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ABSTRACT 

Avian pathogenic Escherichia coli (APEC) and commensal E. coli are often found in 

the intestinal tract of poultry. APEC can cause several types of disease manifesting at various 

developmental stages in the life cycle of poultry. The goals of this study were to investigate 

the relationship between APEC and commensal E. coli, and to elucidate whether specific 

dietary components such as plant extracts (thymol and carvacrol) may be implemented to 

control APEC. Genotypic and phenotypic diversities were estimated in 200 E. coli isolates 

from poultry of which 100 were from healthy turkey, 35 from healthy chicken, and 65 APEC 

strains were isolated from infected chicken. The genetic data indicated high diversity among 

E. coli isolates whereas phenotypic diversity association with pathogenicity was unclear.  

The antimicrobial activity of thymol and carvacrol against E. coli had a significant 

impact on reducing bacterial growth, biofilm formation, and motility. Moreover, thymol 

reduced conjugation, and induced morphological changes in E. coli. An E. coli strain was 

adapted to tolerate high concentration of thymol, and its metabolic profile detected by NMR 

analysis showed slowed growth with a shift from respiration to fermentation as indicated by 

increasing lactate and pyruvate family amino acids. Genome sequencing of the tolerant strain 

showed a mutation in the acrR gene encoding a suppressor of the AcrAB-TolC efflux pump 

suggesting that overactivation of the AcrAB efflux pump increased thymol clearance. The 

impact of thymol on the composition and activity of caecal microbiota was assessed by in-vitro 

batch culture. 16S rRNA sequences were used to identify caecal microbiota and metabolic 

profiles were characterised by 1H-NMR spectroscopy. Thymol was associated with increases 

in lactic acid and a growth shift favouring commensal gut bacteria. In conclusion, 

supplementation with thymol may exert a positive effect on intestinal microbiota if used in-

vivo. 
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CHAPTER ONE: LITERATURE REVIEW 

Bacteria can live in water and soil as well as in living organisms, including plants, 

animals and humans. Many bacteria do not harm humans, but rather survive in humans as 

commensals and many of these are regarded as highly beneficial to the host by stimulating 

immune developing, suppressing pathogens and contributing to nutrition by generating dietary 

components such as vitamins and certain amino acids (Conlon and Bird, 2014), for example. 

Escherichia coli (E. coli) is a Gram negative, facultatively anaerobic bacterium that can live in 

many different environments. It is a common commensal of the gastrointestinal tract of humans 

and animals. However, certain E. coli are significant zoonotic pathogens such as the Vero 

cytotoxin carrying types of E. coli (VTEC) which causes several symptoms of disease such as 

diarrhoea, vomiting and fever (Berg, 2004), these can be transferred to humans by direct or 

indirect methods, for example; eating some products of food, both plant and animal derived 

contaminated with E. coli.  

1.1 Escherichia coli (E. coli):  description, disease and diversity 

E. coli is a prokaryote cell; a prokaryotic cell usually contains a single circular 

chromosome (DNA) which is not enclosed in a nucleus. In 1885 a German bacteriologist called 

Dr. Theodor Escherich discovered this bacterium.  He identified it in stool specimens collected 

from babies with enteritis; a disease that can cause stomach pain, nausea, vomiting and 

diarrhoea (Manning, 2010). The significance of E. coli as a human pathogen has been identified 

since its discovery, and the organism has been associated with a range of disease presentations 

such as diarrhoea, haemorrhagic colitis (HC), haemolytic uraemic syndrome (HUS) surgical 

wound infection, septicaemia, meningitis, dysentery, bladder and kidney infections, and 

pneumonia. Some of these diseases are fatal especially in the very young, the elderly and the 
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immunosupressed. Different strains of E. coli are associated with different clinical outcomes 

(Parry et al., 2002) and these will be described very briefly here. 

E. coli is a straight, rod-shaped, Gram-negative bacterium. It can live on a broad variety 

of substrates. It is often motile by its flagella (Darnton et al., 2007). E. coli is easy to cultivate 

on ordinary laboratory media, and there are many formulations of selective and differential 

laboratory media that allow optimal survival and growth of specific E. coli strains. For 

example, Eosin Methylene Blue (EMB) agar medium allows the differential growth of Gram 

negative bacteria, including E. coli, from intestinal inoculations. The E. coli colonies will be 

differentiated by color in comparison to other bacterial species in the inoculum. Another 

example is MacConkey’s (McC) medium that is similar to EMB medium as it differentiates 

Gram negative, lactose fermenting bacteria based on their color formation. E. coli is defined as 

fermenting lactose and therefore would give a distinct pinkish color when grown on McC 

medium. However, only 98% utilize lactose (Edwards and Ewing, 1986) and some mutate to 

use it and were originally called Escherichia mutabile.  

E. coli is a facultative anaerobe growing well in aerobic or anaerobic conditions. End 

products of growth on glucose are lactate, ethanol and acetate or organic acids with gas, usually 

hydrogen and carbon dioxide. E. coli reduces nitrates to nitrites and is also oxidase negative 

and catalase positive. Since many pathways in mixed-acid fermentation produce hydrogen gas, 

so is the case when E. coli lives with hydrogen-consuming organisms, such as methanogens or 

sulfate-reducing bacteria (Ingledew and Poole, 1984).  The optimal growth temperature of E. 

coli is at 37°C, but in some cases it can grow and divide at temperatures of up to 46°C, but can 

survive at a higher temperature of 55°C (Fotadar et al., 2005). 

E. coli comprises a large number of types that have been isolated and characterized 

based on serological findings. Serology tests three groups of antigens to classify E. coli. These 
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antigens are; the lipopolysaccharides layer O antigen that comprises three parts, the outer 

immunogenic oligosaccharide polymers, the inner core phosphorylated oligosaccharides, and 

the lipid A endotoxin. The other two antigen groups are the capsular K antigen, and the flagellin 

H antigen. There are 181 designations for the O antigen, 60 different K antigens, and 56 H 

antigens from which a serotype profile of a given E. coli strain can be designated. For example, 

VTEC O157 possesses 'O' antigens 157, and 'H' antigen 7 (Bell and Kyriakides, 1998). 

Together they compose the serotype O157:H7. Sub-classification of several serotypes of E. 

coli is based on distinguishable exotoxins produced by E. coli, an example of exotoxins are the 

verocytotoxins which damage the intestinal tract, and in some people cause serious kidney 

failure. E. coli that cause diarrhoea can also be categorized on the basis of the mechanisms by 

which they cause disease (Berg, 2004). Currently the pathogens within the species are divided 

into eight groups as shown in Table 1.1 (Parry et al., 2002; Kausar et al., 2009; Bidet et al., 

2007; Bell and Kyriakides, 1998) although these ‘divisions’ are under constant review and 

debate.  

The mechanisms of disease in all the strains depend upon their genetic composition and 

virulence factors that may be encoded on the chromosome or extra chromosomal mobile 

genetic elements such as plasmids and bacteriophages: one consequence of this is that many 

virulence traits can be transferred from one serotype of E. coli to another, which frequently 

occurs in bacterial populations.  
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Table 1. 1: Serogroup and disease association of six types of E. coli 

Virulence type Sero-group examples Disease association 

Enteropathogenic 

(EPEC) 

O18ab, O18ac, O26, O44, O55, 

O86, O111, O114, O119, O125, 

O126, O127, O128, O142, O158. 

Enteritis in infants 

Diarrhoea in children under 6 

months. 

Traveller's diarrhoea 

Enterotoxigenic 

(ETEC) 

O1, O6, O8, O11, O15, O25, O27, 

O63, O78, O114, O115, O148, 

O153, O159. 

diarrhoea, vomiting and fever 

Traveller's diarrhoea 

Enteroinvasive 

(EIEC) 

O11, O28ac, O29, O112ac, O121, 

O124, O135, O136, O143, O144, 

O152, O164, O167, O173. 

Shigella-like dysentery 

Enterohaemorrhagic 

(EHEC) 

O2, O4, O5, O6, O8, O15, O18, 

O22, O23, O26, O55, O75, O91, 

103, O104, O105, O111, O113, 

O114, O117, 118, O121, O128ab, 

O145, O153, O163, 0157, O168 

Shigella-like dysentery, stools 

contain blood and mucus 

Bloody diarrhoea (HUS) 

Enteroaggregative 

(EaggEC) 
O51, O78, O111 Persistent diarrhoea in children 

Diffusely adherent 

(DAEC) 
O75, O126 

Persistent 

Childhood diarrhoea 

Uropathogenic 

E. coli(UPEC) 

O20,O131,O25,O101,O60,O8,O9,

O156,O6,O153,O128,O2,O115,O1

36,O141,O89,O54,O21,O132,O12,

O13,O15,O79,O152 

Urinary tract infections 

Extraintestinal 

Pathogenic E. coli 

(ExPEC) 

O1,O2,O12,O14,O15,O16,O18,O4

5, O78,O83 
Neonatal meningitis 

 

Pathogenic E. coli are not only harmful to humans, but they are also harmful to farm 

animals and poultry. E. coli diseases in farm animals are similar to those of humans; however, 

they are referred to as colibacillosis. Colibacillosis is of two types enteric and systemic, the 

former primarily colonizes the intestine and secretes toxins that may have localized or 

dispersed effects. Systemic colibacillosis, however, involves aggressive E. coli strains that can 

survive and invade extra-intestinal tissues to generate a systemic pathological condition in the 
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animal. Different types of toxins determine the type of E. coli strain responsible for disease; 

these are classified as depicted in Table 1.2. 

Table 1. 2: Heterogeneous E. coli groups causing disease in farm animals and poultry (Wray 

and Woodward, 1979) 

E. coli group Toxin/factor Farm animal disease 

Enterotoxigenic 

E. coli (ETEC) 

colonization factors (fimbriae) and 

enterotoxins (ST, LT) 
Diarrhoea, septicaemia 

Enteropathogenic 

E. coli (EPEC) 

virulence sequences (LEE, locus of 

enterocyte effacement) 

lethal diarrhoea in young 

mammal 

Shiga toxin 

producing E. coli 

(STEC) 

Shiga toxin and cytotoxic 

necrotizing factors 

may cause diarrhoea, and in 

young pigs it is associated 

with oedema disease 

Avian 

pathogenic E. 

coli (APEC) 

virulence factor insufficiently 

known 

Airsacculitis, peritonitis, 

polyserositis and septicaemia 

Aside from major threats to farm animals’ health and survival, E. coli infections pose 

serious economic losses to farmers and a health threat to consumers. Animals excreting the 

pathogen without showing any clinical symptoms can go undetected and end up being 

consumed by humans. Mildly infected patients may suffer from abdominal pain or watery 

diarrhoea and symptoms can become more severe, including bloody diarrhoea, hemorrhagic 

colitis and haemorrhagic uremic syndrome. 

1.2 Commensal E. coli 

Commensal E. coli strains as mentioned above, are present in the intestines and faeces 

of warm-blooded animal hosts (Berg, 1996) including humans (Blyton et al., 2013). They are 

found in the gut microbiota that has diverse bacterial species, for example in poultry gut 

microbiota ranges from 107 to 1011 bacteria per g of gut content (Apajalahti et al., 2004).  Every 

mammal is colonized with E. coli (Finegold et al., 1983), it is present more at the first day of 
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bird life, and decreases thereafter (Lu et al., 2003).  Whereas in humans, it is estimated that 

there are 1021 of E. coli cells in the total human population which equates to 109 per human 

(Conway and Cohen, 2015), it is also one of the early colonisers of human infants and is a 

lifelong colonizer of adults (Palmer et al., 2007).  Commensal E. coli are considered to be a 

factor in supporting digestion and providing protection against enteric pathogens by effectively 

contending within microbiota populations, stimulating immune responses and obstructing 

colonisation of pathogenic agents. In addition, commensal E. coli produce vitamins K and B12 

that are required by the mammalian host (Schierack et al., 2009; Bentley and Meganathan, 

1982; Lawrence and Roth, 1996). Commensals are little understood, and besides serotype, they 

also can be classified according to their phylogeny (as can the pathogens) which is the inferred 

evolutionary history based on genome sequence data. A problem for classification is the fact 

that ‘similar’ bacteria can be commensal and pathogenic, and differentiation becomes difficult 

as will be discussed later in this thesis.  

1.3 Avian pathogenic E. coli (APEC) 

Avian Pathogenic E. coli (APEC), a subgroup of Extraintestinal Pathogenic E. coli 

(ExPEC), is found in the normal microflora of the intestinal tract of healthy poultry, including 

chickens, turkeys, ducks and other poultry species, but that can lead to infection and disease 

that causes major economic losses in the poultry industry around the world (Gross, 1994; 

Landman and van Eck, 2015; Ewers et al., 2003). APEC can cause several types of diseases 

manifesting at various ages in poultry, broiler (meat) poultry and in egg-laying mature poultry. 

The most common diseases are respiratory tract infection-colibacillosis, yolk sac infection, 

swollen head syndrome, septicemia, polyserositis and cellulitis serum resistance. In young 

turkey birds, a disease called turkey osteomyelitis complex causes several types of symptoms 

such as soft tissue abscess, green stained liver, and osteomyelitis of the proximal tibia (Dziva 

and Stevens, 2008; Cunha et al., 2014).  The first phase of infection by APEC is colonization 
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of the trachea and air sacs, the second stage of infection is observed as colonization of the liver 

and pericardium followed by bacteremia. 

1.3.1 Colibacillosis 

Colibacillosis caused by APEC strains can affect day-old chicks, broilers and egg-

layers. Colibacillosis is the most important disease affecting avian production worldwide, and 

is one of the main causes of economic losses in the poultry industry (Elfadil et al., 1996; Lutful 

Kabir, 2010). Lesions related to colibacillosis mostly consist of airsacculitis, peritonitis, 

polyserositis and septicemia (Vandekerchove et al., 2004). In general, colibacillosis is 

considered as a secondary disease perhaps after prior exposure to respiratory viral infections 

or Mycoplasma infections, however, it can also be a primary cause of disease (Cheville and 

Arp, 1978; Zanella et al., 2000). Colibacillosis is initiated in the upper respiratory tract; this 

commonly happens after a primary infection with an immune suppressive disease caused by 

different pathogens such as Newcastle virus, infectious Bronchitis virus or Mycoplasma 

(Gross, 1991). However, these primary infections could increase the susceptibility of poultry 

to APEC strains owing to the declination of the upper respiratory cells and environmental 

influences, such as high concentrations of ammonia, and contaminated dust in poultry 

premises, which contribute to their respiratory stress (Nakazato et al., 2009). In addition, this 

infection referred to as air sac disease generally happens in birds of 2 to 12 weeks old. The 

majority of the cases occurring in birds of 4 to 9 weeks old, and mortality rates reach as high 

as 20% (Dho-Moulin and Fairbrother, 1999). Usually death is the end of colibacillosis, 

although some birds might totally recover, or retain some residual disease with such sequelae 

as meningitis, swollen eye, osteoarthritis and coli granuloma that is characterized by multiple 

granulomas in liver, duodenum and cecum (Nakazato et al., 2009). 
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1.3.2 Swollen head syndrome 

Swollen head syndrome (SHS) affects poultry and especially chicken and turkey 

species which are natural hosts. SHS is generally seen after the 4th week of poultry life. SHS 

was first described in South America (Morley and Thomson, 1984) and was considered to be 

caused by coronavirus and E. coli. SHS is a complicated infection, usually a multi-factorial 

disease; where the primary etiological agent is an avian pneumo-virus (APV) and secondary to 

it is usually an E. coli infection. Respiratory and nervous pathological signs including 

gelatinous oedema in the skin of the head and peri-orbital tissues characterize SHS. The first 

clinical sign of infection is sneezing, and in some cases profuse tear secretion. The 

inflammatory exudate is initially transparent, but becomes opaque afterwards (Pattison et al., 

1989; Hafez and Lohren, 1990; Nunoya et al., 1991). Arns and Hafez estimated that SHS 

disease is an important poultry disease in several countries (Arns and Hafez, 1992). SHS is said 

to cause significant losses in the poultry industry. For example, SHS is responsible for mortality 

of 3-4% of the birds and also for reduction of 2-3% of the egg production in Southern Africa 

(Morley and Thomson, 1984). 

1.3.3 Cellulitis 

Cellulitis in broiler chickens is an acute inflammation of connective tissues of the 

overlying chicken skin. It is characterized by the presence of subcutaneous fibrino-necrotic 

plaques and pus in the abdominal area. Cellulitis does not seem to affect the growth of poultry 

but results in complete or partial discard of the carcass at processing (Messier et al., 1993). 

APEC causes cellulitis in broiler chickens (de Brito et al., 2003; Jeffrey et al., 2002). The lesion 

is initiated by a break in the integument, followed by a bacterial infection. Bacteria such as 

APEC adhere to the deeper and superficial tissue layers of the skin that appears to be important 

in the development of lesions and may be promoted by type 1 fimbriae (Gyles, 2010). The 
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epidemiology of cellulitis remains unclear, nevertheless it is associated with losses in the 

poultry industry (Elfadil et al., 1996). Some studies of E. coli strains isolated from cellulitis 

lesions expressed many virulence-associated factors similar to those presented by strains 

isolated from other colibacillosis lesions and from faeces (Ngeleka et al., 1996; Jeffrey et al., 

2002; de Brito et al., 2003). However, other studies presented a positive relationship between 

APEC and ExPEC, mostly UPEC and Newborn meningitis causing E. coli (NMEC), proposing 

that some APEC strains could be considered probable zoonotic agents (Moulin-Schouleur et 

al., 2007; Ewers et al., 2004; Johnson et al., 2008b) although there is debate about this 

association.  

1.4 APEC virulence-associated factors properties. 

There are many virulence-associated factors that add to the pathogenicity of organisms 

by providing a survival advantage to cope with hostile environments within hosts and cause 

infection. Several investigations discovered pathogenic mechanisms specific to APEC strains. 

The most important APEC virulence factors include bacterial capsule that is composed of 

polysaccharides to enable the avoidance of host immunogenic protection; multiple adhesins 

such as fimbriae that mediate adherence to cells and tissue surfaces; hemolysins; iron 

acquisition systems; colicins; serum resistance and various cytotoxins. Moreover, formation of 

biofilm on surfaces is considered important also. 

1.4.1 Bacterial capsules 

K antigen is not present on all strains, it depends on the presence of terminal lipid A-

core of the outer membrane lipopolysaccharide or its absence. The difference between O and 

K antigen serotypes is their sugar composition, the linkage specificity in the polysaccharides, 

and the substitution of non-carbohydrate residues with other macromolecules (Whitfield and 

Roberts, 1999). Capsular antigens are considered virulence factors because they increase the 
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pathogenicity of bacteria by protecting the bacteria against non-specific host defenses during 

the early phase of infection (Jann and Jann, 1992). Capsular antigens consist of acid 

polysaccharides made up of repeating oligosaccharide units and are divided into two groups 

based on their chemical characteristics, biochemistry and genetics (Jann and Jann, 1992). 

Group I express capsule antigens at all growth temperatures.  Members of group I belong to E. 

coli sero groups O8, O9 and O20, and their capsule composition is determined by chromosomal 

genes close to the his locus and in some strains close to trp. Usually the capsular acid 

polysaccharides of group I have large repeating units of tetra to hexa-saccharides, and 

hexuronic acid and pyruvate are the most common acid components. While group II is only 

detectable above 25ºC and belong to many O-groups. Co-expression of group II capsular 

antigens with lipopolysaccharides is not regulated, and chromosomally determined by the kps 

gene cluster, which is close to the serA gene. These polysaccharides have di- or tri-saccharide 

repeating units, their acidic components are more diverse than group I, hexuronic acids, N-

acetylneuraminic acid, 3-deoxy-manno-D-octulosnic acid, mannosaminuroinic acid or 

phosphate as possible representatives (Sussman, 1997). Recently, developments in the 

biochemical characterization and molecular genetics of K antigens updated the classification 

system and divided capsules into four groups based on their biosynthetic criteria and genetics 

eliminating the reliance on serological identification and the use of polysaccharide structures 

as a predictive element (Whitfield and Roberts, 1999). 

1.4.2 Adhesins 

Respiratory tract infections caused by Gram-negative bacteria are instigated by 

molecular interactions between bacterial adhesins and complementary molecules on host cells 

called receptors. APEC adhesions include type 1 fimbriae and P fimbriae. Type 1 fimbriae 

known as common fimbriae of E. coli, is a hair like structure distinguished by its ability to bind 

to D-mannose containing residues on various surfaces. Type 1 fimbriae called also type 1 pili 
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are known to play an important role to encourage bacterial adhesion and grow as a biofilm 

(Martinez et al., 2000; Schembri and Klemm, 2001). Fimbriae cause mannose-sensitive 

haemagglutination, which is the agglutination of guinea pig erythrocytes in the absence 

of mannose (da Rocha et al., 2002). It also has the ability to recognize and bind to various 

human, animal mucosal and inflammatory cells (Sussman, 1997). While type I fimbriae is 

associated with upper respiratory tract colonization, P-fimbrial adhesion may be involved only 

in maintaining bacterial infection in birds (Mei et al., 1997; Wooley et al., 1998). Marc and co-

authors (Marc et al., 1998) established with the utilization of a fim-APEC mutant that type 1 

fimbriae are not strictly required as a colonization factor for the development of avian 

colibacillosis.  

The chaperone/usher dependent pathway assembles P-fimbriae forming these adhesive 

fimbriae. Chaperone/usher is one of three basic molecular mechanisms of presenting hundreds 

of different kinds of adhesive proteins and organelles that have been described in Gram-

negative bacteria. Kallenius and co-authors (Kallenius et al., 1981) associated P-fimbrial 

adhesins of E. coli strains with human urinary tract infections. The existence of pilus adherence 

in these pathogenic strains facilitates colonization of the avian respiratory and urinary tract, an 

event that seems to be a prerequisite for the expression of virulence. P-fimbriae cause mannose-

resistant haemagglutination, and is encoded by the pap operon that contains 11 genes. Those 

genes encode regulatory, assembly, and structural proteins necessary to form an adhesive 

complex structure on the surface of E. coli (Sussman, 1997). 

In addition, curli fimbriae are the most common APEC adhesin, and are considered as 

a third category of E. coli surface organelles along with flagella and fimbriae. Curli fimbriae 

are described as a thin coiled, aggregative-like fibers on the surface of E. coli, and are 

composed of a single type subunit referred to as curlin (Olsen et al., 1989). APEC strains 

associated with diarrheal sepsis are known to express curli (Olsen et al., 1993). Curli fimbriae 
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are encoded by the csg gene cluster containing two different operons, and requires expression 

of both operons (Olsen et al., 1989). One operon encodes the csgA, csgB, and csgC genes, and 

the second codes for csgD, csgE and csgG (Gophna et al., 2001). However, curli expression is 

associated strongly with biofilm formation and adhesion to human proteins facilitating invasion 

of eukaryotic cells (Olsen et al., 1989; Olsen et al., 1993). Flagella beyond motility are required 

for biofilm formation by multiple pathogens, such as Salmonella enterica and pathogenic E. 

coli, it has been suggested to assist in overcoming surface repulsive forces and spreading of 

cells along a surface. Exopolysaccharides and surface antigens develop biofilm morphology 

(Danese et al., 2000). That and extracellular features play important roles in allowing bacteria 

to adapt and adhere to surfaces (Friedlander et al., 2015). 

1.4.3 Iron sequestering system 

Iron is an essential element for bacterial metabolism, survival and to achieve full 

virulence for bacterial pathogens (Mietzner and Morse, 1994). Iron assists vital roles in cellular 

activities, such as energy generation, peroxide reduction, oxygen and electron transport, and 

nucleotide biosynthesis (Skaar, 2010). Iron exists at low concentrations in extra-intestinal sites 

of infection. APEC strains survive and grow in low concentrations of iron availability, 

generally inside the host through the expression of iron acquisition systems. Only the ferrous 

iron (Fe2+) transporter Feo is common to all commensal and pathogenic strains. Bacterial iron 

acquisition mechanisms have two ways to take up iron, direct and indirect (Gao et al., 2012). 

The direct way of iron transport system is by either haem-containing protein, such as 

haemoglobin or haemopexin.  

The indirect way for iron acquisition is based on a shuttle mechanism; it uses small-

molecule compounds called siderophores as high-affinity ferric iron chelators (Williams and 

Griffiths, 1992), in which the iron exists in the ferric state (Fe3+) in aerobic environments. 
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Almost all strains produce one or more siderophores, but no single siderophore is commonly 

produced by all. Two types of siderophores are known; fenolates and hidroxamate (Nakazato 

et al., 2009). Aerobactin is an example of important hydroxamate siderophore that is encoded 

by a plasmid operon and contributes significantly to the virulence of ExPEC (Torres et al., 

2001) often located on Co1V plasmids whereas enterobactin, a fenolate and the strongest 

known siderophore that is present in all entero-invasive E. coli (EIEC) (Dall’Agnol and 

Martinez, 1999; Andrade, 2000). Yersiniabactin is another siderophore that is expressed by 

ExPEC strains (Fetherston and Perry, 1994), that has a preserved chromosomal gene island that 

encodes a biosynthetic gene cluster of irp and receptor fyuA (Carniel et al., 1996). 

1.4.4 Serum resistance 

Serum immune components are an important defense mechanism in the host against 

foreign invasion that has a lethal effect on Gram-negative bacteria. Bacterial resistance to the 

serum complement system immune response is mediated by bacterial surface structures 

including the capsular antigen, lipopolysaccharides, and outer membrane proteins 

that correlate with virulence in most strains (Lynne et al., 2007). Also, the presence of 

type 1 fimbriae is associated with serum resistance of APEC strains. In contrast, Mallata and 

co-authors (Mellata et al., 2003) showed type 1 fimbriae did not appear to be important in 

serum resistance, at least for strain MT78. In 2000, Pfaff-McDonough and co-authors (Pfaff-

McDonough et al., 2000) reported the iss factor which increased serum survival of bacteria, is 

associated with APEC pathogenicity since the iss gene was found more frequently in 

pathogenic strains than non-pathogenic strains. In addition to the iss factor, the O78 

polysaccharide, and the K1capsule antigen are virulence factors that increase bacterial serum 

survival (Mellata et al., 2003). 
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1.4.5 Colicin 

Colicins are encoded by plasmids that are carried in E. coli and related bacteria. The 

plasmids code for a toxin to kill other bacteria, also code for proteins that neutralize toxic 

proteins. These toxic colicins inhibit bacterial growth of the same or related species. Hardy 

found that colicins are composed of two units; the first unit provokes bacterial cell lesions, and 

the second unit protects the bacteria against their own colicins (Hardy, 1975). Colicins are 

encoded by genes located in Col plasmids (Nakazato et al., 2009). Colicins la, lb, E1, E2, E3, 

I, K, B and V are the most prevalent among APEC (da Silveira et al., 2002a), and the majority 

of APEC strains have colicin V plasmids (Wray and Woodward, 1979). Mutations in colV 

plasmids result in decreased virulence. Skyberg and co-authors suggested that some genes 

linked to colV plasmids are involved in the establishment of avian infections (Skyberg et al., 

2008). 

1.4.6 Biofilm formation. 

A biofilm is a complex aggregation of microbial cells marked by the excretion of a 

protective and adhesive matrix; it is recognised as a surface attached community with microbial 

cells interconnected by extracellular matrix polymeric substances. Biofilm can be either 

beneficial or harmful; it can benefit the bacterial population, while on the other hand it can 

cause serious problems to human health, the environment and industry. The majority of 

microorganisms form biofilms under various conditions (Sutherland, 2001). Residence in a 

biofilm community offers certain advantages to bacteria, one of which is the ability to acquire 

transmissible genetic elements, such as plasmids, at elevated rates (Davey and O'Toole G, 

2000). 

Among many biofilm associated bacterial pathogens only a few environmentally 

important bacterial species, such as E. coli, P. aeruginosa, P. fluorescens and few Gram-
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positive bacterial pathogens are characterised extensively at the genetic level (Liu and Jansson, 

2010). The extracellular polymeric substances produced by bacteria are necessary for the 

irreversible attachment of bacterial cells to environmental surfaces or tissue surfaces and these 

components include polysaccharides, extracellular DNA, proteinaceous compounds 

(Sutherland, 2001; Davey and O'Toole G, 2000), and cellulose (Zogaj et al., 2001). Some 

bacteria switch between planktonic growth and a biofilm lifestyle in response to environmental 

changes. Bacteria growing in biofilms can withstand nutrient limitation and other stressful 

conditions, such as osmotic stress, mechanical stress, anoxia, pH changes, temperature, oxygen 

levels and exposure to antibiotics (Danhorn and Fuqua, 2007; Stanley and Lazazzera, 2004). 

Biofilms are habitually highly resistant to antibiotics with bacterial cells in biofilms tolerating 

up to 1000 times higher concentrations of antimicrobial agents than that needed to kill the 

corresponding planktonic bacterial cells (Hoyle and Costerton, 1991). Also, biofilm formation 

is a dynamic multi-stage process that includes initial attachment, microcolony formation, 

biofilm maturation, and ultimately dispersion (Padera, 2006; Costerton et al., 1999). This is of 

particular interest to the poultry industry as the virulence and antimicrobial resistance of APEC 

(Delicato et al., 2003), may be largely mediated by conjugative plasmids (Dozois et al., 2000; 

Rodriguez-Siek et al., 2005a). Thus, residence in a biofilm may enhance the ability of APEC 

to acquire plasmids, enabling it to efficiently cause disease and resist therapy to the detriment 

of animal and public health. 

1.4.7 Conjugation   

Conjugation is an important mechanism to transfer genetic information between 

bacterial strains horizontally. However, horizontal gene transfer can also occur through 

transformation and transduction. Conjugation can occur among distant bacterial organisms at 

a high frequency and is considered to be a major mechanism for creating new genetic traits in 

diverse environments (Hoffmann et al., 1998; Ravatn et al., 1998). In addition, there is 
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evidence of gene transfer from bacteria to eukaryotes (Doolittle, 1998) as well as animal to 

bacterial parasites (Wolf et al., 1999). Moreover, bacteria residing in the gastrointestinal tract 

exchange genetic information between them, notably antimicrobial resistance is an increasing 

clinical problem (Sommer and Dantas, 2011). In fact, conjugation is classified as an essential 

contributor to the distribution of antimicrobial resistance and virulence factors in bacterial 

populations (de la Cruz and Davies, 2000). Lederberg and Tatum were the first to describe 

conjugation in E. coli in 1946 (Lederberg and Tatum, 1946) and later Hayes (Hayes, 1953) 

identified the F plasmid (fertility factor F), that for a long time was the only identified 

conjugation plasmid. Plasmids are self-replicating genetic entities separate from the 

chromosome that contain a specific subset of genes from the bacterial genetic pool and are 

often mobile genetic elements (Eberhard, 1990; Burrus et al., 2002; Tatum and Lederberg, 

1947; Bates et al., 1998). A donor cell extends one or more projections pili that attach to a 

recipient cell and pull the two bacteria in close proximity, this pilus is a protein structure. 

(Griffiths et al., 2000.).  

1.5. Analysis of APEC virulence determinants. 

Various nucleic acid–based techniques have been used as molecular biological tools to 

assess the clonal variability of many bacteria including E. coli. Such molecular techniques 

include pulsed-field gel electrophoresis (PFGE), plasmid profiling, and polymerase chain 

reaction (PCR)-based methods such as randomly amplified polymorphic DNA PCR (RAPD-

PCR), repetitive extragenic palindromic sequence PCR (Rep-PCR), and enterobacterial 

repetitive intergenic consensus PCR (ERIC-PCR) (Versalovic et al., 1991; Chansiripornchai et 

al., 2001; Hollmen et al., 2011). The use of new molecular genetic techniques and their 

applications to microbial ecology has established that only a small proportion of natural 

microbial diversity has been discovered. More genetic information of microorganisms may 

elucidate more the evolution of bacterial environment (Ramazanzadeh et al., 2013).  
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Rep-PCR is a genotypic BST method that uses oligonucelotide primers complementary 

to repetitive sequences dispersed throughout the genome of E. coli (Versalovic et al., 1991). 

Therefore, REP-PCR is considered a genomic fingerprinting technique that generates specific 

strain patterns obtained by the amplification of repetitive DNA elements present along the 

bacterial genome (Busch and Nitschko, 1999). REP elements are 38-bp sequences consisting 

of six degenerate positions and a 5-bp variable loop between each side of a conserved 

palindromic stem (de la Puente-Redondo et al., 2000). ERIC-PCR; also known as intergenic 

repetitive units’ PCR, is based on DNA fingerprints that are specific to individual strains. It is 

a rapid method for molecular typing of E. coli strains, and has been described for most bacterial 

species such as Enterobacteriaceae family (Hulton et al., 1991). The ERIC sequences are 

located in intergenic regions as palindromes of 127 bps (Sharp, 1997; Hulton et al., 1991). The 

ERIC and REP-PCR techniques’ approach is a rapid and highly reproducible methods (Mehta 

et al., 2002), useful for surveying E. coli strains in complex samples and identifying  genetic 

diversity (Ramazanzadeh et al., 2013).  

Many of these methods whilst still valid have been supplanted by whole genome 

sequencing and various analyses of gene content, SNPs, inferred multi-locus-strain typing 

(MLST) may be applied to this data rich source of information covering the entire genome 

rather than limited regions as generated by the other techniques.  Cordoni and other have 

probably undertaken the most detailed analysis of APEC to date by genome analysis that 

challenges the use of virulence determinants and serotyping to classify and identifying 10 

genomo-clusters (Cordoni et al., 2016). 
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1.6 Modes of APEC control 

1.6.1 Biosecurity 

The prevention and protection of poultry from disease is important. Biosecurity is one 

of the most effective methods and consists of various measures such as concrete curtains 

around buildings, limited entry, disinfectant dips for boot and vehicle tyres, insect and bird 

control, filtered air supply and so on are used to prevent such introductions of disease-causing 

organisms into housed flocks. Biosecurity can reduce the magnitude of financial losses that 

may occur following infection (Gifford et al., 1987; Waage and Mumford, 2008), and also can 

reduce the risk of introducing disease (Shane, 1993). Good biosecurity should be practiced at 

all times to help eliminate mycoplasma infections in primary breeding flocks. Moreover, it can 

help excluding other infections such as, laryngotracheitis virus infection, fowl cholera and the 

cycling of respiratory viruses (Stewart, 1987).  

1.6.2 Vaccines 

Vaccines are commonly administered veterinary medicines in poultry production to 

control some of the diseases. Vaccines are biological products that provide active acquired 

immunity to an individual disease and characteristically contain an agent which resembles a 

disease-causing microorganism, often made from weakened or killed forms of the microbe, its 

toxins or one of its surface proteins. Many kinds of vaccines are produced against many 

organisms, and are currently available against viral, bacterial and some parasitic diseases. For 

example, vaccine for Newcastle disease contains an attenuated virus which is a live but 

its ability to cause disease has been significantly reduced,  but a combination of a live and 

inactivated Newcastle disease vaccine, administered simultaneously, is shown to provide 

better protection against virulent  Newcastle disease vaccine and has been successfully used 

in poultry production (Senne et al., 2004). Another vaccine was used in poultry is against 
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Salmonella infections, such as a novel trivalent inactivated Salmonella vaccine consisting of 

Salmonella Enteritidis, Salmonella Typhimurium, and Salmonella Infantis which can be an 

effective tool for controlling the Salmonella infections of different groups of serotype in 

chicken farms (Deguchi et al., 2009). On the other hand, no vaccine can be 100% effective 

(Marangon and Busani, 2006), if the birds are vaccinated but exposed to large levels of the 

wild disease then the immunity generated by the vaccine can be overcome. 

A wide range of methods of poultry vaccine administration is available, in both the 

hatchery and on poultry farms. The choice of method depends on the type of antigen in the 

vaccine and depends upon other factors such as the type of production, bird species, size of the 

flock, length of the production cycle, general health status, other vaccines to be applied and 

costs. Vaccines for poultry originate in two general forms: Modified (Live) usually given in 

the drinking water, or by aerosol spray or injection to protect poultry of all ages, and inactivated 

(Killed) given by injection, usually to older birds before the start of egg production to protect 

both the bird and its offspring. Generally, inactivated vaccines induce high and uniform levels 

of protection after administration of a live vaccine (Marangon and Busani, 2006). Viruses 

stimulate the development of vaccine induced immunity more than other types of 

microorganisms, so most successful poultry vaccines are against viral diseases such as; 

Marek’s disease vaccine that is administered to chickens at the hatchery on the day they hatch. 

This vaccine is given medically under the skin at the back of the neck (Liu et al., 2014). For 

the specific protection against APEC infection Poulvac E. coli can be used in poultry for active 

immunisation (Nagano et al., 2012). Poulvac E. coli contains the live E. coli, given by spray 

vaccination at day one of age (Fernandes Filho et al., 2013).  
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1.6.3. Antibiotics 

Bacteria demonstrate two kinds of resistance to antibiotics, namely intrinsic that the 

species is resistant to an antibiotic even before its introduction, and acquired, that the species 

was originally susceptible to an antibiotic but later became resistant. Bacteria can acquire 

antibiotic resistance either by mutation or through exchange of genetic material among same 

or closely related species (Fernandez and Hancock, 2012; Nikaido, 1998). Resistance to several 

different antibiotics at the same time is even a more significant problem (Poole, 2012). In 

Gram-negative bacteria resistance arises through one of several biochemical mechanisms 

relating to inactivation of the antibiotic, often acquired resistance and enzyme dependent, and 

mutation that changes the site of activity of the antibiotic or related to reduced influx and 

enhanced efflux.  By way of example, resistance in Gram-negatives to the β-lactamase 

antibiotic is enzymic whereby β-lactamases have presumably evolved to fight natural β-lactams 

produced by bacteria (Pucci and Bush, 2013) that cleave the lactam ring. However, the common 

administration of antibiotics has heavily influenced the development of β-lactamase-mediated 

resistance. One of the first β-lactamases able to confer resistance to β-lactams is known as 

TEM-1. This enzyme was found in E. coli isolated from a patient named Temoniera, and was 

detected and defined in the sixties after the widespread use of ampicillin in human medicine 

(Rawat and Nair, 2010; Von Salviati et al., 2014). There are over 100 differing classes of β-

lactamase that have been defined. TEM-1 and Amp C are the most commonly found, especially 

in poultry production 

Certain bacteria can often become resistant to antimicrobials through a mechanism 

known as efflux (Poole, 2002; Nikaido, 1998) that occurs due to the activity of membrane 

transporter proteins widely known as multidrug efflux systems (MES). They are implicated in 

a variety of physiological processes other than efflux and identifying their natural substrates 
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and inhibitors is an active and expanding research discipline (Piddock, 2006; Fletcher et al., 

2010). 

Several methods of antibiotic susceptibility testing exist, for example, quantitative 

methods, qualitative methods and automated susceptibility tests (Ambaye et al., 1997; Jenkins 

and Schuetz, 2012). Quantitative methods assess the minimum amount of antibiotic that 

inhibits the visible growth of an isolate and a minimum inhibitory concentration (MIC) is 

determined. A bacterial isolate is subjected to various dilutions of an antibiotic, the highest 

dilution of antibiotic that has inhibited the growth of bacteria is considered as MIC, it can be 

made in broth or solid agar. Qualitative methods classify a bacterial isolate as sensitive, 

intermediate or resistant to a particular antibiotic such as disk diffusion method. The disc 

diffusion method is commonly used for which there are two types of disc diffusion method, the 

Kirby-Bauer and Stokes' methods: the Kirby-Bauer method is recommended by the Clinical 

and Laboratory Standard Institute (CLSI) (Hsueh et al., 2010). 

In the disc diffusion method a homogenous bacterial isolate at a specific bacterial cell 

density is spread on an agar plate and a paper disc containing a specific concentration of an 

antibiotic is placed on the agar surface and after incubation susceptibility is determined by 

observing the size of the resulting zone of inhibition surrounding each disc (Rolinson and 

Russell, 1972). This method has the advantage of simplicity, but for a given antibiotic disc 

several variables including inoculum, depth of agar, conditions of incubation, and medium 

composition as each markedly influences the size of the zone of inhibition. Unless these 

variables are carefully controlled, the results obtained may be misrepresentative (Rolinson and 

Russell, 1972; Noble and Davies, 1965). 

Antibiotics are usually used to treat bacterial infections and different strains of E. coli 

have variable sensitivities. Antibiotics that are regularly used to treat E. coli infections include 

amoxicillin (in man) or ampicillin (in animals) and nalidixic acid although others may be used. 
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APEC strains showed high resistance against these and other commonly used antibiotics such 

as  penicillin , erythromycin, tetracycline and nalidixic acid (Mendonca et al., 2016; Oosterik 

et al., 2014a) although resistance to amoxicillin, trimethoprim-sulfamethoxazole, kanamycin,  

Colistin are generally low (Mohamed et al., 2014; Mendonca et al., 2016; Cavicchio et al., 

2015) Antibiotic resistance is exceedingly common and there are many ‘superbugs’ resistant 

to all treatments largely due the profuse and inappropriate use of antibiotic treatments (Unemo 

and Jensen, 2017) Thus, it is extremely desirable to find other ways to control APEC and the 

use of natural antimicrobial agents such as plant extracts might offer some ecological and 

financial benefits. 

1.6.4 Plant derived phytochemicals 

Ancient civilisations recognised that some herbs and plant extracts could be used in the 

preservation of food (Hammer et al., 1999; Abreu et al., 2012) and for medicinal purposes 

(AlTurki, 2007). Plants synthesise a wide range of secondary metabolites, which are defined 

as substances produced by an organisms which are not part of its natural growth (Harborne, 

1990) of which many have antimicrobial properties and of special interest because of their 

importance as pharmaceuticals, fragrances, industrial materials and cosmetics (Amaral and 

Silva, 2003). According to the World Health Organization (WHO), medicinal plants would be 

the greatest source to obtain a wide range of drugs with antimicrobial properties (Nascimento 

et al., 2000). There are a great diversity of naturally occurring in medicinal plants but relatively 

few of the active components and their mechanisms of action in protecting against various 

diseases have been determined (Motaleb, 2011). 

The emergence and spread of antibiotic resistance among pathogenic bacteria has been 

a rising problem for public health in recent decades (Chandra et al., 2017). This increase in 

antimicrobial resistance has led to the study of plants products in search of new antimicrobials 

(Clardy et al., 2006). These chemical substances or phytochemicals have the ability to control 
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and manage natural predators (Cowan, 1999; Tahara, 2007) and parasites (Palmer-Young et 

al., 2017; Richardson et al., 2015). Moreover, phytochemicals have strong antibacterial effects 

against bacterial strains of Gram-negative and Gram-positive bacteria (Sokovic et al., 2010). 

Some previous studies reported that the supplementation of different plant extracts reduced 

APEC related diseases (Baydar et al., 2004; Gutierrez et al., 2008). Phytochemicals can be 

grouped by their chemical constituents and include  alkaloids, terpenoids, saponins, phenolics 

and essential oil constituents (Kennedy and Wightman, 2011).  

1.6.4.1 Phytochemicals- Alkaloids 

Alkaloids are one of the largest groups of chemical compounds produced by plants. 

Normally, alkaloids are produced from the Apocinaceae and Solanaceae families. Many of 

these metabolic by-products are derived from amino acids and include an enormous number of 

bitter, nitrogenous compounds. Alkaloids often contain one or more rings of carbon atoms, 

usually with a nitrogen atom in the ring (Coley et al., 1985). Alkaloids and extracts of alkaloid‐

containing plants have been used throughout human history as remedies, poisons and 

psychoactive drugs. The importance of the medicinal properties of alkaloids first came into 

existence when morphine was isolated from Papaver somniferum, which is generally used as 

a painkiller. Alkaloid was found to inhibit S. aureus and E. coli that are more susceptible than 

other selected bacterial strains from human sources at the concentration of 500 μg l-1 (Gurrapu 

and Mamidala, 2017). Owing to their bioactivities, alkaloids are often toxic to herbivoures but 

have been exploited by specialized species of herbivores as defense compounds (Sugimoto and 

Hori, 2010) 

1.6.4.2 Phytochemicals -Terpenoids 

Terpenoids are the largest group of natural products and can be found in all classes of 

living things (Jiang et al., 2016). Terpenoids are produced from Asteraceae and Lamiaceae 
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plant families (Sulsen et al., 2017). Plant terpenoids are used for their aromatic qualities as 

terpinols produce the scent of plants and are called essential oils. They play a role in traditional 

herbal remedies and are under investigation for antibacterial, antineoplastic, and other 

pharmaceutical applications. The chemical structure of terpinols is (C10H16)n and arise as 

diterpenes, triterpenes and tetraterpenes (Gershenzon and Dudareva, 2007). The characteristic 

smell of Eucalyptus—a smell of cinnamon, cloves, and ginger—is due to the presence of 

terpenoids. Examples of well-known terpenoids include menthol, citral, camphor, salvinorin A 

in the plant Salvia divinorum, and the cannabinoids found in Cannabis (Chandra et al., 2017). 

Terpenes and terpenoids may inhibit microbial cells and are used as an alternative strategy to 

control the shelf-life and safety of food (Lanciotti et al., 2004). 

1.6.4.3 Phytochemicals -Saponins 

Saponins are a group of naturally occurring plant glycosides, characterized by their 

strong foam-forming properties in aqueous solution. They are one of the most important class 

of natural plant products consisting of the steroid aglycone with one or more sugar units 

attached at different positions (Osbourn et al., 2011). There are more than 11 distinguished 

classes of saponins with, for dammaranes, tirucallanes, taraxasteranes, and steroids as examples 

(Challinor et al., 2012; Man et al., 2010). Their compounds have anticancer properties that 

inhibit tumors and suppressing their angiogenic induction by affecting the endothelial cells of 

blood vessels. They exert a broad range of pharmacological activities such as expectorant, anti-

inflammatory, vaso-protective, antifungal and anti-parasitic (Sparg et al., 2004; Sahu et al., 

2008). 

1.6.4.4 Phytochemicals -Phenol group 

Phenolics and polyphenols form one of the simplest groups of bioactive 

phytochemicals, consisting of a single of substituted phenolic ring (hydroxyl group OH) (Das 
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et al., 2010). This group seems to be toxic to microorganisms and the toxicity of phenol is 

related to the number and location of hydroxyl groups present on the phenol ring (Kyselova, 

2011). Phenols inhibit enzymes by oxidising them through non-specific protein interactions or 

the reaction with sulfhydryl groups (Cowan, 1999). In addition, a phenolic compound able is 

to bundle with other compounds for example, organic acids and lipids (Kris-Etherton et al., 

2002). Generally, phenols are found in vegetables and at high concentrations in fresh fruit 

(Vinson et al., 2001).  

1.6.4.5 Essential oils 

Essential oils (EOs) are aromatic oily liquids obtained from plant parts such as, flowers, 

buds, seeds and leaves (Kocić-Tanackov and Dimić, 2013). About 300 EOs are commercially 

important and are destined chiefly for the flavours and fragrances market (Van de Braak and 

Leijten, 1999). There has been an increasing interest in the development of effective natural 

antimicrobials such as EOs, as food preservatives and in-feed additives because of their desired 

antimicrobial activity. The antimicrobial properties of EOs have been well recognised for many 

years (Hammer et al., 1999; Canillac and Mourey, 2004).  Also, the action of EOs in model 

food systems or in real food is well recognised in the literature (Koutsoumanis et al., 1998; 

Skandamis and Nychas, 2000). EOs contain a wide series of secondary metabolites that possess 

biological properties including having antibacterial and antifungal (De Martino et al., 2009; 

Nostro et al., 2007; Nazzaro et al., 2013), anti-oxygenic (Ultee and Smid, 2001) and 

insecticidal properties (Konstantopoulou et al., 1992). These oils are present as variable 

mixtures of primarily terpenoids, especially monoterpenes (C10) and sesquiterpenes (C15), 

also diterpenes (C20) may be present. The components in EOs have various targets but 

particularly in the membrane and cytoplasm in certain situations they may alter the morphology 

of the cells (Nazzaro et al., 2013). Numerous studies have shown that EOs of oregano 

(Origanum vulgare), bay (Pimenta racemosa) (Hammer et al., 1999), thyme (Thymus vulgaris) 
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and clove (Eugenia caryophyllata synonym: Syzygium aromaticum) (Dorman and Deans, 

2000) are among the most active in this respect against strains of E. coli,  and the most effective 

is oregano oil (Lambert et al., 2001; Skandamis and Nychas, 2000). Chemical analysis of these 

oils showed the constituents to be principally carvacrol, thymol, citral, eugenol and their 

precursors (Salzer, 1977; Juliano et al., 2000; Demetzos and Perdetzoglou, 2001).  

1.6.4.5.1 Thymol and carvacrol 

Thymol (2-isopropyl-5-methylphenol) and carvacrol (2-methyl-5-(1-methylethyl) 

phenol), shown in Figure 1.1. are part of a naturally occurring class of biocides, that has strong 

antimicrobial effects and have been classified as Generally Recognised as Safe (GRAS)  

(Costerton et al., 1999; Burdock and Carabin, 2004). Their use in food has been approved and 

is legally registered in the Council of Europe as flavourings and foodstuffs (Europe, 2000; 

Hyldgaard et al., 2012). Thymol and carvacrol are phenolic monoterpenes that are major 

components in the essential oils of Origanum and Thymus. Thymol is the isomeric form of the 

phenolic monoterpene carvacrol (Fachini-Queiroz et al., 2012). Both thymol and carvacrol 

possess multiple biological properties such as anti-leishmanial, anti-inflammatory, antioxidant, 

anti-tumoral activities (Aeschbach et al., 1994; Alam et al., 1999; Robledo et al., 2005) and 

anti-biofilm activity against E. coli 0157:H7 (EHEC) and other food borne pathogens (Kim et 

al., 2016; Du et al., 2015; Guarda et al., 2011; Friedman et al., 2002; Kang and Fung, 1999). 

Phenolic compounds are transported into the membrane and cause changes in the lipid-to-lipid 

and lipid-to-protein ratios in the membrane as well as in the membrane permeability and 

activity of membrane-bound proteins (Keweloh et al., 1990; Sikkema et al., 1995). The overall 

toxic effect of the phenolics on the cells is caused by distinct and complex mechanisms, such 

as narcosis, inhibition of growth, and the uncoupling of adenosine triphosphate synthesis 

(Escher et al., 1997; Sikkema et al., 1995).  



27 
 

 

Figure 1. 1 Chemical structures of (A) thymol and (B) carvacrol. 

 

1.7 General hypothesises  

Avian Pathogenic E. coli (APEC) is the primary cause of economically important 

diseases of poultry, and commensal E. coli are often carried in the intestines of normal poultry, 

but little is known of the relationship between them and if there is any response to dietary 

changes that may be adopted as part of control measures against APEC. The first testable 

hypothesis is that commensals and avian pathogenic E. coli can be differentiated one from the 

other, as they possess differing genotypic and phenotypic characteristics. Thus, the first aim of 

this study is to isolate the resident E. coli in poultry and to characterise them both genotypically 

and phenotypically. However, it was also considered that simple technologies should be used 

as these would be more readily transferred to routine and diagnostic laboratories. This will in 

part give an overview of numbers of commensal and APEC strains and the differences between 

them (chapter 2). 

The next testable hypothesis is that certain phytochemicals from some ‘medical plants’ 

may contribute to the control and management of APEC. These phytochemicals or extracts can 

be grouped by their chemical constituents into thymol and carvacrol and were used to carry out 

investigations into the antibacterial effects of plant extracts against E. coli isolates. This 

included determining MIC, and their effect on biofilm formation (chapter 3). 
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In addition, the use of phytochemicals to control and manage APEC, one additional 

concept is that some plant extracts/essential oils may reduce or control other biological 

properties of APEC and commensal E. coli such as plasmid gene transfer. The plasmidic spread 

of antibiotic resistance is another critical issue in animal production. Here, it is intended to use 

thymol to stop the conjugal transfer of plasmid mediated antibiotic resistance from one strain 

to another. The objective is to investigate the potential of phytochemicals to interfere with the 

various biological properties of APEC. This investigation is very contemporary and important 

to give a significant advantage to using phytochemicals to combat antibiotic resistance in food 

producing animals entering the human food chain (chapter 3). 

Moreover, thymol resistance may arise in E. coli by exposure to gradually increasing 

thymol concentrations. If mutants arise the basis of the next hypothesis was that a combination 

of extracellular foot-printing metabolomics, morphological changes, and whole genome 

sequencing approaches of mutant and original strains would elucidate natural mechanisms of 

‘resistance’ (chapter 4). 

Finally, this series of investigations is largely observational but with potentially 

applications should in vitro batch culture fermentation studies indicate impact of thymol on 

caecal gut microbiota and its metabolism. The final testable hypothesis is that thymol may act 

upon the total population to change the profile of bacteria present. Thus, population profiling 

of batch cultures challenged will identify responses and the biochemical pathways affected 

(chapter 5). 
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1.8 Aims and objectives 

• Isolate E. coli resident in poultry. 

• Determine the genotypic and phenotypic characteristic of E. coli isolates. 

• Investigate the diversity of E. coli populations in poultry. 

• Adapt and train E. coli strains to tolerate high concentrations of thymol. 

• Investigate thymol mechanism of action in E. coli. 

• Evaluate the effects of thymol on chicken derived gut microbiota and assess the 

environmental conditions and thymol concentration that favours or limits the caecal 

microbiome. 

 

Additional note: this introduction has not included all the possible topics that will be covered 

in this thesis but rather covered at a top level those key issues that provide a relevant 

background to help inform the approaches within each chapter. Thus, additional information 

will be provided as required in the introduction to each specific chapter when appropriate. 
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CHAPTER 2: GENOTYPIC AND PHENOTYPIC DIVERSITY 

BETWEEN COMMANSAL AND AVIAN PATHOGENIC E. COLI   

2.1 Introduction 

Escherichia coli is one of the most frequent causal agents of common bacterial 

infections for both human and animals (Allocati et al., 2013) even though many E. coli may be 

non-pathogenic commensals. The pathogenic types may be classified into a number of specific 

pathotypes such as enterotoxigenic, enteropathogenic, enteroinvasive, or enterohaemorrhagic 

according to the presence of specific virulence factors (Nataro and Kaper, 1998). For brevity, 

all pathotypes have not been listed nor described in any detail here as for this thesis the focus 

is upon E. coli from poultry.  

E. coli is present in the microflora of the intestinal tract of poultry where they normally 

inhabit the lower gastrointestinal tract. It may be assumed that many are non-pathogenic 

commensal types whilst others are pathogenic in poultry able to induce disease, commonly 

called colibacillosis that presents in a number of differing clinical pathologies. Isolates that 

come from diseased animals are named Avian Pathogenic E. coli (APEC). However, there is 

still considerable debate about the differentiation between commensal and pathogenic types 

because both, irrespective of definition into commensal or pathogenic groups, encode virulence 

determinants. The debate in the scientific literature regards the accurate definition of 

commensal and APEC types with the Nolan laboratory in the USA (Johnson et al., 2008a) 

suggesting carriage of just five of the known 40 or so virulence determinants is sufficient for 

the E. coli isolate to be described as an APEC. The Woodward group (Cordoni et al., 2016) 

have suggested carriage of seven to nine virulence determinants may be a more accurate 

definition of APEC. Given it is not possible to perform infection studies in poultry for every 

isolate made to confirm Koch’s postulates and that even the pathogenic types reside in the gut 
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before inducing disease often as an opportunistic secondary infection to prior disease such as 

mycoplasmosis, accurate differentiation is at best complex.  

Traditionally serotyping has been performed on isolates belonging to O1, O2 and O78 

serotypes are regarded as pathogenic (Ewers et al., 2003; Wang et al., 2014). That said, this 

monothetic test is fallible and many other serotypes harbour APEC. Several of the more 

commonly reported virulence factors associated with APEC include increased serum survival 

(iss), production of aerobactin and K1 capsule, presence of type 1 and P fimbriae, and 

temperature-sensitive hemagglutinin (tsh) of the autotransporter group of proteins (Ewers et 

al., 2004; Delicato et al., 2003) and these may be used potentially to investigate isolates to 

differentiate tentatively between commensal and APEC strains when other tests such as 

serotyping and whole genome sequencing are not available. In addition, particular interest has 

yet to be shown in the study of the relationships between phenotypic relatedness and 

phenotypic variation of poultry isolates and there exist several simple phenotypic and 

genotypic methods that have been developed in recent years to differentiate the diversity in E. 

coli strains (Edwards and Ewing, 1986).  

The greater wax moth larvae, Galleria mellonella is a simple and rapid invertebrate in 

vivo model that has been used as an infection model to describe and study microbial 

pathogenicity of several pathogenic bacteria, including enteropathogenic E. coli (Leuko and 

Raivio, 2012; Alghoribi et al., 2014). This technique is a popular model for experimental 

bacterial studies because it meets the 3Rs requirements of replacement, reduction and 

refinement of animal studies. Home office restrictions requiring ethical approval do not apply, 

their short life span makes them ideal for high throughput studies and the innate immune system 

is potentially ‘comparable’ to mammalian studies (Tsai et al., 2016). G. mellonella larvae are 

low cost to establish and easier to maintain when compared with other model hosts as they do 
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not require special laboratory equipment (Ramarao et al., 2012). In addition, the larva is large 

enough to enable precise injection of pathogens (Vogel et al., 2011). In this study, alternative 

in vivo model G. mellonella larvae were used to investigate the virulence characteristics of 

bacterial pathogenicity. The testable hypothesis was that turkey isolates were likely to be 

commensals and therefore harmless in an appropriate animal model compared with APEC. 

Here this hypothesis is tested using the Galleria model. 

The aim of this study was to investigate the diversity of E. coli populations in poultry 

using a set of relatively simple and readily transferable tests that front-line diagnostic 

laboratories rather than specialist reference laboratories can undertake. The reason for this 

approach was pragmatic. Firstly, whole genome analysis which is readily available these days 

is, although reducing in cost, very expensive in terms of the sequencing itself and more 

significantly the time for detailed analysis. Secondly, until a pipeline for the bioinformatics is 

developed that calls APEC confidently, there remains still some debate surrounding the 

definition of APEC. Thirdly, the time taken to obtain results in the field where suspect disease 

is being investigated, the need is for simple, rapid and well-established methods of analysis. In 

addition, to the best of our knowledge no research has focused upon the use of simple metabolic 

tests to assess differences in commensal and pathogenic types. Thus, using basic PCR and 

simple growth characteristics, the aim was tackled using Enterobacterial Repetitive Intergenic 

Consensus PCR (ERIC-PCR) to determine genotypic diversity, PCR analysis of a selection of 

APEC virulence factors determinants, and the phenotypic tests included susceptibility testing 

to some antimicrobial agents and carbon and energy sources utilization to study their 

similarities and differences between the isolates. 
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2.2 Materials and Methods 

2.2.1 E. coli isolation and storage 

2.2.1.1 Microbiological media 

The microbiological media listed in Table 2.1 were used for the different steps of the 

experiments performed and were procured from Sigma-Aldrich UK.  

Microbiological media were sterilized by autoclaving at 121°C for 20 min except SS 

agar which was boiled. Solid media containing agar were cooled to 50°C before pouring 20 ml 

in sterile disposable Petri dishes (Nunc). Prepared plates were stored in sterile bags upside 

down, refrigerated at 4oC until use. Tubes containing autoclaved liquid medium (broth) were 

also cooled and stored refrigerated at 4oC until use. The manufacturer/supplier details for all 

medium are in appendix 1. 

Table 2. 1: microbiological media 

Medium Comments 

Tryptophan Broth Medium to perform the indole test to confirm E. coli presence. 

Nutrient Broth (NB) General growth broth 

Luria-Bertani broth (LB) General growth broth 

Salmonella Shigella Agar (SS) 
Selective and differential medium widely used to isolate Gram-

negative from faeces.  

MacConkey agar (McC) Selective media for E. coli 

Eosin Methylene Blue (EMB) Selective media for E. coli 

Nutrient Agar (NA) General media 

Luria-Bertani agar (LB) General media 
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Minimal Salts Medium (M9) 

Minimal medium was prepared in 500 ml volumes for each component. The salt solution 

was prepared in 5X concentrated form as follows: - in 1 L of distilled water the following was 

dissolved 105 g K2HPO4, 45 g KH2PO4, 10 g (NH4)2SO4 and 5 g sodium citrate then 

autoclaved. To prepare the 500 ml of minimal medium 100 ml of autoclaved salts solution was 

added with 15 g of purified agar and autoclaved to 374 ml ddH2O. After cooling autoclaved 

minimal medium to 50˚C, 1 ml of 1M MgSO4 and 10 ml of 20% carbon source substrate 

prepared by dissolving in sterile distilled water and filter sterilizing were added separately in 

multiple preparations.  

2.2.1.2 E. coli isolation and storage 

Sixty-Five APEC were provided by University of Surrey (UoS). Each of these isolates 

had been recovered from diseased birds and specifically from the tissues that were heavily 

infected with the E. coli (personal communication Prof R. M. La Ragione). 

 Samples were taken from commercial poultry guts from studies performed at the 

University of Reading CEDAR farm, Arborfield, Reading, RG2 9HX. Thirty-five swab 

samples were from chicken cloaca and 100 swab samples were from turkey caeca (see 

appendix 2). The samples were taken from a number of different studies in which the birds 

were from hatcheries that serve the poultry industry and were therefore representative of the 

birds that enter the poultry meat production industry. The swabs with approximately one gram 

of gut luminal contents were placed in test tubes containing NB. Swabs from chicken were 

spread on McC agar and incubated at 37°C for 18-24 h aerobically. A well isolated single pink 

colony was picked from the McC plate and sub-cultured on selective media SS agar and EMB 

to confirm the isolation of E. coli by lactose fermentation and acid production shown as dark 
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blue-black colonies with metallic green colonies.  To further confirm the isolation of E. coli 

the indole test and Api20E (bioMerieux, UK Limited) strips test were used following 

manufacturer’s instructions (see below). Confirmed and pure E. coli stocks were grown on NA 

plates and then stored as cryobank at -80°C. To do this, each isolate was inoculated in the 

cryobank tube (Mast group, Mastdisks, UK) with a suspension equivalent to McFarland 3 or 4 

standard prepared by mixing a sweep of several colonies from a fresh NA plate culture that had 

been spread liberally across in NA plate and grown overnight at 37oC.). Inoculated cryobank 

tubes were stored at -80˚C.   

Swabs from turkey were thoroughly mixed in NB and dilutions (100 µl) were spread 

on thoroughly dried McC plates followed by incubation at 37°C for 18-24 h aerobically. 

Lactose positive colonies were pink to red which indicated the presence of E. coli. Well isolated 

single pink colonies were sub-cultured on selective media EMB and SS agar to confirm the 

isolation of E. coli.  Confirmation testing and storage was as described above. Finally, APEC 

swabs were streaked onto suitable medium (NA or LB agar) and cultured for 18-24h at 37°C 

aerobically. Following incubation, a single colony was re-streaked into McC or EMB agar for 

confirmation testing and storage as described above. 

2.2.1.3 API-20E test 

The API-20E test kit for the identification of enteric bacteria (bioMerieux,UK Limited 

UK Limited ) provides an easy way to inoculate and read tests relevant to members of the 

Family Enterobacteriaceae and associated organisms. A plastic strip holding twenty mini-test 

tubes was inoculated with a saline suspension of a pure culture (as per manufacturer's 

directions). This process also rehydrates the desiccated medium in each tube. A few tubes are 

completely filled (CIT, VP and GEL), and some tubes are overlaid with mineral oil such that 

anaerobic reactions can be carried out (ADH, LDC, ODC, H2S, URE). After incubation in a 
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humidity chamber for 18-24 h at 37°C, the colour reactions were read (some with the aid of 

added reagents following manufacturer’s instructions), and the reactions (plus the oxidase 

reaction done separately) were converted to a seven-digit code which is called the analytical 

profile index, from which name the initials "API" are derived. The code was fed into the 

manufacturer's identification book to determine genus and species where possible.  

2.2.1.4 Indole test 

The indole test is a commonly used simple biochemical test to differentiate 

Enterobacteriaceae and other genera. It was used to differentiate between E. coli and other 

organisms such as Enterobacter and Klebsiella (Winn 2006). Also, it was used to determine 

the ability of an organism to deaminate tryptophan to form the compound indole. Indole 

production is detected by Kovac’s reagent that was procured from Sigma-Aldrich UK: the 

reagent is 4 (p)-dimethylamino-benzaldehyde which reacts with indole to produce a red 

coloured compound. After incubation of tryptophan broth inoculated with 2-3 colonies of E. 

coli and incubated at 37°C for 18 to 24 h, four drops of Kovács reagent were added directly to 

the tube (Harley, 2005). A positive indole test was indicated by the formation of a pink to red 

colour in the reagent layer on top of the medium within seconds of adding the reagent. 

2.2.2 Genotypic tests   

2.2.2.1 Extraction of Genomic DNA 

Isolated cultures of E. coli strains grown for 18-24 h in Nutrient Broth (NB) were used 

for DNA extraction. Genomic DNA was extracted using QIAGEN Puregene yeast/bact. Kit B 

and standard protocols from fresh samples of Gram-negative bacteria cultures were followed. 

1000 µl of overnight culture was pelleted in 1.5 ml microcentrifuge tube at 14,000xg for 2 min, 

then incubated at 80˚C for 5 min after adding 300 µl of cell lysis solution on the pellet.  RNase 

A solution (1.5 µl) was mixed by gentle inversion 25 times then incubated for 15-60 min at 
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37˚C, followed by 1 min on ice. The tube content was vortexed vigorously for 20 s at high 

speed after addition of 100 µl protein precipitation solution, the mixture was centrifuged 

14,000xg for 3 min. The supernatant was transferred to a clean 1.5 ml microcentrifuge 

containing 300 µl of isopropanol procured from Sigma-Aldrich UK, and mixed by gently 

inverting 50 times. The mixture was centrifuged at 14,000xg for 1 min, and the supernatant 

was carefully discarded. A total of 300 µl of 70% ethanol was added to the DNA pellet and 

inverted several times. The mixture was centrifuge at 14,000xg for 1 min, and again the 

supernatant was discarded and allowed to air dry for 5 min. 100 µl of DNA hydration solution 

was added and vortex for 5 s, incubated at 65˚C for 1 h, followed by incubation overnight at 

room temperature with gentle shaking. The DNA concentration was determined with a ND-

1000 Nanodrop spectrophotometer (Nano Drop technologies, USA). The Nanodrop tube was 

cleaned by pipetting 2 μl of dH20 onto it and wiping with Whatman filter paper. The Nanodrop 

was blanked with 1 μl of DNA hydration solution. One µl DNA solution was added to the 

measuring stage and the DNA concentration was recorded in ng/µl, the concentration 260:280 

nm ratio and 260:230 nm was recorded of 1.8 ± 0.15. DNA stock were prepared as 100 ng/µl 

and stored in -20˚C for PCR test.  

2.2.2.2 ERIC-PCR 

E. coli isolates were fingerprinted using the ERIC-PCR. ERIC-PCR specific primers 

(ERIC1, 5′-ATGTAAGCTCCTGGGGATTCAC-3′ and ERIC2, 5′ 

AAGTAAGTGACTGGGGTGAGCG-3′) (Maluta et al., 2012; Ramazanzadeh et al., 2013) 

were synthesized by Eurofins Genomics UK. 

Each ERIC-PCR reaction was carried out in a total volume of 50 µl of Promega PCR 

mixture comprised of 100 ng of E. coli DNA, 1 µl (25 pmol) of each primer, 1 µl (200 mM) of 

dNTP mixture, 10 µl of 5X buffer solution, 4 µl (25 mM) of MgCl2, 1 µl (1.0 U) of Taq DNA 
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polymerase. Double distilled water was added to the mixture to make a final volume of 50 µl. 

The reactions were carried out in 0.2 ml microcentrifuge tubes (sigma-Aldrich, UK). PCR 

amplification was carried out using a 48-well MJ Mini Thermal Cycler (Bio-Rad thermal) with 

the following protocol; initial denaturation at 94˚C for 2 min, followed by 35 cycles of 

denaturation at 95˚C for 30s, annealing at 52˚C for 30s, extension at 72˚C for 1 min, and a final 

extension step at 72˚C for 5 min.  

The amplicons were examined by electrophoresis in TAE buffer (40 mM Tris-acetate, 

1 mM EDTA, pH 8.0) in 1.5% TAE agarose gels stained with 0.5 mg/ml of ethidium bromide 

all of them procured from Sigma-Aldrich UK. DNA ladders, 1-kpb and 100bp, from QIAGEN 

UK were used and an electric field of 50 V was applied during electrophoresis for 45-60 

minutes. The images were captured using G: BOX Chemi-XR5, GeneSye. The data was 

analysed visually according to similarities between the banding patterns of strains and grouped 

accordingly into groups. Briefly, DNA band sizes were determined using the detect band button 

of NTSYS pc software Version 2.1b. The overall analysis of similarities between strains was 

based on banding patterns. The presence of a given band was coded as 1 and the absence of a 

given band was coded as 0.  To perform ERIC fingerprint analyses, a binary matrix of band 

presence scored as 1 or absence scored as 0. These scores were entered in to the SAHN program 

of the NTSYS-pc software Version 2.1b for the construction of dendrogram based on simple 

matching coefficient and UPGMA (Unweighted Pair Group Method for Arithmetic Averages) 

in cluster analysis to determine the genetic relatedness of the E. coli strains. Clustering was 

defined at a coefficient of 0.089 and the number of clusters and singletons produced were used 

to calculate the discriminatory index (D value) as described by Hunter and Gaston (Hunter and 

Gaston, 1988).   
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2.2.2.3 Virulence genotyping 

All E. coli samples were analysed for eleven avian pathogenic E. coli (APEC) virulence 

factors using PCR assays based on the most virulence determines associated with different 

diseases on poultry. Target genes and their descriptions are summarized in Table 2.2 with their 

primer sequences. All PCR assays were performed with 25 μl of Promega PCR mixtures 

containing 2 μl (100 ng) of template DNA, 2 μl (1.0 U) of Taq DNA polymerase, 5 μl 5X PCR 

buffer, 4 μl (25 Mm) MgCl2, 1 μl dNTPs mix (200 mM) and 1 μl (25 pmol) of primer pairs, 

and appropriate volumes of double-distilled water. The reactions were carried out in 0.2 ml 

microcentrifuge tubes (Sigma-Aldrich UK). The PCR amplification was carried out using a 48-

well MJ Mini Thermal Cycler (Bio-Rad) with the following protocol; initial denaturation at 

94°C for 3 min, followed by 30 cycles of denaturation at 94°C, for 30s, annealing at 58°C for 

30s, extension at 68°C for 3 min, and the final extension step at 72°C for 5 min. Nuclease-free 

water was used as negative control in each run. Analysis of the amplified products was 

performed by electrophoresis (50 V for 1 h) with a 1.5% agarose gel stained with ethidium 

bromide in TAE buffer (40 mM Tris-acetate, 1 mM EDTA, pH 8.0). 100pb and 1Kbp DNA 

ladders were used. Gel images were captured using G-BOX Chemi-XR5, (Syngene), connected 

to a computer. The analysis of specific band sizes presents for different virulence genes tested 

were scored as present (+) or absent (-). 
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Table 2. 2: The primers used for detection of the various genes by PCR, amplicon size, 

encoded virulence factors and primer references were used. 

Gene description Primer sequence 
Amplicon 

size (bp) 
References 

Adhesins 

fimH 

 

 

papC 

 

 

csg 

 

 

crl 

 

tsh 

 

 

Iron acquisition 

  

iucD 

 

irp2 

 

 

Protectins 

iss 

 

 

kps (k1) 

 

astA 

 

Miscellaneous 

cva/cvi 

 

Type 1 fimbriae 

adhesion  

 

P-fimbriae, 

Pyelonephritis 

associated pili 

 

Regulator of the 

curli fimbriae 

operon 

 

Curli fiber gene 

 

Temperature-

sensitive 

hemagglutinin 

 

 

Aerobactin 

synthesis, Iron 

uptake chelate 

Iron- repressible 

protein associated 

with yersinabactin 

synthesis 

 

Increase serum 

survival 

 

Capsule 

polysaccharide 

 

Enteroaggregative 

heat-stable toxin 

 

Structural genes of 

colicin V operon 

 

AGAACGGATAAGCCGTG 

GCAGTCACCTGCCCTCCGGTA 

 

TGATATCACGCAGTCAGTAG 

CCGGCCATATTCACATA 

 

ACTCTGACTTGACTATTACC  

AGATGCAGTCTGGTCAAC 

 

TTTCGATTGTCTGGCTGTATG  

CTTCAGATTCAGCGTCGTC 

 

ACTATTCTCTGCAGGAAGT 

CTTCCGATGTTCTGAACG 

 

 

ACAAAAAGTTCTATCGCTTC 

CCTGATCCAGATGATGCT 

 

AAGGATTCGCTGTTACCGGA 

AACTCCTGATACAGGTGG 

 

ATCACATAGGATTCTGCC 

CAGCGGAGTATAGATGCC 

 

TATAATTAGTAACCTGGGGC 

GGCGCTATTGAATAAGACTG 

 

TGCCATCAACACAGTATATC 

TCAGGTCGCGAGTGACGG 

 

TCCAAGCGGACCCCTTATAG 

CGCAGCATAGTTCCATGCT 

 

508 

 

 

501 

 

 

200 

 

 

250 

 

824 

 

 

 

714 

 

 

413 

 

 

309 

 

 

927 

 

 

116 

 

 

598 

 

(Zhao et al., 2009) 

 

 

(Sanger et al., 1977; 

Janben et al., 2001) 

 

(Knobl et al., 2012) 

 

 

(Knobl et al., 2012) 

 

(Dozois et al., 1992; 

Ewers et al., 2007) 

 

 

 

(Sanger et al., 1977; 

Janben et al., 2001) 

 

(Dozois et al., 1992; 

Schubert et al., 1998) 

 

 

(Ewers et al., 2005) 

 

 

(Knobl et al., 2012) 

 

 

(Franck et al., 1998) 

 

 

(Ewers et al., 2007) 
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2.2.3 Phenotypic testes 

2.2.3.1 Carbon source utilisation 

Two hundred strains of isolated E. coli were tested for their ability to utilize 11 

substrates as sole sources of carbon and energy by the following method, these eleven 

substrates are known to be highly variable in the E. coli population as a whole (Edwards and 

Ewing, 1986; Woodward and Charles, 1983). Two to three colonies of each strain were 

inoculated on minimal agar. Minimal Salts Medium (M9) was prepared as per section 2.3.1.1. 

The following carbon sources were used: sucrose (suc), raffinose (raf), inositol (ino), adonitol 

(ado), arabitol (ara), dulcitol (dul), allantoin (all), proline (pro), sorbose (sor), melitzitose (mel), 

and salicin (sal). Twenty ml of media were poured per sterile Petrie dish and allowed to solidify 

at room temperature. Eight strains E. coli were streaked on to each plate. The plates were 

incubated at 37°C for 18-24 hours, then incubated at 25˚C for up to a further seven days. Results 

were scored after 7 days’ incubation. Scoring was as follows; the clear growth scored as 

positive (+), absence of discernible growth was scored negative (-). Mutability that is defined 

here as rare colonies on a background of very weak or no growth was scored also (M). 

2.2.3.2. Antimicrobial susceptibility test  

 In this experiment 135 isolated samples (from chicken and turkey see appendix 1) and 

65 samples APEC provided from university of Surrey were examined for their antimicrobial 

sensitivity. Antimicrobial sensitivity was investigated using the disk diffusion method (Bauer 

et al., 1966) with some modification in NA media (Mast group, Mastdisks, UK) according to 

the standards and interpretation criteria described by National Committee for Clinical 

Laboratory Standards NCCLS/CLSI guidelines (Hsueh et al., 2010). The following antibiotics 

were used: nalidixic acid (10µg), amikacin (30µg), ampicillin (10µg), streptomycin (10µg), 

colistin sulphate (10µg), chloramphenicol (30µg), and trimethprim (5µg). Overnight culture 
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samples were adjusted for turbidity with a McFarland Standard Tube 0.5 (McFarland standard 

of 0.5 Bacterial lawns). To do this, overnight cultures containing approximately 1 to 2 x 108 

CFU/ml were adjusted with fresh sterile nutrient broth by measuring absorbance at 600nm using 

a spectrophotometer with a 1 cm light path and matched cuvette using an absorbance of 0.06 

that is equal to 0.5 McFarland. Within 15 minutes after adjusting the turbidity of the inoculum 

suspension, 100 µl of E. coli were pipetted onto the nutrient agar plate, and spread over the 

surface. The plate was left for 5 minutes to allow the culture to soak into the agar. Each disc 

was placed by sterile forceps on a surface of agar plate, 6 discs per plate with the space between 

the discs around 24-30 mm, and the distance to the edge no less than 1cm. The disc was tapped 

lightly with the forceps to make sure it adhered to the agar when the plate is inverted. The 

plates were incubated at 37°C for 18-24 hours and susceptibility was determined by measuring 

the zone of inhibition. The diameter of the zone of growth inhibition around each disc were 

measured and compared with zones of inhibition of standard controls according to standards 

of the NCCLS/CLSI. 

2.2.4 Statistical analysis 

 To perform ERIC fingerprint analyses, a binary matrix of band presence scored as 1 or 

absence scored as 0. These scored were entered in the SAHN program of the NTSYS-pc 

software Version 2.1b for the construction of dendrogram based on simple matching coefficient 

and UPGMA (Unweighted Pair Group Method for Arithmetic Averages) in cluster analysis to 

determine the genetic relatedness of the E. coli strains. 

For the purpose of statistical analysis of variance was performed on each substrate for 

which growth was positive for different isolates. To determine the diversity between all 

characteristics tested by genotypic and phenotypic was used a multivariate analysis of Principal 

Components Analysis (PCA). The basic statistical correlation between all characteristics tested 
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was determined by using statistical programme of Minitab version 17 software. A p-value of 

<0.05 was taken to indicates statistical significance. 

2.2.5 Galleria model.  

2.2.5.1 Identification of 50% lethal dose (LD 50) in G. mellonella larvae infection of 

virulence  

In vivo treatment assays using the Greater Wax Moth G. mellonella model were done 

by Dr Jonathan W. Betts at the University of Surrey. E. coli strains were grown in Luria Bertani 

broth for 16 h at 37˚C. The cultures were washed and diluted in PBS, for each strain ten G. 

mellonella larvae were injected with 10 µl of 102, 103, 104 and 105 CFU/larva into the left proleg 

(Hornsey and Wareham, 2011). Larvae were then incubated at 37˚C in the dark and the dilution 

that killed 50% of the larvae (LD 50) for each replicate was determined after each 24 h. In 

addition, control inoculation was performed with PBS to measure lethal effects. Larvae were 

monitored over 0, 24, 48, 72 and 96 h and survival outcome were determined; larvae were 

considered dead when no response was observed following touch. Larvae melanisation was 

taken as an indicator of morbidity and was quantified based on the reverse scoring method of 

(Tsai et al., 2016; Betts et al., 2017), whereby a score of 4 indicated total melanisation of the 

larva, 2 equalled melanin spots over the larva, 1 equalled discolouration of the tail and a score 

of 0 equalled no melanisation. All in vivo experiments were carried out in triplicate on three 

separate occasions. Survival analysis and statistical significance were determined using the log-

rank test and the Kaplan–Meier survival. The LD50 curves and melanisation scores were 

plotted using GraphPad Prism 6.0 software (San Diego, CA, USA) at a significance level of P 

= <0.05. 
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2.3 Results 

2.3.1 E. coli isolated and storage 

 The total number of confirmed E. coli isolates that were made and stored was 135, 35 

from chicken and 100 from turkey. In addition, 65 isolates provided by the UoS from infected 

chicken described as APEC samples were also re-confirmed and stored (appendix2) 

2.3.2 Genotypic diversity 

2.3.2.1 ERIC-PCR 

The ERIC-PCR genotyping method results show the different number of bands present, 

different sizes, and characteristic band patterns of E. coli strain DNA fingerprints. In total, 200 

isolates taken from three sources including 135 E. coli isolates from poultry (100 from turkey 

and 35 from chicken) and 65 strains isolated from infected chicken classified as APEC strains 

(appendix 2). The amplification products of ERIC-PCR generated distinct banding patterns 

that were differentiated by agarose gel electrophoresis based on molecular weights and the 

number of observed bands using ERIC–PCR profiles. One hundred and seventy-five 

fingerprinting patterns were determined among 200 isolated strains. The sizes of the PCR 

products ranged from slightly less than 150bp to > 3000bp with products ranging from 450-

1250bp most commonly encountered (Figure 2.1A-C). Out of the 200 isolates strains 175 

(87.5%) were grouped in 31 groups which shared banding patterns indicative of similar origin 

of dissemination, and 25 (12.5%) isolates displayed a single profile. Complex patterns of 

fingerprints have been obtained from all isolates.  

A dendrogram based on simple matching coefficient and UPGMA of DNA bands was 

constructed by NTSYSpc version 2.2 with clustering defined at a coefficient of 0.089. Figure 

2.2 is a dendrogram showing the genetic diversity and relatedness of the 200 E. coli strains. At 
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a coefficient of 0.089, 31 clusters and 25 singletons at a D value of 0.848 were identified. The 

index indicates that if two strains were sampled randomly from the population, then on 84.8% 

of occasions they would fall into different type. E. coli strains in the same cluster are genetically 

closely related to each other and more homogenous, whereas clusters consisted of 2 or more E. 

coli strains (Table 2.3). Cluster 1 was the biggest cluster in the dendrogram having 76 E. coli 

strains and all strains in this cluster were commensals as shown by later tests and most of them 

were isolated from turkey and only 5 strains isolated from chicken. Similarly, E. coli strains in 

cluster 2 to cluster 10 were related to each other more than those in clusters 11 and 12. Whereas 

those strains were mixed turkey and chicken commensal E. coli isolated. Clusters 13, 14 and 

15 were more related to each other than other clusters. E. coli strains in cluster 16 to 22 are 

more related to each other however, cluster 16 had 3 strains isolated from turkey and one from 

chicken, while other strains in the clusters 17 to 22 they were isolated from APEC strains. 

Furthermore, E. coli strains in clusters 23 to 31 were similar, clusters 23, 24 and 26 were related 

to strains in clusters 29, 30 and 31 and differ to cluster 27 and 28 which related to each other. 

And also, all strains in those clusters contained APEC strains with 3 commensal strains isolated 

from turkey in the last cluster 31. Twenty-five singleton (single isolates) E. coli strains 

belonging to these groups are heterogenous and show more distant relation to other E. coli 

strains at a coefficient of 0.089, although all singleton groups were isolated from chicken (12), 

and APEC (12) strains except the last strain was isolated from turkey. 
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Figure 2. 1 Examples of ERIC-PCR profiles of E. coli isolates from (A) turkey, (B) chickens 

and (C) APEC, Lanes 1-12. Lanes 13 indicate ladder, arrow indicate 450-1250bp. 

A 

C 

B 
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Figure 2. 2 Dendrogram of genomic similarity of 200 E. coli strains using ERIC-PCR results. 

C1-C31= E. coli cluster 1-31, S1-S25= E. coli singleton 1-25, T=turkey (green), Ch=chicken 

(orange) and A=APEC (blue).  
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Table 2. 3 Clustering and similarity of E. coli isolates and Number of strains in each cluster. 

Cluster 
Number of strains in 

each cluster 

Isolated group 

Turkey Chicken APEC 

C1 76 71 5 - 

C2 5 5 - - 

C3 3 2 1 - 

C4 2 2 - - 

C5 3 1 2 - 

C6 2 - 2 - 

C7 3 3 - - 

C8 2 2 - - 

C9 2 - 2 - 

C10 3 - 3 - 

C11 2 - 2 - 

C12 9 8 1 - 

C13 3 - 3 - 

C14 2 1 1 - 

C15 2 1 - 1 

C16 4 3 1 - 

C17 8 - - 8 

C18 5 - - 5 

C19 3 - - 3 

C20 4 - - 4 

C21 5 - - 5 

C22 8 - - 8 

C23 4 - - 4 

C24 2 - - 2 

C25 2 - - 2 

C26 2 - - 2 

C27 2 - - 2 

C28 2 - - 2 

C29 2 - - 2 

C30 2 - - 2 

C31 3 3 - - 
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2.3.2.2 Virulence genotyping 

Two hundred E. coli strains were investigated for the presence of 11 virulence 

associated genes. The most frequently detected gene was crl that regulates the curli fimbrial 

operon found in all strains except one where it was not found in a turkey isolate (99.5%), 

followed by the Type 1 fimbrial adhesion gene fimH in 194 strains (97%), and 191 strains 

(95.5%) possessed the curli structural csg gene. In addition, 177 strains (88.5%) gave positive 

results for iron-repressible protein irp2 gene; 148 strains (74%) for serum resistance iss gene; 

123 stains (61.5%) were positive for the aerobactin iucD gene; 101 strains (50.5%) for colicin 

V operon - cva/cvi gene, and 97 strains (48.5%) for temperature-sensitive hemagglutinin tsh 

gene; 82 strains (41%) for enteroaggregative heat-stable toxin astA gene. Whereas 31 strains 

(15.5%) were positive for the kps (k1) gene encoding capsule and only 9 strains (5.5%) were 

positive for P-fimbriae papC gene (Figure 2.3, & Table 2.4). 

Using the criterion that APEC should have 5 or more virulence associated genes to be 

classified as APEC (Ewers et al., 2005), the results showed that 184 strains out of 200 strains 

in total could be classified as APEC strains. All strains isolated from chicken (35 strains) and 

APEC strains provided by (UoS) (65 stains) were APEC strains in addition to 84 of 100 strains 

isolated from turkey (table 2.5). Sixteen strains isolated from turkey possessed less than 5 

genes as follows, 13 strains had 4 genes, two strains had 3 genes and one strain had 2 genes. In 

addition, there were no strains containing 9, 10 or 11 genes found in strains isolated from 

turkey. Thus, there were less APEC strains (84%) strains isolated from turkey than from 

chicken (100%). One strain possessed all 11 virulence factors associated genes from APEC 

strains and other high numbers of virulence factors was 10 genes detected in 2 strains (1%) one 

from APEC and other from a chicken strain. Highest numbers of strains had 7 genes in 51 

strains (25.5%), followed by 8 genes in 43 strains (21.5%), and 6 genes detected in 39 strains 

(19.5%). However, if the criterion of 7 or more genes were used to classify APEC then 119 



50 
 

strains would be defined as APEC and less than half (37%) of the turkey isolates would be 

defined as APEC, 82.8% of chicken isolates and similarly in APEC isolated 81.5%.  

If we consider the three common virulence genes (crl, fimH and csg) which were found 

in high percentage (table 2.4) (99.5%, 97% and 95.5%) respectively, almost all strains among 

the three-isolated source had those genes. If we remove those genes the result of the criterion 

that APEC should have 5 or more virulence associated genes to be classified as APEC as Ewers 

and his colleges consider, the results would be changed as shown in Table 2.5. Seventy stains 

out of 200 strains in total could be classified as APEC strains (35%). Thirteen strains isolated 

from turkey out of 100 strains possessed 5 genes (13%) and no turkey isolates contained more 

than five genes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. 3 Total detection rates of virulence-associated genes in isolates. 
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Table 2. 4 Prevalence of virulence-associated genes in APEC field strains, as detected by 

PCR. 

Samples(n) crl fimH csg irp2 iss iucD cva tsh astA K1 papC 

Turkey 100 99 97 96 92 55 31 30 39 44 4 3 

% 99 97 96 92 55 31 30 39 44 4 3 

Chicken 35 35 34 35 30 32 32 19 20 27 7 1 

% 100 97.1 100 85.7 91.4 91.4 54.2 57.1 77.1 20 2.8 

APEC 65 65 63 60 55 61 60 52 38 11 20 5 

% 100 96.9 92.3 84.6 93.8 92.3 80 58.4 16.9 30.7 7.6 

total 199 194 191 177 148 123 101 97 82 31 9 

% 99.5 97 95.5 88.5 74 61.5 50.5 48.5 41 15.5 4.5 

 

 

Table 2. 5 Prevalence of virulence-associated genes in E. coli isolates. Total numbers of 

isolates positive for 11 virulence genes and total number of isolates positive for 8 virulence 

genes after removal of three common genes (crl, fimH and csg). 

Total No. 

of 

virulence 

associated 

genes 

Total numbers of isolates for 11 

virulence genes 

Total numbers of isolates for 8 

virulence genes 

Turkey 

(n=100) 

Chicken 

(n=35) 

APEC 

(n=65) 

Total 

(n=200) 

Turkey 

(n=100) 

Chicken 

(n=35) 

APEC 

(n=65) 

Total 

(n=200) 

0 

 
0  0 0 0 1 0 0 1 

1 0  0 0 0 12 0 0 12 

2 1  0  0 1  25 1 2 28 

3 2  0  0 2  24 4 8 36 

4 13  0  0  13  25 8 20 53 

5 22  1  3  26  13 11 20 44 

6 25  5  9  39  0 10 13 23 

7 25  7  19  51  0 1 1 2 

8 12 11  20  43  0 0 1 1 

9 0 10  12  22  0 0 0  0 

10 0 1 1  2  0 0 0 0 

11 0 0 1  1  0 0 0 0 
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To show the genetic divergence between E. coli strains generated by using ERIC-PCR 

profiles and virulence associated genes, Principal Component Analysis (PCA) was performed 

that considered the combination of all genotypic variables. Score plots between the first 2 

components for which the eigenvalue for them were most significant (6.1 and 2.6, respectively) 

show the clear separation between presumptive commensal and APEC strains (Figure 2.4). 

However, the two sources of commensal E. coli strains showed some overlap but with some 

separation between them. In addition, strains from chicken were located between of turkey and 

APEC strains indicating a greater similarity between all chicken isolates that between 

presumptive commensals irrespective of poultry source.  

 

Figure 2. 4 Score plot of genotypic diversity between three sources isolated E. coli, A= APEC 

isolated (blue), C= chicken isolated (red) and T= turkey isolated strains (green). First 

component was virulence genes and second component was ERIC-PCR bands. 
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2.3.3 Phenotypic diversity 

2.3.3.1 Carbon source utilisation 

A large subset of the 200 isolates were able to utilise as a carbon and energy source 

dulcitol (38%), sucrose (37.5%), raffinose (36%) and sorbose (34.5%) irrespective of source 

of isolation. Fewer strains, notably those isolated from APEC, could utilize proline (7%), 

inositol (3%) 4 strains isolated from chicken and 2 from APEC, and salicin (1%) which isolated 

from chicken only. No strains could utilise either melezitose or allantoin (Figure 2.5). Most 

strains that could utilise raffinose were also able to utilise sucrose. Strains isolated from Turkey 

utilised adonitol and arabitol, while other strains from chicken and APEC could not. Six of the 

11 carbon substrates were utilised by varying numbers of isolates within each of the three study 

groups with utilisation of 4 carbon substrates namely sucrose, raffinose, dulcitol, and sorbose 

was common (Table 2.6).  

 

Figure 2. 5 Growth rates of strains grown minimal medium with eleven substrates.  
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Table 2. 6 Variation in the utilisation of 11 carbon substrates among 200 strains of E. coli. 

isolation 

samples 
n 

% of strains fermenting carbon source 
Total 

no. of 

sugars 

utilized 

tested 

suc raf ino ado ara dul all pro sor mel sal 

turkey 100 31 31 0 45 44 39 0 0 18 0 0 6 

chicken 35 54.2 25.7 11.4 0 0 31.4 0 0 14.2 0 5.7 6 

APEC 65 38.4 49.2 3 0 0 40 0 21.5 70.7 0 0 6 

total 200 37.5 36 3 22.5 22 38 0 7 34.5 0 1 9 

2.3.3.2 Antimicrobial susceptibility 

The two hundred of E. coli isolates were tested for antimicrobial susceptibility against 7 

antimicrobial agents using the disc diffusion method. In general, it was found that the isolates 

were susceptible to most antimicrobials tested. The total number of isolates susceptible to all 

of the antibiotics tested was 43.5%. The number resistant to at least one antibiotic was 23% 

and those that could be defined multiple antibiotic resistant (MAR, resistant to 3 or more 

antibiotics) was 12.5% (Table 2.7). In detail, samples isolated from turkey the frequency of 

susceptiblit to all antimicrobial was more than chicken and APEC isolated (53%, 34.2%, 

33.8%) respectively. However, it was found that the APEC samples were resistant to the 

majority of antimicrobials tested compared to those isolated either from turkey or chicken, 

while resistance to the quinolone, nalidixic acid, and the ß-lactam, ampicillin, was noted in a 

relatively high frequency (36%-39%) irrespective of the source of the isolates tested Table 2.8. 

Table 2. 7 Percentages of E. coli isolates (n=200) resistant to antimicrobial agents. 

E. coli 

isolates 

source (n) 

No. of isolated (% of total)  
Total (n) 

0 1 2 3 4 & 5  

Turkey (100) 53 (53) 18 (18) 27 (27) 2 (2) 0 100 

Chicken (35) 12 (34.2) 9 (15.7) 8 (22.8) 4 (11.4) 2 (5.7) 35 

APEC (65) 22 (33.8) 19 (29.2) 7 (10) 7 (10) 10 (15.3) 65 

Total (200) 87 (43.5) 46 (23) 42 (21) 13 (6.5) 12 (6) 200 

% 43.5 23 21 6.5 6 100 
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Table 2. 8 Percentages of E. coli isolates, susceptible, intermediate and resistant to 

antimicrobial agents. 

Antimicrobial agent (µg) 
n = 200 

susceptible Intermediate Resistant 

Nalidixic acid (10µg) 122 (61%) 6 (3%) 72 (36%) 

Amikacin (30μg) 184 (92%) 4 (2%) 13 (6.5%) 

Ampicillin (10μg) 114 (57%) 7 (3.5%) 79 (39.5%) 

Chloramphenicol (30μg) 184 (92%) 8 (4%) 8 (4%) 

Colistin (10μg) 190 (95%) 4 (2%) 6 (3%) 

Streptomycin (10μg) 165 (82.5%) 20 (10%) 15 (7%) 

Trimethoprim (5μg) 174 (87%) 1 (0.5%) 25 (12.5%) 

 

To estimate the phenotypic diversity between E. coli isolates a PCA was performed. 

The phenotypic characteristics used in this analysis were carbon source utilisation and 

antimicrobial susceptibility. Score plots are between the first 2 components for which the 

eigenvalues were 3.95 and 2.12 respectively.  The results show that there is little separation 

between all E. coli isolates irrespective of origin (Figure 2.6). However, there are subsets of 

turkey and APEC origin that appear to be clearly separated from all other isolates. These data 

are at variance with the PCA for genotypic separation where clear distinction between groups 

was very apparent (Figure 2.4). Collectively the data suggest that the phenotypic tests used 

may not be that useful for differentiation between APEC and commensals. 
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Figure 2. 6 Score plot of phenotypic diversity between three sources isolated E. coli, A= APEC 

isolated (blue), C= chicken isolated (red) and T= turkey isolated strains (green). Fists 

component was antimicrobial susceptibility and second was carbon source utilisation  

 

The aim of this work was to investigate the similarity and diversity between 

presumptive commensal and APEC strains. A total of 200 strains were isolated from different 

three sources of poultry, presumptive commensal E. coli (turkey 100 and chicken 35) isolated 

from farm where there was high health status and APEC 65 strains isolated from infected birds. 

To estimate the diversity, we evaluated the correlation between the all characteristics we tested.  

Figure 2.7 represents the plot of the phenotypic distance vs. the genotypic distance between 

the isolated strains for which the eigenvalue for the first 2 components were highly significant 

(8.63 and 3.06) respectively and showed that strains were grouped distinctly. As expected, 

turkey strains as well as the majority of chicken isolates (26) which were considered as 

presumptive commensal E. coli were clearly distant both genetically and phenotypically from 

APEC isolates. On the other hand, the minority of chicken isolates (9) shared some 

characteristics with APEC strains. Consequently, on the plots of the (PCA), based on the 
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distance of the 2 first components of the characteristics the eigenvalue for them were (3.95 and 

2.12) respectively (Figure 2.6).  

 

Figure 2. 7 Relationship between the phenotypic distance, and the genetic distance, resulting 

from comparisons between 200 E. coli strains, T=turkey (green), C=chicken (red) and 

A=APEC (blue). First component was genotypic characteristics and second component was 

phenotypic characteristics.  

 

 

The relative diversity of isolates E. coli as assessed by both genotypic and phenotypic 

test is shown graphically in Figure 2.8. E. coli isolates that share traits are co-located on the 

graph. It would appear that some variables were co-located such that two groups (A and B) 

were formed and that these groups are more likely to share these traits, indicating a high 

correlation between them. Group A show clustering of a number of different antibiotic 

resistances. This may be anticipated because antibiotic resistances are often carried co-located 

on plasmids. Therefore, this clustering indicates acquisition of plasmids rather than any other 

trait. Group B were able to utilise proline, sucrose, raffinose, sorbose and dulcitol and carried 

iucD, iss, cva/cvi and K1 genes. There is a major differentiation between all isolates and those 
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that utilise arabitol and adonitol which as a group tended to be resistant to nalidixc acid and 

ampicillin. Also perhaps significantly, these lacked most virulence determinants. Is it possible 

that these are true non-pathogenic commensals and contrary to the analysis above these traits, 

namely use of arabitol and adonitol, may be used for differentiation?  

