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Assessing the reliability of ensemble forecasting systems under

serial dependence

Jochen Brocker
School of Mathematical and Physical Sciences, University of Reading, United Kingdom, July 11, 2018

The problem of testing the reliability of ensemble forecasting systems is revisited.
A popular tool to assess the reliability of ensemble forecasting systems (for scalar
verifications) is the rank histogram; this histogram is expected to be more or less flat,
since for a reliable ensemble, the ranks are uniformly distributed among their possible
outcomes. Quantitative tests for flatness (e.g. Pearson’s goodness—of—fit test) have been
suggested; without exception though, these tests assume the ranks to be a sequence of
independent random variables, which is not the case in general as can be demonstrated
with simple toy examples. In this paper, tests are developed that take the temporal
correlations between the ranks into account. A refined analysis exploiting the reliability
property shows that the ranks still exhibit strong decay of correlations. This property
is key to the analysis, and the proposed tests are valid for general ensemble forecasting

methods

Introduction

large proportion of environmental forecasting systems
adays issue ensemble forecasts. Such systems are used at
jor (national or international) weather centres, but may also
orm part of large scale research projects.
s with any forecasting system, there is a need to objectively
ess the performance of ensemble forecasting systems.
Irasmuch as ensemble forecasts provide probabilistic information
ut the verification, such an assessment has to be statistical
n character. Several desirable (statistical) properties of ensemble
more generally probabilistic) forecasting systems have been
ed; see for instance Brocker (2009, 2012); Weigel (2011).
the present paper, we will be concerned with reliability. A
fogmal definition (in the context of ensemble forecasts) will be
en in Section 3, but roughly speaking, an ensemble forecasting
stem is reliable if at any point n in time, the ensemble members
(n), ..., Xk (n) and the verification Y (n) can be considered as
ving been drawn independently from an underlying (or latent)
ecast distribution. Reliability can be regarded as a statistical
1 hypothesis, and the aim of this paper is to develop tests for
s null hypothesis. In essence, this means to check whether the
1 hypothesis is plausible given actual data, that is, an archive of
verifications and corresponding ensemble forecasts.
A popular tool to assess the reliability of ensemble forecasting
tems are rank histograms (see e.g. Anderson 1996; Hamill and
Colucci 1997; Talagrand et al. 1997; Hamill 2001). It is assumed
that the verifications are real numbers; it is therefore possible to
determine, for any time instant n, the rank R(n) of the verification
Y (n) among the ensemble members X (n), ..., X (n). The rank
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systems with minimal extraneous assumptions.
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R(n) can assume the values 1,...,K + 1, and if the ensemble
forecasting system under concern is reliable, the distribution of
R(n) is uniform over these values. This suggests that a reliable
ensemble forecasting system should produce a “more or less”
uniform rank histogram. In most geophysical applications, the
verification Y'(n) will of course not be a real number but a
vector (of potentially very large dimension). There are several
approaches to reduce the case of multi-dimensional verification
to the scalar case (see e.g. Wilks 2004; Hansen and Smith 2004),
and these can be applied without any modfication to the situation
considered in the present paper. We will therefore consider the
verifications to be real numbers.

In reality a rank histogram will never be precisely flat, and
there are broadly speaking two possible reasons for this. Firstly,
deviations from the uniform distribution might be due to the
ensemble forecasting system failing to be reliable. There are
certain deficiencies of ensemble forecasting systems that appear to
be somewhat typical and which produce characteristic patterns in
the rank histogram. A U-shaped distribution for instance indicates
underdispersiveness, with a peaked distribution suggesting the
opposite; sloped rank histograms show under— or overforecasting
(depending on the sign of the slope).

Secondly, even a perfectly reliable ensemble forecasting system
will not produce a perfectly uniform rank histogram due to
random variations. Thus a test for reliability essentially amounts
to a test for the hypothesis that the ranks have a discrete uniform
distribution. A common test for evaluating whether a histogram
is consistent with a specific discrete distribution is Pearson’s
goodness—of—fit (GOF) test. (Taking the ordering of the possible
ranks into account, which the GOF test does not, more powerful
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tests can be obtained, for instance from the Cramér—von Mises
family of statistics, see Elmore (2005). In the present paper, we
will focus on variants of the GOF test though.)

A serious problem with applying the GOF test directly to rank
histograms for ensemble forecasting systems though is that the
ranks are generally not independent. This will be demonstrated
in Section 4 with a simple toy example. Independence however
is an important assumption in the GOF test that can not easily
be dispensed with. The general fact that verification—forecast
pairs can certainly not assumed to be independent is a difficulty
that affects statistical forecast evaluation in general, as has

n emphasised only relatively recently (see for instance Wilks

@0 Pinson et al. 2010; Siegert et al. 2017; Brocker 2018). A
medy suggested by Wilks (2010) is to use explicit (parametric)
umptlons regarding the dependence structure and distribution
f the forecasts, but the considered situation is very specific.

n the present paper, we will use an approach based on results
ilar to Brocker and Kuna (2018); Brocker (2018). The basic
1dga is that assummg the forecasting system is reliable, the

Aemble X(n) = (X1(n),...,Xk(n)) provides the statistical
perties ot Y (n), given the information available at the time

ﬁ forecast X (n) was issued, namely at time n — L, where L is
h lead time. This fact can be used to obtain (to some extent)
statlstlcal properties of the ranks, including their correlation

cture. In fact, in certain cases (corresponding effectively to
d time L = 1) the ranks turn out to be independent after all,
meaning that in this situation the classical GOF test can be used.
general though, the more complicated correlation structure of

the ranks needs to be taken into account. We will show that this is
possible, however. By modifying GOF-like tests in an appropriate

nner, we obtain tests for the reliability of ensemble forecasts.
ese tests are valid under minimal extraneous assumptions
ereby we mean assumptions that would not automatically

follow from the assumption of reliability and would have to be
asgumed in addition).

l a The goodness—of-fit test revisited

n this section, we will revisit the basic steps in deriving the
tribution of the goodness-of-fit test statistic. In particular, we
rify where the assumption of independence of the ranks
comes' in. We start with fixing some general notation. We let
(n) n=1,...,N} be a series of real-valued verifications,
h the 1ndex n representing the time. Further, {X(n),n =
,N'} is a series of corresponding ensemble forecasts, where
< > each time instant n the ensemble is given by a vector of K —
nsemble members, that is X(n) = (X;1(n),...,Xg 1(n)),

: JF re each ensemble member is again real valued. t
or a given y € R and x € RE~! we consider the function

) that i 1s equal to k if the rank of y among the K—dimensional

tor ) is equal to k. In other words, r(y, x) = k if precisely
1 components of x are smaller than or equal to y. The
function r can assume the values 1,..., K. Forn=1,..., N, we
ne R(n) :=r(Y(n),X(n)). That is R(n) is the rank of the

vetification Y (n) with respect to the ensemble X (n). We assume
that the ensemble forecasting system is reliable with respect to
the verifications. As said in the introduction, this means broadly
speaking that for each time n, the verification Y;, as well as each
individual ensemble member Xj(n),k=1,...,K —1 can be
considered independently drawn from some underlying forecast
distribution. This implies (again, a proof will follow in the next
section) that for each n the rank Ry, is uniformly distributed over
its possible values {1,..., K}. As has already been mentioned
though, there is no apriori reason why the ranks R(n),n = 1,2, ...
should be independent from one another.

__ Thisarticle is protected by copyright. All rights reserved.
TUsing K — 1 rather than K ensemble members will simplify subsequent notation.

To define the GOF test statistic, consider the counts

Z IL{R =k}

where the indicator function 1 4, of some event A is one if the
event happens and zero otherwise, and k =1, ..., K. Clearly, the
count Ny, is the height of the k’th histogram bar. Further we set

Ny, := (Number of n for which R(n

N, — N/K
Cp '—m ——F—.
N/K
Note that the expected value of ¢ is zero, since N/K is
the expected number of counts for each value of the rank, or
alternatively the expected height of the k’th histogram bar. The
GOF test statistic is given by

K

t=> ci=lel? )

k=1

where ¢ = (cp, ...
norm.

As we will see now, the test statistic ¢ has, asymptotically for
large N, a x? distribution with K — 1 degrees of freedom, if the
ranks are indeed independent. The key property of the variables
c1,-..,Cck is that they jointly satisfy a central limit theorem; for
this to happen, it is sufficient that the ranks R(n),n =1,..., N
are independent. It is worth noting already at this point though
that independence is not necessary, as will be discussed in the next
section. In any event, we assume that the ¢y, ..., cx have a joint
normal distribution, with mean zero as was already noted.

We now have to calculate the covariance matrix, but before
doing this, we note the following fact: let v € RE be the vector
with components v, = 1/v/K forallk =1,...,K.Then|v| =1
and also

K

vlie= chvk—\/_z:ck—O

k=1

,ck ), and ||.|| denotes the standard Euclidean

If we now write I'; ; := E(c;c;) for the covariance matrix of c,

then
K K

(Iv); = ZE(CiCj)Uj = E(¢; ZC]'U]') =0.
Jj=1 Jj=1
This means that the nullspace (or kernel) of I' is spanned by the
constant vector v; we stress that this is true irrespective of whether
the ranks are independent or not. To find the precise shape of
the covariance matrix I' though, we have to use independence. A
simple calculation will then reveal that

Fr=1-v-vl. )

This matrix is symmetric and has a nullspace spanned by v (as
was already seen), while any other vector w with the property
that vI'w = 0 is an eigenvector of I with eigenvalue one. The
condition that w is perpendicular to v just means that Zszl wy =
0; vectors with this property are called contrasts.

Let now w(l), . ,w(K_l) be a set of orthogonal contrasts
(such a set can contain at most K — 1 elements). Then the random

variables d = (d1,...,dx 1) defined through
K
=Y cwy) 3)
k=1

have again a normal distribution with mean zero, but now with
unit covariance matrix, since [E(d;dy) = (W(]))TFW(k) =0
It follows that dy,...,dx 1 are independent standard normal.



