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Abstract

A moving-mesh finite difference scheme based on local conservation is presented for a class
of scale-invariant second-order nonlinear diffusion problems with moving boundaries that (a)
preserves the scaling properties and (b) is exact at the nodes for initial conditions sampled from
similarity solutions. Details are presented for one-dimensional problems, the extension to mul-
tidimensions is described, and the exactness property is confirmed for two radially symmetric
moving boundary problems, the porous medium equation and a simplistic glacier equation.

In addition, the accuracy of the scheme is also tested for non self-similar initial conditions
by computing relative errors in the approximate solution (in the l∞ norm) and the approximate
boundary position, indicating superlinear convergence.

Keywords: Nonlinear diffusion, moving-meshes, scale-invariance, similarity, conservation, fi-
nite differences, porous medium equation, glacier equation, radial symmetry.

1 Introduction

Partial differential equations (PDEs) govern many physical processes that occur in branches of ap-
plied mathematics. However, due to the complexity of these equations the solution cannot always
be determined analytically and numerical approximation becomes fundamental both for extracting
quantitative solutions and for achieving a qualitative understanding of the behaviour of the solution.

In this paper we consider one-dimensional second-order scale-invariant nonlinear diffusion equa-
tions of the form

ut = (uq)x (a(t) < x < b(t)), (1) PDE

for a function u(x, t), where q is of the form {p(u)x}s with s an odd integer, and their radially sym-
metic counterparts, posed on finite moving domains. Typical boundary conditions for this problem
consist of a Dirichlet condition on u and a flux condition on uv, where v is the boundary velocity.
We assume here that u = 0 on the moving boundaries. In general the position of the boundary
depends on the solution.

Many PDE problems that arise in practical applications possess scaling symmetries of the de-
pendent and independent variables which are in some sense more fundamental than the equations
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themselves. In approximating such problems by numerical schemes it is desirable to construct
algorithms that preserve these scaling properties, an objective beyond the reach of conventional nu-
merical schemes based on fixed meshes in which the mesh depends on neither time nor the solution.
The geometric integration of scale-invariant ordinary and partial differential equations (PDEs) was
reviewed in Budd and Piggott in [11, 12] who considered the effectiveness of numerical methods in
preserving the geometric structures of PDE problems, pointing to the need for moving-meshes (see
also [13]).

Moving-mesh schemes, referred to as r-adaptive methods, are well suited to problems posed on
finite moving domains since they are able to track the movement of the boundaries. Construction of
these schemes varies but can be classified into two broad categories; mapping-based and velocity-
based methods [19]. The former, which have been extensively studied in [10, 19, 14, 13], control
the location of mesh points and are based on equidistribution. Velocity-based methods, on the other
hand, rely on determining a velocity for each computational node in the mesh and advancing the
nodal positions in time. In this paper we shall be concerned with a particular velocity-based moving-
mesh finite difference method that uses local conservation and has been successfully applied to a
number of different problems in [7, 18, 1, 34, 2, 3, 25, 4, 24, 23, 6, 16].

The main thrust of this paper is the construction of a scale-invariant moving-mesh scheme for
nonlinear diffusion problems of the form (1) that is exact at the nodes for initial conditions sampled
from a self-similar scaling solution (thus preserving a scaling symmetry).

The layout of the paper is as follows. In section 2 we recall the scaling properties of a PDE
problem of the form (1) and the construction of self-similar scaling solutions. Details are given
for two nonlinear diffusion equations of the form (1); a porous medium equation (PME) and a
simplistic glacier equation (SGE). A moving-mesh finite difference scheme based on conservation
of the local integral of u is then described in section 3 that propagates solutions exactly at the
nodes when the initial condition is sampled from a self-similar solution. The algorithm is stated in
section 3.2. The extension to radially symmetric PDEs is described in section 3.3. Section 4 shows
numerical results using the PME and SGE which confirm that the errors in the solution at the nodes
and the approximate boundary position are zero to within rounding error when the initial condition
is sampled from a similarity solution. As an addendum, convergence rates from the algorithm are
determined for more general initial conditions showing superlinear convergence. The paper ends
with a summary including suggestions for further work.