 
 

Figure 2. 8 Correlation between the virulence genes, carbon sources utilized and antimicrobials 

agent between 200 E. coli strains. First component was genotypic characteristics and second 

component was phenotypic characteristics 

Significant correlations (p>0.005) between virulence genes and phenotypic 

characteristics in isolates E. coli were found between some variables (Appendix 3). For 

example, in Table 2.9 correlation coefficients between utilisation of the carbon source arabitol 

and antimicrobials resistance nalidixc acid and ampicillin 0.307 and 0.195, whereas there was 

a negative correlation with resistance to amikacin, chloramphenicol, streptomycin and 

trimethoprim (-0.155, -0.151, -0.183 and -0.205, respectively). Also, arabitol was negatively 

correlated with many virulent including iucD, iss, cva/cvi and k1 (-0.234, -0.308, -0.201 and -

0.231, respectively). Similar findings were shown for utilisation of adonitol as these two traits 
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are highly correlated (0.919). In addition, the correlation coefficients between arabitol and 

adonitol and other carbon sources tested, raffinose, dulcitol, proline, sorbose and sucrose were 

-0.367, -0.492, -0.239, -0.37 and -0.42. Conversely, utilisation of proline was associated with 

same of variables as arabitol and adonitol but with a positive Pearson correlation with iucD, 

iss, cva/cvi and k1 (0.258, 0.195, 0.26 and 0.392). Such strong correlation between the 

virulence genes and phenotypic characteristics suggested that the presence or absence of some 

virulence genes might be a necessarily process associated with some carbon sources between 

the presumptive commensal E. coli and APEC isolates.  

Table 2.9 correlation of basic statistical associations between adonitol, arabitol and proline 

with other carbon sources, antimicrobial resistant genes and virulence genes.  

Carbon sources Adonitol Arabitol Proline 

Sucrose -0.399 * -0.420 * 0.343 * 

Raffinose -0.445 * -0.367 * 0.335 * 

Inositol -0.066 -0.025 0.029 

Adonitol - 0.919 * -0.299 * 

Arabitol 0.919 * - -0.239 * 

Dulcitol -0.490 * -0.492 * 0.295 * 

Allantoin 0.007 0.004 0.009 

Proline -0.299 * -0.239 * - 

Sorbose -0.370 * -0.371 * 0.284 * 

Metzitose 0.005 0.123 0.170 * 

Salicine -0.058 -0.054 0.179 * 

Antimicrobial 

Nalidixic acid 0.296 * 0.307 * -0.191 * 

Amikacin -0.155 * -0.155 * 0.268 * 

Ampicillin 0.182 * 0.195 * 0.028 

Chloramphenicol -0.151 * -0.151 * 0.179 * 

Colistin -0.068 -0.070 0.367 * 

Streptomycin -0.180 * -0.183 * 0.232 * 

Trimethoprim -0.204 * -0.205 * 0.263 * 

Virulence genes 

tsh -0.068 -0.064 0.164 * 

iucD -0.263 * -0.234 * 0.258 * 

irp2 0.082 0.052 -0.206 * 

iss -0.363 * -0.308 * 0.195 * 

astA 0.013 0.017 -0.082 

cva/cvi -0.209 * -0.201 * 0.260 * 

fim -0.046 -0.040 -0.014 

papC -0.110 -0.110 0.016 

crl -0.124 -0.132 0.041 

k1 -0.231 * -0.231 * 0.392 * 

csg 0.001 0.062 -0.162 * 

*Correlation is significant at the 0.05 level (p-value). 
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2.3.4 Galleria model 

2.3.4.1 Selection of bacterial strains 

Eight isolates of E. coli from a total of 200 isolated strains were examined in this study, 

4 from infected chicken and other 4 from turkey. E. coli isolates from infected birds were 

classified as APEC isolates and the other isolated from turkey were presumptive commensal 

isolates. The isolates were selected on the basis of genotypic and phenotypic characteristics as 

determined previous. Two metabolic differences that were shown to be statistically significant 

in separating putative commensals from pathogens were; APEC’s ability to utilised proline as 

a sole carbon and energy source, and for turkey isolates presumptive commensals the ability to 

utilise adonitol (ribitol) and arabitol as sole carbon and energy sources. From each group two 

isolate were fully sensitive to all 7 antibiotics tested, and the other two strains from each group 

were resistant to at least 2 antibiotics tested (Table 2.10).  
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Table 2. 10 Variation of phenotypic (carbon substrates, antibiotic) and virulence-associated 

genes for 8 isolates E. coli, (+) positive and (-) negative. 

Strains 

Turkey APEC 

A B C D E F G H 

Carbon sources 

Suc - - - - + + - - 

Raf - - - - - - - - 

Ino - - - - - - - - 

Ado + + + + - - - - 

Ara + + + + - - - - 

Dul - - - - - - - - 

All - - - - - - - - 

Pro - - - - + + + + 

Sor - - - - - + + - 

Met - - - - - - - - 

Sal - - - - - - - - 

Antibiotics 

Na - - + + - - - + 

AK - - - - - - + - 

Am - - + + - - - + 

C - - - - - - + - 

Co - - - - - - - - 

S - - - - - - - - 

T - - - - - - + + 

Virulence genes 

Fim+ + + + + + + + + 

PapC - - - - - - - - 

Csg + + + + + + + + 

Crl + + + + + + + + 

Tsh - - - - + + + + 

iucD - - - - + + + + 

irp2 + + + + - + + - 

iss + + - + + + + + 

astA - - + + - - - - 

cva - - - - - + + - 

K+ - - - - + + - - 

Total genes (11) 5 5 5 6 7 9 8 6 
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2.3.4.2 Virulence in Galleria mellonella 

The larvae were injected with a range of inoculum doses to determine the mortality 

rates. The Kaplan-Meier survival analysis for strains of each different type was used. Survival 

curves are shown in Figure 2.9. The survival outcome of the E. coli inoculated larvae varied, 

where B, C, F and H showed different mortality rates compared to A, D, E and G. Isolates of 

C were observed to be the least virulent in this model, the result show different response from 

each group. However, an interesting result to emerge from the data was the observation that 

there was a clear separation of pathogenic and less pathogenic E. coli among the tested isolate, 

but regrettably the isolates were not in the same group as anticipated in the testable hypothesis. 

 

Figure 2. 9 Survival curves for G. mellonella larvae infected with 104 colony forming units 

(CFU)/larvae E. coli cells. 

Our results show different mortality rates among strains in vivo, but no association 

between pathogenicity and proline utilisation was observed. Strain A was the most pathogenic 

isolate from turkey even though it had the fewest number of virulence genes (5 genes), and was 

fully sensitive to all antibiotics tested with LD50 (1.50 x 103). Strain C was the least pathogenic 

overall and was also isolated from turkey with resistance to nalidixic acid and ampicillin and a 
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low LD50 (6.20 x 103). The only thing that distinguishes strain C from the rest of the strains is 

that it does not have the iss gene. Moreover, strain F that is an APEC strain had the highest 

number of virulence determents (9 genes) and is fully sensitive to antibiotics; had a relatively 

high LD50 (2.30 x 104).  

2.4 Discussion  

2.4.1 Genotypic diversity 

Regardless of intense research efforts aimed at controlling and eliminating avian 

pathogenic E. coli, relatively little is known about the diversity of the organism, its differences 

from commensal strains, and the mechanisms of spread and persistence in the poultry 

production environment. We were interested to know how and what distinguishes these 

pathogenic strains from their commensal counterparts. In the case of the studies described here 

that made use of chickens and turkeys from dietary investigation studies held at CEDAR, the 

University of Reading farm, as a source of E. coli from healthy animals for comparison with 

confirmed APEC from the University of Surrey Veterinary School.  Both genotypic and 

phenotypic characteristics of the panel of isolates were investigated. The genetic tests used 

were ERIC-PCR which is a simple method for the analysis of chromosomal diversity among 

E. coli strains, and PCR analysis of APEC virulence determinants for 11 genes encoding known 

virulence factors. The phenotypic diversity tests used 7 antimicrobials to test for susceptibility 

and 11 carbon sources to test for carbon and energy source utilization. The eleven substrates 

are known to be highly variable in the E. coli population as a whole (Edwards and Ewing, 1986; 

Woodward and Charles, 1983).  

The ERIC-PCR genotyping results demonstrated variable fingerprints in the isolates of 

E. coli that were tested in this study. Most of the currently used simple molecular biological 
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techniques that have been developed for genotyping for bacterial typing such as enterobacterial 

repetitive intergenic consensus ERIC-PCR, random amplification of polymorphic DNA 

(RAPD), amplified fragment length polymorphism (AFLP) and repetitive bacterial DNA 

elements PCR  (Maurer et al., 1998; Versalovic et al., 1991; Namvar and Warriner, 2006) can 

only give an indication of genomic similarity but do not relate to their evolutionary 

relationships. Other technologies such as MLST and whole genome SNP analysis provide 

greater depth of analytical power to assign isolates to evolutionarily related groups. Whilst this 

would be a useful adjunct if not a preferred option to the studies here, ERIC-PCR was used 

because the method is rapid, sensitive, repeatable and reliable, and therefore, it can be generally 

applied for the effective molecular differentiation of bacteria (Dorneles et al., 2012; Guimaraes 

Ade et al., 2011) and genetic diversity in E. coli isolates specifically (Ramazanzadeh et al., 

2013) in a cost effective manner. Furthermore, the aim was to assess similarity rather than 

evolutionary origin, however interesting that aspect would have been to follow.  

Several studies have reported the use of ERIC-PCR for typing of poultry E. coli isolates 

(Ngeleka et al., 1996; Dias da Silveira et al., 2002; Namvar and Warriner, 2006),  mostly 

discriminating between commensal E. coli and APEC isolates (da Silveira et al., 2002b). The 

data presented here indicates the similarity in PCR fingerprinting profile existed from three 

sources with more homogenous within the group and high clusters were between presumed 

commensal isolates E. coli than APEC isolates. The ERIC-PCR typing method showed 137 

patterns for 200 isolates. Twenty five (12.5%) of isolates displayed a single unique profiles 

whereas, 175 (87.5%) of them showed shared patterns which is indicative of similar strains of 

distribution in coefficient 0.089 was 0.848 D value, D value >0.9 is desirable and typing result 

can be interpreted (Hunter and Gaston, 1988). Interestingly, if we were to review the similarity 

dendrogram using a lower % relatedness for a cut off between profiles we see that three groups 

emerge and that each group is largely characteristic of APEC, chicken ‘commensals’ and 
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turkey ‘commensals’. ERIC-PCR profiles demonstrate genetic relatedness between E. coli 

strains. Therefore, isolates were similar between the birds as will be seen later, 31 profiles 

showed similar genotypes which indicate these strains were similar to one another.  In previous 

studies describing the genetic diversity and clonal similarity of E. coli population by Selander 

and Levin, (1980), it was suggested the rate of genetic recombination in the natural population 

of E. coli is low but that the genetic structure of E. coli populations and the factors determining 

the amount of neutral gene variability in this bacterial species is significant (Selander and 

Levin, 1980). Different procedures other than ERIC-PCR as discussed earlier have been 

applied to study bacterial genetic exchange among E. coli isolates (da Silveira et al., 2002a; 

Ewers et al., 2004). The main objective here was not to understand the phylogenetic relations 

of the bacteria in the panel of isolates but rather to assess diversity and to attempt to establish 

any possible correlations with phenotypic behaviour as will be discussed below.  

The genotyping of the 200 isolates revealed that a high percentage of them harbour 

virulence factors related to adhesion (crl 99.5%, fimH 97% and csg 95.5%) and iron acquisition 

(irp 88.5% and iucD 61%) followed by serum resistance (iss 74%), which are characteristic of 

the APEC pathotype.  

Five adhesion virulence genes were tested (crl, fimH, csg, tsh and papC). The gene crl 

was the most prevalent, it was present in all isolates except one strain in turkey isolated 

(99.5%). Whether this was true or an artefact of PCR needs to be reassessed especially as 

(Knobl et al., 2012) found it in all isolates (100%). Curli stimulates bacterial adherence to 

fibronectin, activation of plasminogen and chicken erythrocyte agglutination. The specific 

adhesion of type I fimbriae encoded by fimH was also highly prevalent (97%) in agreement 

with (Rossez et al., 2014; Zhao et al., 2009). The fimH adhesin is located on the very tip of the 

type I fimbria and enables colonization of the gut and the air sac of birds (Pourbakhsh et al., 
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1997). Dozois and his colleagues discovered that fimH associated with E. coli causing avian 

septicaemia, also caused extra-intestinal disease in humans and mammals (Dozois et al., 1992). 

This indicates that fimH has an important role in the pathogenesis of E. coli possibly in many 

species. In addition, the csg gene was also detected at a high rate (95.5%) and this gene is 

essential for the expression of curli fimbrial fibres being the major subunit protein. The most 

common virulence factors fimH, crl and csg were present in almost all of the isolates because 

they are important to colonization and adhesion in multiple host species (Antao et al., 2009), 

so these may not be associated with APEC specifically but rather can be considered ubiquitous 

adherence systems for all E. coli. However, this does not preclude them from being considered 

as potential virulence determinants as they cause adherence which is important in the early 

stages of pathogenesis. Another important trait and adhesin detected in APEC, is the tsh protein 

that displays similarity to a subclass of the IgA protease family (Stathopoulos et al., 1999; 

Dozois et al., 2000), contributing to air sac colonization and is considered to be one of the 

major mechanisms of adherence to avian respiratory tract (Maurer et al., 1998; Stathopoulos 

et al., 1999). The prevalence of tsh may vary commonly in APEC isolates with 49.7% of strains 

positive for tsh as reported previously by (Dozois et al., 2000) which is similar to the findings 

presented here (48.5%). In contrast high prevalence in APEC was shown by (Janben et al., 

2001) where 85.3% of isolates were positive but low percentiles of 28% and 13% were obtained 

respectively by (Knobl et al., 2012). The gene papC that encodes P fimbriae was found in low 

rate in both presumptive commensals and APEC, only 9 isolates (4.5%) of 200 isolates, papC 

was the lowest of the tested virulence factors. P fimbriae, as indicated by the detection of papC, 

mediates adherence to internal organs and for colonisation of the air sacs, lungs, kidney, and 

blood (Pourbakhsh et al., 1997; Stathopoulos et al., 1999). P fimbriae are also associated with 

human urinary tract infection (Knöbl, 2011). Recent evidence suggests that APEC carrying P 

fimbriae are not related to those causing UTI in humans (La Ragione et al., 2002). Several 
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studies showed that the prevalence of P fimbriae varied between 6.8% and 37% (Guastalli, 

2013; Zhao et al., 2009).  This disparity may indicate that papC might be not an essential 

virulence trait for APEC (Vandekerchove et al., 2005) or it might be confirmative virulence 

for certain sub-groups of APEC if it is present. 

Both irp2 and iucD are related to iron acquisition systems. Iron acquisition systems 

have been recognized to be associated with bacterial virulence especially in bacteria causing 

some disease such as septicaemia (Dho-Moulin and Fairbrother, 1999; Headley et al., 1997). 

The irp2 and iucD genes were detected in 88.5% and 61.5% of isolates tested, respectively, 

and have been linked with APEC previously (Zhao et al., 2009). This investigation may 

indicate that having these two genes could be used as genetic marker for APEC strains. 

However, whilst in lower prevalence in isolates made from turkeys, both these genes were 

common in APEC and presumptive commensals isolated from chickens.  

APEC virulence genes were attributed to the resistance to action of complement and 

bactericidal effects of serum. This resistance can be conferred by many cellular components 

like the capsular antigen and lipopolysaccharide. The iss gene encodes for increase serum 

survival was detected 74% in isolates, similar to studies by (Zhao et al., 2009) who found 81%. 

However, (Knobl et al., 2012) obtained a lower prevalence for iss from APEC isolated from 

infected poultry with 26%. The iss was detected in 38.5%  of isolates made from diseased 

animals with colibacillosis (Delicato et al., 2003). Furthermore, (Rodriguez-Siek et al., 2005b) 

found the iss gene in low prevalence (18.7%) in isolates from healthy birds. The iss gene was 

identified as a plasmid carried gene which was associated with high pathogenicity strains and 

used this criterion for the differentiation of pathogenic strains. This indicates that iss might be 

a contributor to enhancing virulence and merely indicates other essential virulent traits are 

essential for disease. 
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The astA gene which encodes a heat-stable enterotoxin, considered to be widely 

distributed through different categories which found in diarrhoeagenic E. coli in both humans 

and animals. Also, the toxin was expressed by 38% of none pathogenic E. coli strains from 

asymptomatic children (Savarino et al., 1996). In this study, the astA gene was detected in 41% 

of isolates, similar to the findings of Guastalli and his colleagues (2013) who showed 40.1% 

of strains were astA positive. In contrast, there were variations in the presence of the astA gene 

such as, 88.5 % and 20% of strains isolated from chicken affected with colibacillosis (Someya 

et al., 2007; Ewers et al., 2004).  

Another virulent gene tested was the colicin V plasmid operon (cva/cvi) gene.  Colicin 

V plasmids were found primarily among virulent enteric bacteria and have been shown to 

encode several virulence related properties in addition to colicin V (Vandekerchove et al., 

2005; Janben et al., 2001). In this study 50.5% were positive for cva/cvi gene which is 26% 

were from APEC isolates and 15%, 9.5% isolates from presumptive commensal turkey and 

chicken, respectively. It is interesting that Vandekerchove et al. (2005) and Janben et al. (2001) 

suggest that cva/cvi, or Colicin V plasmids could be considered to be a defining feature of the 

APEC strains. Being present in only ~50 of isolates that were defined as APEC suggests this 

statement is contestable. Our data possessing iss, iucD, tsh and cav/cvi have been considered 

to be a defining feature of the APEC strains (Vandekerchove et al., 2005; Johnson et al., 2006). 

Thirty-one (15.5%) strains were positive for the kps (k1) gene encoding capsule production 

whereas previous reports identified a percentage ranging from 8 to 20% for APEC (Delicato et 

al., 2003).  

Collectively, the genotypic data demonstrate that a high degree of polymorphism exists 

among E. coli isolates that originated from different poultry sources when the respective 

bacterial genomes were analysed by the ERIC-PCR technique and virulotyping by PCR and of 
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importance to the rest of the studies, these data clearly indicate that the E. coli population in 

poultry is very diverse and most E. coli are potentially pathogenic. It is possible on the basis of 

this evidence to suggest that if the genomes are this variable, then there will be much 

phenotypic diversity also and this is discussed below. What is striking is the diversity seen even 

when using a relatively limited range of genetic tests. One discussion point could focus on the 

need for wide genomic studies such as those performed by Cordoni et al., (2016). However, 

the limitation of the Cordoni et al., study is the fact that it focused on APEC only rather than 

attempting any differentiation between APEC and presumptive commensals. The PCA plots 

suggest that presumptive commensal strains from chicken appeared to share similarities with 

and sit between turkey presumptive commensals and APEC in terms of shared factors. The 

turkey isolates generally possessed far fewer virulence determinants whereas chicken isolates 

showed greater diversity and therefore probably represented genuine commensals as well as 

APEC that at the time of isolation acted as gut commensals without inducing fulminant disease. 

The data also suggest that turkey isolates are more alike one with another and may therefore 

be adapted to the turkey as a host. Given E. coli related disease in turkey is relatively rare and 

is associated more with joint infection and unlike the various manifestations of colibacillosis, 

the data suggest two possibilities. First, these are genuine turkey related commensals lacking 

many virulence determinants or second, they are potential turkey pathogens but have as yet 

undefined virulence determinants that are different from those associated with chicken adapted 

APEC isolates.  

Regarding specific genes associated with virulence of E. coli in avian species, previous 

investigations have indicated that the distribution of various virulence factors are useful 

markers for the detection and characterization APEC, and could therefore, be used in 

differentiation and diversity analysis of E. coli in poultry (da Silveira et al., 2002a; Delicato et 

al., 2003). The broadly accepted criterion that APEC may be defined as those E. coli of poultry 
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origin harbouring 5 or more virulence-associated genes as previously reported (Ewers et al., 

2005) could be used. According to these criteria, 184 strains out of 200 strains examined in 

total were classified as APEC, 16 strains isolated from turkey possessed less than 5 genes which 

were considered as commensals poultry. Interestingly, the APEC stains were confirmed 

pathogens in poultry and these as a group had more virulence genes than those from the chicken 

and turkey study described here. In addition, the majority of strains isolated from APEC had 7 

and 8 genes. Is it possible that the ‘5’ criterion is set too low and could be 7 or more, So if the 

criterion of 7 genes were used to classify APEC then 119 strains out of 200 strains would be 

defined as APEC. In a new study  by Roussan and his colleges, typed APEC and showed they 

always harbour 5 to 8 virulence genes (Roussan et al., 2014). Without performing Koch’s 

postulates in live animal studies, the calling of an isolate as an APEC needs to be considered 

with care. Perhaps we need to consider isolates that possess 5 or more virulence determinants 

as potential pathogens if, and only if, the conditions enable them to become pathogens, namely 

these are opportunistic pathogens that need prior stress or infection for them to induce 

pathology. At the practical level then, we have to consider the vast majority of E. coli found in 

poultry may be capable of inducing pathology. If the hypothesis that the majority of E. coli can 

be pathogenic is true, then the management and dietary practices that maintain a healthy animal 

prevalent in the industry currently seem to prevent avian colibacillosis. 

2.4.2 Phenotypic diversity 

The foregoing discussion focused upon the genetic diversity of the isolates examined 

and concluded that the approaches used here, and that of many other authors, did not readily 

differentiate between APEC and commensal types. Another important consideration is whether 

or not there are other physiological or biochemical properties that contribute to or define 

commensal and pathogenic types. Serotyping has been used for the basic classification of E. 
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coli, which are defined by the combination of O (LPS) and H (flagella) antigens. Also, there 

are other phenotypic characteristics such as, antimicrobial resistance profiles, flagellar motility, 

carbon utilization and ability to form biofilm (Durso et al., 2004; Yang et al., 2004) amongst 

many others. In this study, we used antimicrobial resistance and carbon utilization. Whilst 

serotyping is used widely, the technique is reliant upon an appropriate source of sera that is 

now held by fewer and fewer reference laboratories worldwide. Also, the cost for serotyping 

within the UK at the one laboratory capable of serotyping animal isolates (APHA, Weybridge, 

UK) is prohibitive at £60 per isolate. For the same cost the entire genome can be sequenced 

and, as shown by Cordoni et al., (2016) it is possible to infer serotype from the genes encoding 

LPS and flagella genes. Interestingly, Cordoni et al., (2016) demonstrated that most isolates 

that could not be typed serologically and classified as untypable carried multiple LPS gene sets 

encoding two or more LPS types. That said, APEC isolates tend to belong to relatively few 

serogroups such as O1, O2 and O78. Reliance on a single test to define an isolate provides little 

assurance and so there is a need for the use of a wider range of simple tests and here the 

biochemical competence and antibiotic resistance characteristics were investigated.  

 Currently, E. coli are known to utilise a wide range of carbon and energy sources. 

However, within the diverse population of E. coli it is also known that there are several carbon 

and energy sources that are utilised variably. The studies of Edwards and Ewing in the 1960s 

gave a definitive picture of this variability and part of this study was to gain an understanding 

of which types of E. coli colonise avian species and whether there was any correlation with 

certain metabolic traits. It was reasoned that by understanding this there may be clues to 

controlling APEC by dietary intervention. By way of an example, L-sorbose is found in certain 

plant types and their presence in the diet may select for the 15% of E. coli isolates that can use 

this as carbon and energy source (Woodward and Charles, 1983). If commensals but not APEC 

utilise a particular substrate then these may be suitable feed ingredients that enrich commensals 
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and not APEC. Our results showed that a higher than anticipated utilisation rate for L-sorbose 

in APEC isolates was 46 out of 65 (70.7%), whilst in presumptive commensal isolates from 

turkey and chicken, 18% and 14% utilised sorbose, respectively.  All isolates were tested and 

shown to differ in carbon substrate utilisation patterns. Of the 11 carbon sources tested, 2 were 

not utilised by any E. coli isolate whereas 9 were used variably. Interestingly, each of the three 

group of isolates could utilise variably only 6 substrates with the proportion of strains able to 

utilise a substrate dependent on the host from which they were isolated. This observation may 

indicate selection that was dependent upon what the animals were fed (Souza et al., 1999). No 

isolates from any of three sources could utilise allantoin or melezitose and only 2 strains 

isolated from chicken could utilise salicin whilst inositol also utilized by 4 stains in chicken 

and 2 from APEC isolated strains.  

Raffinose and dulcitol were frequently utilised by APEC isolates, 49.2% and 40% 

respectively. These substrates were also initially considered as probable discriminatory 

substrates for screening and identification of pathogenicity (Ratnam et al., 1988; Durso et al., 

2004). E. coli isolates were more likely to use dulcitol and sucrose than other substrates (38%, 

37.5%), which was similar to the findings of Durso and his colleges and they demonstrated that 

E. coli O157:H7 used dulcitol and sucrose more than were commensal E. coli (Durso et al., 

2004) moreover, E. coli O157:H7 was 100% positive for raffinose and dulcitol utilisation 

(Ratnam et al., 1988). This indicates that raffinose and dulcitol might be utilised by APEC 

stains more than commensals E. coli. Interestingly the early work showed that there seemed to 

be a dependency upon the ability to utilise sucrose as a prerequisite to the utilisation of raffinose 

as there is a shared metabolic pathway and that the utilisation of both substrates is often plasmid 

mediated (Alaeddinoglu and Charles, 1979). Is it possible that dietary regimes that select for 

and enable transfer between strains of these metabolic capabilities contribute to pathogenicity 

also? 
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Forty-four commensal strains isolated from turkey utilised both adonitol (ribitol) and 

arabitol (22.5%) and one grew in adonitol alone. These two sugars (pentitols) are relatively 

abundant in nature (Mortlock, 1984) but it was commonly assumed by investigators that E. coli 

cannot utilise pentitols for growth. Whilst true for E. coli K12, this is not true for E. coli C that 

can grow at the expense of either adonitol or D-arabitol  (Reiner, 1975). Reiner also 

investigated the origin of the genes responsible for pentitol catabolism in E. coli. Its assumed 

the utilisation of adonitol and D-arabitol in E. coli is chromosomally linked to his, therefore is 

not plasmid carried (Novick, 1969; Reiner, 1975). Furthermore, Woodward and Charles (1983) 

demonstrated that the genes for dulcitol (galactitol) utilisation and those for adonitol and 

arabitol utilisation are mutually exclusive at minute 44 on the E. coli genome. It seems likely 

that testing for growth on these pentitols may provide the easiest way to distinguish 

commensals E. coli strains from APEC strains if this correlation can be confirmed by further 

studies that make use of a much wider collection of E. coli isolates. 

The ability to utilise proline as a sole carbon and energy source was limited to APEC 

strain only. However, only 21.5% were positive for this characteristic and it is questionable as 

to whether this will be a useful differential marker. However, it would be worth deeper analysis 

to see if this ability was correlated with other markers. It was noted that this marker was 

associated commonly with cva/cvi, tsh, csg, irp2, iss, iucD and K1 capsule formation 

suggesting a linkage with four major virulence determinants. Whilst a tantalising finding, this 

needs to be confirmed by further studies that make use of a much wider collection of E. coli 

isolates.   

Antimicrobial treatment is one of most used control measures for reducing morbidity 

and mortality caused by APEC in poultry (Dho-Moulin and Fairbrother, 1999; Guerra et al., 

2003). The indiscriminate use of antimicrobials leads to the creation of more of resistant 
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isolates and they need to be used carefully in order to preserve their therapeutic usefulness in 

both animals and humans (Gyles, 2008). Among the 200 strains isolated from poultry, many 

were susceptible to most antimicrobials tested. The highest frequency of resistance was against 

ampicillin (39.5%) followed by nalidixic acid (36%). However, confirmed APEC isolates from 

infected chickens from the University of Surrey as a group showed the highest resistance to the 

majority of antimicrobials findings that were found to be in agreement with the observations 

of other reports that indicated a high percentage of resistance to the antibiotics in APEC 

(Kazemnia et al., 2014; Salehi and Bonab, 2006; Mellata, 2013).  

The prevalence of resistance against the ß-lactam was high in all E. coli irrespective of 

source and this finding is similar to those of (Normark et al., 1980; Wang et al., 2013). In this 

study, no attempt to define the mechanism of resistance was made but it is possible the 

encoding gene was ampC which is regarded as highly prevalent in poultry isolates (Lima-Filho 

et al., 2013). The second most prevalent resistance was against nalidixic acid, a quinolone 

antibiotic, that usually develops due to exposure of quinolone antibiotics that select 

spontaneous mutations in the target site of DNA gyrase encoded by gyrA. The trend of high 

ampicillin and quinolone resistance in poultry implies these bacteria could be of public health 

concern as they also can be transferred to humans (van den Bogaard et al., 2001). The isolates 

from turkeys carried the least resistance compared with both chicken groups although the 

APEC group was uniformly the most resistant. Collectively this data suggests that exposure to 

these antibiotics is still significant in the poultry sector despite attempts by the veterinary 

profession to move toward more responsible use. Perhaps use in the turkey sector is less than 

in broilers possibly. Given that no antibiotics were used in any of the CEDAR studies from 

which turkey and presumptive commensal chicken isolates were made suggests a heavy burden 

of resistance arising from the hatchery and the parent and grand-parent stock and/or the 

environment. Whilst antibiotic resistance is not considered a virulence factor per se, the higher 
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prevalence of resistance in APEC to commonly deployed antibiotics suggests that treatment of 

colibacillosis selects resistant APEC and the question arises as to whether resistance will 

contribute to pathogenesis by survival of APEC in the face of antibiotic treatment. Whilst gyrA 

mutations are chromosomal, most of the other resistances are likely to be plasmid mediated 

and therefore more ephemeral, moving rapidly between potentially unrelated host 

backgrounds. 

 To evaluate the extent of diversity and the links between the genotypic and phenotypic 

in the isolated strains, we correlated the phenotypic characteristics of 200 strains E. coli isolated 

with the genotypic characteristics. Altogether, we found that the genetic distance, based on 

ERIC-PCR bands and virulence factor genes were a useful indicator for determining the 

genotypic diversity of E. coli strains isolated from presumptive commensals in turkey and 

chicken grown in the same environment compared with APEC stains isolated from infected 

birds. The phenotypic distance, based on carbon source utilisation and antimicrobial resistance 

clearly showed diversity although correlations with pathogenicity were less clear. That said, 

there were tantalising pointers that use of dulcitol, sorbose, sucrose, raffinose and proline were 

more likely to be associated with APEC than presumptive commensals and conversely use of 

arabitol and adonitol may the correlated with commensals. 

In our data, we found a significant negative correlation between utilisation of the carbon 

sources arabitol and adonitol with different virulence determinants tested such as, iucD, iss, 

cva/cvi and k1. In addition, the correlations between arabitol and adonitol with other carbon 

sources tested, raffinose, dulcitol, proline, sorbose and sucrose were also significant negatively 

correlated. Conversely, utilisation of proline was associated with same variables as arabitol and 

adonitol but with a positive Pearson correlation with iucD, iss, cva/cvi and k1.However, iucD, 

iss and  cva/cvi  are virulent genes considered as highly prevalence plasmid genes that were 
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found in 255 APEC isolated from turkey presenting airsacculitis (Cunha et al., 2014). The iss 

gene was highly prevalent in E. coli isolates of known pathogenicity and serogroup were 

subjected to virulence genotyping and phylogenetic typing (Johnson et al., 2008a). Johnson 

identified five plasmid genes, including iss associated with high pathogenicity strains and used 

this criterion for differentiation of pathogenic strains and ’faecal’ E. coli. Thus, the presence of 

iss gene associated with this ability was more strongly correlated with pathogenicity.  Similarly, 

the presence of iucD may be indicative of an APEC strain as discussed above especially as that 

gene was detected in 100% of (Someya et al., 2007) and 78% detected by (Ewers et al., 2004) 

APEC in recent studies. The capsule antigen-encoding gene ksp was frequently found in APEC 

strains in 51.3% in study done by (Ewers et al., 2009). Thus, strong correlation between the 

virulence genes and phenotypic characteristics suggested that the ability to utilise some of 

uncommon carbon source such as arabitol and adonitol to discriminate between presumptive 

commensal E. coli and APEC. 

The Initial classification of any bacterium has conventionally depended on the 

biochemical activities of the organism. Screening for the presence of a particular bacterium is 

often performed by selective media, and regular indicator media. Such methods depend on 

specific fermentative growth characteristics and resistance to antimicrobial compounds. Some 

biochemical properties have been exploited for the development of kits, which may be used to 

predict bacterial species, such as the analytical profile index (API, Biomerieux) and the Biolog 

system (Biolog Inc.). Generally, the majority of E. coli strains commonly ferment lactose, D-

mannitol, melibiose, mucate and D-sorbitol but not D-adonitol, D-arabitol or cellobiose 

(Scheutz and Strockbine, 2001) that are used in API 20E test. In our result, it might be possible 

to use the adonitol and arabitol as positive and proline negative markers to differentiate 

between commensal E. coli and APEC.  
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2.4.3 Galleria model 

The aim of this study was to correlate the genotypic and phenotypic characteristics in 

the 200 isolated strains with pathogenicity. The phenotypic distance, based on carbon source 

utilisation and antimicrobial resistance clearly showed not only diversity but also some 

correlations with pathogenicity as determined by virulence genes’ PCR tests albeit less clearly. 

