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Abstract 

Drying reduces seed moisture content which improves subsequent seed survival periods. 

Diverse maximum temperatures have been recommended to limit or avoid damage to seeds, 

but some high-temperature drying regimes may improve subsequent seed quality. Seeds from 

20 different accessions of five rice (Oryza sativa L.) variety groups (aromatic, Aus, Indica, 

temperate Japonica, tropical Japonica) were harvested over several seasons at different stages 

of maturation and either dried throughout at 15°C/15% RH or for different initial periods 

(continuous or intermittent) in different drying regimes at 45°C before final equilibrium 

drying at 15°C/15% RH. Subsequent seed longevity in hermetic storage at 45°C with 10.9% 

moisture content was determined. In no case did initial drying at 45°C provide poorer 

longevity than drying at 15°C/15% RH throughout. There was a split-line relation, which did 

not differ amongst investigations, between longevity after initial drying at 45°C relative to 

that at 15°C/15% RH throughout and harvest moisture content, with a break point at 16.5% (a 

seed moisture status of about -14 MPa). Below 16.5%, relative longevity did not differ with 

harvest moisture content with little or no advantage to longevity from drying at 45°C. Above 

16.5%, relative longevity showed a positive relation with harvest moisture content, with 

substantial benefit from drying at 45°C to subsequent longevity of seeds harvested whilst still 

moist. Hence there are temporal (immediately ex planta cf. subsequent air-dry storage) and 

water status discontinuities (above cf. below 16.5%) in the effect of temperature on 

subsequent air-dry longevity.  
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Introduction 

Temperature affects crop seed production in numerous ways (e.g. Porter and Gawith, 1999; 

Wheeler et al., 2000; Sanchez et al., 2014). It also affects the quality of seeds produced, 

including post-harvest survival (Ellis et al., 1993; Sanhewe et al., 1996). It is becoming clear 

that the effect of temperature during the development of seed quality from fertilisation to 

maturity in planta and its effect on seed quality thereafter ex planta may well vary over time. 

There is an overall positive effect of higher mean temperature (within limits) throughout 

wheat (Triticum aestivum L.) seed development and maturation on the development of seed 

quality (Sanhewe et al., 1996). However, the relation is initially negative during early seed 

development but then becomes positive during later development and throughout seed 

maturation in planta (Nasezadeh and Ellis, 2017). It then alters again with a negative relation 

between air-dry seed survival ex planta and storage temperature (Ellis and Hong, 2007).  

High temperature (32/24°C) throughout seed production is damaging to seed quality 

in Japonica cultivars of rice (Oryza sativa L.) (Ellis et al., 1993; Ellis and Hong, 1994), but 

not if exposure to higher temperatures is delayed to the seed maturation phase (Ellis, 2011). 

On the other hand, the development of Japonica rice seed quality is damaged by exposure to 

either cool (18/14°C) or hot temperature (38/34°C) during histodifferentiation and early seed 

filling (Martínez-Eixarch and Ellis, 2015). After harvest, the relationship between rice air-dry 

seed survival and storage temperature is negative and quantitatively similar to that in wheat 

(Ellis and Hong, 2007). 

Post-harvest seed drying takes place following late seed maturation and before 

subsequent storage. Advice on suitable temperatures for the operation of heated-air seed 

dryers imply a negative relation between seed survival and temperature above a “safe“ 

threshold value, with cooler temperatures recommended the greater the initial seed moisture 

content in crop seeds (Nellist, 1980), including rice (Lewis, 1950). Safe drying temperatures 
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were calibrated for different designs of heated-air seed dryers using standard procedures with 

mature, dry seeds rewetted to different “initial” higher moisture contents (Nellist, 1980). 

Genebanks are recommended to dry seeds before storage to moisture contents lower 

than commercial seed practice and, currently, to use low humidity drying environments 

combined with cool temperatures rather than heated-air seed dryers. These recommendations 

are neither species-specific nor dependent upon initial seed moisture content (FAO, 2014). 