Therefore, Zdz, where the index k runs over a subset of
{1,...,K — 1}, has a X2 distribution, with degrees of freedom
given by the size of that subset. In particular, ||d||?> has a
x? distribution with K — 1 degrees of freedom. But since ||d||* =
llc||? = t, the same is true for ¢.

As an aside, we note that a user has the option to assess
the rank histogram by using only a subset of the random
variables dj,...,dg 1, or in other words, by projecting the
scaled counts cy,...,cx onto a reduced set of contrasts. This
has been suggested previously by Jolliffe and Primo (2008). The
user has complete freedom in choosing the desired contrasts,

long as they are orthogonal and normalised. To obtain
@h a set, it is suggested to start with a set of vectors
(“ that have roughly the desired shape (for instance
ear U—shaped sinusoidal, etc) and then apply a Gram—Schmidt
ocedure (or equivalently a (Q R—decomposition, see e.g. Golub
Van Loan 1996) to the vectors v, u(l) .,u(“) in order to
der them mutually orthogonal and normahsed Figure 1 shows
ee contrasts for the case of K = 8. These were obtained by
a lylng aQR- decomposmon to the four vectors v, (k)g=1,... K
Lk and (k )k 1,..,k- The contrasts are linear, U-
haped and sinusoidal, respectlvely

Tests valid under serial dependence

In the previous sectlon we discussed why the classical
F test statistic has a x? distribution with K — 1 degrees of
fréedom. If we look back at this discussion, we find that the
independence of the ranks was used in two places: in justifying
¢k, and when calculating

entral Limit Theorem for the ¢y, . . ., i
precise form of the covariance matrix I". With the condition
independence dropped, I" will not have any longer the form

own in Equation (2), and this is the main reason why applying
standard GOF test to rank histograms is not warranted in
neral We will discuss later in this section that a Central

l 'mt Theorem might still hold even though the ranks are not
independent. Further, even though T" is no longer known, the

evant correlations can be estimated from the data, and an
or will be provided below. For now, we assume that the
variables ¢1, . . ., cx have a normal distribution with mean

0 and some covariance matrix I'.
Ut remains true though that the nullspace of I is spanned by the
vector v as the derivation of this fact in the previous section did
depend on independence of the ranks. This implies that we
get a faithful representation of the scaled counts ¢y, ..., cx
projecting then onto a set of orthonormal contrasts as in
&Aaﬂon (3), that is by using the random variables d,...,dg 1
ned through Equation (3). We want to develop a test based

a subset d = (dy,...,ds) of these random variables, and we

ote the covariance matrix of these random variables by T; ; =

E(d;dj) = (w (’))TFW(J) where i,j <k < K —1. We keep &

d throughout the remainder of this section.

As the condition of independence of the ranks has been
dropped, T will not be the unit matrix any longer. (We note
again that T will later have to be estimated from the data.) We
consider the statistic ¢, = d? Y ~'d. This statistic is indeed a
generalisation of the statistic ¢ from the previous section, and the
two agree if the ranks are independent and kK = K — 1. Our claim
is that ¢, has a x2—distribution with « degrees of freedom as in the
independent case.

To see this, let U be a symmetric matrix so that UYU = 1 (i.e.
U is a square root of Y1), Then e = Ud is a vector of normal
random variables with zero mean and covariance matrix UTU =

1L, hengg;dhgiGoreprieaty @fc@ﬂrgtmdﬁﬂgﬂg%&&e&i standard

normal. As a consequence, ¢ = |[e|* has a y?—distribution with

 degrees of freedom. However,

i=|lel* =ele=d’U-Ud=d"T 'd = ts,
proving our claim.

For the remainder of this section, we will fill in the missing
parts of our argument. We will show that although the ranks are
not independent, they nevertheless satisfy a very strong decay
of correlation property which is a direct consequence of the
reliability assumption and forms the core of our analysis. We then
provide an estimator of the covariance matrix Y. The feasibility
of this estimator is due to the strong decorrelation property of the
ranks, and the assumption that the ranks form a stationary and
ergodic sequence. Stationarity of the sequence (R(1), R(2),...)
means that for any m, the joint distribution of (R(n),...,R(n +
m)) does not depend on n or, roughly speaking, is invariant with
respect to temporal shifts. A stationary sequence is ergodic if any
average of the form

converges to E[¢(R(n), ..., R(n+ m))] as N — co. Note that by
stationarity, this quantity does not depend on n. As ergodicity
usually presumes stationarity, we will take “ergodic” to mean
“stationary and ergodic”. Ergodicity of the ranks is the only
extraneous assumption we need to add. These properties are also
sufficient to justify the validity of the Central Limit Theorem
(more details will be provided in Appendices A and B).

