturing incoming radiation. Thus

an increase in κ causes c to increase at 150 days and a decrease in κ causes a decrease

in final c.

Since

Kc = c0
kc

an increase in Kc would indicate a decrease in the carrying capacity in relation to

the initial condition. As we can see from Table 3.5, this causes c to be significantly

lower at plant maturation which is to be expected. Conversely, a decrease in Kc

indicates an increase in kc in relation to the initial condition, which causes c to

become larger at plant maturation.

3.7 Multi-plant model

In the previous sections we have focused on two plant canopy interactions, but we

now wish to consider scaling our model up to the many plant (population) scale. We

initially assume plants are placed in a uniform grid array with a distance between

plants in a row of Dr and a distance between plants in a column of Dc. Each plant

is indexed from 1 to N with a subscript i where non-dimensional plant height is

described such that

hi(τ) = h0(1 − dh)exp((1 − dh)τ)
1 − dh − khih0 + khiexp((1 − dh)τ)h0

, (3.82)
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and non-dimensional canopy biomass growth is described such that

dci(τ)
dτ

= αcTs(T )
(
1 − exp

(
−κc(1−B)

i (τ)
))

(1 −Oi(h1, h2, ...hN , τ)) ×

(1 −Kci(τ)ci(τ)) − dcci(τ). (3.83)

The initial conditions are given by

hi(τ) = 1 and ci(τ) = 1.

Currently parameters for each plant are identical with the only difference between

plants being the manner in which it interacts with its neighbours, this is in turn

governed by the plants position.

In the multi-plant model there is a chance that several plants will overlap in

the same place. The current method of calculating overlap can only be used for two

plants, and so can not be applied for when multiple plants overlap at the same point.

Therefore, for the multi-plant model to be effective, a new method of calculating

overlap needs to be introduced.

Once the multi-plant model has been fine-tuned to include overlap between three

or more plants, we investigate how plant height of individual plants affects plant

growth. To do this we compare canopy biomass of plants with the same height with

that of plants with randomly distributed heights. Following this, the model is then

compared to experimental data and a sensitivity analysis is conducted to determine

it’s robustness.

3.7.1 A numerical approximation of plant canopy interactions

The analytical solution described in Section 3.2.1 works adequately for two over-

lapping circular plant canopies, however can not be applied to multiple circles that

intersect in the same area. First consider the case of three intersecting plants il-

lustrated in Figure 3.21. The proportion of Circle 1’s (c1) area that is shared with

Circles 2 and 3 (c2 and c3), cannot be found by summing the intersection of Circles
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Figure 3.21: Three intersecting circles (c1, c2, c3) that represent three neighbouring
plants, where the area’s of intersection are labelled as I1,2, I1,3, I2,3 and I1,2,3.

1 and 2 (I12) and the intersection of Circles 1 and 3 (I13). Instead, it is necessary

to find the area that all three circles share (I123). Finding this area analytically

is challenging. The difficulty in calculating this area increases with the number of

plants. For cases such as these a numerical method for calculating canopy overlap

is devised. We introduce such a method in this section and compare the numerical

method results to the analytical method described in Section 3.2.1.

We consider the competition one circle, labelled with an i, experiences with

neighbouring circles, labelled with k’s. Let Circle i be filled with n uniformly al-

located points, a distance d apart. Sampling points are arranged in a series of

increasing rings within the circle where d is the distance between rings and the dis-

tance between points within a ring. Each point, labelled with a j, is allocated an x

and y coordinate denoted by xj and yj . Each point within circle i can now be tested

to determine which circles, other than Circle i, it lies within.

Let the centre point of Circle k have coordinates ckx and cky and radius rk. Then

a sampling point within Circle i that is also within Circle k holds to the condition

that √
(xj − ckx)2 + (yj − cky)2 < rk.
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Then an n×N array A can be defined such that

Aj,k =


1, if

√
(xj − ckx)2 + (yj − cky)2 < rk

0, otherwise,

where N is the number of neighbouring circles and n is the number of sampling

points within Circle i. An element Aj,k equals 1 if sampling point j is within Circle

k but is otherwise zero. Summing the elements of each row of A gives a column

vector B such that

Bj =
N∑

k=1
Aj,k.

Each element of vector B gives the number of circles that each sampling point j is

contained in. All sampling points are contained within at least Circle i and so the

minimum value of Bj is 1.

To find the proportion of area Circle i shares with neighbouring circles we must

find the number of points that are contained within Circle i only and so we define a

1 × n vector C such that

Cj =


1, if Bj = 1

0, otherwise.
(3.84)

Then the proportion of Circle i that is shared with adjacent Circles j is given by

Oi = 1 −
∑n

j=1(Cj)
n

. (3.85)

The arrays A, B and C are calculated for each circle in turn to find Oi, i ∈ [1, N ].

Hence O will be a vector of length N .

In order to test this approximation, we consider two intersecting circles as illus-

trated in Figure 3.2(b). Since Oi is the proportion of Circle i that is intersected, in

order to find the actual area of intersection we multiply Oi by the area of Circle i.

The area of intersection for Plant 1 is equal to that of Plant 2 and as Oi = Ii/G(i),

then O1c1 = O2c2 = I, where c1 and c2 are the area of Circles 1 and 2 respectively.
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The area of intersection has been found using the analytical method, described in

Section 3.2.1, and the numerical method, described in this section. The values of

both methods are given in Table 3.6 for a range of values for D, r1, r2 and n. To

better compare the two methods, Table 3.6 also gives the difference between solu-

tions of the two methods as an absolute difference and also a percentage (relative)

difference.

Clearly the accuracy of the numerical method depends on the number of sampling

points n contained within the circle. There is little improvement between 5000

and 10000 sampling points, however using 10000 sampling points instead of 5000

increases computational time by approximately 24%. When calculating the area of

intersection for many plants at multiple time points, this increase to computational

time will add up considerably and so using 5000 sampling points is preferable. The

error decreases for larger intersection areas but there is no obvious change in error

for increased circle sizes. From the results shown in Table 3.6 there is no obvious

bias for the method to underestimate or overestimate I. From these results we can

judge that this method with 5000 sampling points will give a good approximation

of O.

This concludes the numerical method of calculating the area of intersection be-

tween two or more circles. We must now consider how this method transfers to

measuring the amount of shadowing between plant canopies as there are some sub-

tle differences. Plant canopies are represented using circular discs, however in the

method devised for calculating overlap described in this section the intersection area

has only been considered in a 2-D space. By doing this we have neglected to consider

the heights of the plants. The area we wish to calculate is the proportion of plant

canopy that is being shadowed by its neighbours and to do this, the plant heights

play a key role in the calculation. An N × 1 vector can be defined such that

ω1k = H1(hk − hi),

where hi is the height of Circle i, hk is the height of a neighbouring Circle k and H1
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D r1 r2 Analytical I n Numerical I Absolute error Relative
Error
(%)

0.25

0.15

0.15
5.63 × 10−3 1000 5.17 × 10−3 4.53 × 10−4 8.05
5.63 × 10−3 5000 5.43 × 10−3 1.97 × 10−4 3.51
5.63 × 10−3 10000 5.64 × 10−3 1.70 × 10−5 0.30

0.3
4.64 × 10−2 1000 4.55 × 10−2 9.63 × 10−4 2.08
4.64 × 10−2 5000 4.63 × 10−2 1.26 × 10−4 0.27
4.64 × 10−2 10000 4.63 × 10−2 7.56 × 10−5 0.16

0.3 0.3
0.1372 1000 0.1372 1.54 × 10−3 3.32
0.1372 5000 0.1371 5.76 × 10−4 0.42
0.1372 10000 0.1372 2.05 × 10−5 0.01

0.5 0.3

0.3
0.0225 1000 0.0207 1.81 × 10−3 8.05
0.0225 5000 0.0217 7.89 × 10−4 3.5
0.0225 10000 0.0226 6.78 × 10−5 0.30

0.6
0.1857 1000 0.1819 3.85 × 10−3 2.07
0.1857 5000 0.1852 5.03 × 10−4 0.27
0.1857 5000 0.1854 3.02 × 10−4 0.16

0.6 0.6
0.5488 1000 0.5549 6.17 × 10−3 1.13
0.5488 5000 0.5511 2.31 × 10−3 0.42
0.5488 10000 0.5789 8.21 × 10−5 0.015

Table 3.6: A comparison of the numerical and analytical methods of calculating
overlap for two interacting circles for a range of planting distances, circle sizes and
sampling points. The absolute error is the difference between the value of I for both
methods and the relative error is absolute error as a percentage of the analytical
solution given in equation (3.26).

is a Heaviside function such that

H1(x) =


1, if x > 0

0, otherwise.

Thus

ω1k =


1, if Plant k is taller than Plant i,

0, otherwise.

Here ω1k = 1 indicates that random point i is fully shadowed by the taller plant k,

whilst ω1k = 0 means plant i is not shadowed by plant k. Let P1 be an N × 1 vector

such that

P1j =
N∑

k=1
Aj,kω1k,
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then P1 will give a list of the sampling points that are overlapped by plants that

are strictly taller than plant i. If P1 > 1 then several plants overlap point j. Since

we are not currently considering the case of light penetrating the canopy we do not

need to concern ourselves with how many plants overlap point j only that some do.

Therefore we let

C2j =


1, if P1j = 0,

0, otherwise.
(3.86)

The proportion of area that plant i shares with taller plants can then be found

as

OTi = 1 −
∑n

j=1(C2j)
n

.

For plants of the same height we assume that the leaves of the plant canopies in-

termingle and that overlap is distributed evenly over the competing canopies as

described in Section 3.5.3. Hence each canopy receives half the amount of shadow-

ing within the area of intersection. We define ω2 such that

ω2k = H2(hk − hi),

where H2 is defined such that

H2(x) =


0.5, if x = 0,

0, otherwise.

Thus

ω2k =


0.5, if Plant k is the same height as Plant i

0 otherwise.

A value of ω2k = 0.5 indicates that Plant i is competing with a plant of the same

height and so the competition is split evenly between both plants. The case of
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ω2k = 0 refers to any other scenario. Now let P2 be an N × 1 vector such that

P2j =
N∑

k=1
Aj,kω2k.

The minimum value that an element of P2 can take is 0.5 as each point is at least

contained within canopy i, which is the same height as itself. When P2j > 1 the

point j is sharing the space with more than 1 other plant. Since competition is

shared evenly among plants sharing a space we must take into account the number

of plants point j is contained within. Then the area Plant i shares with plants of

the same height is thus found such that

OSi = 1 −
∑n

j=1

(
0.5
P2j

)
n

. (3.87)

The total proportion of plant canopy that is shadowed can be found such that

Oi = OTi +OSi. (3.88)

Hereafter this will be the method used for calculating the overlap between two or

more plant canopies.

3.7.2 Model Summary

This section summarises our first two-scale mathematical model developed to sim-

ulate plant growth. The model is described by a system of 2 non-linear differential

equations per plant. The equations comprise of one for change in plant height

(where the analytical solution is given by equation (3.82)) and another to simulate

change in plant canopy mass (given by equation (3.83)). The competition between

neighbouring plants is assumed to be in the form of canopy-canopy shadowing and is

quantified using the area of intersection of the plant canopies calculated as in Section

3.7.1. Plant competition is dependent on the height of a plant and of it’s neighbours.

Competition affects the canopy biomass growth rate and carrying capacity.

83



Chapter 3. A Mathematical Model of Bambara Groundnut

The model algorithm comprises the following steps for N plants.

1. Input species parameters, temperature and radiation data;.

2. Input initial conditions for plant height hi0 and canopy biomass ci0.

3. Calculate leaf area Ai from canopy biomass ci for each plant.

4. Calculate ground cover Gi from leaf area Ai for each plant.

5. Calculate leaf area index γi from leaf area Ai and ground cover Gi.

6. Calculate the inter-plant competition experienced by each plant by evaluating

the area of plant canopy that is shadowed Oi using the ground cover Gi of

each plant and their respective plant heights hi and positions as detailed in

Section 3.7.1.

7. Calculate the change in height of each plant hi using equation (3.82).

8. Calculate the change in canopy biomass ci using equation (3.83).

9. Let t = t+ δt where δt is the time step chosen by the inbuilt MATLAB ODE

solving algorithm ode15s to meet the absolute and relative error tolerances.

10. Repeat steps 3-9 for each plant until t = Tend.

These steps are summarised in Figure 3.22.

3.7.3 Same height versus different heights

As discussed in Section 3.5.3, two plants of the same height that interact with each

other grow to the same size at the same rate, as they both experience competition

in the same way. If more plants were to be simulated, this would not necessarily be

the case as an increase in the number of plants will affect the dynamics of inter-plant

interactions.

Consider nine plants arranged in three rows of three. The centre plant of this

arrangement would be in a position to interact with all other plants whereas a plant
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Figure 3.22: Diagram of the multi-plant algorithm for each plant in the population.

placed on the corner of the arrangement would be in a position to interact with three

other plants. Thus, even though all plants are the same height and competition

is split evenly between interacting canopies, the centre plant will experience more

competition than those on the outside. Similarly, plants on the edges will experience

more competition than those on the corners, i.e. potentially five other plants.

In order to simulate this, we arrange nine plants in a 3×3 formation where plant

heights are described by equation (3.82) and plant canopy biomass is described by

equation (3.83). The plant species Uniswa Red is used where plant parameters

are the same for all nine plants and can be found in Table 3.1. The temperature
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(a)

(b)

Figure 3.23: Canopy biomass over time for 9 plants of the species Uniswa Red at a
temperature of 28◦C and planting distance between rows and columns is 0.30m. (a)
plants are the same height and (b) plant height is randomly varied

considered is 28◦C. The resulting canopy biomass of each of the nine plants is given

in Figure 3.23(a). Here we can see that plants grow uniformly until a point is reached

when canopies begin interacting. After this point, the growth rates differ between

plants resulting in different canopy biomasses. This clearly illustrates the difference

in behaviour of the three groups: centre, middle edge, and corners, since all plants

have the same growth parameters, this difference is caused by their position within

the plot. In this case, the corner plants have the highest biomass, followed by plants
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positioned in the middle of the edges and finally, the centre plant has the lowest

canopy biomass.

We now repeat this experiment however we allow the plant height to vary between

plants. The variation in height is applied by changing the plant height carrying

capacity for each plant. We assume that plant height carrying capacity has a normal

distribution with the mean being the original value given in Table 3.1 and with a

variance of 10% of the mean. Then a value is randomly selected from this distribution

and applied to each plant. The canopy biomass of each of the nine plants can be

found in Figure 3.23(b). There are now five groups instead of three, this changes

for different random selections of plant height. The reason why plants with all

different heights may still have the same canopy biomass is because since heights

are randomly generated, there still may be some similarities between plants. In the

example shown in Figure 3.23(b), the two tallest plants do not interact with each

other and so the tallest plant has the same canopy biomass as the second tallest since

neither of them are shadowed by a neighbour. Similarly, the two shortest plants are

both on an edge and thus both experiencing shadowing from five other plants.

3.7.4 Sensitivity Analysis

In this section we repeat a local sensitivity analysis on the system of equations

described by equation (3.83). The sensitivity analysis is now applied to fifteen plants

so that we can see if including more plants increases or decreases the sensitivity of the

system. Plants are arranged in three rows of five. Again the distance between rows

is 35cm and the distance between plants in a row is set to 20cm, as shown in Figure

3.8. The temperature used for the simulation is 28◦C and the test species being

investigated is Uniswa Red. The simulations begin at fourteen days, the predicted

time of emergence, and runs to one hundred and fifty days, the estimated time of

plant maturity.

Table 3.7 gives a list of the four non-dimensional parameters that are being

investigated, with their original values. A tenfold reduction and a tenfold increase is
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applied to each of the non-dimensional parameters in turn and the relative change

to the canopy biomass at one hundred and fifty days is summed for all fifteen plants.

The results are recorded in Tables 3.7.

Parameter Parameter Origi-
nal Value

Average Canopy Biomass (g)

x 0.1x x 10x
αc 0.223 0.77 62.96 96.57
κ 0.6 1.08 62.96 77.45
Kc 1.58 × 10−3 89.24 62.96 16.17
dc 6.67 × 10−2 63.09 62.96 61.62

Table 3.7: Sensitivity analysis of the non-dimensional system given by equation
(3.83). The average canopy biomass at 150 days for fifteen plants has been recorded
for a tenfold increase and decrease to the non-dimensional parameters. The temper-
ature of the simulations is set to 28◦C and the species is Uniswa Red. There is a
20cm distance between plants in a column and a distance of 35cm between columns.

Similar to the sensitivity analysis conducted for two plants, the system is not

very sensitive to dc, however is particularly sensitive to αc, κ and Kc. There does

not appear to be any change in the sensitivity of the model for an increase in plants

from 2 to 15, however we find that average c decreases overall. This is due to each

plant competing with more plants.

Qualitatively, the results of this sensitivity analysis are the same as in Section

3.6 for two interacting plants.

3.7.5 Comparing the model to experimental data

Having developed the theoretical model, we now validate the model by comparing

simulation results to experimental data provided by the Tropical Crops Research

Unit (TCRU) greenhouse experiments conducted in 2003 and 2006 [32]. The data

consist of two species: Uniswa Red and S19-3, grown at temperatures of 23◦C, 28◦C,

and 33◦C. Leaf number, leaf area, leaf mass, stem mass, root mass, pod mass and

total biomass have been monitored over sixteen day intervals starting at thirty three

days. The distance between plants is constant with 35cm between columns and 20cm

between rows. The supply of water is non-limiting, meaning that plant growth is
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unaffected by it. A more detailed description of the experimental methodology can

be found in [32].

A simulation of 15 plants, where plant parameters are equal, is conducted. Plants

are arranged in three columns of five with a distance between columns of 35cm and

a distance between rows of 20cm; this has been done to replicate the conditions of

the greenhouse experiments; a simulation of the planting arrangement can be found

in Figure 3.8. The simulations are repeated for temperatures 23◦C, 28◦C and 33◦C

for species Uniswa Red and S19-3 with their respective parameter values described

in Table 3.1.

Plant heights in the experiments are unknown to us and are assumed to be the

same. This means that instead of one plant definitively overlapping the other, plant

canopies intermingle and therefore all plants in the simulation experience competi-

tion. We later test this assumption by comparing simulations of canopy biomass,

where random variation is applied to plant height with those where plant heights

are equal.

Model simulations of leaf area and canopy biomass for Uniswa Red compared to

the experimental data are shown in Figures 3.24 to 3.26. The data shown are the

average for all fifteen plants for both the simulations and experimental data.

Canopy biomass (g) Leaf Area (m2)
Uniswa Red S19-3 Uniswa Red S19-3

Temperature MAE N-S MAE N-S MAE N-S MAE N-S
23◦C 4.88 0.69 2.80 0.85 410.24 -0.22 471.60 -1.49
28◦C 0.60 0.999 2.77 0.96 1091.98 -2.93 1567.43 -8.04
33◦C 2.95 0.92 4.54 0.89 388.92 0.80 601.69 0.26

Table 3.8: The mean absolute error (MAE) and the Nash-Sutcliffe value (N-S) for
the model’s prediction of canopy biomass and leaf area for Uniswa Red and S19-3
when compared to the TCRU experimental data, as shown in Figures 3.24-3.29.

The simulation of canopy biomass gives a reasonable fit to the experimental data

for all three temperatures, with the simulated biomass being consistently between

the upper and lower bounds of the experimental data for 28◦C and 33◦C. It is

slightly overestimated for 23◦C in the early stages of the simulation window. The
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(a)

(b)

Figure 3.24: The simulated (a) leaf area and (b) canopy biomass compared with
the experimental data for the species Uniswa Red, using the data-fitted case of a
temperature of 28◦C. The system is described by equations (3.82) to (3.83) and
parameter values are given in Table 3.2. Each simulated plant is initiated at day 14,
the estimated time of emergence and assumed to have a canopy comprising of one
leaf at this point. The simulation data has been averaged over 15 plants grown in
a three by five grid, with a distance between rows of 0.2m and a distance between
columns of 0.35m (Figure 3.8). Red bars indicate the upper and lower bounds of
the experimental data.

mean absolute error (MAE) and the Nash-Sutcliffe efficiency (NSE) value [48] for

these simulations are given in Table 3.8. The NSE indicates how well a plot of the

observed data versus simulated data fits the 1:1 line; where NSE ∈ [−∞, 1] [48]. A

value of 1 would indicate a perfect model and a value equal to or less than 0 would

indicate that the model is no better at predicting canopy biomass than taking the

average of the observed data. By observing Table 3.8 we can see that our model

does not simulate the lower temperature of 23◦ as well as the higher temperatures.

Similarly the MAE is larger than that of 28◦C and 33◦C. The simulation for 28◦C
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(a)

(b)

Figure 3.25: The simulated (a) leaf area and (b) canopy biomass compared with
the experimental data for the species Uniswa Red, using the non data-fitted case of
a temperature of 23◦C. The system is described by equations (3.82) to (3.83) and
parameter values are given in Table 3.2. Each simulated plant is initiated at day 14,
the estimated time of emergence and assumed to have a canopy comprising of one
leaf at this point. The simulation data has been averaged over 15 plants grown in
a three by five grid, with a distance between rows of 0.2m and a distance between
columns of 0.35m (Figure 3.8). Red bars indicate the upper and lower bounds of
the experimental data.

is near perfect, however since this was the data used for the parametrisation this is

not surprising.

The simulation of leaf area for Uniswa Red does not fully capture the behaviour

of the experimental data. The leaf area is significantly overestimated in the later

stages of the simulation window, particularly for 23◦C and 28◦C. This is corroborated

by the particularly high MAE and very low NSE values found in Table 3.8.

Model simulations of the leaf area and canopy biomass for S19-3 compared to the

experimental data can be found in Figures 3.27 to 3.29. Similar to Uniswa Red, the
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(a)

(b)

Figure 3.26: The simulated (a) leaf area and (b) canopy biomass compared with
the experimental data for the species Uniswa Red, using the non data-fitted case of
a temperature of 33◦C. The system is described by equations (3.82) to (3.83) and
parameter values are given in Table 3.2. Each simulated plant is initiated at day 14,
the estimated time of emergence and assumed to have a canopy comprising of one
leaf at this point. The simulation data has been averaged over 15 plants grown in
a three by five grid, with a distance between rows of 0.2m and a distance between
columns of 0.35m (Figure 3.8). Red bars indicate the upper and lower bounds of
the experimental data.

simulation of canopy biomass gives a reasonable fit to the experimental data. The

simulation data is within the lower and upper bounds of the experimental data for

all three temperatures. The error values given in Table 3.8 show a similar pattern

to Uniswa Red in that the NSE value is much closer to 1 for temperatures 28◦C and

33◦C. Here 23◦C is much better simulated for S19-3 compared to Uniswa Red.

The simulation of leaf area for S19-3 does not reproduce the behaviour of the

experimental data. As leaf area is calculated empirically as a function of canopy

biomass we do not, at this stage, apply a data-fit to this variable. It is being
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significantly overestimated at the later stages of the simulation window. This can

also be seen in the MAE and NSE values, which are found in Table 3.8.

For both species and all temperature regimes, there is a greater difference in the

simulated and experimental leaf area further along in time. This is because of the

assumption that all of the canopy biomass is comprised of shoots, and leaves, when

in reality the canopy biomass comprises of shoots, leaves, pods and roots. TCRU

experimental data tell us that the roots contribute less than 5% to the total biomass,

however the pods contribute as much as 60% in the later stages [32]. The current

model lacks a means of partitioning out the canopy biomass to the leaves and the

pods, therefore the model is overestimating leaf area and hence overestimating the

amount of absorbed radiation. For both species, canopy biomass at 23◦C is not

being well accounted for by the model. This would also indicate that there is some

problem with how temperature is being incorporated.

3.8 Chapter summary

The mathematical model developed in this chapter simulates the growth and devel-

opment of a single plant. The plant architecture is assumed to take the form of a

disc representing the layers of leaves on a single stem/trunk. The model is scaled up

to the two-plant scale by considering competition between two plants in the form

of spatial overlap between the two canopies. This allows competition to be calcu-

lated within the model thus avoiding the need to include an empirically calculated

density parameter to reduce plant growth. These empirically found parameters are

sometimes site specific and are not always transferable across planting sites. Thus

by avoiding this we allow for a more robust model.

The two plant model described by equations (3.33) to (3.36) was solved analyti-

cally by finding the steady-state values and determining their stability. It was found

that the model has one positive real steady-state that the system will tend towards.

The parameterisation of the model was then discussed where parameters have

been found directly from literature, empirically from experimental data and using
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(a)

(b)

Figure 3.27: The simulated (a) leaf area and (b) canopy biomass compared with the
experimental data for the species S19-3, using the data-fitted case of a temperature
of 28◦C. The system is described by equations (3.82) to (3.83) and parameter values
are given in Table 3.2. Each simulated plant is initiated at day 14, the estimated
time of emergence and assumed to have a canopy comprising of one leaf at this point.
The simulation data has been averaged over 15 plants grown in a three by five grid,
with a distance between rows of 0.2m and a distance between columns of 0.35m
(Figure 3.8). Red bars indicate the upper and lower bounds of the experimental
data.

data fitting techniques. The mathematical model for two plants was then solved

numerically so that the behaviour over time could be observed. Following this,

refinements were made to the model so that the simulations better represented the

reality. We then scaled the two plant model up to the multi-plant model. This

required an adaptation to the method of calculating spatial overlap. A sensitivity

analysis applied to both the two-plant and multi-plant model demonstrated that the

behaviour of the model was able to describe the plant behaviour qualitatively.

We were then able to replicate the conditions of the experiments for which we
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(a)

(b)

Figure 3.28: The simulated (a) leaf area and (b) canopy biomass compared with
the experimental data for the species S19-3, using the non data-fitted case of a
temperature of 23◦C. The system is described by equations (3.82) to (3.83) and
parameter values are given in Table 3.2. Each simulated plant is initiated at day 14,
the estimated time of emergence and assumed to have a canopy comprising of one
leaf at this point. The simulation data has been averaged over 15 plants grown in
a three by five grid, with a distance between rows of 0.2m and a distance between
columns of 0.35m (Figure 3.8). Red bars indicate the upper and lower bounds of
the experimental data.

have data, using the mathematical model. This allowed for the simulations results

to be compared to the experimental data.

It was found that the model described in this chapter simulates canopy biomass

well, however the approximation of leaf area is significantly different to the experi-

mental data. This would indicate that the relationship between leaf area and canopy

biomass has not been correctly accounted for. Since ground cover is a function of

leaf area, if leaf area is not correctly predicted then we can not trust our predictions

of ground cover. The impact of neighbouring plants is incorporated as a function
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(a)

(b)

Figure 3.29: The simulated (a) leaf area and (b) canopy biomass compared with
the experimental data for the species S19-3, using the non data-fitted case of a
temperature of 33◦C. The system is described by equations (3.82) to (3.83) and
parameter values are given in Table 3.2. Each simulated plant is initiated at day 14,
the estimated time of emergence and assumed to have a canopy comprising of one
leaf at this point. The simulation data has been averaged over 15 plants grown in
a three by five grid, with a distance between rows of 0.2m and a distance between
columns of 0.35m (Figure 3.8). Red bars indicate the upper and lower bounds of
the experimental data.

of ground cover and so miscalculating this value has serious knock on effects for

simulating the competition between plants.

In addition, the relationship between plant growth and temperature is only

loosely accounted for, and it is well known that temperature has a large impact

on plant development.

In conclusion, the mathematical model discussed in the chapter provides a good

first description of bambara groundnut, with canopy biomass being well described,

however the model requires improvement if it is to be used for making recommenda-
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tions. In the following chapter we consider model revisions to improve descriptions

of the observed growth data for leaf area and thus the relationship between leaf area

and canopy biomass.
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Chapter 4

Incorporating leaf area

It was found in Chapter 3 that the relationship between leaf area and canopy biomass

was not fully captured in the mathematical model since canopy biomass was well

described but leaf area was not. We hypothesise that the cause of this was the

absence of biomass partitioning to the various components, such as roots and pods.

These constituents are often referred to as sinks in the literature. In order to remedy

this issue, a non-linear ODE that describes leaf area over time will be formulated

and tested in this chapter.

Temperature is a key factor in leaf development. In the previous chapter it was

accounted for in the canopy biomass equation using a temperature stress parameter.

It can be seen by observing Figures 3.25(a) and 3.28(a) and Table 3.8 that biomass

was not well simulated for low temperatures. This would indicate that the effect of

temperature on canopy biomass has not been fully accounted for in the model. With

the addition of a new governing equation that describes leaf area, temperature will

now be more firmly taken into account since the accumulation of leaves is primarily

determined by temperature.

The revised mathematical model will be parametrised and tested using data from

the literature and the experimental data provided by TCRU greenhouse experiments

[32].
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4.1 Revised mathematical model

To incorporate a new ODE into the system of equations we refer back to the individ-

ual plant model for simplicity. We later scale the model back up to the multi-plant

level. In addition to introducing a new ODE, some other adaptations will be made.

The similarities and differences between the single plant-scale described in Chapter

3 and the one introduced in this chapter are discussed here.

Our primary motivation in revising our model is that we wish to ensure that leaf

area is being correctly accounted for. As ground cover is a function of leaf area, and

inter-plant competition is a function of ground cover, if leaf area is not accurately

described, neither is the affect competition has on canopy biomass.

Previously, A(t) was calculated as a function of the canopy biomass, however

in doing this we made the assumption that leaf area and canopy biomass were

linearly related throughout the developmental process. By doing this we neglected

to consider the other assimilates that comprise the plant canopy and the various

factors that affect the biomass partitioning, e.g. temperature. Before we formulate

a new ODE, we first consider the behaviour of leaf accumulation in a plant.

Bambara groundnut is what is known as an indeterminate crop [12] and so leaves

are produced over the entire life span of the plant. This is in contrast to determinate

plants, which may stop producing leaves when the plant shifts from one develop-

mental stage to another. The leaf development of bambara groundnut is primarily

dependent on temperature [38]. So to describe leaf growth, we introduce several

temperature-related concepts.

We consider a critical temperature Tcrit above which the plant will grow and

below which it will not. The daily effective temperature TD(t) is then the aver-

age difference between the hourly and critical temperature over the day, subject

to the hourly temperature being greater than the critical temperature and below a
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maximum temperature Tceil. We then have

TD(t) = 1
24

24∑
j=1

(Tj − Tcrit)

where Tj is the average hourly temperature, Tcrit is the critical temperature required

for growth, and j refers to the hour of the day.

Cumulative thermal time TC(t) is the daily effective temperature integrated over

a given period of time so that

TC(t) =
∫ DAS

0
TD(t)dt,

where DAS are the number of days after sowing [32]. This concept is sometimes

referred to as the thermal time or temperature sum. The cumulative thermal time

can be thought of as the number of temperature units that are required for plant

growth and is measured in units known as ‘degree days’, thus the daily effective

temperature is measured in ‘degree days per day’.

During the vegetative phase, the rate of leaf development for bambara groundnut

differs over time for different temperatures, however when measured in degree days

leaf production is constant for all temperatures [32]. When bambara groundnut

passes from the vegetative to flowering and podding stages, leaf production continues

but decreases significantly [42].

Data found in the literature indicate that leaf accumulation exhibits Gaussian-

like behaviour in relation to cumulative thermal time [32], with a maximum growth

rate a1(t), a time of peak growth b1(t), and a time window where significant leaf

growth occurs, c1(t). Thus the leaf area growth rate can be described such that

Leaf area growth = LAa1(t)exp
(

−
(
TC(t) − b1(t)

c1(t)

)2)
, (4.1)

where LA is the leaf area per leaf and a1(t), b1(t), and c1(t) are all species specific

parameters [32]. Through preliminary data exploration, it was found that these
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parameters best describe leaf development when allowed to depend on the daily

effective temperature TD(t) so that a1 = aTD(t), b1 = bTD(t) and c1 = cTD(t).

Once the plant shifts from the vegetative stage to the flowering and podding

phases, the primary sink in energy is no longer leaf development and is instead pod

development [42]. This is subject to various stresses put on the plant and it can

be seen from the experimental data that one such stress is temperature. For high

temperatures, pod growth is decreased but leaf mass continues to increase. What

we see in the data is that even though the plant is producing pods, leaf production

continues at a higher rate for higher temperatures than for lower temperatures.

We apply this in the model by defining a temperature-dependent degradation rate

that decreases for high temperatures causing more biomass to be partitioned to the

leaves. By doing this, when temperature is high the plant is not diverting as much

absorbed energy to podding but instead still partitioning energy to leaf maintenance.

Therefore leaf degradation is described by

Leaf area degradation = dlTsl(T )A(t), (4.2)

where

Tsl(T ) = Topt − Tcrit

T (t) − Tcrit
. (4.3)

Thus if the temperature is below the optimum value, leaf area degradation is in-

creased, but decreased for high temperatures. The further temperature moves away

from the optimum, the more Tsl(T ) shifts away from 1.This temperature stress is

an adaptation of that found in the work of Karunaratne [32].

Thus leaf area per plant, A(t), over time can be given by

dA(t)
dt

= LAa1(t)exp
(

−
(
TC(t) − b1(t)

c1(t)

)2)
− dlTsl(T )A(t), (4.4)

where Tsl is given by equation (4.3) and the initial condition for leaf area is given

by

A(0) = LA.
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Now that A(t) has been formulated we turn our attention to c(t). As before,

the growth rate of c(t) is dependent on leaf area index γ(t) and ground cover G(t),

which in turn are dependent on the leaf area A(t).

Leaf area is no longer a function of canopy biomass and so to find γ(t) and G(t)

we must substitute the solution of equation (4.4) into equations (3.6) and (3.7),

respectively. This allows ground cover to be described as a function of leaf area such

that

G(t) = G(1−B)(0)AB(t), (4.5)

and leaf area index γ to be described by

γ(t) = A(t)
G(1−B)(0)AB(t)

. (4.6)

Since the initial condition for the ground cover is the area of one fully emerged leaf,

the ground cover can be written as

G(0) = LA. (4.7)

Then equation (4.6) can then be rewritten so that

γ(t) = L
(B−1)
A A(1−B)(t). (4.8)

As canopy biomass growth is dependent upon leaf area and ground cover, which

is in turn dependent on leaf area, the effect temperature has on biomass growth is

now included within these variables. Thus temperature stress no longer needs to be

absorbed into R as shown in equation (3.83), and we instead use the original formula

for R given in equation (3.5). It was found during a preliminary investigation that

the impact that temperature has on canopy biomass via the leaf area is not strong

enough and therefore we impose a temperature stress to the decay rate of canopy

biomass. We assume that the further temperature is from the optimum the larger
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the decay rate is. Therefore canopy biomass decay rate Tsc is described by

Tsc(t) =


1 + ω

∣∣∣1 − T (t)−Tcrit
Topt−Tcrit

∣∣∣ , if Tcrit < T < Tceil,

0 otherwise.
(4.9)

where ω is a species dependent parameter that defines how fast temperature stress

deviates from one as temperature moves away from the optimum.

Finally, the way in which plant height is calculated has not changed and is

as described by the single plant equation (3.37). Using the substitutions given in

equations (4.7) and (4.8), the dimensional mathematical model for an individual

plant can be summarised as

h(t) = h0(αh − dh)exp((αh − dh)t)
αh − dh − αhkhh0 + αhkhexp((αh − dh)t)h0

, (4.10)

and

dTC(t)
dt

= TD(t), (4.11)

dA(t)
dt

= LAaTD(t)exp
(

−
(
TC(t) − bTD(t)

cTD(t)

)2)
− dlTsl(T )A(t), (4.12)

dc(t)
dt

= R0ckL
(1−B)
A AB(t)

(
1 − exp

(
−κL(B−1)

A A(1−B)(t)
))(

1 − c(t)
kc

)
−Tsc(T )dcc(t). (4.13)

where

TD(t) = 1
24

24∑
j=1

(Tj − Tcrit)

and initial conditions are

TC(0) =
∫ 14

0
TD(t)dt, A(0) = LA, c(0) = LA

φ

which are the corresponding values of one fully emerged leaf.
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4.1.1 Multi-plant model

In this section we discuss the scaling up of the single plant model, introduced in

the previous section, to the many plant (crop) scale. An analysis of the governing

equations is conducted and the parametrisation of the model is discussed. Model

simulations are then compared to experimental data.

As in Section 3.7 we consider plants arranged in a uniform grid array with dis-

tance Dr between plants in rows and a distance Dc between plants in columns.

Plants are labelled from 1 to N using a subscript i. Now that we resume the investi-

gation of the multi-plant scale we reintroduce competition into the model equations.

As before, competition imposed upon each plant is simulated using the proportion

of canopy that is shadowed by neighbouring plants and is approximated using the

method described in Section 3.7.1. The affect competition has on the canopy biomass

of individual plants is incorporated as in Section 3.7, so that the growth rate and

carrying capacity of c(t) is reduced by interactions with taller neighbouring plants.

We now also apply the effect of competition to the growth rate of leaf area.

For notational simplicity, we will assume that temperature is constant against

time. We do this as the experimental data we are using to parameterise and validate

the mathematical model are greenhouse data. As such, the temperature of the

experiments is constant against time. Thus, the parameters, a1, b1, c1, dsl, dsc and

TD are now all constant. The governing equations that describe the growth of N

plants is then given by

dTCi(t)
dt

= TDi, (4.14)

dAi(t)
dt

= LAa1 (1 −Oi(h1, h2, ...hN , t)) exp
(

−
(
TCi(t) − b1

c1

)2)
−dlTslAi(t), (4.15)

dci(t)
dt

= R0ckL
(1−B)
A AB

i (t) (1 −Oi(h1, h2, ...hN , t)) ×(
1 − exp

(
−κL(B−1)

A A
(1−B)
i (t)

))(
1 − ci(t)

kci(O, t)

)
−Tscdcci(t), (4.16)
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where

TDi = T − Tcrit

and height is described by

hi(t) = h0(αh − dh)exp((αh − dh)t)
αh − dh − αhkhih0 + αhkhiexp((αh − dh)t)h0

. (4.17)

The initial conditions of the systems are

TCi(0) = TC0, Ai(0) = LA, ci(0) = c0,

where TC0, LA and c0 are the thermal time, leaf area and canopy biomass at the point

of emergence. From equation (4.15) we can see that the leaf area does not depend on

canopy biomass, but does depend on the ground cover of each neighbouring plant.

The overlap Oi of plant i depends on the height and ground cover of itself and of

nearby plants and so equation (4.15) is dependent on plant height given by equation

(4.17).

4.1.2 Non-dimensionalisation

We non-dimensionalise equations (4.14) to (4.16) according to

TDi(t) = TDi0T̂Di(τ), TCi(t) = TDi0
αh

T̂Ci(τ), ci(t) = ci0ĉi(τ),

Ai(t) = LAÂi(τ) and t = τ

αh

where a hat signifies the associated non-dimensional physical variable and τ denotes

non-dimensional time. We choose to re-scale TCi(t) with respect to initial thermal

time which is TDi(0), Ai(t) with respect to the initial leaf area, and ci(t) with respect

to the initial mass of the canopy. This is done for each plant separately. Time is

rescaled with respect to αh, the height growth rate. This is assuming that αh does

not vary between plants in the simulations that follow. When this is not the case we

non-dimensionalise all equations with respect to αh of Plant 1, i.e. αh1. Although
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not included here, height is rescaled with respect to the height of one fully emerged

leaf as in Section 3.3.1. These rescalings lead to

dT̂Ci(τ)
dτ

= T̂Di(t), (4.18)

dÂi(τ)
dτ

= ᾱL

(
1 −Oi(ĥ1, ĥ2, ...ĥN , τ)

)
exp

−
(
T̂Ci(τ) − b̄

c̄

)2


−d̄LÂi(τ), (4.19)
dĉi(τ)
dτ

= ᾱcÂ
B
i (τ)

(
1 − exp(−κÂ1−B

i (τ))
) (

1 −Oi(ĥ1, ĥ2, ...ĥN , τ)
)

×(
1 − K̄ci(Oi, τ)ĉi(τ)

)
− d̄cĉi(τ), (4.20)

ĥi(τ) = h0(1 − dh)exp((1 − dh)τ)
1 − dh − khih0 + khiexp((1 − dh)τ)h0

, (4.21)

where

K̄h = h0
kh
, d̄h = dh

αh
, ᾱL = aTDi

αh
, ᾱc = R0ckLA

c0αh
,

b̄ = αhb, c̄ = αhc, d̄L = dlTsl

αh
and d̄c = dcTsc

αh

The initial conditions are

T̂Ci(0) = TCi0αh

TDi0
, Âi(0) = 1, Ĝi(0) = 1, ĉi(0) = 1 and ĥi(0) = 1.

For convenience, hereafter the hats and bars will be dropped.

4.1.3 Mathematical analysis

The system of equations (4.18) to (4.20) are analysed for the general case of N

plants. In the case of equations (4.18) to (4.20) we first observe that the newly

introduced equation (4.19) is non-autonomous. As such, a steady-state for leaf area

would not exist as any solution to dAi(τ)
dτ = 0 would depend on τ . Since canopy

biomass depends on leaf area, it is now also non-autonomous. Therefore, in order

to find a steady-state value we need to examine the behaviour of dAi(τ)
dτ as τ → ∞.

Doing so leads to

lim
τ→∞

dAi(τ)
dτ

= lim
τ→∞

(−dLAi(τ)),
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and thus

lim
τ→∞

Ai(τ) = lim
τ→∞

e−dLτ = 0,

providing dL > 0, which it is by definition. From equation (4.20) it can be seen that

if dc > 0 then ci → 0 as τ → ∞ also, since the growth rate of ci(τ) depends on

Ai(τ). Thus our asymptotic system of equations for N plants goes to

lim
τ→∞

h(τ) = (αh − dh)
αhKhi

(4.22)

lim
τ→∞

A(τ) = 0 (4.23)

lim
τ→∞

c(τ) = 0. (4.24)

Clearly this is non-physical since it is impossible for a plant without any biomass to

have an associated height. However, as the height is only of interest when comparing

the heights of neighbouring plants, we are able to satisfy ourselves with the result.

As an annual crop, bambara groundnut completes its life cycle within one year and

then dies. Thus, by tending to zero exponentially, the long term growth behaviour

of leaf area and canopy biomass is being correctly captured by the model equations.

4.1.4 Model summary

This section will give a description of the revised mathematical model devised to

simulate canopy biomass. The model is described by a system of 3 non-linear ODEs

per plant given by equations (4.18)-(4.20) and also (4.21), which describes plant

height. This gives a total of 3 × N ODEs where N is the number of plants in the

simulation and an additional N equations that describe the plant height for each

of the N plants. The model algorithm is similar to that described in Section 3.7,

however leaf area is no longer calculated as a function of canopy biomass and is

calculated using equation (4.19).

As before, the competition between neighbouring plants is assumed to be in the

form of canopy-canopy shadowing and is quantified by the proportion of canopy that

is shadowed by neighbouring plant canopies. The respective plant heights determine
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which plants experience competition. Competition affects the leaf area growth rate,

canopy biomass growth rate and canopy biomass carrying capacity.

The steps of this model can be summarised as:

1. input landrace and weather parameters;

2. input initial conditions for height, thermal time, leaf area and canopy biomass;

3. calculate ground cover from leaf area;

4. calculate LAI from leaf area and ground cover;

5. calculate plant height using equation (3.82);

6. calculate the inter-plant competition experienced by each plant using the

ground cover of each plant, their respective plant heights and positions as

detailed in Section 3.7.1;

7. calculate the change in cumulative thermal time, leaf area and canopy biomass

using equations (4.18) to (4.20);

8. set t = t + δt where δt is a time step chosen by the inbuilt MATLAB ODE

solving algorithm ODE15s so that the absolute and relative error tolerances

are met; and

9. repeat steps 3-8 until the plant reaches maturity at t = Tend.

The steps of the algorithm are illustrated in Figure 4.1.

4.2 Numerical simulations

We now investigate the numerical simulation of the system of equations given in

equations (4.18) and (4.20). The model equations will relate to N plants that are

arranged in a uniform grid like array with a distance between plants in a row of Dr

and a distance between plants in a column of Dc. The system is solved numerically

as in Chapter 3 using the inbuilt MATLAB programme ode15s, which is an ODE
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Figure 4.1: Diagram of the multi-plant algorithm for each plant in the population
as described by equations (4.18) to (4.20).

solver made suitable for stiff systems. The relative and absolute tolerance have been

set to 1×10−6 and time steps are determined by the solver to meet these tolerances.

4.2.1 Model parameterisation

The revised mathematical model has now been formulated and new parameters

have been introduced. Many of the parameters defined in the previous chapter are

relevant here, however the parameter values that were found using the least-squared

parameter approximation approach are now redundant and need to be recalculated.

The parameterisation of parameters that are newly introduced and those that have

changed values are discussed here. A summary of all parameters used in this model

for the species’ Uniswa Red and S19-3 can be found in Table 4.1.
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Parameter Value Description Source
PAR 0.5 Fraction of light that is pho-

tosynthetically active
Cornelissen [20]

ki 16 Total incoming radiation
(MJm−2day−1)

[41]

αh 0.75 Height growth rate (day−1) This study
kh 30∗, 25† Plant height carrying capacity

(m)
This study

dh 0.02 Plant height decay rate
(day−1)

This study

B 0.74∗, 0.84† Spreading coefficient of the
ground cover

Data fitted

Topt 30∗, 28† Optimum temperature (◦)C Karunaratne [32]
Tcrit 12∗, 8.5† Critical temperature for

growth (◦)C
Karunaratne [32]

a 0.15∗, 0.14† Maximum growth rate for leaf
area degreedays−1

Data fitted

b 68.88∗, 87.66† Cumulative thermal time for
which maximum growth oc-
curs degreedays

Data fitted

c 29.55∗, 34.81† Variance in cumulative ther-
mal time for which leaf growth
occurs degreedays

Data fitted

dl 1.5×10−2∗, 1.03×
10−2†

Decay rate for plant leaf area
day−1

Data fitted

LA 3.9 × 10−3∗, 3.0 ×
10−3†

Leaf area per leaf (m2) TCRU exper-
imental data
[32]

ck 1.97∗, 2.15† Radiation use efficiency
gMj−1

Data fitted

e 0.6 Light extinction coefficient Cornelissen [20],
Karunaratne [32]

kmax 130.47∗, 136.20† Maximum canopy biomass
carrying capacity (g)

TCRU exper-
imental data
[32]

dc 4.93 × 10−4∗, 1 ×
10−2†

Canopy biomass decay rate
(day−1)

Data fitted

h0 0.05 The initial conditions for
plant height (m)

This study

L0 1 The initial conditions for
plant number

This study

c0 0.24∗, 0.19† The initial conditions for
plant canopy (g)

This study

Table 4.1: Table of parameter values and descriptions. For parameters that are species
specific, ∗ denotes the species S19-3 and † denotes Uniswa Red.
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The parameters αh, kh, dh, Topt, Tcrit, kmax, φ, ψ, PAR, e and ki are all calcu-

lated as described in Section 3.4.1.

The leaf area per leaf LA is a new parameter introduced in this chapter and is

found using the experimental data, such that

LAi = Ai

Li
,

where Ai and Li are a plants leaf area and leaf number respectively. The Tropical

Crops Research Unit (TCRU) provided leaf number data for 28◦C [32], which are the

same data we used to parameterise the previous model. The data consist of both Ai

and Li for each plant for 28◦C for species S19-3 and Uniswa Red over 8 time points.

The relationship between leaf number and leaf area for Uniswa Red and S19-3 at all

time points can be found in Figure 4.2. There is a clear linear relationship between

Ai and Li and so LA has been found by averaging the ratio between Ai and Li for

all plants at each time point for which we have data for.

Where parameters could not be found from the literature or empirically from

the data, we performed a least squares fit between the relevant TCRU data and the

numerical solutions for equations (4.18) to (4.20). This has been done to find the

new parameters a, b, c, and dl and also to find new values for ck, B and dc. Plants

are arranged in the same way as described in Section 3.4.1. The inbuilt MATLAB

function lsqcurvefit is used, which is a nonlinear least-squared solver, that fits the

simulation to the experimental data. The fit has been applied to the data set for

a temperature of 28◦C only, as this is the closest to the optimum temperature for

both species Uniswa Red and S19-3.

The parameters are found using the relationships described in Section 4.1.2 and

can be found in Table 4.2.

4.2.2 Sensitivity analysis

We now wish to determine how sensitive the model is to variations in specific pa-

rameter values. In this section we discusses the results of a local sensitivity analysis
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(a) Uniswa Red

(b) S19-3

Figure 4.2: The relationship between plant leaf number and leaf area in the TCRU
experimental data for Uniswa Red in 4.2(a) and S19-3 in 4.2(b).

applied to the model described by the system of equations (4.18) to (4.20). The sen-

sitivity analysis is applied to sixteen plants arranged in a 4 × 4 grid with a distance

of 0.3m between them, the temperature used for the simulation is 28◦C. Simulations

begin at fourteen days, the predicted time of emergence, and are run to one hundred

and fifty days, the estimated time of maturity. All eight of the non-dimensional

parameters are investigated, the original value of each non-dimensional parameter

(denoted by x) is both increased and decreased by an order of magnitude of ten.

This is done to one parameter at a time for all plants at once. The canopy biomass

and leaf area at 150 days (the time of harvest) is averaged over all sixteen plants

and found to be 54.96g and 2243.63m2, respectively. The variations in leaf area and
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Non-dimensional
parameters

Value

Kh 0.25∗, 0.2†

dh 1.3 × 10−2

αL 3.2∗, 3.64†

b 51.66∗, 65.745†

c 22.1625∗, 26.1075†

dL 0.0225∗, 0.0137†

αc 0.3465∗, 0.3715†

κ 0.6
Kc 0.2365∗, 0.1852†

dc 1.3 × 10−3∗, 1.3 × 10−3†

Table 4.2: Table of non-dimensional parameter values for the leaf area mathematical
model. For parameters that are species specific, ∗ denotes the species S19-3 and †

denotes Uniswa Red. species specific values are written in the order S19-3, Uniswa
Red.

canopy biomass are measured as a percentage difference of the original value and

given in Table 4.3.

From Table 4.3 we find that the new system of equations is still very sensitive

to changes in parameters. We find that leaf area is not sensitive to the parameters

of the canopy biomass equation, but is very sensitive to parameters describing leaf

area. In particular we find that leaf area is sensitive to increases in αL, b, c and dL.

The value of αL relates to the maximum growth rate of leaf area, as it increases

final leaf area increases. Conversely, as it decreases so too does final leaf area. The

relative change to final leaf area is far less than the change undertaken by αL; this

is because of the effect competition has on the model. If competition was removed

from the model, we find that a tenfold change to αL results in a tenfold change to

leaf area.

Both an increase and decrease in b causes a decrease in leaf area. Qualitatively,

this makes sense as b determines when the window of peak leaf growth occurs. A

tenfold increase, causes peak growth to occur close to the time of harvest, which

does not give plants time to accrue leaf area. Similarly, a tenfold decrease causes

the plant to germinate during peak growth. What this means mathematically is

that the entire left side of the Gaussian curve is now excluded, thus discounting a
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Relative change in

Parameter
Parameter
Original
Value

Leaf Area (%) Canopy Biomass (%)

x 0.1x 10x 0.1x 10x
αL 3.64 -87.95 543.95 -75.09 4.66
b 65.75 -77.73 -99.67 -22.20 -97.32
c 26.11 -88.23 100.91 -74.60 19.71
dL 0.01 76.8 -96.73 5.15 -59.05
αc 0.38 0 0 -85.07 68.92
κ 0.6 0 0 -76.81 22.19
Kc 0.18 0 0 47.28 -83.11
dc 1.3 × 10−3 0 0 3.44 -26.49

Table 4.3: Sensitivity analysis of the non-dimensional system given by equations
(4.18) and (4.20). The percentage change in leaf area and canopy at 150 days has
been recorded for a tenfold increase and decrease to each of the non-dimensional
parameters (denoted here by x) in turn. The temperature of the simulations is set
to 28◦C, the species is Uniswa Red and the planting distance is 30cm between plants,
which are arranged in a 4 × 4 Uniform Grid.

considerable amount of leaf growth.

The length of time that peak growth occurs is determined by c. As expected, an

increase in c would mean that there is a wider time window for peak growth and so

leaf area at harvest would be larger. Conversely, a decrease in c means there is less

time for the plant to accrue leaves.

Increases to the decay rate dL means leaves senesce at a faster rate causing the

leaf area at harvest to decrease. Conversely, decreases to dL allows leaf area to

increase at harvest.

The impact all four of these parameters have on canopy biomass is more com-

plicated. Up to a point, increases in leaf area causes canopy biomass to have more

leaves to absorb sunlight. Subsequently, this causes canopy biomass to reach a larger

mass at harvest. The ground cover is also determined by the leaf area; after a certain

point ground cover becomes so large that competition within plants, caused by the

large ground cover, counteracts the positive effect of increased leaf area.

The parameters αc, κ, Kc, and dc have no impact on leaf area but do alter canopy

biomass in the same way as described in Section 3.6.
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4.2.3 Comparing the model to experimental data

We want to compare the revised mathematical model described by equations (4.18)-(4.20)

to the TCRU greenhouse data. In order to replicate the conditions of the greenhouse

a simulation of fifteen plants is conducted where plants are arranged in three rows

of five with a distance between rows of 35cm and a distance between plants in a row

of 20cm. A birds-eye view of the plant layout can be found in Figure 3.8.