That said, there were interesting findings that isolates that use dulcitol, sorbose, sucrose, 

raffinose and proline were more likely to be associated with APEC than presumptive 

commensals, and conversely the use of arabitol and adonitol may be correlated with 

commensals. Indeed, utilisation of adonitol (ribitol) and arabitol is associated with non-

pathogenic group C E. coli (Woodward and Charles, 1983).  

For this study, the focus was on arabitol and adonitol that was hypothesised to be 

utilised by presumptive commensal strains whilst strains that utilised proline were APEC. G. 

mellonella larva was used as an in vivo model to determine the virulence of these two groups, 

presumptive commensals and APEC. Different studies have reported that the G. mellonella 

model is a powerful tool to consider the virulence of a range of bacterial and fungal pathogens 

(Desbois and Coote, 2012; Kavanagh and Reeves, 2004).  

The G. mellonella innate immune systems shows a high degree of similarity to the 

mammalian immune system, and for that reason the use of G. mellonella is an attractive 

alternative to animal models for investigating pathogenicity (Wand et al., 2013; Kavanagh and 

Reeves, 2004). Reports of relevance to our study include a report that pathogenicity of EPEC 

could be dissected using G. mellonella and that E. coli K12 was non-pathogenic (Leuko and 

Raivio, 2012) whilst another report indicated that this model was a valuable tool for examining 

virulence of UPEC strains (Alghoribi et al., 2014). The results seem to show that G. mellonella 

model does not relate or correlate to poultry pathogenesis. Is it possible that factors other than 

those tested are involved in the pathogenesis of E. coli in the G. mellonella. As others have 
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reported, virulence in larvae was not correlated with serotype or phylogenetic group in 

uropathogenic E. coli (Alghoribi et al., 2014). In addition, we used only 8 strains to analyses 

the differentiate between the isolates, and a bigger population would be more accurate and 

relative to other virulent determents. The testing was performed in triplicate and on three 

separate occasions, which suggests no need to repeat G. mellonella infection with the same 

strains to confirm these results. As mentioned above there may be other determinants that are 

of relevance to this model and therefore whole genome sequencing to compare these 8 strains 

genetically would possibly help to gain an understanding of their pathogenicity in this 

particular model. For example, in our case strain A and B were isolated from the same host 

with a high degree of phenotypic and genotypic similarity, and the G. mellonella model 

classified strain A as highly pathogenic while strain B was much less pathogenic. It would be 

possible to speculate about what factors came into play in the Galleria model but until 

comparative sequence analysis is performed it is probably wise to suggest that this model may 

not be appropriate for avian E. coli. If time, cost and HO licence were available then the obvious 

next step would be bird infection studies to test the hypothesis. 
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CHAPTER 3: THE IMPACT OF PHYTOCHEMICALS (THYMOL AND 

CARVACROL) AS ANTIMICROBIALS TO CONTROL E. COLI  

3.1 Introduction 

 Some 10% to 15% of E. coli strains are opportunistic pathogens and/or belong to 

known pathogenic groups capable of causing food-borne disease (team, 2015). APEC cause 

significant economic losses in the poultry industry and are difficult to eradicate (Oosterik et 

al., 2014b) possibly due to their ability to form biofilms and their associated resistance to 

disinfectants that enable survival and spread within production systems. The increased 

resistance of microorganisms to biocides (especially antibiotics) is a serious and evident 

worldwide problem that has encouraged research into the identification of new biocides with 

wide-ranging activity (Nazzaro et al., 2013). Furthermore, cross-resistance between 

disinfectants and antibiotics can also lead to serious consequences for the public health 

(Russell, 2003). The excessive use of antibiotics in animal production as in human health care 

is resulting in increased resistance and emergence of “superbugs” resistant to nearly all 

available treatments (Murray, 1992; Franco et al., 2009). Of considerable concern is the rapid 

transfer of the resistance genes by plasmids, transposons, gene cassettes and mobile genetic 

elements (Lester et al., 1990; Winokur et al., 2001; Folster et al., 2017). In this context, 

significant efforts have been invested into research to find effective antimicrobial compounds 

for in-feed and surface decontamination which preserve the organoleptic properties of the food 

products (Dufour et al., 2012; Negi, 2012). Novel products that act on new bacterial targets 

such as fatty acid biosynthesis or avoid the conventional mechanisms of resistance to current 

antimicrobials are also important (Sarker et al., 2007; Tiwari et al., 2009; Daglia, 2012). While 

synthetic antimicrobials are approved in many countries, the recent trend has been the use of 

safe natural preservatives and feed additives derived from micro-organisms, plants or animals 

(Rahman and Kang, 2009; Sharifi-Rad et al., 2016). Many food preservation systems are used 
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to reduce the risk of outbreaks of bacterial food spoilage and food poisoning by using of 

chemical preservatives (Periago and Moezelaar, 2001; Techathuvanan et al., 2014).   

Plants produce an enormous array of secondary metabolites (phytochemicals) with 

medicinal properties that have been used as natural therapies traditionally for centuries 

(Hammer et al., 1999; Abreu et al., 2012). An important part of this diversity of phytochemicals 

is related to defence mechanisms of plants against attack by pathogenic microorganisms (Dangl 

and Jones, 2001). Essential oils (EOs) have a wide range of activities used for several purposes 

due to their variable content of antimicrobials. The antimicrobial activity of EOs is assigned to 

a number of a small terpenoid and phenolic compounds (Escudero et al., 1985).  

Thymol and carvacrol are phenolic compounds of EOs. The antimicrobial activity has 

been demonstrated against E. coli (Xu et al., 2008; Reda et al., 2015). These two components 

have a very similar chemical structure involving a system of delocalised electrons and a 

hydroxyl group, which makes it likely that they have a similar mechanism of antimicrobial 

activity (Ultee et al., 2002). Nevertheless, the relative position of hydroxyl group on the 

phenolic ring not appear to influence the degree of antibacterial activity (Xu et al., 2008; 

Lambert et al., 2001). Hydrophilic ability is increased by hydroxyl group, which help them 

dissolve in to microbial membrane and damage them (Sikkema et al., 1995).They possess a 

wide spectrum of antimicrobial activity, that has been the subject of several investigations in 

vitro (Dorman and Deans, 2000; Lambert et al., 2001) and in vivo (Adam et al., 1998; Manohar 

et al., 2001). The mechanism of antimicrobial activity is related to their ability to disrupt the 

outer membrane, including permeabilisation and depolarisation of the cytoplasmic membrane, 

by reducing the pH gradient across the cytoplasmic membrane. The effect on the proton motive 

force leads to the depletion of the intracellular ATP subsequently leading to cell death (Ultee 

et al., 2002; Xu et al., 2008). Additionally interaction with the cell membrane causes leakage 

of cellular components, impairment of the energy metabolism and changes in fatty acids and 
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phospholipid composition (Ceylan and Fung, 2004). Once intracellular, the presence of the 

hydroxyl groups is related to inactivation of microbial enzymes (Di Pasqua et al., 2007).  

Motility and biofilm formation by bacterial pathogens are regarded as bacterial 

characteristics that have important roles in pathogenicity (Houry et al., 2010; Chellappa et al., 

2013). E. coli is motile, and has the ability to form biofilms. Swimming and swarming 

motilities influence the biofilm development of E. coli (Verstraeten et al., 2008). The formation 

of bacterial biofilms is initiated by cells transitioning from the free-swimming mode to growth 

on a surface (Petrova and Sauer, 2012). Pathogenicity involves the adhesion of bacterial to host 

cells, which is the first stage of E. coli infection. E. coli is also able to form biofilms on various 

biotic and abiotic surfaces. These biofilms show increased resistance to conventional 

antimicrobial agents and so in industrial environments such as farms, slaughter houses, food 

processing plants there is a high probability of E. coli biofilm formation which poses a 

substantial challenge, and methods of controlling these biofilms are urgently required. As 

mentioned above EOs can inhibit biofilm formation, one focuses of the studies presented here. 

The focus is upon those E. coli related to poultry production especially APEC and especially 

those that are multiply antibiotic resistant. 

Another testable hypothesis in this study is whether by using EOs such as thymol that 

conjugation between the E. coli strains may be controlled. Gene transfer through conjugation 

is considered to be a major mechanism for the creation of a new genetic recombinants in diverse 

environments (Hoffmann et al., 1998; Ravatn et al., 1998). Indeed, conjugation is classified as 

an essential contributor to the distribution of antimicrobial resistance and virulence factors in 

bacterial populations (de la Cruz and Davies, 2000). With the recognition of antibiotic 

resistance as an emerging issue in the 1960s many new plasmids have been discovered and a 

greater understanding of the mechanisms of transfer have been defined (Burrus et al., 2002; 
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Tatum and Lederberg, 1947; Bates et al., 1998). Resistance to antimicrobials in bacteria is 

considered a global problem and as highlighted in the earlier results chapter resistance in 

poultry related E. coli isolates is very prevalent. Antimicrobials have been used widely to 

control bacterial disease in humans and animals. Their extensive use has increased the 

resistance of bacteria and is hypothesised to be the result of not only the selection and spread 

of resistant microorganisms, but also transfer of resistance plasmids. Plasmid transfer among 

bacteria provides a means for dissemination of resistance and asking the question whether EOs 

may inhibit such transfer is a highly valid question especially as the site of action of EOs is at 

the cell membrane where the pili are anchored that are required for primary stages of joining 

donor and recipient. Understanding the mechanism of transmission and resistance acquisition 

can contribute to the development of new strategies to control this phenomenon. Therefore, the 

inhibition of plasmid distribution through possibly inhibiting the conjugation process may be 

a convenient strategy to control transfer of antimicrobial resistant in bacterial pathogens. With 

this objective in mind, we proposed to use phytochemicals (phenolic compound, thymol) to 

test their ability to inhibit conjugal plasmid transfer between E. coli strains.  

The present study set about investigating the inhibitory effects of using the 

phytochemicals thymol and carvacrol, which were believed to be the principal inhibitory 

components of EOs on E. coli growth, through evaluation of their impact of them on E. coli 

isolates by determining growth rate and MIC, biofilm formation, motility and conjugation. In 

addition, scanning electron microscope observations were performed to investigate the 

occurrence of surface damage on the treated E. coli.  



83 
 

3.2 Material and methods 

3.2.1 Microbiological experiments 

The microbiological media and chemicals used during the many different experiments 

described in this chapter were procured from Sigma-Aldrich UK. 

3.2.1.1 Microbiology media. 

Luria-Bertani (LB) broth and agar microbiological media were sterilised by autoclaving 

at 121°C for 20 min. LB medium containing agar was cooled to 50°C before pouring 20 ml in 

sterile disposable Petri dishes. Prepared plates were stored in sterile bags upside down, 

refrigerated at 4oC until use. Tubes containing autoclaved LB and low salt LB broth were also 

cooled and stored refrigerated at 4oC until use (Appendix 1). 

3.2.1.2 Phytochemical stocks. 

Thymol and Carvacrol, were dissolved separately in 50% (v/v) ethanol to give working 

stock solutions of 5 mg l-1. The stocks were stored at 4˚C and used within 48 hours of making.  

3.2.1.3 Antibiotic stocks. 

3.2.1.3.a Ampicillin Stock  

Ampicillin (Amp) 100 mg l-1 stock solution was made by weighing 1 g and dissolving 

it in 10 ml of sterile H2O. Once dissolved the solution was filter sterilised through a 0.22μm 

filter with a syringe. Sterilised Ampicillin stocks were stored at -20°C in glass vials wrapped 

in silver foil. 
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3.2.1.3.b Nalidixic acid stock 

Nalidixic acid (Nal) 10 mg l-1 stock solution was made by weighing 0.1 g and dissolving 

it in 10 ml of sterile H2O to which 360 µl of 1M NaOH was added to achieve pH 11. Once 

dissolved the solution was sterilised through a 0.22μm filter and syringe. Sterilised Nalidixic 

acid stock was stored at -20°C in glass vials wrapped in silver foil. 

3.2.1.4 E. coli strains 

Susceptibility to the thymol and carvacrol was determined against the E. coli strains 

isolated from a selection of 50 poultry strains (15 chicken, 15 turkey and 20 APEC) with E. 

coli K12 strains JM109 and DH5α used for controls (Appendix 4). Those 50 strains were 

chosen based on the diversity of genotypic and phenotypic of isolated strains, and most of them 

possessed adhesion genes (fimH, papC, csg, crl and tsh). To determent if there has difference 

of thymol and carvacrol in response of presumptive commensal and APEC strains if they may 

be responsible for foodborne diseases and/or for spoilage of contaminated products. Stored E. 

coli strains at -80°C were normally grown from frozen on LB agar plates at 37°C for 16-18 

hours. Liquid cultures were incubated aerobically shaking at 150- 200 rpm at 37 °C for 16-18 

hours.  

3.2.2 Effect of thymol and carvacrol on the growth of E. coli isolates  

To investigate the effect of thymol and carvacrol on the growth of E. coli and determine 

the Minimum Inhibitory Concentrations (MICs) and Minimum Bactericidal Concentrations 

(MBCs), studies were performed in triplicate in 96 well microplates. The working stock 

solution of thymol and carvacrol at a starting concentration of 5 mg l-1, was serially diluted in 

twofold dilution made in fresh sterile LB broth covering the concentration from 3.125 – 1600 

μg l-1 for both thymol and carvacrol. Of these dilutions, 200 μl was added to wells in triplicate 

of the Greiner CELLSTAR® 96-well plates (sterile, F-bottom with lid), according to the CLSI 
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M31-A3 guidance. Single colonies of strains of E. coli were streaked onto and grown on LB 

agar overnight at 37oC. Colonies were suspended in LB broth, grown overnight at 37oC, 

adjusted to an OD 600 = 0.02 (about 1x108 CFU l-1) of which 25 μl of this inoculum was added 

to each well of the microdilution plates, 3 replicas per strain for each dilution of phytochemical. 

To control the experiment, last column of wells was left an inoculated as a negative control. 

The 96-well plate was covered with a lid and placed in the FLUOstar Omega system 

(atmospheric control unit for microplate readers-BMG LABTECH, Germany) at 37˚C with 

orbital shaking (200 rpm) and run for 24 h with measurement spectrophotometrically (600 nm) 

recording every 1 h for optical density of growth bacterial culture. Immediately after the MICs 

were determined, the MBCs were assayed by transferring 5 μl from each culture with a 

compound concentration equal to or greater than the established MIC to LB agar plates. The 

MIC was recorded as the lowest concentration of phytochemicals at which no growth was 

detected in OD 600nm compared to positive control (culture only) which resulted in a 

significant decrease in inoculum viability >90% (Borges et al., 2013). While the MBC was 

defined as the lowest concentration of phytochemical at which no growth could be observed 

after 24 h of incubation at 37°C, and where 99.9% or more of the initial inoculum was killed. 

Each experiment was performed in triplicate with three repeats for each phytochemical at 

different concentrations and the average MIC and MBC values were recorded.  

3.2.3 Biofilm formation. 

 The effect of phytochemicals on the ability to establish biofilms was tested as described 

by (Naves et al., 2008) with some modifications for fifty representatives of the panel of 200 

strains described in chapter 2. Nine strains were selected for detailed studies and these 

represented those high biofilms forming isolates. Bacterial cultures were prepared exactly as 

described in section 3.3.2, but with LB broth ‘low salt’ rather than LB broth.  To determine 

biofilm formation with phytochemicals (Zuroff et al., 2010; Patel et al., 2011), two 



86 
 

experimental approaches were used. First ‘effect on biofilm formation’, the wells of Greiner 

CELLSTAR® 96-well plates (sterile, F-bottom with lid) were filled with 200 μl of twofold 

dilutions of thymol and carvacrol separately made in LB Low salt broth to give a concentration 

range from 0.0 µg l-1 to 200 µg l-1, a range up to the MIC but not beyond that of the strains 

selected for testing. Each well was inoculated with 25μl of overnight culture adjusted to an 

OD600 = 0.02 (1x108 cells/ml) and the plates were incubated for 24 h at 37˚C and then left for 

a further 4 days at room temperature 25˚C. The second approach ‘effect on established 

biofilms’ was similar to the above but with the addition of the phytochemicals after the initial 

24 h incubation as follows. For the nine selected strains, 25 µl of an overnight culture was 

added to 200 µl of LB broth low salt in each well of a 96 well of Greiner CELLSTAR® 96-

well plates (sterile, F-bottom with lid).  Plates were incubated without shaking for 24 h at 37°C 

to enable bacteria to line the wells. The planktonic-phase cells were gently removed by pipette 

and the wells were washed twice with PBS and filled again with 250 μl of twofold dilutions of 

the thymol and carvacrol to give a concentration range from 0.0 µg l-1 to 200 µg l-1. These 

plates were then incubated at room temperature for a further four days. 

After the allotted incubation period, the plates were inverted and tapped onto ethanol 

soaked blotting paper to remove the well contents. Each well was washed twice with 300 μl of 

PBS (pH, 7.2), stained with 250 μl of 0.1% crystal violet obtained from Sigma Aldrich for 25-

30 minutes and then washed twice with distilled water, Finally, 250 ul ethanol/acetone (90:10) 

was added to each well to lyse the biofilm cells and release cell bound crystal violet. The optical 

density was recorded for each well using an end point plate reader FLUOstar Omega system 

(atmospheric control unit for microplate readers-BMG LABTECH, Germany).  

Biofilm measurements were calculated using the formula SBF = (AB-CW)/G, in which 

SBF is the specific biofilm formation, AB is the OD570 nm of the attached and stained bacteria, 
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CW is the OD 570nm of the stained control wells containing only bacteria-free medium (to 

eliminate unspecific or abiotic OD values), and G is the OD 600 nm of cell growth in broth 

(Niu and Gilbert, 2004; Naves et al., 2008). Biofilm determined using the SBF formulas (Table 

3.1) semi-quantitatively the biofilm production classify in three categories the formula used 

was strong (S), moderate (M), weak (W) and negative (N).  

Table 3. 1 Semi-quantitative classification of biofilm production using three different 

formulas. BF, biofilm formation; AB, stained attached bacteria; CW, stained control wells; 

SBF, specific biofilm formation; G, growth in suspended culture. All values are OD570nm, 

except G = OD600nm (Naves et al., 2008) 

Formula Strong (S) Moderate (M) Weak (W) Negative 

(N) 

BF = AB - CW ≥ 0.300 0.200 – 0.299 0.100 – 0.199 < 0.100 

BF = AB ⁄CW ≥ 6.00 4.00 – 5.99 2.00 – 3.99 < 2.00 

SBF = (AB - CW) ⁄ G ≥ 1.00 0.510 – 1.00 0.50 – 0.36 < 0.35 

3.2.4 Motility 

Motility was evaluated using soft-agar plates for which the basal medium was 5 ml of 

molten LB supplemented with 0.3% agar poured into Greiner CELLATAR® multiwell culture 

plates - 6 wells plates (TC treated with lid). To test the effect of phytochemicals on motility, 

the basal medium was supplemented separately with thymol and carvacrol (50-100-150µg l-1), 

concentrations that are sub-MIC values. Plates were allowed to dry at room temperature 

overnight before use. The centre of each well was seeded with an overnight culture of one E. 

coli strain using a sterile inoculating needle. Swimming plates were incubated at 30°C for 24 

h and at 37°C for a further 24 h, and the motility recorded after 6, 24 and 48 h. The diameter 

of growth zones was measured for both control and treatment plates.  
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3.2.5 Conjugation assay 

APEC isolates resistant to ampicillin were used as donors whilst E. coli strain DH5α [ 

F- φ80lacZΔM15 Δ(lacZYA-argF) U169 recA1 endA1 hsdR17 (r
k
-, m

k
+) phoA supE44 λ- thi-

1 gyrA96 relA1] was used as recipient a strain.  

Stationary phase overnight cultures grown at 37oC in LB broth were adjusted to OD=0.5 

at 600 nm. Wild type APEC donor (100 µl) and DH5α as recipient (300 µl) were mixed with 

100 µl of LB Broth in a sterile Eppendorf tube. Similarly, an additional two tubes of the mating 

mixture were prepared but supplemented with two concentrations of thymol (50 and 100 µgl-

1). The mating mixtures once prepared were pulse-centrifuged for 5sec in a bench top 

microfuge to enable greater cell to cell contact and the mating mixtures was incubated at 37˚C 

for 2 hours with very gentle shaking. After a very brief vortex to terminate conjugal transfer, 

the mixture was washed in PBS twice and samples of appropriate dilutions were spread on LB 

agar containing nalidixic acid (20 µgl-1) and ampicillin (100 µgl-1), also on plates contain 

nalidixic acid and ampicillin, separately. All plates were incubated overnight at 37˚C. Colonies 

grown on the plates were counted and the analysis of conjugation efficiency calculated, which 

is estimated as the number of transconjugants per the total number of donor bacteria. All tests 

were performed in triplicate with three repeats and controls were the donor alone and the 

recipient alone treated as for the mating experiment. 

3.2.6 Effect of thymol on the morphology of E. coli as observed by SEM 

Scanning electron microscope (SEM) observations were carried out as follows. After 

overnight incubation of the test strains in LB broth at 37˚C, the cell density was adjusted to OD 

0.5 at 600 nm. The suspension was divided into three portions and thymol was added to two 

portions to achieve a concentration of 50 and 100 µgl-1. The other portion was left untreated as 

a control. The samples were incubated at 37°C in a rotary shaker set at 200 rpm. After 2 hours, 
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the cells were harvested by centrifugation at 14,000xg for 2 minutes, washed twice and 

resuspended in phosphate buffer saline (PBS). 200 µl of each suspension was placed on poly-

L-lysine-coated glass cover slips for 15 min on both sides. The adherent bacteria were fixed 

with a solution of 2.5% glutaraldehyde pH 7 for 15 min to fix the cells. After fixation, the 

samples were washed with water for 15 min, taken samples through by ethanol dehydration 

starting at 30% followed by 50%, 70%, 80%, 90% and finally 100%. Incubated in each ethanol 

solution was for 10 minutes but 1 hour in 100% ethanol. Dehydrated samples were placed in 

the Balzers critical point dryer (CPD 030), and metal coated in Edwards sputter coater 

(S15OB). All samples were observed with a field emission SEM equipped with a cold stage 

and a cryo-preparation chamber (Quanta 600F). the experiment was performed in triplicate. 

3.2.7 Statistical analysis 

In terms of growth inhibition, MIC determination and biofilm formation were analysed 

using the statistical program GenStat 16th Edition, analysis of variance by two-way and general 

ANOVA to assess the statistical significance value (confidence level >95%). A paired two-

tailed Student’s t-test was used to determine significant differences in SBF, motility between 

the control and samples supplemented with thymol and carvacrol, conjugation efficiency. The 

results were presented as the means standard deviation. Significance level for the differences 

was set at p<0.05. 

3.3 Results 

3.3.1 Antimicrobial activity of phytochemicals on E. coli isolates 

3.3.1.1 Effect of thymol and carvacrol on growth rate 

Thymol and carvacrol were active inhibitors of the growth of E. coli. Thymol was found 

to be the more effective with the lower MIC values than carvacrol (125-175 µg l-1 and 175-250 
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μg l-1 respectively). Examples of the inhibition profiles (growth curves) for thymol and 

carvacrol are shown in Figures 3.1 and 3.2, which clearly demonstrate the concentration 

dependent reduction of growth rate and yields which are significant (p= 0.001). Generally, at 

sub-MIC concentration range both thymol and carvacrol extended the lag phase of growth and 

both the growth rate and final cell density were reduced. Complete inhibition of E. coli was 

achieved with a thymol concentration 150 µg l-1, and a carvacrol concentration of 250 µg l-1 

for the test strain (strain 18) shown in Figures 3.1 and 3.2. 

 

Figure 3. 1 The growth of E. coli strain 18 in presence of different concentrations of thymol 

between 0-250 µg l-1. Average of SD bars showed in the graph at 0.5. 
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Figure 3. 2 The growth of E. coli strain 18 in the presence of different concentrations of 

carvacrol between 0-500 µg l-1. Average of SD bars showed in the graph between 0.25-0.5. 

3.3.1.2 MIC and MBC  

The MIC was calculated as the lowest concentration that inhibited visible growth of E. 

coli. While the MBC was calculated as the lowest concentration at which no CFU were detected 

on solid medium. For these studies, the phytochemicals were serially twofold diluted to give a 

concentration range from 3.125 µg l-1 to 1600 µg l-1 for E. coli isolates and a control E. coli 

K12 laboratory strain JM109. Figure 3.3 shows an example of the different responses between 

APEC isolates and control strain JM109 (p=0.001 for yield) over this concentration range of 

thymol. The results showed the MIC for both strains was 200 µg l-1, although, the growth curves 

were different between the APEC isolates and JM109, the lag phase in control strains JM109 

was extended whilst the log phase in APEC isolates was steeper. As was showed, APEC strain 

(strain 18) has higher growth rate than JM109 strain in all concentrations of thymol. 
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Figure 3. 3 Effect of different concentrations of thymol against APEC isolates and control 

strains JM109 between 0-400 µg l-1. Average of SD showed in the graph at 0.75. 

To determine accurately the MIC of thymol and carvacrol for all the strains described 

in chapter 2, the preliminary data described above was considered and the range of 

phytochemicals used to test inhibition of the growth of E. coli isolates was set at 50 µg l-1 

intervals in the range 50 – 200 µg l-1 for thymol and 100 – 500 µg l-1 for carvacrol.  

The variability in the concentration of thymol and carvacrol were evaluated and the 

MIC of both thymol and carvacrol were in the range 125-175 µg l-1 and 175-200 µg l-1, 

respectively for all the strains (Table 3.2). The MBC values were in the range between 150-

200 µg l-1 and 200-250 µg l-1 for both thymol and carvacrol, slightly higher than the MIC in the 

isolates E. coli, for more details see Appendix 4. There were no outliers that were either super-

sensitive or super-resistant suggesting uniformity of response to these phytochemicals across 

the various isolates that were tested. 
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Table 3. 2 MIC and MBC of thymol and carvacrol for E. coli isolates 

Isolates 

Phytochemicals 

Thymol Carvacrol 

MIC (µg l-1) MBC (µg l-1) MIC (µg l-1) MBC (µg l-1) 

Turkey 125-175 150-200 175-200 200-225 

Chicken 125-175 150-200 175-200 200-225 

APEC 125-175 150-200 175-200 200-225 

JM109 175 200 175 200 

DH5α 150 200 175 200 

A concern that arose was that thymol and carvacrol stock solutions were dissolved in 

ethanol (50% v/v) because of their limited water solubility. Thus, the ethanol might also have 

a specific effect against E. coli. In order to assess this possibility similar growth curve 

experiments were done that used the 50% of ethanol instead of the phytochemicals stock 

solution in the same concentration. For example, the ethanol concentration for the MIC of 

thymol 125-175 µg l-1 was 2.8-3.9%, and carvacrol 175-200 µg l-1 was 3.9- 4.5%. Thus, growth 

curve studies were performed with ethanol added to the basal medium in a range of 0.0-5% 

(0.0- 200 µg l-1). The results showed the lag phase of growth was extended albeit marginally 

with increasing ethanol concentrations (Figure 3.4) and the growth rate and final cell density 

were slightly reduced compared to the control. This data indicates that the concentrations of 

ethanol in the studies were at levels that did not cause inhibition. There was no significant 

effect of the ethanol in different amount used in the phytochemicals concentrations (p=0.27) 

(Oh and Marshall, 1993). Figure 3.4 showed the effect of different concentrations of ethanol 

on two representative isolates. 
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Figure 3. 4 Effect of ethanol in different concentrations on E. coli, the MICs of all strains 

tested were between 125-200µg l-1. Average of SD bars showed in the graph at 1.25 

3.3.2 The effect of phytochemicals on biofilm formation 

Fifty of the E. coli isolates were evaluated for their ability to form biofilms in vitro 

(Appendix 5).  LB low salt culture was selected as a control for growth as low salt is associated 

with biofilm formation, and different concentrations of thymol and carvacrol were added either 

for the entire incubation period or after the initial 24 h incubation (see materials and methods 

above). After testing the effect of thymol and carvacrol against the E. coli growth rate, the same 

concentrations of thymol and carvacrol were tested for inhibition of biofilm formation.  

3.3.2.1 Effect on biofilm formation 

First tests were done to assess the ability of the panel of strains to form biofilms and 

the OD values were determined using the SBF formulas (Table 3.1). Within the semi-

quantitatively category of biofilm production, 18% of isolates were strong biofilm, 22% were 

moderate biofilm producer, whereas 60% were weak and negative biofilm producers from 50 

isolates tested Table 3.3. Results recorded APEC isolates displayed greater ability to form 

(strong/moderate) biofilms (10/50, 20% isolates) in comparison to either turkey or chicken 
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(8%, 12%) respectively.  However, chicken isolates showed higher relative propensity for 

strong biofilm formation including 4 strong (8%) and 2 moderate (4%) biofilm producing 

isolates. Turkey isolates had only 4 (8% of total) isolates able to form any biofilm 

(strong/moderate/weak).  Of those 50 isolates originally tested, 16 that were strong to moderate 

biofilm formers were selected for tests to establish whether thymol and/or carvacrol inhibit 

biofilm formation.  

Table 3. 3 Specific biofilm formation ability of the E. coli isolates. 

E. coli 

isolates 

source (n) 

No. of isolates (% of total) specific biofilm 

formation (SBF) 

S M W N 

Turkey (15) 3 (20) 1 (6.7) 2 (13.3) 9 (60) 

Chicken (15) 4 (26.7) 2 (13.3) 0 9 (60) 

APEC (20) 2 (10) 8 (40) 0 10 (50) 

Total (n=50) 9 (18) 11 (22) 2 (4) 28 (56) 

 

Using the SBF definition, strong and moderate biofilm forming E. coli isolates 

representing turkey, chicken and APEC types were tested and all showed a concentration 

dependent reduction of biofilm formation (Table 3.4). These differences were statistically 

significant. The different E. coli isolates tested with different concentrations of thymol and 

carvacrol gave a diversity of OD values depending on the isolates, phytochemicals used and 

concentrations as anticipated. In general, the higher the concentration of either phytochemical, 

less biofilm was produced.  Paired Student’s t-test was performed on the observed optical 

density (595 nm) values to quantify and differentiate between the extent of biofilm formed by 

each E. coli isolate. Quantification of the intensity of crystal violet staining was used for the 

detection of the biofilm formed in the presence of the test components. An example of APEC 

isolate classified as strong SBF that has high OD value, biofilm decreased with increasing the 

concentrations of both thymol and carvacrol Figure 3.5.  However, thymol was more active 



96 
 

than carvacrol (p=0.002), and biofilm production was completely inhibited at 150 µg l-1 thymol 

(p=0) which was the MIC of this isolates. While, carvacrol was reduced biofilm at higher 

concentration than thymol from 200 µg l-1 and the MIC of this isolates was 225 µg l-1 (p=0.001). 

