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DLI:  Daily light integral (mol m−2 d−1) 
SMC: Substrate moisture content (m3 m-3) 
LCP:  Light compensation point (µmol m-2s-1) 
ET:   Evapo-transpiration (g) 
PPM:  Uptake or emission of CO2 by potted plant microcosm  
LA:   Leaf area (m2) 
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Abstract  1 

High indoor CO2 concentrations and low relative humidity (RH) create an array of well-documented human health 2 

issues. Therefore, assessing houseplants’ potential as a low-cost approach to CO2 removal and increasing RH is 3 

important.  4 

We investigated how environmental factors such as ’dry’ (< 0.20 m3 m-3) or ‘wet’ (> 0.30 m3 m-3) growing substrates, 5 

and indoor light levels (‘low’ 10 µmol m-2 s-1, ‘high’ 50 µmol m-2 s-1 and ‘very high’ 300 µmol m-2 s-1), influence the 6 

plants’ net CO2 assimilation (‘A’) and water-vapour loss. Seven common houseplant taxa – representing a variety of 7 

leaf types, metabolisms and sizes – were studied for their ability to assimilate CO2 across a range of indoor light 8 

levels. Additionally, to assess the plants’ potential contribution to RH increase, the plants’ evapo-transpiration (ET) 9 

was measured.  10 

At typical ‘low’ indoor light levels ‘A’ rates were generally low (< 3.9 mg hr-1). Differences between ‘dry’ and ’wet’ 11 

plants at typical indoor light levels were negligible in terms of room-level impact. Light compensation points (i.e. 12 

light levels at which plants have positive ‘A’) were in the typical indoor light range (1-50 µmol m-2 s-1) only for two 13 

studied Spathiphyllum wallisii cultivars and Hedera helix; these plants would thus provide the best CO2 removal 14 

indoors. Additionally, increasing indoor light levels to 300 µmol m-2 s-1 would, in most species, significantly increase 15 

their potential to assimilate CO2. Species which assimilated the most CO2 also contributed most to increasing RH. 16 

 17 

Key words: Dracaena; drought; Hedera; indoor light; indoor air quality; Spathiphyllum 18 

  19 
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Introduction  20 

Indoor CO2 concentrations are primarily dependent on the occupancy level and outdoor air supply rate (Zhang et al., 21 

2017). Humans produce and exhale CO2; therefore, a greater occupancy coupled with lower ventilation rates – 22 

intended to reduce energy consumption – gives rise to higher and often harmful CO2 concentrations indoors (Satish 23 

et al., 2012). Additionally, even when ventilation by ambient air is employed, the problems may be exacerbated in 24 

the future: ambient CO2 concentrations increased by 40% over the last century, to 400 ppm – with a rise to 670 ppm 25 

expected by 2100 (Hersoug et al., 2012). 26 

The American Society of Heating, Refrigerating and Air-conditioning Engineers (ASHRAE) recommends a maximum 27 

indoor CO2 concentration of 1000 ppm (Torpy et al., 2017). Concentrations indoors (e.g. in fully occupied offices or 28 

meeting rooms) often reach 2000 to 2500 ppm but can rise as high as 5000 ppm (Zhang et al., 2017). Although 29 

discrepancies in the maximum safe exposure concentration are commonplace in literature, prior research suggests 30 

typical indoor CO2 concentrations will continue to present unwanted health issues (Zhang et al., 2017). These include 31 

mucus membrane symptoms (i.e. sore/dry throat, dry eyes and sneezing) and respiratory problems (i.e. tight chest, 32 

wheezing/coughing and shortness of breath) (Seppanen et al., 1999; Erdmann and Apte, 2004). Elevated CO2 can 33 

also reduce the cognitive performance of students in schools, while long-term, regular exposure has been linked to 34 

increased absenteeism, weight gain and obesity (Hersoug et al., 2012; Satish et al., 2012; Gaihre et al., 2014; 35 

Nieuwenhuis et al., 2014; Vehvilainen et al., 2016; Zhang et al., 2017).  36 

An additional challenge in indoor environments is low relative humidity (RH). An RH below 30% has been shown to 37 

cause eye irritation and skin dryness, with an RH below 10% causing dryness of the nasal mucus membrane. Low RH 38 

can also increase the likelihood of influenza transmission, enhance indoor ozone concentration and produce static 39 

electricity (Arundel et al., 1986; Berglund, 1998; Sunwoo et al., 2006; Lowen et al., 2007; Abusharha and Pearce, 40 

2013; Zhang and Yoshino, 2010). However, high RH (> 60%) too can cause issues by encouraging fungal/mould 41 

growth and contributing to the deterioration of building materials (Berglund, 1998; Bin, 2002; Zhang and Yoshino, 42 

2010; Frankel et al., 2012). The majority of adverse health effects concerning RH can be avoided by maintaining 43 

indoor levels between 40 and 60% (Arundel et al., 1986).  44 

Various techniques are used in the built environment to control and regulate CO2 levels. They include highly 45 

engineered approaches to ventilation (Hesaraki et al., 2015; Mateus and da Graca, 2017) as well as low-tech 46 

approaches which can include the use of plants (Raji et al., 2015; Charoenkit and Yiemwattana, 2016). A number of 47 

studies investigate a houseplants’ potential to sequester CO2 from indoor environments (Oh et al., 2011; Pennisi and 48 

van Iersel, 2012; Torpy et al., 2014). Studies vary in scale and focus – from those focusing on individual plants in 49 

experimental chambers, to room scale studies in situ. 50 

A range of studies investigated houseplants’ ability to sequester CO2 in home, school, and office environments. 51 