The reliability assumption is interpreted to mean the following.
For every time instant n =1,..., N there exists an underlying
or latent forecast distribution p, over the real numbers. This
distribution is itself random and represents the distribution of Y
conditional on the information available at forecast time. More
formally, let F;, be the information available to the forecaster at
time n, and say that forecasts are issued with a lead time L, then
reliability means that

R(n+m)) (m fixed)

pn(A) =P(Y(n) € A1)

foralln =1,..., N and any set A on the real line.} The joint set of
verification and ensemble members (Y5, X1(n),...,Xg 1(n))
are independently drawn from this distribution, that is, for any n
and any sets Ag, ..., Ax_1 on the real line, it holds that

P(Y(n) S Ao,Xl('n) € Aq,...
= pn(Ao) - pn(Ag—1)-

, Xi—1(n) € Ax_1|Fn-1r)

The uniform distribution of the ranks, conditional on the forecast
information, is now an elementary consequence: for all n =
1,...,Nand k =1,..., K we have

B(R(n) = HF-1) = - 4)
We will graft another element to the reliability assumption which
is usually not made explicit but is evidently satisfied in most
applications, namely that for any n, the forecast information
Fn contains all verifications and ensembles up to that point; in
other words, at any time n the forecaster knows {Y (m),m =
1,...,n} and also {X(m),m =1,...,n}. This, in combination
with Equation (4), yields the following key identity:

B(R(n) = IR(1),..., R(n — L)) = 5)

¥Strictly speaking for any measurable set A on the real line.



foralln=1,...,N and k =1,..., K. Another way of saying
this is that for any n, the rank R;, is uniformly distributed and
independent from the ranks R(1),..., R(n — L), that is, from the
ranks known at forecast time. In particular, we obtain that in the
case of unit lead time (i.e. L = 1), the ranks {R(n),n =1,2,...}
are indeed fully independent; this implies that in this special
(but important) situtation, the classical GOF test for the rank
histogramm is valid.

Let now {w(l), cee w(“)} be a set of orthonormal contrasts,
and define

j=1

u n=1,...,N and k=1,...,k note that d;=

ﬁ SN Zi(n). We regard Z(n) = (Z1(n),. .., Zx(n)) with

n=1,...,N as a sequence of random vectors. The property (5)
implies that this sequence has finite correlation length of at most
1. To see this, note that for any n, the random vector Z(n)
depends on R(n) only. Hence, Z(n + [) is independent of Z(n) if
L. Further, E(Z(n)) = 0 and therefore

K
Zy(n) = \/EZ W§k)1{3(n):j} (6)

t1C

E(Z(n +1) - Z(n)") = B(Z(n + 1)) - EZn)")=0. (7)

t turns out that in order to establish a joint Central Limit
THeorem for d = (dy,...,dx), an additional assumption is

ded, namely that the ranks {R(n),n=1,2,...} form a
stationary and ergodic sequence. With this assumption and
property (7) in place, it follows from established results that d will

asymptotically normal with mean zero and some covariance
matrix Y'; we will not provide a proof here, but some more details
d references can be found in Appendix B.
‘An estimator for Y, the asymptotic covariance matrix of d, is
ded as well. We will use the estimator

{Z(n)Z(n +07 +z(n + l)Z(n)T} .

®)
His estimator can be shown to converge to Y, and a

monstration can be found in Appendix A. We stress that

validity of this estimator rests not only on the ergodicity
tion but also on the finite correlation property (7). For the
se L = 1, this estimator reduces to Y = 1 as it should.

ed,

<P

Numerical examples

start this section with a short list summarising the steps
eded to perform the test for flatness of a rank histogram. We
t {(Y(n),X(n)),n=1,...,N} be a sequence of real-valued
verifications and corresponding ensembles with K — 1 members.
t further {w(l), NN w(“)} be a set of orthonormal contrasts,

cribing possible deviations of a rank histogram from flatness
ithrs < K — 1).

1. Compute the ranks {R(n),n =1,...,N}.

2. Using the ranks and the contrasts, compute Z(n) from

Equation (6) forn=1,...,Nandk =1,...,k.

3. Compute the estimator Y for the covariance Y from
Equation (8).

4. Compute dj, = ﬁ EnN:1 Zy(n) for k=1,...,k and let
d=(dq,...,dx).

5. Now dTTled should have a x? distribution with x degrees
of freedom, and this can be used to compute the p—value.

CC

For the remainder of this section, we will discuss two numerical
examples. The first example considers a simple autoregressive
process; this has been chosen merely to illustrate the methodology.

The seeqfigafraRiplsonsGsdditeofiBnah ATHEIEIAUGYaXx periment

using the two dimensional Navier—Stokes equation.

