Existence, uniqueness and structure of second order absolute minimisers

[thumbnail of Infinity-Bilaplacian-NK-RM-revision-v2.pdf]
Preview
Text - Accepted Version
· Please see our End User Agreement before downloading.
| Preview

Please see our End User Agreement.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Katzourakis, N. and Moser, R. (2019) Existence, uniqueness and structure of second order absolute minimisers. Archive for Rational Mechanics and Analysis, 231 (3). pp. 1615-1634. ISSN 0003-9527 doi: 10.1007/s00205-018-1305-6

Abstract/Summary

Let ⊆ Rn be a bounded open C1,1 set. In this paper we prove the existence of a unique second order absolute minimiser u∞ of the functional E∞(u, O) := F(·, u)L∞(O), O ⊆ measurable, with prescribed boundary conditions for u and Du on ∂ and under natural assumptions on F. We also show that u∞ is partially smooth and there exists a harmonic function f∞ ∈ L1() such that F(x, u∞(x)) = e∞ sgn f∞(x) for all x ∈ { f∞ = 0}, where e∞ is the infimum of the global energy.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/78828
Identification Number/DOI 10.1007/s00205-018-1305-6
Refereed Yes
Divisions Science > School of Mathematical, Physical and Computational Sciences > Department of Mathematics and Statistics
Publisher Springer
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar