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Assessing the reliability of ensemble fore
asting systems underserial dependen
eJo
hen Brö
kerS
hool of Mathemati
al and Physi
al S
ien
es, University of Reading, United Kingdom, July 11, 2018The problem of testing the reliability of ensemble fore
asting systems is revisited.A popular tool to assess the reliability of ensemble fore
asting systems (for s
alarveri�
ations) is the rank histogram; this histogram is expe
ted to be more or less �at,sin
e for a reliable ensemble, the ranks are uniformly distributed among their possibleout
omes. Quantitative tests for �atness (e.g. Pearson's goodness�of��t test) have beensuggested; without ex
eption though, these tests assume the ranks to be a sequen
e ofindependent random variables, whi
h is not the 
ase in general as 
an be demonstratedwith simple toy examples. In this paper, tests are developed that take the temporal
orrelations between the ranks into a

ount. A re�ned analysis exploiting the reliabilityproperty shows that the ranks still exhibit strong de
ay of 
orrelations. This propertyis key to the analysis, and the proposed tests are valid for general ensemble fore
astingsystems with minimal extraneous assumptions.Key Words: Ensemble Fore
asts; Reliability; Fore
ast Evaluation; Rank Histograms; Serial Dependen
e; Statisti
almethods1. Introdu
tionA large proportion of environmental fore
asting systemsnowadays issue ensemble fore
asts. Su
h systems are used atmajor (national or international) weather 
entres, but may alsoform part of large s
ale resear
h proje
ts.As with any fore
asting system, there is a need to obje
tivelyassess the performan
e of ensemble fore
asting systems.Inasmu
h as ensemble fore
asts provide probabilisti
 informationabout the veri�
ation, su
h an assessment has to be statisti
alin 
hara
ter. Several desirable (statisti
al) properties of ensemble(or more generally probabilisti
) fore
asting systems have beenidenti�ed; see for instan
e Brö
ker (2009, 2012); Weigel (2011).In the present paper, we will be 
on
erned with reliability. Aformal de�nition (in the 
ontext of ensemble fore
asts) will begiven in Se
tion 3, but roughly speaking, an ensemble fore
astingsystem is reliable if at any point n in time, the ensemble membersX1(n); : : : ; XK(n) and the veri�
ation Y (n) 
an be 
onsidered ashaving been drawn independently from an underlying (or latent)fore
ast distribution. Reliability 
an be regarded as a statisti
alnull hypothesis, and the aim of this paper is to develop tests forthis null hypothesis. In essen
e, this means to 
he
k whether thenull hypothesis is plausible given a
tual data, that is, an ar
hive ofveri�
ations and 
orresponding ensemble fore
asts.A popular tool to assess the reliability of ensemble fore
astingsystems are rank histograms (see e.g. Anderson 1996; Hamill andColu

i 1997; Talagrand et al. 1997; Hamill 2001). It is assumedthat the veri�
ations are real numbers; it is therefore possible todetermine, for any time instant n, the rank R(n) of the veri�
ationY (n) among the ensemble membersX1(n); : : : ; XK(n). The rank

R(n) 
an assume the values 1; : : : ; K + 1, and if the ensemblefore
asting system under 
on
ern is reliable, the distribution ofR(n) is uniform over these values. This suggests that a reliableensemble fore
asting system should produ
e a �more or less�uniform rank histogram. In most geophysi
al appli
ations, theveri�
ation Y (n) will of 
ourse not be a real number but ave
tor (of potentially very large dimension). There are severalapproa
hes to redu
e the 
ase of multi�dimensional veri�
ationto the s
alar 
ase (see e.g. Wilks 2004; Hansen and Smith 2004),and these 
an be applied without any mod�
ation to the situation
onsidered in the present paper. We will therefore 
onsider theveri�
ations to be real numbers.In reality a rank histogram will never be pre
isely �at, andthere are broadly speaking two possible reasons for this. Firstly,deviations from the uniform distribution might be due to theensemble fore
asting system failing to be reliable. There are
ertain de�
ien
ies of ensemble fore
asting systems that appear tobe somewhat typi
al and whi
h produ
e 
hara
teristi
 patterns inthe rank histogram. A U-shaped distribution for instan
e indi
atesunderdispersiveness, with a peaked distribution suggesting theopposite; sloped rank histograms show under� or overfore
asting(depending on the sign of the slope).Se
ondly, even a perfe
tly reliable ensemble fore
asting systemwill not produ
e a perfe
tly uniform rank histogram due torandom variations. Thus a test for reliability essentially amountsto a test for the hypothesis that the ranks have a dis
rete uniformdistribution. A 
ommon test for evaluating whether a histogramis 
onsistent with a spe
i�
 dis
rete distribution is Pearson'sgoodness�of��t (GOF) test. (Taking the ordering of the possibleranks into a

ount, whi
h the GOF test does not, more powerful
This article is protected by copyright. All rights reserved.
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3tests 
an be obtained, for instan
e from the Cramér�von Misesfamily of statisti
s, see Elmore (2005). In the present paper, wewill fo
us on variants of the GOF test though.)A serious problem with applying the GOF test dire
tly to rankhistograms for ensemble fore
asting systems though is that theranks are generally not independent. This will be demonstratedin Se
tion 4 with a simple toy example. Independen
e howeveris an important assumption in the GOF test that 
an not easilybe dispensed with. The general fa
t that veri�
ation�fore
astpairs 
an 
ertainly not assumed to be independent is a dif�
ultythat affe
ts statisti
al fore
ast evaluation in general, as hasbeen emphasised only relatively re
ently (see for instan
e Wilks2010; Pinson et al. 2010; Siegert et al. 2017; Brö
ker 2018). Aremedy suggested by Wilks (2010) is to use expli
it (parametri
)assumptions regarding the dependen
e stru
ture and distributionof the fore
asts, but the 
onsidered situation is very spe
i�
.In the present paper, we will use an approa
h based on resultssimilar to Brö
ker and Kuna (2018); Brö
ker (2018). The basi
idea is that assuming the fore
asting system is reliable, theensemble X(n) = (X1(n); : : : ; XK(n)) provides the statisti
alproperties of Y (n), given the information available at the timethe fore
ast X(n) was issued, namely at time n� L, where L isthe lead time. This fa
t 
an be used to obtain (to some extent)the statisti
al properties of the ranks, in
luding their 
orrelationstru
ture. In fa
t, in 
ertain 
ases (
orresponding effe
tively tolead time L = 1) the ranks turn out to be independent after all,meaning that in this situation the 
lassi
al GOF test 
an be used.In general though, the more 
ompli
ated 
orrelation stru
ture ofthe ranks needs to be taken into a

