Metal bioaccumulation and cellular fractionation in an epigeic earthworm (Lumbricus rubellus): the interactive influences of population exposure histories, site-specific geochemistry and mitochondrial genotype

[thumbnail of Andre_et_al_(2010)_Soil_Biol_Biochem_42_1566_-_1573.pdf]
Preview
Text - Accepted Version
· Please see our End User Agreement before downloading.
| Preview

Please see our End User Agreement.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Andre, J., Stürzenbaum, S. R., Kille, P., Morgan, A. J. and Hodson, M. E. (2010) Metal bioaccumulation and cellular fractionation in an epigeic earthworm (Lumbricus rubellus): the interactive influences of population exposure histories, site-specific geochemistry and mitochondrial genotype. Soil Biology & Biochemistry, 42 (9). pp. 1566-1573. ISSN 0038-0717 doi: 10.1016/j.soilbio.2010.05.029

Abstract/Summary

Subcellular fractionation techniques were used to describe temporal changes (at intervals from T0 to T70 days) in the Pb, Zn and P partitioning profiles of Lumbricus rubellus populations from one calcareous (MDH) and one acidic (MCS) geographically isolated Pb/Zn-mine sites and one reference site (CPF). MDH and MCS individuals were laboratory maintained on their native field soils; CPF worms were exposed to both MDH and MCS soils. Site-specific differences in metal partitioning were found: notably, the putatively metal-adapted populations, MDH and MCS, preferentially partitioned higher proportions of their accumulated tissue metal burdens into insoluble CaPO4-rich organelles compared with naive counterparts, CPF. Thus, it is plausible that efficient metal immobilization is a phenotypic trait characterising metal tolerant ecotypes. Mitochondrial cytochrome oxidase II (COII) genotyping revealed that the populations indigenous to mine and reference soils belong to distinct genetic lineages, differentiated by 13%, with 7 haplotypes within the reference site lineage but fewer (3 and 4, respectively) in the lineage common to the two mine sites. Collectively, these observations raise the possibility that site-related genotype differences could influence the toxico-availability of metals and, thus, represent a potential confounding variable in field-based eco-toxicological assessments.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/7686
Identification Number/DOI 10.1016/j.soilbio.2010.05.029
Refereed Yes
Divisions Science > School of Archaeology, Geography and Environmental Science > Department of Geography and Environmental Science
Science > School of Archaeology, Geography and Environmental Science > Earth Systems Science
Interdisciplinary centres and themes > Soil Research Centre
Uncontrolled Keywords Earthworms; Pb & Zn; Subcellular fractionation; Field & lab exposures; Genotyping
Publisher Elsevier
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar