Synthesis of thiolated, PEGylated and POZylated silica nanoparticles and evaluation of their retention on rat intestinal mucosa in vitro

[thumbnail of Silica in rats-accepted.pdf]
Preview
Text - Accepted Version
· Available under License Creative Commons Attribution Non-commercial No Derivatives.
· Please see our End User Agreement before downloading.
| Preview

Please see our End User Agreement.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Ways, T. M. M., Lau, W. M., Ng, K. W. and Khutoryanskiy, V. V. orcid id iconORCID: https://orcid.org/0000-0002-7221-2630 (2018) Synthesis of thiolated, PEGylated and POZylated silica nanoparticles and evaluation of their retention on rat intestinal mucosa in vitro. European Journal of Pharmaceutical Sciences, 122. pp. 230-238. ISSN 0928-0987 doi: 10.1016/j.ejps.2018.06.032

Abstract/Summary

In this study, we synthesised thiolated silica nanoparticles using 3-mercaptopropyltrimethoxysilane and functionalised them with either 5 kDa methoxy polyethylene glycol maleimide (PEG) or 5 kDa alkyne-terminated poly(2-ethyl-2-oxazoline) (POZ). The main objectives of this study are to investigate the effects of pH on the size and ξ-potential of these nanoparticles and evaluate their mucoadhesive properties ex vivo using rat intestinal mucosa. The sizes of thiolated, PEGylated and POZylated silica nanoparticles were 53 ± 1, 68 ± 1 and 59 ± 1 nm, respectively. The size of both thiolated and POZylated nanoparticles significantly increased at pH ≤ 2, whereas no size change was observed at pH 2.5–9 for both these two types of nanoparticles. On the other hand, the size of PEGylated nanoparticles did not change over the studied pH range (1.5–9). Moreover, thiolated nanoparticles were more mucoadhesive in the rat small intestine than both PEGylated and POZylated nanoparticles. After 12 cycles of washing (with a total of 20 mL of phosphate buffer solution pH 6.8), a significantly greater amount of thiolated nanoparticles remained on the intestinal mucosa than FITC-dextran (non-mucoadhesive polymer, p < 0.005) and both PEGylated and POZylated nanoparticles (p < 0.05 both). However, both PEGylated and POZylated nanoparticles showed similar retention to FITC-dextran (p > 0.1 for both). Thus, this study indicates that thiolated nanoparticles are mucoadhesive, whereas PEGylated and POZylated nanoparticles are non-mucoadhesive in the ex vivo rat intestinal mucosa model. Each of these nanoparticles has potential applications in mucosal drug delivery.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/78444
Identification Number/DOI 10.1016/j.ejps.2018.06.032
Refereed Yes
Divisions Life Sciences > School of Chemistry, Food and Pharmacy > School of Pharmacy > Pharmaceutics Research Group
Publisher Elsevier
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar