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18 Abstract

19 Nanocellulose reinforced chitosan hydrogel was synthesized using chemical crosslinking method 

20 for the delivery of curcumin which is a poorly water-soluble drug. Curcumin  extracted from the 

21 dried rhizomes of Curcuma longa was incorporated to the hydrogel via in situ loading method. A 

22 nonionic surfactant (Tween 20) was incorporated into the hydrogel to improve the solubility of 

23 curcumin. After the gas foaming process, hydrogel showed large interconnected pore structures. 

24 The release studies in gastric medium showed that the cumulative release of curcumin increased 

25 from 0.21% ± 0.02% to 54.85% ± 0.77% with the increasing of Tween 20 concentration from 

26 0% to 30% (w/v) after 7.5 h. However, the entrapment efficiency percentage decreased with the 

27 addition of Tween 20. The gas foamed hydrogel showed higher initial burst release within the 

28 first 120 minutes compared to hydrogel formed at atmospheric condition. The solubility of 

29 curcumin would increase to 3.014 ± 0.041 mg/mL when the Tween 20 concentration increased 

30 to 3.2% (w/v) in simulated gastric medium. UV-visible spectra revealed that the drug retained 

31 its chemical activity after in vitro release. From these findings, it is believed that the nonionic 
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32 surfactant incorporated chitosan/nanocellulose hydrogel can provide a platform to overcome 

33 current problems associated with curcumin delivery.

34 Key words: Nanocellulose, chitosan, hydrogel, curcumin, Tween 20 

35

36

37 1. Introduction

38 Curcumin is a lipophilic polyphenol compound which is derived from rhizomes of Curcuma 

39 longa. Curcumin is usually a mixture of three curcuminoids (curcumin, demethocycurcumin, and 

40 bisdemethoxycurcumin) and volatile oil [1]. Among all former studies on antibacterial activity of 

41 curcumin,  the most promising result showed is its effectiveness in against Helicobacter pylori 

42 [2]. H. pylori is a microaerophilic bacterium which lives in the sticky mucus that lines 

43 the stomach and it has attracted great attention as a main cause of peptic ulcer disease. 

44 International agency for research on cancer has defined H. pylori as a group I carcinogenic agent 

45 of human gastric cancer [3]. Recent studies on the inhibition of H. pylori using curcumin  by 

46 Mahady, Pendland, Yun and Lu [4] showed that both of the curcumin and methanolic extract of 

47 turmeric rhizome has inhibited the growth of 19 different strains of H. pylori. Furthermore, De, 

48 Kundu, Swarnakar, Ramamurthy, Chowdhury, Nair and Mukhopadhyay [3] mentioned that   the  

49 minimum inhibitory concentration of curcumin for 23% strains of H. pylori was  about  10 

50 μg/mL and  for 58% strains, it was 15 μg/mL. Sometimes antibiotics are likely to be associated 

51 with adverse side effects on the host such as allergic reactions, hypersensitivity and immune-

52 suppression. Therefore, there is an increasing demand to develop an alternative antimicrobial 

53 drugs using medicinal plants for the treatments of infectious diseases [5].
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54 Although curcumin exerts various biological effects, its limited aqueous solubility and rapid 

55 presystemic metabolism has restricted its bioavailability. Therefore, the advanced drug delivery 

56 systems like nanoparticles, liposomes, micellar formulations, cyclodextrin inclusion complexes, 

57 microemulsions and different hydrogel based delivery systems have been developed to 

58 circumvent their bioavailability issues [6-8]. Due to the variations on pH along the 

59 gastrointestinal tract, the stimuli responsive (e.g.: pH sensitive) hydrogels have been used to 

60 deliver various types of drugs to the different locations of the gastro intestinal tract [6-8]. In this 

61 study, nanocellulose reinforced chitosan hydrogel was used as a carrier for drug delivery of 

62 curcumin. From our previous study [9-11], we observed an improvement of mechanical 

63 properties of the biopolymer based composite and hydrogel with physical reinforcement of 

64 nanocellulose into the biopolymer matrix. Further, it showed that the swelling characteristics of 

65 the hydrogel has improved with the addition of low concentrations of nanocellulose. The system 

66 has also exerted the highest swelling properties in acidic medium [10]. It is also observed that the 

67 chitosan hydrogel reinforced with 0.5% CNC has successfully achieved the highest swelling 

68 properties and cumulative release of curcumin [8,10]. Therefore, in this study, 0.5% CNC-

69 chitosan hydrogel formulation was selected for further improvement of drug delivery properties 

70 of the hydrogel. Previous results [8,10] also showed that the percentage of curcumin 

71 encapsulation and the amount of curcumin release increased in the gas foam hydrogel (due to the 

72 formation of large interconnected pore structures). However, poor solubility of curcumin has 

73 caused less concentrations of released drug in simulated gastric medium [8]. Therefore, a 

74 nonionic surfactant (Tween 20) has been incorporated into the hydrogel as a solubilizing agent 

75 for curcumin in this study. 
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76 Surfactants can improve the solubility of some poorly soluble drugs. Tween surfactants contain 

77 hydrophilic ethylene glycol head and a hydrophobic alkyl chain [12]. The commonly used 

78 Tween are Tween 20, 40, 60 and 80. They possess same hydrophilic group with different length 

79 of alkyl chains. The alkyl chain length will influence the hydrophile–lipophile balance (HLB) 

80 value of the surfactant, which in turn directly influences the entrapment efficiency of the drug 

81 [13]. Low HLB value corresponds to high hydrophobicity. Higher HLB value indicates   the 

82 more water soluble the surfactant [14]. Tween 20 with HLB value of 16.7 is more hydrophilic in 

83 nature compared to other Tween surfactants [15]. Ratanajiajaroen, Watthanaphanit, Tamura, 

84 Tokura and Rujiravanit [16] reported that the addition of 2% (v/v) of Tween 20 has increased the 

85 solubility of curcumin from 11 ng/mL to 0.767 mg/mL in acetate buffer (pH 5.5). In addition, 

86 they obtained higher release rate of curcumin from chitin beads as the amount of Tween 20 

87 increased. O’Toole, Henderson, Soucy, Fasciotto, Hoblitzell, Keynton, Ehringer and Gobin [17] 

88 observed that the curcumin can be released completely from the submicrometer spray-dried 

89 chitosan/Tween 20 particles in both 1% acetic acid and phosphate buffered saline solutions over 

90 a 2 h period. Furthermore, the research works by Petchsomrit, Sermkaew and Wiwattanapatapee 

91 [18] also reported that the percentage of curcumin release increased with increasing the Tween 

92 80 concentration in oil entrapped alginate beads. Their results showed that the cumulative drug 

93 release increased up to 70% with the incorporation of 25% (w/v) of Tween 80. 

94 Previous cytotoxicity studies revealed that nonionic surfactant such as Tween has lower toxic 

95 effect than cationic, anionic and amphoteric ones [19]. Due to its less cytotoxicity properties, the 

96 nonionic surfactant was selected for this study. Besides that, surfactants have a profound effect 

97 on the release rate of the drug from the encapsulated matrix. Using proper concentration of 

98 surfactant and a suitable HLB value, the cumulative release and rate of release of the drug can be 
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99 controlled. According to the previous studies, the surfactants with lower HLB values such as 

100 Tween 80 would cause lower release rates of hydrophobic drugs. This is because the surfactants 

101 having lower HLB values are more lipophilic and less water soluble. But with higher HLB 

102 values, hydrophobic drug release rate will increase as these surfactants are more hydrophilic and 

103 water soluble [20]. Tween 20 has a high HLB value of 16.7 and this will help to improve the 

104 release of hydrophobic drug to a desired level. Tween 80 had been successfully applied in many 

105 hydrophobic drug delivery systems [21-25]. However, the investigations on polysorbate-chitosan 

106 association by Picone and Cunha [26] has shown that the longer hydrophobic polysorbate tail 

107 length of Tween 80 has made it difficult to form homogeneous association with chitosan. Their 

108 further investigations had found that the shorter hydrophobic tail length of Tween 20 was more 

109 appropriated to form mixed surfactant–chitosan polymer systems. So, Tween 20 which is a less 

110 cytotoxic, nonionic, with shorter hydrophobic tail length surfactant was used to improve the drug 

111 release of curcumin from nanocellulose reinforced chitosan hydrogel matrix in this study.

112 The objective of this study was to improve the bioavailability of less water-soluble curcumin by 

113 incorporating a nonionic surfactant (Tween 20) to nanocellulose reinforced chitosan hydrogel. 

114 Curcumin extracted from dried rhizomes of Curcuma longa and Tween 20 was incorporated to 

115 the hydrogel via in situ loading method. From our previous study, a large extent of chitosan 

116 matrix swelling was found to occur in acidic medium [10]. Therefore, the drug molecules are 

117 expected to diffuse extensively through the swollen gel into the exterior medium at gastric pH 

118 levels. Nonionic surfactant will further facilitate dissolution of the drug by partitioning the drug 

119 into the aqueous phase of gastric fluid. Based on the results of this study, it is expected that the 

120 nanocellulose reinforced chitosan hydrogel/Tween 20 drug delivery system will provide a 
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121 platform to overcome poor bioavailability of curcumin to yield its broad range of therapeutic 

122 benefits.

123 2. Materials and Methods

124 2.1. Materials

125 Chitosan with medium molecular weight (viscosity 200–500 cP, 0.5% acetic acid at 20 °C), 

126 acetic acid glacial grade AR, sodium chloride, hydrochloric acid, methanol and sulfuric acid 

127 were purchased from Friendemann Schmidt Chemicals (Parkwood, Australia). The drug 

128 curcumin was provided by HIMEDIA laboratories Pvt Ltd. (Mumbai, India). Glutaraldehyde 

129 25% (for crosslinking of chitosan) was obtained from Thermo Fisher Scientific Inc. (Victoria, 

130 Australia). Microcrystalline cellulose, Tween 20 and phosphate-buffered saline were supplied by 

131 R&M chemicals (Essex, UK).

132 2.2. Research Methodology

133 2.2.1. Extraction of curcumin from turmeric

134 Curcumin was extracted from rhizomes of Curcuma longa following the method proposed 

135 elsewhere [5]. Dried rhizomes were crushed in a mortar and pestle. Crushed rhizomes were 

136 soaked in methanol for 3 days and then filtered with Whatman filter paper (pore size 0.2 µm). 

137 After that, filtrate was poured into a petri plate and the solvent was evaporated under vacuum 

138 condition to obtain semi-dry oily mass. 

139 2.2.2. Preparation of curcumin loaded chitosan/nanocellulose/Tween20 hydrogel

140 Cellulose nanocrystals (CNC) were prepared from microcrystalline cellulose by sulfuric acid 

141 hydrolysis method reported in our previous study [10]. Chitosan was dissolved in 5% (v/v) 
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142 aqueous acetic acid solution at room temperature and left overnight in the shaker with the 

143 rotation rate of 250 rpm and then filtered through the filter paper to remove any insoluble 

144 matters. To prepare curcumin loaded chitosan/nanocellulose/Tween 20 hydrogel, nanocellulose, 

145 extracted curcumin and Tween 20 were added to chitosan solution and stirred (250 rpm) for one 

146 hour. After that glutaraldehyde was added and stirred (350 rpm) for 1 min at room temperature. 

147 The mixture was then poured into the mold and the hydrogel was allowed to solidify at room 

148 temperature for 24 h. 

149 Table 1.

150 Table 1: Composition of curcumin entrapped chitosan/nanocellulose/Tween 20 hydrogel 

151

152 2.2.3. CO2 gas foaming of curcumin entrapped chitosan/nanocellulose/Tween 20 hydrogels

Formulation Chitosan

(w/v)%

Nanocellulose

(w/v)%

Tween 20

(w/v)%

Glutaraldehyde

(v/v)%

Curcumin

(mg per 2.5 g of 

hydrogel disc)

CH/CNC/ TW-0% 2 0.5 0 0.2 1.5

CH/CNC/ TW-5% 2 0.5 5 0.2 1.5

CH/CNC/ TW-10% 2 0.5 10 0.2 1.5

CH/CNC/ TW-15% 2 0.5 15 0.2 1.5

CH/CNC/ TW-20% 2 0.5 20 0.2 1.5

CH/CNC/ TW-25% 2 0.5 25 0.2 1.5

CH/CNC/ TW-30% 2 0.5 30 0.2 1.5
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153 After mixing the CNC, drug, Tween 20 and crosslinker with chitosan solution as described 

154 above, the mixture was poured into the mold and placed inside the gas foaming apparatus. Then 

155 the apparatus was pressurized with CO2 to predetermined pressure (50 bar). The pressure was 

156 maintained to allow for CO2 saturation and chitosan crosslinking for 48 h. The system was then 

157 depressurized at 1 bar/min to result in the generation of numerous gas bubbles which induce gas 

158 foaming.

159

160

161

162 2.3. Characterization

163 2.3.1. Characterization of curcumin

164 UV-visible spectra of both curcumin (HIMEDIA Co.) and curcumin extracted from turmeric 

165 were obtained by scanning the drug solutions within the range of 350-800 nm using UV-visible 

166 spectrophotometer (Shimadzu, Kyoto, Japan). FTIR studies on curcumin purchased from 

167 HIMEDIA Co. and curcumin extracted from turmeric, were carried out using PerkinElmer 

168 spectrum 400 FTIR spectrometer over the range 3000–500 cm–1.

169

170 2.3.2. Characterization of the curcumin entrapped chitosan/nanocellulose/Tween 20 hydrogels

171 2.3.2.1. FTIR analysis
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172 FTIR studies of raw materials and various composition of  hydrogel composites  were carried out 

173 by using PerkinElmer spectrum 400 FTIR spectrometer over the range 3000–500 cm–1.

174 2.3.2.2. Morphology Studies

175 The morphology of the hydrogels was examined using field emission scanning electron 

176 microscope (FE-SEM, SU8220). Hydrogels were freeze dried using freeze dryer to remove water 

177 without disturbing the morphology. The hydrogels were then coated with platinum in order to 

178 prevent the charging effects at an accelerating voltage of 5 kV.  

179

180 2.4.  Drug delivery studies

181 2.4.1. Estimation procedure of curcumin by UV-Vis spectrophotometer

182 The absorption maxima (λmax) for curcumin was determined by scanning the drug solution within 

183 the range of 350-800 nm using UV-Vis spectrophotometer. It was found that the drug exhibited 

184 λmax at 427 nm in both of the distilled water and simulated gastric medium as shown in Fig. 1a 

185 and Fig. 2a, respectively. The concentration of curcumin extracted from turmeric was determined 

186 by the standard calibration curve (λmax at 427 nm) prepared using standard solutions of curcumin 

187 (HIMEDIA Co). 

188 The concentration of curcumin present in distilled water was determined from the calibration 

189 curve (Fig. 1b) prepared from standard solutions of curcumin (HIMEDIA Co.), dissolved in 

190 methanol and diluted by distilled water.

191 Fig. 1. a) UV–Vis absorbance spectrum of curcumin in distilled water and b) calibration curve of 

192 curcumin. 
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193 The concentration of curcumin present in simulated gastric fluid was determined from the 

194 calibration curve (Fig. 2b) prepared from standard solutions of curcumin (HIMEDIA Co.), 

195 dissolved in methanol and diluted by simulated gastric fluid [27, 28].

196 Fig. 2. a) UV–Vis absorbance spectrum of curcumin in simulated gastric medium and b) 

197 calibration curve of curcumin. 

198 2.4.2. Drug entrapment efficiency

199 Disc shape hydrogel (1.80 cm diameter and 1.20 cm height) was immersed in 30 mL ethanol for 

200 24 h. Then, the solution was filtered and diluted suitably to measure the absorbance, from which 

201 the concentration of drug was calculated using the standard calibration data. Each formulation 

202 was analyzed in triplicate and average values were taken. The drug entrapment efficiency was 

203 calculated based on the ratio of actual amount of drug present in the hydrogel to the initial 

204 amount of drug contained in the hydrogel by using Equation (1).

205                                (1)Entrapment efficiency =
Actual amount of curcumin in hydrogel

Initial amount of curcumin contained in the hydrogel

206 2.4.3. Drug release

207 In vitro drug release from hydrogel networks with different Tween 20 concentrations was 

208 investigated in simulated gastric fluid (simulated gastric fluid was prepared by dissolving 2 g 

209 NaCl in 7.0 mL HCl and water up to 1000 mL) at 37 °C [29]. In order to study the release, 3 mL 

210 aliquot was withdrawn at predetermined time intervals and returned it back to the solution after 

211 the analysis. The concentration of released curcumin was determined by the calibration curve 

212 (Fig. 2b) prepared using the curcumin (HIMEDIA Co.) in simulated gastric fluid. The 

213 experiments were performed triplicates and average values were taken.
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214 2.4.4. Drug activity

215 In drug delivery systems, the chemical and biological activity of drug after release into the body 

216 is the most critical parameter. The drug activity of curcumin before loading and after release 

217 could be studied by using UV-Vis spectrophotometer [30]. UV- visible spectra of pure drug and 

218 the drug released from the hydrogel formed at atmospheric condition were obtained by scanning 

219 the solutions within the range of 350-800 nm using UV-visible spectrophotometer. Drug activity 

220 was determined through comparison between the spectra (the absorption maxima (λmax)) of pure 

221 drug and released drug.

222 2.5. Curcumin solubility studies

223 To determine a saturated concentration of curcumin in simulated gastric fluid, an excess amount 

224 of curcumin (extracted from turmeric) was added in to 30 mL of simulated gastric fluid with 

225 different concentrations of Tween 20 (0.8%, 1.6%, 2.4%, 3.2%, 4%, 5.6% (w/v)). Then, the 

226 mixtures were stirred (350 rpm) using magnetic stirrer at 37 °C for 12h. Samples were covered to 

227 avoid exposition to the light. After that, the solutions were centrifuged at 10,000 rpm for 10 min, 

228 supernatant was decanted and the dissolved curcumin was determined using the standard 

229 calibration curve prepared using the curcumin (HIMEDIA Co.) in simulated gastric fluid (Fig. 

230 2b).

231 3. Results and discussion

232 3.1 Characterization of curcumin
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233 As shown in Fig. 3, the UV-visible spectra of curcumin (HIMEDIA Co.) and curcumin extracted 

234 from turmeric were obtained by scanning the drug solutions within the range of 350-800 nm 

235 using UV-visible spectrophotometer. 

236 Fig. 3. UV-visible spectra of curcumin extracted from turmeric powder and curcumin 

237 (HIMEDIA Co.).

238 The UV- visible spectra of curcumin represent the transition between the electronic energy 

239 levels. The maximum absorption wavelength of a compound is a measure of the difference 

240 between energy levels of the orbitals concerned. An isolated double bond/lone pair produces 

241 strong absorption maximum around 190 nm, whereas the presence of conjugation decreases the 

242 energy separation between orbitals and give rise to the absorption at longer wavelengths. In 

243 organic solvents enolization of diketone of curcumin conjugates between the π-electron clouds of 

244 the two vinylguaiacol parts leading to a common conjugated chromophore, resulted in decrease 

245 in energy. As a result of low-energy π- π* excitation of that chromophore, curcumin in organic 

246 solvents (primarily in methanol or ethanol) typically absorbs around ~420 nm and appears in 

247 yellow color [31]. 

248 The FTIR spectra of curcumin (HIMEDIA Co.) and curcumin derived from turmeric powder are 

249 shown in Fig. 4. The differences in the 3100-3600 cm-1 range may be attributed to the OH 

250 stretching of the methanol molecules adsorbed in the curcumin derived from turmeric powder 

251 [32]. The appearance of strong peak at 1582 cm-1 and no peak at 1317 cm-1 in the derived 

252 curcumin as well as various displacements of the peaks may be due to different interactions 

253 between functional groups of curcumin. As shown in Fig. 5, the chemical composition of the 
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254 extracted curcumin is a mixture of curcuminoids (curcumin, demethoxycurcumin and bis-

255 demethoxycurcumin). 

256 Fig. 4. FTIR spectra of curcumin (HIMEDIA Co.) and curcumin derived from turmeric.

257 Fig. 5. Curcuminoids present in turmeric powder.

258 The IR spectrum of curcumin derived from turmeric is more similar to the IR spectrum of 

259 crystalline curcumin derived from turmeric powder (extracted using actone/ethanol/methanol), 

260 which was reported in previous studies [32, 33]. A broad peak at 3380 cm-1 indicates the 

261 presence of –OH group. In the highest frequency region, phenolic vibrations of the curcumin has 

262 theoretical frequency at 3595 cm-1, but in practice this band could be shifted downwards due to 

263 the intramolecular and intermolecular hydrogen bonds [33, 34]. The appearance of bands with 

264 low intensity in the region from 2700-3000 cm-1 can be attributed to the C-H stretches [33]. The 

265 highest frequency bands observed within 2700-3000 cm-1 region are assigned to the aromatic C 

266 ̶ H stretches, while the lower frequency bands are attributed to the methyl group motions [34]. 

267 The peak at 1679 cm-1 appeared due to the C=O vibrations [33]. The band at 1623 cm-1 can be 

268 assigned to the ν(C=C) of the benzene ring [35]. The strong peak at 1582 cm-1 has a 

269 predominantly mixed (C=C) and (C=O) characteristic. The most prominent band in the IR 

270 spectrum is at 1509 cm–1. This can be attributed to highly mixed vibrations (C=O, CC10C, 

271 CC=O) [33]. The peaks at 1430 cm-1 appeared due to the asymmetric angular deformation 

272 vibrations of methyl groups [34]. The observed bands at 1377 cm–1 and 1207 cm–1 can be 

273 attributed to ν(C-O) and δ(C=C-H) of interring chain, respectively. One band and one shoulder at 

274 1270/1238 cm–1 and peak at 1167 cm–1 are attributed to the in-plane deformation vibrations of 

275 (CCH) of phenyl rings and skeletal in-plane deformations, respectively.  A prominent band at 
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276 1124 cm-1 is assigned also to the (C-O-C) vibrations [33]. The peak at 1031 cm-1 appeared due to 

277 C-O stretching coupling with the adjacent C-C stretching vibrations [32]. The bands at 964 cm-1 

278 and 815 cm-1 assigned to the ν(C-O) vibrations. The IR bands at 815 cm-1 and 720 cm-1 belongs 

279 to the ν(C-H) out of plane vibration of the aromatic ring [34]. In the range of 700-500 cm–1, we 

280 could see deformation vibrations of both benzene rings and the out of plane vibrations of both 

281 OH groups, which are at 607 cm–1 and 546 cm–1 [33].

282

283

284

285 3.2. Characterization of curcumin entrapped chitosan/nanocellulose/Tween 20 hydrogels

286 3.2.1. FTIR analysis

287 Fig. 6 displays the FTIR spectra of curcumin (extracted), Tween 20, and curcumin/Tween 20 

288 incorporated chitosan based hydrogel. From the spectrum of curcumin/Tween 20 incorporated 

289 chitosan hydrogel, it can be seen that the bands corresponded to the functional groups of Tween 

290 20 are more prominent together with the bands assigned to the functional groups of the hydrogel. 

291 The sharper peaks related to the functional groups of curcumin are super imposed by the broader 

292 peaks of Tween 20 and chitosan hydrogel [35] (in the spectrum of curcumin/Tween 20 

293 incorporated hydrogel). Also, the drug concentration loaded to the hydrogel is very low when 

294 compared to Tween 20 concentration. Therefore, the peaks related to Tween 20 are more 

295 prominent in the spectrum of curcumin/Tween 20 incorporated hydrogel. However, there are no 

296 new peaks appeared in the spectrum of curcumin/Tween 20 incorporated hydrogel.
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297 Fig. 6. FTIR spectra of curcumin (extracted), Tween 20, nanocellulose reinforced chitosan 

298 hydrogel and curcumin/Tween 20 incorporated hydrogel.

299 3.2.2. Morphology studies

300 The morphology of 0.5% CNC-chitosan hydrogels formed at atmospheric condition and high-

301 pressure conditions (50 bar) was examined using field emission scanning electron microscope. 

302 The micrographs of the cross section of hydrogels are shown in Fig.7. The micrographs clearly 

303 show the porous network of the gels. As shown in Fig. 7a, hydrogel formed at atmospheric 

304 condition showed closed pore structures with around 100-300 µm pore size. After the gas 

305 foaming, the pore size of the hydrogel significantly increased (more than 10-fold higher 

306 compared to the hydrogel formed at atmospheric condition) with the formation of interconnected 

307 pore network structures (Fig. 7b). 

308 Fig. 7. Micrographs of a) hydrogel formed at atmospheric condition and b) gas foamed hydrogel

309 Skin layer formation and poor pore interconnectivity are common issues in porous fabrication 

310 techniques. However, these can be overcome by fabrication of polymer matrices using gas 

311 foaming method [37]. The porous structure is generated when the discontinuous dispersed gas 

312 phase is removed from the continuous phase of polymer. These polymeric foams have low 

313 kinetic stability due to the significant difference between the densities of the gas and liquid. The 

314 liquid phase tends to move down while the gas tends to move upwards, which leads to the 

315 formation of interconnected porous structure with highly porous top surface [38]. 

316 3.3  Drug delivery studies

317 3.3.1. Entrapment efficiency 
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318 The drug entrapment efficiency of the hydrogel with different concentrations of surfactant was 

319 studied and the results are shown in Fig. 8. To form curcumin loaded hydrogel, 1.5 mg of 

320 curcumin was entrapped in 2.50 g of hydrogel (disc diameter 1.8 cm and height 1.2 cm). The 

321 hydrogel with 0% (w/v) surfactant revealed the highest drug entrapment efficiency value of 

322 92.09% ± 0.15%, whereas hydrogel containing 30% (w/v) Tween 20 demonstrated the least 

323 value of 70.21% ± 0.26%. The percentage entrapment efficiency decreased significantly from 

324 92.09% ± 0.15% to 77.92% ± 0.70% with the addition of 5% (w/v) surfactant to the hydrogel. 

325 After that, it slightly decreased from 77.92% ± 0.70% to 70.21% ± 0.26% with increasing the 

326 surfactant concentration from 5% to 30% (w/v). 

327 Fig. 8. Entrapment efficiency of curcumin for gas foamed hydrogel and hydrogel formed at 

328 atmospheric condition.

329 Similar results were obtained by Petchsomrit, Sermkaew and Wiwattanapatapee [18] for oil 

330 entrapped alginate bead formulation of curcumin. Tween 80 was used as the surfactant for 

331 their study and the entrapment efficiency of curcumin was found to decrease from 73.69% ± 

332 2.04% to 40.28% ± 0.23% with increasing the Tween 80 content from 0% to 30%. From the 

333 study of variability of (poly lactic-co-glycolic acid) PLGA nanoparticles quality of protein 

334 loaded PLGA nanoparticles by Plackett–Burman design, Rahman, Zidan, Habib and Khan 

335 [39] described that the decreasing of the entrapment efficiency with increasing the surfactant is 

336 due  to the fact that the higher concentration of the emulsifier increases the partition of the drug 

337 from internal to external phase due to the increased solubility of the drug in the external phase. In 

338 addition, the alkyl chain length influences the hydrophile–lipophile balance (HLB) value of the 

339 surfactant, which in turn directly affects the drug entrapment efficiency [13]. Non-ionic 

340 surfactants have hydrophilic and lipophilic properties and are characterized by its’ hydrophile–
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341 lipophile balance values. Low HLB value corresponds to high hydrophobicity. The higher HLB 

342 value the more water soluble the surfactant [40]. The lower the HLB of the surfactant the higher 

343 will be the drug entrapment efficiency as in the case of niosomes prepared using Span 60 (HLB 

344 = 4.7), compared with Span 40 with a higher HLB of 6.7 [41-43].  The HLB value of Tween 20 

345 is 16.7. The higher HLB value represents higher hydrophilic property. According to Dinarvand, 

346 Moghadam, Sheikhi and Atyabi [44], the higher internal aqueous volume may increase the 

347 volume of water droplets in the hydrophobic phase. This will promote more contact and 

348 exchange (drug loss) to the external water phase. Polymer phase acts as a diffusion barrier 

349 against movement of drug molecules between the internal and external aqueous phases; the 

350 thickness of this layer decreases when the internal aqueous volume is increased. This may lead to 

351 the reduction of drug entrapment efficiency. 

352 In this study, we have compared the drug delivery behavior of the gas foamed hydrogel with the 

353 hydrogel prepared at atmospheric condition. As can be seen from the Fig. 8, the entrapment 

354 efficiency of curcumin in gas foamed hydrogel is slightly lower than that of the hydrogel formed 

355 at atmospheric condition. This result is different compared to our previous study [8], which has 

356 reported that the gas foamed hydrogel has higher drug entrapment efficiency compared to 

357 hydrogel formed in atmospheric condition. This may be caused by the different drug loading 

358 methods that have been applied in these two different studies. In previous study [8], the drug 

359 was encapsulated by post-loading method. However, in this study we are applying in situ 

360 loading method for the comparative study between the hydrogels prepared under gas foamed 

361 and atmospheric condition. In situ loading method is used in this study to incorporate both of 

362 the surfactant and the drug to the hydrogel matrix. This in situ loading method does not 

363 perform the same as the previous post-loading method [44]. From the studies on the effects of 
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364 different drug loading methods on drug delivery, Wong and Dodou [45] reported that the drug is 

365 embedded within polymeric network when in situ loaded, instead of being deposited in 

366 microporous spaces of the hydrogel when post loaded method was applied. As can be seen 

367 from Fig. 7, the hydrogel prepared at atmospheric condition composed of small pore 

368 structures when compared to the gas foamed hydrogel. The decrease of pore size of the 

369 hydrogel simply correlated with the higher hydrogel density, which contributing to more 

370 embedded drug in the hydrogel matrix and higher encapsulation efficiency. Therefore, in this 

371 study, the hydrogel prepared at atmospheric condition showed higher encapsulation efficiency 

372 compared to gas foamed hydrogel. Petchsomrit, Sermkaew and Wiwattanapatapee [6] also 

373 reported that the higher hydrogel density contributed to the increase of curcumin content on in 

374 situ drug loaded, alginate-based composite sponge.

375 From the comparison between post loaded formulations from our previous study [8] and in situ 

376 loaded formulations used in this study, it is found that the in situ loading method provides better 

377 drug entrapment efficiency within hydrogel network for all the hydrogel prepared under gas 

378 foamed and atmospheric condition due to the specific interactions between polymer and drug 

379 molecules [45].  

380 3.3.2. Drug release 

381 3.3.2.1. Drug release from the hydrogel formed at atmospheric condition

382 The oral bioavailability of a drug relies upon on its solubility and/or dissolution rate, and 

383 dissolution can be the rate determining step for the onset of drug action. Hence there are 

384 numerous approaches available and reported in literature to enhance dissolution and drug 

385 bioavailability of poorly water-soluble drugs [7-10, 46-47]. The use of surfactant to improve the 
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386 solubility of hydrophobic/lipophilic drugs is a common practice in the industry and it has been 

387 extensively studied by many researchers [46-47]. In this study, curcumin and Tween 20 were 

388 incorporated into hydrogel matrix via in-situ loading method to allow hydrogel network 

389 formulation and drug encapsulation are accomplished simultaneously. 

390 Fig. 9. Curcumin release from the hydrogels containing different concentrations of Tween 20.

391 The hydrogel discs (1.2 cm height and 1.8 cm diameter) containing 1.5 mg of drug with different 

392 concentrations of Tween 20 (5%, 10%, 15%, 20%, 25% and 30% (w/v)) were immersed in 

393 simulated gastric fluid and drug release was monitored over a period of 7.5 h. Since the solubility 

394 of curcumin is very low [46], a large volume of the releasing medium was used to maintain a 

395 good sink condition [47]. As can be seen in Fig. 9, the cumulative release of curcumin increased 

396 from 0.21% ± 0.02% to 54.85% ± 0.77% with increasing the Tween 20 concentration from 0% 

397 to 30% (w/v), after 7.5 h immersion. Release studies in the presence of Tween 20 show a burst 

398 release profile for curcumin, up to 20% of curcumin released in the first 60 min of the 

399 experiment. As shown in Fig. 9, with the increase of Tween 20 concentration from 5-30% (w/v), 

400 at a fixed drug concentration, the amount of drug release increased from 31.82% ± 0.75% to 

401 54.85% ± 0.77%. This is  almost 1.7-fold increase after 7.5 h. During the time of monitoring, the 

402 formulations containing lower amount of Tween 20 produced an incomplete solubilization of 

403 curcumin, whereas complete solubilization showed at high concentration of Tween 20. 

404 Therefore, larger amount of surfactant produced a higher drug release. Ratanajiajaroen and 

405 Ohshima [7] showed that the solubility of curcumin increased from 11 mg/mL to 0.767 mg/mL 

406 with Tween 20, at a concentration of 2% (v/v) in acetate buffer (pH 5.5). In addition, they found 

407 that the drug release rate increased from chitin beads as the Tween 20 concentration increased. 

408 O’Toole, Henderson, Soucy, Fasciotto, Hoblitzell, Keynton, Ehringer and Gobin [17] 
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409 investigated that the curcumin saturation point increased linearly with Tween 20 concentration 

410 throughout the range used in their experiments with an upper limit of 294 μM curcumin with 

411 0.05% (w/v) Tween 20. Further, they reported that curcumin can be released completely from the 

412 submicrometer spray-dried chitosan/Tween 20 particles in both 1% acetic acid and phosphate 

413 buffered saline solutions over a 2 h period.

414 Moreover, in terms of therapeutic applications for abdominal disorders, the doses of curcumin up 

415 to the healing levels should also been concerned. Considering the strong association of H. pylori 

416 and gastric cancer the authors of the study by Mahady, Pendland, Yun and Lu [4] showed that 

417 both curcumin and methanolic extract of turmeric rhizome inhibited the growth of 19 different 

418 strains of H. pylori. They reported that curcumin inhibited the growth of all the H.pylori strains 

419 by 100% at a concentration of 12.5 μg/mL with a minimum inhibitory concentration from 6.25-

420 12.5 μg/mL. De, Kundu, Swarnakar, Ramamurthy, Chowdhury, Nair and Mukhopadhyay [3] 

421 investigated that the minimum inhibitory concentration of curcumin for H.pylori strains ranged 

422 from 5 μg/mL to 50 μg/mL, and the majority of the strains (81%) showed a minimum inhibitory 

423 concentration of either 10 μg/mL (23%) or 15 μg/mL (58%). In addition, curcumin is able to 

424 suppress the proliferation and survival of cancer cells by directly or indirectly binding to various 

425 cellular molecular targets [48]. Liu, Xiang, Wu and Wang [49] reported that curcumin inhibited 

426 the growth of gastric cancer cells in a concentration and a time-dependent manner. Their studies 

427 showed that as compared to untreated cancer cells, the cell proliferation was significantly 

428 inhibited in the curcumin treated samples after 48 h of treatment with 50 µM curcumin. In our 

429 study, the maximum concentration of curcumin released in the simulated gastric fluid was 3.98 

430 μg/mL after 7.5 h. Even so, we found that the drug release of the hydrogel increased (≥10 

431 μg/mL) with increasing the initial concentration of the drug which incorporated to the hydrogel 
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432 (for same Tween 20 concentration). However, with increasing the initial amount of drug, the 

433 percentage release of drug dramatically decreased during the period of monitoring. Therefore, 

434 1.5 mg of drug per hydrogel disc (1.2 cm height and 1.8 cm diameter) was used for the 

435 encapsulation in this study. However, the initial drug loading amount to the hydrogel can be 

436 varied in order to get the drug release to the extent desired (to reach the therapeutic levels) or to 

437 obtain the minimum inhibitory concentration. As a summary from the results obtained from drug 

438 release studies, the nanocellulose reinforced chitosan/Tween 20 hydrogel can be suggested as a 

439 promising candidate for carrying curcumin for the absorption of stomach and upper intestinal 

440 tract.

441 3.3.2.2. Drug release from gas foamed hydrogel

442 Fig. 7b has clearly illustrates that nanocellulose reinforced chitosan hydrogel fabricated using 

443 carbon dioxide gas foaming process possess large-scale macroporous with wide interconnected 

444 pores and large accessible surface area. Due to the large pore size of hydrogels, a rapid initial 

445 burst release of drug was typically observed as observed in previous study [8]. 

446 Fig. 10. Curcumin release from gas foamed hydrogel and hydrogels formed at atmospheric 

447 condition with different concentrations of Tween 20.

448 As shown in Fig. 10, the concentration of released drug from gas foamed hydrogel was greater 

449 when compared to the hydrogel formed at atmospheric condition within the first 120 minutes. 

450 The increased pore size and pore interconnectivity of gas foamed hydrogel act as a capillary 

451 system causing a rapid diffusion of drug solution through the hydrogel matrix [50]. At 60 

452 minutes, For the hydrogel containing 5% (w/v) Tween 20, the cumulative release of drug at 

453 60 minutes was 8.51% ± 0.61% and 7.95% ± 0.39% for gas foamed hydrogel and hydrogel 
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454 formed at atmospheric condition respectively. While, the cumulative release of drug at 60 

455 minutes was 21.58% ± 0.32% and 20.87% ± 0.46% respectively for hydrogel containing 30% 

456 (w/v) Tween 20 prepared under gas foam and at atmospheric condition. After the burst 

457 release, the rate of drug release of both types of hydrogels become almost similar.

458 From our previous study [8], the gas foamed hydrogel showed higher drug release when 

459 compared to the hydrogel formed at atmospheric condition. However, gas foamed hydrogel 

460 did not show any improvement of the drug release over the hydrogel formed at atmospheric 

461 condition in this study. Kawase, Michibayashi, Nakashima, Kurikawa, Yagi and Mizoguchi 

462 [51] reported that the permeation rates of the drug from post-loaded formulations are 

463 generally more rapid compared to the in situ loaded ones. This may be due to drug being 

464 deposited in microporous spaces of the hydrogel when post-loaded instead of being embedded 

465 within polymeric network when loaded in situ. In our previous study by applying post-loading 

466 method, gas foamed hydrogel with large and interconnected pore structures has allowed the 

467 drug deposited in the pore spaces of the hydrogel to be easily transported [52]. Therefore, the 

468 prepared gas foamed hydrogel with post-loading method has attributed to higher drug release 

469 compared to the hydrogel prepared at atmospheric condition in the previous study [8].

470 In the current research work, we have applied in situ loading method for the drug loading. The 

471 gas foamed hydrogel with larger interconnected pore structures would cause less impact on 

472 the drug release from the in situ loaded formulations [44, 45, 52]. Therefore, the gas foamed 

473 hydrogel did not show any improvement of the drug release over the hydrogel formed at 

474 atmospheric condition in this study.

475 3.4. Drug activity
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476 The chemical reactivity and biological activity of the drug are the most critical parameters in 

477 drug delivery systems after drug release process [30]. Curcumin has three reactive functional 

478 groups which associated with its different biological activities: one diketone moiety, and two 

479 phenolic groups. The presence of C=O groups as hydrogen acceptors and C-4 as a hydrogen 

480 donor are the important chemical reactions associated with its biological activities [53-54].

481 Fig. 11. UV-visible spectra of (a) pure drug and (b) released drug.

482 As shown in Fig. 11a and 11b, both of the UV-visible spectra indicate absorption peak around 

483 427 nm. This can be assigned to the low-energy π- π* excitation of the chromophore which 

484 formed due to the enolization of the diketone group and conjugation between the π-electron 

485 clouds of the two vinylguaiacol [31]. The presence of the absorption peak around 427 nm in both 

486 of the spectra revealed that the reactive functional groups which associated with the biological 

487 activity of curcumin retained without any deterioration due to any denaturation reaction with the 

488 carrier molecules. 