Table 3. 4 SBF mean values of E. coli isolates treated with different concentrations of thymol 

and carvacrol. 

group Isolates control 
Thymol µg l-1 Carvacrol µg l-1 

100 125 150 175 125 150 175 200 225 

Turkey 

84 
1.99 0.58 0.41 0.02* -0.04 1.04 0.12 0.22 0.08* 0.08 

S M** W** N** N** S** W** W W W 

3389 
1.5 0.52 0.39 0.37 0.04* 0.67 0.04 0.2 -0.29 0.19* 

S M** W** W N** M** N** N N N 

3208 
2.29 0.75 0.82 0.95 0.47* 0.56 0.81 0.89 0.89 

-

0.27* 

S M** M** M** W** M** M** M M N 

88-92 
0.8 0.05 0.04 0.149 0.16* 0.067 0.11 0.24 0.09 0* 

M N** N** N** N** N** N** N** N** N** 

Chicken 

Y195 
1.25 0.06 0 -0.15 0.17* 0.28 0.3 0.14 

-

0.04* 
-0.28 

S N** N N N N** N** N** N** N** 

Y173 
1.10 0.48 0.13 0.068 0.25* 0.24 0.26 0.07 0.1* -0.37 

S W** N** N** N N** N** N N** N** 

R3315 
1.34 0.76 0.7 0.02 0.02* 0.76 0.37 0.09 0.08* -0.06 

S M** M N** N M** W** N N N 

Y175 
1.97 0.16 0.14 0.13* -0.41 0.5 0.85 0.7 0.06* -0.03 

S N** N** N N** M** M** M N** N** 

G286 
1.98 0.55 0.49 

-

0.09* 
0.04 1.26 0.7 0.42 0.25* -0.06 

S M** W** N** N** S** M** W** N** N** 

G228 
1.94 0.69 0.78 -0.3* 0.06 0.91 0.74 0.45* 0.22 0.15 

S M** M** N** N** M** M** W N** N** 

APEC 

12 
0.91 0.1 0 0 0 0 0 0 0.05* 0 

M N** N** N N N N N N** N 

19 
1.55 1.05 0.8 

-

0.21* 
0.03 1.5 0.7 0.51 0.1* -0.01 

S S** M** N** N** S** M** M** N** N** 

56 
1.31 0.69 

-

0.3* 

-

0.046 
-0.08 0.17 0.12 

-

0.08* 
0.15 -0.15 

S M N ** N** N** N N N N N 

59 
0.79 0.38 0.13 0.08* 0.001 0.019 0.02 0.06 

-

0.26* 
0 

M W N** N N** N** N N N** N** 

60 
0.79 0.02 0 0* 0 0 0.19* 0 0.08 0 

M N** N** N** N N N N N N 

62 
0.79 0.78 

-

0.27 
0.08* 0.02 0.156 0.3 0.17 

-

0.31* 
0 

M M N N** N N** N** N N N** 

* MIC of the phytochemicals, **statistically significant difference between SBF result on thymol and carvacrol 

(p<0.05) 
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Figure 3. 5 Mean ± OD 595 of stained biofilm attached to E. coli control and treated with 

different concentration of thymol and carvacrol between 0-250 µg l-1. Average of SD bars 

showed in the graph. 

 

3.3.2.2 The effect on established Biofilm 

The efficacy of thymol and carvacrol to reduce established biofilms was tested for nine 

isolates that were classified as strong biofilm producers Table 3.5 Statistically significant 

reductions were noted in biofilms that were treated with thymol and carvacrol at sub-inhibitory 

to MIC concentrations. The findings indicated that thymol and carvacrol at high concentrations 

which were near to MICs (100-200 µg l-1) eradicated biofilm with thymol being slightly more 

effective than carvacrol. 
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Table 3. 5 Effect of thymol and carvacrol established biofilm formation (mean ± standard 

deviation). 

Isolates 
Thymol 

carvacrol 

Control 
Phytochemicals concentration µg l-1 

12.5 25 50 100 200 

Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD 

Turkey 

88-92 
thymol 

1.48 ± 0.04 
1.58 ± 0.04 1.55 ± 0.08 1.05 ± 0.08 0.53 ± 0.07 0.02 ± 0.02 

carvacrol 1.42 ± 0.02 1.49 ± 0.01 1.31 ± 0.04 1.1 ± 0.005 0.02 ± 0.01 

3208 
thymol 

1.64 ± 0.01 
1.44 ± 0.07 1.2 ± 0.04 0.98 ± 0.07 0.42 ± 0.07 0.00 ± 0.01 

carvacrol 1.44 ± 0.01 1.37 ± 0.04 1.04 ± 0.02 0.99 ± 0.01 0.02 ± 0.01 

3389 
thymol 

1.64 ± 0.01 
1.35 ± 0.07 1.07 ± 0.03 0.99 ± 0.04 0.24 ± 0.09 0.00 ± 0.02 

carvacrol 1.52 ± 0.01 1.49 ± 0.06 1.19 ± 0.08 0.21 ± 0.01 0.04 ± 0.02 

Chick 

G286 
thymol 

0.99 ± 0.03 
0.75 ± 0.01 0.66 ± 0.01 0.47 ± 0.03 0.26 ± 0.05 0.00 ± 0.02 

carvacrol 0.84 ± 0.01 0.73 ± 0.05 0.72 ± 0.05 0.42 ± 0.03 0.17 ± 0.06 

R3315 
thymol 

0.98 ± 0.07 
0.96 ± 0.04 0.9 ± 0.03 0.71 ± 0.04 0.52 ± 0.02 0.25 ± 0.04 

carvacrol 0.96 ± 0.01 0.92 ± 0.01 0.84 ± 0.06 0.65 ± 0.05 0.43 ± 0.03 

Y173 
thymol 

0.93 ± 0.03 
0.81 ± 0.03 0.73 ± 0.03 0.64 ± 0.01 0.63 ± 0.06 0.01 ± 0.01 

carvacrol 0.9 ± 0.02 0.8 ± 0.03 0.76 ± 0.03 0.62 ± 0.03 0.52 ± 0.04 

APEC 

58 
thymol 

0.81 ± 0.03 
0.68 ± 0.02 0.58 ± 0.03 0.46 ± 0.02 0.26 ± 0.05 0.00 ± 0.02 

carvacrol 0.98 ± 0.01 0.72 ± 0.06 0.58 ± 0.02 0.48 ± 0.03 0.05 ± 0.07 

62 
thymol 

0.9 ± 0.06 
0.87 ± 0.07 0.73 ± 0.07 0.54 ± 0.08 0.2 ± 0.02 0 ± 0.01 

carvacrol 0.88 ± 0.01 0.74 ± 0.08 0.71 ± 0.06 0.52 ± 0.07 0.12 ± 0.01 

A9 
thymol 

0.97 ± 0.06 
0.64 ± 0.01 0.54 ± 0.06 0.44 ± 0.03 0.26 ± 0.02 0 ± 0.04 

carvacrol 0.75 ± 0.01 0.62 ± 0.01 0.55 ± 0.01 0.37 ± 0.03 0.25 ± 0.02 

*Mean for thymol and carvacrol are statistically significant difference (p<0.05). 

3.3.3 Motility 

Swimming motility is a type of bacterial movement which is powered by rotating 

flagella enabling movement as separate cells through liquid environments. Figure 3.6 A, B 

show that thymol and carvacrol both decreased the swimming motility in a concentration 

dependent manner (p= 0.036). Figure 3.6 C, shows representative images of APEC isolate 

(strain 59) swimming under control, 50, 100, and 150 µg l-1of thymol and carvacrol, 

respectively. It was noteworthy that thymol and carvacrol in high concentrations inhibited the 

swimming motility. 
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Figure 3. 6 Effect of thymol and carvacrol swimming motility of APEC isolate strain 18. (A) 

characterisation of the effects of different concentration of thymol on the swimming motility 

in soft- agar plates. Error bars represent the SD of triplicate samples. significant differences in 

motility between the control and samples supplemented with thymol 150 µg/ml using paired 

student’s t-test *p= 0.03. (B) with carvacrol, (C) representative images of swimming motility 

plates for thymol and carvacrol after 6 and 48 hours. 

3.3.4 Conjugation  

To study the influence of thymol on the ability of bacteria to transfer genetic material 

by conjugation, mating experiments were performed using as donor strain a wildtype APEC 

isolate strain 60, and an E. coli K12 laboratory strain as recipient, strain DH5α. The donor 

strain was resistant to ampicillin and the recipient strain has resistant to nalidixc acid. To 

calculate the efficiency of conjugation the number of surviving donors and recipients were 

counted after plating dilutions of the mating mixture of on LB amp plates and LB nal plates 

respectively and the numbers of transconjugants were counted after plating on LB nal amp 

plates. The frequency of conjugation was expressed as the number of transconjugants divided 
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by the number of donors.  After exposing the mixed mating culture to thymol, the conjugation 

efficiency was reduced: The conjugation efficiency of E. coli in presence of the thymol at sub 

MICs concentrations 50 µg l-1 (1.78X10-5 cfu; P value 0.007) and 100 µg l-1 (0.061X10-5 cfu; 

p= 0.0008) decrease compared to in the absence of thymol (3.6X10-5 cfu) Figure 3.7. These 

results show that exposure to thymol decreased the ability of these E. coli to perform plasmid 

conjugation. A similar number of donors and recipients were recovered after 2 h in the presence 

and absence of thymol indicating that both donors and recipients were surviving the stress of 

this level of thymol. Therefore, it can be concluded that the reduced frequency of conjugation 

is a product of some interference on the mechanics of conjugation by thymol.  

This observation indicated that the decrease in E. coli conjugation was not due to E. 

coli killing by thymol, but the effect of thymol on E. coli conjugation. Conjugation efficiencies 

were significantly lower in two concentrations of thymol 50 µg l-1 (p= 0.004) and 100 µg l-1 

(p= 0.02) when compared to without thymol Figure 3.7. The results suggest that thymol might 

decrease the ability of E. coli to perform conjugation.  

 

Figure 3. 7 Conjugation in the presence and absence of thymol. * Significant difference. 
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3.3.5 SEM 

SEM observation of the changes to the morphology of E. coli cells treated for 2 hours 

with thymol at a sub-lethal concentration (50-100 µg l-1) are shown in Figure 3.8. Compared 

with the untreated E. coli cells (control), SEM evidence indicates that treatment with thymol 

results in changes in the appearance of the cells, most probably exerted via an effect on the 

outer cell envelope. Untreated E. coli cells are shown in Figure 3.8 A, displays a smooth and 

intact surface. The surface of the cells after treatment with low concentration of thymol looked 

corrugated with membrane wrinkling and collapse of the cell surface as shown in Figure 3.8 

B. High concentration of thymol shown in Figure 3.8 C shows disintegration of the cell wall 

and an apparent increase in their compactness. These observations seem to suggest that thymol 

is able to disrupt the membrane, potentially allowing the leakage of intracellular constituents 

as well as causing structural alteration of the outer envelope. Moreover, the strain treated with 

thymol showed more elongated cells than the control cells.  

 

Figure 3. 8 SEM images of E. coli cells. (A) Untreated cells, cells after treated with thymol 

(B) 50 µg l-1 and (C) 100 µg l-1. 
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3.4 Discussion 

E. coli infections resulting from consumption of contaminated food has been widely 

reported and constitutes an enormous public health problem. Also, cells within the biofilm 

community can become more resistant to biocides than their planktonic counterparts (Das et 

al., 1998). To reduce health hazard due to E. coli, natural products from plants which are 

mixtures of numerous organic chemicals, have gained importance as antibacterial compounds 

(Burt, 2004; Niu and Gilbert, 2004). The observations of the antimicrobial activities of thymol 

and carvacrol against 50 isolates tested from poultry were active against all E. coli isolates 

which is consistent with several earlier studies. MIC and MBC values show that thymol was 

more activity than carvacrol against E. coli, a conclusion that coincides with results of others 

(Olasupo et al., 2003; Helander et al., 1998). Other reports, however, suggest that the carvacrol 

was more effective than thymol (Du et al., 2015; Friedman et al., 2002) whilst in  other report 

thymol and carvacrol were equally effective (Xu et al., 2008; Burt et al., 2005; Cosentino et 

al., 1999). The differences between the concentration and discrepancy of antimicrobial activity 

may be derived from the methods used to examine antibacterial activity such as dilution or 

diffusion methods (Xu et al., 2008). According to Guarda and others, the antimicrobial activity 

of thymol and carvacrol was determined against many microorganisms including foodborne 

pathogens E. coli O157:H7, S. aureus, and L. innocua were in the range of 125–375 μg 1-1 

(Guarda et al., 2011). In another study, results showed that E. coli was inhibited by thymol and 

carvacrol at concentration of ≥ 500 μg 1-1 (Rivas et al., 2010) and thymol at 640 μg 1-1  (Ivanovic 

et al., 2012). While, Xu and others reported that thymol and carvacrol inhibit the growth of E. 

coli at 200 mg 1-1 and 100 mg 1-1, respectively (Xu et al., 2008; Pei et al., 2009) which was 

more in keeping with the observations of MIC values of thymol and carvacrol made in this 

study (range of 125-175 µg l-1 and 175-200 µg l-1 respectively). Moreover, inhibition profiles 

of growth curves for thymol and carvacrol were obtained for different levels against E. coli.  
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Normally, at the sub-MIC levels, the lag phase of growth and exponential phase were extended, 

and both the growth rate and final cell density were reduced with increasing concentrations of 

both thymol and carvacrol. In a previous study (Skandamis et al., 2001) the presence of oregano 

essential oils caused an increase in the lag phase and a decrease in the growth rate of E. coli 

O157:H7. In addition, Eucalyptol which is a compound obtained from EOs extended the lag 

phase of E. coli O157:H7 (Zengin and Baysal, 2014). It is known that the lag phase depends 

on the new environment and the medium containing sub-lethal concentrations of thymol and 

carvacrol or other EOs which impact on the time required to adjust before growth commences. 

Nevertheless, the exponential phase was extended with sub-lethal concentrations of thymol and 

carvacrol. These observations show that E. coli can survive and grow, albeit poorly, in sub-

lethal concentrations of thymol and carvacrol. This finding was exploited for use sub-lethal for 

forward examination in this chapter and next two chapters as well.   

Thymol and carvacrol stock solutions were prepared in 50% (v/v) ethanol. Ethanol is 

regularly used as a solvent to prepare stock solutions of EOs before dilution to the required 

concentrations for microbiological experiments, the solubility of EOs were increased by low 

concentrations of ethanol and the increased solubility lowered the MIC and MBC of EOs 

(Canillac and Mourey, 2004; Rivas et al., 2010). High concentrations of ethanol (60%-75%) 

are considered as bactericidal (Sofos et al., 1998) but other studies suggest growth was 

inhibited in the presence of as little as 5% ethanol (Oh and Marshall, 1993). In this study, the 

presence of ethanol in MICs of thymol and carvacrol was 2.8-3.9%, 3.9- 4.5% respectively. 

Thus, growth curve studies were performed with ethanol added to the basal medium in a range 

of 0.0-5%. There was no evidence of inhibition. In addition, when a stock preparation of thymol 

and carvacrol was made by dissolution directly in distilled water or broth rather than ethanol 

then mixed with broth to achieve the desired test concentration, the antibacterial activity was 

greatly reduced (data not shown) but improved when dissolved as an ethanol stock preparation. 
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This finding has been previous confirmed by others (Burt et al., 2005; Periago et al., 2004; 

Ultee et al., 2000; Walsh et al., 2003). 

Results showed variable biofilm formation between isolates groups. Most of the E. coli 

isolates formed weak or no biofilm (56%). Interestingly, the 50 isolates were probed by PCR 

tests for virulence genes, including adhesion genes (fimH, papC, csg, crl and tsh). Thus, the 

correlation between adherence virulence factors and biofilm formation of E. coli isolates was 

not found in the current stage but also reported by others (Reisner et al., 2006; Pavlickova et 

al., 2017). This observation was somewhat surprising as curli fimbriae that are ubiquitous in 

E. coli are associated with biofilm formation (Allen-Vercoe et al., 1999; Lapidot et al., 2006). 

The process of biofilm formation by E. coli is dependent on different factors such as the growth 

medium used: minimal or nutrient depleted media gave less observed biofilm less than rich 

media (Reisner et al., 2006; Skyberg et al., 2007). In this study LB low salt (salt reduction) 

media was used to determine biofilm formation with phytochemicals as used in other studies 

(Romling et al., 2014). 

Having more-effective antimicrobial agents that are also active against biofilm 

formation would be a considerable achievement. According to the findings, thymol and 

carvacrol were effective at reducing biofilm formation by the test isolates. Doses of less than 

MIC showed a greater influence on biofilm formation of both thymol and carvacrol, so this 

may suggest that the effects were not just related to reduction in growth rate but also by some 

direct effect on the biofilm itself. Staining with crystal violet (CV) technique was used as the 

approach to test the anti-biofilm properties of plant essential oils with success. Its greatest 

features are that it is inexpensive, relatively quick, and adaptable for use in high-throughput 

screening with microtiter plates (Djordjevic et al., 2002; Pitts et al., 2003). Whether totally 

applicable to the aims of this study is open to discussion but a study conducted by Niu and 
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Gilbert reported that Cinnamomum cassia essential oil reduced the extent of biofilm formation 

by E. coli. (Niu and Gilbert, 2004). This lends support to the validity of the approach used. 

The antimicrobial and possibly the anti-biofilm activity of thymol and carvacrol may 

be attributed to the action of its principal phenolic components, which exhibit significant 

bactericidal activity (Lambert et al., 2001) interacting with the lipid bilayer of cytoplasmic 

membranes causing loss of integrity and leakage of cellular material such as ions, ATP and 

nucleic acid (Helander et al., 1998; Trombetta et al., 2005). Moreover, Tombertta and others 

have reported thymol possesses a relative hydrophilicity (Trombetta et al., 2005) and this 

property may enable diffusion through the polysaccharide matrix of the biofilm to destabilise 

the biofilm and outer membranes. Exposure of S. aureus to carvacrol during the early stages of 

biofilm development resulted in inhibition of matrix formation, with shedding of proteinaceous 

mass after each antimicrobial pulse (Knowles et al., 2005). It is likely similar processes are at 

work on E. coli also. 

Swimming motility has been linked to biofilm formation in several kinds of bacteria 

(Soutourina and Bertin, 2003), is mediated by flagella (Harshey, 2003), and initiates cell-to-

surface contact. In some cases, flagellar motility has been found to be essential for normal 

biofilm formation (Pratt and Kolter, 1998). However, flagellar motility was not required for 

initial adhesion and biofilm formation by curli-producing strains of E. coli (Prigent-Combaret 

et al., 2000) or for biofilm formation by E. coli strains carrying conjugative plasmids (Reisner 

et al., 2003). In this work, thymol and carvacrol reduced the swimming motility of E. coli at 

high levels of 150 µg l-1 and this could be a reason for biofilm formation reduction as well as 

slow or reduced E. coli growth. 

Conjugation is a major process in horizontal gene transfer including multiple antibiotic 

resistance determinants among pathogenic bacteria and also exchanges of chromosomal genes 

that has been noted at high frequencies in the gut of the chicken (Lafont et al., 1981; Lafont et 
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al., 1984). EOs compounds may be able to interfere with this process and may potentially prove 

useful in controlling the spread of antibiotic resistance. To our knowledge this is the first report 

that EOs or any of their active compounds reduce the transfer of antibiotic resistance among 

the bacteria.   To test this, an in vitro model was developed. Sub-lethal thymol (50 and 100 µg 

l-1) was used to test reduced conjugation without killing E. coli. Thymol treatment of donor 

(APEC isolate) and recipient (E. coli K12 laboratory DH5α) (Perez-Mendoza and de la Cruz, 

2009) and a mixture of both in broth cultures produced significant reductions in the number of 

transconjugants observed with 2 h conjugation incubation time as previously described 

(George and Fagerberg, 1984; Phornphisutthimas et al., 2007). The transconjugants isolated 

conformed phenotypically similar to recipient cells with acquired resistance to ampicillin 

suggesting the plasmid had been transferred. Fernandez-Lopez and others reported that 

unsaturated fatty acids, or other organic acid compounds are conjugation inhibitors (Fernandez-

Lopez et al., 2005), which could effect the function of some proteins associated with the 

bacterial membrane. Another possibility is that the presence of thymol in culture medium may 

cause a perturbation in the general physiology of E. coli such as in osmotic pressure control, 

membrane potential or energetic balance that impairs conjugation as a pleiotropic effect. Future 

studies are needed in order test its relevance in vivo as well. Moreover, there is a need to 

determine the influence thymol on the gut population.  

Sub-MICs thymol exposure of E. coli for 2 h showed shrunken and collapsed surfaces 

as observed by SEM that provide further evidence of the membrane dependent bacterial 

disinfection mechanisms.  These observations suggest that thymol is able to disrupt the 

membrane, potentially allowing the leakage of intracellular constituents similar to (Di Pasqua 

et al., 2007; Lambert et al., 2001). Others treated E. coli O157:H7cells with 625µg l-1 oregano 

oil (aqueous solution) which is rich in thymol and carvacrol and found a collapse of cells after 

loss of their contents (Burt and Reinders, 2003). 
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This study shows that thymol and carvacrol may contribute to the control and 

management of E. coli. The data suggest these phytochemicals reduce biofilm formation, 

reduce motility, alter morphology and reduce conjugation between E. coli cells. A question 

arises as to what is their mechanism of action.  To investigate this, clues may be gained by 

training bacteria to tolerance as it may be hypothesised that mutation and/or physiological 

adaptation arises. If this is the case, then analysis of mutants/adaptants will yield insights into 

the mechanisms of action of these compounds. This is to be addressed in the next chapter. 
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CHAPTER FOUR: INVESTIGATIONS INTO THE MECHANISMS OF 

ACTION OF THYMOL ON E. COLI 

4.1 Introduction 

The antimicrobial activity of many EOs has been widely demonstrated (Burt, 2004; 

Nazzaro et al., 2013) and have been discussed in detail in the previous chapter (chapter 3). 

Despite a large body of literature regarding the potential of EOs there are still relatively few 

applications in real foods due to lack of systematic studies on the antimicrobial activity of the 

single constituents of EOs and their effects either in model or real systems. In addition, there 

remains a lack of precise information on the mechanisms of action of bioactive molecules 

against food-borne microorganisms. More research in this area could substantiate the use of 

suitable molecule mixtures in relation to food safety requirements (Cosentino et al., 1999). 

Indeed, a deeper understanding of the microbial targets of EOs and their components as well 

as of the microbial defence systems may permit a greater use of these antimicrobials in foods 

and food production. Thymol with carvacrol obtained from labiatae, such as thyme and 

oregano, are known to possess significant antimicrobial properties and have been the subject 

of much investigation.  

In recent years, an increasing number of studies have been reported using proteomic, 

genomic and metabolomic approaches to study the cellular processes and their responses to 

antibiotic stimuli (Hartman et al., 2014; Tiwari and Tiwari, 2014). These approaches demand 

a departure from the current drug discovery strategies which typically follow a linear process 

of identification, evaluation and refinement towards a more integrated parallel process 

(Bleicher et al., 2003). However, these approaches if used could guide us to identify the mode 

of action of thymol against E. coli. Many antibacterial drug-target interactions of antibiotics 

that are presently used have been deeply studied, and it is well-known that agents can inhibit 

various essential cellular functions such as cell wall biosynthesis, transcription, translation, or 



109 
 

DNA supercoiling (Kohanski et al., 2007; Walsh, 2003). Some antimicrobials inhibit the 

growth of bacteria by targeting protein biosynthesis (Bottger, 1994), such as streptomycin, 

which interacts directly with the small ribosomal subunit (Carter et al., 2000). The ribosome 

centre (e.g. t-RNA binding sites) is a highly conserved component of the translational apparatus 

(Alksne et al., 1993), comprising a rRNA domain and several polypeptides of the small subunit, 

including the ribosomal protein S12. Lysine-42 mutation in S12 was originally isolated as the 

cause of streptomycin resistance (Alksne et al., 1993; Noller, 1991). Furthermore, a mutation 

in the Euglena chloroplast 16S rRNA resulted in streptomycin resistance (Montandon et al., 

1985), and mutations in different regions of E. coli 16S rRNA change the ribosomal response 

to streptomycin (Frattali et al., 1990). Another example is the quinolone group of antibiotics, 

which are one of the most commonly prescribed class of antibacterials in the world (Aldred et 

al., 2014). Quinolones trap DNA topoisomerase II (gyrase) (Gellert et al., 1977; Charron and 

Hancock, 1990), and  DNA topoisomerase IV (Kato et al., 1990), into complexes in which the 

DNA is broken but constrained by proteins resulting in bacterial chromosome fragmentation 

(Drlica et al., 2009). The main quinolone resistance mechanism consists of one or a 

combination of target-site gene mutations that alter the drug-binding affinity of target enzymes 

(Correia et al., 2017). Such as, topoisomerase enzyme changes structure cause reduced the 

affinity to fluoroquinolones are caused by mutations in the quinolone resistance determining 

regions (QRDR) of gyrA and parC genes (Moon et al., 2010; Ruiz, 2003). However, other 

mechanisms such as mutations that lead to reduced intracellular drug concentrations by 

decreased uptake or increased efflux, and plasmid-encoded resistance genes producing either 

target protection proteins, drug-modifying enzymes or multidrug efflux pumps are known to 

contribute additively to quinolone resistance (Correia et al., 2017).  

Metabolomics in particular offer a unique strategy to detect metabolic changes that 

occur in an organism in response to drugs and the outcome of such studies can provide insights 
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into their corresponding mode of action (Dorries et al., 2014).  Metabolomics allow 

comprehensive and quantitative analysis of all the metabolites in a biological system (Khoo et 

al., 2015). By monitoring the global metabolite profile, metabolomics provides a precise 

snapshot of the physicochemical state of the cell. In addition, different physiochemical 

approaches such as mass spectrometry (MS) (Han et al., 2014; Su et al., 2015), Fourier-

transform infrared (FT-IR) spectroscopy (Wharfe et al., 2010) and nuclear magnetic resonance 

(NMR) (Dorries et al., 2014; Halouska et al., 2012) have been used in metabolic or whole-

organism profiling of the microbial response to antibiotics. In metabolomics, the investigations 

carried out so far have focused on studying changes in the intracellular metabolism in response 

to antibacterial compounds describing the cellular chemical fingerprint of bacteria. Changes in 

the metabolite composition of microorganisms in response to external stimuli can be measured 

easily using analytical methods coupled with multivariate statistical analysis (Park et al., 2016). 

Nowadays, NMR analysis can detect a wide range of low molecular weight metabolites in a 

single test. NMR is the most frequently used method for the determination and quantitation of 

microbial metabolites. For this reason, the NMR spectrum of a cell extract is normally regarded 

as the metabolic profile of an organism, and from this premise a science called metabolomics 

has been developed based on the chemometric analysis of NMR spectra of biological fluids, 

including cell extracts (Nicholson et al., 1999). This method allows by measuring against a 

control population the changes induced by a treatment, through a holistic view of the cellular 

composition (Ye et al., 2012). In addition, this technique is increasingly used in the 

investigation on the metabolic effects of natural molecules with bacteriostatic and/or 

bactericidal action on bacterial growth (Drazic et al., 2015; Grivet and Delort, 2009; Hoerr et 

al., 2016). Currently, the analysis of the mechanisms of action of EOs’ has been improved by 

applying these various techniques: NMR (Picone et al., 2013) and Mass Spectrometry (Coulier 

et al., 2006) are regularly used to characterise the metabolomic profile in bacteria.  



111 
 

Several studies have shown the EOs especially thymol can efficiently inactivate 

pathogens (Cosentino et al., 1999; Burt and Reinders, 2003; Nazzaro et al., 2013; Borges et 

al., 2015; Du et al., 2015). However, there are only a few reports on the mechanism of action 

of EOs although Burt and Reinders showed morphological changes in E. coli O157 caused by 

thymol (Burt and Reinders, 2003). Specifically, a comprehensive analysis of changes in 

bacterial metabolites under treatment with thymol has not been performed. Therefore, the 

primary purpose of this chapter was to investigate the mechanism of action of thymol in E. 

coli. To do this, two approaches were used. First, exposure to gradually increasing thymol 

concentrations and selection of resistant E. coli, should such mutants arise, genome sequence 

analysis may identify genetic changes that have arisen and identify natural mechanisms of 

‘resistance’.  An interesting issue arising from this approach is whether or not resistance 

emerges and if so does this render the EO a non-viable option in pathogen control and might 

EOs be a public health issue if used. The second approach was to use NMR metabolomics 

approach to understand how bacterial cells respond to the assault of sub-inhibitory 

concentrations of the EO. Adapted or trained E. coli strains and the wild type strain were to be 

examined. We hypothesised that a combination of extracellular foot-printing metabolomics, 

morphological changes, and whole genome sequencing approaches of mutant and original 

strains would give rise to a more complete mechanistic insight. To evaluate this concept, SEM 

was used to determine the cells morphology. 1H NMR metabolic analysis was used to profile 

the metabolic changes in E. coli extracellular culture medium of wild-type and mutant 

following treatment with thymol. Finally, whole genome sequencing of mutant and original 

strains will be performed to find mutation(s) that might explain how thymol affects E. coli.  
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4.2 Materials and methods 

4.2.1 E. coli strains 

E. coli isolates used for the adaptation experiment were APEC strains 18, 19 and E .coli 

K12 strain JM109. 

4.2.2 Phytochemical stock solutions 

Thymol was dissolved in ethanol 50% (v/v) to give a working stock solution of 5mgl-1. 

The stocks were stored at 4˚C and used within 48hours of making. The stock was diluted with 

same media (LB broth) used for bacterial culture to achieve concentration ranges required. 

4.2.3 Adaptation to increasing concentrations of thymol.  

The test was performed after determining the MIC for three strains of E. coli, JM109 

as a control and two isolates of APEC strains 18 and 19. The MICs for those three strains were 

175 μg l-1 for JM109 and 125 μg l-1 for both APEC isolates. Working Stock solution of thymol 

at concentration of 5mg l-1 was serially diluted using LB broth to give a final concentration 

from 100μg l-1 for the first exposure and thereafter increased by an additional 25 μg l-1 so that 

the test strains would be grown in a rising series of thymol concentrations (100, 125, 150, 175 

etc). For each cycle of growth, 4.5 ml of each thymol concentration was added to Greiner 

CELLATAR® multiwell culture plates 6 wells plates (TC treated with lid). Five colonies of E. 

coli were taken from LB plates, inoculated into 10 ml of LB broth that was incubated 

aerobically shaking at 150-200 rpm at 37°C for 16-18 hours. When growth was observed, 500μl 

of the suspension adjusted to an OD 600 = 0.02 (about 1x107 CFU ml-1) were added to each 

well for the first exposure in LB broth with 100μg l-1 thymol. The inoculated plate was 

incubated at 37oC with shaking for 48h after which a sample was streaked on to an LB agar 

plate and a 500 µl sample transferred to a fresh Greiner CELLATAR® multiwell culture plate 
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containing a concentration of thymol 25 μg l-1 stronger than in the previous well. This 

procedure was continued until minimal growth was observed after 48 h of incubation at 37°C. 

Adapted strains were stored in -80oC for subsequent experimentation. 

4.2.4 Growth rates of adapted strains. 

To investigate the effect of high concentration of thymol on trained and original E. coli 

strain growth, strains were inoculated as described above. From the working stock solution of 

thymol at concentration of 5 mg l-1, serial dilutions were made fresh in LB broth. Thereafter, 

200μl of different thymol concentrations were added to wells of the Greiner CELLSTAR® 96-

well plates (sterile, F-bottom with lid), according to the CLSI M31-A3 guidance. The inoculum 

(25 μl) adjusted to an OD 600 = 0.02 (about 1x107 CFU l-1) of this inoculum were added to 

each well of the microdilution plates, 3 replicas per strain. To control for experimental 

conditions, the last column of wells was inoculated without thymol as a negative control. The 

96-well plate was covered with a lid and placed in the FLUOstar Omega system (atmospheric 

control unit for microplate readers-BMG LABTECH, Germany) at 37˚C with orbital shaking 

(200 rpm) and run for 24 hours with spectrophotometric measurement (at 600 nm) every hour 

to determine bacterial growth. Immediately after 24 hours incubation 5 μl from each well was 

transferred to LB agar plates to determine the lowest concentration of thymol at which no 

growth could be observed after 24 hours of incubation at 37°C. The experiment was performed 

in triplicate with three repeats on separate days.  

4.2.5 Determination of bacterial morphology 

The thymol adapted, and non-adapted bacterial strains were observed by scanning 

electron microscopy. After overnight incubation in LB broth at 37˚C, bacterial cells were 

suspended to OD 600 = 0.5 in LB broth and divided into two sterile Eppendorf tubes to which 

thymol was added to one tube at a concentration of 100 µg l-1, whilst the other was left untreated 
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as a control. Samples were incubated in a rotary shaker set at 200 rpm and 37°C. After 2 hours, 

the cells were harvested by centrifugation at 14,000x g for 2 minutes, washed twice and 

resuspended in phosphate buffer saline (PBS). Each suspension (200 µl) was placed on poly-

L-lysine-coated glass cover slips for 15 min on both sides. Adhered bacteria were fixed with a 

solution of 2.5% glutaraldehyde pH7 for 15 min. After fixation, samples were washed with 

water for 15 min, dehydrated by increasing serial dilution of ethanol (30%, 50%, 70%, 80%, 

90%) immersions for 10 minutes each and for 1 h in 100%. Samples were dried in a Balzers 

critical point dryer (CPD 030), and metal coated in an Edwards sputter coater (S15OB). All 

samples were observed with a field emission SEM equipped with a cold stage and a cryo-

preparation chamber (Quanta 600F). The experiment was performed in triplicate.  

