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Background: LRRK2 mutations are causative for Parkinson disease, but regulation of LRRK2 remains elusive.
Results: Arsenite induces loss of LRRK2 Ser910/Ser935 phosphorylation and 14-3-3 binding, increased self-association, attenu-
ated kinase activity and GTP binding, and translocation to centrosomes.
Conclusion: LRRK2 is regulated by arsenite-induced signaling and oxidative stress.
Significance: Understanding LRRK2 regulation will provide novel approaches toward developing therapeutic tools targeting
LRRK2 activity.

Mutations in the gene encoding leucine-rich repeat kinase 2
(LRRK2) are a common genetic cause of Parkinson disease, but the
mechanisms whereby LRRK2 is regulated are unknown. Phos-
phorylation of LRRK2 at Ser910/Ser935 mediates interaction with
14-3-3. Pharmacological inhibition of its kinase activity abolishes
Ser910/Ser935 phosphorylation and 14-3-3 binding, and this effect is
also mimicked by pathogenic mutations. However, physiological
situations where dephosphorylation occurs have not been defined.
Here, we show that arsenite or H2O2-induced stresses promote loss
of Ser910/Ser935 phosphorylation, which is reversed by phosphatase
inhibition. Arsenite-induced dephosphorylation is accompanied
by loss of 14-3-3 binding and is observed in wild type, G2019S, and
kinase-dead D2017A LRRK2. Arsenite stress stimulates LRRK2
self-association and association with protein phosphatase 1�,
decreases kinase activity and GTP binding in vitro, and induces
translocation of LRRK2 to centrosomes. Our data indicate that sig-
naling events induced by arsenite and oxidative stress may regulate
LRRK2 function.

Parkinson disease (PD)4 is a neurodegenerative disorder
characterized by rigidity, tremor, postural instability, and other
symptoms, and for the familial form (around 10% of cases), a
number of causative genetic factors have been identified (1–3).
Mutations in the gene coding for LRRK2 are a frequent cause of
autosomal dominant familial PD (4, 5), present in about 5% of
familial cases and 1–2% of apparently sporadic cases (6). LRRK2
is a large protein with two enzymatic domains: a GTPase
domain (ROC; Ras of complex proteins) that is thought to oper-
ate in tandem with the adjacent COR (C-terminal of ROC)
domain and a serine/threonine protein kinase domain (7, 8).
The protein also contains N-terminal ankyrin-like repeats, leu-
cine-rich repeats, and a WD40 domain (9). The most prevalent
mutation, G2019S, enhances the kinase activity of LRRK2 and
induces neuronal cell death in vitro (10, 11) and in vivo (12).

LRRK2 is constitutively phosphorylated at Ser910 and Ser935,
and phosphorylation is required for binding of 14-3-3 proteins,
which in turn control the cellular localization of LRRK2 (13).
Several pathogenic mutants, including R1441C and Y1699C,
show markedly diminished phosphorylation at these sites and
decreased 14-3-3 interaction (14). Additionally, pharmacolog-
ical inhibition of LRRK2 kinase activity leads to decreased
Ser910/Ser935 phosphorylation, resulting in a concomitant de-
crease in 14-3-3 binding and inducing translocation of LRRK2
into discrete cytoplasmic pools (15). However, kinase-dead
variants of LRRK2 do not show loss of Ser910/Ser935 phosphor-
ylation (15) or altered cellular localization (16) under IN-1
treatment. This suggests a feedback loop whereby inhibition of
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active LRRK2 kinase alters activity of unidentified kinases or
phosphatases, which impacts the phosphorylation status of
LRRK2 itself. A recent study has suggested that Ser910/Ser935

phosphorylation is mediated by I�B kinases in response to acti-
vation of the Toll-like receptor pathway, but this is not blocked
by inhibition of LRRK2 kinase activity (17). These studies sug-
gest the existence of diverse pathways that regulate LRRK2
phosphorylation status not related to its kinase activity, which
remain largely unexplored (18).

Oxidative stress is believed to play an important role in the
pathogenesis of PD, with the parkinsonism-linked genes
PARK2, PINK1, and DJ1 being associated with mitochondrial
dysfunction and increased reactive oxygen species-linked cel-
lular effects (reviewed in Ref. 19). Dopaminergic cell loss, char-
acteristic of PD, can be mimicked in vivo by exposure to toxins
such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)
(20, 21) or rotenone, which inhibit Complex I of the mitochon-
drial respiratory chain (22, 23). LRRK2 has been linked to pro-
tection from mitochondrial stress through interaction with
kinases of the mitogen-activated protein kinase family (24),
whereas recent studies suggest that G2019S LRRK2 causes
uncoupling of mitochondrial oxidative phosphorylation (25,
26).

Based on these data, we hypothesized that LRRK2 is involved
in the oxidative stress response and explored this using the
oxidative stressor arsenite. We assessed changes in phosphory-
lation, self-association, kinase activity, GTP binding, and cellu-
lar localization of LRRK2 under arsenite stress. We found that
both arsenite and H2O2-induced stress promoted the loss of
LRRK2 phosphorylation at sites Ser910/Ser935 in stable induci-
ble expression cell lines as well as of endogenous LRRK2 in a
lymphoblastoid cell line, whereas this was rescued by inhibition
of protein phosphatases. WT LRRK2 and the variants R1441C,
D2017A (kinase-dead), and G2019S responded to oxidative
stress in a similar manner with loss of constitutive phosphory-
lation and loss of 14-3-3 binding. Arsenite stress induced
LRRK2 self-association as well as accumulation of very high
molecular mass forms of LRRK2. Treatment with arsenite
resulted in attenuation of kinase activity in LRRKtide phosphor-
ylation and autophosphorylation assays and a decrease in
LRRK2 binding to GTP in vitro. Arsenite stress also induced
LRRK2 translocation to ubiquitin proteasomal centers localiz-
ing at centrosomes. Our data collectively support a role of oxi-
dative stress in modulating LRRK2 activity and suggest a
sequence of signaling events induced by arsenite stress.