This advice to genebanks has altered since the International Board for Plant Genetic 

Resources (now Bioversity International) was created in 1974. No singular recommendation 

was initially made for seed drying procedures in genebanks: two-stage procedures were 

suggested with advice to avoid using heated-air seed dryers above 40°C “until moisture 

content falls below 11% in which case 60°C is safe for most species” as the first stage, with 

15% RH as the second (IBPGR, 1976). The latter report cautioned that genebanks should 

investigate to confirm whether their drying procedures are reliable and safe. Subsequent 

advice evolved from the “suggestion” of thin-layer drying at about 15°C with 10-15% RH 

with good air recirculation (Cromarty et al., 1982), to “acceptable” warm-air drying of certain 

crops, but “preferred” conditions of 15°C with 10-15% RH (IBPGR, 1985). Then, there were 

“recommendations” of 10-25°C with 10-15% RH (FAO/IPGRI, 1994); and, more recently, 

the cooler more moist range of 5-20°C with 10-25% RH (FAO, 2014). 

The International Rice Research Institute‘s (IRRI) genebank (T.T. Chang Genetic 

Resources Center [GRC]) opened in the 1960s and now conserves > 127,000 accessions of 

cultivated rice and wild relatives. Initially, rice seeds were dried at high temperatures of 45-

50°C. That environment was compatible with recommended safe drying temperatures for rice 

of 48.9°C at 20% moisture content or above, 51.7°C at 15–20%, and 60°C at <15% (Lewis, 

1950). However, in accordance with the publication of the preferred or recommended 
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conditions for genebanks (IBPGR, 1985; FAO/IPGRI, 1994), a drying room (DR) was built 

in the early 1990s to dry the seeds at 15±2°C with 15±5% RH.  

Critical re-examination of procedures at IRRI’s GRC, however, has now provided 

evidence that in many cases initial high-temperature (45°C) seed drying immediately after 

harvest, before further drying at 15°C with 15% RH in the drying room, improves seed 

quality (Crisostomo et al., 2011) and seed storage longevity considerably (Whitehouse et al., 

2015, 2017). The greater longevity from initial high-temperature drying was associated with 

harvest moisture contents above a critical value close to 16% (Whitehouse et al., 2015, 2017). 

This benefit to air-dry seed survival may result from protection mechanisms being stimulated 

by high-temperature stress in high moisture content, and so still metabolically active, seeds 

(Whitehouse et al., 2017). 

We test here the hypotheses that: (i) there is a critical harvest moisture content below 

which there is little or no benefit to subsequent rice seed longevity from high-temperature 

drying but above which the benefit is a function of harvest moisture content; and (ii) that this 

broken-stick relation does not differ amongst genetically-diverse accessions of rice from 

different variety groups. Data from Whitehouse et al. (2015, 2017) is included within the 

research reported here to provide a wide test of the second hypothesis. 

  

Materials and methods 

Plant material 

Twenty O. sativa accessions (IRGC 117264 - 117283) from five variety groups (McNally et 

al., 2009) were selected for different experiments carried out between 2013 and 2015 (Table 

1). The accession(s) planted in the dry season (DS) and/or wet season (WS) each year 

differed amongst experiments, but the standard rice growing protocol at IRRI including 

production practices and plant protection measures (Reaño et al., 2008) was followed in each 
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case. Prior to sowing, seeds were sampled from the active collection of the GRC and held at 

50°C for 5 d to break dormancy. With the exception of the 2015 Batch dryer (BD) 

experiment, in which seedlings were transplanted in a screen house (Table 1), all seedlings 

were raised in a seed bed and then transplanted in the field at IRRI’s Ziegler Experiment 

Station (14° 9’ N, 121° 16’ W). Seeds were harvested by hand between March and May in 

the DS, or October and November in the WS. The number of seed lots harvested per 

accession and their stage of maturity at harvest differed between experiments. 

Immediately after harvest, seed lots were threshed and blown to remove debris and 

half-filled seeds, then cleaned by hand to remove empty, damaged and/or diseased seeds. 

Seed moisture content (%, fresh weight basis) at harvest was determined using three 5g 

samples and the high-constant-temperature-oven method (ISTA, 2013).  

Seed drying 

Seeds from each lot were divided into samples of equal weight (total number varying with 

number of different drying treatments, Table 1) and placed into 0.2 × 0.33m (length × width) 

nylon mesh bags (1 mm-diameter holes). One sample from each seed lot was immediately 

placed in the drying room (DR; 15°C/15% RH) for 14 days. The DR environment complies 

with that recommended for genebanks (FAO, 2014) and so provided a control treatment, the 

“baseline” against which the effects of different drying treatments were compared. The 

remaining seeds within each lot were dried for an initial period in the experimental drying 

regimes at 45°C provided by different equipment (Table 1), as follows. 