Example 1: Autoregressive process In the first example,
the verification {Yn,n =1,2,...} forms an autoregressive
(AR) process of the form

Y(n+1)=aY(n)+((n+1), 9)

where {((n),n € Z} is a sequence of independent standard
normal random variables and « = 0.95. The information F,
available to the forecaster at time n is {Y (k),k < n}, that is
the entire history of observations up to and including Y (n).
Reliable ensemble forecasts can be generated by replacing ¢(n)
in Equation (9) with independent realisations of the noise process.
More specifically, let {£{(n),n=1,2,...} be a sequence of
independent random vectors §(n) = (£1(n),..., £k _1(n)), where
the components £ (n) are again independent and standard normal.
Then an ensemble forecast for lead time L and verifying at time
n + L is given by

XE(n+ L) = oY (n) + o1&r(n),
here, 0'% = 1;_“:: .
In this model, it is easy to see directly that two ranks are

independent if they are L or more steps apart, but that they are
dependent otherwise. To check this, we write Y (n + L) as

L—1
Y(n+L)=a"Y(n)+ ) a'¢(n+L-1).

(10)
=0
Therefore,
R(n+L)=r(Y(n+L),X(n+L))
L1 z (11)
= r(z a¢(n+L—-1),0.€(n)).
=0

(We recall that r(y,x) is the rank of y among the components
of x.) Equation (11) demonstrates that the temporal dependence
of the ranks is due to the temporal dependence of v (n) :=

lL:_Ol o¢(n+L—1). In view of Equation (10), the random
variable ¢y (n) describes the subsequent evolution of the
observations after the forecast Z(n) has been issued. We might
call ¢z, (n) the innovation; it is precisely the part of Y (n + L)
not captured by the forecast. If two observations Y (n) and Y (m)
are less than L time steps apart (i.e. |m —n| < L), then their
corresponding innovations will be dependent, due to overlap of
their evolutions after the respective forecasts have been issued.
This is also evident from the expression of the innovation. If
|rn — n| > L though, their innovations will be independent. Due
to Equation (11), the ranks will exhibit the same phenomenon.

Figure 2 shows typical histograms for ensemble forecasts in the
context of the AR process. The ensemble forecasting system uses
7 members, and the data set comprised 100 time instances. The
lead time was 1 time unit for the top panel and 10 time units for
the bottom panel of Figure 2. It is evident that the histogram for
the larger lead time shows considerably stronger variations in the
counts. This is due to the strong temporal correlations between
the ranks at larger lead times. The p—values for the top and bottom
panels are 0.7612 and 0.7199, respectively, using the test proposed
in Section 3 for the second histogram. Using a classical GOF test
would give a p—value of 0.0019 for the second histogram, thus
concluding wrongly that this forecast is not reliable.

In order to check whether the test presented in Section 3
takes the correlations correctly into account, we have created
1,000 Monte Carlo resamples of the experiment described above,
albeit with 400 time instances. For every Monte Carlo sample,
we computed the statistic ¢, for £ = 2, using a linear and a U-
shaped contrast, as described in Section 3, including the estimator



of the covariance matrix. If the presented theory is correct, then
t should follow a x? distribution with 2 degrees of freedom,
or equivalently the p—value should have a uniform distribution.
This turns out to be the case; a histogram of the p—values obtained
from our 1,000 Monte Carlo resamples is shown in the top panel
of Figure 3. Furthermore, a Kolmogorov—Smirnov test yields
a p—value of 0.6876, confirming that these follow a uniform
distribution.

For each Monte Carlo resample we have also calculated the
classical GOF statistic, that is, ignoring the correlations in the
ranks and assuming that Y is the identity matrix. That the

amples of that statistic do not follow a x? distribution with 2

rees of freedom is evident from the bottom panel of Figure 3,

ich shows a histogram of the p—values. These are evidently

Mcentrated at too low values, which implies that ignoring the
correlations in the ranks and applying the classical GOF test

uld result in too frequent rejection, that is, we would conclude

often that the rank histogram is not consistent with reliability.

t should be said that the bottom panel of Figure 3, although
A inconsistent with reliability, is a somewhat extreme case.
ing a single (U-shaped) contrast, we obtain a test that is more

owerful against U-shaped deviations from reliability. Applying

this test, the p—value of the example in Figure 3, bottom panel,
omes 0.0532 and is thus on the verge of being rejected with

s test.
egarding the power of the full test (using all contrasts), we
might wonder how large IV, the number of time instances, would
e to be in order that a p—value of 0.05 or less is obtained, while
the observed relative frequencies as well as the covariance matrix

T being left the same. It is easy to see that in this situation,
e test statistic ¢ is proportional to N; using the current value
t = 4.5072 and the inverse cumulative distribution function of
¢ v distribution with K — 1 degrees of freedom, we find that
has to increase about threefold (i.e. to about 300) to reject the

togram in Figure 3, bottom panel, as not flat.
We have also investigated the role of « and its influence on
l t? rank correlations. Strictly speaking, we should investigate
e correlation structure of the Z(n),n =1,2,..., as this will
gtermine the magnitude of Y, and the larger this quantity the
pawerful the test will be. To simplify the discussion though,
oqus on the correlation of the ranks directly; in the case of a

wgle linear contrast, these are in fact sufficient to determine Y.
ure 4 shows the Pearson correlation coefficient

_ COV(Rn,RnJ,—m)
prm Var(Rn)

tween the ranks R, and R,,,, for ensemble forecasts for the
process, for values of m =0,...,10 on the abscissa and
everal values of « (marked with different graphic symbols, see
re). A simple calculation, not shown here, reduces calculation
of' correlation coefficient to the numerical evaluation of an
integral. (It turns out that the correlation coefficient does not
end on the number of ensemble members.) As discussed, the
rank correlation is zero for m > L irrespective of . Nonetheless,
the correlation for m < L depends on « and decreases faster for
smaller values of «. It is also easy to see directly that the ranks are
once again independent in the limiting case o = 0.