EXPERIMENTAL PROCEDURES

Cell Culture, Treatments, and Constructs—Inducible HEK-
293T cell lines expressing different GFP LRRK2 variants were
grown and cultured as described previously (14). Human lym-
phoblastoid cells were obtained from the Coriell Institute cell
repositories. The 3�FLAG-tagged construct of LRRK2 in pCH-
MWS plasmid was a gift from Dr. J. M. Taymans (KU Leuven,
Belgium) (27). Treatments with oxidative stressors were carried
out with the described concentrations of sodium arsenite or
H2O2 for 45 min. The LRRK2 inhibitor LRRK2-IN1 was used at
1 �M for 2 h. MG132, lactacystin, and nocodazole were used at
50 �M for 6 h. In the combination treatment experiments, cells

were primed with IN-1 for 75 min or with MG132 or nocoda-
zole for 5 h before the addition of arsenite for the last 45 min of
the treatment. In the calyculin A experiments, cells were pre-
treated with 10 nM calyculin A for 15 min before the addition of
arsenite, IN-1, or H2O2 and incubation for an additional 30 min.

Co-immunoprecipitation—HEK-293T cells stably express-
ing GFP WT LRRK2 were transfected with 3�FLAG-LRRK2
variants using Lipofectamine 2000 (Invitrogen) as per the man-
ufacturer’s instructions. After 24 h, cells were lysed in buffer
containing 20 mM Tris/HCl (pH 7.4), 137 mM NaCl, 3 mM KCl,
10% (v/v) glycerol, 1 mM EDTA, and 0.3% Triton X-100 supple-
mented with protease inhibitors (Roche Applied Science) and
phosphatase inhibitors (Pierce). Lysates were centrifuged at
21,000 � g, 4 °C for 10 min, and the supernatants were analyzed
for protein concentration (Pierce). 20 �g of total protein from
each supernatant was analyzed by SDS-PAGE for expression of
the proteins in question. 400 �g of each sample was precleared
with protein G beads (Sigma-Aldrich) for 1 h at 4 °C, and sub-
sequently, GFP-LRRK2 was immunoprecipitated with Chro-
motek-GFP-Trap-agarose resin (Allele Biotech) for 2 h at 4 °C.
The GFP-agarose was gently washed six times with buffer con-
taining 20 mM Tris/HCl (pH 7.4), 137 mM NaCl, 3 mM KCl (all
from KD Medical), and 0.1% Triton X-100. The washed beads
were boiled for 10 min in 4� NuPAGE loading buffer (Invitro-
gen) supplemented with 1.4 M �-mercaptoethanol and analyzed
by SDS-PAGE. Each co-immunoprecipitation was repeated in
three independent experiments, and quantification was per-
formed by estimating the ratio of immunoprecipitated binding
partner to the amount of LRRK2 construct pulled down on the
beads.

Size Exclusion Chromatography—Following treatment with
sodium arsenite or vehicle control, LRRK2IN-1, or sodium
arsenite plus LRRK2IN-1, HEK-293T cells were harvested in
PBS supplemented with protease inhibitors and phosphatase
inhibitors (Roche Applied Science and Pierce) and lysed using
five freeze-thaw cycles in liquid nitrogen. Lysates were centri-
fuged at 21,000 � g, 4 °C for 10 min, and the supernatants were
then passed through 0.45-�m filters (Nanosep MF, Pall Life
Sciences) by centrifugation at 14,000 � g for 3 min to remove
any insoluble material. Size exclusion chromatography was
performed using a BioAssist G4SWXL column (7.8 mm � 30.0
cm; Tosoh Bioscience) with PBS as the mobile phase as
described before (16). The collected fractions were analyzed by
SDS-PAGE followed by Western blot analysis for GFP-LRRK2.
The distribution of LRRK2 in each fraction was estimated by
quantitation densitometry of the bands corrected to the total
amount of immunoreactivity in all fractions.

Western Blot Antibodies—Standard Western blot protocols
were used with the following antibodies: anti-phospho-Ser910

LRRK2 (UDD1 15(3)), anti-phospho-Ser935 LRRK2 (UDD2
10(12)), anti-phospho-Thr1410 LRRK2 (MJFR4-25-5), and anti-
LRRK2 (C41-2) from Abcam; anti-phospho-Ser51 eIF2� from
Epitomics; anti-eIF2� and anti-ubiquitin from Santa Cruz Bio-
technology, Inc.; and anti-�-actin from Sigma-Aldrich.

GTP Binding Assay—The GTP binding properties of LRRK2
were assessed as described previously (28). Briefly, HEK-293T
cells were treated with 0.5 mM sodium arsenite for 45 min and
lysed in buffer containing 20 mM Tris/HCl (pH 7.4), 137 mM
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NaCl, 3 mM KCl, 10% (v/v) glycerol, 1 mM EDTA, and 1% Triton
X-100 supplemented with protease inhibitors (Roche Applied
Science) and phosphatase inhibitors (Pierce), by 1 h of rotation
at 4 °C. Lysates were centrifuged at 21,000 � g, 4 °C for 10 min,
and supernatants were precleared with agarose beads for 1 h,
rotating at 4 °C, followed by centrifugation at 3,000 � g, 4 °C for
5 min to separate the lysate from beads. Subsequently, equal
amounts of protein were incubated with 30 �l of GTP-agarose
(Sigma-Aldrich, G9768) with rotation for 2 h at 4 °C with some
samples supplemented with 10 mM GTP as a competitive inhib-
itor of binding to the beads. GTP-agarose beads were washed
three times in lysis buffer, eluted with 4� NuPAGE loading
buffer, and analyzed by SDS-PAGE. In a separate experiment, a
titration of increasing concentrations of GTP was used to elute
LRRK2 from GTP-agarose beads before analysis by Western
blot.

Kinase Assay—In vitro kinase assays were performed as
described previously (10, 29). For the LRRKtide assay, FLAG-
tagged LRRK2 was transiently expressed in HEK293 FT cells for
24 h, and proteins were purified in lysis buffer (20 mM Tris/HCl
(pH 7.4), 300 mM NaCl, 3 mM KCl, 10% (v/v) glycerol, 1 mM

EDTA, and 1% Triton X-100 supplemented with protease
inhibitors (Roche Applied Science) and phosphatase inhibitors
(Pierce) with FLAG M2-agarose beads (Sigma). In vitro auto-
phosphorylation kinase assays in the presence of different con-
centrations of sodium arsenite were performed with 10 nM

recombinant GST-LRRK2(970 –2527) (Life Technologies) or
recombinant GST-CK1� (Signal Chem) in 1� kinase buffer (Cell
Signaling), 6 �Ci of [33P]ATP (3000 Ci/mmol; PerkinElmer Life
Sciences), and 10 �M ATP for 30 min at 30 °C. Reactions were
terminated by adding 4� NuPAGE loading buffer and analyzed by
SDS-PAGE, whereas incorporated 33P was detected by autora-
diography. In the LRRKtide phosphorylation assay, incorporation
of 33P was detected by liquid scintillation counting.