1. A locally-fabricated batch dryer (BD) that dried seeds in an open environment with a 

kerosene gas burner providing hot air at about 45°C on average. The RH could not be 

controlled or reduced below about 35% (estimate based on prevailing ambient 

conditions and air-water relations) because there was no additional dehumidification. 
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2. Saturated salt solutions of MgCl2 provided approximately 30% RH with seeds placed 

above the solution in a hermetically-sealed electrical enclosure box (ENSTO Finland 

Oy, Finland). There was no airflow with passive drying (relying on a limited seed 

bulk and exposure of all seeds to the atmosphere) at 45°C.  

3. A hermetically-sealed climate chamber (VC3 0034-M, Vötch Industrietechnik, 

Germany) with in-built dehumidifier, heater, and cooler which provides a controlled, 

stable environment at the programmed temperature (45°C) and humidity.  

After the initial high-temperature drying treatment (Table 1), all seeds were further dried 

towards equilibrium in the DR. Once seed samples had equilibrated in the DR (which 

required a total drying period of 14 days), they were sealed inside 0.17 × 0.12 m (length × 

width) laminated-aluminium-foil packets (Moore and Buckle, Saint Helens, UK) and stored 

at 2-4°C prior to experimental storage. 

Seed storage 

Seed samples from each experiment were removed from storage and left at room temperature 

for approximately 1h to equilibrate before opening. They were divided into 5g subsamples 

and rehydrated to 10.9% moisture content in 30 mm-diameter open Petri dishes either over a 

non-saturated LiCl solution (60% RH), in a hermetically-sealed box, for 7 days at room 

temperature; or, in the climate chamber set at 60% RH and 21.5°C for 4-5 days. The moisture 

content of each sample was checked (using three subsamples) before estimating the initial 

ability to germinate (using one subsample). The remaining subsamples were sealed within 

individual 0.12 × 0.09m (length × width) laminated-aluminium-foil packets and stored 

hermetically in an incubator at 45°C (experimental storage). One packet from each seed 

sample was removed after different periods of storage at 1-3d intervals and tested for ability 

to germinate.      
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Seed germination 

The seeds from each packet were divided between four 90mm diameter Petri dishes with two 

layers of Whatman No. 1 filter paper wetted with 7.5ml distilled water (30 seeds in each 

dish). Seeds were incubated at 30°C (12h light/ 12h dark) and then assessed at regular 

intervals. Seeds were scored as germinated once the radicle had emerged by at least 2mm. 

After 14d in test, non-germinated fresh seeds were dehulled and tested for an additional 7d 

before final scoring.  

Statistical analysis 

The improved seed viability equation  

𝑣 = 𝐾𝑖 − 𝑝/10𝐾𝐸−𝐶𝑊log10𝑚−𝐶𝐻𝑡−𝐶𝑄𝑡2
 

(1) 

where v is probit percentage viability (NED) of a seed lot after p days in hermetic storage at 

constant temperature t (°C) and moisture content m (%, fresh weight basis), KE, CW, CH and 

CQ are species-dependent constants, and Ki is the seed lot constant (Ellis and Roberts, 1980) 

provided the basis of our approach to the analyses. Probit analysis was carried out using 

GenStat for Windows, Versions 15-17 (VSN International Ltd, Hemel Hempstead, UK) in 

accordance with the equation  

𝑣 = 𝐾𝑖 − 𝑝/𝜎 

(2) 

derived from Eqn (1) for a single storage environment where 𝜎 is the standard deviation of 

the frequency distribution of seed deaths in time (days) (Ellis and Roberts, 1980) or, for seed 
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lots showing loss in dormancy during early storage, the combined loss in dormancy and loss 

in viability model  

𝑔 = (𝐾𝑑 + 𝛽1𝑝) ×  (𝐾𝑖 − (
𝑝

𝜎⁄ )) 

(3) 

where g is ability to germinate (NED), p, Ki and σ are as in Eqn (2), Kd is the initial 

proportion of non-dormant seeds (NED) and β1 is the probit rate of loss in dormancy 

(Kebreab and Murdoch, 1999). For those seed lots showing reduced initial viability when 

fitting Eqn (2), the ‘control mortality’ parameter was included to estimate the proportion of 

‘non-responding’ seeds (dead or empty) within the population (Mead and Gray, 1999; Hay et 

al., 2014). For each experiment, probit analysis was carried out for all seed lots within an 

accession simultaneously, first fitting full models (all parameters fitted to seed lots 

independently) and then reduced models (one or more parameters constrained to the same 

value for different seed lots within an accession). An approximate F-test was used to select 

the best model.  