2 Background
〈sec:2〉 The work of Budd et al [10, 11, 12, 13] has underlined the importance of preserving the geometric

structures of the underlying PDE problem in constructing a moving-mesh method. In this section
scale-invariance and similarity solutions are recalled and illustrated in the context of two nonlinear
diffusion equations, a porous medium equation and a simplified glacier equation.

2.1 Scale-invariance
?〈sec:2.1〉?

A PDE problem of the form (1) in one dimension exhibits scale-invariance if the scaling transfor-
mation

t = λt̂, x = λβx̂, u = λαû, q = λδ q̂ (2) Transformations

maps the variables (t, x, u, q) to another set (t̂, x̂, û, q̂) for some arbitrary positive (group) parameter
λ such that equation (1) remains the same in the transformed coordinates.

Substituting the scaling transformation (2) into PDE (1), it is easy to show that the powers α, β
and δ satisfy α − 1 = α + δ − β (leading to β − δ = 1). A further relation between the scaling
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powers depends on the particular form of the function p(u) and will be described for two examples
in section 2.3.

Moreover, since the total integral (mass)

θ =

∫ b(t)

a(t)
u(χ, t) dχ

satisfies

dθ

dt
=

∫ b(t)

a(t)
ut dχ+ u(b(t), t)ḃ− u(a(t), t)ȧ

=

∫ b(t)

a(t)
(uq)χ dχ+ u(b(t), t)ḃ− u(a(t), t)ȧ

= [uq]
b(t)
a(t) + u(b(t), t)ḃ− u(a(t), t)ȧ = 0

by the u = 0 boundary condition, after substitution from (2)

θ =

∫ b(t̂)

a(t̂)
λαû(χ̂, t̂) d(λβχ̂) = λα+β

∫ b(t̂)

a(t̂)
u(χ̂, t̂) dχ̂

where the moving boundaries a(t) and b(t) transform in the same way as x, it follows that the total
mass is invariant if and only if α+ β = 0.

2.2 Self-similar solutions
〈sec:2.2〉

A systematic approach in which the scaling transformation (2) may be used to construct exact solu-
tions to scale-invariant PDE problems is as follows.

Solutions are sought such that λαu(x, t) is a function of λβx and λt, which allows the number
of independent variables of the differential equation to be reduced by one [8]. These solutions,
termed similarity solutions or self-similar solutions, have contributed some of the greatest insights
into nonlinear flows [8, 15]. Such a symmetry is useful since the resulting equation may be more
easily solved than the original problem.

In order to construct such solutions we introduce a ‘similarity’ transformation which is invariant
under the action of (2). Define the so-called similarity variables

η =
u

tα
, π =

q

tδ
, ξ =

x

tβ
. (3) 190

By assuming functional relationships of the form

η = f(ξ), π = g(ξ), (4) function

(where f and g are sufficiently differentiable functions) and substituting (2) into equation (1), a
time-independent ODE satisfied by η(ξ) and π(ξ) is obtained. From (3) and (4) the solution is
given in terms of x and t by

u(x, t) = tαf

(
x

tβ

)
. (5) sss

For a fixed parameter ξ the solution may be described by the moving coordinate

x̂(ξ, t) = tβξ (6) param1
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and the function

û(ξ, t) = u(x̂(ξ, t), t) = u(tβξ, t) = tαf(ξ), (7) ?param2?

returning (5) on elimination of ξ. The velocity effecting the movement of x̂(ξ, t) is given by

v(x̂(ξ, t), t) = v̂(ξ, t) =
∂x̂

∂t
= βξtβ−1 =

βx̂

t
. (8) 10.5

As outlined in [8, 9, 30], self-similar solutions often act as attractors to a wide class of other
solutions in the sense that solutions of nonlinear diffusion problems of the form (1) with s = 1
and arbitrary initial data evolve asymptotically into a self-similar form. The result may be stated as
follows: for a self-similar solution (5) of (1) and an arbitrary solution w(x, t) ≥ 0 of (1) with the
same mass and centre of mass, the function u will be a global attractor for w such that

lim
t→∞

tβ‖u− w‖ = 0

where β is the scaling power found from scale-invariance and || · || is some norm. A proof of this
result can be found in [22, 33, 29] which uses either the maximum principle or Lyapunov functions.