As mentioned in Section 3.7.5, plant heights in the experiments are unknown.

Previously we assumed that heights were identical for all plants however to test this

assumption we now run the simulations twice. Once with plant heights assumed to be

equal as in Section 3.7.5, this means that instead of one plant definitively overlapping

the other plant canopies intermingle and all plants experience competition. The

simulation is then repeated with random variation applied to plant heights. Since

plant heights are not equal in this case, some plants experience competition and

some do not.

Before we compare the simulations to experimental data we examine the long

term behaviour and compare it to the model analysis of Section 4.1.3. Simulations

of Uniswa Red and S19-3 for a temperature of 28◦C for 3000 days are shown in

Figure 4.3 for Uniswa Red. Clearly leaf area and canopy biomass tend to zero

as time tends to infinity, thus confirming the analysis of the governing equations

conducted in Section 4.1.3. The difference in behaviour over time for the two species

is largely caused by the difference in parameters b, c and Kc. Before we compare the

simulations to experimental data we examine the long term behaviour and compare

it to the model analysis of Section 4.1.3. Simulations of Uniswa Red and S19-3 for a

temperature of 28◦C for 3000 days are shown in Figure 4.3 for Uniswa Red. Clearly

leaf area and canopy biomass tend to zero as time tends to infinity, thus confirming

the analysis of the governing equations conducted in Section 4.1.3. The difference

in behaviour over time for the two species is largely caused by the difference in

parameters b, c and Kc.

We now compare the model to the experimental data. The same TCRU data
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(a) Canopy biomass

(b) Leaf area

Figure 4.3: The simulated average canopy biomass (a) and leaf area (b) for fifteen
plants over 3000 days, of the species Uniswa Red and S19-3 at 28◦C. Plants are
arranged as in Figure 3.8 with planting distance between rows and columns of 0.35m
and 0.2m respectively. All plants are the same height.

set used in Section 3.7.5 is used to validate the model here. The simulation of

canopy biomass and leaf area for Uniswa Red is compared to the experimental data

in Figures 4.4 to 4.6 respectively. In this case plants have the same height.

It can be seen in Figures 4.4(b), 4.5(b) and 4.6(b) that the simulation data of

canopy biomass is within the upper and lower bounds of the experimental data for

all time points except one. The mean absolute error and the Nash-Sutcliffe values

are given in Table 4.4. Comparing to the error values of the model described in
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Table 3.8 in the previous chapter there is some improvement to the simulation of

canopy biomass for 23◦C and 33◦C however canopy biomass for 28◦C is slightly

impaired. Despite this, all model simulation values lie within an acceptable range

of the experimental data.

The leaf area in Figures 4.4(a), 4.5(a) and 4.6(a) is similarly within the upper

and lower bounds of the experimental data for all time points except one. There

is a clear improvement to simulating leaf area when comparing to Figures 3.24(a),

3.25(a) and 3.26(a), which can also be seen by comparing Tables 3.8 and 4.4.

(a)

(b)

Figure 4.4: The simulated (a) leaf area and (b) canopy biomass compared with
the experimental data for the species Uniswa Red, using the data-fitted case of a
temperature of 28◦C. The system is described by equations (4.18)- (4.20), where
all plant heights are equal and parameters are given in Table 4.1. Each simulated
plant is initiated at day 14, the estimated time of emergence and assumed to have a
canopy comprising of one leaf at this point. The simulation data have been averaged
over 15 plants grown in a five by three grid, the distance between plants in a row
is 0.2m and the distance between rows is 0.35m. Red bars indicate the upper and
lower bounds of the experimental data.
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Canopy biomass (g) Leaf Area (m2)
Uniswa Red S19-3 Uniswa Red S19-3

Temperature MAE N-S MAE N-S MAE N-S MAE N-S
23◦C 2.48 0.87 5.30 0.58 131.48 0.88 331.21 0.26
28◦C 3.26 0.96 2.41 0.96 74.85 0.99 63.16 0.99
33◦C 2.08 0.95 3.79 0.87 300.43 0.92 509.93 0.72

Table 4.4: The mean absolute error and the Nash-Sutcliffe value for the leaf accu-
mulation model’s prediction of canopy biomass and leaf area for Uniswa Red and
S19-3 when compared to the TCRU experimental data.

(a)

(b)

Figure 4.5: The simulated (a) leaf area and (b) canopy biomass compared with the
experimental data for the species Uniswa Red, using the non data-fitted case of a
temperature of 23◦C. The system is described by equations (4.18)- (4.20), where
all plant heights are equal and parameters are given in Table 4.1. Each simulated
plant is initiated at day 14, the estimated time of emergence and assumed to have a
canopy comprising of one leaf at this point. The simulation data have been averaged
over 15 plants grown in a five by three grid, the distance between plants in a row
is 0.2m and the distance between rows is 0.35m. Red bars indicate the upper and
lower bounds of the experimental data.

We now compare the simulation of canopy biomass and leaf area for S19-3 to
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(a)

(b)

Figure 4.6: The simulated (a) leaf area and (b) canopy biomass compared with the
experimental data for the species Uniswa Red, using the non data-fitted case of a
temperature of 33◦C. The system is described by equations (4.18)- (4.20), where
all plant heights are equal and parameters are given in Table 4.1. Each simulated
plant is initiated at day 14, the estimated time of emergence and assumed to have a
canopy comprising of one leaf at this point. The simulation data have been averaged
over 15 plants grown in a five by three grid, the distance between plants in a row
is 0.2m and the distance between rows is 0.35m. Red bars indicate the upper and
lower bounds of the experimental data.

the experimental data in Figures 4.7 to 4.9. In this case, canopy biomass of S19-3 is

within the upper and lower bounds of the experimental data for all time points in

Figures 4.7(b), 4.8(b) and 4.9(b). By comparing the results of this model to those

of Figures 3.27(b), 3.27(b) and 3.29(b) we can see little discernible improvement in

the predictions for all three temperatures. We can see that canopy biomass for 23◦C

is now being overestimated instead of underestimated. By observing Table 4.4 we

can see that the revised model does not change the predictive power of simulating

canopy biomass for temperatures of 28◦C and 33◦C, however the revised model does
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(a)

(b)

Figure 4.7: The simulated (a) leaf area and (b) canopy biomass compared with the
experimental data for the species S19-3, using the data-fitted case of a temperature
of 28◦C. The system is described by equations (4.18)- (4.20), where all plant heights
are equal and parameters are given in Table 4.1. Each simulated plant is initiated at
day 14, the estimated time of emergence and assumed to have a canopy comprising
of one leaf at this point. The simulation data have been averaged over 15 plants
grown in a five by three grid, the distance between plants in a row is 0.2m and the
distance between rows is 0.35m. Red bars indicate the upper and lower bounds of
the experimental data.

not give as good a fit to data for 23◦C when compared to the previous model.

Similarly to Uniswa Red there has been a significant improvement to simulating

leaf area for S19-3 as seen in Figures 4.7(a), 4.8(a) and 4.9(a). The simulation data

now follow the behaviour of the leaf area, with results being between the upper and

lower bounds of the experimental data for all but two of the data points for the

three temperatures. The error values given in Table 4.4 show that leaf area is well

simulated for 28◦C and 33◦C. However, similarly to canopy biomass, 23◦C gives a

poor fit to the experimental data.
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(a)

(b)

Figure 4.8: The simulated (a) leaf area and (b) canopy biomass compared with the
experimental data for the species S19-3, using the data-fitted case of a temperature
of 23◦C. The system is described by equations (4.18)- (4.20), where all plant heights
are equal and parameters are given in Table 4.1. Each simulated plant is initiated at
day 14, the estimated time of emergence and assumed to have a canopy comprising
of one leaf at this point. The simulation data have been averaged over 15 plants
grown in a five by three grid, the distance between plants in a row is 0.2m and the
distance between rows is 0.35m. Red bars indicate the upper and lower bounds of
the experimental data.

Thus the leaf accumulation model developed in this chapter is significantly better

at simulating leaf area. There is an improvement to simulating 23◦C for Uniswa Red

but not for S19-3 and so it is difficult to say that we have made the model more able

to capture the effects of variation in temperature.

4.2.4 Mathematical model investigation

Now that we are satisfied with the model’s ability to describe the behaviour of

the experimental data, we can explore its behaviour further. We first investigate
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(a)

(b)

Figure 4.9: The simulated (a) leaf area and (b) canopy biomass compared with
the experimental data for the species S19-3, using the non data-fitted case of a
temperature of 33◦C. The system is described by equations (4.18)- (4.20), where
all plant heights are equal and parameters are given in Table 4.1. Each simulated
plant is initiated at day 14, the estimated time of emergence and assumed to have a
canopy comprising of one leaf at this point. The simulation data have been averaged
over 15 plants grown in a five by three grid, the distance between plants in a row
is 0.2m and the distance between rows is 0.35m. Red bars indicate the upper and
lower bounds of the experimental data.

the effect variation in simulated leaf area and canopy biomass between the fifteen

plants. We simulate the growth of fifteen plants arranged as in Figure 3.8 with

a temperature of 28◦C and compare it to the experimental data in Figure 4.10.

Parameters for all plants are equal and so any difference between plants is incurred

by the individual plant position. From Figure 4.10 we can see that plant position

has a clear impact on both leaf area and canopy biomass. For leaf area the range

of simulation data for the fifteen plants is within the bounds of the experimental

data. For canopy biomass however, the data for individual plants are not within the
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bounds of the experimental data, although the average of the data set is. Although

the canopy biomass of individual plants is not necessarily within the upper and lower

bounds of the data, we do see a similar magnitude of variation.

(a)

(b)

Figure 4.10: Simulations of fifteen plants of the species Uniswa Red grown at a
temperature of 28◦C are compared with the experimental data. Here (a) is the
leaf area and (b) is the canopy biomass. The system is described by equations
(4.18)- (4.20) and parameters are equal between plant and given in Table 4.1. Each
simulated plant is initiated at day 14, the estimated time of emergence and assumed
to have a canopy comprising of one leaf at this point. Plants are arranged in a five
by three grid, the distance between plants in a row is 0.2m and the distance between
rows is 0.35m. Red bars indicate the upper and lower bounds of the experimental
data.

For a second investigation we now repeat the simulations, however this time
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plant heights are randomly varied. In doing so, we can see if randomly varied plant

heights improves the models ability to fit to experimental data or hinders it.

Simulations of leaf area and canopy biomass for fifteen plants with randomly

varied heights are compared to the experimental data in Figure 4.11. In this case

the temperature is 28◦C and the species is Uniswa Red. Although we only show

an investigation of Uniswa Red here, the results also apply to S19-3. In the same

way as described in Section 3.7.3 the variation in height is applied by changing the

plant height carrying capacity for each plant. We assume that plant height carrying

capacity has a normal distribution with the mean being the original value given in

Table 3.1 and with a variance of 10% of the mean. Then a value is randomly selected

from this distribution using the inbuilt MATLAB function randn and applied to each

plant. The simulation has been run twenty times for different random selections of

plant heights from the normal distribution, all twenty simulations are given in Figure

4.11.

By comparing the average leaf area of fifteen plants for twenty different plant

height profiles in Figure 4.11(a) with the case of height being equal between plants

in Figure 4.4(a) it can be seen that the inclusion of random variation to plant height

has little to no effect on the average simulation data. The same result applies to

canopy biomass when comparing the results in Figure 4.11(b) with 4.4(b). We do

find, however, that although the average behaviour is not strongly affected, the

variation between individual plants increases. An example of this is given in Figure

4.12, where the leaf area and canopy biomass of fifteen plants with varying heights

is given.

As a final consideration we investigate the range of simulated leaf area and canopy

biomass for all fifteen plants when all plant parameters have random values selected

from normal distributions. We simulate the growth of fifteen plants arranged as

in Figure 3.8 with a temperature of 28◦C. All parameters but Topt and Tcrit have

variation applied to them. Each parameter is given a normal distribution with the

mean being the original value and the variance being 10% of the original value, a
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(a)

(b)

Figure 4.11: Twenty simulations of the mean (a) leaf area and (b) canopy biomass
compared with the experimental data for Uniswa Red. Plant height’s are normally
distributed with a mean of the original value and a variance of 10% of the original
value. Each simulation has a different set of randomly selected values for plant
height. The system is described by equations (4.18)- (4.20) where all parameters,
except Kh, are equal between plants and given in Table 4.1. Each simulated plant is
initiated at day 14, the estimated time of emergence and assumed to have a canopy
comprising of one leaf at this point. The simulation data have been averaged over
15 plants grown in a five by three grid, the distance between plants in a row is 0.2m
and the distance between rows is 0.35m. Red bars indicate the upper and lower
bounds of the experimental data.

value is then randomly selected using the inbuilt MATLAB function randn for each

plant. The leaf area and canopy biomass for each of the fifteen plants compared to
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(a)

(b)

Figure 4.12: Simulations of fifteen plants of the species Uniswa Red grown at a
temperature of 28◦C are compared with the experimental data. Here (a) is the leaf
area and (b) is the canopy biomass. Plant height’s are normally distributed with
a mean of the original value and a variance of 10% of the original value. Each
simulation has a different set of randomly selected values for plant height. The
system is described by equations (4.18)- (4.20) where all parameters, except Kh, are
equal between plants and given in Table 4.1. Each simulated plant is initiated at
day 14, the estimated time of emergence and assumed to have a canopy comprising
of one leaf at this point. Plants are arranged in a five by three grid, the distance
between plants in a row is 0.2m and the distance between rows is 0.35m. Red bars
indicate the upper and lower bounds of the experimental data.

experimental data is given in Figure 4.13. Here, the variation in individual plant

biomass and leaf area is considerably more for randomly varied parameters values
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when compared to the case where parameters values are equal among plants. In

addition, the range in simulated plants is considerably larger than what was found

in the TCRU experimental data.

As we see from comparing Figures 4.12 and 4.13, a large part of the variation

between simulated plants is caused by the variation in plant height and that the im-

pact that variation in plant height has on leaf area and canopy biomass is maximised

by not allowing light to penetrate though the canopy. Thus some plants (which were

taller) were not subjected to any competition and some (which were shorter) were

subjected to a lot of competition. Removing variation between plant heights, so that

competition is split between two interacting plants, significantly reduces the range

in leaf area and canopy biomass between plants even with random variation in all

other parameters. Therefore we conclude that assuming that plants have the same

height, and therefore imposing competition on all plants in the simulation, causes

us to achieve a better fit to experimental data.

We now investigate the average simulated data when all parameters, except those

ascertaining to plant height, are randomly varied. For each random value applied to

plant parameters there will be a different outcome for leaf area and canopy biomass.

Therefore we repeat the simulation 20 times and average the leaf area and canopy

biomass for all fifteen plants. The results of the 20 simulations are compared to the

experimental data in Figure 4.14. The thickness of the line is the layers that the 20

simulations of leaf area and canopy biomass make. All simulations stay reasonably

close to each other and match the behaviour for when there is no random variation

in plant parameters found in Figures 4.4(a) and 4.4(b).

4.3 Chapter summary

In this chapter the mathematical model of Chapter 3 has been revised to explicitly

account for leaf area accumulation over time. As in Chapter 3 plant height de-

termines which plants experience competition and competition affects the leaf area

and canopy biomass. The revised mathematical model was parameterised using a
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(a)

(b)

Figure 4.13: Simulations of fifteen plants of the species Uniswa Red grown at a
temperature of 28◦C are compared with the experimental data. Here (a) is the leaf
area and (b) is the canopy biomass. The system is described by equations (4.18)-
(4.20), where each parameter for each plant is randomly varied. All parameter values
are normally distributed where the mean is the original parameter value, given in
Table 4.1, and the variance is 10% of the original value. Each simulated plant is
initiated at day 14, the estimated time of emergence and assumed to have a canopy
comprising of one leaf at this point. Plants are arranged in a five by three grid, the
distance between plants in a row is 0.2m and the distance between rows is 0.35m.
Red bars indicate the upper and lower bounds of the experimental data.

combination of data found in the literature and experimental data collected from

the TCRU greenhouses. We then validated the model by comparing simulations of

leaf area and canopy biomass to the TCRU greenhouse data.

Contrary to the previous model, leaf area is calculated using two newly intro-

duced ODEs. One for cumulative thermal time and the other for leaf area, which is
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(a) Leaf area

(b) Canopy biomass

Figure 4.14: Twenty simulations of the mean (a) leaf area and (b) canopy biomass
compared with the experimental data for Uniswa Red. The system is described
by equations (4.18)-(4.20), where each parameter value for each plant is randomly
selected from a normal distribution with a mean of the original value, given in Table
4.1, and a variance of 10% of the original value. Each simulation has a different set
of randomly selected values for each parameter. Each simulated plant is initiated at
day 14, the estimated time of emergence and assumed to have a canopy comprising
of one leaf at this point. The simulation data have been averaged over 15 plants
grown in a five by three grid, the distance between plants in a row is 0.2m and the
distance between rows is 0.35m. Red bars indicate the upper and lower bounds of
the experimental data.

a function of cumulative thermal time. In doing this we have explicitly accounted for

temperature in the model and achieved a more accurate description of leaf area over

time, by allowing leaf area to decrease while canopy biomass continues to increase.

By more accurately describing leaf area we gain more confidence in our simulation

of canopy biomass, since we are describing its growth in terms of its underlying
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processes.

We found in Section 4.2 that this model simulates both canopy biomass and

leaf area well for the two bambara groundnut species Uniswa Red and S19-3 for all

three temperatures. When comparing this mathematical model to that detailed in

Chapter 3 we find that there is a small improvement to the prediction for canopy

biomass of Uniswa Red at 23◦C and S19-3 at 33◦C. The revised mathematical model

was marginally worse at predicting canopy biomass for Uniswa Red at 28◦C and

considerably worse at predicting canopy biomass for S19-3 at 23◦C. The simulation

of leaf area shows a considerable improvement for leaf area model when compared

to the original model for both species and all three temperatures. Although the

simulation of leaf area has improved for all data sets, the model still does a poor

job at simulating the leaf area of S19-3 at 23◦C. Despite this, the simulation of leaf

area has been largely improved without incurring a detrimental effect on simulating

canopy biomass. The results generally indicate that the new description of leaf area

has improved the model data fit.

This mathematical model is a useful tool for predicting canopy biomass and also

to optimise yield, since the spatial positioning of plants is included in the model

which can be used to explore the most efficient arrangements of plants to optimise

growth. By improving the description of underlying processes we have improved

the mathematical model’s ability to simulate different scenarios. Of the many plant

process that are involved in biomass growth, we are particularly interested in those

relating to competition for light. As sunlight is absorbed by leaves we have made

a considerable effort to accurately describe their growth. Another variable that has

a strong impact on competition is the ground cover, a process we have so far only

been able to make assumptions for. At this point in the model development we were

able to attain experimental data for this variable. This is discussed in more detail

in the following chapter.
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Chapter 5

Experimental and theoretical

investigations of ground cover G

As we do not have data on the size of individual plant canopies, in the development

of the models discussed so far we have had to make several assumptions as to the

behaviour and size of ground cover. A relationship taken from the literature and

described by equation (3.7) has provided a sound preliminary basis that allows our

model to fit well to the TCRU greenhouse data [32]. Despite this, as all TCRU

greenhouse data sets are for the same planting arrangement, there is a possibility

that ground cover, and thus competition, is being miscalculated. This may not

be apparent in the simulation results as other approximated parameters could be

compensating for the error caused by the incorrectly calculated competition. A

primary motivation in the formulation of our model is to investigate the effect that

planting layout and canopy shadowing has on crop yield and thus ground cover (or

canopy size) is an important component in the model. This issue is problematic

because our model may not be able to accurately account for a change in planting

arrangement.

As such we are strongly motivated to attain data to either confirm or challenge

our assumptions regarding what the individual plant canopy sizes are and if our

equation for ground cover G accurately captures the behaviour. Since the conception
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of the model we have been able to conduct greenhouse experiments that are designed

to provide data on ground cover over time, which we have so far been lacking. We

now discuss these experiments in this chapter as well as the impact the results have

on the formulation of the mathematical model.

5.1 Canopy experimental data collection

The greenhouse experimental data used to inform the mathematical model give leaf

number, leaf area, leaf mass, stem mass, root mass and pod mass over time for a

number of plants. However they do so for only one planting arrangement. This

amount of data is incredibly useful to a mathematical modeller for parameterisation

and model validation. Despite this, one key component is missing, which is integral

to the spirit of the model developed in this work. This being the plant size and

thus magnitude of inter-canopy competition. Without this we are unable to confirm

that competition is being incorporated correctly and therefore cannot investigate

how changes in planting density affect yield. With this in mind we decided to

conduct our own greenhouse experiments designed to inform the model’s ground

cover equation.

The newly collected data comprise of the diameter of the plant canopy measured

at the longest point every two weeks, the dry canopy biomass per plant at harvest

and the dry pod mass per plant at harvest. Due to limitations in available space the

experiments were confined to a 2m2 plot, measuring 1m×2m. The area was split

into two plots, where high density and low density experiments were conducted. In

the low density experiment the 1m2 was filled with 9 plants arranged in a 3 × 3

arrangement with Dr = 0.4m and Dc = 0.3m. In the high density experiment

another 1m2 was filled with 16 plants arranged in a 4 × 4 arrangement with Dr =

0.25m and Dc = 0.25m. This allows the canopy biomass, the pod mass and canopy

size to be compared for two different planting densities.

An illustration of the planting arrangement of all plants can be found in Figure

5.1(a). Here the position of plants with respect to each other and the plot borders
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can be seen. Plants of the high and low density experiments share a border with

a distance of 0.3m between rows. This distance caused some interaction between

the two density experiments. In addition to what can be seen in Figure 5.1(a),

due to space limitations, this experiment was conducted amongst plants from other

experiments and we were unable to prevent interactions with plants external to our

own experiments. These interactions came in the form of canopy shadowing, which

would have had a detrimental impact on our experiment as plants were experiencing

more competition than desired. The largest impact would have been on the high

density treatment, as they were positioned closest to plants of other experiments,

however all plants, except those placed in the centre of the plot, would have had

some interaction with plants external to our experiment.

The experiments were conducted in one climate controlled Future Crops green-

house in the months June to November of 2016 at the School of Biosciences, Sutton

Bonnington Campus, University of Nottingham. The species Uniswa Red was se-

lected with greenhouse temperatures set to 28◦C/23◦C for day/night. The number

of day-light hours per day was controlled by an automatic blackout system and set

to a constant day length treatment of 12 hours.

All plants had emerged by 13/14th of June, transplanted on the 23rd of June

and harvested on 2nd November. On harvest the number of pods per plant were

recorded and separated from the remaining above ground biomass. Above ground

biomass was then dried at a temperature of 84◦C for 48 hours and pods were dried

at a temperature of 37◦C for two weeks. Canopy biomass and pod mass were then

weighed and recorded.

Since we are strongly limited in the number of plants and space, we are confined

to non-destructive data collecting techniques. Every two weeks after transplanting,

the plant canopy diameter and plant height were measured. The canopy areas were

not strictly circular and so the widest points of each plant were identified and marked

and the distance between markers was then measured and recorded for each plant

individually. The plant height was measured from the soil to the top of the canopy
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crown. Plant height was not uniform across the canopy and so some parts or the

plant were taller than other parts. For all plants the highest point was measured.

Both methods are non-destructive.

Great care was taken to minimise the impact that measuring had on plant

canopies by avoiding manipulating individual leaf positions. It was necessary how-

ever, when dealing with competing plants, to touch the plants in order to identify

the borders of plant canopies and thus their size. It should be noted that some im-

pact would have been made on the intra-plant competition by the act of measuring

the plant canopies.

The average plant radius, with the minimum and maximum values for each

plant, in both the high density and low density arrangements can be found in Figure

5.1(b). There is a clear difference in the average canopy radius for the two density

treatments, with plants from the lower density having a consistently larger canopy

radius.

The average dry canopy biomass and pod mass at harvest for the high and low

density arrangements can be found in Table 5.1. There is a clear difference in both

average pod mass and canopy biomass at harvest between the two planting densities.

Canopy Biomass (g) Pod Mass (g) Total biomass
Plants per
square me-
tre

Average
mass

Stan-
dard
devia-
tion

Average
mass

Stan-
dard
devia-
tion

Average
mass

Stan-
dard
devia-
tion

9 65.82 15.64 36.71 10.77 102.53 24.06
16 33.46 9.75 20.43 4.60 53.89 13.22

Table 5.1: The average canopy biomass and pod mass for plants of the species Uniswa Red
grown at the temperature 28◦C for planting densities of 9 plants per square metre and 16
plants per square metre.

The data sets that have been collected are too small, in respect to the number

of plants and time points, to be used to parametrise the model, but can be used to

comment upon the design of our model so far.
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(a)

(b)

Figure 5.1: The canopy size and plant arrangement of the greenhouse experiment.
Here (a) shows the planting arrangement and (b) shows the average canopy radius
for two planting densities, of 9 (low density) and 16 (high density) plants respec-
tively. The maximum and minimum canopy radii is included in (b) for each density
treatment over time.
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5.2 Estimating ground cover

Now that we have experimental data for ground cover over time, we are able to

make a more informed judgement on how ground cover is approximated in the

mathematical model. We first compare the simulated ground cover from the model

in Chapter 4 with the experimental data and then consider several model refinements

to ensure it is appropriately described.

We begin by replicating the experimental set up in our simulations and so using

the arrangement illustrated in Figure 5.1(a) we simulate leaf area, canopy biomass

and ground cover over time for each plant using equations (4.18) to (4.20). All

plants are simulated together and are then divided into the two density treatments

of 9 plants per square metre and 16 plants per square metre and the ground cover is

averaged over the plants in each treatment. The simulated average ground cover over

time for each density treatment with the experimental data can be found in Figure

5.2, with the parameter values as detailed in Table 4.1. Here they are assumed equal

for all plants.

Figure 5.2: The simulated and experimental average canopy radius of density treat-
ments of 9 plants per square metre and 16 plants per square metre. The experimental
data used for comparison is that which is described in Section 5.1. The tempera-
ture is 28◦C and the planting arrangement for both the simulated and experimental
plants is given in Figure 5.1(a).
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The first thing we notice from Figure 5.2 is that we are underestimating the

canopy radius for each scenario. For both the low and high density planting scenar-

ios, simulation results show the average ground cover for all plants in the population

to peak at approximately 20cm. The experimental data show the average canopy

radius to peak at 22cm and 28cm for the high and low density scenarios, respectively.

We can also see that the impact competition has on ground cover is similarly not

reflected in the simulation data. Here, the canopy radius for the simulated plants

has a relative difference of 8% between each planting density compared to 17.40%

for the experimental data. The difference in average ground cover for each density

treatment might increase when average ground cover is scaled up to be closer to

what we would expect from the experimental data.

