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Time-specific Errors in Growth Curve Modeling: Type-1 Error Inflation and a
Possible Solution with Mixed-Effects Models

Satoshi Usamia and Kou Murayamab,c
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cResearch Institute, Kochi University of Technology, Kochi, Japan

ABSTRACT
Growth curve modeling (GCM) has been one of the most popular statistical methods to
examine participants’ growth trajectories using longitudinal data. In spite of the popularity
of GCM, little attention has been paid to the possible influence of time-specific errors, which
influence all participants at each timepoint. In this article, we demonstrate that the failure
to take into account such time-specific errors in GCM produces considerable inflation of
type-1 error rates in statistical tests of fixed effects (e.g., coefficients for the linear and quad-
ratic terms). We propose a GCM that appropriately incorporates time-specific errors using
mixed-effects models to address the problem. We also provide an applied example to illus-
trate that GCM with and without time-specific errors would lead to different substantive
conclusions about the true growth trajectories. Comparisons with other models in longitu-
dinal data analysis and potential issues of model misspecification are discussed.
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The analysis of change in longitudinal data has
attracted considerable attention over past decades in
behavioral research (e.g., Ancona, Okhuysen, &
Perlow, 2001; Braun, Kuljanin, & DeShon, 2013).
Researchers have proposed a number of advanced and
sophisticated quantitative approaches to address the
stability and change of variables over time (Braun
et al., 2013; Collins & Sayer, 2001; Hamaker, Kuiper,
& Grasman, 2015; Hertzog & Nesselroade, 2003;
McArdle & Nesselroade, 2014; Meredith & Tisak,
1990; Ram & Grimm, 2015; Singer & Willett, 2003).
One approach that has been widely used in applied
behavioral research is growth curve modeling (GCM)
analysis. Basically, GCM addresses various types of lon-
gitudinal change by simultaneously estimating parame-
ters of individual trajectories in combination with the
function for change defining the shape (characterized
by growth parameters, e.g., intercept and coefficients
for the linear and quadratic terms) and the inter-indi-
vidual differences in the growth parameters (repre-
sented by variance estimates). Earlier work of GCM
(e.g., Potthoff & Roy, 1964; Rao, 1965) also contributed

to the development of latent GCM (McArdle, 1988;
Meredith & Tisak, 1984, 1990), which utilizes latent
variable frameworks to model growth trajectories.1

GCM requires repeated observations of the same
measures on participants. There are several different
ways to collect repeated measurements from partici-
pants, but a common method is that all participants
in the sample are measured at the same timepoints
(i.e., participants and timepoints are crossed with each
other). For example, researchers may be interested in
longitudinal change in relationships between managers
and their subordinates, which are assessed (via self-
reports) at the same timepoint of each year for all par-
ticipants. To fit GCM, the obtained data are typically
subjected to multilevel models (also called hierarchical
linear models; Raudenbush & Bryk, 2002; Singer, 1998,
mixed-effects models, and random-effects models;
Laird & Ware, 1982), or structural equation models
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1Random effects in multilevel models to fit GCM are one form of latent
variables (Skrondal and Rabe-Hesketh, (2004, 2007). As such, prior to the
development of latent growth curve modeling, latent variables are
implicitly used in the applications of GCM.
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(Bollen & Curran, 2006; Duncan, Duncan, & Strycker,
2006; McArdle & Nesselroade, 1994).

An often overlooked fact about GCM with such
crossed longitudinal data is that there are a limited
number of measured timepoints although we are typic-
ally interested in making an inference about the growth
curve that does not depend on when and how many
timepoints were sampled. For example, if we want to
understand the growth trajectory of well-being of workers
over 5 years after entering a company, the conclusion
drawn from the data should be the same, irrespective of
when and how many times the workers were assessed.
Ideally, a growth curve estimated from the sampled time-
points would closely resemble the true growth curve, war-
ranting a generalization that it is representative of it. In
reality, however, sampling of timepoints is likely to entail
a certain degree of time-specific effects which influence all
participants. For example, their self-reported well-being
may be influenced by the content of the jobs that the com-
pany happens to be mainly undertaking at the time of the
assessment. It is also possible that a negative event (e.g.,
power disruption, bad weather) happens to the company
on the day of the assessment, which pulls down the overall
well-being rating of the workers. We shall call these time-
specific effects, which are irrelevant to true growth curve,
time-specific errors. These are all nuisance disturbances to
estimate a long-term trend of well-being, but importantly,
these time-specific errors could potentially distort the
observed growth trajectories, making researchers draw
inaccurate conclusions.

The main purpose of the current article is to show the
influence of such time-specific errors on type-1 error rates
of estimated fixed effects (e.g., coefficients for the linear
and quadratic terms) in GCM, and to describe a new
GCM specification that incorporates time-specific errors to
address the problem. Despite the growing amount of
research that employs GCM, the issue of time-specific
errors has been little discussed in the literature. However,
as we will show, ignoring even small amounts of time-spe-
cific errors can cause considerable underestimation of
standard errors of fixed effects estimates, resulting in large
inflation of type-1 error rates. In the current article, we first
provide a definition and examples of time-specific errors
in longitudinal data, and then demonstrate how time-spe-
cific errors underestimate standard errors and inflate type-
1 error rates in determining the overall shape of the growth
curves using analytic derivation and statistical simulations.
Importantly, to address this issue, we propose a new GCM
specification that effectively models time-specific errors.
We then present an illustrative example and discuss some
of the important issues, such as model misspecification, to
implement the proposed GCM for application.

Definition and examples of time-specific errors

Time-specific errors are caused by sampling of time-
points, and influence all participants within each time-
point. They are the errors which (1) are produced by
extraneous factors, (2) are irrelevant to the growth or
development of participants, and (3) change randomly
across timepoints, hindering the estimation of the true
shape of growth curves.

It is not uncommon that longitudinal data, in which
participants and timepoints are crossed with each other,
entail a certain degree of time-specific errors due to
various reasons including procedural restrictions and
uncontrollable sources in measurement. For example, if
we want to examine employees’ longitudinal trajectory
of morale in organizations simultaneously through
group-administered survey conducted every month after
they entered an organization, their self-reported morale
may be either positively or negatively influenced by day
or season (e.g., employees may show higher morale on
Fridays), social events in the organization (e.g., pay days,
business meetings, and office parties), the nature of the
job that the company is undertaking (e.g., urgency and
economic value), and economic conditions of the organ-
ization or the whole society (e.g., employees may show
higher morale in a booming economy) when the assess-
ment was administered (e.g., Schwarz & Clore, 1983). In
addition, other external conditions including climate
(weather, wind, temperature, humidity; employees may
show higher morale on a sunny day) and some proced-
ural differences between assessments (e.g., uncontrolled
factors such as differences in rooms and interviewers
between timepoints; employees may indicate higher
morale when more attractive interviewers conduct
assessment in cleaner rooms) may also influence
employees’ self-reported morale. Repeated assessment of
morale might also introduce some effects to all partici-
pants. All these factors, which are irrelevant to the true
change of employees’ morale in the organization, accu-
mulate and contribute to form time-specific errors as a
result of sampling of specific timepoints. These time-
specific errors change measurements of all participants
within each timepoint, making the estimation of true
growth curve trajectories difficult.

As another example, if we want to track longitu-
dinal change of participants’ sales performance eval-
uated every day after an internship program starts,
participants’ performance in each day may be either
positively or negatively influenced by differences in
the locations of selling (e.g., participants may show
better performance when they sell a product in area
with larger buying power on average) and teaching
skills of supervisors who happen to carry out each
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curriculum before the assessment (e.g., participants’
performance may temporarily drop if the supervisor
had poor teaching skills). Other external factors such
as economic conditions and climate on the day of
assessment may also have substantial influence on
sales performance for all participants. They are all
irrelevant to the true growth trajectories of their job
performance and should be dissociated when estimat-
ing growth curves.

In some cases, the variety of sources of time-spe-
cific errors may be limited, but their influences are
still present at timepoints and influence assessments
of all participants within each timepoint. For example,
when we want to examine children’s growth curves of
linguistic skills through longitudinal assessments using
tests and test items that are not equated using item
response theory (Lord & Novick, 1968), we cannot
disentangle the levels of difficulty of tests and child-
ren’s linguistic skills from test scores because these
factors are confounded (e.g., De Ayala, 2009). Namely,
we cannot distinguish whether the differences of diffi-
culty of tests or growth of children’s linguistic skills
cause changes of test scores between timepoints. In
other words, the variety of difficulty of tests sampled
in each timepoint is the primary source of time-spe-
cific errors. As another example, if we want to track
longitudinal change of students’ motivation assessed
by questionnaires through a group-administered sur-
vey, particular topics of the curriculum that are cov-
ered right before the assessment points may have
substantial influence on scores (in case of students’
achievement in exams, see Marsh et al., 2017). Time-
specific errors reflect the collection of these various
random processes produced by external conditions
that are common to all participants during or before
the assessments.2

Of course, there are also a number of examples
where we do not need to assume time-specific errors.

For example, if we want to track physical growth of
children (e.g., grip strength), there seem to be no
extraneous factors that might influence the measure-
ment value of each child, except in specific circum-
stances (e.g., the children’s grip strength was
measured by the same measuring instrument, but pre-
cision of measurement can vary according to the
instrument that the teacher happened to choose each
time). As another example, if we assess the longitu-
dinal changes of cognitive abilities in similar settings
of participants with no relation to each other via
Mechanical Turk, external factors such as weather
conditions (e.g., temperature) will not influence all
participants in the same way at any timepoint. The
critical point is that the decision on how we treat
some potential perturbation as “real” (i.e., part of
growth aspect) or noise (i.e., time-specific errors) is
subjective, and this is what researchers have to con-
sider/imagine prior to analyzing the data, using sub-
stantial knowledge and/or previous research results.

