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Global constraints on momentum and energy govern the structure of the zonal mean trop-26

ical circulation and rainfall. The continental-scale monsoon systems are also facets of a27

momentum- and energy-constrained global circulation, but their modern and paleo vari-28

ability deviates substantially from that of the longitudinal mean through mechanisms neither29

fully understood nor well simulated. A framework grounded in global constraints yet encom-30

passing the complexities of monsoon dynamics is needed to identify the causes of mismatch31

between theory, models, and observations and, ultimately, improve regional climate projec-32

tion. In a first step towards this goal, disparate regional processes must be distilled into gross33

measures of energy flow in and out of continents and from the surface to the tropopause, so34

that monsoon dynamics may be coherently diagnosed across modern and paleo observations35

and across idealized and comprehensive simulations. Accounting for zonal asymmetries in36

the circulation, land/ocean differences in surface fluxes, and the character of convective sys-37

tems, such a monsoon framework would integrate our understanding at all relevant scales:38

from the fine details of how moisture and energy are lifted in the updrafts of thunderclouds,39

up to the global circulations.40

Most tropical precipitation, whether steady rain or intense showers, falls from cloud clus-41

ters where individual, small-scale updrafts are organized over a few hundred kilometers in dis-42

crete weather systems. These, in turn, are orchestrated by planetary-scale circulation features: the43

monsoons and the Inter-Tropical Convergence Zone (ITCZ, Figure 1a and b). The clustering of44

individual clouds is the visible signature of an otherwise invisible global stirring. The notion that45

a link exists between smaller and larger scales underpins our understanding of tropical rain belt46

dynamics and is the basis of their representation in global climate models. Our understanding,47

however, remains incomplete, as evidenced by our inability to achieve reliable predictions of how48

the ITCZ and monsoons respond to external forcings.49

Without the benefit of outdoor controlled experiments, or the possibility of validating pre-50
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dictions of long-term future changes, the reliability of our prediction tools must be tested against51

past records. Confidence in projected climate responses increases when dynamic theories built on52

contemporary observations also explain past conditions and when simulations skillfully reproduce53

the paleo record.54

Good tests of our theories and models are the Holocene waxing and waning of monsoons55

in response to orbitally-driven changes in incoming solar radiation1, 2 (Figure 2). During the early56

to mid Holocene (11,000-5,000 years before present), the Northern Hemisphere received more57

insolation during its summer than today, while the Southern Hemisphere received less during its58

summer. In the modern climate, monsoons export energy from regions where the sun delivers59

most—so we would expect mid-Holocene monsoons to be stronger in the Northern Hemisphere60

and weaker in the Southern Hemisphere, compared to today. Paleoenvironmental data from that61

period indeed indicates increased rainfall in North and Central America3, 4, a stronger Indian mon-62

soon and increased inland penetration of the monsoon into China5, 6, and a spectacular rainfall63

expansion in northern Africa7, 8: abundant lake, pollen and archaeological evidence documents64

wetting and vegetation increase over much of the Sahara.65

While qualitatively consistent with our expectations, the major expansion of the Northern66

Hemisphere monsoons is widely underestimated in climate model simulations1, 2, in particular67

over the Sahara9 (Figure 2b). This bias can be reduced by modeling earth-system feedbacks10
68

or by imposing the observed changes in vegetation, surface water storage, wetlands, soils, and69

mineral dust as boundary conditions11–13. Yet, simulations that organically produce both the rain-70

fall distribution and the vegetation types that are consistent with the records still elude us2. Moist71

atmospheric dynamics and its coupling with other aspects of the Earth system, including vegetation72

cover and soil properties, remain prime suspects for the failures. Moreover, the sign of observed73

Southern-Hemisphere changes is not fully consistent with the predictions of reduced rainfall from74
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both arguments based on the hemispheric summertime insolation forcing and complex model sim-75

ulations. Although many more quantitative estimates of rainfall anomalies from the Southern76

Hemisphere are needed to paint a full picture, many palaeoenvironmental records from South-77

ern Africa imply increased precipitation14 and palaeoenvironmental records from South America78

and Australia seem to show (their interpretation being somewhat controversial) mixed wetting and79

drying signals15, 16. Thus, neither complex models nor theoretical intuition are sufficient to explain80

past monsoon records.81

In a traditional dry paradigm, monsoon circulations are akin to continental-scale land-sea82

breezes driven by surface temperature contrast, their strength increasing with the contrast. But this83

is too simplistic. Monsoon lands are hottest before the start of the monsoon, but the circulation is84

strongest in late summer (when increased rain and cloudiness have cooled the land and reduced85

the contrast). In future climate projections, land-sea temperature contrasts universally strengthen,86

but monsoon circulations generally weaken17 as does, in some instances, regional early-season87

rainfall18, 19.88

A better paradigm views monsoons not as giant heat lows for which rainfall is a side effect,89

or as circulations “driven by” the latent heating of rainfall, but as moist energetically-direct circu-90

lations tightly coupled to precipitating convection; a facet of the general overturning of the tropical91

atmosphere inextricably linked to the Hadley circulation and the zonal mean ITCZ20 .92