With this in mind we now wish to increase the simulated ground cover. This is

made possible by increasing the empirical parameter B, but in doing so we incur

several side effects on the model. To accommodate for an increase in B we will also

need to reparameterise the model.

Previously in our parameterisation process, the parameters a, b, b, dL, ck, B, Kc

and dc are found using an inbuilt MATLAB function that applies a least squared

fit to simulation data to approximate parameters. The experimental data used to

parameterise the model are the full set of data provided by the TCRU greenhouse ex-

periments. We repeat the parameterisation process however, in this case we increase

the minimum value of B so that it can not be lower than 0.9; this is the predicted

minimum that will allow for the simulated canopy radius to be more comparable to

the data collected here.

In order to complete this parameterisation, the experimental set up for the TCRU

greenhouse experiments needs to be replicated i.e. fifteen plants arranged in three

rows of five with Dr = 0.2m and Dc = 0.35m. This set up will hereby be referred

to as Case 1. We repeat the parameterisation process for Uniswa Red as described

in Section 4.2.1. The new values for a, b, c, dL, ck, B, Kc and dc can be found in

Table 5.2.
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Parameter Value
αh 0.75
kh 20
dh 0.02
a 0.19
b 96.97
c 39.74
dL 0.0156
PAR 0.5
ki 16
ck 2.35
κ 0.6

kmax 125.99
dc 0.001
φ 1.62 × 10−2

ψ 0.56
B 0.92
h0 0.05
c0 0.19

Table 5.2: Table of parameter values for Uniswa Red. These parameter values have been
found for when B has a minimum value of 0.9.

With the newly parameterised model we repeat the simulations for Uniswa Red at

temperatures of 23◦C, 28◦C, and 33◦C. The simulated average leaf area and canopy

biomass for fifteen plants arranged as in Case 1 is compared to the corresponding

experimental data in Figures 5.3 to 5.5, respectively. Clearly, increasing B does not

alter the simulation of leaf area over time. There is also no discernible change to the

simulation of canopy biomass at 23◦C and 33◦C however, there is a clear impact on

the simulations of canopy biomass at 28◦C. We find that our revised model for G

makes the model-data fit worse for this temperature.

In order to explore the deterioration in the model-data fit for 28◦C caused by

increasing B, we consider how the simulation of ground cover has changed. To do

this we compare the evolution of ground cover over time to the experimental data in

Figure 5.1(b). We simulate the growth of plants arranged as in Figure 5.1(a) with

a temperature of 28◦C and parameters given in Table 5.2. The canopy radius for

the two density treatments is averaged over all plants in each density treatment and

results are compared to experimental data in Figure 5.6.
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(a)

(b)

Figure 5.3: The simulated (a) leaf area and (b) canopy biomass compared with
the experimental data for the species Uniswa Red, using the data-fitted case of a
temperature of 28◦C. All plant parameters for each plant are equal. The system
is described by equations (4.18) to (4.20) with the revised parameter values given
in Table 5.2. Each simulated plant is initiated at day 14, the estimated time of
emergence and assumed to have a canopy comprising of one leaf at this point. The
simulation data has been averaged over 15 plants grown in a five by three grid, the
distance between plants in a row is 0.2m and the distance between rows is 0.35m.
Red bars indicate the upper and lower bounds of the experimental data.

The canopy radius at the later stages of the simulation is now closer to what

was observed in the experiments, however the simulated ground cover shows much

smaller values at the early stages of growth when compared to the experimental

data. We can also see that the change in ground cover for the different planting

densities is still not as large for the simulations as what is found in the experimental

data, with a difference of approximately 12.5%.

The average simulated canopy biomass for the two density treatments is given in

Table 5.3. The difference in average simulated canopy biomass is 43.77% between the
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(a)

(b)

Figure 5.4: The simulated (a) leaf area and (b) canopy biomass compared with the
experimental data for the species Uniswa Red, using the non data-fitted case of a
temperature of 23◦C. All plant parameters for each plant are equal. The system
is described by equations (4.18) to (4.20) with the revised parameter values given
in Table 5.2. Each simulated plant is initiated at day 14, the estimated time of
emergence and assumed to have a canopy comprising of one leaf at this point. The
simulation data has been averaged over 15 plants grown in a five by three grid, the
distance between plants in a row is 0.2m and the distance between rows is 0.35m.
Red bars indicate the upper and lower bounds of the experimental data.

two density treatments. This is compared to a 90.26% difference between average

canopy biomass of the experimental data given in Table 5.1. We must bear in

mind however, that the plants in the experiment were subjected to competition

imposed by plants external to our experiment. This particularly affected the high

density experiment and therefore the difference in canopy biomass between the two

treatments.

Since canopy radius is being underestimated in the early stages of growth it

is clearly a necessity to not only change B, but to redefine the entire relationship
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(a)

(b)

Figure 5.5: The simulated (a) leaf area and (b) canopy biomass compared with the
experimental data for the species Uniswa Red, using the non data-fitted case of a
temperature of 33◦C. All plant parameters for each plant are equal. The system
is described by equations (4.18) to (4.20) with the revised parameter values given
in Table 5.2. Each simulated plant is initiated at day 14, the estimated time of
emergence and assumed to have a canopy comprising of one leaf at this point. The
simulation data has been averaged over 15 plants grown in a five by three grid, the
distance between plants in a row is 0.2m and the distance between rows is 0.35m.
Red bars indicate the upper and lower bounds of the experimental data.

between leaf area and ground cover.

To develop a new method of simulating ground cover, we first consider why our

original method fails. In the early stages, when there is plenty of space for growth,

leaves appear randomly leaving large gaps between individual leaves giving a leaf area

index of less than one. The original ground cover model assumes no gaps between

leaves and that the leaf area index begins at one and increases monotonically as leaf

area increases. We now develop a new model that allows a large gap filled area of

influence at the initial stages of growth. The gaps within the area of influence fills
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Figure 5.6: The simulated and experimental canopy radius of two density treatments
of 9 plants per square metre and 16 plants per square metre. The experimental data
used for comparison is that which is described in Section 5.1. The temperature is
28◦C and the planting arrangement for both the simulated and experimental plants
is given in Figure 5.1(a). The parameter values for this simulation are given in Table
5.2 and ground cover is described by equation (3.7).

Canopy Biomass (g)
Plants per
square me-
tre

Average
mass

Stan-
dard
devia-
tion

9 66.74 6.97
16 46.42 8.36

Table 5.3: The average simulated canopy biomass for plants of the species Uniswa Red
grown at the temperature 28◦C for planting densities of 9 plants per square metre and 16
plants per square metre.

over time with newly accumulated leaves. Hence we see large increases in ground

cover at the beginning of the simulation with smaller increases in the later stages of

growth.

Several models for ground cover have been considered and it has been found that

a Gaussian relationship similar to that devised to simulate leaf area best describes the

evolution of ground cover. This approach is unique to this work. This relationship

allows us to determine when peak growth occurs, how wide the window of peak

growth is and the maximum growth rate. It has been decided that the maximum

growth rate of the ground cover will be a function of leaf area and the window
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of ground cover growth will be affected by overlap, so that as overlap increases

the period of peak canopy spreading decreases. We now introduce a dynamical

description of ground cover Gi(t) for each plant, such that

dGi(t)
dt

= αgAi(t)exp

−
(

TC(t) − bg

cg(1 −Oi(h1, h2, ...hN , t))

)2
− dgGi(t). (5.1)

Here, αg is the ground cover growth rate, bg determines the thermal time of peak

growth and cg determines the range of thermal time for which peak growth occurs.

Then the revised system of equations that describe the growth of N plants la-

belled with a subscript i is described by

dTCi(t)
dt

= TDi(t), (5.2)

dAi(t)
dt

= LAa1 (1 −Oi(h1, h2, ...hN , t)) exp
(

−
(
TCi(t) − b1

c1

)2)
−dlTslAi(t), (5.3)

dGi(t)
dt

= αgAi(t)exp

−
(

TCi(t) − bg

cg(1 −Oi(h1, h2, ...hN , t)

)2


−dgGi(t), (5.4)
dci(t)
dt

= R0ckGi(t) (1 −Oi((h1, h2, ...hN , t))
(

1 − exp

(
−κAi(t)

Gi(t)

))
×(

1 − ci(t)
kci(Oi, t)

)
− dcTscci(t). (5.5)

Plant height is described by equation (4.17), repeated here for convenience

hi(t) = h0(αh − dh)exp((αh − dh)t)
αh − dh − αhkhih0 + αhkhiexp((αh − dh)t)h0

. (5.6)

The initial conditions of the system are

TCi(0) = TDi(0), Ai(0) = LA, Gi(0) = LA, ci(0) = C0 and hi(0) = h0.
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5.3 Non-dimensionalisation

We non-dimensionalise equations (5.2) to (5.5) according to

TDi(t) = TDi0T̂Di(τ), TCi(t) = TD(0)
αh

T̂Ci(τ), ci(t) = c0ĉi(τ),

Gi(t) = LAĜi(τ), Ai(t) = LAÂi(τ) and t = τ

αh
,

where a hat signifies a non-dimensional physical variable and τ denotes non-dimensional
time. Then the non-dimensional system of equations if given by

dT̂Ci(τ)
dτ

= T̂Di(t), (5.7)

dÂi(τ)
dτ

= ᾱL

(
1 −Oi(ĥ1, ĥ2, ...ĥN , τ)

)
exp

−
(
T̂Ci(τ) − b̄

c̄

)2


−d̄LÂj(τ), (5.8)

dĜi(τ)
dτ

= ᾱgÂi(t)exp

−
(

T̂Ci(τ) − b̄g

c̄g(1 −Oi(ĥ1, ĥ2, ...ĥN , τ))

)2
− d̄gĜi(t), (5.9)

dĉi(τ)
dτ

= ᾱc

(
1 − exp(−κÂ(1−B)

i (τ)
)
Ĝi(τ)

(
1 −Oi(ĥ1, ĥ2, ...ĥN , τ)

)
×
(
1 − K̄ci(Oi, τ)ĉi(τ)

)
− d̄cĉi(τ), (5.10)

where

ᾱL = aTD

LAαh
, b̄ = αhb, c̄ = αhc, d̄L = dlTsl

αh
,

ᾱg = αg

αh
, b̄g = αhbg, c̄g = αhcg, d̄g = αhdg,

ᾱc = R0ckLA

c0αh
, and d̄c = dcTsc

αh
.

Non-dimensional plant height is described by equation (3.82), which we repeat

here for convenience

ĥi(τ) = h0(1 − dh)exp((1 − dh)τ)
1 − dh − khih0 + khiexp((1 − dh)τ)h0

.
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The initial conditions are

T̂Ci(0) = TCi0αh

TDi0
, Âi(0) = 1, Ĝi(0) = 1, and ĉi(0) = 1.

For simplicity, hereafter the hats and bars will be dropped.

5.4 Parameterisation

Parameter Value
αh 0.75
kh 30∗, 25†

dh 0.02
Topt 30∗, 28†

Tcrit 12∗, 8.5†

a 0.19∗, 0.21†

b 67.74∗, 92.0†

c 28.78∗, 38.00†

dl 1.37 × 10−2∗, 1.6 × 10−2†

LA 3.9 × 10−3∗, 3.0 × 10−3†

PAR 0.5
ki 16
ck 1.87∗, 2.04†

κ 0.6
kmax 180.66∗, 161†

dc 1 × 10−3∗, 5 × 10−4†

αg 53.85∗,103.33†

bg 17.04∗,14.00†

cg 21.67∗, 30.00†

h0 0.05
L0 1
G0 LA

c0 0.24∗, 0.19†

Table 5.4: Table of parameter values. For parameters that are species specific, ∗ denotes
the species S19-3 and † denotes Uniswa Red. These parameter values have been found for
when ground cover is described by equation (5.1).

Once again we must parameterise for the unknown parameters a, b, c, dL, ck, B,

Kc and dc, this time for the revised model that includes equation (5.1). In addition

to these parameters we must also find the newly introduced parameters αg, bg and

cg. All other parameters, that are not listed here, are considered to be the same
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as that described in Sections 3.4.1 and 4.2.1. For the leaf area, ground cover and

canopy biomass parameters that have been revised we repeat the process described

in these sections where a least-squared algorithm is applied to best fit simulation

data to the TCRU experimental data. The inbuilt MATLAB function lsqcurvefit is

used and the results for Uniswa Red and S19-3 are given in Table 5.4.

5.4.1 Numerical simulation

In this section we compare the revised mathematical model described by equations

(5.7) to (5.10) to the experimental data. There are now two sets of data with which

to compare, the TCRU experimental data that have been used in Chapters 3 and 4

and also the ground cover data described in this chapter.

Firstly, we repeat the simulation of Figure 5.6 however, in this case ground cover

is described by the solution of equation (5.9). The plants are arranged as in Figure

5.1(a) with parameter values given in Table 5.4. Figure 5.7 shows how the simulated

average ground cover G(t) for each density treatment changes over time compared

to the experimental data.

Figure 5.7: The simulated canopy radius of two density treatments of 9 plants per
square metre and 16 plants per square metre. Here ground cover is described by
equation (5.1), temperature is 28◦C and individual plant arrangements with respect
to each other and plant borders can be found in Figure 5.1(a). The parameter values
for this simulation are given in Table 5.4.
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(a)

(b)

Figure 5.8: he simulated (a) leaf area and (b) canopy biomass compared with the
experimental data for the species Uniswa Red, using the data-fitted case of a tem-
perature of 28◦C. All parameters for each plant are equal. The revised system is
described by the equations (5.7) to (5.10) with the revised parameter values given
in Table 5.4. Each simulated plant is initiated at day 14, the estimated time of
emergence and assumed to have a canopy comprising of one leaf at this point. The
simulation data have been averaged over 15 plants grown in a five by three grid, the
distance between plants in a row is 0.2m and the distance between rows is 0.35m.
Red bars indicate the upper and lower bounds of the experimental data.

We can see that ground cover, as described by equation (5.1), gives a larger

canopy crown radius at the earlier stages of growth. In addition, there is now a larger

difference between the simulated canopy radii of the two density treatments with

a relative difference of 17%, which is closer to what was found in the experimental

data.

There is a difference of 39.29% between the average simulated canopy biomass of

the two density treatments arranged as in Figure 5.1(a). This is a smaller difference

than what was found in the experimental data. It is important to note that during
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(a)

(b)

Figure 5.9: he simulated (a) leaf area and (b) canopy biomass compared with the
experimental data for the species Uniswa Red, using the non data-fitted case of a
temperature of 23◦C. All parameters for each plant are equal. The revised system is
described by the equations (5.7) to (5.10) with the revised parameter values given
in Table 5.4. Each simulated plant is initiated at day 14, the estimated time of
emergence and assumed to have a canopy comprising of one leaf at this point. The
simulation data have been averaged over 15 plants grown in a five by three grid, the
distance between plants in a row is 0.2m and the distance between rows is 0.35m.
Red bars indicate the upper and lower bounds of the experimental data.

the greenhouse experiments it was necessary to share the planting area with other

experiments. As such we were unable to prevent competition with plants external to

those in the experiment. This would definitely have affected the results of the exper-

iments and also the ratio between canopy biomass for the two density treatments.

In addition, the experimental data are for a very small sample size. Therefore, al-

though it was necessary to increase ground cover so that the general behaviour of

canopy spread was better represented, it is not in our best interest to adapt the

model further to fit this single data set. Despite this, the revised model for ground
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(a)

(b)

Figure 5.10: he simulated (a) leaf area and (b) canopy biomass compared with the
experimental data for the species Uniswa Red, using the non data-fitted case of a
temperature of 33◦C. All parameters for each plant are equal. The revised system is
described by the equations (5.7) to (5.10) with the revised parameter values given
in Table 5.4. Each simulated plant is initiated at day 14, the estimated time of
emergence and assumed to have a canopy comprising of one leaf at this point. The
simulation data have been averaged over 15 plants grown in a five by three grid, the
distance between plants in a row is 0.2m and the distance between rows is 0.35m.
Red bars indicate the upper and lower bounds of the experimental data.

cover is demonstrating a stronger ability to simulate the impact of two different

planting densities and therefore this is the system that will be used forthwith.

We now compare the refined model to the TCRU greenhouse data set. Plants are

arranged as in Case 1 for all three temperatures 23◦C, 28◦C and 33◦C. The average

leaf area and canopy biomass for all fifteen plants is given in Figures 5.8 to 5.10 with

the corresponding experimental data for Uniswa Red. The parameter values for this

simulation are given in Table 5.4.

As seen in Figures 5.8, 5.9 and 5.10, the canopy biomass is well captured by the

151



Chapter 5. Experimental and theoretical investigations of ground cover G

revised model and there is little difference in simulated biomass when comparing the

error values in Tables 4.4 and 5.5. The same holds for leaf area.

Canopy biomass (g) Leaf Area (m2)
Uniswa Red S19-3 Uniswa Red S19-3

Temperature MAE N-S MAE N-S MAE N-S MAE N-S
23◦C 2.83 0.85 4.57 0.73 168.05 0.84 366.33 0.13
28◦C 3.05 0.97 2.67 0.95 101.80 0.99 39.79 0.996
33◦C 2.78 0.92 2.95 0.94 160.94 0.97 499.74 0.74

Table 5.5: The mean absolute error and the Nash-Sutcliffe value for the leaf accu-
mulation model’s prediction of canopy biomass and leaf area for Uniswa Red and
S19-3 when compared to the TCRU experimental data.

The average leaf area and canopy biomass for fifteen plants of the species S19-3

arranged as in Case 1 is shown in Figures 5.11 to 5.13. Similarly to Uniswa Red, there

is little discernible difference in simulated leaf area and canopy biomass between the

model described in Section 4.1.1 and the one described here.

5.5 Conclusion

The experiments described in this chapter, were conducted by the author during

visits to the Crops For the Future greenhouses at the University of Nottingham and

have allowed us to modify the mathematical model in such a way that competition

for light is now better described.

We found that the previous model for ground cover G given in equation (3.7)

and used in Chapters 3 and 4, caused G to be considerably underestimated at the

preliminary stages of growth. We also found that the effect that planting density

had on canopy spread was not as strong as in the greenhouse experimental data

described in this chapter. The difference in simulated ground cover for the two

planting densities was 8% compared to 17.4% in the experimental data.

With the addition of a new ODE we were able to better represent the change

in ground cover over time. Using the new model for G given in equation (5.9), the

difference in simulated ground cover for the two planting densities is now 17%. The

canopy spread from the experimental data is not perfectly represented by equation
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(a)

(b)

Figure 5.11: he simulated (a) leaf area and (b) canopy biomass compared with the
experimental data for the species S19-3, using the data-fitted case of a temperature
of 28◦C. All parameters for each plant are equal. The revised system is described
by the equations (5.7) to (5.10) with the revised parameter values given in Table
5.4. Each simulated plant is initiated at day 14, the estimated time of emergence
and assumed to have a canopy comprising of one leaf at this point. The simulation
data have been averaged over 15 plants grown in a five by three grid, the distance
between plants in a row is 0.2m and the distance between rows is 0.35m. Red bars
indicate the upper and lower bounds of the experimental data.

(5.9) in Figure 5.7. However, since the reliability of the data is questionable, we do

not consider it necessary to mimic the results. Instead, we have simply attempted to

simulate the qualitative behaviour. Similarly, although our model does not exhibit

the same difference in canopy biomass for the two density treatments, we do not

attempt to replicate the stronger impact on canopy biomass as we only have one

data point.

The change to the way that ground cover is represented has not improved the

models ability to simulate the leaf area and canopy biomass of the TCRU greenhouse
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(a)

(b)

Figure 5.12: he simulated (a) leaf area and (b) canopy biomass compared with
the experimental data for the species S19-3, using the non data-fitted case of a
temperature of 23◦C. All parameters for each plant are equal. The revised system is
described by the equations (5.7) to (5.10) with the revised parameter values given
in Table 5.4. Each simulated plant is initiated at day 14, the estimated time of
emergence and assumed to have a canopy comprising of one leaf at this point. The
simulation data have been averaged over 15 plants grown in a five by three grid, the
distance between plants in a row is 0.2m and the distance between rows is 0.35m.
Red bars indicate the upper and lower bounds of the experimental data.

data. What it has done is ensure that the impact of plant-plant competition is now

more accurately described, thus increasing model robustness. For example, using

the previous model for ground cover, we would have assumed that no competition

exists when plants are arranged at a distance of 0.5m, as ground cover was being

underestimated. We now know that that is not the case. As such, we are no longer

limited to mimicking the behaviour of a single data set and are now able to make

recommendations for different planting arrangements, which is undertaken in the

following chapter.
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(a)

(b)

Figure 5.13: he simulated (a) leaf area and (b) canopy biomass compared with
the experimental data for the species S19-3, using the non data-fitted case of a
temperature of 33◦C. All parameters for each plant are equal. The revised system is
described by the equations (5.7) to (5.10) with the revised parameter values given
in Table 5.4. Each simulated plant is initiated at day 14, the estimated time of
emergence and assumed to have a canopy comprising of one leaf at this point. The
simulation data have been averaged over 15 plants grown in a five by three grid, the
distance between plants in a row is 0.2m and the distance between rows is 0.35m.
Red bars indicate the upper and lower bounds of the experimental data.
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Chapter 6

Optimising crop yield:

monocrop

In Chapters 3 to 5 a mathematical model of the growth and development of bam-

bara groundnut was formulated, compared to experimental data and revised where

needed. It was found that the model was able to predict and describe the change in

leaf area and canopy biomass over time to a satisfactory level, thus providing a good

forecasting tool for crop yield. The design of the model allows us to investigate the

effect individual plant size and position has on the overall population. As such, the

model can be used to ask, not only what yield would be expected from a particular

planting arrangement, but how might we arrange the plants to maximise crop yield.

In this chapter we define plant layout as the way that plants are set out in a

plot; an example would be either regular rows and columns or, in contrast, plants

could be placed in rings of increasing diameter around a central point. For these two

examples planting distance is either the interval between plant centres along rows

and columns or the interval across and within rings. Planting arrangement will then

refer to the combination of a specific layout with a particular planting distance.

We begin by investigating the effect different arrangements have on crop yield.

We consider a fixed plot area that is filled with N plants. The number of plants

is determined by how many will fit into the area with a given planting distance.
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Thus, a small planting distance will allow more plants to fit into the area and a

large planting distance will allow fewer. We then compare the canopy biomass for

different layouts and planting distances. The set up of this investigation allows us

to find the pay-off between including more plants and allowing more space per plant

in order to maximise total canopy biomass.

The results of the investigation show that the planting distance that gives the

largest canopy biomass is that which gives the highest plant density. This is corrob-

orated by our experimental data since, although the average biomass is much lower

for the high density treatment, the sum of plant biomass for all plants within a metre

squared is higher. For example, in the high density treatment there are 16 plants

within 1m2 with an average biomass of 46.42g giving a total of 742gm−2. In the low

density treatment there are 9 plants within 1m2 with an average biomass of 66.74g

giving a total of 600.66gm−2. Within the field, planting distances are approximately

50cm by 30cm, differing between sites, which is not a planting distance that provides

the highest planting density. Since the recommendation of our mathematical model

is so different to what is done in the field we follow with a discussion of what it

is we wish to optimise for. It is found that optimising for canopy biomass is not

ideal and it is pod mass which is the desired quantity. We conclude that a means of

simulating pod mass is necessary.

Once a means of simulating pod mass has been determined, the effect that layout

and planting distance has on pod mass is investigated. An optimisation algorithm

is then developed and applied to a number of plants of the same species. This is

done for various scenarios, for example different plot sizes, temperatures, and for

plant populations with and without random variation between plant parameters.

Recommendations made by the optimisation algorithm are then discussed.

We then consider the case where, not only the plot size is fixed, but the number

of seeds, and thus the number of plants, is fixed. A new optimising algorithm is

developed and the recommendations are analysed and discussed.
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6.1 Optimal planting arrangement: canopy biomass

The effect that plant layout and distance have on total canopy biomass is investigated

in this section. Five different planting layouts have been chosen and a schematic of

each layout can be found in Figure 6.1. The layouts are as follows:

• Figure 6.1(a) is a Uniform Grid, where plants are evenly spaced throughout

the plot area.

• Figure 6.1(b) is similar to the Uniform Grid, however here every other row is

indented by the amount of excess space between the row ends and the edge of

the plot area (Indented grid 1).

• Figure 6.1(c) is another form of indented grid, where every other row is in-

dented by half the planting distance (Indented Grid 2). The difference between

this layout and the one shown in Figure 6.1(b) is the extent of the indent. In

this layout the amount of indent may cause plants at the end of indented rows

to not fit in the plot area and are therefore excluded. In the previous layout,

the indentation is such that plants are never excluded.

• Figure 6.1(d) is a Circular layout where plants are arranged in rings with

planting distance D between and within each ring.

• Figure 6.1(e) is a Random planting layout.

These five layouts have been chosen as they provide a good range of physically

feasible examples.

To demonstrate the effect various planting arrangements have on the total canopy

biomass we consider the case of planting in a 1m2 plot with an initial planting

distance of D = 0.225m. A planting distance of 0.225m would cause a 0.1m indent

in Indented Grid 1 and an indent of 0.1125m for Indented Grid 2. This allows

a clear difference between the three grid arrangements. In contrast, a distance of

0.25m would not allow any indentation in Indented Grid 1 and so there would be no
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visible difference between the Uniform Grid and Indented Grid 1. For the Random

layout, plants are not restricted to a set planting distance and so instead, the number

of plants is fixed so that N would be equal to the number of plants in the Uniform

Grid Layout with planting distance D. The inbuilt MATLAB function randn is used

to generate N random numbers from a uniform distribution for both the horizontal

and vertical position of each plant within the plot area.

The species Uniswa Red has been chosen since it is for this species that we

have canopy size data. A temperature of 28◦C is used as it is the optimum growth

temperature for Uniswa Red. We initially set all plant parameters, including plant

height parameters, to be equal. This means that any difference in plant growth is in-

curred by the position in relation to other plants. We later investigate how variation

in plant parameters change the optimum planting arrangement. The mathematical

model described by equations (5.7) to (5.10) is solved using the inbuilt MATLAB

solver ode15s. Time steps are determined by the ODE solver to meet the pre-set

relative and absolute tolerances of 1 × 10−6. The simulations are run to 150 days

for each layout illustrated in Figure 6.1 and the total and average canopy biomass

for all N plants can be found in Table 6.1.

We see that the Circular Layout gives the highest average biomass per plant, but

since the amount of plants that fit within the plot area is significantly fewer when

compared to the other layouts, the total crop biomass is less. The Random layout

gives the worst average and total canopy biomass. The arrangement that maximises

canopy biomass per square metre is Indented Grid 1, followed closely by the Uniform

Grid. This is because these layouts have the most plants, whilst making the best use

of the available space. This is particularly true for Indented Grid 1 which makes use

of the empty space between row ends and the plot boundary. For this layout there

is a 2.74g biomass deficit per plant when compared to the Circular Layout, but an

extra seven plants. In contrast, the Random layout, which does not make good use

of the available space has a 14.14g biomass deficit, so although there are seven more

plants than the Circular Layout, it does not make up for the loss of biomass to the
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first eighteen plants. In a similar way, the increase in average canopy biomass does

not make up for the decrease in N in Indented Grid 2.