4.2.6 1H NMR 

4.2.6.1 Cultivation 

Prior to analysis, frozen stock suspensions of wild-type E. coli JM109 and its adapted 

mutant were cultured overnight in 5mL of LB medium at 37°C with shaking at 200 rpm. For 

the NMR metabolomics analysis, 200 µl of the overnight culture was re-inoculated in 10 ml of 

M9 defined medium (Table 4.1) that had been prepared, filter sterilised and stored in the dark 

at 4°C a day before the experiment. The salt solution for addition to M9 (Table 4.2) was 

prepared by dissolving individual salts in sterile double distilled water, autoclaved for 15 

minutes at 121°C. On the day of experiment, 2mL x 1 mM FeSO4 and 10 ml of trace metal 

mix solution (Sigma Aldrich, UK) (Table 4.3) were added to 1L of filtered M9 solution which 

was then pre-warmed to 37oC prior to inoculation as described above. Subsequently the culture 

was incubated at 37oC with shaking to an OD 600 of 0.6 and was used for thymol treatment. 
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Table 4. 1 NMR M9 medium for 1L of solution 

Compounds Weigh/Volume 

H2O autoclaved 900 ml 

salt stock solution 100 ml 10 x 

glucose 20% 3g 

NH4Cl 1g 

vitamin B1 (Thiamine) 1ml 

1 M CaCl2 100μl 

1 M MgSO4 4 ml 

 

 

Table 4. 2 1L of 10X Salt solution 

Compounds Weight/Volume 

H2O 1L 

Na2HPO4 60g 

KH2PO4 30g 

NaCl 5g 

 

 

Table 4. 3 Trace metal mix  

Compounds Weight/Volume 

H3BO3 2860 mg 

MnCl2 · 4H2O 1810 mg 

ZnSO4 · 7H2O 222 mg 

Na2MoO4 · 2H2O 390 mg 

CuSO4 · 5H2O 79 mg 

Co(NO3)2·6H2O 49 mg 

 

4.2.6.2 Bacterial culture supernatant (metabolic profile footprinting) 

After incubating multiple 10 ml E. coli cultures at an OD 600 of 0.6 in M9 medium, 

cultures were exposed to a sub-lethal concentration of thymol (50 μg l-1).  Positive controls 

were cultures without thymol. Negative controls were un-inoculated M9 media with or without 

thymol. There were 6 replicates for each of the treatments and incubation was for 24 h at 37°C. 

Each 10 ml culture or control was centrifuged at 1000xg for 20 minutes at room temperature 
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and 1 ml of supernatant were collected immediately afterwards and stored at-80°C until 1H 

NMR measurement. 

4.2.6.3 Preparing culture supernatants 

Supernatants were defrosted from -80C and vortexed. A volume of 400 l was 

transferred to a clean microfuge tube. Each sample was buffered with 200l phosphate buffer 

(Table 4.4), vortexed and centrifuged at 14,000xg for 10 minutes, after which 550 l of 

supernatant was transferred into 5 mm internal diameter NMR tube on the day of analysis. 

Table 4. 4 Phosphate buffer composition for 500 ml of solution 

Compounds Weight/Volume Utility 

1 mM TSP 0.172 g Standard 

Na2HPO4 28.86 g Buffer 

NaH2PO4 5.25 g Buffer 

NaN3. 0.193 g Antimicrobial 

D2O 1L NMR lock 

 

4.2.6.4 NMR acquisition and processing 

1H NMR spectra were acquired on a Bruker (Bruker Avance III HD, UK) 700 MHz, an 

automatic tuning-matching unit at 298 K, and an automatic sample changer. To facilitate 

compound identification, 1D spectra were acquired using standard Bruker 1D nuclear over 

Hauser enhancement spectroscopy (NOESY) pre-saturation pulse sequence on selected 

samples (Kumar et al., 1980; Nicholson et al., 1995). After acquisition, spectra were manually 

phased, processed in order to realign spectrum phasing calibration on TSP at δ 0.00 ppm and 

baseline correction using MestReNova® software. Stacked spectra were imported into 

MATLAB (R2015b) MathWork® software where spectra were digitised between δ 0.5-10 ppm 

in order to delete useless information and avoid data bias; the region containing the water peak 

was deleted between δ 4.8 and 5.1. Peak assignment was done using online open access 
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databases (chenomx® and HMDB) and 1D Spectra (for spectroscopy correlation) for molecule 

identification. 

4.2.6.5 Statistical analysis  

For footprinting analysis, 6 samples were prepared respectively using 6 biological 

replicates. Multivariate statistical analysis was done using PCA plots, and analysis of the 

principal components was done to evaluate the metabolic variations existing between groups. 

This was done to evaluate the metabolic activity of E. coli in M9 media over time and evaluate 

thymol’s potential to modify this metabolic trajectory. Orthogonal projection to latent structure 

(OPLS) regression was performed on a minimum of 6 replicates per group. The effect of thymol 

on both wild-type and adapted derivative of E. coli was evaluated using this statistical method. 

PLS regressions were run between each group. OPLS R2Y values around 0.8 were indicative 

of a good model, with Q2 values of around 0.5 indicate good predictive ability. PCA score 

plots and OPLS correlation plots were also produced to visualise differences in the metabolome 

between treatment groups. Loading and contribution plots were extracted to reveal the 

variables that bear class discriminating power. Moreover, to improve model visualisation and 

interpretation, S-line plots were extracted to detect metabolites that influence variable selection 

as they display the overall importance of each variable (X) on all responses (Y) cumulatively 

over all components. 

4.2.7 DNA isolation and sequencing 

4.2.7.1 Extraction of Genomic DNA 

Trained and original E. coli strain JM109 cultures grown for 18-24 h in LB were used 

for DNA extraction. Genomic DNA was extracted using QIAGEN yeast/bact kit according to 

manufacturer protocol from fresh samples of bacterial cultures. In summary, overnight culture 
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(1 ml) was pelleted by centrifugation at 14,000xg for 2 min in a bench top microfuge and 

incubated at 80˚C for 5 min after adding 300 µl of cell lysis solution to the pellet. RNase A 

solution (1.5 µl) was added and mixed by gently inverting the tube 25 times then incubated for 

15-60 min at 37˚C, followed by 1 min on ice. The tube content was vortexed vigorously for 20 

seconds at high speed after addition of 100 µl protein precipitation solution, the mixture was 

centrifuged for 3 min. The supernatant was transferred to a clean 1.5 ml microfuge containing 

300 µl of isopropanol (Sigma-Aldrich, UK), and mixed by gentle inversion 50 times. The 

mixture was centrifuged at 14,000xg, and the supernatant discarded. The DNA pellet was 

washed with 300 µl of 70% ethanol and inverted several times. The mixture was centrifuged 

at 14,000xg for 1 min, ethanol carefully decanted and the DNA pellet was allowed to air dry 

for 5 min. DNA hydration solution (100 µl) was added to the DNA pellet and vortexed for 5s. 

The DNA suspension was allowed to dissolve at 65˚C for 1 h, followed by further incubation 

overnight at room temperature with gentle shaking. The DNA concentration was determined 

with a ND-1000 Nanodrop spectrophotometer (NanoDrop technologies, USA). DNA 

concentration was recorded in ng/µl, 260:280 nm and 260:230 nm ratio indicative of DNA 

quality and purity were recorded (optimal ratio 1.8 ± 0.15). DNA stocks were adjusted to 

100ng/µl and stored at -20˚C for sequencing. 

4.2.7.2 Sequencing and genome analysis 

The commercial, transformation competent E. coli strain JM109 were sequenced  

(microbes NG) according to manufacturer's protocols at 2x250-bp paired–end reads platform 

following Illumina library preparation. Raw sequence data were processed by an automated 

analysis pipeline, and reads were trimmed using Trimmomatic tool and the quality was 

assessed using in-house scripts combined with SAM tools, Bed Tools and BWA-mem. 

Comparison of the JM109 wild-type strain genome with the JM109 mutant genome was 

performed using Mauve multiple alignment program (Darling et al., 2011) and annotation with 
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Prokka (Seemann, 2014). Results refer to positions on a reference E. coli genome as ”universal” 

coordinates using the first published K-12 genome the E. coli MG1655 strain. MG1655 

sequences were retrieved from GenBank (www.ncbi.nlm.nih.gov/nuccore/NC_000913.3) with 

accession number NC_000913. The E. coli MG1655 genome has been completely sequenced 

and the annotated sequence, biochemical information, and other available information were 

used to reconstruct the E. coli metabolic map (Edwards and Palsson, 2000). 

4.3 Results 

4.3.1 Adaptation of E. coli to thymol 

MICs of thymol for three strains of E. coli, JM109 as an E. coli K12 control and two 

representative isolates of APEC (strain 18 and 19) were established prior to exposure to sub-

inhibitory concentrations of thymol and were 175 μg l-1 for JM109 and 125 μg l-1 for both APEC 

isolates. As described in materials and methods, each of these three strains was exposed to 

repeated sub-culture in sub-inhibitory concentrations of thymol. The MIC of thymol adapted 

strains were determined to be 300 μg l-1 (strain 18), 260 μg l-1 (strain 19) and 400 μg l-1 for 

JM109 after 16 passages through gradually increasing concentrations of thymol. Tolerance to 

thymol was shown to be stable as demonstrated by repeated MIC tests after repeated subculture 

(n = 7) in LB broth without thymol (the strains were passed through every 24h for 7days). After 

testing for stability, each culture was plated onto NA plates and isolated colonies were used for 

subsequent analysis. A JM109 adapted derivative was used in subsequent experiments to assess 

tolerance to high concentrations of thymol. 

4.3.2 Growth rate for adapted strain JM109. 

Results are displayed in Figure 4.1 which show the different responses between E. coli 

K12 laboratory strain JM109 and its thymol adapted strain (mutant) that can tolerate and 
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survive in high concentrations of thymol (p=0.001). The original strain grew well in 100µg l-1 

but with a shorter exponential phase and an extended stationary phase compared to the control 

(Figure 4.1 A). By contrast, the adapted JM109 derivative was able to grow and tolerate 400 

µg l-1 although the lag phase was much extended compared to the original strain of JM109. 

Furthermore, and perhaps more significantly, the adapted JM109 derivative when grown in LB 

without thymol showed a reduced growth rate and yield compared to the original JM109 strain 

(Figure 4.1 B). In addition, the log or exponential phase was also extended in high thymol 

concentrations to more than 20 h and in most of the thymol concentrations tested it did not 

reach a stationary phase. 

 

Figure 4. 1 The effects of increasing concentrations of thymol on the growth of the original 

JM109 E. coli (A), and its adapted derivative (B)  

 

4.3.3 Determination of the morphology of E. coli in the presence of thymol 

The morphological changes in E. coli cells associated with adaptation and/or exposure 

to thymol were investigated. SEM analysis revealed that after adaptation to thymol (Figure 4.2 

B), the cells displayed few morphological changes relative to wild-type (non-adapted) cells 

(Figure 4.2 A) but with a slightly corrugated appearance on the outer surfaces of the cells and 

appearing thinner and longer. After exposure to sub-lethal concentrations of thymol at 50 µg l-
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1, both adapted and non-adapted cells (Figure 4.2 C, D) show considerable morphological 

alterations in comparison to non-exposed cells (Figure 4.2 A, B). The wild-type JM109 had a 

uniform cylindrical shape and long cells with little evidence of septum formation of 23 whole 

cells analysed only two showed indications of septum formation. Besides these observations, 

the overall cell size of wild-type JM109 in the presence of thymol appeared larger than cells 

without thymol and larger than the adapted derivative of JM109 whether in the presence or 

absence of thymol. Measurements were made and were as follows [with thymol the average 

length of the wild-type strain was 1.57 µm whilst the average length of the adapted (mutant) 

strain was 1.3µm], and these differences were statistically significant (p=0.01). In addition, the 

adapted (mutant) cells displayed more morphological changes after thymol challenge (Figure 

4.2 D), the surface appeared to be ‘rough’ and showed irregularly shaped spots dotted along 

the cell body.  
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Figure 4. 2 Scanning electron microscope of E. coli JM109 cells. (A) non-adapted untreated 

cells; (B) adapted (mutant) untreated cells; (C) non-adapted treated cells; (D) adapted (mutant) 

treated cells. For adaptation, cultures were previously exposed to high concentrations of 

thymol. Treated cells were exposed to thymol sub-lethal concentration that allowed E. coli 

growth after adaptation. 

4.3.4 1HNMR Metabolic footprinting 

NMR results consist of a set of 24 1H-NMR spectra recorded from 6 replicates of each 

of 4 samples comprising E. coli JM109 and the adapted derivative of E. coli JM109 wild-type 

with and without thymol.  In addition, 6 replicates of both M9 and M9 with thymol but without 

E. coli were also analysed to allow subtraction of medium only effects. Captured data were 

analysed using whole metabolome pattern analysis tools which assign the metabolite 

description and relative concentration (location and height of peaks respectively). To analyse 

these complex data sets Principle Component Analysis (PCA) was used (Figure 4.3) which in 

this case summarises the original 65536 variables detected. Thus, the direction and distance 
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covered by the samples can be considered respective indicators of the differences between the 

metabolic profiles of each strain under the two test conditions, with and without thymol. The 

metabolic profile of JM109 grown in M9 medium (n = six replicates) were tightly clustered 

indicating minimal sample to sample variation. However, the metabolic profile of the six 

replicates of the adapted JM109 grown in M9 medium were more dispersed but significantly 

discrete from JM109. It is clear that the metabolic profile of the adapted (mutant) strain was 

different from the wild-type which, given the trajectory; suggests the presence of fewer small 

metabolites than the wild-type. However, in the presence of thymol both wild-type and its 

adapted mutant were both very comparable in metabolic profile which may reflect not only 

more but also very similar small metabolites. 

 

Figure 4. 3 PCA- score plot for effect of different solvent on metabolic footprints derived from 

E. coli MJ109 wild-type and its adapted mutant untreated and treated with a sub-lethal 

concentration of thymol (50ug l-1).  N = 6 for each sample. (JM109; blue squares – JM109 with 

thymol; orange stars – JM109 adapted mutant; yellow diamonds – JM109 adapted mutant with 

thymol; purple circles) 
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PCA score plots indicated differences in metabolic profiles of JM109 and its adapted 

mutant. The next step in the analysis was to identify the chemical shifts based on correlation 

coefficient values responsible for the differences. A colour code indicating the weights of the 

discriminatory variables and the S-line plots are shown in Figure 4.4 (A). Specifically, as the 

peak colour gradually changes from blue to red, the absolute value of correlation coefficient 

increases from 0 to 1, indicating the resonances were important for discriminating the 

metabolite profiles of pairwise analyses, such as wild-type JM109 and its adapted mutant and 

wild-type JM109 with and without thymol. According to the S-line plot, the spectrum of each 

extract shows a preponderance of signals related to organic acids, amino acids and sugars in 

the range between 0 and 4 ppm. The range between 6 and 9 ppm shows the aromatic region 

such as phenylalanine.  

The comparison of wild-type and adapted mutant strain JM109 grown in M9 without 

thymol (Figures 4.4 A, B) shows several peaks that correlate with end products of energy 

metabolism (ethanol, formate, succinate and acetate) that were significantly higher in the wild 

type JM109 than its adapted mutant. Succinate is the intermediary synthetic product of 

Tricarboxylic acid (TCA) cycle, whilst formate and acetate are the end products of the TCA 

cycle. These findings suggest JM109 wild-type respired aerobically to produce the anticipated 

end products of energy metabolism. By contrast lactate was significantly higher in the mutant 

than wild-type. Lactate is one of the main sugar fermentation products of E. coli, produced by 

hydrogenation of pyruvate. Moreover, the aromatic amino acid phenylalanine and other amino 

acids, such as leucine, valine and alanine that are all the pyruvate family of amino acids were 

produced more by the adapted mutant than by the wild-type (Figure 4.4 B). Therefore, the 

evidence of increased production of lactate with concomitant increase of the pyruvate family 

of amino acids in the adapted mutant strain JM109 indicated a possible metabolic shift towards 
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fermentation. If this is the case, this may well explain why the adapted mutant strain grew 

slower than the wild-type even without thymol. 

 

Figure 4. 4 Wild-type and adapted mutant of strain JM109, (A) S-line plot wild-type (bottom) 

and adapted mutant strain (top). (B) partially assigned 700 MHz  1D spectra of wild-type 

(black) and adapted mutant strain (red) 

 

Having identified metabolic differences between JM109 and its adapted mutant grown 

in M9 without thymol, we next examined the metabolic effect of thymol on both strains. A 

potential confounder of the data was the presence of high levels of ethanol in both experiments 

as thymol was dissolved in ethanol and this molecule was therefore detected as a common 

feature in both strains. Thus, the production of ethanol by either strain would be masked by the 

excess already in the medium. In E. coli wild-type (Figure 4.5 A), the end products of glucose 

metabolism featured again (Figure 4.5 A, B) but interestingly fumarate and lactate were also 

observed. In contrast, lactate was observed but at reduced concentrations along with acetate in 

thymol treated adapted mutant (Figure 4.6) suggesting slower growth in thymol possibly due 

to a shift from aerobic respiration to fermentation.  
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Figure 4. 5 Wild-type JM109 control and treated with thymol. (A) S-line plot wild-type (top) 

and treated bottom). (B) partially assigned 700 MHz  1D spectra of wild-type (black) and 

treated (red). 

 

Figure 4. 6 Adapted mutant JM109 control and treated with thymol. (A) S-line plot of adapted 

mutant JM109 (top) and treated (bottom). (B) partially assigned 700 MHz  1D spectra of 

adapted mutant JM109 (black) and treated (red). 
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4.3.5 Sequencing 

Having established a non-reverting and therefore stable thymol tolerant derivative of 

JM109, we sequenced its genome to compare it to its parental JM109 in an attempt to identify 

mutations that may contribute to thymol tolerance. Results (Figure 4.7) show that the parent 

and derivative tolerant strains both aligned to JM109. There were some major differences that 

could be ascribed to contig assembly and some regional inversions. The mutant strain 

harboured a JM109 backbone and was therefore a true derivative. Therefore, any mutations in 

specific genes are likely to be those that generate the phenotype observed. A mutation was 

identified in the acrR gene that encodes a repressor of AcrAB, which is a multidrug efflux 

pump. The mutation was a nonsense mutation converting an arginine residue at position 107 to 

a stop codon in the 215 amino acids long AcrR protein. The location of the mutation in acrR 

was a C to T transition at position 486079 bases (gene size 485761-486408, locus tag="b0464") 

and abolishes a conserved amino acid residue in the TetR domain C-terminal region. The other 

possible significant change was an Arginine to Cysteine amino acid change (R to C) at residue 

118 in the ribonuclease G protein. The position of this mutation in the rng gene is -3397444: 

rng (gene location 3396326-3397795 [reverse orientation], locus tag="b3247"). A visualisation 

of the mutation on the nucleotide level in an alignment of MG1655, JM109 wild-type and the 

adapted mutant of JM109 with the effect it has on protein translation is shown in appendix 6. 

Furthermore, an IS5 transposase gene had multiple point mutations not affecting amino acid 

sequence, and the F-plasmid was missing in the mutant strain. 

The data present a tantalising hypothesis that efflux is a mechanism associated with 

tolerance to thymol. In many ways, this is an entirely plausible interpretation as the AcrAB 

efflux pump is known to pump out many toxic chemicals from the bacterial cell including 

antibiotics (Sun et al., 2014; Venter et al., 2015). Therefore, to test this hypothesis, different 

concentrations of thymol were used in growth experiments with wild-type MG1655 strain and 
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MG1655 acrB (both were provided by colleagues at Birmingham University Prof Laura 

Piddock and Dr Mark Webber). The hypothesis was that if the AcrAB efflux pump is associated 

with thymol tolerance by pumping thymol out of the cell, a knock out mutant incapable of 

synthesising the pump would be ‘super-sensitive’ to thymol. After exposure to different 

concentrations of thymol in culture (same protocol used to compare JM109 wild-type and its 

thymol tolerant derivative strains), growth curves show strain MG1655 was relatively more 

sensitive to thymol than JM109 but more significantly, that its acrB mutant was highly sensitive 

to thymol as hypothesized (Figure 4.8 A, B). 

 
 

Figure 4. 7 Comparison of the JM109 wildtype strain genome with the JM109 mutant genome, 

using Mauve multiple alignment program. The black arrows indicate contigs present in the 

wildtype strain, absent in the mutant. The red lines indicate the contig boundaries, and the red 

arrow indicates a difference within a contig. 

 

 
Figure 4. 8 Compares the effect of high concentrations of thymol between the E. coli MG1655 

(A), and mutant acrB (B). 
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4.4 Discussion 

 E. coli JM109 exhibited acquired tolerance to thymol after exposure to increasing sub-

inhibitory concentrations of thymol. The increased tolerance to thymol remained after several 

successive passages under non-selective conditions, suggesting that in E. coli this tolerance to 

thymol could be the result of genetic mutation(s). These conclusions are in agreement with 

previous studies reported by others (Chung et al., 2006). It was anticipated that if such tolerant 

mutants arose, genome sequencing would identify at least in part the mechanisms of thymol 

tolerance and perhaps more importantly insights into the biochemical management of thymol 

assault. In this study, many cycles of exposure to increasing concentrations of thymol was 

required to select stable mutants. However, a point should be made that ‘high’ tolerance was 

only slightly more than a doubling of the MIC.  

 The wild-type and adapted mutant E. coli were grown in the presence and absence of 

thymol for comparison. It was noted that the adapted mutant E. coli JM109 had extended lag 

and exponential phases and significantly reduced yield without thymol. This indicated that the 

adapted mutant strain was slower to grow even in the absence of thymol. It was surmised then 

that accumulation of mutations that gave increased tolerance to thymol were however, 

detrimental to growth. Whether this would be true of other tolerance associated mutations 

would need investigation. 

 Another observation was that wild-type non-adapted E. coli had an extended lag 

phase in the presence of sub-lethal concentrations of thymol. It is understood that the individual 

bacteria within a population adjust to a new environment before starting exponential growth. 

Several factors effect during this phase such as physiological history of the cells, the precise 

physiochemical status of cells and the growth medium (Swinnen et al., 2004).  In a previous 

study (Skandamis et al., 2001)  determined that the presence of oregano essential oils caused 

an increase in the lag phase and a decrease in the maximum growth rate of E. coli O157:H7. In 
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addition, Eucalyptol which is a compound obtained from EOs extended the lag phase of E. coli 

O157:H7 (Zengin and Baysal, 2014). It is known that the lag phase depends on the new 

environment, and in these studies and those cited above it is most evident that cells inoculated 

into media containing sub-lethal concentrations of thymol or other EOs require much time to 

adjust before growth commences. These findings strongly suggest that gene regulatory 

processes may be coming into play perhaps to upregulate systems that detoxify thymol or 

prevent entry, or increase fatty acid synthesis for repair of cell membranes and so forth. Equally 

some genes encoding such functions as porins may be switched off. The exponential phase of 

the wild-type E. coli was extended with sub-lethal concentrations of thymol and final yields 

reduced. Moreover, the adapted mutant E. coli did not reach stationary phase after 20h which 

meant the cells were still in exponential phase after more than 20 h. These observations raise 

important points. First, wild-type E. coli can survive and grow, albeit poorly in sub-lethal 

concentrations of thymol which may indicate that in more complex environments such as the 

chicken gut, they will not be so competitive. This however, depends upon the impact of thymol 

on the rest of the gut population: an area for further study for which introductory studies were 

undertaken in Chapter 5.  The second point is that the adapted mutant would appear to be 

equally disadvantaged even though better able to withstand the stress of thymol. Is it possible 

that mutations that reduce growth rate are protective toward thymol? Also, it is known that the 

fraction of a genetically uniform sensitive bacterial population survives exposure to antibiotics 

or phytochemicals do not all die at the same rate (Balaban et al., 2004). It is possible then that 

the sensitive un-adapted cells are growing quickly but dying more quickly whereas the adapted 

mutant is just growing more slowly and not dying so quickly. It may be posited that wild-type 

cells grow quickly and die quickly when exposed to thymol whereas the mutant grows slowly 

and, if this were to be the case, microscopic analysis of growing cultures may show this.  
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 Exposure to thymol was inhibitory conferring severe morphological changes in the 

cell wall and membrane of wild-type E. coli. However, SEM analysis revealed that the adapted 

mutant when exposed to thymol displayed few morphological changes relative to the non-

adapted wild-type cells. Exposure of non-adapted wild-type E. coli cells to sub-lethal thymol 

50µg l-1 resulted in the appearance of larger than normal uniform cylindrical shaped cells with 

corrugated surfaces, with evidence of collapsed cells and perhaps interestingly poor septum 

formation. These data suggest that thymol render bacteria cell membranes permeable, which 

was similar to other studies that used EOs (Burt and Reinders, 2003; Zengin and Baysal, 2014). 

The effect of thymol and carvacrol which are major constituents of oregano EO is to damage 

the cell membrane (Lambert et al., 2001). Similar  studies done by Skandamis and  colleagues 

observed that the  minimum concentration of oregano essential oil on E. coli O157:H7 cells 

coagulated the cytoplasmic constituents, while the membrane structure tended to be irregular 

and rough  (Skandamis et al., 2001). Given these findings it may be postulated that thymol 

disrupts cell membrane structure and function including septum formation which is essential 

for cellular division and population growth. It maybe surmised also that the cellular response 

maybe to subvert metabolism away from other processes toward membrane repair and fatty 

acid synthesis. Studies by Karatzas and others and Randall and others (Karatzas et al., 2007; 

Randall et al., 2004) showed that strains exposed to and selected as resistant to various 

disinfectants possessed fabI mutations: a gene involved in the regulation of fatty acid 

biosynthesis, a major component of cell membranes. Also, these studies showed other 

mutations arose that generated multiple antibiotic resistance, notably upregulation of efflux, as 

shown in the studies here. 

Although the study of single identified metabolites gives a first clue as to the 

perturbation induced by thymol on the cell metabolism, it was clear that the overall picture of 

the cellular processes affected by exposure and training to adaptation to thymol was captured 
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by analysing the metabolome with pattern analysis tools. However, for these studies the focus 

was on products that were extracellular, rather than the entire cytoplasm for which the 

reasoning was twofold. First, this approach would capture end products of metabolism that may 

be perturbed by thymol stress and second gain evidence for general ‘leakage’ of the bacterial 

cells as thymol is considered to damage cell membranes (Burt, 2004) and therefore cell 

integrity. The metabolomic approaches, used here, have been shown in the work of others to 

be a valuable tool to describe the mode of action of different antibiotics thereby driving drug 

discovery strategies of identification, modification and evaluation (Bleicher et al., 2003; 

Halouska et al., 2012). Recently, a study was done to evaluate the metabolic profiles of E. coli 

treated with nine antibiotics with intracellular and extracellular small metabolites separated in 

fingerprint and footprint analyses to provide complementary information (Hoerr et al., 2016). 

In order to understand the main sources responsible for the changes associated to each sample, 

the careful inspection of the loading of first components were performed as shown in Figure 

4.5. Those results indicated the importance of each peak in the loading plot was influenced by 

the average amount of the corresponding metabolite in all the replicate samples. Those found 

to be of particular importance along the plot of wild-type were formate, succinate and acetate 

that are organic acids present in or at the end of the TCA cycle respiratory pathway. However, 

the adapted mutant had decreased levels of these metabolites and significantly increased 

lactate. The hypothesis arising is that increased tolerance to thymol is associated with of a shift 

away from respiration to fermentation in the adapted mutant strain. A previous study by (Cox 

et al., 1998) observed the inhibition of respiration in E. coli and stimulation of the leakage of 

intracellular K+ by tea tree oil. In another study that used vanillin, which is a phenylpropene 

phenolic aldehyde, it was observed that the mechanism of antibacterial action of vanillin was 

associated with inhibition of respiration in E. coli and L. innocua, whilst in some lactic acid 

bacteria it disrupted K+ and pH homeostasis (Fitzgerald et al., 2004). Collectively the findings 
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of these authors and from the study reported in this thesis, the response of bacteria exposed to 

phenolic compounds is a slowing of growth associated with a shift from respiration to 

fermentation as indicated by detecting increasing lactate concentrations. Lactate was already 

present in the all samples tested, suggesting some fermentation, possibly through hypoxia, 

occurred perhaps during growth or between harvesting and extraction. The adapted mutant 

strain had high levels of both lactate and the pyruvate family of amino acids. This is compelling 

evidence of a switch from respiration to fermentation as part of the strategy of E. coli to survive 

assault with polyphenols. It would have been worthwhile to assess if K+ ions leaked from the 

bacteria exposed to thymol and will considered in any future work. There was little evidence 

of other small metabolites leaking suggesting at the concentration of thymol used, a modest 

50ug l-1, cell membrane damage was possibly insignificant. Figure 4.9 shows the overall 

picture of the respiration shifting to fermentation metabolic leading to increasing amount of 

lactate instead of decreasing amount of respiration end products. 

 
Figure 4. 9 The proposed overall picture of the shift of respiration to fermentation leading to 

increasing amount of lactate and the pyruvate family of amino acids and decreased end 

products of respiration. 
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Whilst strains treated with thymol did not show the same reaction as the adapted mutant 

E. coli, exposure to thymol gave evidence that suggested E. coli slowly shift to ferment sugar 

as carbon source rather than respire. Recently, a study done by (Picone et al., 2013)  measured 

the metabolome of E. coli 555 by 1H NMR spectroscopy at different concentrations of carvacrol 

and they found that, although the adaptation to carvacrol occurring at sub-lethal doses was 

different from that occurring at higher doses, they showed that towards the higher 

concentrations of carvacrol there was shift from respiration to fermentation. 

The body of data from this study and of others suggest that phenolic compounds disrupt 

respiration in E. coli. Whilst there is no direct evidence for the mechanism of action, it is known 

that phenolic compounds are highly lipophilic and integrate in the cell membranes, the site of 

electron transfer in aerobic respiration. It is a tantalising possibility that integration in the cell 

membrane of phenolic compounds disrupts electron transfer that is essential for respiration 

with many proteins associated with electron transport are embedded in the cytoplasmic 

membrane. For example, Hexachlorophane, a phenolic biocide, inhibits the membrane-bound 

part of the electron transport chain at low concentrations and at higher concentrations, it 

induces leakage of intracellular contents from Bacillus megaterium (Frederick et al., 1974; 

Joswick et al., 1971). The change in membrane fluidity may disturb the respiratory chain that 

was observed with the antibacterial activity of flavonoids (Mishra et al., 2009; Haraguchi et 

al., 1998). In addition, it was reported that the permeability of bacterial cell wall and cell 

membranes are affected by myrtle extract and EOs, by disruption in the membrane function 

such as electron transfer, enzyme activity or nutrient absorption (Amensour et al., 2010). This 

is an important hypothesis that needs investigation in future work.  

 The result of sequence analysis of the adapted mutant showed a mutation in the acrR 

gene encoding a repressor of the AcrAB efflux pump. The acriflavine resistance regulator 

(AcrR) is a local transcription factor that regulates the expression of the AcrAB-TolC multidrug 



135 
 

efflux pump.  AcrR modulates the expression of acrRAB genes (Ma et al., 1996) and the 

associated AcrAB-TolC multidrug efflux pump (Lee et al., 2014). The multidrug efflux pump 

AcrAB-TolC gene is part of over 60 genes activated by the global transcriptional regulator 

MarA (Ruiz and Levy, 2010).  The acrR gene is divergently located 141bp upstream of the 

acrAB operon (Ma et al., 1996) and encodes a 215-amino acid transcriptional repressor of the 

TetR family. The N-terminal domain of AcrR contains a DNA-binding helix-turn-helix (HTH) 

motif, and the C-terminal domain has a unique sequence that is predicted to bind ligands 

(Ramos et al., 2005). The binding of drugs to the C-terminal domain of AcrR triggers a 

conformational change in the N-terminal DNA-binding region, resulting in the release of AcrR 

from DNA and allowing transcription from its cognate promoter (Su et al., 2007). In the AcrR 

deleted strains (ΔacrR) the intracellular accumulation was lowered by enhanced action of the 

AcrAB-TolC efflux pump, which is involved in exporting a wide range of toxic compounds: 

these compounds might be antibiotics, disinfectants, organic solvents and phytochemicals (Ma 

et al., 1995; Tsukagoshi and Aono, 2000). In this study, we found that the acrR gene was 

inactivated, astop codon creating a truncated product, that resulted in the increased function of 

AcrAB-TolC efflux pump clearance of thymol highlighted by sustained growth of JM109 

mutant in higher concentrations of thymol (Figure 4.10). The AcrAB is a drug efflux pump 

that is homologous to other efflux systems (Ma et al., 1993) and its expression is regulated to 

some extent by the repressor AcrR (Ma et al., 1996). AcrB is an efflux transporter belonging to 

the resistance-nodulation-cell division family (Saier et al., 1994) and AcrA belongs to the 

membrane fusion protein family (Dinh et al., 1994) that is thought to connect the transporter 

protein physically to an outer membrane channel so that the drugs can be exported directly into 

the external medium by passing the outer membrane barrier, modified figure by  (Venter et al., 

2015) Figure 4.11. 
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Figure 4. 10 Illustrates a graphic representation of wild type thymol sensitive JM109 (A) due 

to the active repression of acrAB gene transcription by the action of active AcrR inhibiting the 

binding of transcription factors (TF). Whereas in mutant (B), thymol resistant JM109 the acrR 

gene has a nonesense mutation resulting in a defective AcrR protein of 107 amino acids long 

that can no longer suppress acrAB transcription allowing the binding of potent transcription 

factors to produce more AcrAB proteins to construct efflux pumps. 