At seasonal time scales, convection acts to release any column instability and to bring the93

free-tropospheric temperature in line with the moist static energy (MSE) of the boundary layer be-94

low it21. Horizontal atmospheric motions homogenize the free-tropospheric tropical temperatures95

to one vertical profile which reflects the conditions of the major convective centers. In this view,96

peak rainfall should coincide with peak low-level MSE; cooler and dryer surfaces can support97

only shallower or suppressed convection. Land and ocean observations confirm this theoretical98
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prediction22. Meanwhile, the upper-level divergence over these convective regions (maxima of99

low-level MSE) implies that the circulations associated with peak rainfall export total energy away100

from the centers of deep convection. In other words, monsoons and the ITCZ are components of101

a planetary energetically-direct circulation that links land and ocean rainfall (similar to a “global102

monsoon”23) and shows coherent variability from seasonal24, 25 to geological time scales20, 26, 27.103

Such an encompassing view is an important theoretical advance. Its formulation for the zonal104

mean tropical circulation–known in the literature as the energy-budget framework–underpins our105

understanding of why the ITCZ moves meridionally in response to forcings that originate well106

outside the tropics20, 28, 29 (Section 1).107

Further progress in understanding and simulating regional rainfall anomalies requires us to108

extend the energy-budget framework developed for the Hadley circulation to describe how the full109

tropical circulation redistributes energy vertically and horizontally, from its poleward boundaries110

and across the tropics. The extension of the energy-budget framework from a purely zonal for-111

mulation to one that includes zonal asymmetries would parallel the progress that has been made112

in understanding how the momentum budget constrains tropical circulations. The momentum-113

budget framework has led us from a starting view of the Hadley circulation30 and–to a degree–114

the monsoons31 as axisymmetric angular-momentum-conserving circulations, to the recognition115

that momentum transport by eddies is crucial to maintaining the zonal mean circulation in most116

cases32, 33, to a deepening understanding of the role of the vorticity transport by stationary ed-117

dies in both localizing the monsoon circulation and regulating its intensity34, 35. An analogous118

energy-budget framework would invoke zonal asymmetries in surface properties, which introduce119

horizontal gradients in the distribution of energy, amplify the importance of both stationary and120

transient eddy transports, and can generate shallow circulations which can be energetically in-121

direct (Section 2). These asymmetries are expressed in the observable differences in convective122

weather characteristics between land and ocean (Figure 1c and d), which aggregate into different123
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ascent profiles and vertical energy transport (Section 3).124

The eventual goal is to combine the momentum-based and energy-based theories of tropical125

circulations and rainfall into a self-contained model for the tropical climate, one that describes how126

the interplay between energy and momentum fluxes in a moist atmosphere—where a profusion of127

weather phenomena, cloud types, and scales of motion is organized in mean and eddy effects—128

drives the seasonal evolution of oceanic and continental rainfall and controls monsoon diversity,129

variability, and response to external forcing. Understanding how the clouds within such circula-130

tions modify the energy input into the atmosphere through changes in both radiative fluxes and131

turbulent surface fluxes would be the next challenge36–38. In the rest of this paper, we propose a132

first step towards our goal: an energy-budget framework suitable for monsoons.133

1 The explanatory power of energetic constraints.134

Energetic constraints provide a parsimonious explanation of how the zonal-mean tropical rainfall135

shifts its position in response to internal variability and external forcings20, 28, 29. The ascending136

branches of the Hadley cells are in the deep tropics, where the solar radiation absorbed by the137

earth most greatly exceeds the terrestrial radiation emitted to space. Energy is transferred from138

the surface to the atmosphere by fluxes of radiation, sensible heat and moisture (latent heat) and a139

planetary circulation moves this excess energy towards high latitudes (Fig. 3a). Moist surface air140

converges and rises in the ITCZ, thus cooling adiabatically, condensing moisture, and forming pre-141

cipitating clouds. As a result, maximum rainfall is broadly co-located with the boundary between142

the Hadley cells (Fig. 3c).143

These ideas can be formalized by focusing on the atmospheric energy budget in the annual144

and zonal means20, 28. Averaging in time and longitude disposes of tendency terms and zonal fluxes,145

so that, under the assumption that eddy terms are unimportant, net energy input into the atmosphere146
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is balanced by the divergence of the vertically integrated energy flux by the Hadley circulation F147

and the ITCZ coincides with the “energy-flux equator,” i.e., the latitude at which the energy flux148

F = 0 and changes direction.149

The Coriolis force is weak in the tropics and atmospheric waves are effective in smooth-150

ing out pressure gradients. Because the tropical troposphere cannot maintain strong temperature151

gradients, an extra-tropical eddy heat flux that reaches the tropics will be carried into the tropics152

and through—to the mid latitudes of the other hemisphere. This argument appears to apply more153

broadly: any asymmetry in the energy flux across the northern and southern edges of the trop-154

ics is felt throughout the tropical band39, making the position of the energy-flux equator sensitive155

to extra-tropical forcings20. The same argument explains how the inter-hemispheric asymmetry156

in seasonal insolation drives the north-south annual migration of the ITCZ24. However, because157

the cross-equatorial Hadley cell is always the strongest throughout the annual cycle, and because158

maximum ascent and rainfall are concentrated within the cross-equatorial cell and equatorward of159

the energy-flux equator, seasonal rainfall shifts are less pronounced than those of the energy-flux160

equator24 (Fig. 3a). In comprehensive models, changes in the annual-mean position of the ITCZ,161

their inter-model spread, and the seasonal migration of the rain belt have been shown to follow162

the same quantitative relationship with energy transports, albeit with some scatter and uncertainty163

(a 1PW change in the cross-equatorial energy flux leads to about a 3o shift in the position of the164

ITCZ, Fig 3b). This correspondence has been used to suggest that the same dynamics control both165

the meridional shifts characteristic of the annual cycle and the variability of mean rainfall at paleo166

time scales20, 24, 40.167

This theory for the ITCZ position sees the tropical rain belt as the expression of the conser-168

vation law that governs energy in the climate system; it links the occurrence of convection not just169

to the local environment, but to the planetary adjustments that bring the global atmosphere towards170
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equilibrium; and it subsumes arguments that link the ITCZ position to gradients in tropical SST. It171

has been used to explain the location of the modern ITCZ north of the equator as a consequence172

of energy transport by the thermohaline ocean circulation41, the southward shift of tropical rainfall173

during the last glacial maximum and Dansgaard-Oeschger events as a consequence of northern174

high-latitude cooling29, 40, the effect of Eurasian afforestation on monsoons in the mid Holocene42,175

the Sahel drought in the 1970’s and 1980’s as part of a global-scale southward ITCZ shift due176

to sulfate aerosols43, and the role of Southern Ocean heat uptake in setting up the hemispheric177

asymmetry in future tropical rainfall changes44.178

However, the existing framework is limited in important ways. First, it is incomplete as179

a predictive theory because internal radiative feedbacks from clouds and water vapour can over-180

whelm the external forcings in setting energy gradients, are not easily predicted from gross en-181

ergetic constraints, and vary substantially between models36, 37, 45. Even when the radiative effect182

of clouds is carefully controlled in models46, 47, changes in oceanic heat transport can oppose the183

inter-hemispheric difference in energy input in the atmosphere and complicate the response of184

the ITCZ48 to external forcings. Indeed, the tight coupling between atmospheric and oceanic heat185

transport20, 49–51 suggests an expansion of atmospheric-only arguments. Second, changes in tropical186

rainfall are often better described as intensifications52 or contractions 19, 53–56 of the climatological187

net rainfall pattern, rather than shifts, and some regional anomalies are strongly driven by localized188

gradients in surface conditions 57–59, including between ocean and land60, 61. Third, the assumption189

that rainfall is the product of deep convection in which ascent extends throughout the troposphere190

and maximizes at mid levels is crucial to the portrayal of the Hadley cell as energetically direct.191

Quantitatively, this requires that the same large-scale circulation that converges moisture into the192

ITCZ also diverges enough static energy from the ITCZ at upper levels that the vertically-integrated193

result is a net export of MSE—a result that depends heavily on where exactly in the column air is194

converging and diverging. Yet, rainfall is also produced in circulations with shallow components195
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and bottom-heavy ascent profiles (see also Fig 4), and direct calculation of the energy flux out of196

such regions indicate a net import of energy62, 63. Fourth, the assumption in the ITCZ energy-budget197

framework that eddies are not important is debatable. Even well within tropical latitudes, transient198

eddies transport latent heat poleward64 and thus might be as important as the zonal circulation in199

transporting energy, especially where the latter is weak. While the bulk effect of transient eddies200

could be subsumed into the framework developed for the ITCZ in an aquaplanet28, 65, the presence201

of land introduces stationary eddies34, 66 and localizes transient eddies31 in ways that preclude the202

straightforward application of the zonal mean framework to limited longitude bands (Fig 2c). This203

is particularly true in a moist atmosphere, where feedbacks between surface fluxes, clouds, and204

latent and radiative heating can amplify and extend the asymmetries in the forcing45. These limi-205

tations hamper our ability to use the existing energy-budget framework for the ITCZ to accurately206

predict the response of regional rainfall to past or future forcings. Yet the fundamental insight that207

regional changes are expressions of global conservation laws should not be abandoned.208

2 The need for an energy-budget framework for monsoon systems.209

Zonal asymmetries and contrasts between land and ocean are fundamental to the energy and the210

momentum budget of monsoon circulations13, 34, 67, 68. To close, the energy budget must include211

the effect of zonal transports and of the complex vertical structure of the meridional circulation,212

both of which are the result of inhomogeneities in surface properties. Inhomogeneities do oc-213

cur over oceans (such as between warm pools and the equatorial cold tongues), but gradients in214

surface properties are especially strong at coastlines and over continents due to orography, vari-215

ability in the characteristics of soils and vegetation, and–in a positive feedback–to the response216

of the land system to differences in precipitation. The conceptual model of the Hadley cell as a217

simple deep overturning meridional circulation (Fig. 3c) can broadly capture the main features of218

the ITCZ, but is insufficient to describe the more complex monsoon circulations. In many regional219
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monsoons22, 69, gradients in surface temperature and sensible heat fluxes (e.g., between the hot sub-220

tropical desert and the cooler oceans and equatorial rainforests) force a shallow circulation with221

dry ascent poleward of the monsoon rainfall. This circulation includes the low-level monsoon flow222

that fuels moisture to the rainfall band and the dry return flow above that can cap deep convection,223

affecting the frequency of rainfall and the occurrence of severe convection (Figure 1c,d and 3c).224

Re-evaporation of rainfall in a dryer lower troposphere (Fig. 3c, cloud types) can also affect the225

vertical distribution of latent heating and, concurrently, ascent (see also the next section). The226

presence of land, thus, changes the vertical transports in the meridional divergent circulation. The227

strong horizontal gradients in temperature and moisture associated with surface type also induce228

strong non-divergent, rotational flows that transport energy and moisture horizontally (Fig. 3c,229

broad arrows). Past seminal work67 has shown that ventilation, the transport of low-MSE oceanic230

air by the rotational flow, is key to setting the poleward extent of the monsoon rainfall. Recent231

studies with more comprehensive models have confirmed the important role of the rotational flow232

in balancing the energy budget of monsoon regions70 and in driving the onset of off-equatorial233

rainfall34. The annual changes in surface properties that take place during the progression of the234

rainy season are also reflected in changing flows of energy in the atmosphere. The most obvious235

change is soil water content, which affects evaporative fluxes and albedo and, because of its high236

spatial variability, can introduce sharp gradients in surface properties at small spatial scales71.237

There is a vast literature that focuses on the individual regional monsoons and emphasizes the238

zonally asymmetric regional flow and its interaction with mountains and regional oceans. There is239

value in formulating such regional analysis within a MSE framework. For example, the extent and240

intensity of the South Asian monsoon depends on the presence of the Himalayan mountains be-241

cause the latter shield the MSE maximum over India from low-MSE extratropical air72. In another242

example, the African monsoon appears to be particularly susceptible to moisture anomalies enter-243

ing from the North Atlantic73–76 and the Mediterranean77 (even though the main moisture source244
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for the monsoonal rains is in the tropical ocean) because they regulate the depth of convection,78
245

which is in turn linked to energetic requirements of the large-scale flow70. How the profile of con-246

vective ascent evolves across the monsoon season modulates such sensitivity, by making changes247

in either the boundary layer MSE (such as the horizontal advection or recycling of moisture) or the248

free-tropospheric dynamics (such as changes in upper-level vertical stability) more or less relevant249

(a similar dependence of rainfall sensitivity on low-level and upper-level processes is also seen250

across models70, 73).251

The broad-brush framework built around the MSE budget has been successful in explain-252

ing why and how processes as disparate as aerosol microphysics and the oceanic thermohaline253

circulation can affect the zonal mean tropical rainfall. Here, we advocate extending the energy-254

budget framework from its current form, appropriate to the ITCZ/Hadley cell, to one appropriate255

for monsoons: one that quantifies how the presence of zonally-confined land masses modifies256

both the input and the flow of energy in the atmosphere and thus changes the leading terms of257

the vertically-integrated atmospheric energy budget. In this section we have emphasized (i) how258

land/ocean differences in surface properties change the input of moist and dry energy to the atmo-259

sphere, (ii) how the continental-scale stationary circulations that develop in response advect MSE260

gradients horizontally through the geostrophic flow, and vertically through shallow circulations,261

and (iii) how changes in the dominant balance shape both the diversity of regional monsoons and262

monsoon evolution through the development and decay of the rainy season. In the next section we263

focus on the role of vertical motion at the scale of clouds, and how it shapes the vertical fluxes of264

moist energy and its input in the atmosphere.265
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3 The diversity of convection in tropical precipitation systems: interaction with the large-266

scale climate.267

Recent observations have highlighted the rich diversity of convective systems (Figs. 1 and 4), and268

have allowed fundamental insights into the processes that govern them. Convective precipitation269

appears controlled by both low-level and deep-column moisture, which set the buoyancy of en-270

training ascending parcels. Thus, while early theories predict the position of the rainfall maximum271

from just the boundary-layer MSE (Sec. 1), full tropospheric water vapour is key to fully account272

for the spatial and temporal variability of rainfall intensity. In turn, processes such as detrainment273

from precipitating clouds and re-evaporation of rain make the tropospheric water vapour depend274

on the occurrence of rainfall. This two-way coupling underpins the correspondence between rain-275

fall amounts and total humidity found over land and ocean (see also Fig 1a) and is encapsulated276

in an exponential relationship of daily precipitation intensity on the integrated humidity79 (with277

some variations across convective system80 and their drivers81). However, rainfall characteristics,278

such as intensity, organization, and duration, and the vertical and temporal distribution of clouds279

depend on factors other than column humidity, including wind shear, the larger-scale flow, and the280

properties of the surface boundary71, 82, 83. Continental updrafts are often deeper and more intense281

than oceanic updrafts (Fig. 4a,b), as evidenced by the preferential occurrence of lightning over282

land (Fig. 1c), but land convection varies greatly through the day (cf. Figs. 4 c and d) and the283

season in depth, organization, and lifetime—affected by surface inhomogeneity and by stronger284

triggering and inhibition processes.285

The growing appreciation of the diversity of convective cloud systems has yet to mature into286

enough understanding of the interplay between clouds and large-scale dynamics to create much-287

needed convective parameterizations able to describe such diversity. Parameterizations are still288

overly reliant on so-called quasi-equilibrium formulations: the gross effects of convection are taken289
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to be nearly instantaneous and deterministic functions of large-scale forcings, thermodynamics290

drivers are overemphasized over dynamics, and convective organization is typically ignored84, 85.291

The approximations lead to a preference for tall, disorganized convection and the lack of both292

shallower, developing convection86 and more persistent cloud systems and is likely the source of293

climate models’ systematic errors in rainfall timing (for example, the too-early peak in the diurnal294

cycle of land rainfall). It affects the climate at longer time scale as well: model biases in seasonal295

rainfall are typically established within few days after initialization from observations, and only296

later amplified in the coupled system, pointing to the dominance of fast atmospheric processes87
297

in setting the bias. Such long-ranging effects are not surprising: the aggregate effect of convection298

is reflected in the profiles of horizontal convergence and divergence and in cloud and moisture299

radiative effects and will thus affect both the net vertically-integrated energy flux and the total300

energy input into the atmosphere. The extent and vertical distribution of clouds modify the net301

energy in the atmosphere via changes in radiative fluxes and, by modifying the structure of the302

boundary layer, turbulent fluxes. The vertical profile of ascent modulates the energy transport by303

the circulation, to the point that a predominance of bottom-heavy or top-heavy convection can304

determine whether the circulation imports or exports MSE to or from a convective region62, 63.305

Thus, shortcomings in the mix of deep convective and stratiform rain production, of warm and306

cold cloud microphysics, and of mixing and re-evaporation, can translate into global scale biases88
307

and introduce another source of uncertainty in future projections70.308

High-resolution cloud-resolving dynamical models can portray the full evolution and organi-309

zation of cloud systems88, 89 and—when coupled to parameterized large-scale fields90 that describe310

a broad suite of boundary conditions and environments— are being used to investigate how the311

environment shapes the rich diversity of cloud characteristics and how cloud processes feed back312

on the environment. These experiments have shown that the specific way in which land convection313

evolves during the day (such as through morning fog or land-sea breezes) is a key determinant of314
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the large-scale mean and the seasonal evolution of rainfall and other environmental variables91, 92.315

More research on tropical land convection is needed to elucidate whether this cross-scale link is316

achieved because land processes and clouds modify the energy input into the atmosphere, or be-317

cause the daily evolution of convection changes the profile of ascent and this effect is rectified into318

changes in the vertical energy flux.319

4 Synthesis320

Common biases in the simulation of the diurnal and seasonal cycle of rainfall highlight structural321

deficiencies across global climate models. Moreover, common biases in the simulation of rainfall322

in past climate states indicate that common structural deficiencies also affect the modeled responses323

to changes in forcing. This diminishes the value of consensus in projections of climate response to324

anthropogenic forcings as an indication of reality. Convective parameterizations, which produce325

most tropical rainfall within current climate models, have inherent limitations that are a likely cause326

of bias, but whether cloud-resolving global models will be able to adequately capture observed327

rainfall variations in modern or past climate states remains to be seen. Oceanic processes that328

amplify atmospheric biases in the seasonal cycle93 are likely to play a role in setting long-term329

trends94 and paleo simulations highlight the additional importance of earth-system feedbacks, such330

as between precipitating atmospheric dynamics, vegetation cover, and soil composition. Having a331

small set of metrics by which to characterize simulations of a climate phenomenon would make332

the task of model development less daunting; a modern energy-budget framework, one modeled on333

past efforts20, 21, 32, 95, 96 but aware of the advances and challenges outlined in this review, can supply334

such metrics for tropical rainfall.335

Developing the framework we are advocating will require the combination of observational,336

modeling and theoretical approaches. Both modern and paleo observations must be the ultimate337
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tests of our theories. Fine-resolution, high-frequency observations of rainfall and of the vertical338

atmospheric structure, together with cloud-resolving simulations, have the potential to shed much-339

needed light on how convection becomes organized and how monsoon rainfall interacts with its340

environment from sub-daily to monthly timescales84. To be truly useful for benchmarking met-341

rics and developing parameterizations, current efforts must be expanded to encompass a broader342

cross section of tropical environments and climate regimes—including a variety of chronically343

undersampled land regions. Collection of new paleo evidence and quantitative reconstructions of344

precipitation from the Southern Hemisphere will refine our picture of paleo monsoons in the mid345

Holocene and provide a well defined target for testing model simulations and their interpretation346

within this common framework. The opposite is also true: forward proxy models and climate347

models are needed to guide the interpretation of data, morph sparse environmental observations348

into a coherent portrait of past climates, and help prioritize new data acquisition. Multi-model349

simulations97, simulations with a broad set of forcings48, and simulations with models of different350

vintage are needed together to provide a robust test for a new monsoon framework.351

Drawing our lessons from the development of budget-based theories of the ITCZ, we pro-352

pose that a systematic understanding of the monsoons will require a comprehensive hierarchy of353

model simulations and a common set of energy and momentum diagnostics to compare results354

across the model hierarchy and with observations. A key element of such a hierarchy are idealized355

model setups in which energy is conserved through fluxes at the atmospheric boundaries and that356

are designed to highlight the effect of different land characteristics—themselves isolated through357

ad-hoc idealizations—on the response of the tropical rain belt to a range of external forcings98–100.358

Accurate diagnostics of how energy flows into and within the tropical atmosphere, and via differ-359

ent elements of the atmospheric circulation (from the zonal mean, to stationary eddies, to synoptic360

eddies, to much faster variability at the scale of convection) are often difficult to calculate from361

available model output54. Yet they must underpin any metrics used to elucidate which small- and362

15



large-scale processes are essential to the monsoon systems (and by which interactions); to test the363

coherence of our dynamical theories; and to benchmark model development. A theoretical model364

that can deduce the behavior of tropical rainfall from simple indicators based on conservation laws365

of the physical system with minimal empirical or ad-hoc assumptions would cap the hierarchy and366

provide the grounds for interpreting both idealized and realistic simulations and for understand-367

ing the observed behavior of the earth system. To derive a unified theory of the ITCZ and the368

regional monsoons from basic conservation laws is a formidable challenge, but we must meet it to369

confidently link past to present to future.370
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Figure 1: (a) Rainfall (color) on July 27th, 2015 and the high atmospheric moisture enveloping it (indicated by the
45mm contour of column-integrated water vapour, the full field is in gray); (b) zonal-mean rainfall for the same day
(dark green) and climatological values for the same period (light green). (c) July climatological mean intensity of
instantaneous near-surface rainfall (from TRMM precipitation radar, units of reflectivity) and occurrence of lightning
(red dots) on July 27th, 2014 (ascending passes of the Lightning Imaging Sensor on TRMM). (d) zonal mean rainfall
intensity for land and ocean regions. See on-line method section for further details.
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Figure 2: (a) Mid-Holocene mean annual precipitation (MAP) anomalies (color circles, sized by the number of
used reconstructions). (b) CMIP5/PMIP3 simulated (gray circles) and reconstructed (black circles with error bar)
mid-Holocene MAP changes and grid cells contributing to the reconstruction and model means (numbers at right) for
northern Africa latitude bands. (c) Correlation of decadal rainfall variations with the first principal component of the
zonal-mean precipitation in transient Holocene simulations. See methods for data references and details.
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Figure 3: (a) Zonal-mean rainfall (dashed), ITCZ position (green), and zonally- and vertically-integrated atmo-
spheric energy transport (in PW, shaded). (b) Climatological ITCZ latitude as a function of the vertically-integrated
atmospheric energy transport at the equator. Numbers correspond to calendar month. The ellipse is sloped at 3o ITCZ
shift per 1 PW energy flux. (c) ITCZ (blue background) and monsoon (green background) schematics. The Hadley
cells (dark solid lines) meet in the northern tropics, maximum ascent and rainfall occur in the winter cell (equatorward
of the cell boundary) close to maximum low-level MSE (darker surface shading). Monsoons are distinguished by the
additional shallow meridional circulation (dashed) and ventilation by the rotational horizontal flows (ribbon arrows)
and by a different distribution of cloud types. See on-line methods.
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Figure 4: Cloud characteristics (top) and ascent profiles (bottom) over the eastern Atlantic ITCZ (left) and western
Africa (right) as function of height. (a-b) The Contoured Frequency with Altitude Diagrams (CFAD, filled contour)
shows the frequency (logarithmic scale) of storm-top height as a function of rainfall intensity (units of reflectivity,
dBZ). Contours: percentile lines (solid=median, dashed-dotted = 99th percentile) of reflectivity frequency. Frequency
is normalized at each level and all rain types are included. (c-d) Daily evolution of the vertical velocity profiles
(pressure coordinates; negative values indicate upward motion) from 6-hourly MERRA reanalysis. See on-line method
section for details.
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5 Methods642

Figure 1: Characteristics of observed tropical rainfall. On any given day, rain is produced by cloud643

systems that range in size between individual convective towers (1-10k̇m) to mesoscale convective644

systems and tropical cyclones (> 100 kilometers). Despite substantial variability on short time645

scale and small spatial scales, most disturbances are organized within the large-scale rain belts646

formed by the monsoons and the inter-tropical convergence zone (> 1000 km). The map (a, color)647

and zonal mean (b, dark green) of daily rainfall are obtained from merged GPM satellite mea-648

surements calibrated against rain gauges (Huffman et al., 2015). Column integrated water vapour649

(a, grey shading and magenta contour) was obtained from the ERA Interim reanalysis product650

(Dee et al., 2011). The summer climatological zonal mean rainfall (b, light green) is calculated as651

the 1998-2014 average of the 11-day period centered around July 27th and is obtained from the652

TRMM-3B42 rainfall estimate (Huffman et al., 2007). Climatological conditional intensity of rain-653

fall (c, color shading, and d) is obtained from the precipitation-radar data on the TRMM satellite654

(Biasutti et al, 2011) and is expressed as a reflectivity in units of dbZ (decibels of Z). Reflectivity is655

the amount of transmitted power returned to the radar receiver; light rain is detected by the TRMM656

PR when the dBZ value reaches 18 (corresponding to about 0.4mm/hr). The higher the dBZ, the657

stronger the rainrate. Uncertainty in the methods for translating reflectivity into a quantitative658

precipitation estimates are detailed in Villarini and Krajewski (2009). Lightening flashes for July659

27th, 2014 are obtained from Lightning Imaging Sensor during ascending passes of the TRMM660

satellite (https://lightning.nsstc.nasa.gov/lisib/lisbrowse.exe?which=qcyear=2014day=208).661

Figure 2: Changes in rainfall in the Holocene indicate a complex behavior across the mon-662

soon systems, not fully captured by climate models, and do not suggest that meridional displace-663

ments of the zonal mean ITCZ explain a large fraction of the variance of tropical continental664

rainfall. (a) The expectation that Southern Hemisphere monsoons would be weaker in periods of665
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weaker SH summer insolation is not fully supported by current observations. Quantitative recon-666

structions of changes in mean annual precipitation (MAP) between the mid Holocene (11,000-667

5,000 years before present) and present day in colored circles, the color indicates the size of the668

anomaly (mm, colorbar) while the size indicates the number of reconstructions used for the es-669

timate, as indicated by the legend inside the map. The data was first published by Bartlein et al670

(2011). (b) CMIP5/PMIP3 simulated and reconstructed changes in mean annual precipitation in671

the mid Holocene for 5◦ latitude bands across northern Africa (longitude 20◦W to 40◦E between672

0 and 45◦N), where the model results are averages for the grid cells with observations and each673

model is represented by a different gray circle. The mean and standard error of the reconstruc-674

tions is shown in black and the number of grid cells contributing to the reconstruction is shown675

for each latitude band. CMIP5/PMIP3 data were available thanks to the World Climate Research676

Programme’s Working Group on Coupled Modelling, which is responsible for CMIP. For CMIP677

the U.S. Department of Energy’s Program for Climate Model Diagnosis and Intercomparison pro-678

vides coordinating support and led development of software infrastructure in partnership with the679

Global Organization for Earth System Science Portals. The figure is modified from Perez-Sanz et680

al., 2014; (c) Correlation maps (shading) of decadal rainfall variations at each gridpoint with the681

first principal component of the zonal mean precipitation in the fully-forced TrACE-21000 (Otto-682

Bliesner et al, 2014) simulation for the period 9.5ka to 0.5ka before present. The dashed line is a683

representative contour for the mean precipitation and indicates the climatological position of the684

rain belt.685

Figure 3: The energy-budget framework for the tropical rain belt. (a) The seasonal evo-686

lution of the zonal mean observed climatological rainfall (dashed contours, only the 4, 6, and687

8mm/day isolines are shown) and ITCZ position (defined as the centroid of zonal-mean rainfall688

within 20◦ N/S; green line) are superimposed on a reanalysis-based estimate of the zonally and689

vertically integrated atmospheric energy transport (shaded, warm and cool colors indicate north-690
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ward and southward transport, respectively, and the white area indicates the energy flux equator,691

units of PW). (b) The seasonal relationship between the vertically integrated atmospheric energy692

flux at the equator (Fo) and the ITCZ position. The energy flux associated with the net mass move-693

ment between the hemisphere is retained here, leading to a phase lag between the two fields. The694

slope of the relationship, given by the direction of the major axis of the ellipse, indicates a 3o shift695

for a 1 PW energy flux, consistent with calculations that omit the barotropic circulation.696

The climatological rainfall in Figure 3a,b is calculated as the 1979-2013 average of the Cli-697

mate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) dataset (Adler et al.,698

2003). The energy fields are from ERA Interim reanalysis (Dee et al., 2011) over the same699

period. The cross-equatorial energy transport is calculated eliminating the mass budget resid-700

ual before vertically integrating the fluxes, the data was provided by the National Center for701

Atmospheric Research (retrieved from https://climatedataguide.ucar.edu/climate-data/era-interim-702

derived-components).703

(c) Schematic of the ITCZ (depicted over an oceanic surface, blue half on the left) and704

monsoon (depicted over a continental surface, green half on the right) circulations for northern-705

hemisphere summer. The summer and winter Hadley cells (dark solid lines) meet in the northern706

tropics, close to where the low-level moist static energy (MSE) is maximum (darker shading at707

the surface), consistent with convective quasi-equilibrium theory. Most upward motion and thus708

most rainfall occurs in the ascending branch of the stronger, winter cell, so maximum rainfall is709

slightly equatorward of the Hadley cell boundary and the energy-flux equator. As is the case for710

the ITCZ, rainfall associated with the monsoonal circulation is positioned slightly equatorward of711

the maximum surface moist energy (dark blue shading) and is associated with large-scale ascent in712

local meridional overturning cells whose strength is greater when the ascent is further away from713

the equator. Key distinctions for the monsoons are in the complexity of the circulation and the714
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distribution of cloud types. Notice in the land portion of the diagram the presence of a shallow715

meridional circulation (dashed lines) with ascent poleward of the rain band and a dry return flow,716

the rotational circulations associated with the low-level cyclone (light and dark blue ribbon-width717

arrows indicate negative and positive transport of MSE), mid- and upper-level land anticyclones,718

and the oceanic anticyclone (anticyclonic circulations are depicted with ribbon-width grey arrows).719

Notice also the deeper and more intense convection over land (indicated by a distribution of clouds720

that include more overshoots and fewer clouds lacking an anvil), more lightning, less rain from721

warm cloud (fewer clouds without anvil), and more re-evaporation of rain (dotted rain from the722

anvil cloud).723

This schematic highlights those aspects of an hypothetical “essential” monsoons that are724

addressed in this paper. It is not meant to represent any particular monsoon system, as each is725

highly affected by the geometry of the continent, the location and orientation of orography, the726

geographical distribution of surface types, including deserts, and oceanic processes unique to each727

ocean basin.728

Figure 4: Cloud characteristics and ascent profiles over ocean and land during the peak of729

the rainy season. Left: the eastern Atlantic ITCZ (40-20◦W 5-12.5◦N). Right, western Africa730

(10◦W-10◦E 7.5-15◦N). The Contoured Frequency with Altitude Diagrams (CFAD) in the top pan-731

els show that western Africa has deeper, more intense convective cells while the eastern Atlantic732

has more mid-level rainy cloud. The filled contour shows the log of the frequency of storm top733

height as a function of radar reflectivity (a measure of rainfall intensity). Both regions show that734

storms reaching 5km in height and measuring reflectivities of less than 30dBZ are the most fre-735

quent, but this peak is more pronounced over ocean than land. Conversely, the land region shows736

more frequent instances of storms that have intensity above 50dBZ (colors extending to the right737

of the diagram) and reach 18km in height (colors extending to the top of the diagram). Overlaid738
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on the color are percentile lines of reflectivity frequency at each level with the black line equal739

to the median at each level. The far right line is the 99th percentile line. Notice that the median740

surface reflectivity is slightly higher over land, while the 99th percentile reflectivity is much higher741

over land, indicating that land convection reaches more extreme values of intensity. The secondary742

reflectivity maximum in the median line is also more noticeable over land than ocean, suggest-743

ing again significant differences in the vertical profile of the cloud systems over land and ocean.744

Frequency is normalized at each level and all rain types (stratiform, convective, shallow isolated,745

shallow non-isolated) are included. The bottom panels show how ascent profiles in rain systems746

have much larger diurnal variations over western Africa and are much more top-heavy than over747

the adjacent ocean. Profiles of vertical velocity in pressure coordinates (negative values indicate748

upward motion) were obtained from the MERRA reanalysis.749

The TRMM reflectivity data (Kummerow et al, 1998) was originally sourced from TRMM750

orbital files (2A23/2A25) for the 1998-2014 period (August values only). Vertical omega profiles751

are calculated from 6-hourly MERRA reanalyis (Rieckner et al, 2011) for August days in 1983-752

2007. Only samples that contributed the top 50% of rainfall by volume were included (using the753

MERRA surface precipitation flux data for all rain and rainfall thresholds unique to each domain754

and 6-hourly period). When all times are included, the eastern Atlantic ascent is even more bottom755

heavy than shown in Figure 4, but the qualitative comparison to land convection is unchanged.756
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