Canopy biomass (g)
Layout Average Total N

Uniform Grid 48.50 1212.42 25
Indented Grid 1 49.37 1234.17 25
Indented Grid 2 50.07 1101.50 22

Circular 52.81 950.55 18
Random 35.93 898.14 25

Table 6.1: The average and total canopy biomass of N plants within a 1m2 plot
with a distance between plants of 0.225m.

It is not obvious if the optimum layout for a planting distance of 0.225m will

apply to other planting distances. Thus we next investigate how canopy biomass

varies for different planting layouts when the distance between plants is allowed to

vary. We make the assumption that the supply of plants is unlimited and so the

only limitation on N is how many plants can fit within the plot with a distance D

between plants. The average and total canopy biomass of N plants within a 1m2

plot for planting distances ranging between 0.1m and 1m can be found in Figure

6.2.

From Figure 6.2(a) we see that the circular arrangement gives the highest av-

erage canopy biomass for all planting distances D. For large values of D, Uniform

Grid, Indented Grid 1, Indented Grid 2, and the Circular Layout all give the same

average canopy biomass per plant. This is because the plants are not interacting

with each other and so competition is no longer a factor. For the random layout,

the number of plants is chosen to match that of the Uniform Grid, Indented Grid

1 and Indented Grid 2, but the plant positions are allocated randomly using a uni-

form number generator to appoint vertical and horizontal spatial coordinates. This

means that when there is no competition between plants for the other four layouts,

there still could be for the random layout. This can be seen by observing that for

large D, average canopy biomass is constant for all layouts except Random in Figure

6.2(a); here Random layout yields a lower canopy biomass caused by competition.
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(a) Uniform Grid (b) Indented Grid 1

(c) Indented Grid 2 (d) Circular

(e) One example of a random lay-
out

Figure 6.1: A birds-eye schematic of five planting layouts in a 1m2 plot with planting
distance D=0.225m. Here: (a) is a Uniform Grid, where plants are evenly spaced
throughout the plot area; (b) is a grid where every other row is indented by the
amount of excess space between the row ends and the edge of the plot area (in
this case 0.1m); (c) is a grid where every other row is indented by half the planting
distance (in this case 0.1125m), this amount of indentation causes one plant of every
other row to be excluded from the plot; (d) is a Circular Layout where plants are
arranged in rings of increasing diameter around a central plant, with distance D
between and within rings; and (e) has plants randomly positioned, the number of
plants is fixed so that N would be equal to the number of plants for the Uniform
Grid case.
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(a) Average individual canopy biomass

(b) Total Canopy biomass

(c) Number of plants

Figure 6.2: A comparison of the average and total canopy biomass for N plants that
fill a 1m2 plot with a range of planting distances D for the five planting layouts
shown in Figure 6.1. The temperature is 28◦C and the plant species is Uniswa Red
described by the system of equations (5.7) to (5.10).
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Figure 6.2(b) shows us that the Uniform Grid and Indented Grid 1 layouts give the

largest total canopy biomass for all of D, with Indented Grid 1 giving a marginal

improvement for some values of D. The Uniform Grid and Indented Grid 1 layouts

are equal when planting distance is such that there is no space between the end of

rows and the plot edge, thus there is no indentation.

Figure 6.2(c) shows how the number of plants varies with planting distance. It

can be seen by comparing Figures 6.2(a) and 6.2(b) that as the average canopy

biomass goes up, the total canopy biomass goes down. This is because the number

of plants decreases and as it does so the competition between them likewise decreases

and so the average canopy biomass increases. With fewer plants in the plot there is

a decrease in the total canopy biomass. It can also be seen that a small variation

in average individual canopy biomass across layouts causes a large variation in total

canopy biomass. The change in scale of variation is partially caused by the different

numbers of plants N , but also by the multiplicative nature of summing over the

entire plot.

The irregular behaviour of total canopy biomass for increasing D found in Figure

6.2(b) can be explained by the change in N over D as seen in Figure 6.2(c). In Figure

6.2(b) the canopy biomass increases up to a certain point and then suddenly falls;

these decreases correspond with decreases in N seen in Figure 6.2(c). The cause of

these step changes is a slow increase in the area per plant as D increases until a

critical point where a further increase in D means that fewer plants can fit within

the space. The decrease in N causes a larger change in biomass than the increase

in area per plant.

It can be seen from the simulation results that for all layouts the recommended

planting distance which gives the greatest crop yield (here canopy biomass) is that

when as many plants as possible were squeezed into the planting area (i.e. D =

0.1m). This is contrary to what is typically done in the field, where planting densities

are typically within 6 and 29 plants per metre squared [42]. Although this is not

a typical field recommendation, experimental data have showm that the optimum
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distance for maximising canopy biomass is in fact that which gives the highest plant

density [34]. However canopy biomass is not the farmers output of interest, instead

it is food yield which is often being optimised for. In the case of bambara groundnut

this is the pod mass and so a means of modelling pod mass is now introduced into

the model.

6.2 Simulating pod mass

Previously it was assumed that total pod mass is proportional to total canopy

biomass at the time of maturation and so by optimising planting arrangement to

maximise canopy biomass we were simultaneously maximising pod mass. This is a

reasonable assumption for ideal conditions however, when the plant is stressed as a

result of inter-plant competition for example, this would no longer be the case. We

now wish to develop a more accurate method of simulating pod mass over time so

that the effect plant competition has on pod mass can be taken into account.

We therefore introduce a new equation that allows us to calculate pod mass

from canopy biomass. To do this we first consider the developmental stages of

bambara groundnut and how these relate to pod growth. During the vegetative

stage, accumulated energy is used for developing leaf, stem and root mass. During

the podding phase however, the production and filling of pods is the primary sink

of accumulated energy in optimum conditions. Therefore in order to simulate pod

mass, the time at which the plant transitions from vegetative to podding needs to

be determined.

There are two main methods for determining when the transition between vege-

tative and podding phases occurs, one method being a function of thermal time [32]

and the other a function of days [11]. In this work we choose to use the number of

days as it is more consistent with the TCRU experimental data. We would expect

temperature to impact upon the time of podding however, this was not seen in the

TCRU experimental data as can be observed in Table 6.2. Therefore we use a fixed

number of days after sowing to determine the onset of podding. Improving this part
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of the model would come under further work.

Temperature Interval of podding commencement (days)

Uniswa Red
23 [61, 75]
28 [63,84]
33 [61,75]

S19-3
23 [61,75]
28 [63,84]
33 [61,75]

Table 6.2: The range in days for which pod formulation commences in the species
Uniswa Red and S19-3 for three temperature regimes of 23◦C, 28◦C, and 33◦C as
seen in the TCRU experimental data.

The experimental data for pod mass over time for Uniswa Red and S19-3 for three

temperature regimes can be found in Figure 6.3. It can be seen that for Uniswa Red,

despite plants producing pods between 61 and 75 days for temperatures of 23◦C and

33◦C, only a few plants within the samples are producing pods at this time and it

is not until 75 and 89 days that we see significant pod development. Thus to be

consistent with the experimental data, the time at which podding commences is at

63 and 75 days for S19-3 and Uniswa Red, respectively.

Figure 6.3: Variation in pod mass over time for the three temperature regimes of
the TCRU experimental data for species Uniswa Red and S19-3.

Now that the point at which podding occurs has been established a new ODE de-
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termining how pod mass varies in time is introduced. Again, we investigated several

approaches before settling on the one described in this section. We assume that the

increase in pod mass Pi(t) is a proportion of the increase in canopy biomass ci(t).

Hence the growth rate of Pi(t) is controlled by the growth rate of ci(t). We further

assume that as pod mass increases it becomes a stronger sink for absorbed energy

and hence acquires a larger proportion of canopy biomass growth as it becomes

larger itself. Thus, the change in Pi(t) in time depends on both canopy biomass

growth and itself. We finally assume that pod mass can not be larger than the

canopy biomass and so ci(t) will be the carrying capacity for pod mass. Thus we

calculate the change in pod mass over time such that

dPi(t)
dt

= αpTspPi(t)
dci(t)
dt

(
1 − Pi(t)

ci(t)

)
− dpPi(t), (6.1)

where αp is a growth rate for pod mass with units g−1, Tsp is a temperature stress

and dp is the pod decay rate. The affect that competition has on pod mass is

included via dci(t)
dt . This approach to simulating pod mass is newly introduced in

this work.

The temperature stress is only in effect for high temperatures and is a parameter

that ranges between 0 and 1 where 1 indicates no stress. Hence Tsp is given by

Tsp =



1, T ≤ Topt,

1 −
∣∣∣1 − ω T −Tcrit

Topt−Tcrit

∣∣∣ Topt < T < Tceil,

0 T ≥ Tceil,

(6.2)

where ω is a species specific parameter to be determined and controls how far tem-

perature stress decreases from 1 as temperature increases from the optimum.

We non-dimensionalise equation (6.1) by rescaling the dimensional variables so

that

Pi(t) = c0P̂i(t), ci(t) = c0ĉi(t) and t = τ

αh
,
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where a hat signifies a non-dimensional physical variable and τ denotes non-dimensional

time. Using these substitutions, equation (6.1) becomes

dP̂i(τ)
dτ

= ᾱPTspP̂i(τ)dĉi(τ)
dτ

(
1 − P̂i(τ)

ĉi(τ)

)
− d̄pP̂i(τ), (6.3)

where

ᾱP = αP c0 and d̄P = dP

αh
.

The initial condition for pod mass is P (0) = P0, which for this work is equivalent

to 1 pod with a mass of 1g at 75 DAS. For convenience, hereafter the hats and bars

will be dropped.

6.2.1 Numerical Simulation

In this section the model equations (5.7) to (5.10) with the addition of (6.3) are

solved numerically and the simulated pod mass is compared to experimental data.

Before this can be done it is necessary to parameterise equation (6.3) for αP and dp.

This is done using the inbuilt MATLAB function lsqcurvefit which is a nonlinear

least-squared solver. We take a least-squared fit of the TCRU experimental dataset

against a model simulation of pod mass for 15 plants described by equation (6.3).

Both simulated and experimental plants are arranged as in Figure 3.8 at a temper-

ature of 28◦C and it is assumed that all parameters are equal between plants. The

parameters devised here are summarised in Table 6.3, all other parameters remain

the same as those stated in Table 5.4.

Parameter Value
αp 0.22∗, 0.18†

αp 1 × 10−4∗, 8 × 10−3†

Table 6.3: Table of parameter values and descriptions. For parameters that are species
specific, ∗ denotes the species S19-3 and † denotes Uniswa Red. These parameter values
have been found for when ground cover is described by equation (5.1).

We can now numerically solve the model equations. There have been no changes

made to the equations for cumulative thermal time, leaf area, ground cover and
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canopy biomass, which are all described by equations (5.7) to (5.10), as change in

pods does not affect the partitioning to other organs. Instead, partitioning to each

organ is independent so that changes in parameters, such as specific leaf area, over

time do not need to be simulated. The only change is the addition of equation (6.3)

to the system. As before we utilise the inbuilt Matlab ODE solver ode15s where

the time steps are adapted by the solver’s algorithm to meet the pre-set tolerance,

which in this case is 1 × 10−6.

As in previous chapters a simulation of fifteen plants is conducted where plants

are arranged in three rows of five with a distance within columns of 35cm and a

distance within rows of 20cm (Figure 3.8). This has been done to replicate the

conditions of the TCRU greenhouse experiments that have provided us with the

experimental data used in the previous two chapters. As before the two species that

are simulated are Uniswa Red and S19-3, with their respective parameter values

given in Table 5.4 and all plants within the simulations are assumed to have the

same height. The simulated pod mass is compared to the experimental data for

three temperatures of 23◦C, 28◦C and 33◦C for Uniswa Red and S19-3 in Figures

6.4 and 6.5 respectively. Note that figures 6.4(b) and 6.5(b) are for the simulation

data that has been fitted to the experimental. Leaf area and canopy biomass have

not changed in our model from those of Figures 5.8 to 5.13 in Chapter 5 and it is

not necessary to repeat simulations for these.

The simulations of Uniswa Red and S19-3 show a good fit to the experimen-

tal data for all three temperatures, with the average pod mass being within the

minimum and maximum of the experimental data for all 8 data points. The mean

absolute error and the Nash-Sutcliffe value for both species and all three temper-

atures can be found in Table 6.4. The mean absolute error is small for all three

temperatures and for both species. The Nash-Sutcliffe is similarly within an ac-

ceptable distance from 1 indicating that the model is a good representation of the

data. Thus we are satisfied with equation (6.3) as being a good representation of

the evolution of pod mass in time.
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(a)

(b)

(c)

Figure 6.4: The simulated pod mass compared with the experimental data for the
species Uniswa Red, where all parameters for each plant are equal and grown for
temperatures of (a) 23◦C, (b) 28◦C, and (c) 33◦C. The system is described by the
equations (5.7) to (5.10), with the addition of equation (6.3); the parameter val-
ues given in Table 5.4 with additional parameters given in Table 6.3. Here, the
data-fitted case is for a temperature of 28◦C. Each simulated plant is initiated at
day 14, the estimated time of emergence and assumed to have a canopy comprising
of one leaf at this point. The simulation data have been averaged over 15 plants
grown in a five by three grid, the distance between plants in a row is 0.2m and the
distance between rows is 0.35m. Red bars indicate the upper and lower bounds of
the experimental data.
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(a)

(b)

(c)

Figure 6.5: The simulated pod mass compared with the experimental data for the
species S19-3, where all parameters for each plant are equal and grown for tempera-
tures of (a) 23◦C, (b) 28◦C, and (c) 33◦C. The system is described by the equations
(5.7) to (5.10), with the addition of equation (6.3); the parameter values given in
Table 5.4 with additional parameters given in Table 6.3. Here, the data-fitted case
is for a temperature of 28◦C. Each simulated plant is initiated at day 14, the esti-
mated time of emergence and assumed to have a canopy comprising of one leaf at
this point. The simulation data have been averaged over 15 plants grown in a five
by three grid, the distance between plants in a row is 0.2m and the distance between
rows is 0.35m. Red bars indicate the upper and lower bounds of the experimental
data.
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Uniswa Red S19-3
Temperature MAE N-S MAE N-S

23◦C 0.65 0.95 0.86 0.92
28◦C 0.56 0.995 1.05 0.98
33◦C 0.2 0.96 0.84 0.99

Table 6.4: The mean absolute error and the Nash-Sutcliffe value for the prediction
of pod mass for Uniswa Red and S19-3 using equation (6.3) when compared to the
TCRU experimental data.

6.3 Optimal planting arrangement: pod mass

We repeat the simulation of Section 6.1 for different planting arrangements this time

optimising total pod mass.

The average and total pod mass of N plants within a 1m2 plot can be found

in Figure 6.6 for planting distances between 0.1m and 1m for all five layouts. The

number of plants N is determined by how many plants with distance D between

them can fit into the 1m2 plot.

There are many similarities between the results of this section and those of

Section 6.1. Figure 6.6(a) shows the average pod mass per plant for the range of

planting distances D. As before, the Circular layout has a slightly higher average

pod mass. As D increases so too does the average pod mass. For the Random

layout there is much irregularity as D increases, this is due to the randomness

of plant positions and so the space is not always best used. For layouts Uniform

grid, Indented Grid 1, Indented Grid 2 and the Circular Layout, the average pod

mass increases until the point where D is large enough that there is no competition

between plants. After this point the average pod mass ceases to increase with further

increases to D.

Figure 6.6(b) shows how the total pod mass of all N plants changes with D.

The layout that gives the highest pod mass is Indented Grid 1. There are points at

which the pod mass for Indented Grid 1 is equal to that of the Uniform Grid layout,

these points are when D is such that there is space between row ends and the plot

edge and hence no indentation of the plants.
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(a) Average pod mass per plant

(b) Sum crop pod mass

(c) Number of plants

Figure 6.6: A comparison of the average and total pod mass for N plants that fill
a 1m2 plot with a range of planting distances D for the five planting layouts shown
in Figure 6.1. The temperature is 28◦C and the plant species is Uniswa Red.
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As found when investigating the effect planting arrangement has on canopy

biomass, total pod mass rises and falls in an irregular pattern. This is because

although there is a general downward trend in N as D increases, for small incre-

ments in D there is not necessarily a change in N . When D increases, but plant

number does not change, there is more space per plant causing an increase in the

total pod mass. Eventually D is increased to a critical point whereby the number of

plants suddenly decreases and thus there is a sharp drop off of total pod mass. The

decreases in total pod mass correspond with the drops in plant number that can be

found in Figure 6.6(c).

Contrary to what was found in Figure 6.2, the optimum planting distance that

maximises total pod mass is no longer the minimum distance allowed in the system

of 0.1m and is now 0.33m. Since the optimum planting distance is no longer that

which gives the highest planting density we can no longer intuitively determine D

for different layouts, plot sizes and plant size. Therefore a new way of finding the

optimum D must be devised for various scenarios and plant characteristics.

6.4 An optimisation algorithm for homogeneous crops

We introduce here an optimisation algorithm which maximises total crop yield (pod

mass) by optimising planting distance for the different planting layouts discussed so

far.

In order to allow for different planting distances between rows and columns we

define Dr as the distance between plants in a row and Dc as the distance between

plants in a column. We then set a fixed plot size P̂ × P̂ and a minimum distance

Dmin which is the smallest feasible spacing between plants and a maximum distance

Dmax which is the smallest value for which plants no longer interact.

The algorithm begins by letting Dc = Dmax and defining a set of values to be

substituted for Dr denoted by Dr. Thus rows of plants do not interact with each

other but plants within rows might. Here, Dr spans between Dmin and Dmax with

increments of 10cm to give an initial sampling space.
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Figure 6.7: Diagram of the optimisation algorithm for finding Dr and Dc that
maximises total pod mass of a homogeneous field of crops.

To complete the forward optimisation of Dr, the pod mass is simulated for

Dc = Dmax and for all Dr ∈ Dr. The total pod mass at 150 days is summed

for all N plants within the plot area and compared for all Dr ∈ Dr. The highest
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and second highest total pod mass are identified and, with them, the associated

elements of Dr labelled D∗
r1 and D∗

r2 respectively. The aim of this is to narrow in

on the optimum planting distance space that gives the maximum pod mass. Having

confined the range of planting distances we now test the yield for a finer resolution

of planting distances.

We define a new set of values, denoted by D∗
r , that span between D∗

r1 and D∗
r2

with increments of 1cm. This has been chosen as it is unlikely that a higher level of

sensitivity could be achieved in a physical environment. The total pod mass at 150

days is summed for all N plants within the plot area and compared for all Dr ∈ D∗
r .

We then identify the highest pod mass and its associated element of D∗
r , which is

labelled D∗
r .

Once the optimum distance between plants in a row is found, we set Dr = D∗
r

and repeat the process for Dc to find the optimum distance between plants in a

column. We then start the algorithm from the beginning, however, instead of letting

Dc = Dmax as before, we begin the algorithm with Dc = D∗
c and find new values

for D∗
r and D∗

c . This process is repeated until the new values of D∗
r and D∗

c are the

same as those from the previous iteration. These steps are summarised in Figure

6.7.

It is possible in this algorithm for the optimum recommendations to approach

a local maximum and not the global maximum. This can be avoided by taking a

finer resolution in the initial sampling space, i.e Dr. In doing this however, we incur

a significant time increase. It is important for us to ensure that the optimisation

algorithm is accessible in a reasonable amount of time and so we wish to minimise

algorithm running times where possible. Further investigation, described in more

detail in Section 6.4.1, has shown us that when the algorithm gives a local maximum,

instead of the global, the difference in total pod mass is less than 2% between the

two. Since this is well within model error it has been decided to not increase the

resolution of the sampling space.
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Plot Size Temperature Layout Dr Dc Total pod mass N

1
23◦C Uniform Grid 0.5 0.5 666 9
28◦C Indented Grid 1 0.33 0.33 897.3 16
33◦C Uniform Grid 0.5 0.5 704.1 9

1.5
23◦C Uniform Grid 0.5 0.37 1196 20
28◦C Uniform Grid 0.37 0.3 1616.3 30
33◦C Uniform Grid 0.5 0.5 1200 16

2
23◦C Uniform Grid 0.4 0.5 1873.6 30
28◦C Uniform Grid 0.4 0.33 2555.4 42
33◦C Uniform Grid 0.5 0.5 1823.9 25

2.5
23◦C Uniform Grid 0.5 0.41 2649.1 42
28◦C Indented Grid 1 0.31 0.41 3670.4 63
33◦C Uniform Grid 0.5 0.5 2578.3 36

3
23◦C Indented Grid 1 0.41 0.5 3589.1 56
28◦C Uniform Grid 0.3 0.42 5050.7 88
33◦C Uniform Grid 0.5 0.5 3462.7 49

3.5
23◦C Indented Grid 1 0.43 0.43 4682.4 81
28◦C Uniform Grid 0.35 0.35 6628.6 121
33◦C Uniform Grid 0.5 0.5 4477.1 64

4
23◦C Uniform Grid 0.4 0.5 6032.7 99
28◦C Indented Grid 1 0.33 0.4 8348 143
33◦C Indented Grid 2 0.4 0.57 5690.4 88

4.5
23◦C Indented Grid 1 0.4 0.45 7500.8 132
28◦C Uniform Grid 0.25 0.45 10702.5 209
33◦C Uniform Grid 0.5 0.45 6900.3 110

Table 6.5: The optimum layout, column and row distance that gives maximum pod
mass for temperatures of 23◦C, 28◦C and 33◦C and species Uniswa Red.

6.4.1 Results

The algorithm described in Section 6.4 is applied to Uniswa Red for temperatures of

23◦C, 28◦C and 33◦C for plot sizes ranging between 1m2 and 4.5m2. To simplify this

process there is no variation between plant parameters, i.e. all plants are identical.

The optimal layout, row and column distances for varying plot sizes are stated in

Table 6.5. For this optimisation process we only consider the layouts Uniform Grid,

Indented Grid 1 and Indented Grid 2 as these produced consistently higher total

pod yield than the Circular and Random Layouts.

The recommendations for optimising planting distance and layout vary depen-

dant on plot size and temperature. It can be seen that the optimal layout and

planting distance changes as plot size changes, indicating that the results are not
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(a) Plant number

(b) Average area per plant

Figure 6.8: The plant number and average area per plant for a range of planting
distances and plot sizes for the Uniform Grid layout. Note here, the average area
per plant is shown on a logarithmic scale.

scalable. The reason for this is that the optimisation algorithm is attempting to find

the balance between the number of plants and the space per plant. This balance

shifts as plot size increases because the number of plants that can fit within the plot

changes.

We find that the recommended arrangement varies between Uniform Grid and
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Indented Grid 1. Further investigation shows that in all cases, the optimum distance

is such that a further increase of 0.01m to Dr or Dc would cause a drop in N .

Sometimes this planting distance would cause space to be left between the end of

the rows and the plot edge, leaving room for every other row to be indented. If this

is the case then Indented Grid 1 is recommended. If we were to increase planting

refinement further so that minimum distance is less than 1cm we would reduce the

occurrences of Indented Grid 1 being the optimum arrangement.

In general the recommendation for temperatures of 23◦C and 33◦C is to plant

with a lower density than when compared to the recommendation for 28◦C. This

would imply that the combination of temperature and competition stresses is par-

ticularly detrimental to plant growth and hence not linear.

To make sense of the recommendations we explore how the number of plants and

the space per plant changes in relation to each other. We calculate the number of

plants and the average space per plant for a range of planting distances and plot

sizes. We use a uniform grid and explore Dr = Dc ranging between 0.1m to 0.8m

with increments of 0.01m. The number of plants and the average area per plant for

a range of plot sizes and planting distances are shown in Figure 6.8.

It can be seen that the number of plants within the plot increases monotonically

with plot size and decreases with increased planting distance. What can be seen is a

‘step’ effect such that as planting distance increases there is no change in the number

of plants until a critical point at which there is a sudden change in N . This is the

cause of the ‘block-like’ effect in Figure 6.8(a). For larger values of D there is more

robustness in regards to changes in N with further increases to D. For example, for

P̂ = 1m and D = 0.1m, there are 121 plants in the plot. An increase of 0.01m to

D would cause N to reduce to 100. This is compared to when D=0.51m giving 4

plants in the plot. The number of plants will not change until D increases to more

than 1m at which point there will only be 1 plant in the plot area.

The average area per plant increases monotonically with increased planting dis-

tance in the same ‘step’ pattern found with the number of plants in Figure 6.6(c).
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(a) P̂ = 1m ( P̂
2

N
= 0.0625m2). (b) P̂ = 1.5m ( P̂

2

N
= 0.075m2). (c) P̂ = 2m, ( P̂

2

N
= 0.095m2).

(d) P̂ = 2.5, ( P̂
2

N
= 0.099m2). (e) P̂ = 3m, ( P̂

2

N
= 0.102m2). (f) P̂ = 3.5m, ( P̂

2

N
= 0.101m2).

(g) P̂ = 4m, ( P̂
2

N
= 0.1119m2). (h) P̂ = 4.5m, ( P̂

2

N
=

0.0969m2).

Figure 6.9: The above plant view of the optimum arrangement of Uniswa Red grown
at 28◦C as detailed in Table 6.5. The canopy arrangements are shown at 150 days.
Here, P̂ 2

N is plot size over the number of plants which gives the average area per
plant.

Conversely, the average area per plant does not show monotonic behaviour with

regards to plot size. What we see is a staggered effect where average space per plant

shows a general non-monotonically increasing trend. The cause of this is that for
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fixed D, there may be wasted space for a particular plot size, for example when

D = 0.8m and P̂ = 1m there are 4 plants within the plot size with 0.2m of empty

space at the end of rows and columns, this gives 0.25m2 per plant. Increasing P̂ to

1.5m will not allow more plants into the space, giving 0.56m per plant. A further

increase to P̂ = 2m will allow an extra row and column of plants to fit within the

plot. This gives 9 plants with 0.4m of empty space at the end of each column and

row and 0.44m2 per plant.

There is a clear shift in behaviour at a planting distance of 0.51m; for this

planting distance the number of plants increases uniformly for increases of 0.5m to

P̂ . This can be seen by the constant average area per plant for planting distance of

0.51m in Figure 6.8(a). This only happens when P̂ increases by 0.5m increments.

To further investigate the recommendations we take a closer look at each opti-

mum planting arrangement for Uniswa Red grown at a temperature of 28◦C for the

different plot sizes discussed in Table 6.5. We first examine what the recommen-

dations are; a bird’s-eye view of the simulation for optimum arrangements for each

plot size can be found in Figure 6.9.