Various combinations of houseplants were found to generally reduce room CO2 concentrations and increase RH; 52 

however, studies rarely specify exact plant numbers and plant types. Plant species commonly used include Dracaena 53 
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deremensis, Dracaena marginata, Ficus benjamina, Hedera helix, and Spathiphyllum clevelandii (Raza et al., 1991; 54 

Lohr and PearsonMims, 1996; Jeong et al., 2008; Lim et al., 2009; Oh et al., 2011; Pegas et al., 2012).  55 

Light levels and substrate moisture are the key factors influencing gas exchange between the plant and the 56 

environment, with ‘low’ light and ‘dry’ substrate both reducing houseplants’ ability to sequester CO2 and contribute 57 

to RH increases indoors via transpiration (Lawlor and Cornic, 2002; Flexas et al., 2006; Torpy et al., 2017). In indoor 58 

environments light levels are typically at least 100-fold lower compared to outdoors (on a clear summer day for 59 

example) and are maintained in the range of approximately 1 – 50 µmol m-2 s-1 (Thimijan and Heins, 1983; Boyce and 60 

Raynham, 2009; Lai et al., 2009; Hawkins, 2011). Research suggests however, that having higher indoor light levels 61 

(approximately 30 – 50 µmol m-2 s-1) would greatly increase occupant comfort (Lai et al., 2009; Huang et al., 2012). 62 

As previously proposed, indoor light is the most limiting factor for CO2 assimilation (Pennisi and van Iersel, 2012).  63 

The positive contribution of plants to the reduction of CO2 levels and RH increases indoors are based on the premise 64 

that plants function optimally and are sequestering CO2/releasing water vapour at their maximum capacity. 65 

However, the main challenges for maintaining plant function in the indoor environment are ‘low’ indoor light levels 66 

and issues arising from plants’ (miss) management, most frequently plants’ being under or over watered without the 67 

correct nutrients (RHS, 2017). A few studies addressed these questions in part by investigating a wide range of light 68 

levels and their effect on CO2 assimilation (Pennisi and van Iersel, 2012; Torpy et al., 2014). However, no study to our 69 

knowledge investigated the effect of differing substrate moisture content (SMC) – namely investigating the effect of 70 

’wet’ (> 0.30 m3 m-3) and ‘dry’ (< 0.20 m3 m-3) SMC conditions. Additionally, previous studies have not specifically 71 

focused on plants’ cultivar-level differences; this may be of interest as for many houseplant species there are a range 72 

of cultivars available, which may potentially offer augmented service compared to straight species if they are larger 73 

in size or more physiologically active.  74 

Pennisi and van Iersel (2012) investigated the CO2 assimilation of 17 houseplant species in both a simulated 75 

controlled environment utilising light levels of 10, 20 and 30 µmol m-2s-1 and a public office building in Atlanta (USA).  76 

In the public office, the amount of CO2 assimilated by plants varied depending on plant size. In the controlled 77 

environment, most species exhibited positive carbon assimilation over a 10-week period. The study found that in 78 

both environments larger, woody plants (such as Ficus benjamina) assimilated more CO2 than herbaceous species.  79 

Torpy et al. (2014) investigated the CO2 assimilation of eight common indoor plant species by producing light 80 

response curves and light compensation points (LCPs) using an infra-red gas analyser. The results indicated that at 81 

least some CO2 sequestration could be expected from the studied species under current indoor lighting systems and 82 

plants could be effectively utilised in the built environment to sequester CO2 given a moderate increase in the 83 

targeted lighting levels.  84 

Our research aims to improve the understanding of which taxa (i.e. plant species and cultivars) as well as which light 85 

and substrate moisture conditions are best placed to regulate indoor CO2 and RH.  Specifically, the aims of the study 86 

were to determine:  87 
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1. The impact of drying substrate on CO2 removal capacity by different taxa 88 

2. The impact of light levels on net CO2 assimilation of taxa (i.e. to test the potential to improve the 89 

performance by supplementing indoor light levels) 90 

3. The evapo-transpiration (ET) rates of each taxon and their potential contribution to increasing indoor RH.  91 

2 Material and Methods 92 

2.1 Plant material  93 

Five common houseplant species, including two cultivars, were selected for the study to represent a range of leaf 94 

types (succulent and herbaceous), metabolisms and plant sizes (Table 1). Selected plants were 2-years old at the 95 

time of purchase in July 2016 from the RHS plant centre (Wisley, Surrey, UK), ranging between 10cm - 60cm in 96 

height, depending on the taxon. Within the species, plant height and stature were uniform (data not shown). Plants 97 

were maintained in Sylvamix growing medium (6:2:2 sylvafibre: growbark pine: coir; Melcourt, Tetbury, 98 

Gloucestershire, UK) in 3 L containers, with a slow release fertiliser feed (Osmocote, Marysville, OH, USA) at ambient 99 

temperatures and ‘low’ light levels in an indoor office environment within the Crops Laboratory in the Glasshouse 100 