Immunostaining—HEK-293T cells were seeded at 7 � 104

cells/well on 12-mm coverslips precoated with laminin/poly-D-
lysine (Millicell EZ slide, Millipore) and cultured as described
before (14). Cells were fixed in 4% (w/v) paraformaldehyde/
PBS, blocked in 5% (v/v) FBS in PBS, and stained in blocking
solution for 2 h. Primary antibodies were anti-LRRK2 (Abcam),
anti-�-tubulin (Abcam), anti-�-tubulin (Sigma-Aldrich). After
three washes in PBS, the cells were incubated for 1 h with FITC-
and TRITC-conjugated secondary antibodies and TO-PRO-3
nuclear stain (Invitrogen). After additional washing steps, the
cells were analyzed by confocal microscopy (Zeiss LSM 710).

Statistical Analysis—Experiments examining phosphoryla-
tion levels of LRRK2 under oxidative stress, LRRK2 self-associ-
ation experiments, and centrosomal localization experiments
were analyzed by one-way ANOVA with Tukey’s post hoc test.
A two-tailed Student’s t test was used in the GTP binding exper-
iments. All statistical analyses were performed using GraphPad
Prism version 4 for Windows (GraphPad Software, San Diego,
CA). Mean values � S.E. are indicated.

RESULTS

Oxidative Stress Induces Loss of LRRK2 Constitutive Phosphor-
ylation and Impaired 14-3-3 Binding—To investigate how oxi-
dative stress alters phosphorylation of endogenous LRRK2, we

treated human lymphoblastoid cells with arsenite or H2O2. We
observed a concentration-dependent reduction in Ser935 phos-
phorylation with arsenite (�100 �M), and with H2O2 (�200
�M) (Fig. 1A). Arsenite stress promotes translational arrest by
mediating phosphorylation of the mammalian translation ini-
tiation factor eIF2�. Activation of this cellular stress response
was therefore verified by monitoring the concentration-depen-
dent increase in eIF2� phosphorylation under the same condi-
tions (Fig. 1A).

To examine whether these effects were also seen with mutant
forms of LRRK2, we repeated these experiments in stably
expressing LRRK2-inducible HEK-293T cell lines (10, 30, 31).
H2O2 (Fig. 1B) or arsenite (Fig. 1C) induced loss of Ser910/Ser935

phosphorylation of WT as well as R1441C, D2017A, and
G2019S mutants in a concentration-dependent manner.
LRRK2 Y1699C displayed greatly reduced constitutive Ser910/
Ser935 phosphorylation, in agreement with previous studies
(14).

To further evaluate the requirement of kinase activity,
LRRK2-expressing cells were treated with arsenite in the pres-
ence or absence of the LRRK2 kinase inhibitor LRRK2IN-1. As
with endogenous LRRK2, treatment with 0.5 mM arsenite
caused a reduction in Ser910/Ser935 phosphorylation for WT,
R1441C, G2019S, and the kinase-dead D2017A. Treatment
with LRRK2IN-1 induced a comparable loss of phosphorylation
but, crucially, not in the kinase-dead D2017A mutant (Fig. 1, C
and D).

We also looked at Thr1410 autophosphorylation of immuno-
affinity-purified GFP-LRRK2 (Fig. 1, C and E) (32). We
observed increased Thr(P)1410 signal in G2019S compared with
WT, whereas arsenite treatment induced loss of Thr1410 phos-
phorylation in WT LRRK2 in a similar fashion to treatment
with LRRK2IN-1 but had a lesser effect on G2019S Thr(P)1410

(Fig. 1E).
Loss of Ser910/Ser935 phosphorylation should decrease

LRRK2 binding to 14-3-3 proteins. To test this, we immunopre-
cipitated LRRK2 from cells expressing WT LRRK2 or mutants
after treatment with arsenite and/or LRRK2IN-1. In all cases,
loss of Ser910/Ser935 phosphorylation was accompanied by
decreased co-immunoprecipitation of 14-3-3 (Fig. 1C).

The differential effects of LRRK2IN-1 and arsenite stress on
phosphorylation at Ser910/Ser935 of kinase-inactive D2017A
suggest that the underlying mechanism does not rely on LRRK2
kinase activity. Because a recent study suggested that LRRK2
phosphorylation at Ser910/Ser935 is modulated by protein phos-
phatase 1 (PP1) (18), we tested whether arsenite-induced
dephosphorylation was reversed by phosphatase inhibition.
Calyculin A treatment of lymphoblastoid cells in the presence
of arsenite, H2O2, or LRRK2IN-1 kinase inhibitor restored
Ser935 phosphorylation of endogenous LRRK2 protein (Fig. 2, A
and B). Arsenite promoted the association of LRRK2 with PP1�
in a co-immunoprecipitation assay in cells transiently overex-
pressing FLAG LRRK2, whereas this effect was not observed for
LRRK2IN-1 or H2O2 (Fig. 2, C and D). These results suggest
that oxidative stress can modulate LRRK2 constitutive phos-
phorylation and 14-3-3 binding through a pathway that is
largely independent of the kinase activity of LRRK2 but
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depends on PP1/PP2A phosphatase activity and that arsenite
can act to stabilize the interaction of LRRK2 with PP1�.

Oxidative Stress Promotes LRRK2 Self-association and
Assembly of Larger Complexes—Although LRRK2 is believed to
be largely monomeric in cells, it can also form dimers that may
have enhanced in vitro enzymatic activity (7, 33–35). To inves-
tigate whether oxidative stress has an effect on the self-associ-
ation of LRRK2, we performed co-immunoprecipitation using
GFP-LRRK2-stably expressing HEK-293T cells co-expressing
FLAG-LRRK2, with and without arsenite treatment. Arsenite
treatment enhanced the self-association of LRRK2 (Fig. 3, A

and B). This was not dependent on LRRK2 kinase activity
because co-treatment with LRRK2IN-1 did not impede
self-association.