Indeed, a substantial body of literature in psychology
shows that participants’ responses are influenced by
many extraneous conditions, all of which can contribute
to time-specific errors (e.g., Bodenhausen, 1990; May,
1999; Rentz & Reynolds, 1981; Schwarz & Sudman,
1996). Given the absence of previous studies that exam-
ined time-specific errors in GCM literature, we have lit-
tle idea about the actual magnitude of time-specific
errors in real longitudinal data sets, and how much it
depends on the nature of the data. However, as we will
show, the failure to account for just a small amount of
time-specific errors can cause considerable underestima-
tion of standard errors of fixed effects estimates, result-
ing in a large inflation of type-1 error rates.

New GCM specification with time-specific errors

Model

In the following, we propose a new specification of
GCM that incorporates time-specific errors. Let Yjt be
the outcome for an j (¼ 1; 2; :::;N)th participant at
timepoint t (¼ 1; 2; :::;T). A standard linear GCM
(without time-specific errors) to evaluate longitudinal
changes of outcome Yjt can be specified with a mixed-
effects model, as follows:

Yjt ¼ b0j þ b1jXt þ ejt: (1)

b0j ¼ c0 þ u0j; (2)

b1j ¼ c1 þ u1j: (3)

where Xt ¼ t�1, and b0j is a random intercept in the
jth participant. b1j is a regression coefficient in the jth

2A few of the examples that we presented might not have strict random
properties but given that we usually have a number of independent
sources of time-specific errors, it is not unreasonable to assume that they
are approximately random. Even if there are obvious systematic
nonrandom errors, researchers can model them separately (e.g., including
time-varying covariates into the proposed GCM), or could consider other
research designs that can effectively downsize this influence (e.g.,
choosing optimal time interval for assessment). Alternatively, researchers
can assume serially correlated errors between timepoints in the model
although estimation of time-specific error variance/covariance might
become unstable when T is small (e.g., T< 5, see also General Discussion
and Footnote 8).

It may be uncommon that every single participant is tracked exactly
at the same timepoint in actual longitudinal data and some may argue
that this would violate the assumption of constant effects across
participant. However, even in such cases, time-specific errors are still an
issue if participants are subject to the influences from the same
extraneous factors within a specific time period (e.g., the influence of the
climate of the day of assessment).
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participant and denotes the amount of change in out-
come per unit of time. ejt is a residual and it follows a
normal distribution as ejt �Nð0; r2eÞ; r2e is residual vari-
ance. c0 and c1 are overall means of outcome at t¼ 1
and overall slope, respectively, and c1 typically receives
primary interest in the analysis of change. u0j and u1j
are random intercepts and slopes of participants (these
parameters are called random participant effects). u0j and
u1j are assumed to be independent of Xt and ejt, and fol-
low a multivariate normal distribution as:

u0j
u1j

� �
�N

0
0

� �
;

r20 r01
r01 r21

� �� �
: (4)

r20 and r21 are variances of random intercepts and
slopes of participants, respectively, and r01 denotes
the covariance between them.

In contrast to the standard GCM described above,
a GCM that incorporates time-specific errors can be
written as follows:

Yjt ¼ b0j þ b1jXt þ rt þ ejtð Þ; (5)

where

b0j ¼ c0 þ u0j; (6)

b1j ¼ c1 þ u1j: (7)

Here, as indicated earlier, we assume that participants
and timepoints are crossed with each other. Note that
this GCM assumes a new error term rt, which is
assumed to be independent of Xt, ejt, u0j, and u1j,
refers to time-specific errors. As time-specific errors
have the subscript of t, but not j, the effects change
randomly (both positively and negatively) across time-
points, but the effects are constant across all partici-
pants within given timepoints. (i.e., time-specific
errors occur across all timepoints, not at a specific
single timepoint). In the context of mixed-effects
modeling, this error term can be referred to as a ran-
dom intercept of time. Time-specific errors are
assumed to follow a normal distribution across time-
points, rt �Nð0; r2t Þ.3 This model can be easily speci-
fied with available software which allows for
multilevel modeling with multiple random effects
(e.g., SPSS, SAS, R, Mplus, and; see Appendix A and

Online Supporting Materials for sample codes with R,
SPSS and SAS). In fact, in the context of multilevel
modeling, from the mathematical points of view this
model can be considered as a cross-classified model
(Rasbash & Browne, 2001; Raudenbush & Bryk, 2002).
As stated earlier, this new specification considers the
data as having a crossed structure (partici-
pants� time). This is a critical difference from the
standard GCM, where individual observations are
considered to be nested within participants only.
Because the standard GCM is obviously nested within
the GCM assuming time-specific errors, we can test
the statistical significance of the estimated r̂2

t using
model selection methods such as log-likelihood
ratio test.

Note that this specification implicitly assumes that
time-specific errors influence assessments of all partic-
ipants equally within each timepoint, and it might be
more natural to assume individual differences in sen-
sitivity to some of extraneous factors (e.g., economic
conditions might influence on morale seriously for
some employees but it might be trivial for others).
However, the new GCM specification can account for
time-specific errors by a single parameter (r2t ), provid-
ing a more parsimonious and stable parameter esti-
mate. This point is critically important when the
number of timepoints is small (e.g., fewer than 5
timepoints (T< 5); see the later discussion on
this point).

Interpretation of error terms

To better understand how each of the error terms in
Equations (5)–(7) relates to trajectories in the pro-
posed GCM, Figure 1(a and b) shows (1) participant
A and B’s observed trajectories (with and without
time-specific errors), (2) participant A and B’s model-
implied trajectories, and (3) group trajectories on an
outcome measurement (e.g., satisfaction of employ-
ees). In these presentations, we supposed the nonlin-
ear trajectories for generality of presentation. Random
participant effects (r0A ¼ 10 and r0B ¼ 15) represent
differences between participants’ model-implied trajec-
tories and the group trajectory (how much is this
employee satisfied compared to general satisfaction?);
thus, model-implied and group trajectories are paral-
lel. Residuals (eA1 ¼ �5; eA2 ¼ 0; eA3 ¼ 2, eA4 ¼ �5;
eA5 ¼ 6; eB1 ¼ 2; eB2 ¼ 7; eB3 ¼ �6, eB4 ¼ 1 and
eB5 ¼ 6) represent random measurement errors that
cause differences between participants’ model-implied
and observed individual trajectories (without time-spe-
cific errors). These residuals represent person-specific

3The normality assumption is made for two reasons. First, because in
some cases time-specific errors can be considered as the composites from
multiple external sources, it is reasonable to assume that time-specific
errors follow a normal distribution. Second, the assumption of normality
is reasonable and convenient for the estimation purpose in many
situations. However, we acknowledge that this assumption is not always
reasonable. For example, when there is great heteroscedasticity among
multiple sources of time-specific errors, the normality assumption no
longer holds. Theoretically, it is possible to incorporate the information
about such nonnormality, but it is beyond the scope of the
current article.
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circumstances for each timepoint (e.g., one participant
having a quarrel with a supervisor before an assess-
ment timepoint).

Time-specific errors (r1 ¼ 1; r2 ¼ �1; r3 ¼ 3; r4 ¼ 1,
and r5 ¼ �4) can be observed by attending to the dif-
ferences between the observed trajectories with and
without time-specific errors. Importantly, while both
random participant effects and residuals take different
values between participants, participants are subjected
to time-specific errors to the same extent. Specifically,
in Figure 1a and 1b, the differences between the
observed trajectories with and without time-specific
errors are identical between participants. For example,
at t¼ 3, trajectories with time-specific errors are 3
units larger than those without time-specific errors
(r3 ¼ 3), and this pattern is consistent for both partic-
ipants. This indicates that there may have been one or
more sources that positively influenced both partici-
pants (e.g., the day of the assessment was payday or
weekend). Similarly, at t¼ 5, observed trajectories
with time-specific errors are 4 units smaller (r5 ¼ �4)
than those without time-specific errors, and this pat-
tern is consistent for both participants. This indicates
that there may have been sources that negatively influ-
enced both participants (e.g., the day of the assess-
ment was rainy or Monday).

Consequences of unmodeled time-specific
errors

Underestimation of standard errors in estimating
linear effect

The most significant consequence of the failure to
incorporate time-specific errors in GCM is that it would
cause considerable underestimation of standard errors of
fixed effect estimates (e.g., linear slope effect), resulting
in the inflation of type-1 error rates. The fact that
unmodeled random effects increase type-1 error rates is
not new. Clark (1973) raised the issue nearly 40 years
ago in the field of psycholinguistics, and it has recently
attracted revived attention in multiple fields of psych-
ology (Baayen, Davidson, & Bates, 2008; Freeman,
Heathcote, Chalmers, & Hockley, 2010; Judd, Westfall,
& Kenny, 2012, Judd, Westfall, & Kenny, 2017;
Murayama, Sakaki, Yan, & Smith, 2014). A similar issue
has been discussed in the literature on multilevel model-
ing in the context of cross-classified models (Meyers &
Beretvas, 2006; Rasbash & Browne, 2001; Raudenbush &
Bryk, 2002). To our knowledge, however, this issue has
been little discussed in longitudinal designs where vari-
ous sources of time-specific errors may affect estimates
in models including GCM. Given the popularity of
GCM, this situation is rather surprising.