From Figure 6.9 we can see that the recommended layout changes between Uni-

form Grid and Indented Grid 1, with a general trend for increasing indent for in-

creased plot size. As mentioned previously, Dr is always such that a further increase

of 0.01m would cause a decrease in N . As the plot size increases, this generally

causes that particular value of Dr to give a larger indentation.

The average area per plant for each recommendation has a general upward trend

as plot size increases. This would imply that as plot size increases, more plants can

fit into the plot area and so including another row or column of plants may not be

as beneficial as increasing the pod mass of all N plants. Conversely, for small plot

sizes, another row or column may have a significant impact.

The total pod mass of all N plants for the full range of planting distances for

a plot size of P̂ = 2.5m is recorded and given in Figure 6.10. Plants are arranged

in Indented Grid 1. What can be seen is that for both plot sizes the total pod
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mass varies considerably over the range of Dr and Dc. We see the same ‘step’ effect

described previously where pod mass increases until a peak point at which any

further increase to Dr or Dc causes a drop in N and therefore a sudden drop in pod

mass. These peaks occur at multiple points in the sample space for both plot sizes

and the magnitude of some of the peaks are relatively similar. One such example

of this can be found for P̂ = 2.5m in Figure 6.10(a), when for Dr =0.41m and

Dc =0.25m the pod yield is 3722.8g, which gives the highest yield with 77 plants.

Similarly when Dr = 0.31m and Dc =0.41m there is a pod yield of 3672.8g for 63

plants, this is 1.34% less than the highest yield however for 22.22% decrease in N .

What causes one peak to be larger than the other is the fine balance between plant

number and pod mass per plant, hence even a small change in the environment can

cause the highest pod mass peak to switch. The result of this is that the optimum

arrangement changes drastically, however pod yield may only be improved by a few

grams.

Figure 6.10(a) gives the total pod mass of all N plants for the full range of

planting distances for a plot size of P̂ = 2.5m where plants are arranged in Indented

Grid 1. We can compare this to the Uniform Grid in Figure 6.10(b). There is a clear

difference in the symmetry of between Uniform Grid and Indented Grid 1. This is

caused by the shifted rows for some of values of Dr in Indented Grid 1. Thus we

would not expect the same pod mass when we switch Dr and Dc.

This approach to finding the maximum pod mass for a given arrangement is

exhaustive and has a considerably longer running time than our optimisation algo-

rithm. Although not shown here, we applied this exhaustive technique to several

of the scenario’s given in Table 6.5. It was found that in all cases we tested, the

difference in pod mass between the given local maximum and the global was less

than 2%. This is well within the model error. We also found, that by increasing the

sampling point resolution, we were able to find the global maximum.

In Figure 6.9, we find that generally the average area per plant decreases be-

tween P̂ = 4m and P̂ = 4.5m. As a further investigation we consider each of these
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(a)

(b)

Figure 6.10: The total pod yield for for a range of values of Dr and Dc in a plot
sizes of 2.5m×2.5m in both an Indented Grid 1 (a) and a Uniform Grid (b).

plot sizes against the other’s optimal recommended arrangement. We do this to

highlight how the recommendation for one plot size does not necessarily suit an-

other, which demonstrates that the system is not scalable. An above plant view of

both plot sizes with their respective recommended arrangements can be found in

Figure 6.11 along with an above plant view of each plot size with the other’s recom-

mended arrangement. For a plot size of 4m×4m we can compare the recommended

arrangement in Figures 6.11(a) with the recommended arrangement of 4.5m×4.5m
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in Figure 6.11(b). For a plot size of 4.5m×4.5m we can compare the recommended

arrangement for 4m×4m in Figure 6.11(c) with the recommended arrangement for

4.5m×4.5m in Figure 6.11(d). For simplicity we will refer to these as (a), (b), (c)

and (d), respectively as these correspond with the figures for which each scenario

can be observed.

To summarise, (a) and (b) have a plot size of P̂ = 4m, whereas (c) and (d)

have a plot size of P̂ = 4.5m. (a) and (c) are arranged in Indented Grid 1 with

Dr = 0.33 and Dc = 0.4, whereas (b) and (d) are arranged in a Uniform Grid with

with Dr = 0.25 and Dc = 0.45.

As seen in (c) in Figure 6.11(c) if we use the recommendations for P̂ = 4m

when P̂ = 4.5m then there will be 168 plants in the plot area, which is a 17.5%

increase to N compared to (a). This is a much smaller percentage increase in N

when comparing to how N changes between cases (a) and (d). The average pod

mass for (c) is 57.81g which is slightly lower than 58.38g for (a), this shows that

the mean pod mass changes with plot size even when layout, Dr and Dc stay the

same. The reason for this is that there is a lower proportion of plants on the border

of the plot for (c) and so more plants are experiencing competition from all sides.

The average pod mass for (d) is 51.21g for 209 plants, this is 6.6g less than what is

found in (c). Clearly for an increase of 46.15% to N it is more efficient to continue

planting at the higher density with a loss of 11% to the average biomass. This is

an example of how the balance between the number of plants and the average area

per plant changes with P̂ . In this case, an addition of 41 plants with an average

of 51.21g average pod mass per plant will give an extra 2099.6g of yield. However

increasing the yield of 168 plants by 6.6g gives a total increase to yield of 1108.8g.

6.4.2 Including random variation between plants

So far in this chapter, plant parameters have been the same for all plants. We have

previously considered how random variation affects the canopy biomass over time

and found that there was minimal impact for a variation of 10%. We would now like
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(a) (b)

(c) (d)

Figure 6.11: An above plant view of the optimum distance and layout of plants for
plot sizes of 4m×4m and 4.5m×4.5m and also an above plant view of same plot
sizes, but with the others optimum distances and layout. The species is Uniswa Red
and the temperature is set to 28◦C. Here, (a) is the recommendations for a 4m×4m
plot in a 4m×4m plot size; (b) is the recommendations for a 4.5m×4.5m plot in a
4m×4m plot size; (c) is the recommendations for a 4m×4m plot in a 4.5m×4.5m
plot size; and (d) is the recommendations for 4.5m×4.5m plot in a 4.5m×4.5m plot
size.

to confirm this result by investigating how random variation between plants would

affect the algorithm’s recommendations. In this section all parameters of Uniswa

Red have been randomly selected from a normal distribution where the mean is the

original value found in Table 5.4 and the variance is 10% of the original value. The

algorithm described in Section 6.4 is now applied for Uniswa Red for a temperature
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of 28◦C and for all plots sizes. The results can be found in Table 6.6.

The recommendations for plants with randomly varied parameters show similar

behaviour to what was found in Section 6.4.1 in that recommendations change for

different plot sizes and temperatures. We find that, when random variation is applied

to plant parameters, it is generally recommended to plant with a larger planting

distance. The difference in planting distances between Tables 6.6 and 6.8 decreases

as plot size increases. This is because with the increased number of plants the average

behaviour of all N randomly varied plants becomes closer to the plant behaviour

when there is no random variation.

Plot Size Temperature Layout Dr Dc Pod mass N

1
23◦C Indented Grid 1 0.33 0.5 591.2 12
28◦C Indented Grid 1 0.33 0.5 821.1 12
33◦C Uniform Grid 0.33 0.5 603.9 12

1.5
23◦C Uniform Grid 0.5 0.5 1016.7 16
28◦C Uniform Grid 0.3 0.37 1357.2 30
33◦C Uniform Grid 0.5 0.5 1039 16

2
23◦C Uniform Grid 0.4 0.4 1570.6 36
28◦C Uniform Grid 0.4 0.4 2194.9 36
33◦C Uniform Grid 0.5 0.6 1403.9 20

2.5
23◦C Uniform Grid 0.5 0.5 2222 36
28◦C Indented Grid 2 0.45 0.35 2967.4 48
33◦C Uniform Grid 0.5 0.5 2108.7 36

3
23◦C Uniform Grid 0.5 0.5 2998.4 49
28◦C Uniform Grid 0.3 0.42 3957.5 88
33◦C Uniform Grid 0.6 0.6 2748.5 36

3.5
23◦C Uniform Grid 0.5 0.5 3894.1 64
28◦C Uniform Grid 0.35 0.43 5322.8 99
33◦C Uniform Grid 0.5 0.5 3478.7 64

4
23◦C Uniform Grid 0.4 0.44 5029.8 110
28◦C Uniform Grid 0.4 0.44 6818.3 110
33◦C Uniform Grid 0.5 0.44 4423.3 90

4.5
23◦C Uniform Grid 0.45 0.45 6238.8 121
28◦C Uniform Grid 0.4 0.45 8077.7 132
33◦C Uniform Grid 0.45 0.5 5531.7 110

Table 6.6: The optimum layout, column and row distance that gives maximum
pod mass for Uniswa Red at a temperature of 28◦C. All parameters except those
describing plant height are taken from a normal distribution where the average is
the original value and the variance is 10% of the base.
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6.5 Optimising for a limited number of plants

In the optimisation algorithm described in Section 6.4 it was assumed that an un-

limited number of plants was available. Thus there are enough plants to fill a plot

for any given Dr and Dc. It may be that, in addition to the plot size being limited,

the number of available plants is also finite. In this section, we ask ourselves what

is the best way to fill a limited space with a predetermined fixed number of plants.

Although this is a simple enough question, in practice the problem is challenging.

There are many possible arrangements for N plants in a P̂m×P̂m area and so in

order to optimise, an iterative process that identifies all arrangements needs to be

developed. There are infinite possible arrangements and so we set limitations on the

iterative process to ensure that only physically practical ones are recommended.

Firstly, it is assumed that plants are arranged systematically such that the dis-

tance between, and within, rows is constant throughout the plot area. We limit

the potential layouts to Uniform Grid, Indented Grid 1 and Indented Grid 2. The

investigation has been limited to these layouts as it has been demonstrated that the

Circular and Random Layouts are very inefficient when compared to these three.

The algorithm begins by determining the distance between plants if all N plants

were planted in a single row. This arrangement is clearly not the best one as it

leaves a lot of wasted space in the plot area, but it provides a starting point from

which to work. In a plot size of P̂m×P̂m the within row planting distance is given

by

Dr = P̂ /(N − 1).

We then let Dr increase in set increments of 0.01m so that plants no longer fit into

the row and are pushed onto a different row. The size of the increments are limited

to the sensitivity achievable in practice (e.g. farmers planting in the field). The

number of rows, nr, is recorded for each increment of Dr and the distance between

rows is calculated such that

Dc = P̂

nr − 1 .
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Clearly if nr = 1 then Dc = ∞; this still allows one row to exist. An illustration of

this method can be found in Figure 6.12 for 15 plants and a range of Dr values. The

values that Dr takes are not limited to those found in Figure 6.12, in the algorithm

Dr would take all values between P̂
N−1 and 1 with an increment of 0.01m labelled

Dr. We have selected only 8 values so that the behaviour of the algorithm can be

observed.

Figure 6.12 shows that the algorithm is testing layouts of plants that will clearly

be inefficient when maximising pod mass. Despite this, we do not want to exclude

possible layouts without confirming their efficiency.

For P̂ = 1 and N = 15, the total pod mass for all plants for values of Dr ranging

between 0.1m and 1m with increments of 0.01m can be found in Figure 6.13 for the

layouts Uniform Grid, Indented Grid 1 and Indented Grid 2. From these results

we can see that the pod mass rises and falls as Dr increases for all three layouts.

For each layout, total pod mass initially rises as Dr increases because plants within

columns are being spread more evenly horizontally. There is then a critical point

where a further increase to Dr causes one less column to fit within the space and

hence the plants that have been pushed out of the plot are added to the remaining

columns. This leaves an inefficient arrangement where plants are squeezed into

columns and columns are unnecessarily close together. Then the process repeats

itself as the columns shift away from each other, making better use of the horizontal

space and so increasing total pod mass as Dr increases.

For the Uniform Grid, once Dr > 0.5m there is no further increase to pod mass.

This is because at this point, plants are arranged in two columns where there is no

competition between columns. As Dr increases the two columns continue to move

further apart until a critical point at which plants are now arranged in a single

vertical column. For the Indented Grid 1, when Dr > 0.5m the plants are similarly

arranged in two columns, however in this case every other row is indented and so

there appears to be four columns. In this case there is competition between columns,

and hence we see pod mass rise and fall as Dr increases past 0.5m as the spacing
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 6.12: An above plant view of the planting arrangement for eight values of Dr

in the optimisation algorithm for a limited number of plants. The number of plants
is 15 and the plot size 1m×1m. Here, (a) is for Dr = 0.07m; (b) is for Dr = 0.13m;
(c) is for Dr = 0.15m; (d) is for Dr = 0.23m; (e) is for Dr = 0.27m, (f) is for
Dr = 0.51m; (g) is for Dr = 0.99m and (h) is for Dr = 1.01m.

between the four columns changes, this is contrary to what was found to the Uniform

Grid. The indent is equal to the space between the last plant in a non-indented row

and the edge of the plot and so when Dr > 0.5m and P̂ = 1m the size of the indent

decreases as Dr increases. At Dr = 0.51m the indent is equal to 0.49m and so the
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Figure 6.13: The total pod mass of 15 plants in a 1m×1m plot for a range of planting
distances Dr and for the three planting layouts of Uniform Grid, Indented Grid 1
and Indented Grid 2.

four columns are positioned on Dr = [0 0.49 0.51 1]m, respectively. Clearly in

this case, two columns experience large inter-column competition. As Dr increases

past this point the four columns become more evenly spaced until Dr = 0.74m, at

which point the four columns are positioned such that Dr = [0 0.36 0.74 1]m

when columns are the most evenly spread out and pod mass peaks. After this two

columns bunch together and we see pod mass fall. Eventually Dr hits a critical

point when plants are arranged in a single column, at this point for Indented Grid

1 every other plant is indented by the length of the plot size and so plants appear

to be in two columns.

For Indented Grid 2, when P̂ = 1m and Dr > 0.5m, plants are arranged in two

columns with every other row indented by half the planting distance. Thus in this

case, columns including the indented columns are evenly spaced for all Dr and so

we see more uniform behaviour as Dr increases. Hence we see pod mass rise and

fall as columns become further apart until the number of columns decrease. We see

some irregularity in the behaviour of pod mass as it rises with increased Dr. The

cause of this is that Dr has become such an amount that 0.5Dr causes a plant of

every other row to be excluded from that row and added to another column.
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Thus the algorithm consists of finding pod mass for all Dr ∈ Dr. The largest

total pod mass is identified and with it the associated value of Dr and Dc. This is

done for the Uniform Grid, Indented Grid 1 and Indented Grid 2. It is not clear

how the number of plants and the plot size affects the optimum recommendations.

Therefore, we run the algorithm for a range of N and P̂ values with the results

recorded in Table 6.6. The test species Uniswa Red is used, grown at a temperature

of 28◦C.

P̂ N Layout Dr Dc Total pod mass (g)

1m×1m

10 Indented Grid 2 0.5 0.33 776.15
15 Indented Grid 1 0.46 0.25 859.87
20 Uniform Grid 0.25 0.33 845.18
25 Uniform Grid 0.33 0.17 748.67

1.5m×1.5m

30 Uniform Grid 0.37 0.3 1610.83
35 Uniform Grid 0.25 0.38 1585.23
40 Uniform Grid 0.37 0.21 1503.36
45 Indented Grid 1 0.37 0.19 1423.3

2m×2m

50 Indented Grid 1 0.47 0.22 2482.06
55 Indented Grid 1 0.47 0.2 2440.50
60 Uniform Grid 0.4 0.22 2521.03
65 Uniform Grid 0.4 0.2 2365.81

2.5m×2.5m

70 Uniform Grid 0.41 0.27 3711.01
75 Uniform Grid 0.25 0.42 3670.29
80 Indented Grid 2 0.83 0.11 3594.39
85 Indented Grid 1 0.41 0.21 3530.34

3m×3m

90 Indented Grid 1 0.48 0.25 4999.13
95 Indented Grid 1 0.27 0.43 5087.06
100 Indented Grid 2 0.25 0.43 5070.06
105 Indented Grid 1 0.48 0.21 4996.72

3.5m×3.5m

110 Indented Grid 1 0.38 0.35 6448.89
115 Indented Grid 1 0.29 0.44 6602.08
120 Indented Grid 1 0.48 0.25 6559.67
125 Indented Grid 1 0.26 0.44 6671.62

4m×4m

130 Indented Grid 1 0.33 0.44 8272.40
135 Uniform Grid 0.5 0.29 8323.74
140 Indented Grid 1 0.44 0.31 8430.99
145 Indented Grid 1 0.89 0.14 8396.64

Table 6.7: The optimum layout, column and row distance that gives maximum total
pod mass for Uniswa Red at 28◦C for each plot size.

From Table 6.7 we see that for all plot sizes, planting distance decreases as N

increases which is to be expected. Similarly for all plot sizes, it is not necessarily
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better to squeeze more plants into the area. This is something that we would expect

from the results of Section 6.4.

There are several similarities in recommendations when compared to Section 6.4.

We find that it is generally better to plant with Dr not equal to Dc and we also

find that the recommended layout changes for different N and for different plot

sizes. Further investigation shows that in almost all cases the recommended Dr

and Dc will give a number of plants in a row and a column that, when multiplied

together give N exactly. Thus all the rows are filled as in Figure 6.12(d), avoiding

inefficient arrangements as shown in Figure 6.12(c). Sometimes, the factors that give

the number of plants in a row and column, respectively, have a value Dr that allows

for room to be available between the end of rows and the plot edge. In these cases

Indented Grid 1 is the optimum layout, otherwise the Uniform Grid is recommended.

For Indented Grid 2, there are values of Dr that cause plants at the end of every

other row to be shifted outside of the plot area. These plants are added onto other

columns in the plot area making another row. In doing this there are more pairs

of factors that give the number of plants in a row and the number of plants in a

column, that make viable optimal arrangements. For example, consider N = 10 and

P̂ = 1m, for a Uniform Grid and Indented Grid 1 plants must either be arranged in

one row of ten, or two rows of five or take the inefficient form of Figure 6.12(c). For

Indented Grid 2 however, plants can also be arranged in two rows of two and two

rows of three thus making it a more efficient arrangement.

The algorithm works by testing each layout in turn; further investigation shows

that the maximum total pod mass for each planting layout can vary by as much 11%

or as little as 1.55% depending on N or P̂ . This is reminiscent of the delicate balance

described in the previous section whereby a small change in plant layout plot size

can cause a large change in the recommended arrangement, but not necessarily a

great gain in pod mass. However, in the case of an 11% improvement to total pod

mass, seeking the optimum layout for a particular N and P̂ would make a significant

difference.
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6.6 Chapter summary

In this chapter we investigated how the layout of a homogeneous crop of bambara

groundnut effects the total canopy biomass and pod mass of all plants. Two forward

optimisation algorithms were introduced that made recommendations as to how to

arrange plants in order to maximise yield. One algorithm considered the scenario

of limited area and unlimited availability of plants while the other considered the

scenario where both the area and the number of available plants is limited.

It was found that to maximise canopy biomass the optimum layout was Indented

Grid 1 that shifts every other row by the distance between the end of rows and the

edge of the plot. It was further found that the planting distance that maximises

canopy biomass is the smallest allowed. Since this find contradicts what we know

from planting bambara groundnut in the field, it was decided that optimising canopy

biomass was not ideal and so instead we decided that optimising pod yield would

be preferable.

Thus the model was extended to include the change in pod mass over time. It

was found that a small adaptation to the model allowed us to capture the behaviour

of pod mass over time for the greenhouse experiments for Uniswa Red and S19-3,

for all three temperatures 23◦C, 28◦C and 33◦C. Using this adaptation we were then

able to optimise planting distance and layout in order to maximise pod yield for a

range of conditions.

For pod mass we found that the optimum layout varied for different planting

distances. The optimum planting distance is no longer the smallest feasible and so

a forward optimisation algorithm was used so that the optimum planting distance

could be found. The algorithm was applied to a range of plot sizes, temperatures

and for limited and unlimited N .

Both optimisation algorithms worked well and gave sensible recommendations. It

was found that recommended arrangements are not scalable in plot size, as a change

in plot size affects the pay off between adding more plants and increasing the space
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per plant. It was further found that temperature affected planting recommendations

so that a lower planting density is recommended for high and low temperatures

compared to the optimum temperature of 28◦C.

This concludes optimising the planting layout for the case of a monocrop. In the

following chapter, we extend this process in order to optimise the planting layout

for intercropping bambara groundnut with one other plant species.
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Optimising crop yield:

intercropping

The multi-scale mathematical model developed in this work has so far been used to

optimise the planting distance and layout of a single species of crop. As mentioned

in Chapter 1, the test species is bambara groundnut, and plants with both uniform

and randomly distributed parameters have been investigated. In traditional farming

systems bambara groundnut is intercropped with at least one other plant species.

With this in mind we are particularly interested in being able to simulate and make

recommendations for such cases. In this chapter, we take the optimisation algorithms

of Chapter 6 one step further and investigate the growth of different species of plants

grown together in the same plot. Following a preliminary investigation, we develop

another optimisation algorithm, this time optimising the arrangement of two species

of plants in a single piece of land.

We do not have experimental data for the growth and development of other

species of plants, which would be necessary to parameterise the mathematical model.

Therefore we can not investigate intercropping with a specific species. Instead we

simulate intercropping with several fictional species with particular genetic traits

that contrast with bambara groundnut, for example plant height, canopy spread

and canopy biomass.
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In the same way as in Chapter 6, we define plant layout as the way that plants

are set out in a plot. In this chapter, we introduce plant pattern, which is defined as

the positioning of different species of plants in relation to each other. An example of

this would be species alternating over rows or columns. The planting arrangement

is the combination of a specific layout, pattern and planting distance.

A key question we must ask ourselves at this point is ‘What are we trying to

optimise when intercropping’? Initial investigations using the mathematical model

detailed here found that in order to maximise for total yield (of both species) the

optimum arrangement of two species is to fill the plot with the species that produces

the highest pod mass. In the literature, there is much debate about the role that

diversity has on productivity [46]. Even if a mixed-species cropping system does

not maximise crop yield the advantages of inter-cropping go beyond maximising

yield. They include, but are not limited to, the reduction in risk of a total crop

failure due to unpredictable weather conditions [46]. Therefore in order to optimise

arrangement we must consider more than what gives the highest yield.

Once we have developed an optimisation algorithm, we proceed to investigate

several other scenarios to which the model could be applied. These include the

optimisation of the sowing date of one species in relation to the other and also the

arrangement of an annual crop (bambara groundnut) in relation to a perennial crop

(oil palm).

7.1 Secondary plant species

To investigate intercropping we require a secondary species of crop to plant with

bambara groundnut. We now introduce the fictional species of plants that will be

used to investigate mixed-species cropping systems. We will consider four species

labelled, Species 1, Species 2, Species 3 and Species 4. Each of these species will be

intercropped with Uniswa Red in turn. To avoid confusion the Primary Species will

refer to bambara groundnut and the Secondary Species will refer to one of Species

1-4 depending on which one is being considered at the time.

196



Chapter 7. Optimising crop yield: intercropping

All four of the fictional species of plants have parameter values equal to Uniswa

Red except for three key parameters, kh, αg, and kc. These parameters relate to

plant height, canopy spread and the maximum canopy biomass. From the sensitivity

analysis in Section 4.2.2 it is clear that these are not the only parameters that have

an impact on plant growth, however including all parameters would be excessive.

These particular parameters have been chosen as they have the biggest effect on plant

physiology with regards to three key characteristics; plant height, canopy biomass

and canopy spread.

Table 7.1 details the differences in parameter values for the four Secondary

Species that will be tested against Uniswa Red. Unless specified otherwise, all

other parameter values are the same as in Table 5.4. In all cases a factor of two

is used to scale the original parameter value so that if a parameter of the fictional

species is larger than Uniswa Red it is twice as large, if it is smaller it is half the

size. A factor of two has been chosen as it allows for a significant difference, while

remaining within the scope of what is physically possible. These four variations

have been chosen to give an overall view of how differences in certain parameters

will affect both the overall growth and how plants interact.

Qualitatively, the four plants given in Table 7.1 can be described as follows:

Species 1 is shorter, has a smaller canopy spread and thus lower ground cover and

also grows to a much smaller mass making it lower yielding when compared to

Uniswa Red. Species 2 is taller than Uniswa Red, but also narrower and lower

yielding. Species 3 is shorter and has a lower yield compared to Uniswa Red, but

it’s canopy is wider spreading, giving it a larger ground cover. Finally, Species 4

is shorter, has a narrower canopy and grows to a much larger mass than Uniswa

Red, making it higher yielding. These plants, although fictional would be suitable

representation of other legumes or spreading annual plants.

The growth of these four test species are compared to Uniswa Red in Figure 7.1.

Here the average leaf area, canopy biomass and pod mass of 16 plants arranged in

a Uniform Grid with a planting distance Dr = 0.3 = Dc are compared for Uniswa
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Species 1 Species 2 Species 3 Species 4
khS < khP kh1S > khP khS < khP khS < khP

αgS < αgP αgS < αgP αgS > αgP αgS < αgP

kcS < kcP kcS < kcP kcS < kcP kcS > kcP

Table 7.1: Summary of the four scenarios of parameter values that we are investigat-
ing the optimum planting conditions for. Here a subscript P refers to the Primary
Species Uniswa Red and a subscript S refers to the Secondary Species.

Red and each of Species 1-4. The temperature is 28◦C and the plot size is 1m×1m.

By observing the results of Figure 7.1 we can see how the changes in parameters

affects the evolution of leaf area, canopy biomass and pod mass through time. The

leaf area against time is given in Figure 7.1(a) for the five species. Species 1, 2

and 4 have the same leaf area, this is because all of these species have the same

canopy spread value, αg, which is smaller than for the other two species. Since αg

is smaller for Species 1, 2 and 4 when compared to Uniswa Red and Species 3, the

ground cover is less and so there is less competition applied to the 16 plants in the

simulation. Conversely, Species 3 has a larger value of αg causing it to have a larger

ground cover and thus more competition within the 16 plants compared to the other

four species. Clearly, of the parameters, only αg has an impact on leaf area and this

is via the inter-plant competition.