ount. We will show that this ispossible, however. By modifying GOF�like tests in an appropriatemanner, we obtain tests for the reliability of ensemble fore
asts.These tests are valid under minimal extraneous assumptions(whereby we mean assumptions that would not automati
allyfollow from the assumption of reliability and would have to beassumed in addition).2. The goodness�of��t test revisitedIn this se
tion, we will revisit the basi
 steps in deriving thedistribution of the goodness-of-�t test statisti
. In parti
ular, wewill 
larify where the assumption of independen
e of the ranks
omes in. We start with �xing some general notation. We letfY (n); n = 1; : : : ; Ng be a series of real�valued veri�
ations,with the index n representing the time. Further, fX(n); n =1; : : : ; Ng is a series of 
orresponding ensemble fore
asts, wherefor ea
h time instant n the ensemble is given by a ve
tor of K �1 ensemble members, that is X(n) = (X1(n); : : : ; XK�1(n)),where ea
h ensemble member is again real valued.yFor a given y 2 R and x 2 RK�1 , we 
onsider the fun
tionr(y;x) that is equal to k if the rank of y among theK�dimensionalve
tor (y;x) is equal to k. In other words, r(y;x) = k if pre
iselyk � 1 
omponents of x are smaller than or equal to y. Thefun
tion r 
an assume the values 1; : : : ; K. For n = 1; : : : ; N , wede�ne R(n) := r(Y (n);X(n)). That is R(n) is the rank of theveri�
ation Y (n) with respe
t to the ensemble X(n). We assumethat the ensemble fore
asting system is reliable with respe
t tothe veri�
ations. As said in the introdu
tion, this means broadlyspeaking that for ea
h time n, the veri�
ation Yn as well as ea
hindividual ensemble member Xk(n); k = 1; : : : ; K � 1 
an be
onsidered independently drawn from some underlying fore
astdistribution. This implies (again, a proof will follow in the nextse
tion) that for ea
h n the rank Rn is uniformly distributed overits possible values f1; : : : ; Kg. As has already been mentionedthough, there is no apriori reason why the ranksR(n); n = 1; 2; : : :should be independent from one another.yUsingK � 1 rather thanK ensemble members will simplify subsequent notation.

To de�ne the GOF test statisti
, 
onsider the 
ountsNk := (Number of n for whi
h R(n) = k) = NXn=11fR(n)=kg;where the indi
ator fun
tion 1A of some event A is one if theevent happens and zero otherwise, and k = 1; : : : ; K. Clearly, the
ount Nk is the height of the k'th histogram bar. Further we set
k := Nk �N=KpN=K :Note that the expe
ted value of 
k is zero, sin
e N=K isthe expe
ted number of 
ounts for ea
h value of the rank, oralternatively the expe
ted height of the k'th histogram bar. TheGOF test statisti
 is given byt = KXk=1 
2k = k
k2; (1)where 
 = (
1; : : : ; 
K), and k:k denotes the standard Eu
lideannorm.As we will see now, the test statisti
 t has, asymptoti
ally forlarge N , a �2 distribution with K � 1 degrees of freedom, if theranks are indeed independent. The key property of the variables
1; : : : ; 
K is that they jointly satisfy a 
entral limit theorem; forthis to happen, it is suf�
ient that the ranks R(n); n = 1; : : : ; Nare independent. It is worth noting already at this point thoughthat independen
e is not ne
essary, as will be dis
ussed in the nextse
tion. In any event, we assume that the 
1; : : : ; 
K have a jointnormal distribution, with mean zero as was already noted.We now have to 
al
ulate the 
ovarian
e matrix, but beforedoing this, we note the following fa
t: let v 2 RK be the ve
torwith 
omponents vk = 1=pK for all k = 1; : : : ; K. Then kvk = 1and also vT 
 = KXk=1 
kvk = 1pK KXk=1 
k = 0:If we now write �i;j := E(
i 
j ) for the 
ovarian
e matrix of 
,then (�v)i = KXj=1 E(
i 
j)vj = E(
i KXj=1 
jvj) = 0:This means that the nullspa
e (or kernel) of � is spanned by the
onstant ve
tor v; we stress that this is true irrespe
tive of whetherthe ranks are independent or not. To �nd the pre
ise shape ofthe 
ovarian
e matrix � though, we have to use independen
e. Asimple 
al
ulation will then reveal that� = 1� v � vT : (2)This matrix is symmetri
 and has a nullspa
e spanned by v (aswas already seen), while any other ve
tor w with the propertythat vTw = 0 is an eigenve
tor of � with eigenvalue one. The
ondition thatw is perpendi
ular to v just means thatPKk=1 wk =0; ve
tors with this property are 
alled 
ontrasts.Let now w(1); : : : ;w(K�1) be a set of orthogonal 
ontrasts(su
h a set 
an 
ontain at mostK � 1 elements). Then the randomvariables d = (d1; : : : ; dK�1) de�ned throughdj = KXk=1 
kw(j)k (3)have again a normal distribution with mean zero, but now withunit 
ovarian
e matrix, sin
e E(dj dk) = (w(j))T�w(k) = Æjk .It follows that d1; : : : ; dK�1 are independent standard normal.This article is protected by copyright. All rights reserved.
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4Therefore, P d2k, where the index k runs over a subset off1; : : : ; K � 1g, has a �2 distribution, with degrees of freedomgiven by the size of that subset. In parti
ular, kdk2 has a�2 distribution withK � 1 degrees of freedom. But sin
e kdk2 =k
k2 = t, the same is true for t.As an aside, we note that a user has the option to assessthe rank histogram by using only a subset of the randomvariables d1; : : : ; dK�1, or in other words, by proje
ting thes
aled 
ounts 
1; : : : ; 
K onto a redu
ed set of 
ontrasts. Thishas been suggested previously by Jolliffe and Primo (2008). Theuser has 
omplete freedom in 
hoosing the desired 
ontrasts,as long as they are orthogonal and normalised. To obtainsu
h a set, it is suggested to start with a set of ve
torsu(1); : : : ;u(�) that have roughly the desired shape (for instan
elinear, U�shaped, sinusoidal, et
) and then apply a Gram�S
hmidtpro
edure (or equivalently a QR�de
omposition, see e.g. Goluband Van Loan 1996) to the ve
tors v;u(1); : : : ;u(�) in order torender them mutually orthogonal and normalised. Figure 1 showsthree 
ontrasts for the 
ase of K = 8. These were obtained byapplying a QR�de
omposition to the four ve
tors v, (k)k=1;:::;K ,(k2)k=1;:::;K and (k3)k=1;:::;K . The 
ontrasts are linear, U�shaped and sinusoidal, respe
tively.3. Tests valid under serial dependen
eIn the previous se
tion, we dis
ussed why the 
lassi
alGOF test statisti
 has a �2 distribution with K � 1 degrees offreedom. If we look ba
k at this dis
ussion, we �nd that theindependen
e of the ranks was used in two pla
es: in justifyinga Central Limit Theorem for the 
1; : : : ; 
K , and when 
al
ulatingthe pre
ise form of the 
ovarian
e matrix �. With the 
onditionof independen
e dropped, � will not have any longer the formshown in Equation (2), and this is the main reason why applyingthe standard GOF test to rank histograms is not warranted ingeneral. We will dis
uss later in this se
tion that a CentralLimit Theorem might still hold even though the ranks are notindependent. Further, even though � is no longer known, therelevant 
orrelations 
an be estimated from the data, and anestimator will be provided below. For now, we assume that therandom variables 
1; : : : ; 
K have a normal distribution with meanzero and some 
ovarian
e matrix �.It remains true though that the nullspa
e of � is spanned by theve
tor v as the derivation of this fa
t in the previous se
tion didnot depend on independen
e of the ranks. This implies that westill get a faithful representation of the s
aled 
ounts 
1; : : : ; 
Kby proje
ting then onto a set of orthonormal 
ontrasts as inEquation (3), that is by using the random variables d1; : : : ; dK�1de�ned through Equation (3). We want to develop a test basedon a subset d = (d1; : : : ; d�) of these random variables, and wedenote the 
ovarian
e matrix of these random variables by �i;j =E(didj) = (w(i))T�w(j), where i; j � � � K � 1. We keep ��xed throughout the remainder of this se
tion.As the 
ondition of independen
e of the ranks has beendropped, � will not be the unit matrix any longer. (We noteagain that � will later have to be estimated from the data.) We
onsider the statisti
 t� = dT��1d. This statisti
 is indeed ageneralisation of the statisti
 t from the previous se
tion, and thetwo agree if the ranks are independent and � = K � 1. Our 
laimis that t� has a �2�distribution with � degrees of freedom as in theindependent 
ase.To see this, let U be a symmetri
 matrix so that U�U = 1 (i.e.U is a square root of ��1). Then e = Ud is a ve
tor of normalrandom variables with zero mean and 
ovarian
e matrix U�U =1, hen
e the 
omponents of e are independent and standardnormal. As a 
onsequen
e, ~t = kek2 has a �2�distribution with

� degrees of freedom. However,~t = kek2 = eT e = dTU � Ud = dT��1d = t�;proving our 
laim.For the remainder of this se
tion, we will �ll in the missingparts of our argument. We will show that although the ranks arenot independent, they nevertheless satisfy a very strong de
ayof 
orrelation property whi
h is a dire
t 
onsequen
e of thereliability assumption and forms the 
ore of our analysis. We thenprovide an estimator of the 
ovarian
e matrix �. The feasibilityof this estimator is due to the strong de
orrelation property of theranks, and the assumption that the ranks form a stationary andergodi
 sequen
e. Stationarity of the sequen
e (R(1); R(2); : : :)means that for any m, the joint distribution of (R(n); : : : ; R(n+m)) does not depend on n or, roughly speaking, is invariant withrespe
t to temporal shifts. A stationary sequen
e is ergodi
 if anyaverage of the form1N NXn=1�(R(n); : : : ; R(n+m)) (m �xed)
onverges to E [�(R(n); : : : ; R(n+m))℄ asN !1. Note that bystationarity, this quantity does not depend on n. As ergodi
ityusually presumes stationarity, we will take �ergodi
� to mean�stationary and ergodi
�. Ergodi
ity of the ranks is the onlyextraneous assumption we need to add. These properties are alsosuf�
ient to justify the validity of the Central Limit Theorem(more details will be provided in Appendi
es A and B).The reliability assumption is interpreted to mean the following.For every time instant n = 1; : : : ; N there exists an underlyingor latent fore
ast distribution �n over the real numbers. Thisdistribution is itself random and represents the distribution of Yn
onditional on the information available at fore
ast time. Moreformally, let Fn be the information available to the fore
aster attime n, and say that fore
asts are issued with a lead time L, thenreliability means that�n(A) = P(Y (n) 2 AjFn�L)for all n = 1; : : : ; N and any setA on the real line.z The joint set ofveri�
ation and ensemble members (Yn; X1(n); : : : ; XK�1(n))are independently drawn from this distribution, that is, for any nand any sets A0; : : : ; AK�1 on the real line, it holds thatP(Y (n) 2 A0; X1(n) 2 A1; : : : ; XK�1(n) 2 AK�1jFn�L)= �n(A0) � : : : � �n(AK�1):The uniform distribution of the ranks, 
onditional on the fore
astinformation, is now an elementary 
onsequen
e: for all n =1; : : : ; N and k = 1; : : : ; K we haveP(R(n) = kjFn�L) = 1K : (4)We will graft another element to the reliability assumption whi
his usually not made expli
it but is evidently satis�ed in mostappli
ations, namely that for any n, the fore
ast informationFn 
ontains all veri�
ations and ensembles up to that point; inother words, at any time n the fore
aster knows fY (m);m =1; : : : ; ng and also fX(m);m = 1; : : : ; ng. This, in 
ombinationwith Equation (4), yields the following key identity:P(R(n) = kjR(1); : : : ; R(n� L)) = 1K (5)zStri
tly speaking for any measurable set A on the real line.This article is protected by copyright. All rights reserved.
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5for all n = 1; : : : ; N and k = 1; : : : ; K. Another way of sayingthis is that for any n, the rank Rn is uniformly distributed andindependent from the ranks R(1); : : : ; R(n� L), that is, from theranks known at fore
ast time. In parti
ular, we obtain that in the
ase of unit lead time (i.e. L = 1), the ranks fR(n); n = 1; 2; : : :gare indeed fully independent; this implies that in this spe
ial(but important) situtation, the 
lassi
al GOF test for the rankhistogramm is valid.Let now fw(1); : : : ;w(�)g be a set of orthonormal 
ontrasts,and de�ne Zk(n) = pK KXj=1w(k)j 1fR(n)=jg (6)for n = 1; : : : ; N and k = 1; : : : ; �; note that dk =1pN PNn=1 Zk(n). We regard Z(n) = (Z1(n); : : : ; Z�(n)) withn = 1; : : : ; N as a sequen
e of random ve
tors. The property (5)implies that this sequen
e has �nite 
orrelation length of at mostL� 1. To see this, note that for any n, the random ve
tor Z(n)depends on R(n) only. Hen
e, Z(n+ l) is independent of Z(n) ifl � L. Further, E(Z(n)) = 0 and thereforeE(Z(n + l) � Z(n)T ) = E(Z(n + l)) � E(Z(n)T ) = 0: (7)It turns out that in order to establish a joint Central LimitTheorem for d = (d1; : : : ; d�), an additional assumption isneeded, namely that the ranks fR(n); n = 1; 2; : : :g form astationary and ergodi
 sequen
e. With this assumption andproperty (7) in pla
e, it follows from established results that dwillbe asymptoti
ally normal with mean zero and some 
ovarian
ematrix �; we will not provide a proof here, but some more detailsand referen
es 
an be found in Appendix B.An estimator for �, the asymptoti
 
ovarian
e matrix of d, isneeded as well. We will use the estimator�N = 1+ 1N NXn=1L�1Xl=1 nZ(n)Z(n+ l)T + Z(n+ l)Z(n)To :(8)This estimator 
an be shown to 
onverge to �, and ademonstration 
an be found in Appendix A. We stress thatthe validity of this estimator rests not only on the ergodi
ityassumption but also on the �nite 
orrelation property (7). For the
ase L = 1, this estimator redu
es to �N = 1 as it should.4. Numeri
al examplesWe start this se
tion with a short list summarising the stepsneeded to perform the test for �atness of a rank histogram. Welet f(Y (n);X(n)); n = 1; : : : ; Ng be a sequen
e of real�valuedveri�
ations and 
orresponding ensembles with K � 1 members.Let further fw(1); : : : ;w(�)g be a set of orthonormal 
ontrasts,des
ribing possible deviations of a rank histogram from �atness(with � � K � 1).1. Compute the ranks fR(n); n = 1; : : : ; Ng.2. Using the ranks and the 
ontrasts, 
ompute Zk(n) fromEquation (6) for n = 1; : : : ; N and k = 1; : : : ; �.3. Compute the estimator �N for the 
ovarian
e � fromEquation (8).4. Compute dk = 1pN PNn=1 Zk(n) for k = 1; : : : ; � and letd = (d1; : : : ; d�).5. Now dT��1N d should have a �2 distribution with � degreesof freedom, and this 
an be used to 
ompute the p�value.For the remainder of this se
tion, we will dis
uss two numeri
alexamples. The �rst example 
onsiders a simple autoregressivepro
ess; this has been 
hosen merely to illustrate the methodology.The se
ond example uses data from an assimilation experimentusing the two dimensional Navier�Stokes equation.