Complex of the School of Agriculture, Policy and Development, at the University of Reading (UK). 101 

Table 1: Characteristics of the houseplant taxa (i.e. plant species and cultivars) chosen for experiments. Leaf area (n 102 

= 2) and plant height (n = 5) are means ± SEM. Species’ Latin name is given in italic and cultivar, where applicable, 103 

follows. 104 

Species/cultivars Family  Metabolism Leaf area (cm2) Plant height (cm)  

Dracaena fragrans 'Lemon Lime' Asparagaceae C3 1742 ± 91 51 ± 1 

Dracaena fragrans 'Golden Coast' Asparagaceae C3 1438 ± 10 60 ± 1 

Guzmania ' Indian Night' Bromeliaceae C3/CAM 1230 ± 6 32 ± 1 

Hedera helix Araliaceae C3 1509 ± 243 9 ± 0 

Spathiphyllum wallisii 'Bellini' Araceae C3 1766 ± 189 35 ± 1 

Spathiphyllum wallisii 'Verdi' Araceae C3 5451 ± 1104 36 ± 1 

Zamioculcas zamiifolia Araceae CAM 1388 ± 88 57 ± 1 

 105 

2.2 Net leaf-level CO2 assimilation at ‘low’ and ‘high’ indoor light levels under ‘dry’ and ‘wet’ conditions  106 

Experiments were conducted on five plants per taxon. Measurements of the net CO2 assimilation rate (µmol m-2 s-1) 107 

were made using a LCPro infrared gas analyser (ADC Bioscientific, Hoddesdon, Hertfordshire, UK) on three young, 108 

fully expanded leaves per plant (with consistent leaf selection i.e. third fully expanded leaf from the plant tip) under 109 

office conditions (16.6 – 21.8 °C, RH > 35%) at ‘low’ and ‘high’ indoor light levels (Hawkins, 2011; Huang et al., 2012). 110 

‘Low’ 10 µmol m-2 s-1 lighting was achieved in the usual lighting conditions of the room (eight fluorescent lights, 111 

Osram, Munich, Germany lighting a floor area of 20 m2). To achieve ‘high’ 50 µmol m-2 s-1 during measurements, the 112 

photosynthetic photon flux density (i.e. light level, µmol m-2 s-1) was supplemented at the leaf by an external halogen 113 
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source (50 W, 12 V). Each light increment was administered for seven minutes and the net CO2 assimilation rate 114 

recorded at the end of the seven-minute period. 115 

Substrate moisture content (SMC) based on volume of water per volume of substrate was measured daily for each 116 

plant, in two locations per container using a SM300 capacitance-type probe connected to a HH2 Moisture Meter 117 

(Delta-T Devices, Cambridge, Cambridgeshire, UK; 0–100% range and an accuracy of ± 2.5%). At the start of the 118 

experiment, substrate moisture was at the container capacity (SMC > 30%, 0.3 m3 m-3) and plants were thus 119 

considered optimally watered (Vaz Monteiro et al., 2016). Measurements were also made on ‘dry’ plants (SMC < 120 

20%, 0.2 m3 m-3). Measurements were made over approximately one month.  121 

2.2.1 Calculation of the respiration of the potted-plant microcosm   122 

To ensure that CO2 removal by the aboveground parts of the plant (i.e. leaves and stem) was not cancelled out by 123 

respiration of the potted-plant microcosm (PPM) (i.e. substrate and non-photosynthetic plant parts) the PPM was 124 

investigated for CO2 contributions at both ‘high’ and ‘low’ light and under ‘wet’ and ‘dry’ SMC conditions (n = 3). The 125 

PPM respiration values were then subtracted from all the leaf CO2 assimilation values made, to obtain the overall 126 

contribution of the plant and substrate.    127 

Measurements of the PPM respiration were made utilising a 150 L (45 x 45 x 75 cm, 0.15 m3) Perspex chamber (The 128 

plastic people, Leeds, West Yorkshire, UK) sealed with Swagelok’s (Swagelok, Bristol, South Gloucestershire, UK). 129 

Enclosed inside the Perspex chamber was a HOBO MX1102 CO2 logger (Onset Computer Corporation, Bourne, MA, 130 

U.S.A), a 12 V DC brushless fan (RS Components, Corby, Northants, UK), and a calibrated (20 – 90 % RH, 0 – 40 °C) 131 

Tinytag RH/temperature logger (Gemini data loggers, Chichester, West Sussex, UK). The external RH/temperature 132 

surrounding the chamber was also monitored with another, identical Tinytag logger. Inside the chamber ‘low’ light 133 

levels were achieved as described in Section 2.2; ‘high’ levels were generated by two LED lights (V-TAC Europe Ltd, 134 

Sofia, Bulgaria) and measured with a calibrated light sensor (Skye instruments, Llandrindod Wells, Wales, UK). Bare 135 

substrate was prepared for the experiment as explained in Section 2.2. Experiments were undertaken for 2 hr, with 136 

the chamber analysed for leakage prior, during and after experimentation; leakage was found to be < 2% of the 137 

starting concentration over a 2-hr test period. Measurements were made over approximately one week. 138 