The (probably not surprising) conclusion is that the dependence
structure of the ranks depends both on the lead time L as well as
the dependence structure of the verification—forecast pairs which
is ultimately determined by the nature of the uncerlying problem.
In particular, while the lead time L provides an upper bound on
the maximal correlation length of the ranks, fast decorrelation of
the verification—forecast pairs can render the correlation for larger
lags verynsmpdlrieyeadeted 11 blpy Fpnthgings fastdegorrelation

of the verification—forecast pairs will, in general, lead to the

test being more powerful. Prior knowledge about the correlation
structure of the verification—forecast pairs might be used to further
increase the efficiency of the estimator for Y, but it is not
clear how to do that in an operational situation and whether the
additional efford required would pay off in terms of increased test
power.

Example 2: Data assimilation in 2D Navier-Stokes The
second example uses data from an assimilation experiment with
the two dimensional Navier-Stokes equation. The equation was
implemented in the vorticity—streamfunction formulation

Orw + J(w, ) + Aw = f, (12)
on the two-dimensional unit torus T =]0,1[* with periodic
boundary conditions. Here, w is the vorticity and ¢ the stream
function; further, A = —vA (the Laplacian with viscosity v),
and the stream function is obtained from the vorticity through
solving the Poisson equation Aty = w. The function f represents
a forcing. Equation (12) (along with the Poisson equation) was
solved with a pseudospectral code on a square spatial lattice
with resolution N = 21 in both dimensions. In other words, the
equation was truncated at wavenumber 10, where we define the
wavenumber of a wave vector (k,1) as |(k,1)| := max{|k|, |I|}.
The viscosity was set to v =2-10" 2. The forcing was time
independent and composed of randomly selected amplitudes
and truncated at wavenumber 3, with a magnitude of ||f]| =
1.34. In this setup, the system produces complex nonperiodic
solutions. (Here and in the following, we use the norm ||f]| =

(foIf |2(av)d:c)1/2 for a—possibly complex—function on the
torus.)

Observational data was assimilated into an identical copy of
the two dimensional Navier—Stokes equation. As observations, the
Fourier modes with wavenumbers |(k,1)| < 1 were used (which
corresponds to observing nine modes, or equivalently, to taking
smoothed spatial observations on a grid with 3 x 3 gridpoints).
The observations were taken at temporal intervals of At = 0.5
time units and corrupted with normally distributed noise of about
5%. The observations were then assimilated simply by replacing
the relevant Fourier modes of the assimilated solutions with the
observed Fourier modes (see Hayden et al. 2011; Sanz Alonso
and Stuart 2014; Brocker et al. 2017, for theoretical analyses of
this assimilation method).

Ensembles were generated by randomly perturbing the analyses
fields. The distribution of the perturbations was taken to be
normal with mean zero and standard deviation |[dw| = 0.943.
Ensembles were generated by integrating the model forward with
these perturbed analysis fields serving as initial conditions. The
standard deviation for the perturbations was found by optimising
the mean square forecast performance for lead time of 5 units in
an offline experiment.

As verifications in these experiments, we use one of the
nine components of the observations employed for the data
assimilation (recall that observations on a 3 x 3 grid were
used for data assimilation). We analysed these verifications and
corresponding ensembles for lead times of L = 5, 10 and 20 time
units, each data set comprising 300 verification—forecast pairs.
No attempt was made to statistically recalibrate these ensembles.
Although there is no model error in this experiment, this does not
imply that the ensemble forecasting system is reliable, since the
data assimilation system is fairly primitive and we have no reason
to believe that ensembles comprise a reasonable representation
of the forecast distribution. The histograms for these three data
sets are shown in Figure 5. It is seen that the reliability of
this relatively simple ensemble forecasting system is not bad
by visual inspection. We applied the described test for flatness



of the rank histogram, first for two contrasts (i.e. k = 2). The
p-values for lead times L =5, 10 and 20 are 0.7872, 0.7495,
and 0.5209, respectively. Testing the full set of contrasts gives
p-values of 0.5507, 0.5572, and 0.5854; all these figures do not
provide a strong case for deviation from reliability. With regards to
the rank histogram corresponding to lead time L = 20 in particular
though, the histogram appears to have a slight slant to the right
(indicating underforecasting), but this effect might be masked by
the expected variation of the histogram. However, we find that
trace(Y y) = 8.63, while this value would be 7 for independent
ranks, and we can conclude that the variance of the histogram is
t in fact much larger than for the independent case.

e repeated the test for lead time L = 20 with a single, linear
ontrast and find a p—value of 0.3254, which might indicate a