LRRK2 dimerization is thought to be mediated by its ROC
domain (8, 36, 37) in a GTP-dependent fashion (38) and is
believed to be required for its enzymatic activity (33, 38, 39). To
investigate the requirement of GTP binding or active kinase for
the increase in self-association under arsenite, we investigated
the association of WT with mutant LRRK2 variants, includ-
ing the GTP binding-deficient K1347A and T1348A and the
kinase-dead K1906M (Fig. 3, C and D). Arsenite enhanced the

FIGURE 1. Arsenite-induced cellular stress promotes dephosphorylation of LRRK2 and loss of 14-3-3 interaction. A, endogenous LRRK2 has decreased
Ser935 phosphorylation in response to treatment with increasing concentrations of arsenite or H2O2 in human lymphoblastoid cells. eIF2� phosphorylation at
Ser51 is induced under the same conditions of cellular stress. B, treatment with increasing concentrations of H2O2 induces loss of Ser910 and Ser935 phosphor-
ylation of GFP LRRK2 WT and the variants R1441C, D2017A, and G2019S in stable expression HEK-293T cells. C, treatment with arsenite (0.5 mM, 45 min) induces
LRRK2 dephosphorylation at Ser910 and Ser935 along with loss of 14-3-3 binding for all variants tested. LRRK2IN-1 induces loss of phosphorylation and 14-3-3
binding in WT, R1441C, and G2019S but not in the kinase-dead D2017A. Phosphorylation at Thr1410 is increased in G2019S compared with WT and the other
variants. Arsenite treatment induces a significant loss in Thr1410 phosphorylation of WT LRRK2. D, quantification of loss of Ser935 LRRK2 phosphorylation after
arsenite treatment; for all LRRK2 constructs where phosphorylation was detectable, this was reduced in the presence of arsenite (one-way ANOVA; Tukey’s post
hoc test; *, p � 0.01; **, p � 0.05; n � 3 independent experiments/condition). E, quantification of loss of Thr1410 phosphorylation after arsenite treatment
(one-way ANOVA; Tukey’s post hoc test; *, p � 0.01; n � 3 independent experiments/condition). IP, immunoprecipitation. Error bars, S.E.
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association of LRRK2 K1906M and G2019S with WT, indicating
that this is not dependent on kinase activity. Strikingly, stimulation
of self-association by arsenite was attenuated in the case of ROC-
COR domain mutants, compared with the other variants. Based
on previous reports on the involvement of the ROC-COR domain
in dimerization, our data support the formation of a functional
LRRK2 complex induced by arsenite treatment.

We next examined the effect of arsenite-induced stress on
the apparent molecular mass of the LRRK2 complex under
native conditions by size exclusion chromatography. WT
LRRK2 eluted over a range of apparent molecular masses with
the highest signal for immunoreactivity observed between 440
and 660 kDa, as described previously (16). Arsenite treatment
shifted the elution profile of WT LRRK2 with the accumulation
of very high molecular mass species (�1 megadaltons) (Fig. 3, E
and F). Interestingly, kinase inhibition by LRRK2IN-1 caused
only a subtle alteration in the elution of WT LRRK2 in the
presence or absence of arsenite. Dephosphorylation induced by
LRRK2IN-1 is insufficient for LRRK2 self-assembly (Fig. 3A)
and the formation of large native protein complexes (Fig. 3E),

suggesting that additional mechanisms are involved in the for-
mation of arsenite-induced LRRK2 molecular complexes. We
also investigated whether PP1� is recruited to high molecular
weight species and observed that its distribution in size exclu-
sion chromatography is not altered with arsenite treatment
(Fig. 3E, bottom panels). Although this suggests that the general
pool of PP1� in cells is not shifted to apparent high molecular
weight fractions, it does not argue against an involvement in arsen-
ite-induced LRRK2 dephosphorylation because PP1� is broadly
distributed throughout cells, and substoichiometric amounts of
this enzyme should be able to dephosphorylate LRRK2.

Arsenite Stress Impairs LRRK2 GTP Binding—Our data sug-
gest that arsenite can induce LRRK2 self-association (Fig. 3).
Because GTP binding is thought to be important for dimeriza-
tion (38), we tested whether arsenite can affect the GTP-bind-
ing properties of LRRK2. We performed in vitro assays using
GTP-agarose to precipitate endogenous LRRK2 from lysates of
lymphoblastoid cells or GFP LRRK2 from stably expressing
HEK-293T cells. Arsenite treatment induced a significant
decrease in the amount of LRRK2 bound to GTP-agarose at

FIGURE 2. Calyculin A treatment prevents endogenous LRRK2 dephosphorylation induced by arsenite or H2O2. A, lymphoblastoid cells were treated with
calyculin A (10 nM, 45 min) and/or arsenite (0.5 mM), LRRK2IN-1 (2 �M), and H2O2 (2 mM), and the levels of Ser935 phosphorylated and total endogenous LRRK2
were assessed. B, quantification of Ser935 phosphorylation relative to total LRRK2 (one-way ANOVA; Tukey’s post hoc test; *, p � 0.01; n � 2 independent
experiments/condition). C, arsenite treatment induces the association of PP1� with LRRK2, as revealed by co-immunoprecipitation (IP), in HEK-293T cells
transiently expressing WT FLAG LRRK2. D, quantification of PP1� association (one-way ANOVA; Tukey’s post hoc test; *, p � 0.01; n � 3 independent
experiments/condition). Error bars, S.E.
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endogenous and overexpressed levels (Fig. 4, A–D). We per-
formed a specific elution of LRRK2 from the GTP resin with
increasing concentrations of GTP (Fig. 4, E and F). Our results
are consistent with a decrease in in vitro GTP binding affinity
for LRRK2 from arsenite-treated cells, the functional signifi-
cance of which merits further investigation.

To investigate whether the effect of arsenite on Ser935 phos-
phorylation is dependent on GTP binding, we examined the
K1347A GTP binding-deficient mutant (Fig. 4, G and H). When

expressed in cells, K1347A LRRK2 is constitutively phosphory-
lated at Ser935 at lower levels than WT protein, suggesting that
GTP binding supports this phosphorylation. However, arsenite
stress was capable of diminishing Ser935 phosphorylation of
K1347A LRRK2, suggesting that GTP binding is not required
for arsenite-induced dephosphorylation.