2.3 Examples
〈diffusionproblems〉 2.3.1 A porous medium equation

In one dimension the porous medium equation (PME) is given by

ut = (umux)x (a(t) < x < b(t)) (9) PME

where m > 0, which is of the form (1) with s = 1 and p(u) = umux = (um)x/m. Typical
boundary conditions are u = 0 at x = a(t), b(t), implying zero net flux and hence constant global
mass.

The porous medium equation has stimulated considerable interest from mathematicians, applied
and pure, as well as in many fields; biology, heat radiation in plasmas, ground-water hydrology
and more. A well-known application is to the flow of an isentropic gas through a porous medium.
Other applications include biological modelling, where for example bone cartilage and muscle are
modelled as porous media, assisting understanding of pathological conditions.

A simple derivation of equation (9) is as follows. The flow through a porous medium in 1D is
governed by three model equations:

ρt = −(ρv)x (continuity equation)
v = −κpx/µ (Darcy’s law)
p = ργ (equation of state)

where ρ is the density, v is the velocity (given by Darcy’s law), µ is the viscosity, κ is the perme-
ability of the medium (taken to be a constant), p is the pressure and γ > 0 is the ratio of specific
heats.

By substituting the equation of state into Darcy’s law we obtain

v = −κ(ργ)x/µ = −γκργ−1ρx/µ.

The continuity equation then becomes ρt = γκ(ργρx)x/µ. By scaling the constant γκ/µ to unity
and setting ρ = u and γ = m we obtain (9) where u = u(x, t) is the density and m = γ − 1.
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Due to the form of p(u) and the boundary conditions equation (9) is scale invariant with δ =
mα− β and conserves global mass, so α+ β = 0 and β − δ = 1, leading to

α = − 1

m+ 2
, β =

1

m+ 2
and δ = −m+ 1

m+ 2
.

A solution of the ODE obtained from the substitution of (5) into (1) is f(ξ) = tα(1 − ξ2)1/m,
leading to the self-similar scaling solution

u(x, t) =
1

t1/(m+2)

(
m

2(m+ 2)

)1/m
(

1−
(

x

t1/(m+2)

)2
)1/m

+

, (10) PMEsss

discovered independently by Barenblatt [8] and Pattle [27]. The notation + in equation (10) indi-
cates restriction to the positive part of u, thus determining the support of the solution. The boundary
at ±t1/m+2 moves with velocity v = ±(1/(m+ 2))t1/(m+2)−1, in accordance with (8).

2.3.2 A simplified glacier equation

For a glacier to form, snow must accumulate in one area over each year. This snow compresses
into ice over years (or centuries). The weight of the accumulated snow and ice causes the glacier to
move, and a simplistic one-dimensional glacier equation (SGE) for the ice thickness u = u(x, t) is
given by

ut = (u5u3x)x (0 < x < b(t)), (11) SGE

omitting any ongoing ice-accumulation and/or ice-removal processes. Equation (11) is a nonlinear
evolution equation that contains the essential singularities inherent in the flow of ice in an ice sheet.
The boundary conditions are ux = 0 at x = 0 (the ice divide) and u = 0 at x = b (the ice margin),
implying zero net fluxes and hence constant total mass. Equation (11) is of the form (1) with s = 3,
q = u4u3x and p(u) = (3/7)u7/3.

We give a brief derivation of equation (11). Under the assumption that there is no accumulation
of snow or basal melting affecting the glacier, the continuity equation for the ice thickness in 1D is

ut = −(uv)x (12) continuity

where v(x, t) represents the vertically-averaged ice velocity. Under the shallow ice approximation,
see [21], and Glen’s flow law (an established law for steady state ice deformation) the velocity is
modelled as v = −cu4u3x where c is a constant, assuming constant bed elevation (flat bed). In
accordance with Van Der Veen in [32], c = 2Aρ3g3/5 > 0, where ρ is the ice density and g
represents gravity. By a choice of units, c = 1 and so the velocity can be written as

v = −u4u3x = −(3/7)3{(u7/3)x}3.

Hence we obtain equation (11), found by substituting v into equation (12), posed on the finite
moving domain 0 ≤ x ≤ b(t).

It can be shown that equation (11) with the given boundary conditions is scale-invariant under
the scaling transformations in (2) if the scaling powers α and β satisfy α − 1 = 8α − 4β and
α+ β = 0, implying that

−α = β = 1/11.