The mean canopy biomass against time is given in Figure 7.1(b). If planting

distance was increased the larger ground cover would become an advantage. The

only difference between Species 1 and 2 is the height and since plant height does

not affect canopy biomass in a homogeneous planting arrangement we find that

canopy biomass over time is the same for Species 1 and 2. Species 4 has the largest

canopy biomass, which may have been predicted by it having a larger canopy biomass

carrying capacity. Species 3 has the smallest canopy biomass for all time. The cause

of this is that, in addition to kc being smaller for Species 3 compared to Uniswa Red

and Species 4, αg for Species 3 is the largest of all five species. Thus, ground cover

is larger and hence there is an increased amount of competition between plants of

this species. Therefore, even though kc is the same for Species 1,2 and 3, the canopy

biomass is smaller for Species 3 compared to the other two. Species 1 and 2 initially
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(a)

(b)

(c)

Figure 7.1: A comparison of the growth of Uniswa Red and four fictional species of
plants with the differences in parameters detailed in Table 7.1. Here, (a) shows the
average leaf area per plant, (b) shows the average canopy biomass per plant and (c)
shows the average pod mass per plant.
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have a larger canopy biomass than Uniswa Red, but at approximately 90 days the

canopy biomass of Uniswa Red overtakes both of them. This is because Species 1

and 2 have less inter-plant competition when compared to Uniswa Red caused by

the smaller αg. Despite this, since Uniswa Red has a larger carrying capacity, it’s

canopy biomass increases to larger than that of Species 1 and 2.

The pod mass against time for the five species is given in Figure 7.1(c). The

results show a similar behaviour to canopy biomass in regards to the behaviour of

the five species in relation to each other. This is because pod mass is a function of

canopy biomass.

Although Species 1 and 2 show the exact same growth behaviour for leaf area,

canopy biomass and pod mass, Species 2 is taller than Uniswa Red and Species 1 is

shorter. Thus their behaviour when intercropped with Uniswa Red will be different

and this will be further investigated in the following section.

7.2 Arrangements of two species

Now that the features and comparitive behaviour of the Secondary Species’ of plants

to intercrop with Uniswa Red have been introduced, we determine what arrange-

ments of two species we will consider. There are an impractically large number of

arrangements that two species can be placed within a plot area and so it is neces-

sary to impose some limitations. We initially limit the number of planting patterns

to the three illustrated in Figure 7.2. Here the three patterns can be summarised

as alternate rows, alternate plants and alternate blocks. These patterns have been

chosen as they are three simple, feasible examples that can give some insight into

the affect of different arrangements. Once we have investigated these preliminary

examples we will go on to consider more intercropping patterns in order to develop

an optimisation algorithm. The affect of these patterns will change for different

layouts and so we will investigate each of these patterns for the Uniform Grid, In-

dented Grid 1 and Indented Grid 2 described in Chapter 6. We do not consider the

Circular and Random Layouts as, in the previous chapter, these were shown to be
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particularly inefficient.

(a) (b)

(c)

Figure 7.2: A schematic of three potential arrangements of two species. Here (a)
shows Pattern 1 which is alternate rows, (b) shows Pattern 2, which is plants al-
ternate over rows and columns and (c) show Pattern 3, which is an alternate block
pattern. Species 1 is indicated with a dashed green line and Species 2 with a solid
black line.

We repeat a simulation of Uniswa Red as a monocrop, but we now also include

Uniswa Red intercropped with each of Species 1, 2, 3, and 4. When simulating

Uniswa Red as a monocrop we divide plants into two groups (Group 1 and Group

2). Group 1 are plants with positions of the Primary Species, whereas Group 2

has the positions of the Secondary Species. Whilst this seems like repetition of the

previous chapter, in that chapter we considered yield as a whole, but now we consider

it in terms of subgroups. We do this to gain some insight into what effect the spatial

positioning of one group in relation to the other has on the yield of each subgroup

before introducing different species. This is done for all three layouts shown in

Figures 6.1(a), 6.1(b) and 6.1(c) and for all patterns shown in Figure 7.2. This
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gives a total of 45 simulations to compare. The plot size is 1m×1m, temperature

is 28◦C and the planting distance is 0.3m. The total pod mass of the Primary and

Secondary Species and also of all N plants together is given in Tables 7.2 to 7.6.
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In Table 7.2 Uniswa Red is monocropped, with the total 16 plants split into two

groups labelled with a subscript 1 or 2; each group has the same number of plants

in it. There is a different total pod mass for the three layouts which is a result we

would expect from our findings in Chapter 6. The sum of pod mass for Group 1

and Group 2 is the same for all three patterns, which is what we would expect as all

plants are the same species. What we might not expect is that there is a different

total pod mass for the two groups across patterns. For example, in Indented Grid

1 with Pattern 2 there is a lower total pod mass for Group 1 when compared to

Group 2. A schematic of this arrangement can be found in Figure 7.3, where we

can see that due to the nature of the indentation, plants on every other row extend

past the other plants. As a cause of the alternating pattern this position is always

taken by a member of Group 2 and so four members of Group 2 are exposed to less

competition than the other plants. As such, Group 2 has a higher total pod mass

for the same number of plants. It is clear from this, that even before we start mixing

species there is already an impact on pod mass caused by the planting pattern of

two species.

From Tables 7.2 to 7.6 we find that there is no consensus as to which is the

most efficient layout or pattern, which is consistent with the behaviour we found in

Chapter 6. Instead we find that the recommended arrangement changes for which

species is being investigated. The intercropping arrangement that yielded the highest

overall pod mass is when Uniswa Red and Species 4 are arranged using Pattern 3

in a Uniform Grid as seen in Table 7.6. Species 4 has a higher canopy biomass

carrying capacity than the other species and therefore grows to a larger mass which

then gives a larger pod mass. Thus the intercropping of the two highest yielding

species results in the highest yield which is to be expected. Since plants of Species

4 are shorter than Uniswa Red, the most effective pattern is to minimise the higher

yielding plants’ interactions with the taller plants. This can also be seen when

Uniswa Red and Species 2 are planted together. Species 2 is taller, but Uniswa Red

is higher yielding and therefore the best arrangement is also the block pattern as this
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Figure 7.3: Schematic illustrating how two groups are arranged in relation to each
other for Indented Grid 1 and Pattern 2. Species 1 is indicated with a dashed green
line and Species 2 with a solid black line.

minimises interactions between species. When Uniswa Red is monocropped, there

is a higher overall pod mass than when intercropped with a taller plant. Although

not shown in the tables, this is also the case when Species 4 is monocropped.

When Uniswa Red is intercropped with shorter plants that also have smaller

carrying capacities (i.e. Species 1 and Species 3), the best arrangement is to minimise

the interaction between Uniswa Red plants. (This can be seen in Tables 7.3 and 7.5

by observing that Pattern 2 (diagonal rows) gives the highest total pod mass for all

N plants.) This is for all layouts with the one exception of intercropping with Species

1 with Indented Grid 1 given in Table 7.3. Here, Pattern 3 (alterating blocks) gives

the highest overall pod mass for all N plants. When plants are arranged as with the

layout Indented Grid 1, Pattern 3 gives the lowest pod mass for Uniswa Red but

the largest for Species 1. Note that this is also the case for intercropping Uniswa

Red with Species 3 in Table 7.5. The difference between intercropping with Species

1 and 3 is that for Species 1 the decrease to pod mass from Pattern 2 to Pattern 3

for Uniswa Red is small when compared to the increase to Species 1. For Species
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3 however, as this species is wider spreading, when arranged in the block pattern

there is more competition across Species 3 plants and so the increase to total pod

mass is reduced when switching from Pattern 2 to 3.

This demonstrates the fine balance between recommended planting arrangement

for intercropping with different species. From Tables 7.2 to 7.6 there is no specific

behaviour that we can extrapolate to other scenarios and so in order to make recom-

mendations for a number of scenarios an optimisation algorithm must be developed.

7.3 Optimisation Algorithm

Having gained some preliminary insight into the behaviour of intercropping two

species of plants, we now develop an algorithm that will provide the optimum ar-

rangement in order to maximise the pod mass of both species. It has been found

that in all cases that have been investigated so far the optimum arrangement is

solely planting the highest yielding species. As previously stated, the reason we

might wish to intercrop is not necessarily to maximise pod mass as intercropping

provides many other benefits. With that in mind, one of the limitations we impose

on the algorithm is that intercropping patterns will be set by the user. This way,

we ensure that all of the patterns that are considered are practical intercropping

recommendations i.e. realistically achievable in the field.

In a similar fashion to Chapter 6, we consider a forward optimisation algorithm

that loops through all of the potential layouts and patterns. Thus for a particular

plot size, intercropping pattern and layout, the optimum distance that maximises

pod mass is found in the same way as discussed in Section 6.4. We do this for all

patterns and for each layout and compare the pod mass for each case to find the

optimum arrangement. This is done for a plot size of P̂ = 3m and a temperature

of 28◦C. We repeat this for Uniswa Red paired with each of the four fictional plant

species described in Section 7.1.

We have increased the number of planting patterns to obtain a more thorough

range of recommendations. As we want to investigate a multitude of scenarios we
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must include in our model a way to easily input patterns. We allow the planting

array of the two species that are to be simulated to be described by a repeatable

pattern that the model user inputs. For example, arrangements given in Figure 7.2

are given by scaling up

Pattern 1 =

1

2

 , Pattern 2 =

1 2

2 1

 and Pattern 3 =



1 1 1 2 2 2

1 1 1 2 2 2

1 1 1 2 2 2

2 2 2 1 1 1

2 2 2 1 1 1

2 2 2 1 1 1


.

Here 1 indicates the Primary Species (Uniswa Red) and 2 the Secondary (one of

Species 1-4). Then we see that scaling the pattern

1

2


up to a 4×4 planting array leads to



1 1 1 1

2 2 2 2

1 1 1 1

2 2 2 2


.

This can continue for however many plants we wish to consider.

In the optimisation algorithm of this section we consider seven planting patterns,
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which are given by

Pattern 1 =

1

2

 , Pattern 2 =

1 2

2 1

 , Pattern 3 =



1 1 1 2 2 2

1 1 1 2 2 2

1 1 1 2 2 2

2 2 2 1 1 1

2 2 2 1 1 1

2 2 2 1 1 1


,

Pattern 4 =
[
1 2

]
, Pattern 5 =

2 1

1 2

 , Pattern 6 =


1

1

2

 ,

and Pattern 7 =


2

2

1

 .

The result the optimisation process gave was a planting distance that caused the

shorter, lower yielding plants to be unable to grow. This gave us a homogeneous

array of plants instead of the desired intercropping system. Although this is not

what we wanted from our algorithm it does give us some confidence in that the

algorithm is working the way that it should. The results of Section 7.2 told us that

a homogeneous field of crops, filled with the highest yielding species, is actually

what would give the highest yield. Despite this, since the benefits of intercropping

go beyond increasing the yield, we only wish to consider intercropping scenarios.

Therefore it is necessary to make a further adaptation to the optimisation algorithm

so that only recommendations that allow both species to grow together will be

considered.

If we impose the condition that if the mean pod mass of the Primary or Secondary

Species is less than a user imposed threshold, then the yield is equal to zero as this
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is a non-viable recommendation. Thus yield is given by

Yield(1,2) =


∑N(1,2)

i=1 P(1,2)i(tend) if P̄1,2)(tend) < Pf(1,2),

0 otherwise,
(7.1)

where Pf is the imposed fresh-hold for minimum mean pod mass.

For this optimisation process we allow Pf = 0.25 × kmax, which is slightly less

than the minimum mean pod mass that was given by each of the recommendations

given in Section 6.4.1. The results of the optimisation process with this adaptation

is given in Table 7.7 for plant pairings of Uniswa Red with each of Species 1-4. We

do not consider multiple plot sizes and temperatures in this section as the results of

doing so are not different from Chapter 6; we find that planting recommendations

are not scalable for increasing plot sizes and that planting distances are larger for

non-optimum temperatures.

These results clearly show that the recommended arrangement changes for dif-

ferent plant pairings. One element of the recommendations that is consistent for all

patterns and species is that any further increase to the recommended values for Dr

or Dc in Table 7.7 would cause a decrease in N . Thus in all cases, the algorithm is

giving recommendations that are making full use of the planting area in a way that

we would expect from the algorithm in Section 6.4.

We find that the species pairing of Uniswa Red and Species 4 gives the highest

overall yield, which is not surprising as Species 4 is highest yielding. The species

pairing of Uniswa Red and Species 3 gives the lowest yield, again this is not surprising

as Species 3 is wider spreading and thus requires a higher planting distance and

therefore a smaller N . This corroborates the results found in Tables 7.2 to 7.6.

From Table 7.7, we find that Pattern 6 is the recommendation for intercropping

Uniswa Red with Species 1, 2 and 3. Pattern 6 maximises the number of plants

of the Primary Species (Uniswa Red), which is the higher yielding plant. In fact,

what we find is that for each of these species the order of highest to lowest pod mass

corresponds with the order of highest to lowest N1.
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Pattern Secondary
Species Dr Dc Pod mass Layout N N1 N2

1

1 0.33 0.5 3778 Indented Grid 1 70 40 30
2 0.33 0.5 3832.7 Indented Grid 1 70 40 30
3 0.42 0.75 2469.9 Indented Grid 1 40 24 16
4 0.3 0.5 6055 Uniform Grid 77 44 33

2

1 0.6 0.42 3126.7 Indented Grid 2 44 24 20
2 0.5 0.5 3578.8 Uniform Grid 49 25 24
3 0.75 0.75 1902.5 Uniform Grid 25 13 12
4 0.65 0.2 6432 Indented Grid 1 80 40 40

3

1 0.5 0.5 3197.3 Uniform Grid 70 36 34
2 0.37 0.5 3618 Indented Grid 1 63 32 31
3 0.75 0.6 2088.2 Uniform Grid 30 16 14
4 0.42 0.42 5656.2 Indented Grid 1 64 32 32

4

1 0.5 0.33 3793.1 Uniform Grid 70 40 30
2 0.5 0.33 3847.5 Uniform Grid 70 40 30
3 0.75 0.42 2473.2 Uniform Grid 40 24 16
4 0.5 0.3 6069.9 Uniform Grid 77 44 33

5

1 0.6 0.42 2963.7 Indented Grid 2 44 20 24
2 0.5 0.5 3526 Uniform Grid 49 24 25
3 0.75 0.75 1849 Uniform Grid 25 12 13
4 0.65 0.2 6433.2 Indented Grid 1 80 40 40

6

1 0.3 0.5 4168.7 Uniform Grid 77 55 22
2 0.3 0.42 4208.4 Indented Grid 2 84 63 21
3 0.46 0.75 2792.5 Indented Grid 2 35 28 7
4 0.3 0.5 5708.7 Uniform Grid 77 55 22

7

1 0.5 0.6 2982.4 Uniform Grid 42 14 28
2 0.5 0.5 3162.2 Uniform Grid 49 14 35
3 0.46 0.75 1338.1 Indented Grid 2 35 7 28
4 0.3 0.42 7202.9 Indented Grid 2 84 21 63

Table 7.7: The optimum layout, column and row distance that gives maximum pod
mass for Uniswa Red arranged with a Secondary Species. The temperature is 28◦C
and the plot size P̂ = 3m.

Species 4 produces more pods than Uniswa Red and so when these two plants are

arranged together, Pattern 7 is the recommendation as it maximises the number of

Species 4. Contrary to the recommendations for the other three plants, the order of

highest to lowest pod mass does not corresponds with the order of highest to lowest

N2. The reason for this is not entirely intuitive as we might expect the results to

be similar to that of the species pairing of Uniswa Red and Species 2. For both

cases we have a taller plant intercropped with a shorter, higher yielding plant; the
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difference between these cases is the ground cover of the taller plant. For Uniswa

Red and Species 2, the taller plant is narrower, whereas for Uniswa Red and Species

4, the taller plant is wider.

From Table 7.7 we find that in general N1 ≥ N2. The only scenarios where this

is not the case is for Patterns 5 and 7. The cause of this is the selection of planting

patterns we are looking at; in all patterns except Patterns 5 and 7 the first plant

is the Primary species Uniswa Red. This means that it is a row or column of the

Secondary species that is likely to be excluded.

We can see some symmetry in the recommended planting distances for some

of the patterns. For all species pairings, the recommendations of Dr and Dc for

Pattern 1 is the reverse of Pattern 4. This makes sense as alternating rows and

columns are symmetric. Similarly, the recommendations for Pattern 2 are the same

as that as for Pattern 5, which is something we would expect from the algorithm.

Despite the recommendations being the same, they do not necessarily produce the

same amount of pod mass, for example there is a 5.2% change in pod mass between

Patterns 2 and 5 even though Dr and Dc stay the same. This is a consequence of

two reasons: Firstly, there may be some difference in plant number of each species

between the two patterns and secondly, a consequence of model error incurred by

the approximation of overlap. An example of model error coming into play can be

seen by comparing Patterns 1 and 4, here the recommendations for Dr and Dc are

symmetric but total yield changes by 0.4%.

For this optimisation process, as the algorithm initially chose Dr and Dc to

be small enough to prevent the growth of the shorter, lower yielding species, it was

necessary to input a minimum mean pod mass for each species so that the algorithm

would not recommend a homogeneous array of plants. There are however, many

ways in which we can restrict the algorithm. For example, we may wish to impose

a minimum number of a species instead or a particular ratio of one species to the

other. Further to this, it may no longer be necessary to impose any restrictions if

more plant growth process were incorporated into the model (e.g. soil nutrients or
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water limited growth). There are clearly a limitless number of scenarios to which we

can apply our model. The investigation we have done here, although only explores a

small set of circumstances, does give us some confidence that the recommendations

are at least sensible.

7.4 Investigation of sowing date

So far, in regards to optimising conditions to maximise pod yield, we have only

considered the best arrangement of plants. There are however, many applications

for an individual-based modelling approach, in particular the time of planting for

each species can be very important [50, 54]. In some circumstances, a delay in sowing

can cause a reduction in the final yield as it may cause the plants to be growing out

of the desired season. However, given certain conditions, for example an insufficient

level of soil moisture at the desired time of planting, it can sometimes be beneficial

to delay planting [54]. Identifying the optimum time of sowing for a monocrop can

have a significant impact on yield and even more so when intercropping, as each

species may have slightly different optimum conditions for sowing. When planting

two species together it is not necessary to plant them at the same time and instead

delaying the planting date of the two species could be beneficial. This is already

an established practice and the amount of delay between planting the Primary and

Secondary Species can vary [49]. In our model, we only take into account competition

for light and we assume that weather conditions are constant over time. However,

our model can still be applied to the investigation of optimum sowing date with

regards to minimising competition for light at critical points in plant growth.

We now consider how delaying the sowing date of the Secondary Species can

impact upon the total yield of both species. Of course, when two species are planted

together they not only compete for light but also nutrients and water. These all

have an impact on the optimum sowing date, however simulating the response of

plant growth to these resources is beyond the scope of our work. Therefore we limit

our investigation to optimising sowing date in terms of minimising inter-species
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Figure 7.4: The total canopy biomass of 16 plants planting according to Pattern
1 in Figure 7.2(a). Here, 8 plants are of the species Uniswa Red and the other 8
are one of Species 1-4. The sowing of the second species is delayed in relation to
the first by the number of days shown on the x-axis. Planting distance is 0.3m,
temperature is 28◦C, different species are arranged in alternating rows and for a
plot size of P̂ = 1m.

shadowing at critical times of growth.

As a preliminary investigation we consider two species arranged in alternating

rows as in Figure 7.2(a). We set the distance between rows and columns to be 0.3m,

the temperature to be 28◦C and the plot size to P̂ = 1m. We then simulate the

growth of all N plants with varying amounts of delay between sowing dates. We

consider increments of five days to the delay in planting, up to a maximum of 100

days. In the field, this magnitude of delay could cause the growth of the Secondary

Species to occur out of the desired growing season and therefore weather conditions

will not be optimal. We still consider this magnitude, however, to observe the impact

in terms of competition for light. These simulations are for Uniswa Red intercropped

with each of the fictional species of plant labelled Species 1-4. The results of the

investigation are shown in Figure 7.4.

In agreement with the results found in Tables 7.2 to 7.6, intercropping with

Species 4 gives the highest total pod mass. This is because the carrying capacity,
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and therefore the final yield, is much higher for Species 4. Similarly, Species 2 gives

the lowest pod yield for all planting scenarios, this is also something we found in

Tables 7.2 to 7.6. Species 2 is taller than Uniswa Red, but has a lower carrying

capacity. This means that the yield of Uniswa Red is reduced and Species 2 does

not compensate for this loss.

Total pod yield increases for larger sowing delays when Uniswa Red is inter-

cropped with Species 1, 2 and 4. This is because, at the time of podding, competi-

tion between species is reduced with increased planting delay. This can be seen more

clearly by observing Figure 7.5, here an above plant view of the plant canopies of

Unsiwa Red and Species 1 growing together can be seen for 50 day intervals, where

the time of sowing for Species 1 is delayed by 75 days.

In Figure 7.5(b) we can see the canopy spread of both species 100 days after

Uniswa Red has been planted and 25 days after the sowing of Species 1. Here we

can see the wide spread of Uniswa Red, which is causing a lot of shadowing to the

shorter Species 1. At 150 days after the initial sowing, shown in Figure 7.5(b),

Uniswa Red has been harvested and Species 1 now has room to grow. Larger delays

would mean that there is more time for the second species to grow without increased

competition incurred by Uniswa Red. Although Figure 7.5 only describes the case

where Uniswa Red is intercropped with Species 1, these results also hold for Species

4.

We find that, when intercropping Uniswa Red with Species 2 and 3, total pod

yield does not increase monotonically with sowing delay. For Species 2 we find that

a sowing delay of between 5 and 35 days has a negative impact on the final yield.

Here, Species 2 is unaffected by Uniswa Red as it is the taller species and so a

decrease in final yield is caused by decreases in the yield of Uniswa Red. We find

that shadowing Uniswa Red in the initial stages of growth causes its ground cover to

decrease, thus by delaying the sowing of the Secondary Species we allow the ground

cover of Uniswa Red to be larger than it otherwise would be. Increases in ground

cover does mean there is a larger canopy surface area to absorb radiation but it
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(a) 50 days (b) 100 days

(c) 150 days (d) 200 days

Figure 7.5: An above plant view of Uniswa Red (solid lines) and Species 1 (dashed
lines) at fifty day intervals. Uniswa Red is sown at t = 0 days and Species 1 is
sown at t = 75 days. Both are harvested 150 days after sowing.

comes at the cost of increased competition, particularly when the taller species is

introduced after a delay. We find that the gain in absorbed radiation, caused by

a larger ground cover, does not counteract the impact competition has in the later

stages of growth.

In the case of intercropping Uniswa Red with Species 3 we find that increases

to sowing date past 75 days causes a decrease in total pod yield. It is important to

note that since Uniswa Red is taller than Species 3, it is unaffected by the sowing

delay. It is only Species 3 that is affected by its sowing delay. Like all species in our

simulations, Species 3 has a much wider spreading canopy when it is unaffected by

competition. Conversely, if it is shadowed by a taller plant in the initial stages of

growth the final ground cover is decreased. This means that, when the taller plants

are removed, there is less competition between the remaining plants than there
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otherwise would be. Conversely, no shadowing at the initial stages of growth causes

the average plant ground cover of Species 3 to increase, causing more competition

between plants at a critical point in pod production. Clearly a delay of 75 days

causes the optimum amount of shadowing at the early stages of growth.

These results indicate that a delay in planting the shorter plant is beneficial,

however only up to a certain critical point. This point may vary depending on

planting distance and species. It is important to ask what all this means in terms

of recommendations in the field. The maximum amount of sowing delay shown in

Figure 7.4 is beyond what may actually be recommended in the field due to weather

constraints, however we have shown that, when possible, there is a benefit in delaying

the sowing of the shorter species. The amount of delay would depend on the length

of the growing season. This is for the case when the two species are arranged in

alternating rows. For a different pattern we may have different results. For example,

the results for when plants are arranged as in Figure 7.2(b) are given in Figure 7.6.

In this case, plants of each species are entirely surrounded by the plants of the

other species. For Species 1, 2 and 3, Uniswa Red is unaffected by the Secondary

Species as it is taller. When intercropping with these species with this planting

distance, the plant canopies of the Secondary Species are completely shadowed by

Uniswa Red in the initial period of growth, where peak spreading occurs. Thus it

is not until much larger delays in sowing do we see any change in total pod yield.

For Species 2, which is taller than Uniswa Red, we see a consistent increase in yield

with increased sowing delay. This is because, although it shadows Uniswa Red, it

has a smaller spreading canopy and so the extent of shadowing is not as large when

compared to Uniswa Red planted with Species 1, 2 and 3.

Clearly, the effect that a delay in sowing has on final yield is very different for

Pattern 2, when compared to Pattern 1. This is a further demonstration of the

delicate balance when optimising for yield.
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Figure 7.6: The total canopy biomass of 16 plants where 8 plants are of the species
Uniswa Red and the other 8 are one of Species 1-4. The sowing of the second species
is delayed in relation to the first by a number of days given in the x-axis. Planting
distance is 0.3m, temperature is 28◦C, different species are arranged in alternating
rows and columns and plot size is P̂ = 1m.

7.5 Real world application: Intercropping Uniswa Red

with oil palm

Up to this point, the investigation of intercropping has been limited to the planting

of annual plants with similar growth behaviours to Uniswa Red. We now consider

optimising plant arrangement when this is not the case. In particular, we consider

intercropping Uniswa Red with a perennial crop such as oil palm. Before we do

this however, it is necessary to formulate our model to simulate the growth and

development of oil palm. As such, in this section we discuss the model adjustments

that are required to be able to do this. In doing so we have made reasonable

assumptions, however the model formulation has not been as rigorous as it was for

bambara groundnut as the work in this section is solely exploratory.

The harvested product of oil palm are fruit bunches from which crude palm oil

and palm kernel oil can be extracted. In the past 100 years, oil palm has become
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one of the worlds most important vegetable oils, contributing as much as 36% of the

worlds total vegetable oil production. It is typically grown at a density of 120-150

palms per hectare, where they have been reared in polybags for 6-12 months until

they are transplanted to the field. Once transplanted, there is little opportunity for

repositioning or replacing plants with undesirable characteristics [58].

The first fruits can be harvested at 2.5 years, which is considerably earlier than

full canopy closure. The canopy of oil palm reaches it’s maximum size at 10 years

and has an economic life span of 25 years [33]. Since it spends 15 years at full canopy

size, the optimal planting density must be considered for the mature canopy size as

it is very impractical to change planting density within the growth cycle. A full size

canopy radius of oil palm is approximately 6m [33]. As such there is a great deal

of space left between trees so that yield is not heavily impaired by competition. In

order to make use of the space, the gaps between trees can be filled with other crops,

such as bambara ground, so that space is not wasted.