ﬂht deviation from reliability. Note that we have cheated a
little bit, as the choice of the contrast was made based on the
a; choosing the contrasts depending on the data means that

contrasts would be functions of the data while the testing
methodology assumes they are not. As a final note, under the
ﬁumption of uncorrelated ranks the p—value for this case would

l Hb/e been 0.2676, so not in fact very different. For the variance,

e have the estimate 1.2708 which is fairly close to 1, again

ingicating that dropping the assumption of independence does not
ke much of a difference in this case.

rom our discussion of the AR—process, we speculate that this
1s 'due to a relatively fast decay of temporal dependencies in the
verification—forecast pairs, which would imply that although the

relations in the ranks cannot extend beyond lag 20 in this case,

they are effectively much shorter in the present situation. Figure 6
shows the estimated correlation coefficient between the ranks R,

d R,+m for this ensemble forecasting system at a lead time
‘i 20 time units; values of the lag m between zero and 20 are
own on the abscissa. This is just an estimate of the correlation

d although we have ommitted any uncertainty information such

error bars, there is no question that the correlation decreases
deed very quickly with increasing lag, and correlation with

ngr lag do not contribute much to Y, due to fast decay of
correlation in this system. This implies that the properties of the

t in this example are very similar to the standard GOF test. This
in general if the estimator Yy for the covariance matrix is

observed to be close to the unit matrix (as is the case in the present

Umple), which is easy to check in applications.

Conclusions and outlook
popular and practical tool to assess the reliability of ensemble
lerecasting systems (for scalar verifications) is the rank histogram.
Eor a reliable ensemble forecasting system, this histogram

expected to be more or less flat, since the ranks are

formly distributed among their possible outcomes. For a more
quantitative analysis though, it would be desirable to have a test
for the flatness of rank histograms, as certain random fluctuations
1 always be present even if the forecasting system is reliable.

have argued that classical approaches such as for example
Pearson’s goodness—of—fit test are not appropriate since these
tests rest on the assumption that the ranks form a sequence
of independent random variables. By revising the derivation of
Pearson’s goodness—of—fit test, we identified two places where the
assumption of independence is relevant: firstly it ensures that the
rescaled histogram counts satisfy a joint Central Limit Theorem,
and secondly it entails a very specific correlation structure for
these counts.
Although the ranks of a reliable ensemble forecasting system
are not independent in general, we have demonstrated both

analytieplly ;ande BupRctasiall By Bsyly M3 PRI Gegardification of

the goodness—of—fit test will still work. Central to our analysis is

the fact that for a reliable ensemble forecasting system, the ranks
still satisfy a strong decay of correlation property—the correlation
time of the ranks is even finite and given by the lead time less one.
(This result can be generalised to different types of forecasting
systems and might be of independent interest, see Brocker and
Kuna (2018); Brocker (2018).) Furthermore, it was shown how to
perform a “reduced” goodness—of—fit test using a restricted set of
contrasts, as suggested in Jolliffe and Primo (2008), but modified
so as to account for rank correlations. Apart from the technical
condition that the ranks form an ergodic sequence, the approach
does not require any extraneous or distributional assumptions.

The formalism was also applied to numerical examples.
First, data from a simple autoregressive process was considered,
with ensemble forecasts that were by construction reliable. The
experiments confirm that the formalism gives the correct results,
while not taking the rank correlations into account (by using a
classical goodness—of—fit test) yields too high rejection rates as
the distribution of the classical goodness—of—fit test statistic is no
longer a x?—distribution.

A second example used data from a simple fluid dynamical data
assimilation experiment. The results show that despite a relatively
crude data assimilation system, the ensembles are fairly reliable.
We also addressed the question whether the test looses power for
longer lead times as potentially systematic deviations from a flat
rank histogram are masked by strong variability of the histogram
counts, which seems not the case in that situation.

Outlook and future work An important fact emerging from
our analysis is that for a reliable ensemble forecasting system,
the ranks exhibit a finite correlation time which cannot exceed
the lead time. This result can be generalised to different types
of forecasting systems as has been done in Brocker and Kuna
(2018); Brocker (2018). Strong decay of correlations though
typically implies powerful asymptotic limit results such as Laws
of Large Numbers and Central Limit Theorems. It seems plausible
that these can be exploited to analyse other forecast evaluation
techniques rigorously under serial dependence; examples are
reliability diagrams (Brocker and Smith 2007) or Receiver (or
Relative) Operating Characteristic (Egan 1975; Brocker 2012).

An extension of the results in the present paper to stratified
rank histograms would also be desirable (Siegert et al. 2012).
Stratified rank histograms provide a more detailed picture of
reliability, conditional on different forecasting situations. This
extension seems to be fairly immediate and will be dealt with in a
forthcoming paper.