The period in days to 50% viability (p50, the product of Ki and σ) is the most 

accurately estimated period of longevity and it was used as the measure of longevity to 

compare the effects of different drying treatments on seed storage longevity. For each seed 

lot within each experiment, the difference in longevity between drying in the alternative 

drying regime (AR p50) and the control regime (DR p50) was calculated as a proportion of DR 

p50 as follows 

Relative improvement in longevity (%) = ((AR p50 – DR p50) / DR p50) × 100  

(4) 
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In all comparisons, the estimate of p50 in alternative drying regimes was never less 

than that in the control regime (DR p50); and so all values derived from Eqn (4) were zero or 

(more often) positive. 

 

Results 

Seed lots varied considerably in the relative benefit from initial drying at high temperature to 

subsequent seed longevity (Fig. 1). The majority of initial treatments at 45°C provided 

greater longevity compared with drying in the DR throughout. Beneficial treatments were 

detected in each variety type and in every experiment. 

The greatest benefit was more than a three-fold increase in longevity. This was 

detected in a temperate Japonica cultivar harvested at 28.9% moisture content and initially 

dried intermittently (8 h d
-1

) for 1-6 days (i.e. all six treatment durations provided no 

difference in longevity, P > 0.05) in the BD until transfer to the DR. The lowest harvest 

moisture content at which benefit from initial drying at 45°C was detected was 13.0%, the 

driest sample at harvest in these studies (but an outlier – see later). 

A minority of treatments at 45°C provided similar longevity to treatment in the DR 

throughout. These were largely confined to seeds harvested at moisture contents below 16.5 

% (Fig. 1). The greatest harvest moisture content at which no benefit from initial drying at 

45°C was detected was 17.7%. 

The magnitude of the improvement to subsequent seed longevity from drying at 45°C 

was associated positively with harvest moisture content (Fig. 1). The split-line regression 

shown in Figure 1 accounted for 81.5% of the variance in relative longevity (once an outlier 

at 13.0% moisture content was omitted from analysis). Moreover, the common split-line 
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regression did not differ amongst experiments: constraining all the observations to this 

relation did not increase residual deviance significantly compared with fitting split-line 

regressions to each experiment separately (F(5,75) = 0.96; P = 0.45). Seed longevity relative to 

the DR control was increased by initial drying at 45°C the greater the harvest moisture 

content exceeded a critical value of 16.5%. Seeds harvested at moisture contents below 

16.5% showed limited or no improvement in relative longevity from initial high-temperature 

drying compared with seeds dried throughout in the cooler environment of the DR.  

The separate estimates of σ (Eqn 2) for storage at 45°C with 10.9% moisture content 

varied considerably amongst and within both accessions and experiments (Fig. 2). For 

example, estimates of σ for Indica accessions dried solely in the DR ranged between 6.3 and 

12.5 days and between 4 and 7.7 days in the 2013 BD and chamber 1 experiments, 

respectively. Seeds of the aromatic variety showed a σ value of 6.7 days in the 2013 BD 

experiment and ranged between 8.3 and 14.3 days in the chamber 1 experiment. This 

variation in σ was slightly greater after initial drying at 45°C (Fig. 2b) than for the DR alone 

(Fig. 2a), whilst the 2015 BD investigation with one aromatic accession provided the widest 

range of estimates of σ (5.3-20 in DR only, compared with 11.1 - 25 days when initially dried 

at 45°C) and the greatest mean value. The observed values, most notably when seeds were 

dried in the DR, were not consistent with independent estimates, with the observed values 

being considerably lower (Fig. 2). 

 

Discussion 

This analysis of results from several separate investigations builds upon recent research 

(Whitehouse et al., 2015, 2017) to confirm that the subsequent longevity of rice seeds 

harvested while still moist is improved by initial, high-temperature drying (Fig. 1). The 
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critical seed moisture content at harvest of 16.5% below which little or no benefit from high-

temperature drying was detected (Fig. 1) was similar to the previous estimate of 16.2% 

(Whitehouse et al., 2015). Moreover, there was not one case of damage from drying moist 

seeds at 45°C (Fig. 1), although damage was detected previously in some treatment 

combinations at 60°C (Whitehouse et al., 2017). It is also worth remembering that seeds 

losing moisture at 45°C, or at 60°C, will be cooler than the air temperature due to evaporative 

cooling (Nellist, 1980). There was an outlying observation at 13.0% moisture content (Fig. 1) 

where relative longevity was 65% greater than the DR control and so well above the fitted 

line. The cause is not known. Nevertheless, this is a “right-side error” which does not 

contradict the conclusion that initial, high-temperature drying of rice seeds harvested at a 

high moisture content benefits longevity. 