A self-similar scaling solution, given in [20, 17], is therefore

u(x, t) =
1

t1/11

(
7

4 3
√

11

)3/7
(

1−
{

x

t1/11

}4/3
)3/7

+

(13) GEsss

where the notation + denotes the positive part of the solution, thus determining the extent b(t)
of the domain. The position b(t) of the boundary is given by x̂(t) = t1/11 and its velocity v =
(1/11)t−10/11, in accordance with (8).
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3 A moving-mesh approach
〈sec:3〉 In general the extent of the domain of the solution of (1) depends on the solution itself, and so the

approach taken to solve for u is crucial. A standard approach is to solve for u on a fixed domain and
then adjust the boundary according to the boundary conditions. Another approach is to solve for u
and the boundary position simultaneously. A useful device is to stretch the domain in proportion to
the (unknown) boundary position and solve a modified PDE, although this procedure may affect the
essential structure of the PDE [5]. A more consistent way of deforming the domain is based on a
local conservation of mass, which determines a nodal velocity v (in terms of the solution u) and has
the advantage that the subsequent recovery of u is algebraic [1, 23]. This approach is summarised
below.

The Eulerian equation of conservation (continuity) for a conserved quantity u is

ut + (uv)x = 0 (14) 334

where v is the Eulerian velocity, which is scale-invariant when v scales as λβ−1. From (14) and the
scale-invariant PDE (1) it follows that

(uq)x + (uv)x = 0,

yielding (given a boundary or anchor condition on v) the velocity

v(x, t) = −q (15) 5

at all points of the domain (provided that u 6= 0). For the nonlinear diffusion equations (1) the
function q = {p(u)x}s where s is an odd integer. Hence the velocity (15) is

v(x, t) = −{p(u)x}s. (16) =

Note that if u is constant at the boundary x = b(t), say, for all t then

Du

Dt
= 0 = ut + vbux = (uq)x + vbux

where vb is the boundary velocity, from which

vb = −{(uq)x/ux} (17) {?}

if ux 6= 0. Thus the boundary velocity depends on the solution, which is often the case with moving
boundary problems. In particular, if u→ 0 at the boundary,

vb = − lim
u→0
{(uq)x/ux} = − lim

u→0
{q}u=0 = − lim

u→0
{p(ux)}s (18) 2.5

by l’Hopital’s Rule. The velocity (18) is identical to the velocity (16) derived from the local mass
principle (14) at the boundary.

A deformation of the domain is defined by integrating the ODE

dx̂

dt
= v(x̂(t), t) (19) 341

for a moving coordinate x̂(t) with initial condition x̂ = x. Subsequently the solution u(x̂(t), t) is
determined from the Lagrangian form of conservation,∫ x̂2(t)

x̂1(t)
u(χ, t)dχ = constant (20) 343

for any a(t) ≤ x̂1(t) < x̂2(t) ≤ b(t).
The steps (16), (19), and (20) are scale-invariant under the transformation (2).
We describe a finite difference scheme based on this approach.
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3.1 A moving-mesh finite difference scheme
?〈sec:3.1〉? Consider a one-dimensional mesh with time-dependent mesh points

a(t) = x0(t) < xi(t) . . . , < xN (t) = b(t)

where a(t) and b(t) are the (moving) boundaries.

3.1.1 Generating the mesh velocities
?〈sec:3.1.1〉? The velocity is taken to be a finite difference approximation of (16). In the case where s = 1 a con-

venient second-order centred accurate approximation for vj at any time tn consists of a barycentric
average of the two first-order approximations to p(u)x in adjacent cells (see e.g. [25]). Thus the
mesh velocity vj at any point xj is calculated as

vj = −
p(uj+1)−p(uj)
(xj+1−xj)2 +

p(uj)−p(uj−1)
(xj−xj−1)2

1
xj+1−xj + 1

xj−xj−1

(21) 413

with truncation error
Tj =

1

6
(xj − xj−1)(xj+1 − xj) p(u)xxx

∣∣
x=ϑi

(22) third

where ϑi is an intermediate value. It is simple to confirm that the formula (21) is scale-invariant
under the transformation (2).

In the case of similarity the velocity is proportional to x̂ by (8) and equal to −p(u)x when
s = 1 by (16). Thus p(u)x is proportional to x̂, the truncation error (22) vanishes, and the general
second-order formula (21) is exact in this case.

Remark 1. The same result is obtained by evaluating the derivative of the quadratic interpolating
polynomial through p(uj−1), p(uj) and p(uj+1) at x = xj , as we now show.

For general values of the odd integer s (including s = 1) the velocity is v = −{p(u)x}s by
(16). Because the velocity is proportional to x in the case of similarity by (8), it follows that p(u)x
is proportional to x1/s. Then by integration (taking the origin of x at a point where p(u) vanishes)
the function p(u) is proportional to x1+1/s and hence {p(u)}s is a monomial Q(x) of degree 1 + s.
The velocity in terms of Q(x) is then

v = −{p(u)x}s = −
(
{Q(x)1/s}x

)s
= −

{
(1/s)

(
Q(x)1/s−1Qx

)}s
= −(1/s)sQ(x)1−s(Qx)s.

(23) 498

The evaluation of Q(xj) = {p(uj)}s at x = xj is straightforward. Moreover, since Q(x) is a
monomial of degree 1+s the evaluation ofQx at x = xj is exact if it is calculated by differentiating
the interpolating polynomial of degree 1 + s through three adjacent values of Q(xj).

PME

For the PME we have s = 1 and p(u) = (um)x/mwith v = −(um)x/m. The velocity can therefore
be calculated either from (21) or from (23) with Q(xj) = (uj)

m/m and the derivative Qx can be
found by differentiating the quadratic interpolating polynomial through adjacent values of umj /m.

SGE

For the SGE s = 3 and p(u) = (3/7)u7/3 with v = −{p(u)x}3. The velocity can therefore be cal-
culated from (23) with Q(xj) = (3/7)3(uj)

7 and the derivative Qx can be found by differentiating
the quadratic interpolating polynomial through adjacent values of (3/7)3(uj)

7.
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3.1.2 Advancing x(t)
?〈sec:3.1.2〉? The mesh point locations xj(t) can now be obtained via time integration of the ODE system

dxj
dt

= v(xj , t), (j = 1, ..., N − 1)

(dropping the hats). Let tn be the time at the nth time step and xnj be the computed mesh point at
the nth time step, i.e. xnj is xj(t) at t = tn. Also, let ∆t = tn+1 − tn be the time step from tn to
tn+1, where ∆t is constant, and vnj be the velocity at xnj at the nth time step.

We now seek a time-stepping scheme which is stable and avoids the overtaking of nodes (or
mesh tangling). Often used is the explicit Euler time-stepping scheme,

xn+1
j = xnj + ∆t vnj , j = 1, ..., N − 1 (24) ?Euler?

which is only first order accurate and not exact for self-similar solutions.
Observe from (6) that the function y = x1/β is linear in t in the case of similarity. Hence the

formula

yn+1 = yn + ∆t

(
dy

dt

)n
generates yn+1 from yn exactly. Since

dy

dt
=

dy

dx

dx

dt
= β−1x(1/β)−1 v,

the formula

yn+1 = yn + ∆t

(
dy

dt

)n
= yn + β−1∆t (yn)(1−β) vn (25) 720

is exact in the case of similarity. Since y = x1/β the formula (25) can be written as

xn+1 = xn
(

1 + β−1∆t
vn

xn

)β
.

We therefore choose the discrete time-stepping scheme

xn+1
j = xnj

(
1 + β−1∆t

vnj
xnj

)β
, j = 1, ..., N − 1, (26) scaleinvarianttimestep

which is exact when vj is the similarity velocity (8). It is simple to confirm that the formula (26) is
scale-invariant under the transformation (2).

A similar device was described in [2, 31] which used a scaled (variable) time step. In particular,
in [31] a similarity-based time-stepping scheme is implemented which is exact in the case of the
similarity velocity for the simplistic glacier equation, obtained by rescaling the time variable rather
than the spatial variable. The scheme chosen here depends on a preference for equal time steps.