Example 1: Autoregressive pro
ess In the �rst example,the veri�
ation fYn; n = 1; 2; : : :g forms an autoregressive(AR) pro
ess of the formY (n+ 1) = �Y (n) + �(n+ 1); (9)where f�(n); n 2 Zg is a sequen
e of independent standardnormal random variables and � = 0:95. The information Fnavailable to the fore
aster at time n is fY (k); k � ng, that isthe entire history of observations up to and in
luding Y (n).Reliable ensemble fore
asts 
an be generated by repla
ing �(n)in Equation (9) with independent realisations of the noise pro
ess.More spe
i�
ally, let f���(n); n = 1; 2; : : :g be a sequen
e ofindependent random ve
tors ���(n) = (�1(n); : : : ; �K�1(n)), wherethe 
omponents �k(n) are again independent and standard normal.Then an ensemble fore
ast for lead time L and verifying at timen+ L is given byXk(n+ L) = �LY (n) + �L�k(n); k = 1; : : : ; K � 1;here, �2L = 1��2L1��2 .In this model, it is easy to see dire
tly that two ranks areindependent if they are L or more steps apart, but that they aredependent otherwise. To 
he
k this, we write Y (n+ L) asY (n+ L) = �LY (n) + L�1Xl=0 �l�(n+ L� l): (10)Therefore,R(n+ L) = r(Y (n+ L);X(n+ L))= r(L�1Xl=0 �l�(n+ L� l); �L���(n)): (11)(We re
all that r(y;x) is the rank of y among the 
omponentsof x.) Equation (11) demonstrates that the temporal dependen
eof the ranks is due to the temporal dependen
e of �L(n) :=PL�1l=0 �l�(n+ L� l). In view of Equation (10), the randomvariable �L(n) des
ribes the subsequent evolution of theobservations after the fore
ast Z(n) has been issued. We might
all �L(n) the innovation; it is pre
isely the part of Y (n+ L)not 
aptured by the fore
ast. If two observations Y (n) and Y (m)are less than L time steps apart (i.e. jm� nj < L), then their
orresponding innovations will be dependent, due to overlap oftheir evolutions after the respe
tive fore
asts have been issued.This is also evident from the expression of the innovation. Ifjm� nj � L though, their innovations will be independent. Dueto Equation (11), the ranks will exhibit the same phenomenon.Figure 2 shows typi
al histograms for ensemble fore
asts in the
ontext of the AR pro
ess. The ensemble fore
asting system uses7 members, and the data set 
omprised 100 time instan
es. Thelead time was 1 time unit for the top panel and 10 time units forthe bottom panel of Figure 2. It is evident that the histogram forthe larger lead time shows 
onsiderably stronger variations in the
ounts. This is due to the strong temporal 
orrelations betweenthe ranks at larger lead times. The p�values for the top and bottompanels are 0.7612 and 0.7199, respe
tively, using the test proposedin Se
tion 3 for the se
ond histogram. Using a 
lassi
al GOF testwould give a p�value of 0.0019 for the se
ond histogram, thus
on
luding wrongly that this fore
ast is not reliable.In order to 
he
k whether the test presented in Se
tion 3takes the 
orrelations 
orre
tly into a

ount, we have 
reated1,000 Monte Carlo resamples of the experiment des
ribed above,albeit with 400 time instan
es. For every Monte Carlo sample,we 
omputed the statisti
 t� for � = 2, using a linear and a U�shaped 
ontrast, as des
ribed in Se
tion 3, in
luding the estimatorThis article is protected by copyright. All rights reserved.
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ovarian
e matrix. If the presented theory is 
orre
t, thent� should follow a �2 distribution with 2 degrees of freedom,or equivalently the p�value should have a uniform distribution.This turns out to be the 
ase; a histogram of the p�values obtainedfrom our 1,000 Monte Carlo resamples is shown in the top panelof Figure 3. Furthermore, a Kolmogorov�Smirnov test yieldsa p�value of 0.6876, 
on�rming that these follow a uniformdistribution.For ea
h Monte Carlo resample we have also 
al
ulated the
lassi
al GOF statisti
, that is, ignoring the 
orrelations in theranks and assuming that � is the identity matrix. That theresamples of that statisti
 do not follow a �2 distribution with 2degrees of freedom is evident from the bottom panel of Figure 3,whi
h shows a histogram of the p�values. These are evidently
on
entrated at too low values, whi
h implies that ignoring the
orrelations in the ranks and applying the 
lassi
al GOF testwould result in too frequent reje
tion, that is, we would 
on
ludetoo often that the rank histogram is not 
onsistent with reliability.It should be said that the bottom panel of Figure 3, althoughnot in
onsistent with reliability, is a somewhat extreme 
ase.Using a single (U�shaped) 
ontrast, we obtain a test that is morepowerful against U�shaped deviations from reliability. Applyingthis test, the p�value of the example in Figure 3, bottom panel,be
omes 0.0532 and is thus on the verge of being reje
ted withthis test.Regarding the power of the full test (using all 
ontrasts), wemight wonder how large N , the number of time instan
es, wouldhave to be in order that a p�value of 0.05 or less is obtained, whilethe observed relative frequen
ies as well as the 
ovarian
e matrix�N being left the same. It is easy to see that in this situation,the test statisti
 ~t is proportional to N ; using the 
urrent valueof ~t = 4:5072 and the inverse 
umulative distribution fun
tion ofthe �2 distribution with K � 1 degrees of freedom, we �nd thatN has to in
rease about threefold (i.e. to about 300) to reje
t thehistogram in Figure 3, bottom panel, as not �at.We have also investigated the role of � and its in�uen
e onthe rank 
orrelations. Stri
tly speaking, we should investigatethe 
orrelation stru
ture of the Z(n); n = 1; 2; : : :, as this willdetermine the magnitude of �, and the larger this quantity theless powerful the test will be. To simplify the dis
ussion though,we fo
us on the 
orrelation of the ranks dire
tly; in the 
ase of asingle linear 
ontrast, these are in fa
t suf�
ient to determine �.Figure 4 shows the Pearson 
orrelation 
oef�
ient�m = Cov(Rn; Rn+m)Var(Rn) :between the ranks Rn and Rn+m for ensemble fore
asts for theAR pro
ess, for values of m = 0; : : : ; 10 on the abs
issa andseveral values of � (marked with different graphi
 symbols, see�gure). A simple 
al
ulation, not shown here, redu
es 
al
ulationof 
orrelation 
oef�
ient to the numeri
al evaluation of anintegral. (It turns out that the 
orrelation 
oef�
ient does notdepend on the number of ensemble members.) As dis
ussed, therank 
orrelation is zero for m � L irrespe
tive of �. Nonetheless,the 
orrelation for m < L depends on � and de
reases faster forsmaller values of �. It is also easy to see dire
tly that the ranks areon
e again independent in the limiting 
ase � = 0.The (probably not surprising) 
on
lusion is that the dependen
estru
ture of the ranks depends both on the lead time L as well asthe dependen
e stru
ture of the veri�
ation�fore
ast pairs whi
his ultimately determined by the nature of the un
erlying problem.In parti
ular, while the lead time L provides an upper bound onthe maximal 
orrelation length of the ranks, fast de
orrelation ofthe veri�
ation�fore
ast pairs 
an render the 
orrelation for largerlags very small or even negligible. Furthermore, fast de
orrelationof the veri�
ation�fore
ast pairs will, in general, lead to the