Data obtained in Section 2.2 was normalised by leaf area by multiplying CO2 assimilation (mg m-2 hr-1) with leaf area 139 

(m2), providing CO2 assimilation in mg hr-1 for each taxon. Data were also corrected for PPM respiration and leakage 140 

by calculation of an average conversion value (mg hr-1) for both ‘wet’ and ‘dry’ SMC conditions. 141 

2.3 Generating light response curves  142 

To generate light response curves, measurements of the net photosynthetic rate (µmol m-2 s-1) were made as 143 

explained in Section 2.2 on four plants per taxon. Environmental conditions within the leaf cuvette were: 144 

temperature controlled at 25 °C, ambient CO2 concentration (~400-450 ppm) and an ambient RH of 35-45%. Plants 145 

were prepared for the experiment as explained in Section 2.2, achieving a SMC > 0.30 m3 m-3 and were considered 146 
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optimally watered on the commencement of each experiment (Vaz Monteiro et al., 2016). SMC was maintained at 147 

this level for the duration of the experiment.  148 

To generate the light response curve the light was supplemented in the following set increments: 0, 50, 300, 1200 149 

µmol m-2 s-1 as described in Section 2.2. An increment of 0 µmol m-2 s-1 was chosen to investigate each species CO2 150 

assimilation in the dark; 50 µmol m-2 s-1 the highest indoor light level; 300 µmol m-2 s-1 was chosen to represent the 151 

highest feasible light level which could be engineered (with supplementary artificial lighting) in an indoor 152 

environment; 1200 µmol m-2 s-1 (a sunny day in a UK climate) was chosen to present information on a plant’s 153 

maximal capacity for net CO2 assimilation. Measurements were made over approximately one week.  154 

The light response curves were based on an equation proposed by Prioul and Chartier (1977) and were produced 155 

using the model by Lobo et al. (2013). LCPs (which represent the minimum light level required for CO2 assimilation to 156 

occur) (Torpy et al., 2014) were calculated with the same model (Lobo et al., 2013) for all taxa apart from Guzmania 157 

‘Indian night’, which was omitted due to very low assimilation rates and therefore, unreproducible results.  158 

  

 159 

Figure 1: Images of the experimental setup for leaf CO2 assimilation measurements, equipment pictured includes 160 

infra-red gas analyser, leaf cuvette and external halogen source.  161 

2.4 Plants’ water use/evapo-transpiration (ET) experiments  162 

Water use/ET of the plant taxa were inferred by consecutive plant/pot weight measurements using a precision 163 

balance (CBK 32, Adam Equipment, Milton Keynes, Buckinghamshire, UK) under indoor office conditions (RH > 35%). 164 

Plants were prepared for the experiment as explained in Section 2.2, starting the experiment with SMC at full water-165 

holding capacity and were not watered for the duration of the experiment. Measurements were made at 0 h and 166 

then every 24 hr over a three-week period on a whole ‘plant – substrate system’ (i.e. potted plant, with uncovered 167 

substrate) enabling the calculation of the water loss at each time-point. We were interested in total potential RH 168 

contribution of the plant along with substrate, mimicking a real-life scenario of an indoor plant. Each plant was 169 

removed from the experiment when its SMC dropped < 20% (0.2 m3 m-3). Destructive measurements of LA were 170 
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made using a LA meter (Delta-T Devices, Cambridge, Cambridgeshire, UK) on two plants per taxon, at the end of the 171 

experiment. While we appreciate that measuring the leaf area at the end of the experiment may lead to under/over-172 

estimating assimilation measured earlier in the experiment, we were limited by the number of experimental plants 173 

we could destructively harvest. Given that this approach was applied to all taxa, that the leaf areas were assessed 174 

within two months of the assimilation experiments, and that plants did not increase in size significantly over this 175 

period (as evidenced by height measurements which we made at the start and the end of the experiment), we 176 

believe that the risk of the error is small and evenly spread. SMC was measured daily as explained in Section 2.2. 177 

Water use/ET per unit leaf area (ETLA, expressed in g cm-2) was calculated by dividing the ET (i.e. water loss) from a 178 

plant in a 24-hr period by the mean leaf area. 179 

2.5 Statistical analysis  180 

Experimental data (gas exchange parameters and water loss/ET) were analysed using GENSTAT (16th Edition, VSN 181 

International, Hemel Hempstead, Hertfordshire, UK). An analysis of variance (ANOVA) was performed to compare 182 

means for each measured parameter between different taxa and/or over time. Values were presented as means 183 

with associated Tukey’s 95% confidence intervals for multiple comparisons. Data on plants’ water loss were log-184 

transformed and Tukey’s 95% confidence intervals were used to compare between taxa in the text (Section 3.3).   185 

3 Results  186 

3.1 Net leaf-level CO2 assimilation at ‘low’ and ‘high’ indoor light levels under ‘dry’ and ‘wet’ conditions 187 

At ‘low’ indoor light ‘dry’ Spathiphyllum wallisii 'Verdi' was statistically significantly respiring the most (-87.6 mg hr-1, 188 

p < 0.001), and was therefore the only taxon to measure significant differences between ‘dry’ and ‘wet’ substrate. In 189 

‘dry’ substrate statistically significant differences in CO2 assimilation were measured between the cultivars of 190 