Arsenite Attenuates in Vitro Kinase Activity of LRRK2—
LRRK2 possesses an active kinase domain, the activity of which
is reportedly influenced by some genetic mutations, dimeriza-

FIGURE 3. Arsenite stress promotes LRRK2 self-association. A, treatment with arsenite induces the association of FLAG LRRK2 WT with GFP LRRK2 WT when
co-expressed in HEK-293T cells. B, quantification of FLAG LRRK2 co-immunoprecipitating with GFP LRRK2 (ratio of immunoprecipitated binding partner to the amount
of GFP LRRK2 construct pulled down on the beads; one-way ANOVA; Tukey’s post hoc test; *, p � 0.01; **, p � 0.001; n � 2 independent experiments/condition). C,
assessment of association of mutant LRRK2 variants with WT LRRK2 under arsenite. Arsenite induces the association of LRRK2 mutants with WT LRRK2 and to a lesser
extent with K1347A, T1348N, R1441C, and Y1699C mutants. D, quantification of LRRK2 variants co-immunoprecipitating with GFP LRRK2 (one-way ANOVA; Tukey’s
post hoc test; WT � arsenite versus T1348N � arsenite: *, p � 0.01; WT � arsenite versus Y1699C � arsenite: **, p � 0.05; n � 3 independent experiments/condition).
E, arsenite, but not LRRK2IN-1, treatment of stably expressing HEK-293T cells promotes accumulation of high molecular mass forms of GFP LRRK2 WT on size exclusion
chromatography. Arsenite stress did not alter the distribution of PP1�. Western blots of gradient fractions are shown, and approximate size markers are indicated. F,
elution profiles of GFP LRRK2 WT after treatment of HEK-293T cells with DMSO alone (black), 0.5 mM arsenite (red), 10 �M LRRK2IN-1 (blue), or both arsenite and
LRRK2IN-1 (green). Error bars, S.E. from duplicate independent experiments. IP, immunoprecipitation.
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tion, and GTP binding. Our data indicate that arsenite can alter
LRRK2 self-association and GTP binding while also modulating
constitutive phosphorylation at Ser910/Ser935 and affecting the

autophosphorylation site Thr1410. We therefore tested the
hypothesis that arsenite can affect the kinase activity of LRRK2,
using an in vitro assay system. HEK-293T cells expressing

FIGURE 4. Arsenite stress induces loss of LRRK2 GTP binding in vitro. A, GTP binding by endogenous LRRK2 from control lymphoblasts showing input (bottom
panels) and LRRK2 purified by binding to GTP-agarose beads. Treatment with 0.5 mM arsenite for 45 min causes a decrease in the amount of LRRK2 binding to
GTP-agarose beads. B, quantification of the loss of GTP binding under arsenite stress (two-tailed t test; p � 0.0009; n � 3) by endogenous LRRK2. C, treatment with 0.5
mM arsenite for 45 min decreased GTP binding by GFP LRRK2 WT in stable HEK-293T cells, whereas the interaction with GTP-agarose could be disrupted by the addition
of a molar excess of GTP, quantified in D (two-tailed t test; p � 0.0029; n � 3). E, elution of GFP LRRK2 WT from GTP-agarose by increasing concentrations of GTP. F,
quantification of LRRK2 elution (two-way ANOVA; GTP concentration, p � 0.0091; arsenite, p � 0.0001; n � 2). G, the GTP binding-deficient LRRK2 mutant K1347A
shows lower levels of Ser935 constitutive phosphorylation compared with LRRK2 WT when transiently expressed in cells. Arsenite treatment induced loss of K1347A
Ser935 phosphorylation, quantified in H (one-way ANOVA; Tukey’s post hoc test; *, p � 0.01; **, p � 0.05; n � 2). IP, immunoprecipitation. Error bars, S.E.
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FLAG LRRK2 were treated with LRRK2IN-1 or arsenite, and
LRRK2 was purified and assayed for kinase activity, measuring
the incorporation of 33P with the model substrate LRRKtide
(29). We found that whereas pretreatment with LRRK2IN-1 did
not have a measurable effect on LRRK2 kinase activity, presum-
ably because the inhibitor is washed off at the protein purifica-
tion steps, pretreatment with arsenite (500 �M) attenuated the
kinase activity of LRRK2 (Fig. 5A). We subsequently tested
whether arsenite can directly inhibit LRRK2 when added to the
kinase reaction. FLAG LRRK2 WT was purified from untreated
cells and used in kinase assays with LRRK2IN-1 or arsenite (Fig.
5B). Whereas LRRK2IN-1 (10 �M) abolished LRRK2 kinase
activity, arsenite (500 �M) decreased the incorporation of 33P
on LRRKtide by �50% compared with untreated controls at 60
min of incubation. To address the specificity of the effect on
LRRK2, an in vitro autophosphorylation kinase assay was per-
formed with recombinant LRRK2 and an unrelated kinase
casein kinase 1� (CK1�) in the presence of increasing concen-
trations of arsenite (Fig. 5, C and D). Arsenite (500 �M) inhib-
ited LRRK2 autophosphorylation, whereas CK1� autophos-
phorylation was largely unaffected (Fig. 5D). These results
suggest that arsenite may have a direct effect on LRRK2 activity.

Arsenite Stress Induces LRRK2 Ubiquitylation and Translo-
cation to Centrosomes—LRRK2 is largely cytoplasmic but can
also be associated with membranous structures (40, 41). Loss of
Ser910/Ser935 phosphorylation, triggered by kinase inhibition,
alters the distribution of LRRK2 and promotes the formation of
skein-like structures (10, 13, 15), a phenomenon that is not
observed with kinase-dead LRRK2 (16). To examine the effects
of oxidative stress on the subcellular localization of LRRK2, we
treated GFP-LRRK2 HEK-293T cells with arsenite followed by

confocal microscopy. In the absence of treatment, WT LRRK2
showed diffuse cytosolic staining. Upon arsenite stress, WT
LRRK2 localized in discrete perinuclear pools (Fig. 6A).
Because there was only a single area of LRRK2 staining in each
cell, we addressed whether these structures were related to cen-
trosomes. Co-staining with �-tubulin revealed strong co-local-
ization of LRRK2 with large perinuclear centrosomes under
arsenite treatment.

The centrosome represents the cellular microtubule-orga-
nizing center, but it is also believed to be a center for proteolysis
and protein folding, where factors involved in the ubiquitin
proteasome pathway (UPS) are sequestered and associate with
�-tubulin (42, 43). LRRK2 can be degraded via the ubiquitin
proteasome pathway (44) or by chaperone-mediated autophagy
(45). To investigate the involvement of the UPS in LRRK2
sequestration to the centrosome, we inhibited proteasome
activity by MG132 and examined the localization of LRRK2.
MG132 induced translocation of LRRK2 to centrosomes to a
degree similar to that observed with arsenite (Fig. 6, A and C).
Double staining with an anti-ubiquitin antibody revealed that
LRRK2 is sequestered to ubiquitin-positive perinuclear centro-
somes after acute arsenite treatment or 6-h treatment with
MG132 or lactacystin (Fig. 6B). We further investigated
whether LRRK2 is itself polyubiquitinated, by immunoprecipi-
tation followed by Western blotting, which revealed that acute
arsenite treatment induces ubiquitylation of GFP LRRK2 WT
in cells (Fig. 6D). Similar effects were seen with proteasomal
inhibition by either MG132 or lactacystin. Previous studies
have reported that arsenite can induce accumulation of ubiqui-
tylated proteins (46, 47). MG132 or lactacystin did not have a
significant effect on Ser935 phosphorylation of LRRK2 (Fig. 6D),

FIGURE 5. Arsenite attenuates the kinase activity of LRRK2 in vitro. In vitro kinase assays using LRRK2 WT protein and LRRKtide peptide as a LRRK2 substrate
were performed, measuring the incorporation of [�-33P]ATP in a time course. In A, cells overexpressing FLAG LRRK2 WT were untreated or treated with arsenite
(500 �M) or LRRK2IN-1 (10 �M), and FLAG LRRK2 was subsequently purified and used in the LRRKtide phosphorylation assay. Treatment with arsenite prior to
protein purification reduced LRRKtide phosphorylation by LRRK2 in vitro, whereas LRRK2IN-1 did not inhibit kinase activity because it is removed during the
purification process (error bars, S.E. from n � 2 independent experiments). In B, FLAG LRRK2 WT protein was purified from transiently expressing untreated
HEK-293T cells and used in kinase assays, where the addition of sodium arsenite (500 �M) in the reaction significantly reduced LRRKtide phosphorylation.
LRRK2IN-1 inhibited LRRK2 in vitro kinase activity (n � 3 independent experiments/condition). C, autophosphorylation of recombinant GST-LRRK2(970 –2529)
and GST-CK1� in the presence of increasing concentrations of sodium arsenite. D, quantification of the effect of increasing concentrations of arsenite on the
autophosphorylation of LRRK2 or CK1� (error bars, S.E. from n � 3 independent experiments).
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suggesting that arsenite-induced dephosphorylation is not
required for translocation of LRRK2 to centrosomes.

To test whether oxidative stress is sufficient to drive LRRK2
intracellular translocation, we treated WT LRRK2-expressing
cells with increasing concentrations of H2O2. This did not alter
the localization of LRRK2, indicating that increased cytosolic
reactive oxygen species is not sufficient for centrosomal asso-
ciation (Fig. 6E). This also supports the proposition that loss of
Ser910/Ser935 phosphorylation is not sufficient to drive translo-
cation to centrosomes. We next examined whether kinase
activity is required for centrosomal association after arsenite
treatment. Kinase inhibition by LRRK2IN-1 produced skeinlike
structures, as reported previously (18); however, this did not
rescue translocation to centrosomes under arsenite co-treat-
ment (Fig. 6F).

We further addressed whether loss of phosphorylation is
required for WT LRRK2 translocation to centrosomes by treat-
ing with calyculin A prior to arsenite stress. Arsenite stress
induced LRRK2 translocation to centrosomes even under caly-
culin A co-treatment, suggesting that loss of Ser910/Ser935

phosphorylation is neither sufficient nor required for translo-
cation of LRRK2 into centrosomes under arsenite stress (Fig.
6F).

Microtubules that originate at the microtubule-organizing
center mediate retrograde transport of vesicles and organelles.
LRRK2 is believed to interact with microtubules through its
ROC domain (48, 49). Depolymerization of the microtubule
network by nocodazole prior to arsenite treatment did not
block the translocation of LRRK2 to centrosomes by arsenite
(Fig. 6F). Depolymerization of microtubules also did not alter
arsenite-induced WT LRRK2 Ser935 dephosphorylation (data
not shown).

We further investigated the recruitment of LRRK2 to centro-
somes by examining a possible association with �-tubulin. In
co-immunoprecipitation experiments, arsenite treatment en-
hanced the association of GFP LRRK2 WT with endogenous
�-tubulin (Fig. 6, G and H). These data suggest that recruitment
of LRRK2 to the centrosome is not dependent on microtubule-
associated transport mechanisms but may be influenced by
association with �-tubulin.

Effect of LRRK2 Mutations on Centrosomal Association—We
also investigated the effect of LRRK2 mutations on the seques-
tration of LRRK2 to centrosomes in cells stably expressing
mutant forms of LRRK2 (Fig. 7). In contrast to WT LRRK2, in
unstressed cells, R1441C LRRK2 displayed some perinuclear
staining co-localizing with �-tubulin, with �30% of centro-
somes positive for R1441C LRRK2 (Fig. 7, A and B). Perinuclear
localization of the Y1699C and G2019S variants was evident in

�20% of centrosomes in stable expression cell lines, whereas
D2017A exhibited only minimal centrosomal localization. The
S910A/S935A mutant that cannot be phosphorylated did not
co-localize with centrosomes in the absence of treatment (Fig.
7A). Arsenite treatment induced accumulation of LRRK2
WT and variants into centrosomes stained for �-tubulin
with �95% of centrosomes positive for LRRK2 in WT as well
as the R1441C, Y1699C, D2017A, and G2019S (Fig. 7, A and
C). However, the S910A/S935A mutant produced an inter-
mediate phenotype following arsenite treatment, localizing
into centrosomes as well as uncharacterized cytoplasmic
foci. This suggests that whereas dephosphorylation may
dynamically mobilize LRRK2, arsenite-induced stress in-
vokes additional cell signaling events driving LRRK2 trans-
location to centrosomes.