Kraalingen et al. [33] discusses a mathematical model that simulates the growth

and yield of oil palm. Vegetative biomass over time is described using a dynamical

model, from which plant leaf area is calculated, much in the same way as described

in Chapter 3. Interactions between tree crowns is described in a similar way as what

is described in Section 3.7.1. The canopy crown is represented with a horizontal

disc; however, in the case of oil palm it can not be assumed the leaves are uniformly

distributed over the canopy. Instead it was necessary to include a gradient from the

central stem to the canopy edge. This model was able to describe leaf area index,

plant biomass and yield well in the first seven years, however after this there was a

considerable difference between simulation and experimental data. The cause of this

was leaf pruning done in the field which was not accounted for in the mathematical

model.
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7.5.1 Formulating the mathematical model for oil palm

In order to intercrop oil palm with bambara groundnut it is necessary to formulate

our mathematical model so that its behaviour is captured. Our motivation in doing

this is to make recommendations about planting bambara groundnut around an oil

crop. We assume that bambara groundnut does not impact upon the growth of oil

palm and so its behaviour will not be altered by the presence of bambara groundnut.

It is not necessary to simulate the canopy biomass and yield of oil palm as we are

only interested in variables that will impact upon the growth and development of

bambara groundnut. In addition, reparameterising the model to predict the yield of

oil palm is beyond the scope of this work as we do not have access to data.

The growth behaviour of oil palm can be captured with a few changes in param-

eter values, namely, αh, kh, a, b, c, dl, ag, bg, cg and dg. As we have no data to fit

the model to, we choose parameters using a ‘best guess’ approximation which allows

us to simulate the average behaviour of a population of oil palm plants as detailed

in the literature.

As a perennial, oil palm does not complete its life cycle in one year. At a point in

its life the leaf accumulation will equal the leaf decay and the leaf number will remain

approximately constant over time. This can be also be observed in the simulations

of bambara groundnut, however the time for which this occurs is short compared

to oil palm. If a change is made to the tree during it’s growth, i.e. pruning, we

would expect the leaf number to initially decrease and then regrow over time. This

phenomenon is not currently included in the mathematical model developed in this

work because a Gaussian function for leaf area accumulation only allows for one

single peak in leaf growth. To include the impact of pruning and regrowth of leaves

in the mathematical model we add an oscillating function in equation (5.8). The

result of this is that the leaf number will reduce and then regrow over time. The

oscillating function dprune takes the form of a sin wave where the frequency is set to
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once every three years so that

dprune = d∗
prunesin

( 2πt
3 × 365

)

where d∗
prune is a constant indicating the pruning magnitude. We chose once every

three years using a trial and error approach as this frequency caused us to best

replicate the data given in the work of Kraalingen et al. [33].

Thus the system of equations that describe the growth of oil palm is given by

dTCi(t)
dt

= TDi(t), (7.2)

dGi(t)
dt

= αgAi(t)exp

−
(

TCi(t) − bg

cg(1 −Oi(h1, h2, ...hN , t)

)2


−dgGi(t), (7.3)
dAi(τ)
dτ

= a1 (1 −Oi(h1, h2, ...hN , t)) exp
(

−
(
TCi(t) − b1

c1

)2)

−dprunesin

( 2πτ
3 × 365

)
− dlTslAi(t), (7.4)

(7.5)

Plant height is described by equation (4.17), repeated here for convenience

hi(t) = h0(αh − dh)exp((αh − dh)t)
αh − dh − αhkhih0 + αhkhiexp((αh − dh)t)h0

. (7.6)

We non-dimensionalise equations (7.2) to (7.4) according to

TDi(t) = TDi0T̂Di(τ), TCi(t) = TD(0)
αh

T̂Ci(τ)

Gi(t) = LAĜi(τ), Ai(t) = LAÂi(τ) and t = τ

αh

222



Chapter 7. Optimising crop yield: intercropping

which yields

dT̂Ci(τ)
dτ

= T̂Di(t), (7.7)

dÂi(τ)
dτ

= ᾱL (1 −Oi(h1, h2, ...hN , τ)) exp

−
(
T̂Ci(τ) − b̄

c̄

)2


−d̄prunesin

( 2πτ
3 × 365

)
− d̄LÂi(τ), (7.8)

dĜi(τ)
dτ

= ᾱgL̂i(t)exp

−
(

T̂Ci(τ) − b̄g

c̄g(1 −Oi(h1, h2, ...hN , τ))

)2
 , (7.9)

(7.10)

where

ᾱL = aTDi

LAαh
, b̄ = αhb, c̄ = αhc, d̄prune = dprune

LAαh
, d̄L = dlTsl

αh
,

ᾱg = αg

αh
, b̄g = αhbg, c̄g = αhcg, d̄g = αhdg,

The non-dimensional parameter values for oil palm can be found in Table 7.8.

These have been found using trial and error until the growth behaviour matches

that found in the work of Kraalingen et al. [33].

Parameter Value
ᾱL 0.052
b̄ 1095
c̄ 547.5

d̄pruce 0.01
d̄L 1.3 × 10−4

ᾱg 5.3 × 10−4

b̄g 365
c̄g 1095

Table 7.8: Table of non-dimensional parameter values for oil palm.

Since we have no experimental data with which to compare the simulation, we

refer the reader to the work of Kraalingen et al. [33] for comparison (which were the

data used to intuitively parameterise the model). To replicate the field experiments

described in this work, we arrange 144 trees in a 12 by 12 uniform grid with a planting
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(a)

(b)

(c)

Figure 7.7: The growth behaviour of 144 oil palm trees in a 12 by 12 uniform grid
with a planting distance of 9m. The mathematical model is described by equations
(7.7)-(7.9) where growth begins at six months, the supposed time of transplanting,
and is run to fifteen years. Here (a) is the average leaf area per tree, (b) is the
average ground cover per plant and (c) is the leaf area index for the total population
of trees.
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distance of 9m. The mathematical model described by equations (7.7)-(7.9) is then

solved numerically using the inbuilt MATLAB function ode15s. The simulation

begins at six months, the supposed time of transplanting, and is run to fifteen years.

The average leaf area, ground cover and leaf area index per plant is given in Figure

7.7. Here the leaf area index for all plants is calculated such that

Leaf area index = Sum leaf area of all plants
Area of field ,

where the field is one hectare in area.

By comparing Figure 7.7 to the work of Kraalingen et al. [33] we find we are

simulating the general behaviour well and if given adequate data, we feel confident

that we could parameterise the model for this species.

7.5.2 Calculating competition caused by the canopy of oil palm

Now that we have formulated the model for oil palm, we would like to make some

adjustments to the way that the taller plant (oil palm) impacts upon the shorter

plant (bambara groundnut). We now consider some revisions to the model. Firstly,

for this investigation we allow some light to penetrate through the canopy of oil

palm to the ground below and secondly, we allow the leaf area density of oil palm

to vary across the plant canopy.

Since we assume that the canopy of oil palm does not completely block sunlight

from reaching the ground, some of the light penetrates through the canopy. Then

plants arranged below the canopy will still be able to absorb some sunlight, albeit

much less than if they were not shadowed. Then the effect of competition previously

given by

1 −Oi(h1, h2, ...hN , τ),

is now given by

1 − ωiOi(h1, h2, ...hN , τ)

where ωi < 1 for a plant that is shadowed by a taller plant.
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Since we do not have data to parameterise ωi, we assume that amount of light

that is blocked by the taller canopy is a function of the local leaf area index φi.

Then ωi is described by

ωi = φi

φ
,

where φ is the minimum leaf area index that blocks all sunlight.

As described by Kraalingen et al. [33] there is a density gradient in the tree

canopy, where the leaves are denser closer to the stem. This is contrary to how we

have modelled for Uniswa Red where leaves are assumed to be uniformly distributed.

Therefore, for oil palm, more light will penetrate through the canopy around the

edge of the tree crown than closer to the trunk. The way that this is incorporated

into the model will now be discussed.

We adopt the method described by Kraalingen et al. [33] where the canopy is

split into two rings, an outer and inner ring. The area of ground that the inner

ring and outer ring covers is given by GI and GO, respectively. This is illustrated

in Figure 7.8, and by doing this we drastically reduce the complexity of the density

gradient. The total leaf area Ai is split over each ring so that half of A is contained

within each ring. As the outer ring has a larger area, the leaf area density is lower

there. Then a local leaf area index for the inner and outer rings can be calculated

such that

φIi = 0.5 ×Ai(t)
GIi(t)

and

φOi = 0.5 ×Ai(t)
GOi(t)

,

respectively.

The way that this would impact upon plants below the oil palm canopy is that

ωi would change when being shadowed by an inner or outer ring.

Consider two plants, one of which is an oil palm and labelled with a j, and the

other a bambara groundnut labelled with an i.

To calculate how much light is stopped from reaching Plant i, by a taller canopy
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Figure 7.8: Schematic of an above plant view of oil palm. The canopy ground cover
has been split into an inner and outer ring, where the radius of the inner ring is half
of the outer ring. It is assumed that half of the total plant leaf area is contained in
the inner ring and half in the outer.

we must calculate overlap imposed upon bambara groundnut Oi twice, once for the

part of Plant i that is shadowed by the inner ring OIi and again for the outer ring

OOi. Then the growth of the shorter Plant i, which is shadowed by the taller oil

palm, is reduced by a magnitude of

1 − ωIiOIi(h1, h2, ...hN , t) − ωOiOOi(h1, h2, ...hN , t)

where ωIi is the amount of light blocked by the inner ring and ωOi the amount of

light blocked by the outer ring. The values of ωIi and ωOi would be different for each

plant depending on the value of Ai. Including this into the model would require a

great deal of complexity and so instead we allow ωI and ωO to take values that have

been averaged over the entire field.

The way that bambara groundnut interacts with plants of the same species is

the same as that described in Section 3.5.3 so that ωOi = 0.5 = ωIi.
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Thus the revised dimensional system of equations for bambara groundnut is given
by

dTCi(t)
dt

= TDi(t), (7.11)

dGi(t)
dt

= αgAi(t) ×

exp

(
−
(

Tc(t) − bg

cg(1 − ωIOIi(h1, h2, ...hN , t) − ωOOOi(h1, h2, ...hN , t) − Oi(h1, h2, ...hN , t)

)2)
−dgGi(t), (7.12)

dAi(t)
dτ

= a1 (1 − ωIOIi(h1, h2, ...hN , t) − ωOOOi(h1, h2, ...hN , t) − Oi(h1, h2, ...hN , t)) ×

exp

(
−
(
TC(t) − b1

c1

)2)
− dlTslAi(t), (7.13)

dci(t)
dτ

= R0ckGi(t) (1 − ωIOIi(h1, h2, ...hN , t) − ωOOOi(h1, h2, ...hN , t) − Oi((h1, h2, ...hN , t)) ×(
1 − exp

(
−κ

Ai(t)
Gi(t)

))(
1 −

ci(t)
kci(O, t)

)
− dcTscci(t), (7.14)

dPi(t)
dt

= αP TspPi(t)
dci(t)
dt

(
1 −

Pi(t)
ci(t)

)
− dpPi(t). (7.15)

Plant height is described by equation (4.17), repeated here for convenience

hi(t) = h0(αh − dh)exp((αh − dh)t)
αh − dh − αhkhih0 + αhkhiexp((αh − dh)t)h0

. (7.16)

This system is then non-dimensionalised in the same way as described in Section 5.3

for equations (7.11)-(7.14) and Section 6.2 for equation (7.15).

7.5.3 Optimising arrangement of bambara groundnut and oil palm

In this section, we investigate the optimum planting arrangement of oil palm and

bambara groundnut using the model for oil palm described by equations (7.2) to

(7.4) and the model for bambara groundnut given by equations (7.11) to (7.16).

For this optimisation process, we assume that the positions of oil palm trees

are fixed and we refine our investigation to the placement of bambara groundnut

around oil palm. We then have five planting distances to consider, the row and

column distance between oil palm trees (Dpr and Dpc), the row and column distance

between bambara groundnut (Dr and Dc) and the distance between oil palm plants

and bambara groundnut Dpb. We define Dpr = 9m= Dpc and then find Dr, Dc and

Dpb using the algorithm described for a homogeneous field of crops in Section 6.4.
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The only change that has been made to the algorithm is finding the optimal value

of the additional planting distance Dpb.

We consider a field with size P̂ = 9m. With Dpr = 9m= Dpc this will give

4 oil palm trees. We assume a temperature of 28◦C and restrict our investigation

to finding the optimum planting distance for a uniform arrangement. The simula-

tion begins at 6 months, as this is the supposed time of transplantation. Bambera

groundnut is not planted around the oil palm trees until the open of the following

year. As the palm trees grow the optimum planting distance may change and so

we run the algorithm over 16 years where at the beginning of every year bambara

groundnut is sown and then harvested 150 days later.

On an initial run through of the algorithm, it was found that the recommended

values of Dpb were the minimum values that were allowed by the algorithm. What

this means is that the algorithm is recommending we position plants in areas that

they are unable to grow and so pod mass does not exceed the initial condition P0.

This is because there is no consequence in the simulation for a plant that does

not grow and therefore the final yield is only benefited by the addition of the extra

plants that do not exceed P0. To avoid this, we impose a minimum pod mass for each

plant, whereby if plants do not grow past this value the arrangement is considered

unviable. We choose this value to be 10g, however this would be a user defined

parameter which takes into the account both the financial and time cost of growing

and harvesting each plant. This is different to what we did in Section 7.3, where

a minimum average pod mass was imposed. The reason we have changed how we

restrict the algorithm is that there are now more scenarios for individual plants. In

this case, we have bambara groundnut plants that are interacting with each other

and only some of which will be interacting with oil palm. We find that although

some plants may be unable to grow, these are few enough so that the average pod

mass does not go below the threshold. Despite this, having plants that are unable

to grow is not a viable recommendation and hence we choose a minimum pod mass

for each plant. The results of the optimisation algorithm are given in Table 7.9.
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Year Dr Dc Dpb N2 Pod mass (g)
1 - - - - -
2 0.25 0.42 2 678 32992.6
3 0.25 0.42 2.5 601 29073.1
4 0.31 0.35 3 491 23914.2
5 0.25 0.41 3.6 389 18831.9
6 0.27 0.44 4.6 103 5895.2
7 - - - - -
8 - - - - -
9 - - - - -
10 - - - - -
11 - - - - -
12 - - - - -
13 - - - - -
14 - - - - -
15 - - - - -

Table 7.9: The optimum planting distance for intercropping Uniswa Red and oil
palm for sixteen years of oil palm growth. The distances are for between Uniswa
Red and also for between oil palm and Uniswa Red. A − means that at this point the
minimum bamara groundnut pod mass did not exceed 10g for any planting distance.

From Table 7.9 we see that recommendations for Dr, Dc and Dpb for planting

bambara groundnut change over the growth years of oil palm. To make sense of this

an above plant view of the recommended planting arrangement of both oil palm and

bambara groundnut for years 2-5 of oil palm growth can be found in Figure 7.9. The

above plant view is taken 150 days after bambara groundnut is sown.

From Figure 7.9 we can clearly see that Dpb changes with the size of oil palm

canopy, so that plants are placed just on the edge of the oil palm’s canopy. From

this we can see that even though we are letting light penetrate through the canopy,

it is not enough for bambara groundnut plants to grow.

As the recommendations for Dpb increases over the years, the unoccupied area

that can be used for bambara groundnut is decreasing. This causes changes to the

recommendations for Dr and Dc, which is what we would expect from Section 6.4.1.

After 7 years of oil palm growth, there is no longer any space for Uniswa Red

to be planted between them. If more light was able to penetrate through the plant

canopy this might not be the case.
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7.6 Chapter summary

In this chapter we investigated how the arrangement of two species of crop in one

planting area affected the final yield. We were able to apply the mathematical

model to several scenarios: the growth of two annual crop species, the impact of

different sowing dates of crop species and finally, the growth of bambara groundnut

interspersed with oil palm.

To do this four fictional annual crops were introduced and investigated. Each

plant had similar growth characteristics to bambara groundnut, however, each was

different in regards to the three key growth parameters of plant height, ground cover

and canopy biomass. In addition to these fictional plant species we simulated the

growth of oil palm. By doing so we were able to demonstrate the robustness of the

mathematical model in terms of simulating other plant species and found that we

were successfully able to describe the canopy development of oil palm.

Two algorithms were developed in this chapter. One for two annual species of

crops, and another for oil palm and bambara groundnut. Both algorithms worked

well and gave sensible recommendations, however both required constraints to be

imposed so that only viable planting distances were proposed.

We found that the recommendations are dependant on a range of factors for each

scenario. We have also found that the algorithm is adaptable to a very large number

of planting scenarios and in order to make recommendations in a reasonable time,

we need to impose certain constraints on the optimisation algorithm.
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(a) Year 2 (Dr=0.25m, Dc=0.42m,
Dpb=2m and N2=678)

(b) Year 3 (Dr=0.25m, Dc=0.42m,
Dpb=2.5m and N2=601)

(c) Year 4 (Dr=0.31m, Dc=0.35m,
Dpb=3m and N2=491)

(d) Year 5(Dr=0.25m, Dc=0.41m,
Dpb=3.6m and N2=389)

(e) Year 6 (Dr=0.27m, Dc=0.44m,
Dpb=4.6m and N2=103)

Figure 7.9: An above plant view of the recommended arrangement at of intercrop-
ping Uniswa Red and Oil Palm for 6 years of oil palm growth. Uniswa Red is sown
at the beginning of the growth year and harvested 150 days later. Oil palm canopies
are indicated with a dashed line and bambara groundnut with a solid line.
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Conclusions

This thesis has been focused on the optimisation of planting arrangement to max-

imise crop yield. A key motivation in the formulation of these optimisation tech-

niques was to not only make recommendations for a monocropped field, but to also

propose arrangements for an intercropping environment. In order to do this, a math-

ematical model was developed that incorporated the spatial positioning of individual

plants, with the ability to include variation between plants.

In the process of developing this model, we began with the simplest description

of plant growth. We then went through several iterations of comparing the simula-

tion results to experimental data and then making model revisions to include any

necessary additional details. The end result was a system of ODEs that described

the cumulative thermal time, leaf area, ground cover, canopy biomass and pod mass

of individual plants, which are all found to be essential in accurately describing the

competition of plants in a field.

In this final chapter, a brief overview of the work described in this thesis is

given. We finish with a summary of the major findings of this PhD and a discussion

of recommended further work.
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8.1 Thesis summary

In Chapter 1, we introduced the project and the role it plays within the larger

project of CFF’s BAMyield group. Here, we defined some key terminology and also

described the growth behaviour of the test species, bambara groundnut.

In Chapter 2, a review of the literature surrounding mathematical modelling of

crops was provided. A summary of the basic modelling approaches was given in

addition to a more detailed discussion of simulating the many-plant level in terms

of individual plants. We also discussed other mathematical models that describe

the growth and development of bambara groundnut, paying particular attention to

growth in terms of plant biomass rather than phenological age.

Chapter 3 introduced the first mathematical model derived from first principles

that was formulated to describe the growth of bambara groundnut. A basic plant

physiology of a disc raised above the ground on a core stem was adopted. The

model required the spatial positioning of individual plants so that plant interactions

could be measured in terms of the spatial overlap of the circles that represented

plant canopies. The model comprised of one ODE for each plant describing canopy

biomass. Equations were coupled between plants via an overlap term. This overlap

term was dependent on the size of the respective plant canopies, their heights and

also their proximity to one another. To our knowledge, this numerical approach of

measuring plant competition is novel. This initial model was able to fit the exper-

imental data for canopy biomass well, however was not able to do so for leaf area.

It was stipulated in the chapter that, to develop a robust mathematical model that

can be applied to a multitude of scenarios, we would want to describe the develop-

ment of canopy biomass with regards to the underlying processes more accurately.

Canopy biomass growth is a function of absorbed sunlight, and absorbed sunlight

is a function of leaf area. Simulating the growth of canopy biomass well, but the

growth of leaf area poorly would indicate that we are not accurately describing the

connection between biomass and leaf area.
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Chapter 4 introduced the importance of adequately describing leaf area dynamics

in the model and consequently two ODEs were added to the model. In doing this,

the model provided a better fit to the leaf area data. There are many areas in

which we can investigate the model’s behaviour, but in this chapter we limited our

exploration into the investigation of variability in growth of individual plants and

also the impact that imposed variation in plant parameters has on crop yield.

Chapter 5 addressed the question as to whether ground cover was accurately

represented in the model. Since plant-plant competition is directly dependent on

canopy size, any inaccuracy in describing ground cover would result in an inaccuracy

in describing competition. Thus we were strongly motivated to attain experimental

data detailing this variable. Data attained from glasshouse experiments, specifically

designed for this work, subsequently showed us that we were underestimating the

magnitude and range of ground cover over time. As such, we revised the method

of describing ground cover in this chapter. We found that, with a relatively simple

revision, we were able to better account for ground cover.

By Chapter 6 we had finished the formulation of the model and began building

a novel framework for optimising the arrangement of plants to maximise crop yield.

We found that it was necessary to simulate pod mass in order to make reliable

recommendations. As such, a discussion of the addition of a final ODE for pod

mass was given. We then designed two algorithms for optimising pod mass, one for

a fixed plot size and unlimited number of available plants and another for a fixed

plot size and a limited number of plants. The results of the optimisation algorithms

were then thoroughly analysed to ensure that sensible recommendations were being

made. Having gained confidence in the optimisation algorithms we went on to

explore how random variation in parameters of individual plants within a monocrop

affects optimum planting arrangements and final yield.

Finally, in Chapter 7 an investigation of bambara groundnut in an intercropping

environment was conducted. It was necessary to introduce four fictional species of

plants here, so that numerical experiments of a heterogenous field of crops could
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be undertaken. These crops shared all characteristics with bambara groundnut

except for three key physiological features which are plant height, canopy spread

and canopy biomass. Several elements of optimisation were explored in this chapter,

the optimisation of planting distance, layout, planting pattern and also sowing date.

In addition to this, we considered the placement of bambara groundnut around

oil palm trees over 15 years of growth. To do this it was necessary to formulate

the model for oil palm. Since we lacked experimental data for oil palm, we were

not able to formulate the model as rigorously as we did for bambara groundnut.

Despite this we found that we were able to capture the general behaviour of oil

palm demonstrating the robustness of our mathematical model. The results of this

particular optimisation algorithm demonstrated a lot of potential in the planting of

bambara groundnut around trees, a practice that is not yet common in the field.

8.2 Conclusions

From the work in this thesis we have been able to draw several conclusions about

optimising crop growth. The key findings are discussed in this section.

Firstly, we found that when simulating the competition between a homogeneous

array of plants, it is important that all plants are affected by competition. This was

applied in our model by stipulating that all plants have the same height and thus

share competition equally across interacting plant canopies. If this is not done we

find that the total variation in simulated biomass data (and also pod yield) is much

larger than what is seen in the experimental data. This is particularly relevant when

simulating bambara groundnut as experimental observations have shown that plants

do not definitively shadow their neighbours and instead their leaves intermingle so

that parts of each plant are shadowed. By allowing competition to be shared across

canopies, we allow our model to account for this phenomenon without adding any

unnecessary complexity to the geometry of the simulated plant canopy.

The adopted method of simulating the plants physiology, although simple, was

found to be effective. We were not only able to achieve a good fit to data for
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bambara groundnut, but also to describe the growth of oil palm. These two species

are very different in physiology and so to be able to account for both demonstrates

a considerable robustness of the model. This method also allows the mathematical

model to be applied to a wide range of scenarios that require optimisation.

Regarding optimisation, we found that it was important to consider the output

of interest, in this case pod mass. Although doing this required an additional layer

of detail in the model, not doing so would give misleading recommendations. This

highlights a compromise that was important throughout the formulation of a math-

ematical model, including enough detail so that key factors were described, but not

causing the mathematical model to become unnecessarily complicated.

One of the key findings of our optimisation algorithm was that recommendations

were very scenario specific. We found that both temperature and plot size had an

impact on the best way to arrange individual plants when monocropping. The rec-

ommendations became more varied when considering a Secondary Species of plant.

In the case of intercropping, our optimisation algorithms revealed a considerable

potential in the placement of bambara groundnut around oil palm, particularly in

the early years of oil palm growth. We also found that with regards to competition

for light, a delay in the sowing of the Secondary Species is beneficial in maximising

yield. The amount of delay would depend on the species and the growth season to

which it is adapted. In general we found that layouts; Uniform Grid and Indented

Grid 1 were recommended, both of which were considerably better at maximising

pod mass when compared to the Circular and Random layout.

The mathematical model we developed here is adaptable to a multitude of sce-

narios, only some of which were discussed in this thesis. The search space is so large

that it was necessary to impose limitations on the algorithms so that recommenda-

tions could be made in good time. The way this was done was to only examine a

subset of possible scenarios. In the real world a particular scenario we would wish

to optimise would really depend on a farmers requirements, which can be as varied

as the recommendations our algorithms give.
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8.3 Further work

In this work, the mathematical model that has been developed is only able to simu-

late light limited growth. It is found that although bambara groundnut grows well

with minimal rainfall, its growth is affected [36]. Thus, in a water limited environ-

ment our model might not reliably predict the crop yield. Further to this, there is

little quantifiable information on the additive effects of limited water and planting

density on crop yield. Water limited growth models operate by dividing the total

depth of the soil into layers. The change in soil moisture of each layer is a func-

tion of vertical drainage, soil evaporation and root uptake. The root uptake is then

a function of the plants genetic traits and the soil moisture [20, 30, 32]. As with

light limiting growth models, plants are treated as a single entity. In such a model,

the layers of soil span the entire plot and thus ignore the variation in soil moisture

across the field. These variations can be a cause of environmental factors, e.g. a

slope in the plot, or caused by variability in the water uptake of individual plants.

Including this aspect of competition into the optimisation algorithm would provide

a more robust tool, particularly when optimising growth in the semi-arid regions

that bambara groundnut is indigenous to.

Further to this, a thorough investigation into the effect of variable temperature

in addition to the inclusion of a water limited module would allow us to apply the

mathematical model to field data. This would be an extension of the greenhouse

trials we have conducted so far.

As in all aspects of mathematical modelling, we are ever driven by a desire for

experimental data. As outlined in the Introduction, a key principle of the work

undertaken here is that it can be easily applied to other species and in keeping with

this we attempted to accurately simulate the growth of oil palm with promising re-

sults. Attaining experimental data for other plant species would allow us to inform

the mathematical model so that the framework developed here can be utilised in

describing their growth and development. In doing so we could further confirm the
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models robustness and also provide more accurate recommendations for intercrop-

ping scenarios. Similarly, further experimental data for bambara groundnut with

various planting arrangements would help us build further confidence in our model.

Above all else, the primary motivation in this work is to make recommendations

to farmers that will help maximise crop yield. For this to be achievable, we must

be able to tailor the optimisation algorithm to each farmers personal needs. The

framework of the mathematical model is already in place, however making it more

accessible to the people who can make use of the information is integral. As such,

the development of an application (app) with an accessible user interface so that

individuals can gain personal insight into what impact planting arrangements can

have on yield would be invaluable. To make such an app feasible, it would be

necessary to provide as many general and plant specific parameters in order to

minimise the input of said farmer. In the model so far, plant parameters are provided

for two species of bambara groundnut, all that would need to be provided then, are

parameters for the predicted weather conditions.
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