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Abstract. Constructing accurate, flexible, and efficient
parametrizations is one of the great challenges in the nu-
merical modeling of geophysical fluids. We consider here
the simple yet paradigmatic case of a Lorenz 84 model
forced by a Lorenz 63 model and derive a parametrization
using a recently developed statistical mechanical methodol-
ogy based on the Ruelle response theory. We derive an ex-
pression for the deterministic and the stochastic component
of the parametrization and we show that the approach allows
for dealing seamlessly with the case of the Lorenz 63 being a
fast as well as a slow forcing compared to the characteristic
timescales of the Lorenz 84 model. We test our results using
both standard metrics based on the moments of the variables
of interest as well as Wasserstein distance between the pro-
jected measure of the original system on the Lorenz 84 model
variables and the measure of the parametrized one. By test-
ing our methods on reduced-phase spaces obtained by pro-
jection, we find support for the idea that comparisons based
on the Wasserstein distance might be of relevance in many
applications despite the curse of dimensionality.

1 Introduction

The climate is a forced and dissipative system featuring vari-
ability on a large range of spatial and temporal scales, as a
result of many complex and coupled dynamical processes in-
side it (Peixoto and Oort, 1992; Lucarini et al., 2014a; Ghil,
2015). Numerical models are able to explicitly resolve only a
relatively short range of such scales. In particular, it is crucial

to derive efficient and accurate ways to surrogate the effect of
dynamical processes occurring on the small spatial and tem-
poral scales that are not explicitly resolved (e.g., because of
excessive computational or storage costs) by the model. The
operation of constructing so-called parametrizations is key to
the development of geophysical fluid dynamical models and
stimulates the investigation of the fundamental laws defining
the multiscale properties of the coupled atmosphere–ocean
dynamics (Uboldi and Trevisan, 2015; Vannitsem and Lu-
carini, 2016). Traditionally, the development of parametriza-
tions boiled down to deriving deterministic empirical laws
able to describe the effect of the small-scale dynamical pro-
cesses. More recently, it has become apparent that it is im-
portant to include stochastic terms in the parametrization that
are able to provide a theoretically more coherent representa-
tion of such effects and that lead, on a practical level, to an
improved skill (Palmer and Williams, 2008; Franzke et al.,
2015; Berner et al., 2017). A first way to derive or at least
justify the need for stochastic parametrizations comes from
homogenization theory (Pavliotis and Stuart, 2008), which
leads to constructing an approximate representation of the
impact of the fast scales on the slow variables as the sum of
two terms, a mean field term and a white noise term. Such an
approach suffers from the fact that one has to take the rather
nonphysical hypothesis that an infinite timescale separation
exists between the fast and the slow scale. As the climate is
a multiscale system, such a methodology is a bit problematic
to adopt. Yet, this point of view has been crucial in the devel-
opment of methods aimed at deriving reduced order models
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for a system of geophysical interest (see, e.g., Majda et al.,
1999, 2001, 2003; Franzke et al., 2005).

Mori et al. (1974) and Zwanzig (1960, 1961) analyzed, in
the context of statistical mechanics, the related problem of
studying how one can project the effect of a group of vari-
ables, with the goal of constructing effective evolution equa-
tions for a subset of variables of interest. They reformulated
the dynamics of such variables expressing them as a sum of
three terms: a deterministic term, a stochastic forcing, and a
memory term. The memory term defines a non-Markovian
contribution where the past states of the variables of interest
enter the evolution equation. In the limit of infinite timescale
separation, the last term tends to zero, whilst the random
forcing approaches the form of (in general, multiplicative)
white noise.

The triad of terms – deterministic, stochastic, and non-
Markovian – was also found by Wouters and Lucarini (2012),
who proposed a method (we refer to it in what follows as WL
parametrization) for constructing parametrizations based on
the Ruelle response theory (Ruelle, 1998, 2009). They in-
terpreted the coupling between the variables of interest and
those one wants to parametrize as a weak perturbation of
the otherwise unperturbed dynamics of the two groups of
variables. A useful feature of this approach is that it can
be applied on a wide variety systems that do not feature a
clear-cut separation of scales. The parametrizations obtained
along these lines match the result of the perturbative ex-
pansion of the projection operator introduced by Mori and
Zwanzig for describing the effective dynamics of the vari-
ables of interest (Wouters and Lucarini, 2013, 2016). An-
other quality of the WL parametrization is that it is not tai-
lored to optimize the representation of the statistics of some
specific statistical property, but rather approximates coher-
ently well all observables of the system of interest. This
method has already been successfully tested in simple to
intermediate-complexity multiscale models by Wouters et al.
(2016); Demaeyer and Vannitsem (2017), and Vissio and Lu-
carini (2018).

Conceptually similar results have been found through bot-
tom up, data driven approaches, by Kravtsov et al. (2005);
Chekroun et al. (2015a, b), and Kondrashov et al. (2015).
Specifically, Kravtsov et al. (2005) constructed effective
models from climatic time series through an extension of
the nonlinear case of the multilevel linear regressive method,
while Kondrashov et al. (2015) showed how non-Markovian
data-driven parametrizations emerge naturally when we con-
sider partial observations from a large-dimensional system.

Even when a parametrization is efficient enough to repre-
sent unresolved phenomena with the desired precision, prob-
lems arise when it comes to dealing with scale adaptivity.
Re-tuning the parametrization to a new set of parameters
of the model usually means running again long simulations,
adding further computational costs. For this reason the devel-
opment of a scale-adaptive parametrization is considered to
be a central task in geosciences (Arakawa et al., 2011; Park,

2014; Sakradzija et al., 2016). In a previous paper, the au-
thors demonstrated the scale adaptivity of the WL approach
by testing it in a mildly modified version of the Lorenz 96
model (Lorenz, 1996). A further degree of flexibility of this
approach has been explored in another recent publication
(Lucarini and Wouters, 2017), where the authors provided
explicit formulas for modifying the parametrization when the
parameters controlling the dynamics of the full system are al-
tered.

In this paper, we wish to apply the WL parametrization to
a simple dynamical system introduced by Bódai et al. (2011)
and constructed by coupling the Lorenz 84 (Lorenz, 1984)
model with the Lorenz 63 (Lorenz, 1963) model. In what
follows, we want to parametrize the dynamical effect of the
variables corresponding to the Lorenz 63 system on the vari-
ables corresponding to the Lorenz 84 system. We analyze
two different scenarios, where the Lorenz 63 model acts first
as a fast and then as a slow forcing, taking into account that
the WL parametrization is adaptive and able to seamlessly
treat both of them. Compared to what was studied in Vissio
and Lucarini (2018), the models investigated here have sim-
pler dynamics, as they are not spatially extended and their
coupling is simpler, since it is only one-way. Nonetheless,
we propose a significant advance with respect to our previ-
ous work in terms of methodology for evaluating the perfor-
mance of the parametrization. We wish to extend what was
studied in Vissio and Lucarini (2018) by focusing on a sys-
tematic comparison of the properties of the projected mea-
sure of the original coupled system on the subspace spanned
by the variables of the Lorenz 84 model with the actual mea-
sure of the parametrized model. In particular, we will study
the Wasserstein distance (Villani, 2009) between the coarse-
grained estimates of the two 3-dimensional invariant mea-
sures. Additionally, we will look at the Wasserstein distance
of the measures obtained by projecting onto two of the three
variables of interest, which allows for a comprehensive eval-
uation of how different the one-time statistical properties of
the two systems are. The Wasserstein distance has been pro-
posed by Ghil (2015) as a tool for studying the climate vari-
ability and response to forcings, and applied by Robin et al.
(2017) in a simplified setting.

In Sect. 2 we thoroughly describe the individual models
and the full coupled model, while in Sect. 3 we briefly re-
view Wouters and Lucarini parametrization and its applica-
tion to the Lorenz 84–Lorenz 63 coupled model. Section 4 is
dedicated to discussing the Wasserstein distance and in par-
ticular (a) whether it is efficient in summarizing the quality
of the parametrization, (b) how sensitive our analysis is to
the coarse graining of the phase space, and (c) whether use-
ful conclusions can be drawn by looking at the problem in a
projected space of two variables only. Section 5 provides the
main results of our analysis. In the last section we draw our
conclusions and propose future investigations.

Nonlin. Processes Geophys., 25, 413–427, 2018 www.nonlin-processes-geophys.net/25/413/2018/
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2 Models

2.1 Lorenz 84

The Lorenz 84 model (Lorenz, 1984) provides an extremely
simplified representation of the large-scale atmospheric cir-
culation:

dX
dt
=−Y 2

−Z2
− aX+ aF0, (1)

dY
dt
=XY − bXZ−Y +G, (2)

dZ
dt
=XZ+ bXY −Z, (3)

where the variableX describes the intensity of the westerlies,
while the variables Y and Z correspond to the two phases of
the planetary waves responsible for the meridional heat trans-
port. Thus, Eq. (1) describes the evolution of the westerlies,
subject to the external forcing F0, dampened both by the lin-
ear term −aX and by nonlinear interaction with the eddies
−Y 2 and −Z2. This interaction amplifies the eddies through
the terms XY and XZ in Eqs. (2)–(3). Furthermore, the ed-
dies are affected by the westerlies through the terms −bXZ
and bXY . The constant b regulates the relative timescale be-
tween displacements and amplifications. In Eqs. (2)–(3) we
can, as in Eq. (1), see a linear dissipation, whilst the sym-
metry between the two equations is broken by the external
forcing G.