Figure 1. a. Example of person A’s observed trajectories (with and without time-specific errors), person A’s model-implied trajecto-
ries and group trajectories (for fixed effects, c0¼20, c1¼3; for random participant effect, r0A¼10; for time-specific errors, r1¼1,
r2¼–1, r3¼3, r4¼1, r5¼–4; for errors, eA1¼–5, eA2¼0, eA3¼2, eA4¼–5, eA5¼6). b. Example of person B’s observed trajectories (with
and without time-specific errors), person B’s model-implied trajectories, and group trajectories (for fixed effects, c0¼20, c1¼3; for
random participant effect, r0B¼15; for time-specific errors, r1¼1, r2¼–1, r3¼3, r4¼1, r5¼–4; for errors, eB1¼2, eB2¼7, eB3¼–6,
eB4¼1, eB5¼6).
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To illustrate the impact of time-specific errors on
type-1 error rates of fixed effect estimates c1 in a sim-
ple manner, here we will assume r21 (random partici-
pant slopes) is zero. Under this model specification,
from Equations (5)–(7), Yjt can now be rewritten
through the combined form as:

Yjt ¼ c0 þ c1Xtð Þ þ u0j þ rt þ ejtð Þ: (8)

From this equation, it is clear that the conditional
variance of Yjt at each timepoint can be expressed as

Var YjtjXt
� � ¼ r20 þ r2t þ r2e ¼ r2; (9)

because of independence among error terms (i.e., u0j,
rt, and ejt). Here, the variance is denoted as VarðÞ.
Similarly, conditional covariance between Yjt and Yjt0

(i.e., covariance between outcomes within the same
participants), and covariance between Yjt and Yj0t (i.e.,
covariance between outcomes within the same time-
points) are expressed as:

Cov Yjt;Yjt0 jXt;Xt0
� � ¼ r20; (10)

and

Cov Yjt;Yj0tjXt
� � ¼ r2t ; (11)

respectively. The covariance is denoted as CovðÞ.
We can now define an index which is analogous to

the intra-class correlation coefficient (ICC) among
outcomes within the same participants as follows:

q0 ¼ Corr Yjt;Yjt0 jXt;Xt0
� � ¼ r20

r20 þ r2t þ r2e
¼ r20

r2
;

(12)

and a similar index among outcomes within the same
timepoints can be written as

qt ¼ Corr Yjt;Yj0tjXt
� � ¼ r2t

r20 þ r2t þ r2e
¼ r2t

r2
: (13)

The correlation is denoted as CorrðÞ. These indices
also express the proportion of variance explained by asso-
ciated random factors. In the following discussion, with-
out loss of generality, we set c0 ¼ 0 (i.e., overall mean of
outcome at t¼ 1 equal to 0) and r2 ¼ 1 (i.e., variances of
outcome at each timepoint equal to 1), respectively.
Under this assumption, q0 ¼ r20 and qt ¼ r2t .

Let us illustrate the adverse effect of unmodeled
time-specific errors. When both the values of q0 and
qt are known and we use the GCM that correctly
specified time-specific errors (i.e., Equations (5)–(7)),
the statistic Z for testing a null hypothesis H0 : c1 ¼ 0
(i.e., overall mean of slope is 0 with assuming r21 ¼ 0)
can be constructed as:

Z ¼ ĉ1
se ĉ1ð Þ : (14)

A standard error of ĉ1 is denoted as seðĉ1Þ. Now,
let seðĉ1misÞ be a standard error of the estimate of
overall slope mean when we wrongly used the stand-
ard GCM (i.e., Equations (1)–(3) with assuming
r21 ¼ 0) but time-specific errors actually exist (i.e.,
qt ¼ r2t > 0). The analytic formulas for seðĉ1Þ and
seðĉ1misÞ can be found in the Online Supporting
Materials. Under the conditions of qt � 0,
q0 � 0;N � T � 1, the following relation

se ĉ1misð Þ � se ĉ1ð Þ; (15)

is always satisfied. In other words, a wrong use of the
standard GCM that ignores time-specific errors always
underestimates the standard error of overall slope
mean estimates when time-specific errors actually
exist. Note that expected values of ĉ1 and ĉ1mis are
equal, namely, Eðĉ1Þ ¼ Eðĉ1misÞ ¼ c1, when the vari-
ance components (e.g., q0 and qt) are known (see
Online Supporting Materials). This means that the
failure to incorporate time-specific errors (when they

Table 1. Shrinkage factor (and type-1 error rates) in the test of fixed coefficient for the linear term when we apply linear GCM
without time-specific errors.

T¼ 5 T¼ 10 T¼ 15

q0 qt N¼ 200 N¼ 500 N¼ 1500 N¼ 200 N¼ 500 N¼ 1500 N¼ 200 N¼ 500 N¼ 1500

0.2 0.0 1 (0.05) 1 (0.05) 1 (0.05) 1 (0.05) 1 (0.05) 1 (0.05) 1 (0.05) 1 (0.05) 1 (0.05)
0.2 0.01 0.61 (0.23) 0.45 (0.38) 0.28 (0.59) 0.64 (0.21) 0.48 (0.35) 0.31 (0.55) 0.65 (0.20) 0.49 (0.33) 0.32 (0.53)
0.2 0.03 0.41 (0.42) 0.28 (0.59) 0.17 (0.75) 0.45 (0.38) 0.31 (0.55) 0.19 (0.72) 0.46 (0.36) 0.32 (0.53) 0.20 (0.70)
0.2 0.05 0.33 (0.51) 0.22 (0.67) 0.13 (0.80) 0.37 (0.47) 0.25 (0.63) 0.15 (0.78) 0.38 (0.45) 0.26 (0.61) 0.16 (0.76)
0.5 0.0 1 (0.05) 1 (0.05) 1 (0.05) 1 (0.05) 1 (0.05) 1 (0.05) 1 (0.05) 1 (0.05) 1 (0.05)
0.5 0.01 0.55 (0.28) 0.40 (0.43) 0.26 (0.62) 0.54 (0.29) 0.41 (0.42) 0.27 (0.59) 0.53 (0.30) 0.40 (0.43) 0.28 (0.59)
0.5 0.03 0.37 (0.47) 0.25 (0.62) 0.15 (0.76) 0.38 (0.45) 0.27 (0.59) 0.17 (0.74) 0.38 (0.46) 0.27 (0.59) 0.17 (0.73)
0.5 0.05 0.30 (0.55) 0.20 (0.69) 0.12 (0.82) 0.32 (0.53) 0.22 (0.67) 0.13 (0.80) 0.32 (0.54) 0.22 (0.66) 0.14 (0.79)
0.8 0.0 1 (0.05) 1 (0.05) 1 (0.05) 1 (0.05) 1 (0.05) 1 (0.05) 1 (0.05) 1 (0.05) 1 (0.05)
0.8 0.01 0.37 (0.47) 0.27 (0.60) 0.17 (0.73) 0.36 (0.49) 0.26 (0.61) 0.18 (0.73) 0.34 (0.50) 0.25 (0.62) 0.17 (0.73)
0.8 0.03 0.24 (0.64) 0.17 (0.74) 0.10 (0.84) 0.24 (0.64) 0.17 (0.74) 0.11 (0.83) 0.23 (0.66) 0.17 (0.75) 0.11 (0.83)
0.8 0.05 0.19 (0.71) 0.13 (0.80) 0.08 (0.88) 0.19 (0.71) 0.13 (0.80) 0.08 (0.87) 0.18 (0.72) 0.13 (0.80) 0.08 (0.87)

T: number of (equally spaced) timepoints; N: number of participants; q0: proportion of variance explained by random participant intercept factor; qt : pro-
portion of variance explained by time-specific error.
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are present) only impacts the standard error estimates
of the linear slope, not (the expected value of) the lin-
ear slope estimate itself. However, when the variance
components are unknown and T is small, there is a
risk of substantial bias of slope estimates (see the gen-
eral discussion below and footnote 7).

We describe the ratio seðĉ1misÞ
seðĉ1Þ (� 1) as shrinkage fac-

tor because this quantifies the degree of the underesti-
mation of standard errors, through which the Z
statistic in Equation (14) inflates, which in turn
inflates type-1 error. The analytic formulas of shrink-
age factor are also shown in Online Supporting
Materials. To examine the impact of the number of
participants (N), the number of timepoints (T), the
magnitude of the random participant intercepts (q0),
and the magnitude of time-specific errors (qt) on the
underestimation of standard errors we computed the
shrinkage factor seðĉ1misÞ

seðĉ1Þ and corresponding (inflated)
type-1 error rates as a function of these parameter val-
ues. Specifically, we tabulated the shrinkage factor and
corresponding type-1 error rates in Table 1 by system-
atically changing the number of participants (N¼ 200,
500, and 1,500), the number of timepoints (equally
spaced, T¼ 5, 10, and 15), the proportion of variance
explained by random participant intercept (q0¼0.2,
0.5, and 0.8), and the proportion of variance explained
by time-specific errors (qt¼0, 0.01, 0.03, and 0.05).
We selected these values because the variance of time-
specific errors is likely to be substantially smaller than
the variance of random participant intercepts (i.e.,
individual differences among participants).

The results showed that (i) even the small sizes of
qt (e.g., qt ¼ :01) dramatically underestimate standard
error estimates (estimated standard errors are some-
times less than 1/5 of the true standard errors) and
cause serious inflation of type-1 error rates, (ii) large
N also underestimates standard errors (and causes
inflation of type-1 error rates), whereas large T gener-
ally prevents this but its impact is much smaller as
compared with N, and (iii) when time-specific errors
(qt) are present, larger q0 also leads to larger under-
estimation of standard error estimates and more ser-
ious inflation of type-1 error rates. When qt ¼ 0,
however, standard errors and type-1 error rates are
correctly estimated (i.e., shrinkage factor ¼1).

The analyses presented here are limited in that they
assumed (1) there are no random participant slopes
(i.e., r21 ¼ 0) and (2) the variance components (e.g.,
q0 and qt) are known. To support the generalizability
of our argument and to illustrate how the underesti-
mated standard errors impact actual type-1 error
rates, we conducted Monte Carlo simulations under

the conditions where random participants’ slopes are
present and computed empirical type-1 error rates. In
these simulations, a linear GCM with time-specific
errors (i.e., Equations (5)–(7), with fixing c1 ¼ 0) was
used as a data generation model but the standard lin-
ear GCM (i.e., Equations (1)–(3) was (wrongly) fit to
the data. We systematically changed the number of
participants (N¼ 200, 500, and 1,500), the number of
timepoints (equally spaced, T¼ 5, 10, and 15), the
magnitude of time-specific errors (r2t¼ 0, 0.01, 0.03,
and 0.05), and the magnitude of random participant
slope (r21¼ 0.01, 0.05, and 0.20). We fixed the magni-
tude of random participant intercept r20 to 0.5 and
specified residual variance r2e as r2e ¼ 1�r2t�r20. For
each combination of simulation parameters, 1,000
data sets were generated and simulated type-1 error
rates were evaluated by computing the proportion of
significant (false-positive) effects of regression slope
(i.e., ĉ1) with a¼ 0.05. In this simulation, all analyses
that apply the mixed-effects models were performed
using restricted maximum likelihood by the lme4
package in R. (Bates, Maechler, & Bolker, 2011).

The results of Figure 2 were consistent with the
observations in Table 1. Specifically, even with small
time-specific errors (e.g., qt<0:01) type-1 error rates
considerably increase (sometimes above 50%), and
larger N increase type-1 error rates, whereas a larger
T decreases type-1 error rates.4 Difference from
Table 1 can be seen in that T has larger impact on
type-1 error rates.

Underestimation of standard errors in estimating
quadratic effect

In many applications of GCM, linear slope is obvi-
ously nonzero (e.g., GCM to evaluate the growth tra-
jectories of height of children), and therefore the
inflation of type-1 error rates for the linear slope
effect may not be a serious issue. The issue is relevant,

4In statistical simulations, the mixed-effects model needs to estimate
random effects as well as fixed effects from generated data. This situation
is different from the analytic solutions described above, where we
assumed that the proportion of variance explained by random factors
(i.e., q0 and qt) are known. Importantly, to accommodate the uncertainty
caused by the unknown variance components, we need to evaluate test
statistics of fixed effects ĉ

seðĉÞ against a t distribution, not the standard
normal distribution, especially when T and N are small. Unfortunately,
there is no obvious way of computing “correct” degrees of freedom for
this statistical test in the context of mixed-effects modeling (Baayen
et al., 2008). Previous literature has indicated, however, that the
Satterthwaite’s (1941) or Kenward-Roger’s (Kenward & Roger, 1997)
approximation methods would provide p values with reasonable type-1
error rates (e.g., Schaalje, McBride, & Fellingham, 2002). It is also
empirically reported that p values provided by these two methods are
generally very close to each other (Kuznetsova, Brockhoff, & Christensen,
2017). Thus, we used the Satterthwaite approximation method with the
lmerTest package in R (Kuznetsova, Brockhoff, & Christensen, 2015).
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however, when it comes to the statistical tests of
quadratic effects. We are often interested in determin-
ing the shape of a growth curve, and for that purpose,
we typically include a quadratic term in a linear GCM
to test the nonlinearity of the growth curve (e.g.,
Bollen & Curran, 2006; McArdle & Nesselroade, 2014;
Ram & Grimm, 2015). Importantly, like linear slope
effect, time-specific errors would artificially reduce the
standard error of this nonlinear effect estimate when
time-specific errors are not appropriately modeled
(i.e., GCM of Equations (5)–(7) is not used), resulting
in a substantial inflation of type-1 error rates. This
inflation is of more serious concern in practice, not
only because this means that researchers would
wrongly identify the shape of the growth curve but
also because the misspecified quadratic term would
influence the estimate of overall slope and its differen-
ces among participants. If researchers want to include
an independent variable to predict participant slopes,

for example, the presence or absence of quadratic
term would make a difference (Biesanz, Deeb-Sossa,
Papadakis, Bollen, & Curran, 2004; Bollen &
Curran, 2006).

To illustrate how time-specific errors influence
standard error estimates of a quadratic term, consider
the following model:

Yjt ¼ b0j þ b1jXt þ b2jX
2
t þ rt þ ejtð Þ; (16)

where

b0j ¼ c0 þ u0j; (17)

b1j ¼ c1 þ u1j; (18)

b2j ¼ c2 þ u2j: (19)

c2 is the overall mean of the slope expressing quad-
ratic change, and u2j is a corresponding random slope
of participants. u2j is assumed to be independent of
predictors Xt and other residuals and random factors.
u0j; u1j, and u2j are assumed to follow a multivariate

Figure 2. Type-1 error rates of fixed linear slope as a function of number of participants and number of timepoints, when
time-specific errors are not included in growth curve model. The predetermined alpha value (a¼ 0.05) is highlighted by the
dotted line.
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normal distribution, taking a form analogous to
Equation (4). To simplify, only random participant
intercept u0j (i.e., r20) is considered here and other
random participant effects u1j and u2j are fixed to
zero (i.e., u1j¼u2j¼0 for all j).

In this case, the combined form of the model is:

Yjt ¼ c0 þ c1Xt þ c2X
2
t

� �þ u0j þ rt þ ejtð Þ: (20)

Let ĉ1mis and ĉ2mis be parameter estimates of slopes
for linear and quadratic changes when the standard quad-
ratic GCM is wrongly fit to the data (i.e., setting rt¼ 0
for all t in Equation (20)). Mathematical derivations of
shrinkage factors seðĉ1misÞ=seðĉ1Þ and seðĉ2misÞ=seðĉ2Þ
can be found in the Online Supporting Materials. Under
the conditions of qt � 0, q0 � 0;N � T � 1, the follow-
ing relations are always satisfied:

se ĉ1misð Þ � se ĉ1ð Þ; se ĉ2misð Þ � se ĉ2ð Þ; (21)

These results indicate that the incorrect use of the
standard GCM, which ignores time-specific errors, always
underestimates the standard errors associated with both
coefficient estimates for the linear and quadratic terms.

Table 2 provides the computed shrinkage factors (i.e.,
seðĉ2misÞ
seðĉ2Þ ) and corresponding type-1 error rates for the
coefficient of the quadratic term, as a function of the
number of participants (N), the number of timepoints
(T), the magnitude of random participant intercepts
(q0), and the magnitude of time-specific errors (qt). The
table for the linear slope (i.e., seðĉ1misÞ

seðĉ1Þ and corresponding
type-1 error rates) is not presented, but available upon
request to the corresponding author. This table indicates
similar underestimation patterns of the standard error
estimates with those of the linear slope in Table 1 – the
existence of qt causes substantial underestimation of the
standard error, and this underestimation is exacerbated
by increasing N. Again, T does not have a big impact
on the shrinkage factor, and q0 is influential when qt

and N are small. These findings highlight the risk of
drawing incorrect conclusions about the shape of the
growth trajectories and overall slope if researchers fit the
standard GCM without considering the presence of time-
specific errors. We also conducted Monte Carlo simula-
tions under conditions where random participants’ effects
for the coefficients of the slope terms are present. In these
simulations, a quadratic GCM with time-specific errors
(i.e., Equations (16)–(19), with fixing c2 ¼ 0 and u2j ¼ 0)
was used for the data generation model but the standard
quadratic GCM without time-specific errors (i.e., setting
u2j ¼ 0 and rt¼0 for all t) was wrongly fit to the data.
The linear slope was fixed to a positive constant
(c1 ¼ 0:2), and parameters of the data generation model
were systematically changed as done with the previous
simulations of linear slope. For each combination of
simulation parameters, 1,000 data sets were generated.
Again, the results (Figure S1 in Online Supporting
Materials) were consistent with the observations in
Table 2, confirming the generalizability of the findings.

Note that even when the proposed GCM that
assumes different functional forms (e.g., cubic
GCM) is applied, the presence of time-specific error
variances (i.e., covariances between participants
within each timepoint) leads to the similar results.
In other words, if time-specific errors are present
and if T by T covariance structure among time-
points (R�) is positive definite, standard errors of
slope coefficients estimates in the proposed GCM
become larger than those in the standard GCM (see
also Online Supporting Materials).

Effectiveness of the proposed model to prevent
the inflation of type-1 errors

To demonstrate the effectiveness of the proposed
mixed-effects models, we ran another set of Monte

Table 2. Shrinkage factor (and type-1 error rates) in the test of fixed coefficient for the quadratic term when we apply quadratic
GCM without time-specific errors.

T¼ 5 T¼ 10 T¼ 15

q0 qt N¼ 200 N¼ 500 N¼ 1500 N¼ 200 N¼ 500 N¼ 1500 N¼ 200 N¼ 500 N¼ 1500

0.2 0.0 1 (0.05) 1 (0.05) 1 (0.05) 1 (0.05) 1 (0.05) 1 (0.05) 1 (0.05) 1 (0.05) 1 (0.05)
0.2 0.01 0.55 (0.28) 0.39 (0.45) 0.24 (0.64) 0.57 (0.26) 0.40 (0.43) 0.25 (0.63) 0.58 (0.25) 0.41 (0.42) 0.26 (0.62)
0.2 0.03 0.36 (0.48) 0.24 (0.64) 0.14 (0.79) 0.37 (0.46) 0.25 (0.63) 0.15 (0.77) 0.38 (0.45) 0.26 (0.62) 0.15 (0.77)
0.2 0.05 0.28 (0.58) 0.18 (0.72) 0.11 (0.83) 0.30 (0.56) 0.19 (0.70) 0.11 (0.82) 0.31 (0.55) 0.20 (0.69) 0.12 (0.82)
0.5 0.0 1 (0.05) 1 (0.05) 1 (0.05) 1 (0.05) 1 (0.05) 1 (0.05) 1 (0.05) 1 (0.05) 1 (0.05)
0.5 0.01 0.48 (0.35) 0.33 (0.52) 0.20 (0.70) 0.50 (0.33) 0.35 (0.49) 0.21 (0.67) 0.50 (0.32) 0.36 (0.48) 0.22 (0.66)
0.5 0.03 0.30 (0.55) 0.20 (0.70) 0.12 (0.82) 0.32 (0.53) 0.21 (0.68) 0.13 (0.81) 0.33 (0.52) 0.22 (0.67) 0.13 (0.80)
0.5 0.05 0.24 (0.64) 0.15 (0.76) 0.09 (0.86) 0.25 (0.62) 0.17 (0.75) 0.10 (0.85) 0.26 (0.61) 0.17 (0.74) 0.10 (0.84)
0.8 0.0 1 (0.05) 1 (0.05) 1 (0.05) 1 (0.05) 1 (0.05) 1 (0.05) 1 (0.05) 1 (0.05) 1 (0.05)
0.8 0.01 0.33 (0.52) 0.22 (0.67) 0.13 (0.80) 0.34 (0.51) 0.23 (0.65) 0.14 (0.78) 0.34 (0.51) .23 (0.65) 0.15 (0.78)
0.8 0.03 0.19 (0.70) 0.13 (0.81) 0.07 (0.89) 0.21 (0.69) 0.14 (0.79) 0.08 (0.87) 0.21 (0.68) 0.14 (0.78) 0.08 (0.87)
0.8 0.05 0.15 (0.78) 0.09 (0.85) 0.05 (0.92) 0.16 (0.76) 0.10 (0.84) 0.06 (0.91) 0.16 (0.75) 0.10 (0.84) 0.06 (0.90)

T: number of (equally spaced) timepoints; N: number of participants; q0: proportion of variance explained by random participant intercept factor; qt : pro-
portion of variance explained by time-specific error.
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Carlo simulations. These simulations confirmed that
the proposed GCMs can effectively address the
inflation of type-1 error rates when they are applied
to the data generated from a linear GCM and quad-
ratic GCM with and without time-specific errors
(Figure S2 and S3 in Online Supporting Materials)
and that the proposed GCMs can effectively recover
true parameters without bias (Table S1 in Online
Supporting Materials).

Notes on time-specific errors

Covariance structure of the proposed model

To clarify the implications of time-specific errors, let
us consider the covariance structure of the proposed
GCM. For example, when T¼ 3 and N¼ 2 in the
proposed linear GCM, from the Equations (8)–(11)
mean structure l and covariance structure R for Y ¼
ðY11;Y12;Y13;Y21;Y22;Y23Þ0 can be expressed as (see
Online Supporting Materials for general expressions):

l ¼ c0; c0 þ c1; c0 þ 2c1; c0; c0 þ c1; c0 þ 2c1ð Þ0; (22)

and

R ¼

r2 r20 r20 r2t 0 0

r20 r2 r20 0 r2t 0

r20 r20 r2 0 0 r2t
r2t 0 0 r2 r20 r20
0 r2t 0 r20 r2 r20
0 0 r2t r20 r20 r2

0
BBBBBBBB@

1
CCCCCCCCA
: (23)

Like standard multilevel models, observations within
the same participants are correlated with each other
(r20). Most importantly, in the proposed GCM with
time-specific errors, r2t appears in the covariance
between persons within the same timepoints. This fea-
ture means that time-specific errors produce the cor-
relations between persons within the same timepoints
after controlling for fixed effects. In other words, the
proposed GCM (with time-specific errors) allows data
from different participants within each timepoint to
be correlated. In standard GCM, on the other hand,
participants are posited to be independent from each
other (after accounting for fixed effects).

Comparison with other models

Although this article specifies GCMs with a multilevel
modeling framework (or mixed-effects model;
Goldstein, 2003; Raudenbush & Bryk, 2002; Singer &
Willett, 2003), time-specific errors are a more general
issue that also apply to the GCMs specified by the

structural equation modeling (SEM) framework using
a restricted common factor model (McArdle,
Anderson, Birren, & Schaie, 1990; Meredith & Horn,
2001). Unfortunately, it is not easy to effectively
incorporate time-specific errors in the SEM frame-
work, as standard (single-level) SEM addresses the
variance/covariance between timepoints (i.e., variables)
only, but not between participants. Although it is not
impossible to consider covariance between participants
(see Mehta & Neale, 2005), this involves substantial
procedural and conceptual difficulties. On the other
hand, the proposed GCM, which is based on a cross-
classified model (rather than SEM framework), should
provide a more direct and flexible way to account for
possible time-specific errors. Thus, we strongly recom-
mend specifying the model with a mixed-effects
model rather than with the SEM framework.

Some may argue that researchers can also treat
time as a categorical variable, without using the pro-
posed GCM. Namely, we can capture time-specific
errors at each specific time by including T – 1 fixed-
effects (dummy codes) for time using the standard
GCM. Alternatively, we can also add time-varying
additive constants to represent time-specific effects.
These specifications have a close relationship with
latent basis growth model (Ram & Grimm, 2015; or a
free factor loadings approach; Bollen & Curran, 2006.
i.e., treating Xt as parameters to be estimated rather
than fixed constants, beside minimal constraints
needed for model identification). This method is also
similar with a traditional repeated-measures analysis
of variance (ANOVA) with time as a fixed repeated
measurement factor. These models determine the
growth curves in a data-driven manner; thus, all of
these models can capture any idiosyncratic growth
curves present in the data, including growth curves
with time-specific errors. However, these methods are
inappropriate in that time-specific influences are
treated as fixed effects rather than random ones.
Furthermore, importantly, these methods cannot dis-
entangle time-specific influences from the true latent
trajectory, making it impossible to estimate true
growth curves dissociated from time-specific errors.
This means that these models cannot evaluate the
trend of growth trajectory (e.g., linear and quadratic)
and parameter estimates would be difficult to map
onto theoretical notion of the development and
growth processes (Ram & Grimm, 2015).

In the literature of psychometrics, econometrics,
and other related fields, there are many longitudinal
models proposed with SEM or time-series modeling
frameworks to account for time-specific effects. The
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examples include the autoregressive latent trajectory
(ALT) model with time-varying autoregressive param-
eters (Bollen & Curran, 2004; Curran & Bollen, 2001),
the unified latent curve, latent state-trait model (LC-
LSTM) (Alessandri, Caprara, & Tisak, 2012), statistical
models for intensive longitudinal data (Walls &
Schafer, 2006; Hamaker, Ceulemans, Grasman, &
Tuerlinckx, 2015), unconditional asset pricing models
(Shanken, 1990), stochastic time-varying coefficient
models (Giraitis, Kapetanios, & Yates, 2014), time-
varying vector autoregressive (VAR) models
(Primiceri, 2005), and time-varying effect models
(TVEM) (Shiyko, Lanza, Tan, Li, & Shiffman, 2012).
Using the SEM framework, GCM has also been
extended to fit various types of growth curves, such as
latent basis growth model and GCM with exponential
growth curves (Grimm, Ram, & Hamagami, 2011;
Grimm, Steele, Ram, & Nesselroade, 2013; see also
Preacher & Hancock, 2015 for general expression).
These models are seemingly similar with our proposed
model in that they incorporate time-varying effects
(e.g., random participants effects in changes) in some
way, but our proposed model is different from these
models in how time-varying effects are defined. None
of the models above incorporate random errors which
vary across timepoints but are constant across partici-
pants within given timepoints (i.e., time-specific
errors). More detailed discussion on this point is pro-
vided in the Online Supporting Materials.

Other potential solutions by research design

There are several ways to reduce time-specific errors.
One effective design is to assess participants at differ-
ent timepoints (i.e., timepoints are nested within,
rather than crossed with, participants), such as a
standard experience sampling method where partici-
pants answer questions at random intervals (Bolger,
Davis, & Rafaeli, 2003). In a nested design, we cannot
estimate time-specific errors because this design does
not allow us to compute any time-specific effects that
influence all participants. However, because no one
shares the common measurement timepoints, confla-
tion of time-specific errors (rt) and residual (ejt) do
not cause underestimation of standard errors of
growth parameter estimates. In other words, time-spe-
cific errors do not inflate type-1 error rates in a
nested design. We can also reduce the impact of time-
specific errors using longitudinal data that are partly
crossed (i.e., data of some participants are measured
at the same timepoints), and we can still apply the
proposed GCM if necessary.

Collection and inclusion of time-varying covariates
should also be useful to reduce the influence of time-
specific errors. In the example of assessing employees’
morale in organizations, if researchers consider that
the day and economic conditions are sources of time-
specific errors, gathering the information regarding
the day and diffusion index at each assessment should
be useful. Researchers can estimate growth curves that
remove the effects of these covariates. Specifically,
instead of specifying time-specific errors, researchers
can include time-specific covariates Zt to explain the
outcome Yjt as Yjt ¼ b0j þ b1jXt þ

P
p wpZpt þ ðrt þ

ejtÞ (wp is a partial regression coefficient for pth time-
specific covariate Zpt).

This strategy is similar with applications of multi-
level modeling to reduce the influence of intra-class
correlation on experimental effect estimates in cluster
randomized trials (e.g., Hedges & Hedberg, 2007;
Murray & Blistein, 2003; Usami, 2014). However, it is
very difficult in practice to identify all sources of
time-specific errors in advance and collect these cova-
riates. In addition, even if all covariate information is
available, there is still a risk of model misspecification
(see the next section) and this causes failure to effect-
ively account for time-specific errors in GCM.
Therefore, inclusion of time-varying covariates is
undoubtedly useful, despite not being an optimal
strategy to address the problem of time-specific errors.
The proposed GCM with time-specific errors, on the
other hand, can capture all potential time-specific
errors by a single parameter (r2t ), providing a more
parsimonious and practical solution to the problem.

The issue of model misspecification of the
growth function and a potential solution

Artificial time-specific errors caused by model
misspecification of the growth function

Although the proposed GCM has the ability to effect-
ively account for time-specific errors that are not cap-
tured by existing models, there is one issue that
researchers need to bear in mind – model misspecifi-
cation. As Skrondal and Rabe-Hesketh (2004) noted,
in reality we often analyze data based on a wrong
model or untenable assumptions. This model misspe-
cification can take a variety of forms, including omit-
ted variables, inappropriate link functions,
inappropriate variance functions, inappropriate distri-
butional assumptions, and violation of conditional
independence. Misspecified models can potentially
lead to biased parameter estimates and misleading
conclusions.
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In the context of the proposed model with time-
specific errors, one important model misspecification
to consider is the misspecification of the functional
form of the growth curve. For example, a researcher
may fit a linear GCM to data, even if the true growth
curve is nonlinear. Importantly, because time-specific
errors essentially represent the deviation of observed
trajectory from the growth trajectory implied from the
model (Figure 1), when the linear model is wrongly
specified and the shape of true latent trajectory is
actually quadratic (i.e., nonlinear), time-specific errors
in our proposed model could “soak up” this misspeci-
fication. Specifically, the model could account for tem-
poral mean deviation from the implied growth curves
that are similar for all participants at each timepoint.
As a result, even in the absence of time-specific errors,
the results may show a nonzero estimate of time-spe-
cific errors (i.e., r2t > 0), and the researcher may
incorrectly claim that the true growth trajectory is lin-
ear. In this case, the larger the magnitude of parame-
ters associated with quadratic slope (i.e., c2, r22) is, the
risk of having a nonzero estimate of time-specific
errors becomes greater. Of course, our proposed
model with time-specific errors can be extended to
incorporate nonlinear functions to alleviate the influ-
ence of model misspecification. However, although
having a theory or substantive knowledge about the
target construct and data collection process is of great
help, it is almost impossible for researchers to know
the exact shape of the true latent trajectory before
analyzing data. To get an idea for the presence of
time-specific errors, some exploratory analyses such as
a scatterplot might be a useful strategy, especially
when the number of timepoints (T) and time-specific
error variances (r2t ) are large (in the context of model
misspecification, see Cudeck & Harring, 2007).

It should be noted that model misspecification is
not an issue specific to our proposed model, but a
general problem for GCM (Wu, West, & Taylor,
2009). Unless we know the true growth trajectory in
advance, model misspecification can always occur in
GCM. In addition, using a GCM with time-specific
errors, model misspecification would result in the
overestimation of standard errors, which makes the
statistical test more conservative than GCMs without
time-specific errors. Nevertheless, the issue of model
misspecification is more of a concern in our proposed
model because the “soaking up” property of GCM
with time-specific errors can mask the potential misfit
between the true and the model implied trajectories.
Thus, we need to be careful when we obtain a large
estimate of time-specific errors variance (r2t ); we need

to suspect a potential risk of model misspecification
and need to consider what the obtained time-specific
errors actually imply. In other words, relatively large
time-specific error variance might indicate the possi-
bility that time-specific errors are confounded with
(unspecified) true growth trajectories due to model
misspecification.

Serial correlations: a potential solution

One potential solution to detect model misspecifica-
tion is to scrutinize the pattern of the residuals from
the estimated latent trajectory (i.e., estimated resid-
uals). If there is a model misspecification, these esti-
mated residuals should show systematic patterns,
yielding nonzero serial correlation of residuals across
timepoints. For example, imagine that the shape of
the true latent trajectory can be expressed by a quad-
ratic form y ¼ 10þ t þ t2 and observed means are 12,
16, 22, 30, and 40 from t¼ 1 to t¼ 5. A researcher
wrongly applies a linear GCM to the data, and obtains
an estimated growth trajectory, which indicates the
estimated means of 10, 17, 24, 31, and 38 at each
timepoint (i.e., the means of the intercept and linear
change are estimated to be 10 and 7, respectively). In
this case, the estimated residuals, calculated as the dif-
ferences between the observed means and the model-
implied (estimated) means, are 2, –1, –2, –1, and 2.
These values suggest systematic patterns (i.e., a U-
shaped pattern) that indicate nonzero serial correl-
ation, implying the violation of the assumption of
residuals (i.e., conditional independence of residuals).

In the present context, estimates of residuals r̂ t can
be obtained in the linear GCM with time-specific
errors (i.e., Equations (5)–(7)) as

r̂ t ¼ �Y :t� ĉ0 þ ĉ1Xtð Þ; (24)

and in the quadratic GCM with time-specific errors
(i.e., Equations (16)–(19)) as

r̂ t ¼ �Y :t� ĉ0 þ ĉ1Xt þ ĉ2X
2
t

� �
: (25)

Here, �Y :t ¼
P

Yjt=N is the average of outcome at t.
Let r̂a;b with a � 1 and b � T be r̂a;b ¼
ðr̂a; r̂aþ1; :::; r̂b�1; r̂bÞ0. Then, first and second serial cor-
relations can be estimated as

R1 ¼ cor r̂1;T�1; r̂2;Tð Þ;R2 ¼ cor r̂1;T�2; r̂3;Tð Þ; (26)

respectively. See Appendix A for R codes to compute
such residuals.

When we apply a GCM with time-specific errors,
we can compute these serial correlations, and if either
of these correlations is large, we suspect potential
model misspecification. To provide a practical
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guideline of the magnitude of serial correlation,
we evaluated the sampling distribution of these serial
correlations using statistical simulation. We simulated
the sampling distribution of serial correlations when
time-specific errors r̂ t are present and appropriately
modeled. Using these sampling distributions, we can
evaluate the possibility of model misspecification by
checking whether observed serial correlations exhibit
extreme values in the distribution. Using both linear
and quadratic GCM with time-specific errors, the
joint distribution of first and second serial correlations
(R1, R2) is evaluated using 5,000 replications generated
by a model with time-specific errors. We evaluated
the joint sampling distribution by varying the number
of timepoints T (¼5, 6, 7, 8, 9, 10, 20, 50). Appendix
B displays this joint distribution. All correlations are
distributed into 20 bins (bin width ¼0.1), producing
a total of 20� 20¼ 400 cells, and cells with larger
frequencies are colored in darker shades. Cells that
show frequencies lower than 10 are not colored
because they are at high risk of sampling errors and
are thus ignored (colored cells in tables of Appendix
B include 94.8%–99.9% of the whole [¼5,000] data).
Note that first and second serial correlations cannot
be evaluated unless T � 4 and T � 5, respectively.

From Appendix B, we can see some patterns in the
shape of the joint distribution for T¼ 5, 7, 10, and 20.
A larger T indicates higher density around the center
of the distribution (i.e., no serial correlations, (R1,
R2)¼ (0,0)). The first serial correlation generally
shows smaller variance than the second serial correl-
ation, and the second serial correlation shows wide
distribution, especially when T is small (T¼ 5). Note
that this sampling distribution is not influenced by N,
q0, and qt, making this procedure particularly access-
ible and useful for applied researchers to detect

potential model misspecification.5 If estimated serial
correlations calculated from the proposed GCM with
time-specific errors do not fall within the colored
cells, in which the significance levels are approxi-
mately equal to or lower than 5%, we can conclude
that the estimated (nonzero) time-specific errors may
include artifacts caused by model misspecification.

Effectiveness of the solution

To empirically illustrate the effectiveness of the joint
sampling distributions that we derived, we generated
data from a quadratic (i.e., nonlinear) GCM without
time-specific errors (i.e., Equations (16)–(19) with
u1j ¼ u2j ¼ rt ¼ 0, c0 ¼ 0; c1 ¼ 1, and q0 ¼ 0:5), and
applied a linear GCM with time-specific errors (i.e.,
with a misspecified model). We systematically varied
the number of timepoints (T¼ 5, 7, 10, and 20), num-
ber of sample sizes (N¼ 100 and 500), and the magni-
tude of the quadratic effect (c2 ¼ 0:1; 0:2). In all, 200
simulation data sets were generated for each condi-
tion. In each condition, we examined whether the
estimated serial correlations were outside of the
colored cells in the joint sampling distribution we
provided. Table 3 summarizes the proportion of cases
when model misspecification was correctly identified.
The results showed that, when T is small (i.e., T¼ 5),
the proposed procedure with serial correlations does
not detect model misspecification well. However, the
proposed procedure works much better with T¼ 7
and can detect model misspecification very effectively
when T> 7, especially when N is larger and the shape
of the true latent trajectory deviated more from
the linear trajectory (i.e., c2 is larger). These results
indicate that the use of serial correlations can be an
effective way to address the issue of model misspecifi-
cation in GCMs with time-specific errors.

In GCM, we sometimes evaluate potential model
misspecification using model selection methods such
as information criteria when alternative models are
available. Thus, in the simulation reported above, we
also evaluated the utility of information criteria using
Akaike information criterion (AIC) and Bayesian
information criterion (BIC). We compared the infor-
mation criteria between (a) when we applied a

Table 3. Proportions that the estimated serial correlations do
not fall within the colored cells shown in Figure B1 and B2,
when a GCM with time-specific errors are wrongly fitted to the
data generated from the quadratic GCM without time-specific
errors (left). The proportions that information criteria correctly
favored the quadratic GCM without time-specific errors (right).

Serial correlations AIC BIC

c2 ¼ 0:1 c2 ¼ 0:2 c2 ¼ 0:1 c2 ¼ 0:2 c2 ¼ 0:1 c2 ¼ 0:2

N¼ 100 T¼ 5 0 0 0.82 0.98 0.82 0.98
T¼ 7 0.77 0.96 0.99 1 0.99 1
T¼ 10 1 1 1 1 1 1
T¼ 20 1 1 1 1 1 1

N¼ 500 T¼ 5 0 0 0.93 1 0.93 1
T¼ 7 0.97 1 1 1 1 1
T¼ 10 1 1 1 1 1 1
T¼ 20 1 1 1 1 1 1

T: number of (equally spaced) timepoints. N: number of participants.
AIC: Akaike Information Criteria. BIC: Bayesian Information Criteria.