Spathiphyllum wallisii ‘Bellini’ and ‘Verdi’ (-19.6 and -60.7 mg h-1, respectively; p < 0.001). In ‘wet’ substrate, there 191 

were no significant differences in CO2 between any studied taxa (Table 2).   192 

 193 

At ‘high’ indoor light only Spathiphyllum wallisii ‘Verdi’ measured statistically significant differences between ‘dry’ 194 

and ‘wet’ substrate (-60.7 and 60.0 mg hr-1, respectively; p < 0.001; Table 2). No statistically significant differences in 195 

CO2 assimilation were measured between cultivars under the same SMC conditions; significant differences were 196 

measured with Spathiphyllum wallisii cvs ‘Bellini’ and ‘Verdi’ between ‘dry’ (-19.6 and -60.7 mg h-1, respectively) and 197 

‘wet’ (11.7 and 60.0 mg h-1, respectively) SMC conditions (p < 0.001, Table 2). 198 

  199 
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 200 

Table 2: Net leaf-level CO2 assimilation of each species at ‘low’ and ‘high’ indoor light (< 10 and 50 µmol m-2 s-1) in 201 

‘wet’ (> 0.30 m3 m-3) and ‘dry’ (< 0.20 m3 m-3) conditions. Data are a mean of five plants of each species, three young, 202 

fully expanded leaves per plant (n=15). Data are adjusted to account for PPM respiration and chamber leakage and is 203 

normalised by leaf area (Table 1). Different letters next to means correspond to statistically significant differences 204 

between means based on Tukey’s 95% confidence intervals. (–) values signify respiration (i.e. the release of CO2).  205 

'Low' Light (< 10 μmol m-2 s-1) Net CO2 assimilation (mg hr -1) 

Taxa 'Wet' (> 0.30 m3 m-3) 'Dry' (< 0.20 m3 m-3) 

Dracaena fragrans 'Lemon Lime' -17.4b -35.7b 

Dracaena fragrans 'Golden Coast' -28.4b -25.3b 

Guzmania ' Indian Night' -14.3b -23.8b 

Hedera helix -9.5b -27.3b 

Spathiphyllum wallisii 'Bellini' -14.8b -22.7b 

Spathiphyllum wallisii 'Verdi' 3.9b -87.6a 

Zamioculcas zamiifolia -17.5b -23.9b 
 

'High' Light (50 μmol m-2 s-1)  Net CO2 assimilation (mg hr -1) 

Taxa 'Wet' (> 0.30 m3 m-3) 'Dry' (< 0.20 m3 m-3) 

Dracaena fragrans 'Lemon Lime' -5.5abc -41.97ab 

Dracaena fragrans 'Golden Coast' -21.8ab -24.0ab 

Guzmania ' Indian Night' -11.5ab -19.6ab 

Hedera helix -6.6abc 9.4bc 

Spathiphyllum wallisii 'Bellini' 11.7bc -19.6ab 

Spathiphyllum wallisii 'Verdi' 60.0c -60.7a 

Zamioculcas zamiifolia -12.2ab -20.9ab 
 

 206 
 207 

3.2 Generating light response curves and light compensation points 208 

Light compensation points (LCPs), which represent the minimum light level required for a positive net CO2 209 

assimilation to occur, were calculated for each species (Table 3). Of the studied species, Spathiphyllum wallisii 'Verdi' 210 

and Hedera helix had the lowest LCPs of 20 and 31 µmol m-2 s-1 respectively. The highest LCP was recorded for 211 

Dracaena fragrans 'Golden Coast' (96 µmol m-2 s-1), with both Dracaena fragrans ‘Lemon Lime’ and Zamioculcas 212 

zamiifolia also having LCP values outside of the light level typically experienced in indoor environments (93 and 65 213 

µmol m-2 s-1 respectively, Table 3).  214 

  215 
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 216 

Table 3: Light compensation points (LCPs) for each of the studied species.  217 

Taxa LCP (µmol m-2 s-1) 

Dracaena fragrans 'Lemon Lime' 92.9 

Dracaena fragrans 'Golden Coast' 95.6 

Guzmania 'Indian Night' N. A 

Hedera helix 30.9 

Spathiphyllum wallisii 'Bellini' 31.9 

Spathiphyllum wallisii 'Verdi' 20.1 

Zamioculcas zamiifolia 64.7 

  218 

At 0 µmol m-2 s-1, Hedera helix was statistically significantly respiring the most (- 1.2 µmol m-2 s-1, p < 0.001; Figure 2), 219 

no significant differences were measured in net assimilation between other studied taxa.   220 

At 300 µmol m-2 s-1, all taxa were assimilating CO2. Net assimilation was highest in Hedera helix (7.7 µmol m-2 s-1) and 221 

was statistically significantly different to all other taxa (p < 0.001). Spathiphyllum wallisii ‘Bellini’ and S. wallisii ‘Verdi’ 222 

(2.4 and 2.4 µmol m-2 s-1 respectively) measured a net assimilation that was statistically significantly higher than 223 

three other studied taxa (Dracaena fragrans 'Lemon Lime', Dracaena fragrans 'Golden Coast' and Guzmania 'Indian 224 