3.1.3 Recovering the solution
?〈sec:3.1.3〉? The final step of the conservation-based finite difference method is to obtain the updated approxi-

mate solution uj at the next time step. From the Lagrangian form (20) of the Eulerian conservation
principle (14) we have ∫ xj+1(t

n+1)

xj−1(tn+1)
u(χ, tn+1) dχ = cj , (27) 26.5

independent of t. The value of cj is determined by the left hand side of (27) at the initial time.
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A consistent approximation of (27) is the algebraic formula

(xn+1
j+1 − x

n+1
j−1 )un+1

j = c̄j (28) int

say, where the c̄j are the initial values of the left hand side of (28), which yields

un+1
j =

c̄j

(xn+1
j+1 − x

n+1
j−1 )

. (29) updateu

The formula (28) is scale-invariant under the transformation (2).

Remark 2. Provided that the xn+1
j values are exact when vj is the similarity velocity (8), the un+1

j

values calculated from (29) are also exact at the nodes when the initial c̄j values are calculated
from the initial solution in a consistent way. Any linear quadrature of (27) can be used: (28) is the
most convenient since it gives un+1

j explicitly.

3.2 The numerical algorithm
〈sec:3.2〉 In summary, a scale-invariant moving-mesh algorithm for the approximate solution of nonlinear

diffusion equations of the form (1) is as follows:
Given initial data with nodal points x0j and values u0j , evaluate the c̄j’s from (28) at the initial

time. Then for each time step:

(1) Compute the mesh velocities vj using (21) (when s = 1) or (23).

(2) Move the mesh from time tn to tn+1 to obtain xn+1
j using the time-stepping scheme (26).

(3) Update the values un+1
j values at the next time step from equation (29).

Remark 3. The solution is propagated exactly when the initial condition is sampled from a self-
similar solution initially. Thus any vector of nodal values sampled from a self-similar solution is a
fixed point of the scheme.

3.3 Extension to multidimensions
〈sec:3.3〉

Due to the isotropy of the diffusion coefficient in the multidimensional form

ut = ∇ · (uq) (30) PDE2

of PDE (1), scale-invariance demands that all coordinates scale in the same way, so PDE (30)
must exhibit radial symmetry, i.e. it is sufficient to show that the numerical method of section 3.2
generalises to radially symmetric PDEs of the form

ut =
1

rd−1
∂

∂r
(rd−1q) (0 < r < R(t)), (31) rPDE

for a function u(r, t), where r is the radial coordinate, q is of the form {p(u)r}s with s odd, and d
is the number of dimensions. Boundary conditions are u = 0 at the radial boundary and a reflection
condition at r = 0, ensuring constant total mass.

The scaling powers β anad γ of section 2.2 are now altered but the functional form of equation
(5) is the same [4]. Exact self-similar solutions are available for the PME [1] and for the SGE [17].

The application of the theory to multidimensions is therefore a straightforward generalisation of
the one-dimensional algorithm of section 3.2 [26, 16]. The algorithm for the approximate solution
of PDEs of the form (31) is as follows:
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Given initial data with nodal points r0j and values u0j , evaluate the c̄j’s from

c̄j = u0j{(r0j+1)
d − (r0j−1)

d} (32) ?radial?

at the initial time (cf . (28)). Then at each time step:

(1) Compute the mesh velocities vj using (21) (when s = 1) or (23) (with x replaced by r).

(2) Move the mesh from time tn to tn+1 to obtain rn+1
j using the time-stepping scheme (26) (with

x replaced by r and the relevant value of β).

(3) Update the values un+1
j values at the next time step from

un+1
j =

c̄j

(rn+1
j+1 )d − (rn+1

j−1 )d
, (33) ?rupdateu?

(cf. (29)). The algorithm possesses the property of propagating exact values at the nodes for radially
symmetric problems.

4 Numerical results
〈sec:4〉 4.1 Self-similar initial conditions

?〈sec:4.1〉?
The moving-mesh algorithm of section 3.3 is implemented in Matlab for the PME and the SGE. The
PME example chosen is the three-dimensional contaminant spreading problem (cf. [24]) governed
by the PDE

ut =
1

r2
∂

∂r

(
r2u2

∂u

∂r

)
with u = 0 on the moving boundary, for which β = 1/8. The SGE example is the two-dimensional
ice cap problem [26, 16]

ut =
1

r

∂

∂r

(
ru5

(
∂u

∂r

)3
)

with u = 0 on the moving boundary, for which β = 1/18. In each case the algorithm propagates
initial self-similar solutions exactly at the nodes (to within rounding error), as expected.