5Because we fit the analysis model correctly to the data in this case,
regardless of the magnitudes of q0 and qt expected estimate of mean
growth trajectories is approximately equivalent to the true one. Although
the differences of these parameters as well as N would influence the
magnitude of standard errors of estimated mean growth trajectories (and
those of r̂ t), the difference of scale of r̂ t does not influence on serial
correlations (R1 and R2). Thus, the sampling distributions of R1 and R2
are not influenced by N, q0 and qt.
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quadratic GCM without time-specific errors (i.e., true
model) and (b) when we applied a linear GCM with
time-specific errors (i.e., misspecified model). The
results (Table 3) showed that both information criteria
successfully selected the true model in most of the
conditions. These results indicate that, when research-
ers are aware of potential alternative models that can
explain the growth curve without time-specific errors,
information criteria can be useful to detect potential
model misspecification, especially in conjunction with
serial correlations. It should be noted that serial corre-
lations are only useful when model misspecification
comes from the shape of the latent trajectory (i.e.,
functional form of growth curves). However, this is
not the only form of model misspecification in GCM
(Skrondal & Rabe-Hesketh, 2004; Wu et al., 2009).
For example, the true model can be different to a
model with time-specific errors in terms of the
assumptions of distribution and variance. In such a
situation, the use of information criteria such as AIC
and BIC would be of particular value, if alternative
models are available.

A flowchart to treat time-specific errors and
real data example

As a summary of the discussion so far, we provide a
flowchart below so that applied researchers can know
how to deal with time-specific errors step-by-step.

1. Using substantial knowledge of previous empirical
findings and data, consider whether there are
potential sources of time-specific errors (i.e.,
errors which change randomly across timepoints
but cause measurement biases for all participants
within timepoints). Exploratory data analysis (e.g.,
scatterplot) and substantive theory might help to
detect the presence of the time-specific errors. If
the researcher suspects the presence of time-spe-
cific errors, move onto the next step (or, apply
the standard GCM or some longitudinal models
if not).

2. Think about a design that can mitigate the effects
of time-specific errors (e.g., sample different time-
points across participants so that time is nested
within, rather than crossed with, participants; col-
lect time-specific covariates). If it is difficult to
implement such a design or the researcher sus-
pects that time-specific errors are still present
even with such design, use the proposed GCM
that incorporates time-specific errors.

3. If estimated time-specific errors variance (r2t ) is
statistically significant, calculate serial correlations.

4. If estimated serial correlations do not fall within
the colored cells in the joint distribution
(provided in Appendix B), the estimated (non-
zero) time-specific errors may include artifacts
caused by model misspecification. In this case,
researchers should consider alternative longitu-
dinal models to fit data. If estimated serial
correlations fall within the colored cells, results
from the proposed GCM with time-specific
errors should be used.

If there are multiple competing GCMs that have
nested relationships with each other (e.g., linear GCM
and quadratic GCM) to fit the data in step 2, applying
the GCM that assumes more generalized functional
form (e.g., quadratic GCM) first might be reasonable
in many situations because it can decrease the risk of
model misspecification of functional form.

To illustrate how we can deal with time-specific
errors, we present an example with real data using
data from Tanaka and Murayama (2014). In the anal-
yses provided below, we estimated parameters using
restricted maximum likelihood by the lme4 package in
R (Bates et al., 2011). Tanaka and Murayama (2014)
longitudinally assessed students’ interest in an intro-
ductory psychology class over a semester, which com-
prised 12weeks of classes (T¼ 12). From weeks 1
through 12, all participants responded to question-
naires on their motivation after each class. Thus, par-
ticipants are crossed with timepoints in the data. The
average scores for two items (“Today’s class was inter-
esting”; “I like today’s class”) from studies by Wigfield
and Eccles (2000) and Eccles and Wigfield (1995)
were used to calculate an interest index (index range:
1–5). Due to attrition and absence, out of all observa-
tions 22.7% were not observed in this dataset.6 Each
class was generally self-contained, addressing different
topics of psychology.

The primary purpose of the paper was not to
examine the longitudinal trajectory of students’ inter-
est level, so consequently, Tanaka and Murayama
(2014) did not use GCM in the paper. However, we
will now fit GCMs to the data for illustrative pur-
poses. We provide the data set and corresponding
codes of R, SPSS, and SAS in the Online Supporting

6Estimation results, including time-specific error variance (r2t ), might be
very sensitive to the presence of missing data especially when T is not
large enough. Investigating potential influences of missing data on
parameter estimates in the proposed GCM is beneficial for
future research.
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Material. There has been accumulating evidence in
educational psychology that students’ motivation at
schools declines over years, indicating the difficulty
in sustaining motivation over a long time frame (e.g.,
Fredricks & Eccles, 2002; Frenzel, Goetz, Pekrun, &
Watt, 2010). By applying GCM to the current data,
we can examine whether we can observe the same
pattern of decline even within a shorter time frame
(i.e., over a semester).

In this particular example, one plausible source of
time-specific errors is the content of the topics that
are covered right before the assessment points. It is
possible that participants’ interest would be generally
enhanced after they were taught a more interesting
topic, or the class was more engaging than usual. It is
also possible that participants’ interest would generally
drop when the content was dull. For the purpose of
examining the general longitudinal trend of interest
(i.e., “Does interest generally decline over time?”),
these factors are confounds when trying to estimate
true growth curves. Because these sources are consid-
ered to change randomly between timepoints and
influence all participants, it is worth considering the
application of the proposed GCM to the data (Step 1).

The results are summarized in Table 4. For illustra-
tive purposes, we fit separate GCMs without and with
time-specific errors. When we applied a standard
quadratic GCM (without time-specific errors) with
random participant intercepts and linear slopes
(time coding was anchored at the initial assessment
point; Biesanz et al., 2004), both linear and quadratic
effects exhibited statistical significance, ĉ1¼ 0.08,
tð1655Þ ¼ 2:59, p< .05; ĉ2 ¼ –0.01, tð1517Þ ¼ 3:21,
p< .05. These results indicate that students’ interest
level increased at the beginning but started to drop
off in the middle of the course.

However, this estimated growth curve may be an
artifact that simply reflects the differences in the con-
tent of the classes. If the order of the class content
had been different, the growth curve could also have

been completely different. To estimate the true growth
curve of motivation independently of the order or the
selection of class content or other class-specific effects,
we applied a GCM with time-specific errors (Step 2).
When we applied a quadratic GCM with time-specific
errors, time-specific errors were statistically significant
(log-likelihood ratio test; v2ð1Þ¼103.98, p< :05), and
standard errors for fixed effects substantially increased
(see Table 4; note that the parameter estimates
for fixed effects showed little change). As a result,
both linear and quadratic effects became nonsigni-
ficant, ĉ1 ¼ 0.07, tð8:99Þ ¼ 0:75, p¼.47; ĉ2¼–0.01,
tð9:00Þ ¼ 0:88, p¼ .40. The time-specific errors seem
particularly large (r̂2

t ¼ 0.15 and their relative propor-
tion to the total variance is 0.07, indicating qt > :07).
The large time-specific errors are likely to reflect the
differences in the content of the classes each week.
These findings indicate that the linear and quadratic
growth trajectory suggested in the first analysis may
have been produced by (the idiosyncratic feature of)
different learning materials for each class (i.e., time-
specific errors). Using the GCM with time-specific
errors, we did not find evidence for any general
increasing or decreasing trends in motivation.

To evaluate the validity of choosing the GCM with
time-specific errors, first and second serial correlations
are calculated as R1 ¼ �0:338 and R2 ¼ �0:161 (Step
3).7 These values are within the colored cells of
Appendix B for T¼ 10 and T¼ 20, indicating the
model is not misspecified in terms of the functional
form of growth curves (Step 4). This example nicely
demonstrates the utility of our proposed model to
estimate a growth curve after accounting for time-spe-
cific errors, and the potential danger of not including
time-specific errors in GCM as the conclusions about
the growth trajectory were substantially changed by
incorporating time-specific errors.

General discussion

In recent years, GCM has become one of the most
popular statistical models to analyze longitudinal data
for evaluating change in behavioral research. In line
with the growing interest in GCM, researchers have
also developed a variety of advanced models based on
GCM (Bollen & Curran, 2004; Curran & Bollen, 2001;
Grimm et al., 2011; Kenny & Zautra, 2001; McArdle,
2009; McArdle & Hamagami, 2001; Ram & Grimm,
2015), further expanding its application. Despite its

Table 4. GCM with and without time-specific errors for the
data from Tanaka and Murayama (2014).

Without
time-specific

errors

With
time-specific

errors

Fixed effects (standard errors)
Intercept (c0) 7.32 (0.09)� 7.29 (0.30)�
Slope (c1) 0.08 (0.03)� 0.09 (0.12)
Quadratic slope (c2) –0.01 (0.003)� –0.01 (0.01)

Random variance (proportion of variance)
Random participant intercept (r20) 0.59 (0.28)� 0.64 (0.29)�
Random participant slope (r21) 0.003 (0.00)� 0.003 (0.00)�
Random time intercept (r2t ) 0.15 (0.07)�

Residuals (r2e ) 1.54 (0.72) 1.41 (0.64)

Note. � p<.05.

7Estimates of the residuals r̂ t from t¼ 1 to t¼ 12 (i.e., r̂1 to r̂12) were
0.46, –0.60, –0.17, –0.01, 0.61, –0.13, 0.09, 0.04, –0.05, –0.41, 0.50, and
–0.07, respectively. This does not show any apparent systematic patterns.
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widespread application, the issue of time-specific
errors has rarely been given scrutiny in the literature
of GCM. Drawing on the literature of cross-classified
models (Rasbash & Browne, 2001; Raudenbush &
Bryk, 2002) and mixed-effects models (Baayen et al.,
2008; Judd et al., 2012; Murayama et al., 2014) which
allow researchers to incorporate more than one ran-
dom effect, our paper has demonstrated the critical
importance of considering time-specific errors in
GCM in the context of longitudinal data analysis.
Specifically, with analytical derivations and Monte
Carlo simulations, we have shown that ignoring even
small amounts of time-specific errors in GCM could
cause a considerable increase in type-1 error rates
while testing fixed effects parameters (e.g., coefficients
for the linear and quadratic terms), sometimes leading
to erroneous conclusions about the growth trajectory.
In contrast, the proposed GCMs with time-specific
errors closely kept type-1 errors to the nominal rates.