2.2 Lorenz 63

The Lorenz 63 model is probably the most iconic chaotic dy-
namical system (Saltzman, 1962; Lorenz, 1963; Ott, 1993)
and was developed through a severe truncation of the par-
tial differential equations describing the Rayleigh–Bénard
problem (e.g., see Hilborn, 2000 for a complete, yet sim-
ple, derivation of the model) and describe the evolution of
three modes corresponding to large-scale motions and tem-
perature modulations in the Rayleigh–Bénard problem. The
three equations are the following:

dx̃
dt
= s(ỹ− x̃), (4)

dỹ
dt
= ρx̃− ỹ− x̃z̃, (5)

d̃z
dt
=−βz̃+ x̃ỹ, (6)

where x̃, ỹ, and z̃ are proportional, respectively, to the in-
tensity of the convective motions, to the difference between
temperatures of upward and downward fluid flows, and to
the difference of the temperature in the center of a convec-
tive cell with respect to a linear profile (since Eqs. 5–6 derive
from the thermal diffusion equation). The constants s, ρ, and
β are constants which depend on kinematic viscosity, ther-
mal conductivity, depth of the fluid, gravity acceleration, and

thermal expansion coefficient; specifically, s is also known
as the Prandtl number.

2.3 Coupled model

The full model used in this paper, proposed by Bódai et al.
(2011), is constructed by coupling the two low-order models
introduced before as follows. The Lorenz 63 system acts as
a forcing for the Lorenz 84 system, which represents the dy-
namics of interest. The dynamics of the two systems have a
timescale separation given by the factor τ and can be written
as follows:

dX
dt
=−Y 2

−Z2
− aX+ a(F0+hx), (7)

dY
dt
=XY − bXZ−Y +G, (8)

dZ
dt
=XZ+ bXY −Z, (9)

dx̃
dt
= τs(ỹ− x̃), (10)

dỹ
dt
= τ(ρx̃− ỹ− x̃z̃), (11)

d̃z
dt
= τ(−βz̃+ x̃ỹ). (12)

It is important to underline that the coupling between the
Lorenz 84 and the Lorenz 63 is unidirectional: the latter
model affects the former and, acts as an external forcing, with
no feedback acting the other way around.

In what follows, we choose fairly classical values for the
parameters: a = 0.25, b = 4, s = 10, ρ = 28, and β = 8/3;
the two forcings are set as F0 = 8 (corresponding to the so-
called winter conditions) and G= 1. The parameter h is a
modulation coefficient that defines the coupling strength and
we choose h= 0.25 in order to provide a stochastic forcing
between two and four orders of magnitude smaller (on aver-
age) than the tendencies of the X variable (see below). The
parameter τ defines the ratio between the internal timescale
of the two systems: in the case of τ > 1, the Lorenz 63 pro-
vides a forcing that is typically on timescales shorter than
those of the system of interest; while if τ < 1, the forcings
can be interpreted as a modulating factor of the dynamics of
the Lorenz 84 model. In the first case, in particular, we can
interpret the Lorenz 63 as being the cause of the forcing ex-
erted by convective motions in the synoptic-scale dynamics
described by the Lorenz 84 model. The numerical integration
scheme used is a Runge–Kutta 4 with a time step of 0.005
(Bódai et al., 2011).

Henceforth, we will refer to the standard Lorenz 84 model
as the uncoupled model, whilst the Lorenz 84 subject to
the coupling with the Lorenz 63 will be called the coupled
model.

www.nonlin-processes-geophys.net/25/413/2018/ Nonlin. Processes Geophys., 25, 413–427, 2018
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3 Wouters and Lucarini parametrization

Wouters and Lucarini (2012, 2013, 2016) presented a top-
down method suitable for constructing parametrizations for
chaotic dynamical systems in the form

dK

dt
= FK(K)+ ε9K(K,J ), (13)

dJ

dt
= FJ (J )+ ε9J (K,J ), (14)

where K = (X,Y,Z) is the vector of the variables we are
interested in and the J = (̃x, ỹ, z̃) is the vector of the vari-
ables we want to parametrize. The coefficient ε controls the
strength of the couplings, i.e., 9K(K,J ) and 9J (K,J ). The
parametrization is obtained assuming the chaotic reference
(Gallavotti and Cohen, 1995) and applying Ruelle response
theory (Ruelle, 1998, 2009); the effect of the coupling in
Eq. (13) is approximated, up to the second order in ε, by
three terms: the first order consists of a deterministic term,
while the second order includes a stochastic forcing and a
non-Markovian term. The general form of the parametriza-
tion (e.g., Vissio and Lucarini, 2018) is

dK

dt
= FK(K)+ εD(K)+ εS(K)+ ε2M(K), (15)