The sequence of contrasting responses of rice seed quality post-harvest to temperature 

(approximately 15 to 45°C) from anthesis to post-harvest air-dry storage is therefore: 

negative early in seed development during histo-differentiation and early seed filling 

(Martínez-Eixarch and Ellis, 2015); then positive for brief durations late in the maturation 

phase whilst the seeds approach maturity but remain moist (16.5 – 31.0% moisture content at 

harvest, Fig. 1); then neutral for brief periods as seed moisture content transitions to the air-

dry range (13.4 – 16.5%, Fig. 1); and then, finally, negative in subsequent air-dry storage 

(Ellis and Hong, 2007).  

There is a similarity between the critical harvest moisture content of 16.5% (Fig. 1) 

and discontinuities in the post-harvest relations between seed survival and moisture content. 

The latter occurs at a water potential of around -14 MPa above which, provided oxygen is 

available, there is a positive relation between seed longevity and moisture content in contrast 

to the negative relation in conditions drier than -14 MPa (Roberts and Ellis, 1989). In rice, the 

critical value of 16.5% moisture content (Fig. 1) is close to 90% equilibrium relative 
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humidity at 25°C (Breese, 1955; Whitehouse et al., 2015). This provides a water potential 

close to -14 MPa (Roberts and Ellis, 1989). 

The improving quality of immature seeds may result from continued development ex 

planta mimicking maturation drying in planta (Hong et al., 2000), because such seeds remain 

metabolically active (Angelovici et al., 2010). The main driver of the improvement in quality 

detected here, however, may be a stress response caused by high-temperature exposure 

during this brief phase immediately ex planta, allowing enhanced metabolism of protectants 

and other metabolic pathways which aid the stabilisation of the seed during desiccation and 

survival in air-dry storage (Whitehouse et al., 2017). For example, the accumulation of sugars 

and heat-stable proteins during development is associated with desiccation tolerance and 

potential longevity, but the latter are more likely to account for differences in longevity 

between seed lots as they accumulate comparatively late in seed development (Sinniah et al., 

1998). Moreover, and in accord with the critical value estimated here, the results of 

proteomic studies suggest two stages of desiccation (Chatelain et al., 2012): one with 

increasing seed longevity (equivalent to >16.5% moisture content in the current study); and a 

later one of no improvement because seeds are no longer metabolically active (≤16.5% 

moisture content). 

Our results clearly show that two-stage drying of moist rice seeds at a high 

temperature (45°C, and sometimes warmer) before the cool (5-20°C) and dry (10-25% RH) 

conditions improves subsequent longevity greatly compared with immediate cool and dry 

conditions. As no high-temperature drying treatment reduced subsequent seed longevity 

compared with drying in the DR, and to avoid measuring the harvest MC of all seed lots, 

FAO might consider updating their advice so that all rice seeds intended for genebank storage 

are dried using this two-stage procedure. Rice grown in paddy conditions in the tropics is 

under conditions where ambient RH is rarely less than 80% and plant senescence and seed 
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desiccation is delayed (if the paddy field is not drained), such that the maturing seeds may 

remain moist. Whilst many crop seeds mature under much drier conditions, we nonetheless 

suggest that they should be investigated for improvement in seed longevity if moist seeds are 

initially dried at high-temperature.  

The seed viability equation assumes that σ is the same for all seed lots of a species in 

a constant, defined storage environment, with only Ki varying in value amongst lots (Ellis and 

Roberts, 1980). Considerable variation in σ in one environment (45°C with 10.9% moisture 

content) was found in these experiments (Fig. 2), however, with most observations shorter 

than the independent estimate provided by the seed viability constants for rice (Ellis and 

Hong, 2007). Estimates of σ for Indica and temperate and tropical Japonica cultivars from the 

Seed Information Database (SID; Royal Botanic Gardens Kew, 2018) in this regime were 

closer to the experimental observations, but with temperate Japonica predicted to lose 

viability sooner than Indica cultivars (Fig. 2). Tejakhod and Ellis (2018) found that the seed 

viability constants from Ellis and Hong (2007) overestimated longevity in a Japonica cultivar, 

but provided reasonable agreement for Indica cultivars. Chang (1991) and Ellis et al. (1992) 

also concluded that seeds of Japonica cultivars are the shorter lived. In contrast, in the current 

studies with less mature seeds, the variation within a variety group was greater than that 

between groups and the Indica cultivars tended to be the shorter-lived (Fig. 2). The viability 

equations provide estimates of seed longevity in air-dry storage, but they are just estimates 

and each with their own significant error (see e.g. Hay et al., 2003). Once an indication of the 

seed longevity of a species in genebank storage has been established, whether from the 

viability equations or, for example, from historical routine viability monitoring data (Hay et 

al., 2013; van Treuren et al., 2013; Ellis et al., 2018), simple initial storage experiments may 

be useful. These can determine the relative longevity of different, new seed lots of a species 

prior to genebank storage in order that accession retest intervals can be customized from 
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these rankings (Hay and Whitehouse, 2017). The variation in σ observed here also 

emphasizes the plasticity of seed longevity as a trait (Leprince et al., 2017) and the possibility 

of developing greater understanding of the temporal effects of low moisture content for seed 

lots of the same species that differ in longevity (Walters, 2015).   

In conclusion, this summary analysis of results with diverse genotypes over five 

experiments in different seed production environments confirms that seed quality (subsequent 

seed longevity) in rice is increased substantially by high-temperature drying of seeds 

harvested before maturation drying ends. The temporal (immediately ex planta cf. subsequent 

storage) and water status discontinuities (above cf. below 16.5%) in the effect of temperature 

on subsequent air-dry longevity, suggest moist rice seeds exposed to 45°C in late maturation 

are stimulated to synthesise protectants which stabilise seed during desiccation and aid 

survival in air-dry storage. The earlier during late maturation that rice seeds are harvested the 

greater the relative benefit of high-temperature drying to longevity, with no benefit detected 

once seeds have dried in planta to 16.5% moisture content. 
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Legends to Figures 

 

Figure 1. Relationship between the improvement in longevity (p50) of rice seeds dried 

initially at 45°C under different conditions (Table 1) relative to that (p50) when dried in the 

dry room (DR) throughout (%, Eqn 4) and harvest moisture content (%, fresh weight). The 

results are for 20 accessions of different variety types (Indica, tropical Japonica, temperate 

Japonica, Aus and aromatic; McNally et al., 2009) in 2013, 2014, and/or 2015 between 24 

and 60 days after 50% anthesis (Table 1). A relative improvement of 100% is equivalent to a 

doubling in longevity compared with the control (DR). Some symbols represent multiple 

treatments (where longevity within an accession did not differ after different durations of 

high-temperature drying). The solid line is a split-line regression with a breakpoint at 16.5% 

harvest moisture content for all drying treatments; it accounted for 81.5% of the variance and 

provided no significant (P<0.05) increase in residual deviance over different regressions for 

each separate experiment. One outlying observation at 13% moisture content (x) was 

excluded from analysis (see text). 

 

Figure 2. The standard deviation of the frequency of distribution of seed deaths in time, σ 

(days, logarithmic scale) for seed lots of different variety groups (Indica, tropical Japonica, 

temperate Japonica, Aus and aromatic; McNally et al., 2009) from different experiments 

(Table 1) stored hermetically at 45°C with 10.9% moisture content either when first dried to 

equilibrium to 15% RH (a) in the dry room (DR) only, or (b) initially at 45°C and then in the 

DR. The symbols in b represent the longest-lived (p50) seed lots of all treatments within each 

experiment. The open symbols represent the aromatic variety, accession IRGC 117265, 

common to all experiments. The horizontal lines represent independent estimates of σ at 45°C 
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with 10.9% moisture content: from SID (Royal Botanic Gardens Kew, 2018) provided by 

extrapolations from observations for Indica (dashed line), tropical Japonica (dotted line), and 

temperate Japonica varieties of rice (dashed and dotted  line) in different environments 

reported by Ellis et al. (1988) or Ellis et al. (1992); or from the seed viability constants for 

rice (solid line) calculated from observations over a wide range of temperatures and moisture 

contents (Ellis and Hong, 2007) in accordance with Eqn (1). 

 

Figure 1
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Table 1. Number of accessions and respective variety group (with number of accessions in each group) harvested at each maturity stage (DAA; days after 

50% anthesis) for each experiment in the crop year and season (dry [DS] or wet [WS]) shown. Seeds were dried following the standard drying protocol 

(Control; 14 d in the drying room [DR; 15°C/15% RH]), or for an initial period in the drying regime shown before final drying in the DR.    

  

Experiment Season Accession Number 
¶
 Variety group * Maturity 

(DAA) 

No. harvests Drying treatments 

       

2013 Batch 

dryer 

2013DS IRGC 117265  

 

IRGC 117266 

IRGC 117267 

IRGC 117273  

IRGC 117283  

 

IRGC 117268  

IRGC 117271  

IRGC 117275  

IRGC 117276  

IRGC 117277  

IRGC 117278  

IRGC 117280  

IRGC 117281  

 

IRGC 117269  

IRGC 117270  

IRGC 117274  

IRGC 117279  

 

IRGC 117264  

IRGC 117272  

IRGC 117282 

Aromatic (1) 

 

Aus (4) 

 

 

 

 

Indica (8) 

 

 

 

 

 

 

 

 

Temperate 

Japonica (4) 

 

 

 

Tropical  Japonica 

(3) 

24-48 1 per 

accession 

Batch dryer (45°C; 8 h d
-1

) for a maximum of 6 

cycles  final drying in DR 

 

+ Control (DR) 
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*McNally et al. (2009) 

¶
IRGC 117265 (https://doi.org/10.18730/1PG6J); -66 (https://doi.org/10.18730/4WZGR); -67 (https://doi.org/10.18730/4WZHS); -68 (https://doi.org/10.18730/4WZJT); -69 

(https://doi.org/10.18730/4WZKV); -70 (https://doi.org/10.18730/4WZMW); -71 (https://doi.org/10.18730/4WZNX); -72 (https://doi.org/10.18730/4WZPY); -73 

(https://doi.org/10.18730/4WZQZ); -74 (https://doi.org/10.18730/4WZR*); -75 (https://doi.org/10.18730/4WZS~); -76 (https://doi.org/10.18730/4WZT$); -77 

(https://doi.org/10.18730/4WZV=); -78 (https://doi.org/10.18730/4WZWU); -79 (https://doi.org/10.18730/4WZX0); -80 (https://doi.org/10.18730/4WZY1); -81 

(https://doi.org/10.18730/5CMYC); -82 (https://doi.org/10.18730/5CMZD); -83 (https://doi.org/10.18730/5CN0E) 

 

Drying chamber 

1 

(45°C/23% RH) 

2014DS IRGC 117265 

 

IRGC 117276 

IRGC 117280 

Aromatic (1) 

 

Indica (2) 

35 2 per 

accession 

Continuous drying (24 h d
-1

) at 45°C/23% RH for a 

maximum of 5 days  final drying in DR 

 

+ Control (DR) 

Drying chamber 

2 

 (45°C/75% RH) 

2014WS IRGC 117265 Aromatic 35 2 per 

accession 

Stepped drying over 6 days 

day 0-1: 45°C/75% RH 

day 1-3: 30°C/45% RH 

day 3-5: 20°C/25% RH 

day 5-6: 15°C/15% RH 

 final drying in DR 

 

+ Control (DR) 

MgCl2  

(45°C/30% RH) 

2015DS IRGC117265 Aromatic 

 

25, 35, 45 2 per maturity 

stage 

3 days of continuous (24 h d
-1

) or intermittent (8 h d
-1

) 

at 45°C/30% RH  final drying in DR 

 

+ Control (DR) 

2015 Batch dryer  

(no misting) 

2015DS  IRGC 117265 Aromatic 25, 35, 45 2 per maturity 

stage 

3 days of continuous (24 h d
-1

) or intermittent (8 h d
-1

) 

drying in the batch dryer (45°C) final drying in DR 

 

+ Control (DR) 

2015 Batch dryer  

(in-field misting) 

2015DS  IRGC 117265 Aromatic 25, 35, 45, 

50, 55, 60 

2 per maturity 

stage 

3 days of continuous (24 h d
-1

) or intermittent (8 h d
-1

) 

drying in the batch dryer (45°C) final drying in DR 

 

+ Control (DR) 
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