By contrast, if the time-stepping scheme (step 2 of the algorithm) is replaced by the more com-
mon forward Euler scheme, corresponding to β = 1 in (26), the algorithm reverts to finite difference
algorithms already described in the literature, in [23] for the PME and in [26, 16] for the SGE, giving
only approximate values at the nodes.

4.2 Non self-similar initial conditions
?〈sec:4.2〉?

It is also of interest to investigate the accuracy of the algorithm of section 3.3 for more general
initial conditions, based on the convergence rate obtained from a sequence of solutions in which
the number of points N is progressively doubled (see e.g. [23, 26]). The algorithm is implemented
using Matlab for the PME (with m = 2) and the SGE in one dimension using an initially equally
spaced mesh. Convergence of the solutions are investigated at time t = 2 with N = 10× 2k where
k = 0, 1, 2, 3 and ∆t = O(1/N2), chosen on stability grounds (see e.g. [28]), using a relative l∞
error calculated from

eN (u) =
‖uN − u160‖∞
‖u160‖∞
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where uN is the approximate value found from the algorithm and u160 is regarded as a highly
accurate solution. Similarly, the error in the boundary position is calculated from

eN (X) =
|XN −X160|

X160

where XN is the approximate value found from the algorithm and X160 is regarded as a highly
accurate solution.

PME

The initial condition for the PME (9) with m = 2 is taken as

u(x, t0) =
1

4
(1− x2)1/2 +

1

2
(1− x2) (−1 < x < 1) (34) icPME

at t0 = 1, differing from the self-similar solution (10) but avoiding the complication of waiting
times [23].

Computed values of the relative errors eN (u) and eN (X) for N = 10, 20, 40, 80 against those
for N = 160 (a highly accurate solution) are shown in Table 1. A relative error eN of 1.2% is
obtained with as few as 20 nodes. As N increases the relative errors for both the solution and the
moving boundary suggest superlinear convergence.

N ∆t Relative error eN (u) Relative error eN (X)

10 0.01 1.2× 10−2 2.6× 10−3

20 0.0025 5.5× 10−3 9.0× 10−4

40 0.000625 2.4× 10−3 3.0× 10−4

80 0.00015625 8.7× 10−4 7.3× 10−5

Table 1: Relative errors eN (u) and eN (X) at t = 2 for the PME with m = 2 when the initial condition is
(34).

〈table3〉

SGE

The initial condition for the SGE is taken to be

u(x, t0) = c(1− x4/3)3/7 − 1

2
(1− x2) (0 < x < 1) (35) icSGE

at t0 = 1 where c = (7/4 3
√

11)3/7, again differing from the self-similar solution (13) and avoiding
the complication of waiting times [26, 16].

N ∆t Relative error eN (u) Relative error eN (X)

10 0.01 9.2× 10−3 5.4× 10−4

20 0.0025 2.7× 10−3 5.7× 10−4

40 0.000625 9.0× 10−4 1.5× 10−4

80 0.00015625 3.0× 10−4 3.9× 10−5

Table 2: Relative errors eN (u) and eN (X) at t = 2 for the SGE when the initial condition is (35).
〈table4〉

Computed values of relative error eN (u) and eN (X) for N = 10, 20, 40, 80 against those for
N = 160 (taken to be a highly accurate solution) are shown in Table 2. For the smallest number
of nodes (N = 10) the boundary position is computed very accurately (better than a 0.1% relative
error). As in the case of the PME, asN increases the results for both the relative error of the solution
and the relative position of the moving boundary suggest superlinear convergence.
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5 Summary
?〈sec:5〉? In this paper we have shown that, for a class of second-order scale-invariant nonlinear diffusion

equations with constant global mass in one dimension, the scale-invariant moving-mesh finite dif-
ference algorithm of section 3.2 propagates self-similar solutions exactly in the l∞ norm. The
property extends to radially symmetric problems in multidimensions.

The symmetry preserving property was illustrated for two radially symmetric examples, a porous
medium problem (in three dimensions) and a simplified glacier equation (in two dimensions), con-
firming that the method carries a self-similar scaling solution exactly at the nodes (to within round-
ing error).

The accuracy of the method was also investigated for non self-similar initial conditions, the
results indicating superlinear convergence in each case.

Further work in this area would be the extension to non mass-conserving problems, more general
boundary conditions, and anisotropic diffusion.
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