where D, S, and M indicate, respectively, the determinis-
tic, stochastic, and memory terms and are defined below in
Eqs. (18)–(22). Note that the projection onto the variables
of interest of invariant measure of the full system given in
Eqs. (13)–(14) and the invariant measure of the system give
in Eq. (15) are the same up to second order in the coupling
parameter ε, as discussed in Wouters and Lucarini (2013);
Vissio and Lucarini (2018). Since the couplings are seen as
a perturbation applied to an otherwise uncoupled system, the
three terms in Eq. (15) can be calculated considering the sta-
tistical properties of the unperturbed equations

dK

dt
= FK(K), (16)

dJ

dt
= FJ (J ). (17)

The numerical integration of Eqs. (16)–(17) may allow to use
less computational resources with respect to Eqs. (13)–(14),
particularly in the case of multiscale systems.

As discussed in Vissio and Lucarini (2018), the WL
parametrization has the remarkable feature of having a good
degree of adaptivity in terms of changes to the timescale
separation between the K and J variables, to be performed
by rescaling, e.g., t→ τ in Eq. (17). In this scale, the term
D(K) in Eq. (15) is unchanged, while the timescale of the
autocorrelation of the noise term S(K) and of the mem-
ory term M(K) are reduced by a factor τ/t . In the specific
case of the Lorenz 96 system studied in Vissio and Lucarini
(2018), the adaptivity is more general than the one related

to changes in the timescale separation only, and points to
the possibility of developing general adaptive parametriza-
tion schemes beyond such specific model. It is not yet clear
whether this might lead to constructing spatial scale-adaptive
parametrizations.

3.1 Constructing the parametrization

The coupling strength ε, shown in Eqs. (13)–(14) and
in Eq. (15), assumes the value ε = ah, while the cou-
pling terms are, with respect to the vector (X,Y,Z) in
Lorenz 84 phase space, 9K(K,J )=9K(J )= (̃x,0,0) and
9J (K,J )=9J (K)= (0,0,0). Note that this is a case of
independent coupling – i.e., a coupling that depends only on
the variable of the other equation – for which the application
of the methodology is simpler than the dependent coupling
case (Wouters and Lucarini, 2012).

The deterministic term D in Eq. (15) is a measure of the
average impact of the coupling on the K dynamics and can
be written as

D(K)= ρ0, J (9K(J ))= lim
T→∞

1
T

T∫
0

9K(J )dτ

= ρ0, J ((̃x),0,0)= lim
T→∞

1
T

T∫
0

(̃x(τ ),0,0)dτ

= (D,0,0), (18)

where ρ0,x(A) (x=K,J ) is the expectation value of A com-
puted according to the invariant measure given by the uncou-
pled dynamics of the x̃ variables. In Eq. 18, we have used the
expression of the coupling given in Eq. (7) and we have com-
puted the ensemble average as a time average on the ergodic
measure of x̃. Since the measure of Lorenz 63 is symmetric
for x̃→−x̃, one could think of choosing D(K)= (0,0,0).
Nevertheless, this is the limit for a run of infinite time length
– in our case 146 000, 10 years in Lorenz models. Therefore,
it seems appropriate to compute D using the time series given
by the uncoupled Lorenz 63 and Eq. (18), as we do for the
second order of the parametrization, see below.

Since the coupling shown in Eq. (7) depends only on one
of the variables (in this case the x̃) of the system we want to
parametrize, the stochastic term can be written as

S(K)= (ω(t),0,0), (19)

where the properties of ω(t), a stochastic noise, are defined
by its correlation R(t) and its time average 〈ω(t)〉:

R(t)= 〈(ω(0),0,0), (ω(t),0,0)〉
= ρ0, J ((9K(J )−D(K))(9K(ft (J ))−D(K))
= ρ0, J (((̃x(0),0,0)− (D,0,0))((̃x(t),0,0)
− (D,0,0))),

〈ω(t)〉 = 0. (20)

Nonlin. Processes Geophys., 25, 413–427, 2018 www.nonlin-processes-geophys.net/25/413/2018/
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As discussed in Wouters and Lucarini (2012, 2013), and Vis-
sio and Lucarini (2018), for more complex couplings the
stochastic term assumes the form of a multiplicative noise.
We have used the software package ARFIT (Neumaier and
Schneider, 2001; Schneider and Neumaier, 2001) to con-
struct time series of noise with the desired properties defined
by Eq. (20).