test being more powerful. Prior knowledge about the 
orrelationstru
ture of the veri�
ation�fore
ast pairs might be used to furtherin
rease the ef�
ien
y of the estimator for �, but it is not
lear how to do that in an operational situation and whether theadditional efford required would pay off in terms of in
reased testpower.Example 2: Data assimilation in 2D Navier�Stokes These
ond example uses data from an assimilation experiment withthe two dimensional Navier�Stokes equation. The equation wasimplemented in the vorti
ity�streamfun
tion formulation�t! + J(!;  ) +A! = f; (12)on the two�dimensional unit torus T =℄0; 1[2 with periodi
boundary 
onditions. Here, ! is the vorti
ity and  the streamfun
tion; further, A = ��� (the Lapla
ian with vis
osity �),and the stream fun
tion is obtained from the vorti
ity throughsolving the Poisson equation � = !. The fun
tion f representsa for
ing. Equation (12) (along with the Poisson equation) wassolved with a pseudospe
tral 
ode on a square spatial latti
ewith resolution N = 21 in both dimensions. In other words, theequation was trun
ated at wavenumber 10, where we de�ne thewavenumber of a wave ve
tor (k; l) as j(k; l)j := maxfjkj; jljg.The vis
osity was set to � = 2 � 10�3. The for
ing was timeindependent and 
omposed of randomly sele
ted amplitudesand trun
ated at wavenumber 3, with a magnitude of kfk =1:34. In this setup, the system produ
es 
omplex nonperiodi
solutions. (Here and in the following, we use the norm kfk =�RTjf j2(x)dx�1=2 for a�possibly 
omplex�fun
tion on thetorus.)Observational data was assimilated into an identi
al 
opy ofthe two dimensional Navier�Stokes equation. As observations, theFourier modes with wavenumbers j(k; l)j � 1 were used (whi
h
orresponds to observing nine modes, or equivalently, to takingsmoothed spatial observations on a grid with 3� 3 gridpoints).The observations were taken at temporal intervals of �t = 0:5time units and 
orrupted with normally distributed noise of about5%. The observations were then assimilated simply by repla
ingthe relevant Fourier modes of the assimilated solutions with theobserved Fourier modes (see Hayden et al. 2011; Sanz Alonsoand Stuart 2014; Brö
ker et al. 2017, for theoreti
al analyses ofthis assimilation method).Ensembles were generated by randomly perturbing the analyses�elds. The distribution of the perturbations was taken to benormal with mean zero and standard deviation kÆ!k = 0:943.Ensembles were generated by integrating the model forward withthese perturbed analysis �elds serving as initial 
onditions. Thestandard deviation for the perturbations was found by optimisingthe mean square fore
ast performan
e for lead time of 5 units inan of�ine experiment.As veri�
ations in these experiments, we use one of thenine 
omponents of the observations employed for the dataassimilation (re
all that observations on a 3� 3 grid wereused for data assimilation). We analysed these veri�
ations and
orresponding ensembles for lead times of L = 5, 10 and 20 timeunits, ea
h data set 
omprising 300 veri�
ation�fore
ast pairs.No attempt was made to statisti
ally re
alibrate these ensembles.Although there is no model error in this experiment, this does notimply that the ensemble fore
asting system is reliable, sin
e thedata assimilation system is fairly primitive and we have no reasonto believe that ensembles 
omprise a reasonable representationof the fore
ast distribution. The histograms for these three datasets are shown in Figure 5. It is seen that the reliability ofthis relatively simple ensemble fore
asting system is not badby visual inspe
tion. We applied the des
ribed test for �atnessThis article is protected by copyright. All rights reserved.
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7of the rank histogram, �rst for two 
ontrasts (i.e. � = 2). Thep�values for lead times L = 5, 10 and 20 are 0.7872, 0.7495,and 0.5209, respe
tively. Testing the full set of 
ontrasts givesp�values of 0.5507, 0.5572, and 0.5854; all these �gures do notprovide a strong 
ase for deviation from reliability. With regards tothe rank histogram 
orresponding to lead timeL = 20 in parti
ularthough, the histogram appears to have a slight slant to the right(indi
ating underfore
asting), but this effe
t might be masked bythe expe
ted variation of the histogram. However, we �nd thattra
e(�N ) = 8:63, while this value would be 7 for independentranks, and we 
an 
on
lude that the varian
e of the histogram isnot in fa
t mu
h larger than for the independent 
ase.We repeated the test for lead time L = 20 with a single, linear
ontrast and �nd a p�value of 0.3254, whi
h might indi
ate aslight deviation from reliability. Note that we have 
heated alittle bit, as the 
hoi
e of the 
ontrast was made based on thedata; 
hoosing the 
ontrasts depending on the data means thatthe 
ontrasts would be fun
tions of the data while the testingmethodology assumes they are not. As a �nal note, under theassumption of un
orrelated ranks the p�value for this 
ase wouldhave been 0.2676, so not in fa
t very different. For the varian
e,we have the estimate 1:2708 whi
h is fairly 
lose to 1, againindi
ating that dropping the assumption of independen
e does notmake mu
h of a differen
e in this 
ase.From our dis
ussion of the AR�pro
ess, we spe
ulate that thisis due to a relatively fast de
ay of temporal dependen
ies in theveri�
ation�fore
ast pairs, whi
h would imply that although the
orrelations in the ranks 
annot extend beyond lag 20 in this 
ase,they are effe
tively mu
h shorter in the present situation. Figure 6shows the estimated 
orrelation 
oef�
ient between the ranks Rnand Rn+m for this ensemble fore
asting system at a lead timeof 20 time units; values of the lag m between zero and 20 areshown on the abs
issa. This is just an estimate of the 
orrelationand although we have ommitted any un
ertainty information su
has error bars, there is no question that the 
orrelation de
reasesindeed very qui
kly with in
reasing lag, and 
orrelation withlarger lag do not 
ontribute mu
h to �, due to fast de
ay of
orrelation in this system. This implies that the properties of thetest in this example are very similar to the standard GOF test. Thisis true in general if the estimator �N for the 
ovarian
e matrix isobserved to be 
lose to the unit matrix (as is the 
ase in the presentexample), whi
h is easy to 
he
k in appli
ations.5. Con
lusions and outlookA popular and pra
ti
al tool to assess the reliability of ensemblefore
asting systems (for s
alar veri�
ations) is the rank histogram.For a reliable ensemble fore
asting system, this histogramis expe
ted to be more or less �at, sin
e the ranks areuniformly distributed among their possible out
omes. For a morequantitative analysis though, it would be desirable to have a testfor the �atness of rank histograms, as 
ertain random �u
tuationswill always be present even if the fore
asting system is reliable.We have argued that 
lassi
al approa
hes su
h as for examplePearson's goodness�of��t test are not appropriate sin
e thesetests rest on the assumption that the ranks form a sequen
eof independent random variables. By revising the derivation ofPearson's goodness�of��t test, we identi�ed two pla
es where theassumption of independen
e is relevant: �rstly it ensures that theres
aled histogram 
ounts satisfy a joint Central Limit Theorem,and se
ondly it entails a very spe
i�
 
orrelation stru
ture forthese 
ounts.Although the ranks of a reliable ensemble fore
asting systemare not independent in general, we have demonstrated bothanalyti
ally and numeri
ally that an appropriate modi�
ation ofthe goodness�of��t test will still work. Central to our analysis is

the fa
t that for a reliable ensemble fore
asting system, the ranksstill satisfy a strong de
ay of 
orrelation property�the 
orrelationtime of the ranks is even �nite and given by the lead time less one.(This result 
an be generalised to different types of fore
astingsystems and might be of independent interest, see Brö
ker andKuna (2018); Brö
ker (2018).) Furthermore, it was shown how toperform a �redu
ed� goodness�of��t test using a restri
ted set of
ontrasts, as suggested in Jolliffe and Primo (2008), but modi�edso as to a

ount for rank 
orrelations. Apart from the te
hni
al
ondition that the ranks form an ergodi
 sequen
e, the approa
hdoes not require any extraneous or distributional assumptions.The formalism was also applied to numeri
al examples.First, data from a simple autoregressive pro
ess was 
onsidered,with ensemble fore
asts that were by 
onstru
tion reliable. Theexperiments 
on�rm that the formalism gives the 
orre
t results,while not taking the rank 
orrelations into a

ount (by using a
lassi
al goodness�of��t test) yields too high reje
tion rates asthe distribution of the 
lassi
al goodness�of��t test statisti
 is nolonger a �2�distribution.A se
ond example used data from a simple �uid dynami
al dataassimilation experiment. The results show that despite a relatively
rude data assimilation system, the ensembles are fairly reliable.We also addressed the question whether the test looses power forlonger lead times as potentially systemati
 deviations from a �atrank histogram are masked by strong variability of the histogram
ounts, whi
h seems not the 
ase in that situation.Outlook and future work An important fa
t emerging fromour analysis is that for a reliable ensemble fore
asting system,the ranks exhibit a �nite 
orrelation time whi
h 
annot ex
eedthe lead time. This result 
an be generalised to different typesof fore
asting systems as has been done in Brö
ker and Kuna(2018); Brö
ker (2018). Strong de
ay of 
orrelations thoughtypi
ally implies powerful asymptoti
 limit results su
h as Lawsof Large Numbers and Central Limit Theorems. It seems plausiblethat these 
an be exploited to analyse other fore
ast evaluationte
hniques rigorously under serial dependen
e; examples arereliability diagrams (Brö
ker and Smith 2007) or Re
eiver (orRelative) Operating Chara
teristi
 (Egan 1975; Brö
ker 2012).An extension of the results in the present paper to strati�edrank histograms would also be desirable (Siegert et al. 2012).Strati�ed rank histograms provide a more detailed pi
ture ofreliability, 
onditional on different fore
asting situations. Thisextension seems to be fairly immediate and will be dealt with in aforth
oming paper.A. Covarian
e estimatorIn this appendix, we dis
uss an estimator for �, the 
ovarian
ematrix of d = (d1; : : : ; dK�1) = 1pN PNn=1 Z(n) in the limitN !1, that is� = limN!1 1N E 24 NXn=1Z(n)! NXn=1Z(n)!T35 :(Notation and de�nitions are as in Se
. 3.) We start with studyingthe (matrix valued) 
ovarian
e fun
tion
(l) := E(Z(n)Z(n + l)T );noting that there is no dependen
e on n sin
e fZ(n); n = 1; 2; : : :gis assumed ergodi
 and thus in parti
ular stationary; note alsothat 
(l) is de�ned for negative l, too, and in fa
t 
(�l) = 
(l)T .Furthermore, we have 
(l) = 0 if l � L due to Equation (7). AnThis article is protected by copyright. All rights reserved.
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al
ulation then gives1N E 24 NXn=1Z(n)! NXn=1Z(n)!T35 = N�1Xl=�N+1(1� jljN )
(l)and hen
e� = limN!1 N�1Xl=�N+1(1� jljN )
(l) =Xl2Z
(l): (13)Thanks to Equation (7), the sum in Equation (13) 
ontains only�nitely many nonzero terms, namely for jlj < L. These terms 
anbe estimated by empiri
al averages (i.e. averages over time), thatis 
N (l) = 1N NXn=1Z(n)Z(n+ l)T ;whi
h 
onverges to 
(l) due to the 
ondition that the ranks areergodi
 (we only need estimators for 0 < l < L sin
e 
(�l) =
(l)T is symmetri
 and 
(0) is the unit matrix). The estimator�N for � is given by repla
ing 
(l) in Equation (13) with theestimators 
N (l). This gives�N = 1+ L�1Xl=1 
N(l) + 
N (l)T= 1+ 1N NXn=1L�1Xl=1 Z(n)Z(n+ l)T + Z(n+ l)Z(n)T : (14)B. The Central Limit TheoremIn this appendix, we justify the a joint Central Limit Theoremfor d = (d1; : : : ; dK�1), where dk = 1pN PNn=1 Zk(n). By a
lassi
al argument known as the Cramér�Wold devi
e inprobability theory (see for instan
e van der Vaart 2000, pg.16)it is suf�
ient to establish a 
entral limit theorem for Æ :=1pN PNn=1 �(n) where �(n) := ���TZ(n) for any ve
tor ��� 2RK�1 , thereby redu
ing the problem from a ve
tor valued toa single valued Central Limit Theorem. Our assumptions andthe dis
ussion in the previous appendix entail that fZ(n); n =1; 2; : : :g are ergodi
 and have summable 
orrelations. The sameis therefore true for f�(n); n = 1; 2; : : :g, and we 
an applyTheorem 4.18 in van der Vaart (2010) to 
on
lude that thedistribution of Æ is asymptoti
ally normal. In summary, we obtainthe required joint Central Limit Theorem for (d1; : : : ; dK�1).Referen
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Figure 1. The �gure shows three 
ontrasts for the 
ase of K = 8. These wereobtained by applying a QR�de
omposition to the four ve
tors v, (k)k=1;:::;K ,(k2)k=1;:::;K and (k3)k=1;:::;K . The 
ontrasts are linear, U�shaped andsinusoidal, respe
tively. (Lines 
onne
ting the points are merely for guidan
e.)

Figure 2. Typi
al histograms for ensemble fore
asts for the AR pro
ess. Theensemble had 7 members, and the data set 
omprised 100 time instan
es. The leadtime was 1 time unit for the top panel and 10 time units for the bottom panel.Althoug both fore
ast systems are by 
onstru
tion reliable, the histogram for thelarger lead time is 
onsiderably �rougher�, that is there are stronger variations inthe 
ounts. This is due to the positive temporal 
orrelations between the ranks forthe fore
asting system at larger lead times.

Figure 3. Histograms of the p�values of testing �atness of the rank histogramsfor the AR pro
ess at lead time 10. The ensemble had 7 members, and the data set
omprised 400 time instan
es. The test statisti
 employed two 
ontrasts (linear andU�shaped). The p�values were obtained from 1000 Monte Carlo repetitions of thesame experiment. The top panel shows the p�values from the new test proposedin Se
tion 3 taking the rank 
orrelations into a

ount. The bottom panel shows thep�values from a 
lassi
al GOF test. It 
an be seen that the new test produ
es 
orre
tp�values, while ignoring the rank 
orrelation results in too low p�values and thustoo frequent reje
tion of the null hypothesis.

0 2 4 6 8 10
Lag m

0

0.2

0.4

0.6

0.8

1

P
ea

rs
on

 

Correlation between ranks

Figure 4. Pearson 
orrelation 
oef�
ient between the ranks Rn and Rn+m forensemble fore
asts for the AR pro
ess. The lead time in this 
ase was ten timeunits; values of the lag m between zero and ten are shown on the abs
issa.Different values of � are marked with different graphi
 symbols: 0:1 (�), 0:3 (5),0:5 (4), 0:7 (�), 0:9 (
). The 
orrelation 
oef�
ient does not depend onthe number of ensemble members. As dis
ussed, the rank 
orrelation is zero form � L irrespe
tive of �. Nonetheless, the 
orrelation for m < L depends on �and de
reases faster for smaller values of �.
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Figure 5. Rank histograms for lead times of L = 5, 10 and 20 in the Navier�Stokes experiment (top, middle, and bottom panel, respe
tively). Ea
h data set
omprised 300 veri�
ation�fore
ast pairs. There is no obvious deviation fromreliability, although the histogram for lead time L = 20 might be slightly slantedto the right by visual inspe
tion. The test dete
ts no signi�
ant deviation fromreliability though.
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Figure 6. Estimated Pearson 
orrelation 
oef�
ient between the ranks Rn andRn+m for ensemble fore
asts for the 2D Navier�Stokes. The lead time in this 
asewas 20 time units; values of the lag m between zero and 20 are shown on theabs
issa. Although no un
ertainty information has been in
luded su
h as error bars,it is evident that the 
orrelation de
reases indeed very qui
kly with in
reasing lag,and 
orrelation with larger lag do not 
ontribute mu
h to �, due to fast de
ay of
orrelation in this system. This implies that the test in this example has propertiesvery similar to the standard GOF test.
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