489 3.5. Solubility study

490 From our previous study [8,10], we observed lower drug release profiles of the hydrogel due to 

491 poor solubility of curcumin in simulated gastric fluid. To improve curcumin’s solubility, Tween 

492 20 was selected as potential solubilizing agent due to its biocompatibility and previous 

493 successful application in curcumin drug delivery systems [16, 17, 55].

494 Fig. 12. Solubility of curcumin in simulated gastric fluid with different concentrations of Tween 

495 20.
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496 The ability of Tween 20 to solubilize curcumin in simulated gastric fluid was evaluated by 

497 measuring the curcumin concentration in curcumin-saturated simulated gastric fluid with various 

498 amounts of Tween 20. As shown in Fig. 12, the solubility of the drug gradually increased with 

499 increasing the concentration of nonionic surfactant (Tween 20), with an upper limit of 3.014 ± 

500 0.041 mg/mL in the presence of 3.2% (w/v) Tween 20. Similar results were obtained from the 

501 studies on solubility of curcumin in aqueous polysorbate micelle reported by Inchai, Ezure, 

502 Hongwiset and Yotsawimonwat [56]. Their studies had showed that the solubility of curcumin 

503 increased up to 2.7 mg/mL in 20% aqueous solution of Tween 20. O’Toole, Henderson, Soucy, 

504 Fasciotto, Hoblitzell, Keynton, Ehringer and Gobin [17] showed that the saturation point of 

505 curcumin increased linearly with increasing the Tween 20 concentration in 1% acetic acid 

506 medium. Their findings revealed that the solubility of curcumin increased to an upper limit of 

507 294 μM (∼0.108 mg/L) with 0.05% (w/v) Tween 20.

508 With higher pH, curcumin degrades rapidly (on the timescale of minutes). However, the  

509 solubility of curcumin decreases rapidly with decreasing of pH [56-57]. In our study, the 

510 solubility of curcumin in simulated gastric medium was ∼6 µg/mL (without addition of the 

511 surfactant). It showed a slight decrease when compared to the results obtained by Hung, Chen, 

512 Lee, Sun, Lee and Huang [58] which was 25 μM (∼9.2 µg/mL) in pH 7 buffer solution. This 

513 may be due to the low pH of the simulated gastric fluid.

514 4. Conclusions

515 In this study, curcumin was extracted from dried rhizomes of curcuma longa using methanol for 

516 preparation of curcumin loaded chitosan/nanocellulose/Tween20 hydrogel. As a result of low-

517 energy π- π* excitation of the chromophore, both curcumin (HIMEDIA Co.) and curcumin 
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518 (extracted) showed typical absorption peaks around 420 nm in the UV-visible spectrum. The 

519 drug release of the hydrogel increased from 0.21% ± 0.02% to 54.85% ± 0.77% with increasing 

520 of Tween 20 concentration from 0% to 30% (w/v) after 7.5 h immersion. FESEM micrographs 

521 had proven that the pore size of the hydrogel increased more than tenfold after the gas foaming 

522 process (at 50 bar). Gas foamed hydrogel showed a high burst release of the drug compared to 

523 the hydrogel formed at atmospheric condition. The entrapment efficiency of the hydrogels 

524 decreased with increasing the Tween 20 concentration. Solubility studies showed that the 

525 saturation point of curcumin increased linearly with increasing the concentration of nonionic 

526 surfactant (Tween 20). The mavimum limit of 3.014 ± 0.041 mg/mL was achieved with the 

527 introduction of 3.2% (w/v) of Tween 20. Furthermore, curcumin retained its structural integrity 

528 after release to the gastric medium, which is a critical requirement for preserving drug activity. 

529 The solubility of a drug is a fundamental parameter in terms of promoting any effect impacting 

530 the therapeutic effect of the drug. Thus, the Tween 20 incorporated chitosan/nanocellulose 

531 hydrogel has provided promising platform as a carrier for curcumin with improved solubility 

532 characteristics for the absorption from stomach and upper intestinal tract. Since biocompatibility 

533 of the hydrogel system is a critical concern for researchers in drug delivery field. Therefore, 

534 investigations on the cytotoxicity and biocompatibility of the Tween 20 incorporated 

535 chitosan/nanocellulose hydrogel for in vivo drug delivery applications will be conducted in 

536 future works.
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 Fig. 1. FTIR spectra of curcumin (HIMEDIA Co.) and curcumin derived from turmeric.



Fig. 2. Curcuminoids present in turmeric powder.
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Fig. 3. FTIR spectra of curcumin (extracted), Tween 20, nanocellulose reinforced chitosan 

hydrogel and curcumin/Tween 20 incorporated hydrogel.
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Fig. 5. Micrographs of a) hydrogel formed at atmospheric condition and b) gas foamed hydrogel.
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    Fig. 6. Curcumin release from the hydrogels containing different concentrations of Tween 20.
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Fig. 7. Curcumin release from the hydrogels formed at atmospheric condition (AMP) and high-

pressure condition (GF) with different concentrations of Tween 20 (TW). 
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Table 1.

Composition of curcumin entrapped chitosan/nanocellulose/Tween 20 hydrogel formulations.

Formulation Chitosan

(w/v)%

Nanocellulose

(w/v)%

Tween 20

(w/v)%

Glutaraldehyde

(v/v)%

Curcumin

(mg per 2.5 g of 

hydrogel disc)

CH/CNC/ TW-0% 2 0.5 0 0.2 1.5

CH/CNC/ TW-5% 2 0.5 5 0.2 1.5

CH/CNC/ TW-10% 2 0.5 10 0.2 1.5

CH/CNC/ TW-15% 2 0.5 15 0.2 1.5

CH/CNC/ TW-20% 2 0.5 20 0.2 1.5

CH/CNC/ TW-25% 2 0.5 25 0.2 1.5

CH/CNC/ TW-30% 2 0.5 30 0.2 1.5