Night', p < 0.001; Figure 2). At this highest indoor photosynthetic photon flux density, there were no cultivar level 225 

differences within the same species in net assimilation. 226 

 227 

At 1200 µmol m-2 s-1, all taxa were assimilating CO2. Net assimilation was highest in Hedera helix (10.7 µmol m-2 s-1) 228 

and was statistically significantly higher than all other taxa (p < 0.001). Spathiphyllum wallisii ‘Bellini’ (2.7 µmol m-2 s-229 

1) measured a net assimilation that was statistically significantly higher than three other studied taxa (Dracaena 230 

fragrans 'Lemon Lime', Dracaena fragrans 'Golden Coast' and Guzmania 'Indian Night', p < 0.001; Figure 2). Again, no 231 

net assimilation was statistically significantly different between cultivars of the same species.  232 

  233 
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 234 

 235 

Figure 2: Net CO2 assimilation across three light levels (0, 300, 1200 µmol m-2 s-1); data are a mean of four containers 236 

of each species and two young fully expended leaves per plant (n=8). Tukey’s 95% confidence intervals are used for 237 

species comparison in text.   238 

3.3 Plants’ water use/evapo-transpiration experiments 239 

In terms of ET per plant per day, when well-watered, the ET was statistically significantly higher for Hedera helix 240 

(70.5 g) and Spathiphyllum wallisii ‘Verdi’ (71.0 g) compared to all the other taxa (p < 0.001). ET per plant was also 241 

statistically significantly different between the taxa Guzmania ‘Indian Night’ (28.0 g) and Dracaena fragrans 'Lemon 242 

Lime' (44.3 g, p < 0.001); ET per plant at 24 hr was statistically significantly different between Spathiphyllum wallisii 243 

cultivars (p < 0.001; Figure 3A).  244 

In terms of ET per leaf area per day, when well-watered the ET was statistically significantly higher for Hedera helix 245 

(0.047 gcm-2) in comparison to other taxa (p < 0.001). ET per leaf area was statistically significantly lower for 246 

Spathiphyllum wallisii ‘Verdi’ (0.013 g cm-2), in comparison to the other taxa tested (p < 0.001) - no ET per leaf area 247 

was statistically significantly different between any other taxa. The ET per leaf area was statistically significantly 248 

different between one pair of cultivars: Spathiphyllum wallisii ‘Bellini’ and Spathiphyllum wallisii ‘Verdi’ (0.02 g cm-2 249 

and 0.013 g cm-2, respectively; p < 0.001; Figure 3B).  250 

At the time when SMC decreased to 20%, ET reduction ranged between 7% (Spathiphyllum wallisii ‘Verdi’) and 63% 251 

(Guzmania ‘Indian Night’) (data not shown). The time taken for the SMC to decrease to < 20% ranged between 10 252 

days (Dracaena fragrans 'Golden Coast' and Spathiphyllum) and 23 days (Zamioculcas zamiifolia) across studied taxa. 253 

  254 
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 255 

 256 

A 

B 

Figure 3: Water use per plant (A) and per leaf area (B) per day; data are a mean of four containers of each species 257 

(n=4). ANOVA was performed on the log transformed data only (data not shown) – Tukey’s 95% confidence intervals 258 

were generated in the analysis of the transformed data are used for species comparison in text.   259 

 260 

 261 
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4 Discussion  262 

The current work presents the first insight into leaf-level CO2 assimilation - from plants in both ‘dry’ and ‘wet’ 263 

substrate – and potential RH increases for a range of common houseplant taxa (i.e. species and cultivars), differing in 264 

structure and physiology. 265 

In this study we demonstrate that little potential is offered by the studied houseplants alone to reduce CO2 266 

concentrations in ‘low’ light indoor environments – with only three taxa’s light compensation points falling within 267 

the typical indoor light level range (0 – 50 µmol m-2 s-1; Table 3). However, our findings demonstrate that although 268 

respiration was generally occurring in houseplants grown in ‘dry’ substrate, the net CO2 exchange recorded was 269 

extremely low and thus likely to have little or no negative impact on the CO2 levels at a room scale. Our results 270 

suggest that increasing light levels to a technically feasible 300 µmol m-2 s- 1 (e.g. through use of supplementary 271 

lighting) would provide a significant increase in CO2 assimilation in most of the studied taxa. The study also indicates 272 

that the best performing taxa for CO2 assimilation will also contribute the most to raising RH indoors. 273 

From the results of this study we estimated the mass (in grams) of CO2 removed per hour, per plant and per m2 of 274 

each taxon. In home and office environments, each person contributes 30g (CO2)/hour and 36g (CO2)/hour, 275 

respectively (Persily and de Jonge, 2017) and these different values are consequences of the level of individual’s 276 

activity in various environments. Using both these values, we calculated the number of plants required to remove 277 

10% of a single person’s CO2 contribution at the ‘very high’ (300 µmol m-2 s-1) indoor light level (Supplementary Table 278 

1). The plant numbers range from 15 (for more active plants like Hedera and Spathiphyllum) to >100 for 279 

physiologically less active plants. Estimates of the number of plants required to remove the CO2 generated by human 280 

contributions were also made by Pennisi and van Iersel (2012) and Torpy et al. (2014). However, widely different 281 

estimates of the CO2 generated per person were used by each study – making direct comparisons difficult.  282 