The last term in Eq. (15) is the non-Markovian contribu-
tion to the parametrization and can be written as follows:

M(K)=

∞∫
0

h(t2,K(t − t2))dt2, (21)

where

h(t2,K)=9J (K)ρ0, J (∂J9K(ft2(J )))
= (0,0,0) · ρ0, J (∂J (̃x(f

t2 (̃x,0,0)),0,0)). (22)

As discussed in Sect. 2.3, the evolution of the variables of
the Lorenz 63 model – see Eqs. (10)–(12) – are independent
of the state of the variables corresponding to the Lorenz 84
model. As a result, the first factor on the right-hand side of
Eq. (22) vanishes, so that the parametrization we derive is
fully Markovian.

After the implementation of the Wouters and Lucarini pro-
cedure, Eq. (7) will be parametrized as

dX
dt
=−Y 2

−Z2
− aX+ a[F0+h(D+ S)]; (23)

Equation (23), together with Eqs. (8)–(9), will be hence-
forth indicated as the system constructed with second or-
der parametrization, whilst the same equations without the
stochastic term (therefore comprehending the first order, de-
terministic term only), namely

dX
dt
=−Y 2

−Z2
− aX+ a[F0+hD], (24)

will be called the first order parametrization.

4 Wasserstein distance

We wish to assess how well a parametrization allows us to re-
produce the statistical properties of the full coupled system.
In this regard, it seems relevant to quantify to what extent the
projected invariant measure of the full coupled model on the
variables of interest differs from the invariant measures of the
surrogate models containing the parametrization. In order to
evaluate how much such measures differ, we resort to consid-
ering their Wasserstein distance (Villani, 2009). Such a dis-
tance quantifies the minimum “effort” in morphing one mea-
sure into the other, and was originally introduced by Monge
(1781), somewhat unsurprisingly, to study problems of mili-
tary relevance, and later improved by Kantorovich (1942).

Starting from two distinct spatial distributions of points,
described by the measuresµ and ν, we can define the optimal
transport cost (Villani, 2009) as the minimum cost to move
the set of points corresponding to µ into the set of points
corresponding to ν:

C(µ,ν)= inf
π∈5(µ,ν)

∫
c(x,y)dπ(x,y), (25)

where c(x,y) is the cost for transporting one unit of mass
from x to y and 5(µ,ν) is the set of all joint probability
measures whose marginals areµ and ν. The functionC(µ,ν)
in Eq. (25) is called the Kantorovich–Rubinstein distance. In
the rest of the paper, we will consider the Wasserstein dis-
tance of order 2:

W2(µ,ν)=

{
inf

π∈5(µ,ν)

∫
[d(x,y)]2dπ(x,y)

} 1
2
, (26)

where d(x,y) is the Euclidean distance between x and y.
Euclidean distance is given by

d(µ,ν)=

[
n∑
i=1
(xi − yi)

2

] 1
2

. (27)

We can also define the Wasserstein distance also in the
case of two discrete distributions

µ=

n∑
i=1

µiδxi , (28)

ν =

n∑
i=1

νiδyi , (29)

where xi and yi represent the location of the different points,
with mass given, respectively, by µi and νi . We can construct
the order 2 Wasserstein distance for discrete distributions as
follows:

W2(µ,ν)=

{
inf
γij

∑
i,j

γij [d(xi,yj )]
2

} 1
2

, (30)

where γij is the fraction of mass transported from xi to xj .
This latter definition of Wasserstein distance has already

been proven effective (Robin et al., 2017) for providing a
quantitative measurement of the difference between the snap-
shot attractors of the Lorenz 84 system in the instance of
summer and winter forcings.

Hereby we propose to further assess the reliability of the
WL stochastic parametrization by studying the Wasserstein
distance between the projected invariant measure of the orig-
inal system on the first three variables (X,Y,Z) and the
invariant measures obtained using the surrogate dynamics
corresponding to the first and second order parametrization.
Nevertheless, since the numerical computations for optimal
transport through linear programming theory are not cheap,

www.nonlin-processes-geophys.net/25/413/2018/ Nonlin. Processes Geophys., 25, 413–427, 2018
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Figure 1. Poincaré section in Z = 0 of (a) coupled model, (b) uncoupled model, (c) 1st order parametrization, and (d) 2nd order parametriza-
tion. For case τ = 5, the Lorenz 63 model acts as a fast forcing on the Lorenz 84 model.

a new approach is required. In order to accomplish it, we
perform a standard Ulam discretization (Ulam, 1964; Tantet
et al., 2018) of the measure supported on the attractor, by
coarse graining on a set of cubes with constant sides across
the phase space. We will discuss below the impact of chang-
ing the sides of such cubes.

The coordinates of the cubes will then be equal to the
location xi , while the corresponding densities of the points
are used to define γij ; finally, we exclude from the subse-
quent calculation all the grid boxes containing no points at
all. Our calculations are performed using a modified ver-
sion of the software for Matlab written by Gabriel Peyré and
made available at http://www.numerical-tours.com/matlab/
optimaltransp_1_linprog/ (last access: 1 March 2018), con-
veniently modified to include the subdivision of the phase

space in cubes and the assignment of corresponding density
to those cubes.