A. Covariance estimator

In this appendix, we discuss an estimator for T, the covariance

. N . ..
matrix of d=(dy,...,dgx_1) = LN Y n—1 Z(n) in the limit
N — oo, that is

T
T =

lim

1 N N
e | (0 ) (£ 70)

(Notation and definitions are as in Sec. 3.) We start with studying
the (matrix valued) covariance function

1) := EZ(n)Z(n +1)7),

noting that there is no dependence on n since {Z(n),n =1, 2,...}
is assumed ergodic and thus in particular stationary; note also
that ~(I) is defined for negative I, too, and in fact y(—1) = y(I)%.
Furthermore, we have «(!) = 0 if [ > L due to Equation (7). An



elementary calculation then gives

e AN =
N]E Z Z(n) Z Z(n) = Z (1- N)’Y(l)
n=1 n=1 |=—N+1
and hence
= N
T= lim_ >« —N)’y(l)=2’y(l). (13)
[=—N+1 ez

anks to Equation (7), the sum in Equation (13) contains only
tely many nonzero terms, namely for |I| < L. These terms can
e, estimated by empirical averages (i.e. averages over time), that

<

|

N
W) =5 3 2z + 1)
n=1

C

° ich converges to () due to the condition that the ranks are

ergodic (we only need estimators for 0 <[ < L since y(—I) =

)T is symmetric and ~(0) is the unit matrix). The estimator

T for T is given by replacing y(I) in Equation (13) with the
Himators ~yn (1). This gives

(14)

The Central Limit Theorem

this appendix, we justify the a joint Central Limit Theorem
foy d=(dy,...,dx_1), where dy = \/Lﬁ Zgzl Z(n). By a
ssical argument known as the Cramér-Wold device in
l qpbability theory (see for instance van der Vaart 2000, pg.16)
1t is sufficient to establish a central limit theorem for ¢ :=
L g:l A(n) where A(n) :=ATZ(n) for any vector A €
thereby reducing the problem from a vector valued to
a single valued Central Limit Theorem. Our assumptions and
the discussion in the previous appendix entail that {Z(n),n =
,...} are ergodic and have summable correlations. The same
therefore true for {A(n),n=1,2,...}, and we can apply
orem 4.18 in van der Vaart (2010) to conclude that the
tribution of § is asymptotically normal. In summary, we obtain
e required joint Central Limit Theorem for (dy,...,dg—1).
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Three contrasts for K =8
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re 1. The figure shows three contrasts for the case of K = 8. These were
ined by applying a Q R—decomposition to the four vectors v, (k)r=1,... K
k=1,...,k and (ks)kzl k. The contrasts are linear, U-shaped and
soidal, respectively. (Lines connecting the points are merely for guidance.)
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Figure 2. Typical histograms for ensemble forecasts for the AR process. The
ensemble had 7 members, and the data set comprised 100 time instances. The lead
time was | time unit for the top panel and 10 time units for the bottom panel.
Althoug both forecast systems are by construction reliable, the histogram for the
larger lead time is considerably “rougher”, that is there are stronger variations in
the counts. This is due to the positive temporal correlations between the ranks for
the forecasting system at larger lead times.
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p-Values for Correct Test
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Figure 3. Histograms of the p—values of testing flatness of the rank histograms
for the AR process at lead time 10. The ensemble had 7 members, and the data set
comprised 400 time instances. The test statistic employed two contrasts (linear and
U-shaped). The p—values were obtained from 1000 Monte Carlo repetitions of the
same experiment. The top panel shows the p-values from the new test proposed
in Section 3 taking the rank correlations into account. The bottom panel shows the
p—values from a classical GOF test. It can be seen that the new test produces correct
p—values, while ignoring the rank correlation results in too low p-values and thus
too frequent rejection of the null hypothesis.
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Figure 4. Pearson correlation coefficient between the ranks R, and R, 4., for
ensemble forecasts for the AR process. The lead time in this case was ten time
units; values of the lag m between zero and ten are shown on the abscissa.
Different values of « are marked with different graphic symbols: 0.1 (), 0.3 (v/),
0.5 (A), 0.7 (O), 0.9 (O). The correlation coefficient does not depend on
the number of ensemble members. As discussed, the rank correlation is zero for
m > L irrespective of a. Nonetheless, the correlation for m < L depends on «
and decreases faster for smaller values of c.
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@gure 5. Rank histograms for lead times of L = 5, 10 and 20 in the Navier—
S

es experiment (top, middle, and bottom panel, respectively). Each data set
prised 300 verification—forecast pairs. There is no obvious deviation from

eliability, although the histogram for lead time L = 20 might be slightly slanted
ﬂ he right by visual inspection. The test detects no significant deviation from

nbility though.
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Figure 6. Estimated Pearson correlation coefficient between the ranks R, and
R, 4 for ensemble forecasts for the 2D Navier—Stokes. The lead time in this case
was 20 time units; values of the lag m between zero and 20 are shown on the
abscissa. Although no uncertainty information has been included such as error bars,
it is evident that the correlation decreases indeed very quickly with increasing lag,
and correlation with larger lag do not contribute much to Y, due to fast decay of
correlation in this system. This implies that the test in this example has properties
very similar to the standard GOF test.
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