In typical indoor environments with ‘low’ light levels, only one taxon, in ‘wet’ substrate conditions was assimilating 283 

CO2 (Spathiphyllum wallisii 'Verdi') and would contribute to CO2 concentration reduction (3.9 mg hr-1, respectively; 284 

Table 2). Additionally, only three taxa were found to possess light compensation points that fall within the range of 285 

typical indoor light levels (i.e. Hedera helix and Spathiphyllum wallisii 'Verdi’ and ‘Bellini’). Both Hedera helix and 286 

Spathiphyllum wallisii would require an unrealistic number of plants to see any significant CO2 concentration 287 

reduction (data not shown); at typical ‘low’ indoor light levels, the study indicates that a plants’ potential benefits 288 

psychologically or in productivity terms (Thomsen et al., 2011; Raanaas et al., 2011; Nieuwenhuis et al., 2014) would 289 

be more important than their contribution to indoor CO2 removal. Furthermore, as suggested in Torpy et al. (2014) 290 

plants should not be expected to completely replace ventilation systems, but to act as a supplement in reducing the 291 

energy load required. 292 

In typical ‘low’ light indoor environments, when grown in ‘dry’ substrate, all studied taxa were respiring. The results 293 

also indicated that in the range of typically observed indoor light levels, six of the studied species (Dracaena fragrans 294 

cvs ‘Lemon Lime’ and 'Golden Coast', Guzmania ‘Indian Night’, Hedera helix, Spathiphyllum wallisii ‘Bellini’ and 295 

Zamioculcas zamiifolia) were respiring in both ‘dry’ and ‘wet’ SMC conditions (Table 2).The (miss) management and 296 
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under watering of houseplants is anecdotally a common problem; therefore, determining if a ‘dry’ houseplant is 297 

releasing significant amounts of CO2 into an indoor environment and detrimentally impacting health is important; 298 

our results however, suggest this is not the case. In ‘dry’ SMC conditions, in typical office light, Spathiphyllum wallisii 299 

'Verdi’ was releasing the most CO2 into the indoor environment out of all studied taxa at 0.0876 g hr-1. In 300 

comparison, a single person, in an office environment would release 36 g/hour into the indoor environment (Persily 301 

and de Jonge, 2017). This confirms that in typical office light conditions – even for plants growing in drying substrate 302 

– the contribution of plants to room-level CO2 is negligible.  303 

At a ‘high’ indoor light level (50 µmol m-2 s-1), a greater net CO2 assimilation was generally measured for all taxa, but 304 

no statistically significant differences were found between cultivars of the same species in ‘dry’ or ‘wet’ conditions. 305 

Although measurements were only made under ‘wet’ SMC conditions, this trend for the lack of cultivar differences 306 

continued at higher light levels of 300 and 1200 µmol m-2 s-1 suggesting that cultivar level differences were not 307 

pronounced in this study.  308 

Our study suggests that for most studied taxa, light saturation occurs at around 300 µmol m-2 s-1 and further 309 

increases beyond this show little difference in assimilation terms (Figure 2). As discussed in Torpy et al. (2014) 310 

targeted indoor lighting could be used to maximise a houseplants CO2 assimilation potential. Extensive research has 311 

been undertaken into various light systems for plant cultivation and development on indoor living walls but not 312 

specifically with potted houseplants or concerning CO2 assimilation (Yeh and Chung, 2009; Egea et al., 2014). Our 313 

findings support the notion that increased light levels maximise plant gas exchange and we suggest future research 314 

should investigate the suitability of testing targeted lighting installations in indoor environments. Light compensation 315 

points calculated in our study are generally higher, but comparable with other indoor species previously tested 316 

(Burton et al., 2007; Pennisi and van Iersel, 2012; Torpy et al., 2014; Torpy et al., 2017; Tan et al., 2017).  317 

Earlier attempts at estimating the CO2 removal of houseplants (Pennisi and van Iersel, 2012) did not take into 318 

account ambient CO2 concentrations or consider the effects of substrate moisture on CO2 assimilation. A more 319 

robust study by Torpy et al. (2014) investigated several factors which could influence assimilation including different 320 

acclimatisation treatments, the respiration of the ‘potted-plant microcosm’, but again did not consider impact of 321 

substrate moisture conditions. Other studies did not specify the exact number or type of houseplant (Lim et al., 322 

2009; Pegas et al., 2012) which contributed to any CO2 concentration reduction or, only considered a single light 323 

level (Oh et al., 2011).  324 

The results from the ET experiment indicate that the best performing species in CO2 assimilation terms (Hedera helix 325 

and Spathiphyllum wallisii ‘Verdi’) both have the highest ET rates per plant. However, the comparative water use per 326 

area results show Spathiphyllum wallisii ‘Verdi’ having the lowest ET per leaf area; this species is therefore, 327 

inherently more water use efficient and only uses more water per plant due to its large size. We found a difference 328 

between the Spathiphyllum wallisii cultivar pair in terms of water use per plant and per area – with no difference per 329 

plant or per area measured for the Dracaena fragrans pair. This confirms that our hypothesis that inherent 330 

physiological differences can be measured in water use terms down to a cultivar level. The results also suggest that 331 
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certain species (i.e. Spathiphyllum wallisii ‘Verdi’) do not restrict their water loss under water stress conditions (SMC 332 