To examine the requirement of GTP binding for the shift in
localization following arsenite treatment, we transiently
expressed LRRK2 K1347A in HEK-293T cells (Fig. 7A, bottom
panels). LRRK2 K1347A accumulated in centrosomes under
arsenite treatment, suggesting that GTP binding is not required
for arsenite-induced association of LRRK2 with centrosomes.
The kinase-dead D2017A mutant was also recruited to centro-
somes (Fig. 7A); thus, centrosomal association is independent
of the kinase activity of LRRK2. Collectively, these data suggest
that the translocation of LRRK2 to centrosomes under arsenite
is probably related to degradation of the protein by the UPS,
and the pathway is independent of the activity of LRRK2 itself.

DISCUSSION

Oxidative stress is implicated in Parkinson disease with
pathology involving several genes associated with mitochon-
drial function and integrity (reviewed in Ref. 19). Although
many interacting partners of LRRK2 and potential functions
have been described, including roles in autophagy, regulation
of the cytoskeleton, neurite outgrowth, and regulation of
microRNA, the physiological regulation of LRRK2 in cell sig-
naling is unclear. Here we report that oxidative stress induced
by either arsenite or H2O2 treatment caused dephosphory-
lation of LRRK2 Ser910 and Ser935 with concomitant loss of
14-3-3 binding, hence mobilizing LRRK2 within the cell. Fur-
thermore, arsenite stress induced an increase in self-association
with a reduction in GTP binding in vitro, formation of macro-
molecular complexes, and translocation to centrosomes.

LRRK2 is a serine/threonine kinase that is phosphorylated by
other largely unknown kinases. A number of autophosphoryla-
tion sites have also been identified in the ROC domain and the
kinase domain (50, 51). Phosphorylation at specific sites can
affect the enzymatic function and modulate the pathogenic cel-

FIGURE 6. Arsenite stress promotes ubiquitylation of GFP-LRRK2 and translocation to centrosome proteolytic center. Acute arsenite treatment or
proteasomal inhibition induces accumulation of GFP-LRRK2 in perinuclear bodies co-localizing with �-tubulin staining of centrosomes (A) and ubiquitin
immunostaining (B). C, quantification of MG132-induced translocation of LRRK2 to centrosomes (300 cells were counted per treatment in two independent
experiments; one-way ANOVA; Tukey’s post hoc test; *, p � 0.001; **, p � 0.01). Scale bar, 10 �m. D, immunoprecipitated (IP) GFP LRRK2 WT from untreated or
arsenite-, MG132-, or lactacystin-treated cells was probed for ubiquitin. Arsenite or proteasomal inhibitor treatment promotes ubiquitylation of LRRK2.
Arsenite, but not lactacystin or MG132, induced loss of Ser935 dephosphorylation. E, treatment with increasing concentrations of H2O2 does not induce
translocation of LRRK2 to centrosomes. F, translocation of LRRK2 to ubiquitin-positive centrosomes under arsenite treatment is independent of LRRK2 kinase
activity, as shown by co-treatment with LRRK2IN-1 (i); does not require Ser910/Ser935 dephosphorylation under arsenite, as suggested by co-treatment with
calyculin A (ii); and is not inhibited by depolymerization of the microtubule network by nocodazole (ii). G, arsenite stress induces association of LRRK2 with
�-tubulin. H, quantification of �-tubulin association (one-way ANOVA; Tukey’s post hoc test; *, p � 0.05; n � 2 independent experiments/condition). Scale bar,
10 �m.
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FIGURE 7. LRRK2 mutations and association with centrosomes. A, inducible HEK-293T cells expressing WT or genetic mutants of LRRK2 and HEK-293T cells
transiently expressing the GTP binding-deficient mutant K1347A LRRK2 (bottom panels) were treated with sodium arsenite followed by immunostaining for
�-tubulin. The introduction of arsenite induced translocation of LRRK2 to centrosomes in all genetic variants examined. R1441C LRRK2 showed partial
co-localization with centrosomes in the absence of arsenite stimulation. Centrosomes were counted for positivity for LRRK2, and data are presented as bar
graphs for untreated (B) and arsenite-treated cells (C) (100 cells were counted per genetic variant and treatment; one-way ANOVA; Tukey’s post hoc; *, p � 0.01;
**, p � 0.05). Scale bar, 10 �m. Error bars, S.E.
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lular effects of PD mutations (52–54). Amino acids Ser910 and
Ser935 are not autophosphorylation sites (14). Nonetheless, it is
known that LRRK2 inhibitor LRRK2IN-1 causes marked
dephosphorylation of these sites (13), although the precise
mechanism(s) involved has not yet been defined. Our results
indicate that arsenite and H2O2-induced stress promote
dephosphorylation of these sites independently of LRRK2
kinase activity (Fig. 1), possibly mediated by phosphatase PP1
(18). Arsenite treatment enhances PP1� binding to LRRK2,
suggesting that it stabilizes this otherwise transient interaction.
Furthermore, arsenite can reportedly inhibit I�B activation
(55), whereas the I�B kinase family can mediate LRRK2 Ser910/
Ser935 phosphorylation (17). It is possible that direct inhibition
of I�B kinase by arsenite could also contribute to LRRK2
dephosphorylation. Calyculin A (PP1/PP2A inhibitor) rescues
dephosphorylation induced by arsenite and H2O2, but only
arsenite induces increased PP1� association under these con-
ditions. It would be interesting to investigate whether other
phosphatases are involved in dephosphorylation events
induced by H2O2. The fact that kinase-dead LRRK2 responds to
arsenite stress with loss of Ser910/Ser935 phosphorylation but is
not affected by pharmacological kinase inhibition suggests that
dephosphorylation is mediated by distinct signaling events and
perhaps reflects arsenite-induced conformational changes in
LRRK2 that render the phosphorylation sites accessible to
phosphatases.

Phosphorylation at Ser910/Ser935 mediates 14-3-3 binding to
LRRK2 (13). 14-3-3 can control the localization of target pro-
teins by steric hindrance of protein interactions (reviewed in
Ref. 56). Recently, 14-3-3 has been shown to inhibit the func-
tion of GTP-binding Rnd proteins by sequestering them in the
cytosol (57). It is possible that 14-3-3 binding inhibits LRRK2
interactions with specific proteins and prevents its activation by
maintaining a cytosolic location. Arsenite and H2O2-induced
Ser910/Ser935 dephosphorylation promotes 14-3-3 dissociation
that allows LRRK2 to be relocated (15); however, additional
factors are likely to participate in determining the final subcel-
lular destination.

We observe an increase in LRRK2 self-association with
arsenite treatment, indicating dimer formation possibly medi-
ated by the ROC domain (37). Our data show that although
arsenite induces the association of WT LRRK2 with WT and
the genetic variants G2019S or kinase-dead K1906M LRRK2,
this effect is more modest in the case of the variants that affect
GTP binding and/or GTP hydrolysis (Fig. 3C). This implies that
arsenite-induced self-interaction may be dependent on GTP
binding capacity. This is in accordance with a recent study sug-
gesting that LRRK2 mutations that impair guanine nucleotide
binding (K1347A and T1348N) attenuated the formation of
dimers (38). This may have important implications in structural
studies of LRRK2; if arsenite stabilizes a LRRK2 self-complex in
vitro, it may prove an invaluable tool in modulating LRRK2
complex formation. Arsenite treatment induced accumulation
of LRRK2 in �1-MDa species. Previous reports indicate that
monomeric forms of WT LRRK2 sediment in unexpected high
molecular mass fractions (�1.3 MDa) (41, 58), whereas a
kinase-dead LRRK2 variant shows a similar high apparent mass
in FPLC (7). Although the nature of the apparent size shift with

arsenite remains to be investigated, taken together with the
increase in self-association, it suggests sequestration into pro-
tein complexes supporting activation of LRRK2 signaling
pathway(s).

Our results indicate that arsenite treatment impairs the GTP
binding properties of LRRK2 in vitro. It is possible that the loss
of in vitro GTP binding following arsenite treatment is the
result of the formation of a tight LRRK2 dimer or stable protein
complex rendering the ROC domain inaccessible in vitro to
GTP-agarose. Another possibility is that LRRK2 is GTPase-ac-
tive, consistent with arsenite inducing formation of a dimer
(39). GTP may still be hydrolyzable on the GTP-agarose beads
used in our in vitro assays because conjugation to agarose is not
through the �-phosphate. In this case, it is possible that an
increased rate of GTP hydrolysis by LRRK2 may be detected as
lower stable binding to GTP in this assay.

It has been postulated that the arsenic ion arsenate (AsO4
3	)

can substitute phosphate in certain biological reactions (59).
Although in our experiments, we use sodium meta-arsenite
(NaAsO2), arsenate contaminants may potentially compete
with phosphate in our in vitro kinase reactions. The fact that (a)
autophosphorylation of the unrelated kinase CK1� is not
affected in vitro and (b) arsenite treatment does not globally
inhibit kinases (eIF2� is hyperphosphorylated following arsen-
ite treatment; Fig. 1) suggest that this is a specific effect. How-
ever, the kinase inhibition requires relatively high concentra-
tions of arsenite; therefore, the biological significance of this
merits further investigation. Nevertheless, arsenite inhibits the
activation of I�B kinase by binding to the cysteine 179 residue in
the activation loop of its catalytic subunits (55, 60). It would
therefore be interesting to see whether arsenite affects LRRK2
kinase activity by direct binding to its kinase catalytic core.

We show that arsenite treatment also causes LRRK2 to
relocalize to the centrosome, co-localizing with �-tubulin.
Although pharmacological kinase inhibition by LRRK2IN-1
also induces dephosphorylation, this can result in translocation
of LRRK2 to microtubule-like skein structures. Furthermore,
S910A/S935A LRRK2, which is incapable of phosphorylation,
exhibits a further distinct phenotype (Fig. 7). Thus, the loss of
Ser910/Ser935 phosphorylation is not the only factor mediating
LRRK2 translocation. �-Tubulin has been linked to sequestra-
tion of UPS factors (42, 43). In our experiments, proteasomal
inhibition also induced centrosomal accumulation of LRRK2,
whereas arsenite was shown to induce LRRK2 ubiquitylation.
These data suggest that accumulation to centrosomes is medi-
ated by protein degradation machinery (Fig. 7C). Interestingly,
the ROC domain mutant R1441C shows some co-localization
with centrosomes in untreated conditions. The fact that arsen-
ite treatment produces a phenotype in all variants that is similar
to the effect of this ROC domain mutation may suggest changes
in LRRK2 conformation and autoinhibition. LRRK2 has been
reported to localize in perinuclear bodies described as ag-
gresomes (61) that can associate with �-tubulin. However, we
did not observe co-localization of LRRK2 with vimentin, an
aggresome marker (62) (data not shown).

Our data suggest that signaling of the cellular response to
arsenite stress directly regulates LRRK2. Arsenite disrupts ATP
production by inhibiting pyruvate dehydrogenase and induces
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generation of nitric oxide and reactive oxygen species in cells
partly by mediating the increase in intracellular H2O2 levels
(63– 65). It also induces translation arrest while mediating for-
mation of cytoplasmic stress granules that contain mRNA and
components of the translation machinery (66). The various bio-
chemical effects of arsenite raise the possibility that the specific
pathway leading to LRRK2 may be the convergence of multifac-
torial events. This may explain why pure oxidative stressors
have not been reported to have similar effects on LRRK2.

We propose a model describing arsenite-induced oxidative
stress regulation of LRRK2 (Fig. 8). Monomeric LRRK2 is
largely cytosolic, and phosphorylation at Ser910/Ser935 is con-
trolled by upstream kinases as well as a feedback loop pathway
dependent on its kinase activity. Arsenite and H2O2 induce

dephosphorylation of LRRK2 by stimulating phosphatases,
such as PP1, and/or by modulating upstream kinase activity,
such as I�B, causing dissociation from 14-3-3. This mobilizes
and translocates LRRK2 to membranes, where it assembles into
LRRK2 complexes (Fig. 8). Modulation of its self-association
and GTP binding influences its kinase activity and association
with substrates. Arsenite-induced signaling may ultimately
control the critical balance between activation of LRRK2 and
removal by UPS.

In summary, our data show that two oxidative stressors,
H2O2 and arsenite, affect LRRK2 in several different ways that
would be consistent with protein activation, namely dephos-
phorylation, formation of oligomeric species, and altered bind-
ing of GTP. However, arsenite, which can inhibit LRRK2 kinase
directly, causes accumulation of LRRK2 at the centrosome,
probably for protein degradation. We speculate that the differ-
ence between H2O2 and arsenite suggests that cells will remove
an inactive LRRK2 molecule, which may be relevant for termi-
nation of cellular signaling by LRRK2 protein complexes. We
therefore propose that the balance between activation of
LRRK2 by oxidative stress and its degradation by the UPS is a
critical mediator of protein function.
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