One critical aspect of our cautionary note about
time-specific errors is its generalizability. Although we
focused on GCMs with their simplest forms (i.e., lin-
ear or quadratic GCMs without covariates), the same
issue applies to more complex GCMs, like the models
assuming nonlinear growth curves (e.g., GCM with
exponential growth curves, Grimm et al., 2011). Using
SEM frameworks, researchers have proposed many
other models to model growth trajectories in longitu-
dinal data (e.g., dual-change score model, McArdle &
Hamagami, 2001; ALT, Bollen & Curran, 2004), but
as discussed earlier, all of these models can also be
susceptible to the inflation of type-1 error rates due to
the omission of time-specific errors. Our paper would
mark an important first step toward the consideration
of time-specific errors in longitudinal data analysis
in general.

We observed two major design factors that influ-
ence the underestimation of standard errors (when
time-specific errors are not incorporated in GCM):
the number of participants and timepoints. It is worth
noting that these two factors affect type-1 error rates
in opposite directions – larger sample sizes increase
type-1 error rates, whereas a larger number of time-
points decreases type-1 error rates (although the num-
ber of timepoints has less impact on the statistical test
of slope effects). When we do not incorporate time-
specific errors in GCM, the model takes random time
fluctuation in the data as part of the true growth tra-
jectory. Increasing the number of participants makes
it easy to statistically detect this “distorted” growth
curve, thus increasing type-1 error rates. On the other
hand, increasing the number of timepoints helps

time-specific errors cancel each other out, decreasing
type-1 error rates. Although the effects of these two
design factors on type-1 error rates have been exten-
sively documented in the literature in different con-
texts (Baayen et al., 2008; Judd et al., 2012; Murayama
et al., 2014), this point should be given substantial
attention in GCM because GCM is often applied to
large sample (N) longitudinal data, and longitudinal
data typically have a limited number of timepoints
(T). These typical characteristics of longitudinal data
suggest that the inflation of type-1 error rates may be
more problematic in the context of GCM, in compari-
son with other domains where caution has already
been given (Baayen et al., 2008; Judd et al., 2012;
Murayama et al., 2014).

We presented a specification of GCM with time-
specific errors, and this model effectively addressed
the inflation of type-1 error rates. But it is also
important to be aware of potential time-specific errors
and try to reduce them in advance when designing a
study (Steps 1 and 2 in the flowchart). These consid-
erations not only justify the use of the proposed GCM
but also provide researchers with good information
about whether the detected random error variance
reflects model misspecification or not when applying
the proposed GCM. In addition, if the correct GCM
with time-specific errors is applied to data, reducing
r2t effectively decreases the (correct) standard error
of fixed effect estimate (e.g., seðĉ1Þ), ensuring higher
statistical power. Indeed, qt (or r2t ) is always more
influential than q0 (or r20) on seðĉ1Þ in GCM (i.e.,
@seðĉ1Þ=@qt >@seðĉ1Þ=@q0: the Online Supporting
Materials include the mathematical proof of the rela-
tive impact of these two random effect components
on standard error). This indicates that efforts to
decrease r2t should help estimate fixed effects with
sufficient statistical power. In fact, as shown in several
examples in the literature using multilevel (mixed-
effects) model, when random effects other than
random participant effects (e.g., time-specific errors,
random cluster/group effects, and random stimulus
effects) are present, standard errors of fixed effect
estimates do not approach zero even with an infinite
sample size (N) (e.g., Usami, 2014; Westfall, Kenny &
Judd, 2014).

A limitation of the proposed model is that there is
inherent difficulty in precisely estimating time-specific
error variance when data have only a few timepoints.
A potentially informative source of time-specific
errors in actual data is the deviation of the observed
growth curve (i.e., the observed means) from the esti-
mated growth curve. With only a few timepoints, the
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estimated growth curve tends to be unstable, making
it very difficult to reliably estimate the time-specific
variance. Mathematically, the proposed GCM with
time-specific errors is identified when there are more
than two timepoints: as suggested in the Online
Supporting Materials, residual variance (r2e) can be
separately estimated from time-specific error variance
(r2t ) and random participant variance (e.g., r20).
However, as indicated in our simulation (see Table S1
in the Online Supporting Materials), we recommend
having at least five timepoints to obtain stable and
unbiased time-specific error variance and fixed effect
estimates.8 Having more timepoints is also advanta-
geous to detect possible model misspecification using
serial correlations (see Appendix B).

Mainly for reasons of efficient estimation, there are
several assumptions in the proposed GCM that are
not always reasonable (e.g., rt follows normal distribu-
tion). This limits the ability of our proposed GCM to
detect other types of time-specific errors. However, we
believe that the proposed GCM is an important step
toward other alternatives that might be more useful
and flexible in some situations. For example, using
robust or nonparametric regression is one possible
way to loosen this distributional assumption. To
assume heterogeneity of time-specific error variances
among individuals, mixture modeling or hierarchical
Bayes method can be implemented. Future research
should investigate the effectiveness of these
expanded models.

Model misspecification is another important issue
of the proposed model. Model misspecification is
problematic in statistical modeling in general, but this
is of particular importance in the proposed model
because time-specific errors can potentially absorb any
idiosyncratic deviations from an estimated growth
curve, potentially masking model misfit of the mean
structure. We have shown that serial correlations can
be a good tool to diagnose model misspecification,
but this procedure is not a perfect method in that it is
useful only when model misspecification comes from
the shape of the latent trajectory. Therefore, future
research should develop improved ways to detect
model misspecification. For example, in the literature
of econometrics on time-series data analysis, one of
the most popular methods to detect systematic resid-
uals is to use the Durbin–Watson statistic (Durbin &

Watson, 1950, 1951). Unfortunately, this statistic is
proposed in the context of time-series data analysis;
thus, it can only deal with longitudinal data from a
single case. However, the expansion of
Durbin–Watson statistic to multiple participants can
be another practical way to address the issue of model
misspecification. Wu et al. (2009) have also proposed
a way to evaluate model fit for GCM using mixed-
effects modeling framework, which can be another
useful tool to detect model misfit.

This article has laid out the practical importance
of being aware of time-specific errors in GCM.
However, like other studies discussing the import-
ance of specific random effects (e.g., random item
effects: Baayen et al., 2008), the actual magnitude of
time-specific errors present in the published
research is unknown. Future large-scale investiga-
tion should examine the potential magnitude and
prevalence of time-specific errors. Such an investi-
gation would, in turn, open up a new perspective in
longitudinal data analysis.
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Appendix A

Analysis codes to fit the proposed GCM with R

Mixed-effects models can be analyzed in R using the
lmer() function from the lme4 package (Bates et al.,
2011). Let Y, T, and T2 be the variables that represent the
dependent variable, time (anchored at the initial timepoint),
and the squared time (i.e., quadratic term). sub, and time are
the categorical variables representing participants and time.
These variables are used to specify random effects. We can
then fit the proposed model with a linear slope (Equations
(5)–(7) in the manuscript) using the following commands:

lmer Y � T þ T j sub
� � þ 1 j time

� �� �

A quadratic growth curve model with time-specific
errors (Equations (16)–(19) in the manuscript without u2j)
can be fit with the following code:

lmer Y � T þ T2 þ T j sub
� � þ 1 j time

� �� �

Note that the specified model above does not include ran-
dom quadratic effects of participants u2j (to be consistent with
the statistical simulations presented in the paper), but it is pos-
sible to add random participant effects to the model.

Statistical significance of time-specific errors can be
tested by comparing the models with and without time-spe-
cific errors (i.e., log-likelihood ratio test). This can be easily
done by fitting these two models separately with lmer()
and comparing them with anova().

The output includes the estimates for fixed effects and their
standard errors. As discussed in the Footnote 1 in the article,
in mixed-effects models, Wald test tends to provide less con-
servative p values for fixed effects (Baayen et al., 2008). One
possible approach is to test fixed effects using the t distribu-
tion with a scaled degree of freedom computed with the
Satterthwaite approximation. The t tests with Satterthwaite
approximation can be conducted by simply loading lmerTest
package. After loading the package, summary() provides
p values and degrees of freedom calculated for the t test based
on Satterthwaite approximation. The package also allows us to
perform the Kenward–Roger approximation.

Residuals required for calculating serial correlations can
be obtained as

coef lmer Y � Tþ Tjsub
� �þ 1jtime

� �� �� �
$time

coef lmer Y � TþT2þ Tjsub
� �þ 1jtime

� �� �� �
$time

for linear and quadratic growth curve models, respect-
ively. Analysis codes for the real data example with R,
SPSS, and SAS are also available in the Online
Supporting Materials.

20 S. USAMI AND K. MURAYAMA

http://dx.doi.org/10.1037/0022-3514.45.3.513
http://dx.doi.org/10.1037/0022-3514.45.3.513
https://doi.org/10.1198/108571102726
https://doi.org/10.1016/0304-4076(90)90095-B
https://doi.org/10.1007/s11121-011-0264-z
https://doi.org/10.3102/10769986023004323
https://doi.org/10.3758/s13428-013-0387-1
https://doi.org/10.3758/s13428-013-0387-1
https://doi.org/10.1006/ceps.1999.1015


Appendix B

Figure B1. Joint distribution of first and second order serial correlations (R1, R2) when linear GCM with time-specific errors are
correctly specified. Darker color indicates higher density.



Figure B2. Joint distribution of first and second order serial correlations (R1, R2) when quadratic GCM with time-specific errors are
correctly specified. Darker color indicates higher density.
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