5 Parametrizing the coupling with the Lorenz 63 model

In this section we show the results corresponding to the case
τ = 5. Therefore, Lorenz 84 and Lorenz 63 are seen as the
slow and the fast dynamical systems, respectively.

5.1 Qualitative analysis

We first provide a qualitative overview of the performance of
the parametrization by investigating a few Poincaré sections,
which provide a convenient and widely used method to vi-
sualize the dynamics of a system in a two-dimensional plot
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Figure 2. Poincaré section inX = 1 of (a) coupled model, (b) uncoupled model, (c) 1st order parametrization, and (d) 2nd order parametriza-
tion. For case τ = 5, the Lorenz 63 model acts as a fast forcing on the Lorenz 84 model.

(Eckmann and Ruelle, 1985; Ott, 1993); typically, the plane
chosen for the section of Lorenz 84 isZ = 0. Figure 1a shows
the Poincaré section at Z = 0 of the variables X and Y of the
coupled model given in Eqs. (7)–(12). Panel (b) of the same
figure shows the Poincaré section of the Lorenz 84 model ob-
tained by removing the coupling with the Lorenz 63 model.
Finally, panels (c) and (d) show the Poincaré sections of the
modified Lorenz 84 models obtained by adding the first and
second order parametrization, respectively. Visual inspection
suggests that the second order parametrization does a good
job in reproducing the properties of the full coupled model.

Metaphorically, our parametrization aims at describing as
accurately as possible the impact of “convection” on the
“westerlies”. It is insightful to look at how it affects the prop-
erties of the two variables – Y and Z – that are not directly

impacted by it. This amounts to looking at the impact of the
parametrization of “convection” on the “large-scale plane-
tary waves” and, consequently, on the “large-scale heat trans-
port”. Therefore, we look into theX = constant Poincaré sec-
tion, in order to highlight the properties of Y and Z. The four
panels in Fig. 2 are structured as in Fig. 1 and depict the Pon-
caré section computed for X = 1. Also in this case, the sec-
ond order parametrization provides a far better match to the
coupled model, featuring a remarkable ability to reproduce
the main features of the pattern of points.

In order to provide further qualitative evidence of our re-
sults, in Fig. 3a–d we show the trajectories in the phase space
of the X, Y , and Z variables for the four considered models.
For the sake of clarity, the plots are created using just 5 years
(365 time units). In the case of the coupled model, the attrac-
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Figure 3. A 3-D view of the attractor of (a) coupled model, (b) uncoupled model, (c) 1st order parametrization, and (d) 2nd order parametriza-
tion. For case τ = 5, the Lorenz 63 model acts as a fast forcing on the Lorenz 84 model.

tor spans over more extreme values of the variables and the
second order parametrization successfully imitates this fea-
ture, while the simple deterministic correction, once again, is
completely inadequate.

5.2 Evaluation of the performance of the
parametrization

Further to the qualitative inspection, we provide here quan-
titative comparisons to support our study. All the remaining
simulations in this section are run for 100 years (7300 time
units) with a time step of 0.005; thus, each attractor is con-
structed with 1 460 000 points. We have tested that the results
presented below are virtually unchanged when considering a
smaller time step of 0.001.

We first look into the probability density functions (PDFs)
of the variables X, Y , and Z, which describe, loosely speak-

ing, our climate. Figure 4 shows the PDF of the X variable
for the four considered models. As expected, the second or-
der parametrization allows for reconstructing, with great ac-
curacy, the statistics of the coupled model. The bimodality of
the uncoupled Lorenz 84 model is reproduced by the model
featuring the first order parametrization, while the second
order model accurately predicts the unimodal distribution
shown by the coupled model. The PDFs for variables Y and
Z are shown in Figs. 5 and 6, respectively. Also here, where
the external forcing does not destroy the bimodality of the
distributions found in the uncoupled case, WL parametriza-
tion leads to a very good approximation of the properties of
the coupled model. In particular, the tails of the distributions
are represented with a high level of precision, making it pos-
sible to seemingly reproduce with good accuracy the extreme
values of the variables. This is a matter worth investigating in
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Table 1. Expectation values for the ensemble average of the first two moments of the variables X, Y , and Z. The uncertainty is indicated as
standard deviation over the ensemble of realizations with the corresponding standard deviations σ . All the values are multiplied by 102. For
case τ = 5, Lorenz 63 acts as a fast-scale model.