< 20%). Spathiphyllum wallisii ‘Verdi’ would therefore, in a drying substrate, continue to contribute the most to RH 333 

increases. We suggest that future studies should evaluate the CO2 assimilation ability of other more physiologically 334 

active, vigorous species (i.e. Osmunda japonica, Selaginella tamariscina and Hemigraphis alternata), which also 335 

performed well in pollutant sequestration experiments (Yang et al., 2009; Kim et al., 2010) under ‘high’ indoor light 336 

levels (300 µmol m-2 s-1).  337 

From the results of the ET experiment we estimated the contribution of studied taxa to raising RH indoors. 338 

Calculations of the amount of water vapour in the air were made through the equation: RH (%) = 100 * actual vapour 339 

density (g m-3) / saturation vapour density (g m-3) (using a saturation vapour density of 19.1 g m-3 at 22 °C) (Galindo 340 

et al., 2005). A RH of 40 – 60% is considered optimal in terms of human health (Arundel et al., 1986), we therefore 341 

calculated the number of plants – per taxon - required to raise RH from 40 to 60 % in a static 100 m3 office 342 

(Supplementary Table 2). Calculations assume that 100% of the water vapour ‘lost’ by taxa (Figure 3A) was released 343 

into the surrounding environment. The results do not take into account the impact of ventilation, occupancy or the 344 

feedback effect of taxa (i.e. as RH increases plants release less water vapour into the indoor environment). These 345 

calculations are intended to act as a guide on how the studied taxa could influence RH indoors. Our results indicate 346 

that five Spathiphyllum wallisii 'Verdi' or Hedera helix plants growing in an unmulched (i.e. uncovered) growing 347 

medium - over a 24-hr hour period - could raise the RH from 40 to 60% (Supplementary Table 2).  348 

5 Conclusions 349 

The results indicate that net CO2 assimilation of all studied plants was generally ‘low’, with Spathiphyllum cultivars 350 

and Hedera helix removing most CO2. 351 

While CO2 assimilation of plants in ‘wet’ substrate was higher than in ‘dry’ conditions, in practical terms however (i.e. 352 

when considering the plant’s potential to influence indoor CO2 levels), net CO2 assimilation differences between ‘dry’ 353 

and ‘wet’ plants at ‘high’ and ‘low’ indoor light levels were negligible for the taxa studied. Light compensation points 354 

were in the typical indoor light range for both Spathiphyllum wallsii 'Verdi' and Hedera helix, suggesting that these 355 

plants would be best suited to provide most CO2 removal in a typical indoor setting. Additionally, both these taxa, 356 

per plant, had the highest transpiration rates, suggesting the highest potential for influencing the RH. Finally, our 357 

study indicates that increasing indoor light levels to 300 µmol m-2 s-1 would, in most taxa, have a significant impact 358 

on the potential for houseplants to assimilate CO2 and increase RH in indoor environments. 359 

  360 
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 472 

Supplementary Information 473 

Supplementary table 1: Net CO2 assimilation (mg hr-1) of each species and number of taxa required to remove 10 % 474 

of the CO2 generated per person at ‘very high’ indoor light (300 µmol m-2 s-1) in ‘wet’ (> 0.30 m3 m-3) conditions. Data 475 

is taken from Figure 2 and adjusted to account for PPM respiration and chamber leakage and is normalised by leaf 476 

area (Table 1). Plant numbers for each taxon were calculated by dividing the 30 g (CO2)/hour or 36 g (CO2)/hour 477 

exhaled per person in home and office environments respectively (Persily and de Jonge, 2017) by the net CO2 478 

assimilation of each taxon (mg hr-1). 479 

 480 

Supplementary table 2: Number of plants required to raise the RH from 40 to 60% in a static 100 m3 office. Numbers 481 

of plants were generated from our data in Figure 3A at a temperature of 22 °C, where ventilation, occupancy and the 482 

feedback effect were not considered. Calculations of the amount of water vapour in the air were made through the 483 

equation: RH (%) = 100 * actual vapour density (g m-3) / saturation vapour density (g m-3) (using a saturation vapour 484 

density of 19.1 g m-3 at 22 °C) (Galindo et al., 2005). 485 

 Species/cultivar Number of Plants 

Dracaena fragrans 'Lemon Lime' 9 

Dracaena fragrans 'Golden Coast' 12 

Guzmania ' Indian Night' 14 

Hedera helix 5 

Spathiphyllum wallisii 'Bellini' 10 

Spathiphyllum wallisii 'Verdi' 5 

Zamioculcas zamiifolia 10 

 486 

'Very high' Light (300 μmol m-2 s-1) mg hr -1

Taxa 'Wet' (> 0.30 m3 m-3) Home Office

Dracaena fragrans  'Lemon Lime' 10.9 275 330

Dracaena fragrans  'Golden Coast' 5.7 526 632

Guzmania  ' Indian Night' 0.9 3333 4000

Hedera helix 172.3 17 21

Spathiphyllum wallisii  'Bellini' 55.0 55 65

Spathiphyllum wallisii 'Verdi' 194.9 15 18

Zamioculcas zamiifolia 11.5 261 313

Number of plants 