Observables Uncoupled model 1st order parametrization 2nd order parametrization Coupled model
(×102) (×102) (×102) (×102)

X± σ
X

101.5± 0.4 101.3± 0.5 97.2± 0.3 97.1± 0.3
Y ± σ

Y
6.1± 0.8 6.5± 1.2 13.7± 0.7 13.9± 0.4

Z± σ
Z

27.0± 0.2 26.9± 0.3 31.0± 0.2 31.3± 0.5
var(X)± σvar(X) 34.9± 0.8 35.2± 1.0 43.6± 0.7 43.5± 0.3
var(Y )± σvar(Y ) 84.4± 0.1 84.4± 0.1 82.8± 0.4 82.6± 0.3
var(Z)± σvar(Z) 82.6± 0.1 82.6± 0.2 81.5± 0.3 81.4± 0.3
cov(XY)± σcov(XY) −5.4± 0.8 −5.7± 1.1 −11.1± 0.6 −11.2± 0.3
cov(XZ)± σcov(XZ) −3.7± 0.1 −3.4± 0.2 −8.0± 0.2 −8.3± 0.4
cov(YZ)± σcov(YZ) −7.7± 0.2 −7.7± 0.4 −1.6± 0.4 −1.3± 0.2
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Figure 4. Probability density of the X variable. For case τ = 5, the
Lorenz 63 model acts as a fast forcing on the Lorenz 84 model.
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Figure 5. Probability density of the Y variable. For case τ = 5, the
Lorenz 63 model acts as a fast forcing on the Lorenz 84 model.

-3 -2 -1 0 1 2 3 4

Z

0

0.1

0.2

0.3

0.4

0.5

0.6

P
ro

ba
bi

lit
y 

de
ns

ity

Uncoupled model
Coupled model
First order param.
Second order param.

Figure 6. Probability density of the Z variable. For case τ = 5, the
Lorenz 63 model acts as a fast forcing on the Lorenz 84 model.

a separate study. Note that, since the WL parametrization is
constructed to have skill for all observables, it is not so sur-
prising that it can also perform well far away from the bulk
of the statistics (see discussion in Lucarini et al., 2014b).

Aside from the analysis of the PDF, a further statistical
investigation can be provided by looking into the numeri-
cal results provided by first moments of the variables and
their uncertainty, which is computed as the standard devia-
tion derived from the analysis of an ensemble of runs. We
have performed just 10 runs, but our results are very robust.
The results for the statistics of the first two moments are re-
ported in Table 1: all the quantities inspected clearly show
that the second order parametrization allows for reproducing
very accurately the moments statistics of the coupled model.

If the considered PDFs depart strongly from unimodal-
ity, the analysis of the first moments can be of little use,
and it becomes hard to have a thorough understanding of the
statistics by adopting this point of view. As discussed above,
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Figure 7. Wasserstein distances from the coupled model with respect to number of cubes per side: (a) 3-D case, (b) projection onto XY
plane, (c) projection onto XZ plane, and (d) projection onto YZ plane. For case τ = 5, the Lorenz 63 model acts as a fast forcing on the
Lorenz 84 model.

we wish to supplement this simple analysis with a more ro-
bust evaluation of the performance of the parametrizations
by taking into account the Wasserstein distance. A first is-
sue to deal with in order to compute the Wasserstein distance
consists of carefully choosing the number of cubes used for
the Ulam projection. Figure 7a shows the Wasserstein dis-
tance between the invariant measure of the coupled model
projected onto the XYZ space and the invariant measure of
the uncoupled Lorenz and of the models obtained using the
first and second order parametrization. We find that for all
choices of the coarse graining, the measure of the model
with the second order parametrization is, by far, the clos-
est to the projected measure of the coupled model. Instead,
the deterministic parametrization provides a negligible im-

provement with respect to the trivial case of considering the
uncoupled model, as expected given the discussion follow-
ing Eq. (18). What is shown here gives a quantitative evalu-
ation of the improved performance resulting from adding a
stochastic parametrization. The second piece of information
is that the estimated Wasserstein distance has only a weak
dependence on the degree of the coarse graining and seems
to approach its asymptotic value for the finest (yet still pretty
coarse) Ulam partitions considered here. This is encouraging
as the findings one can obtain at low resolution seem to be
already very meaningful and useful.

A well-known problem of Ulam’s method is the fact that it
can hardly be adapted to high-dimensional spaces – this is the
so-called curse of dimensionality. Additionally, evaluating
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Figure 8. Poincaré section in Z = 0 of (a) coupled model, (b) uncoupled model, (c) 1st order parametrization, and (d) 2nd order parametriza-
tion. For case τ = 1

6 , the Lorenz 63 model acts as a slow forcing on the Lorenz 84 model.

the Wasserstein distance in high dimensions itself becomes
extremely computationally challenging. In order to partially
address these problems, we repeat the analysis shown in
Fig. 7a for the measures projected onto the XY , XZ, and
YZ planes, thus constructing the so-called sliced Wasserstein
distances. Results are reported in Fig. 7b–d, respectively. We
find that, unsurprisingly, the distance of the projected mea-
sure is strictly lower than the distance in the full phase space,
ceteris paribus. What is more interesting is that all the obser-
vations we made for Fig. 7a apply for the other panels. There-
fore, it seems reasonable to argue that studying the Wasser-
stein distance for projected spaces might also provide useful
information on the full system.

In order to extend the scope of our study, we have re-
peated the analysis described above for the case τ = 1

6 . Such

a choice implies that the model responsible for the forcing
has an internal timescale which is larger than the one of the
model of interest. We remark that the WL parametrization, as
discussed in Vissio and Lucarini (2018), is not based on any
assumption of timescale separation between the variables of
interest and the variables we want to parametrize. We report
below only the main results for the sake of conciseness.

Figure 8a–d show the Poincaré sections inZ = 0 for all the
considered models. In the case of the coupled system, most
of the fine structure one finds in the uncoupled model is lost,
and we basically have a cloud of points with weaker features
than what is shown in Fig. 1 for τ = 5. Nonetheless, also in
this case the model with the second order parametrization
reproduces (visually) quite well what is shown in Fig. 8a,
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Figure 9. Wasserstein distances from the coupled model with respect to number of cubes per side: (a) 3-D case, (b) projection on XY plane,
(c) projection on XZ plane, and (d) projection on YZ plane. For case τ = 1

6 , the Lorenz 63 model acts as a slow forcing on the Lorenz 84
model.

and, in particular, shows matching regions where the density
of the points is higher.

The analysis performed considering the Wasserstein dis-
tance between the measures is shown in Fig. 9. Without go-
ing into details, one finds that the same considerations we
made for τ = 5 are still valid for τ = 1

6 regarding the perfor-
mance of the parametrization schemes and the role of coarse
graining. Additionally, we observe that, for each choice of
coarse graining, the distance between the measure of the
parametrized models and the actual projected measure of
the coupled model is larger for τ = 1

6 , thus indicating the
parametrization procedure performs worse in this case. This
fits with the intuition one can have by checking out how well
Fig. 8b–d reproduce panel (a) in Fig. 8 vs. what one finds in
the case of Fig. 1.

6 Conclusions

Developing parametrizations able to surrogate efficiently and
accurately the dynamics of unresolved degrees of freedom is
a central task in many areas of science, and especially in geo-
sciences. There is no obvious protocol in testing parametriza-
tions for complex systems, because one is bound to look
only at specific observables of interest. This procedure is
not error-free, because optimizing a parametrization against
one or more observables might lead to unfortunate effects on
other aspects of the system and worsen, in some other as-
pects, its performance.

In this paper we have addressed the problem of con-
structing a parametrization for a simple yet meaningful two-
scale system, and then testing its performance in a possi-
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bly comprehensive way. We have considered a simple six-
dimensional system constructed by coupling a Lorenz 84 sys-
tem and a Lorenz 63 system, with the latter acting as forcing
to the former, and the former being the subsystem of inter-
est. We have included a parameter controlling the timescale
separation of the two systems and a parameter controlling
the intensity of the coupling. We have built a first order and
a second order parametrization able to surrogate the effects
of the coupling using the scale-adaptive WL method. The
second order scheme includes a stochastic term, which has
proved to be essential for radically improving the quality of
the parametrization with respect to the purely deterministic
case (first order parametrization), as already visually shown
by looking at suitable Poincaré sections.

We show here that, in agreement with what was discussed
in previous papers, the WL approach provides an accurate
and flexible framework for constructing parametrizations.
Nonetheless, the main novelty of this paper lies in our use of
the Wasserstein distance as a comprehensive tool for measur-
ing how different the invariant measures (“the climates”) of
the uncoupled Lorenz 84 model, and of its two versions with
deterministic and stochastic parametrizations are from the
projection of the measure of the coupled model on the vari-
ables of the Lorenz 84 model. We discover that the Wasser-
stein distance provides a robust tool for assessing the quality
of the parametrization, and, quite encouragingly, meaning-
ful results can be obtained when considering a very coarse-
grained representation of the phase space. A well-known is-
sue with using a methodology like the Wasserstein distance is
the so-called curse of dimensionality: the procedure itself be-
comes unfeasible when the system has a number of degree of
freedom above a few units. We have addressed (partially) this
issue by looking at the Wasserstein distance of the projected
measures on the three two-dimensional spaces spanned by
two of the three variables of the Lorenz 84 model. We find
that the properties of the Wasserstein distance in the reduced
spaces follow closely those found in the full space. We main-
tain that diagnostics based on the Wasserstein distance in
suitably defined reduced-phase spaces should become stan-
dard in the analysis of the performance of parametrizations
and in intercomparing models of any level of complexity.
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