 

 

 

  

 Furthermore, efflux pumps AcrAB are thought to produce a multiprotein complex 

traversing the cytoplasmic as well as the outer membrane (Ma et al., 1994; Nikaido, 1994). 

The absence of one or two of the component proteins such as in our MG1655 acrB mutant 

strain will result in the formation of a defective complex resulting sustained accumulation of 

thymol in the cell. In addition, thymol has been shown to increase the permeability of bacterial 

membranes due to its lipophilic nature and result in macromolecules leakage, and possibly 

allowing leakage of drugs into the cells (Trombetta et al., 2005). Therefore, sensitivity to low 

Figure 4. 11 A hypothetical mechanism for AcrAB 

pumps. The complex consists of three proteins which 

span the cytoplasmic membrane(CM), the outer 

membrane(OM), and the periplasmic space. The inner-

membrane protein(IMP) AcrB, is responsible for 

substrate specificity and catalyses pH dependent drug 

transport. Examples for outer membrane protein(OMP) 

is TolC and the periplasmic membrane fusion protein 

(MFP) is AcrA connects the IMP and the OMP. 
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concentrations of thymol might be the result of a defective efflux process. Moreover, it has 

been shown that thymol inhibits the ATP synthase and cell growth of E. coli resulting in slowed 

growth or bacterial senescence (Liu et al., 2017). In summary, our hypothesis was inactivation 

of acrR is effective in increasing the MICs of thymol. These results indicate that AcrAB plays 

an important role in survival against thymol. Therefore, the AcrAB efflux pump is involved in 

cellular responses to thymol. Most probably this mechanism in the comparative ‘resistance’ to 

thymol is the same mechanism created in response to the presence of antibiotics. Therefore, 

AcrAB efflux pump inactivation is a primary candidate to increase bacterial sensitivity to 

antibiotics/ phytochemicals. It would be interesting to test this hypothesis by using specific 

efflux inhibitors such as phenylalanine arginyl β-naphthylamide (PAβN). It would be 

anticipated that efflux inhibitors would increase sensitivity to thymol (Askoura et al., 2011). 

 The other mutation was in the rng gene encoding ribonuclease G (RNase G) that was 

a non-synonymous amino acid change (R to C). RNAse G functions in mRNA decay, tRNA 

and rRNA cleavage and maturation in conjunction with other RNase E and G family 

endoribonucleases (Deutscher, 2006). E. coli RNase G was originally identified as an 

endoribonuclease involved in the maturation of 16S rRNA (Li et al., 1999). RNase G has a 

high similarity with the N-terminal catalytic domain of RNase E. Both RNase E and G attack 

substrate RNA in a single stranded AU-rich region (Lin-Chao et al., 1994; Tock et al., 2000) 

and prefer substrates with mono-phosphorylated 5’-ends to those with tri-phosphorylated 

termini (Mackie, 1998). E. coli RNase G was also involved in the degradation of adhE mRNA 

encoding fermentative alcohol dehydrogenase (Kaga et al., 2002; Umitsuki et al., 2001). The 

mutation discovered in these studies is located in the S1-like RNA-binding domain possibly 

have resulted in the noted slowed growth confirming previous studies that mutations in this 

domain results in slowed growth of E. coli cultures (Chung et al., 2010). 
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 A point that needs to be raised here is the fact that at least two mutations were observed 

in the adapted mutant. Despite the presence of these ‘protective’ mutations the bacteria were 

very slow growing, and it could be argued that these bacteria would be uncompetitive in the 

environments in which these bacteria are found. That two mutations and possibly others that 

bioinformatics analysis has yet to confirm suggest that exposure to thymol will not readily 

select resistant mutants in the ‘real world’: remember, in these studies the bacteria were 

exposed to thymol under highly artificial circumstances and in mono-culture. It may be argued 

therefore that thymol and other EOs used in complex environments such as in chicken feed 

may pose little or even no threat of generating resistance unlike antibiotics. Whilst tempting to 

speculate EOs could be the new antibiotics of the future, but further work is needed in this area. 
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CHAPTER 5: THE IMPACT OF THYMOL ON THE GUT 

MICROBIOME OF THE CHICKEN: AN IN VITRO STUDY 

5.1 Introduction  

The gastrointestinal tract of poultry is densely populated with various microbes, 

primarily consisting of complex communities of bacteria colonising different parts of the gut: 

the most densely colonised being the caeca and lower gut (Zhu et al., 2002). It has been long 

known that the microbiota has a major and some consider predictable impact on host health 

and nutrition, specifically with regard to having an important role in the growth and health of 

the host (Brisbin et al., 2008; Stanley et al., 2014) . The gastrointestinal tract consists of 

different organs; proventricularus, gizzard, small intestine (duodenum, jejunum and ileum), 

caecum and large intestine. The diversity of the microbiome and the number of anaerobic 

bacteria has been found to be at the greatest density in the caecum (1010 CFU/g intestinal 

content) of the entire digestive tract (Ranjitkar et al., 2016; Bjerrum et al., 2006). Here the 

environment is conducive to bacterial fermentation with a relatively low oxygen partial 

pressure if not anaerobic due to bacterial oxygen scavenging and decreased host derived 

enzymes and bile salt concentrations that create conditions suitable for a variety of gut adapted 

bacteria (Gabriel et al., 2006). In addition, the caeca are a pair of blind sacks which fill from 

passage of luminal content from the large intestine and consequently have a rather slow passage 

rate: that said the caeca often actively eject their contents once every 24h or so. Of the 

compartments of the poultry gut, the most studied intestinal microbiome of poultry is indeed 

from the caecal microbiome (Pan and Yu, 2014; Waite et al., 2012; Mohd Shaufi et al., 2015; 

Wei et al., 2013).  

The caecal microbiome is dominated by strictly anaerobic bacteria, many of which 

belong to unknown bacterial genera. Earlier culture-based studies have showed that the phylum 

Firmicutes and Bacteroidetes dominated the caecal microbiota (Salanitro et al., 1974; Mead, 
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1989; Park et al., 2017). However, using abundance estimates based on 16S rRNA gene 

sequences, a culture independent phylogenetic profiling tool, have given enhanced insights into 

the composition of the chicken caecal microbiome (Zhu et al., 2002; Wei et al., 2013). These 

recent studies have shown that from 12 bacterial phyla identified in both chicken and turkey, 

Firmicutes, Bacteroidetes, and Proteobacteria were the most prevalent phyla (Wei et al., 

2013). However, more than half of these bacteria belong to phylum Firmicutes especially the 

order Clostridiales (families Clostridiaceae, Lachnospiraceae and Ruminococcaceae  

(Bjerrum et al., 2006; Lu et al., 2003; Danzeisen et al., 2011; Ranjitkar et al., 2016)). The 

caecal microbiome is composed primarily of commensal bacteria although some pathogenic 

bacteria may be harboured there also that are controlled by many factors, such as host, age, 

diet, the existing microbiota (the Nurmi effect), commercial environmental conditions, 

management practices such as litter management, disinfection regimes between batches of 

birds, feed additives such as phytochemicals and so forth (Wei et al., 2013; Lu et al., 2003; 

Nurmi and Rantala, 1973). Frequent efforts, especially dietary intervention and litter 

management, have been attempted to modulate the intestinal microbiome to enhance feed 

conversion and gut health (Ruiz et al., 2008; Wang et al., 2016). However, few of these 

interventions have achieved consistent or sustainable improvement. 

The search for alternative products for pathogen control has emerged because of the 

continued use of antibiotics in poultry production. An increase in consumer awareness and 

interest in these issues has stimulated research to prudent antibiotic-use practices seeking 

acceptable replacements (Apajalahti, 2005). Non-antibiotic products include: probiotics, 

prebiotics, synbiotics (Gaggia et al., 2010), enzymes, phytobiotics (Yang et al., 2009) and EOs 

(Brenes and Roura, 2010), which may be useful in alternative production systems. An 

assessment of the changes in the intestinal microbiome community and interactions following 

treatment with these novel products are an important aspect of comparing the efficacy of 
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alterative products to antibiotics (Roberts et al., 2015; Janardhana et al., 2009). A few studies 

were done that demonstrated mixed results concerning the performance of EOs, such as 

oregano and thymol, with several of these studies suggesting little or no effect on chicken 

broiler performance (Brenes and Roura, 2010). Conversely, by investigating the diversity of 

the caecal microbiome community using DGGE of 16S rRNA gene PCR amplicons, Hume and 

others found coccidia species, and that the essential oils they used modulated the intestinal 

microbiome communities reducing coccidia. The birds were treated with anticoccidials and the 

antibiotic bacitracin, in addition to avoiding drastic shifts after a mixed challenge  (Hume et 

al., 2006). 

If the poultry industry is to transition from antibiotic use to alternatives it is recognized 

that a better understanding of the interactions of the intestinal microbiome with the host and 

with non-antibiotic products is required to further enhance poultry nutrition and gut health. 

Currently, the lack of satisfactory knowledge on the bacterial diversity in poultry intestines is 

considered one of the major knowledge gaps that hinder this transition. The knowledge of the 

microbiota host interaction with non-antibiotic products such as the use of prebiotics, 

probiotics, and phytochemicals could lead to an understanding of the effects on growth and 

health status. The investigation and characterization of the changes in the caecal microbiome 

that occur in chicken by using in-feed phytochemicals, for example thymol, may be done by a 

combination of in vitro experiments and in vivo trials. In vitro surrogate gut model experiments 

will provide information regarding the microbiota and may help explain and differentiate the 

extent of bioconversion processes mediated by the host itself (Jacobs et al., 2009; Bolca et al., 

2007a). From an ethical perspective, these in vitro studies should be performed prior to in vivo 

trials but one complication of in vitro gut models is their diversity, ranging from simple static 

models (batch culture fermentation) to advanced continuous models (gastrointestinal 

simulators). 
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Batch culture fermentation (static gut models) is basically a closed system using sealed 

bottles containing a slurry of caecal material that are maintained under anaerobic conditions. 

This system is relatively easy to operate and is cost effective, allowing for parallel screening. 

This model may be used primarily to evaluate the effects of thymol on chicken derived gut 

microbiota and to assess the environmental conditions and thymol concentration that favours 

or limits the caecal microbiome. Nevertheless, these closed systems are only adequate for 

simulating short-term conditions in the gut; long-term adaptations need more complex dynamic 

models such as whole gut model continuous flow models (Rowland et al., 2017). Given that 

little is known regarding the impact of any EO on the gut microbiota and because ethically it 

is essential to undertake in vitro studies prior to animal trials, it was considered appropriate to 

use simple static batch cultures to assess the impact of thymol on caecal gut microbiota and its 

metabolism. To do this, 16S rRNA population analysis and NMR metabolic analysis of static 

gut models collected at 5-time points over a 48h incubation period were performed. Although 

preliminary and far removed from the actual caecum of a live bird the data generated should 

provide some clues to possible outcomes that may be generated in vivo.  

5.2 Materials and Methods 

5.2.1 Chicken caecal batch fermentation model 

5.2.1.1 Thymol stock. 

Thymol was dissolved in ethanol 50% (v/v) to give a working stock solution of 5 mgl-

1. The stock was stored at 4˚C and used within 48 hours of making. Serial dilutions were made 

in fresh sterile VL medium to give 50 and 100 μg l-1 concentrations. 
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5.2.1.2 E. coli strains 

E. coli strain (APEC 18) stored at -80°C was grown on LB agar plates at 37°C for 16-

18 hours and colonies were picked into LB broth cultures and incubated aerobically with 

shaking at 150- 200 rpm at 37 °C for 16-18 hours. 

5.2.1.3 VL medium 

Viande-Leuvre medium (VL) was prepared in 1L. All solid ingredients (Table 5.1) 

were weighed in except hemin which was made into a solution by adding it to water and 

dissolving it with a couple of drops of NaOH (1M). The ingredients were dissolved in 900 ml 

of distilled water and after dissolution of all substrates the volume was made up to a final 

volume of 1L and sterilised by an autoclave (121oC 15min). Fresh stock solutions of Vitamin 

K and Resazurin were prepared separately by dissolving the reagents in water, and were filtered 

sterilised prior to adding them to the VL medium.  

Table 5. 1 VL medium for 1L  

No. Compounds Weigh/Volume 

1 Meat extract 2.5 g 

2 Glucose 2.5 g 

3 Tryptose 10 g 

4 Yeast Extract 5 g 

5 NaCl 5 g 

6 Haemin 0.05 g 

7 Vitamin K 10 ul 

8 L-Cysteine HCl 0.6 g 

9 Resazurin solution (0.025g/100ml) 4 ml 
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5.2.1.4 Collection of caecal content and setting up the closed fermentation model 

Caecal samples were collected from 6 Ross 308 male broilers at 15 days of age that had 

been housed, fed and managed indoors under standard commercial conditions at CEDAR (The 

University of Reading Veterinary Officer). The broilers had been fed on ad libitum, a basal 

starter diet from hatching to ten days of age prior to their transfer to a grower diet from day 10 

onwards. Six birds were selected at random and killed by cervical dislocation. The birds were 

opened and the gut exteriorised and the caeca removed.  Each caecum was squeezed out 

between the thumb and forefinger of gloved hands, so its content was placed into a Duran 

bottle. All samples were collected together. Ten grams of caecal contents were weighed and 

added to 30 ml of VL medium (25% dilution), and transported to the laboratory in an anaerobic 

jar. These procedures were performed as quickly as possible using VL medium purged of 

oxygen in order to reduce loss of strictly anaerobic bacteria. Inside an anaerobic chamber 

(Whitly MG1000 anaerobic workstation) operating on a cylinder of conventional anaerobic gas 

mixture (80% N2, H 10% and 10% CO2), the caecal slurry was divided into 4 separate vessels 

so that each one contained 10 ml of the caecal slurry. The pH was adjusted to between 5.8 and 

6.0 using 1M NaOH/HCl solution for each vessel. Four treatments were prepared (Table 5.2). 

The model was run as a closed-fermentation system for 48 hours within the anaerobic cabinet 

and samples (1.5 ml) were collected after (0, 4, 8, 24, and 48 hours) into a sterile 1oz screw 

cap bottles that were maintained in the cabinet briefly prior to storage at -80˚C. In addition, the 

pH of the slurry was checked when samples were collected at every time point by pH indicator 

strips.  
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Table 5. 2 caecal slurry cultures 

No. Culture sample 
Thymol final 

concentration  

E. coli culture 

strain 18  

1 Control (negative) 0 0 

2 Control (positive) 0 5.5x105 

3 Low thymol 50 µg l-1 5.5x105 

4 High thymol 100 µg l-1 5.5x105 

5.2.2 16S rRNA sequence of the gut population 

5.2.2.1 DNA extraction  

DNA was isolated from each caecal culture sample using a PowerSoil® DNA Isolation 

kit (MO BIO, Carlsbad, CA, USA) according to the manufacturer’s protocol. In brief, 1 ml of 

caecal culture sample was added to a Power Bead tube and gently vortexed to mix. To the 

homogenised solution, 60 µl of solution C1 was added and vortexed for 30 seconds. Solution 

C1 is a lysis buffer and contains SDS which breaks down lipids and fatty acids in the cell 

membrane. The tubes were then placed in a multi-tube vortex (VWR DNX-2500) at maximum 

speed for 10 minutes, before centrifuging for 30 second at 14,000xg. The supernatant was 

transferred to a clean 2 ml microfuge tube and 250 μl of Solution C2 was added and vortexed 

for 5 seconds followed by incubating at 4°C for 5 minutes. Solution C2 removes inhibitors 

from the sample. The sample was centrifuged at 14,000xg for one minute at room temperature 

and 600 μl of supernatant was transferred to a new 2 ml microfuge tube. To the supernatant, 

200 μl of solution C3 was added, inverted twice and incubated at 4°C for 5 minutes followed 

by a one-minute centrifugation at 14,000xg. Solution C3 is another inhibitor removal reagent. 

The 750 μl of supernatant was added to a 2 ml tube containing 1200 μl of solution C4 and the 

tube was vortexed for 5 seconds. Solution C4 contains a high concentration of salt which allows 

the DNA to bind to the column. To a spin filter membrane, 675 μl of the solution was applied 

and centrifuged for one minute at 14,000xg. This step was repeated until the full 1.2 ml and the 
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supernatant had passed through the column. Subsequently, 500 μl of solution C5 was applied 

to the membrane and centrifuged for 30 seconds at 14,000xg. Solution C5 is an ethanol wash 

that reduces the salt concentration and removes other contaminants. The flow-through was 

discarded before centrifuging for a further one minute at 14,000xg to ensure all residual 

solution C5 was removed. The collection tube was replaced with a sterile 1.5 ml microfuge 

tube before 100 μl of solution C6 was pipetted onto the centre of the spin filter and incubated 

for two-five minutes at room temperature followed by centrifugation for 30 seconds at 

14,000xg. Solution C6 is a low salt elution buffer and therefore the DNA is removed from the 

membrane. Eluted DNA was stored at -80˚C until required. The DNA samples recovered from 

the extraction process were quantified using a Nanodrop ND-1000 spectrophotometer 

(NanoDrop technologies, USA). The Nanodrop pedestal was cleaned by pipetting 2 μl of dH20 

onto it and wiping with Whatman filter paper. The Nanodrop was blanked with 1μl of 

appropriate solution C6 before pipetting 1 μl of sample and taking a reading. The concentration 

(OD 260 nm), 260:280 nm ratio and 260:230 nm was recorded and considered acceptable for 

downstream applications if ratio values were 1.8 ± 0.15 at a minimum concentration of 10 

ng/µl-1. All DNA samples were normalised to standard concentration of 10 ng/ µl-1, aliquoted 

and loaded into a 96-well plate. 

5.2.2.2 Next Generation Sequencing (NGS) 

DNA samples for 4 treatments collected at 5-time points were submitted to the Animal 

and Plant Health Association (APHA, Surrey, UK) Genomic Services and Development Unit 

(GSDU) for next generation sequencing (NGS) using Illumina sequencing technology to 

sequence genomic DNA or PCR amplicons. Aliquots of extracted DNA were amplified with 

universal primers for the V4 and V5 regions of the 16S rRNA gene using primers U515F (5’-

GTGYCAGCMGCCGCGGTA-3’) and U927R (5’-CCCGYCAATTCMTTTRAGT-3’), 

which were designed to permit amplification of both bacterial and archaeal ribosomal RNA 
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gene regions, whilst providing the best possible taxonomic resolution based on published 

information (Wang and Qian, 2009). Forward and reverse fusion primers consisted of the 

Illumina overhang forward (5’-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG-3’) 

and reverse adapter (5’-GTCTCGTGGGCTCGGAGATGTGTAATAAGAGACAG-3’) 

respectively.   

Amplification was performed with FastStart HiFi DNA Polymerase (Roche 

Diagnostics Ltd, UK) using the following cycling conditions: 95 °C for 3 min; 25 cycles of 95 

°C for 30 s, 55 °C for 35 s, 72 °C for 1 min; followed by 72 °C for 8 min.  Amplicons were 

purified using 0.8 volumes of Ampure XP magnetic beads (Beckman Coulter).  Each sample 

was then tagged with a unique pair of indices and sequencing primers, using Nextera XT v2 

Index kits, and 2x KAPA HiFi HotStart ReadyMix using the following cycling conditions: 95 

°C for 3 min; 12 cycles of 95 °C for 30 s, 55 °C for 30 s, 72 °C for 30 s; followed by 72 °C for 

5 min.  Index-tagged amplicons were purified using 0.8 volumes of Ampure XP magnetic beads 

(Beckman Coulter). The concentration of each sample was measured using the fluorescence-

based Picogreen assay (Invitrogen). Concentrations were normalized before pooling all 

samples, each of which would be subsequently identified by its unique MID. Sequencing was 

performed on an Illumina MiSeq with 2 x 300 base reads according to the manufacturer’s 

instructions (Illumina Cambridge UK).  

5.2.2.3 Data Analysis 

 Sequence reads were processed according to the microbiome-helper pipeline 

(https://github.com/mlangill/microbiome_helper/wiki/16S-standard-operating-procedure).  

Paired-end reads were merged based on overlapping ends using PEAR (http://sco.h-

its.org/exelixis/web/software/pear/), before filtering the data for base-calling quality and 

amplicon length with a cut-off of 97%.  The processed sequences were then classified using 
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the pick open reference and were assigned to operational taxonomic units (OTUs) implemented 

in QIIME v1.9.1. Representative sequences for each OTU were assigned to different bacterial 

taxonomy levels-phylum, class, order, family and genus by using Greengenes 16S rRNA gene 

database (http://greengenes.secondgenome.com/). The resultant distribution of OTUs across the 

multiple samples was further analysed using QIIME v1.9.1 to summarise their distribution and 

explore alpha and beta diversity. Alpha diversity was explored by plotting the number of 

sequences per sample against Chao1 values, and beta diversity was explored through principal 

component analysis (PCA) in MATLAB R2015b.  

5.2.3 1H NMR 

5.2.3.1 Preparing culture supernatants (footprinting) 

The supernatants of 48 samples from the caecal fermentation model experiment 

collected from 3 technical replicates of 4 treatments at 4 different times points (0, 8, 24 and 48 

h) were defrosted from -80 C and vortexed (time point 4 was removed for convenience and as 

we found in the NSG result not much change in this time point). Samples (400 l) were 

transferred to clean microfuge tubes and each sample was buffered with a 200l phosphate 

buffer Table 5.3, vortexed and centrifuged at 14,000xg for 10 minutes. A total of 550 l of 

each supernatant was transferred into 5mm internal diameter NMR tubes on the same day for 

analysis. 

Table 5. 3 Phosphate buffer composition for 500 ml of solution 

Compounds Weigh/Volume Utility 

1 mM TSP 0.172 g Standard 

Na2HPO4 28.86 g Buffer 

NaH2PO4 5.25 g Buffer 

NaN3. 0.193 g Antimicrobial 

D2O 1L NMR lock 

 

http://greengenes.secondgenome.com/
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5.2.3.2 NMR acquisition and processing 

1H NMR spectra were acquired on a Bruker 700 MHz (Bruker Avance III HD, UK), an 

automatic tuning-matching unit at 298 K, and an automatic sample changer. To facilitate 

compound identification, 1D spectra were acquired using standard Burker 1D nuclear over 

Hauser enhancement spectroscopy (NOESY) presaturation pulse sequence on selected samples 

(Kumar et al., 1980; Nicholson et al., 1995). After acquisition, spectra were manually phased, 

processed in order to affine spectrum phasing calibration on TSP at δ 0.00 ppm and baseline 

correction using MestReNova® software. Stacked spectra were imported into MATLAB 

(R2015b) MathWork ®software where spectra were digitalised between δ 0.5-10 ppm, in order 

to delete useless information and avoid bias of the data; the region containing the water peak 

was deleted between δ 4.8 and 5.1. Peak assignment was done using online open access 

databases (chenomx® and HMDB) and 1D Spectra (for spectroscopy correlation) for molecule 

identifications. Chenomx® Software was also used for quantification. 

5.2.3.3 Data analysis  

For footprinting analysis, 48 samples were prepared respectively using 3 technical 

replicates as described in section 5.2.3.1. Multivariate statistical analysis was evaluated using 

principal coordinate analysis (PCA) plots and analyses of the loading of the principal 

components were done to evaluate the metabolic variations existing between the treatments. 

Orthogonal projections to latent structure (OPLS) regression performed a minimum of 3 

replicates per treatments were used to analysis the data. PLS regressions were run in between 

each group for each time. OPLS R2Y values around 0.8 were indicative of a good model, with 

Q2 values of around 0.5 indicating good predictive ability. PCA score plots and OPLS 

correlation plots were also produced to visualise differences in the metabolome between 

treatment groups. Loading and contribution plots were extracted to reveal the variables that 
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bear class discriminating power. Moreover, to improve model visualization and interpretation, 

S-line plots were extracted to detect the metabolites that influence variable selection as they 

display the overall importance of each variable (X) on all responses (Y) cumulatively over all 

components.  

5.3 Results 

5.3.1 Next Generation Sequencing (NGS) 

5.3.1.1 Change in caecal Bacterial Alpha and Beta Diversity 

 Genomic sequences from all 20 samples were assigned to 92,572 operational 

taxonomic units (OTU) using a 97% similarity cut off. The diversity of the gut microbiota 

within a community was measured with alpha diversity indices, in particular the number of 

OTUs. Rarefaction curves of alpha and chao1 diversity of the observed OTUs are shown in 

Figure 5.1 (A and B) respectively, but Shannon diversity indices are not shown. 

 

Figure 5. 1 Alpha diversity rarefaction curves measuring (A), and chao1 (B) observed OTUs 

with respect to sequence accumulation per sample of four treatment segments. Negative (neg), 

positive control (0), low thymol (50) and high thymol concentration (100). The alpha diversity 

plot for each segment represents the pooled data for five sampling hours (0,4,8, 24, and 48). 

 

A B 
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There were no differences between previous plots. Likewise, the bacterial diversity 

between samples, as demonstrated with PCA based on an unweighted (qualitative) 

phylogenetic UniFrac-based distance matrices (beta diversity) showed no significant difference 

in the total microbiota composition between the four treatments as shown in Figure 5.2 (A). 

However, beta diversity metrics clearly indicated that the difference in bacterial communities 

observed was related to the time of incubation Figure 5.2 (B) and not the treatment. The same 

result was revealed when weighted (quantitative) phylogenetic UniFrac distance matrix was 

plotted Figure 5.3. There was no treatment effect on beta diversity of the bacterial microbiota 

Figure 5.3 (A), and the differences observed were related to time Figure 5.3 (B). 

 

Figure 5. 2 Principal coordinate analysis plot of unweighted pairwise UniFrac distances beta 

diversity showing clustering of bacterial groups (A). Four treatments were performed (white, 

negative control; light green, positive control; green, low thymol; dark green, high thymol 

concentration), plots for each treatment represent the pooled data of five sampling time points 

(0, 4, 8, 24 and 48). (B) Five-time points (white, zero time; light green, 4; grass green, 8; green, 

24 and dark green 48 hours). The plot for each treatment represents the pooled data for four 

treatments (negative control, positive control, low thymol and high thymol concentration). 

A B 
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Figure 5. 3 Principal coordinate analysis plot of weighted pair-wise UniFrac distances beta 

diversity showing clustering of bacterial groups, (A) four treatments (white negative control, 

light green positive control, green low thymol and dark green high thymol concentration), the 

plot for each treatment represents the pooled data of five sampling time points (0, 4, 8, 24 and 

48 hours). (B) Five timepoints (white zero time, light green 4, grass green 8, green 24 and dark 

green 48 hours). The plot for each treatment represents the pooled data for four segments 

(negative control, positive control, low thymol and high thymol concentration). 

5.3.1.2 Phylum level changes of caecal bacteria 

The total number of sequence reads defined by taxonomic classification of OTUs for 

each treatment at each time point was analysed and the composition determined at phylum, 

class, order, family and genus levels. Relative abundances at the phylum level (Figure 5.4) 

were classified into 4 phyla in all treatment groups, Firmicutes were the predominant phylum 

throughout all cultures regardless of treatment or time, representing ~87% at the start and 

increasing to 90% in thymol treatment, and 91% in both negative and positive control after 48 

hours. The second most abundant phylum was Tenericutes, which started with ~11% in all 

treatments and after 48 hours had decreased in all treatments at differing percentages. The 

negative control was reduced to 7.3% followed by the positive control 8.2%, thymol 50 µg 

8.8% and thymol 100 µg 9% respectively (data not shown). The third phylum was 

Proteobacteria which includes the family Enterobacteriaceae and the genus E. coli. We added 

an apparently thymol sensitive E. coli to the treatments to test the effects of thymol on selection. 

However, Proteobacteria was the only phylum level that was reduced over time, not only in 

treated cultures but all cultures declined by time 48 hours at different percentages depending 

A B 
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on the treatment Figure 5.5A. In addition, E. coli in each treatment was counted at all time 

point and the results show that the E. coli added to the system were detected and secondly that 

the number of detectable E. coli reduced over time, a feature associated with a closed system 

rather than the presence of thymol Figure 5.5B. It was clearly evident that the numbers of 

Proteobacteria declined very rapidly within the first 4 hours of incubation and this drop was 

statistically significant (p=0.0007) in all four samples at each time point were treated as replicas 

(n=4) and compared by Student t-test at time values of 4 hours. The base line was 0.8-1% in 

all cultures at the start of treatment incubation but over time there was a gradual decrease in all 

treatments. The thymol treated cultures decreased to 0.2% similar to the controls 0.2-0.3%. 

This indicated that static culture was unfavourable to Proteobacteria. The phylum 

Bacteroidetes showed few changes between treatments over time. At the start Bacteroidetes 

comprised 0.3% of OTUs and later decreased in all treatments over the time to 0.2%. 

 

Figure 5. 4 Bacterial phyla distributions (relative abundances (%)) throughout 48-hours of 

incubation for each treatment in an in vitro closed culture fermentation inoculated with caecal 

isolates. (neg=negative control, con= positive control, 50thy= 50 µg l-1 thymol and 100thy= 

100 µg l-1 thymol) at all timepoint (0,4,8,24, and 48 hours). 
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Figure 5. 5A Phylum Proteobacteria family Enterobacteriaceae relative abundance (%) in all 

treatments (neg=negative control, con= positive control, 50thy= 50µg l-1 thymol and 100thy= 

100µg l-1 thymol) over times. * after 4 hours of incubation drop off was statistically significant 

(p=0.0007) in all four samples. 

 

Figure 5.5B E. coli count in the different time point (neg=negative control, con= positive 

control, 50thy= 50 µg l-1 thymol and 100thy= 100 µg l-1 thymol). 

 

5.3.1.3 Family level changes of caecal bacteria 

The relative abundance at the family level within the phylum Firmicutes which was the 
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Figure 5. 6 Bacterial family distributions (relative abundances (%)) throughout 48-hours for 

each treatment in in vitro closed culture fermentations inoculated with caecal isolates using 

QIIME v1.9.1. (neg=negative control, con= positive control, 50thy= 50µg l-1 thymol and 

100thy= 100µg l-1 thymol) and all timepoint (0,4,8,24, and 48 hours). 

 

The Lachnospiraceae was the most abundant family in all treatments at the start (t=0h) 

comprising 23.4-26% of OTUs and these showed an increase in abundance in all cultures up 

until 8 hours but thereafter the cultures treated with thymol showed a decline greater than that 

of either control (Figure 5.7). The graph shows a significant difference between the control 

and cultures treated with thymol at time points 24 and 48 h. By taking time points 24 and 48 

hour for both treated groups (n=4), and similarly for the controls (n=4) and performing a 

Student t-test the resultant differences were significant for controls (p=0.05) and thymol treated 

(p=0.003). 
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Figure 5. 7 Family Lachnospiraceae relative abundances (%), all treatments (neg=negative 

control, con= positive control, 50thy= 50 µg l-1 thymol and 100thy= 100 µg l-1 thymol) over 

all time points. 

The Ruminococcaceae at the start (time point 0h) were the second most abundant family 

(22% to 26%) followed by Lactobacillaceae (13% to 15%). Both of these families increased 

over time in all cultures indicating these groups of organisms were at a growth advantage in 

static anaerobic culture in VL medium irrespective of the presence or absence of thymol. Three 

families were found within the phylum Firmicutes had low abundance these were; 

Erysipelotrichacea (1% to 3.3%), Streptococcaceae (1% to 3%) and Closidiaceae (0.1% to 

0.2%). Enterobacteriaceae family members from phylum Proteobacteria (0.1% to 1%) were 

mentioned above (Figure 5.5). Odribacteraceae member of phylum Bacteroidetes was the 

lowest abundant family (0.1% to 0.2%). 

5.3.1.4 Genus level changes of caecal bacteria 

The dominant genera were from the phylum Firmicutes Figure 5.8. The most prevalent 

genus was Lactobacillus of the Lactobacillaceae family comprising 13% -15% of the total at 

time point 0 h and these increased at different ratios between treatments by time 4 h, with the 

highest increase (29%) associated with high concentration of thymol Figure 5.9. By time point 

8 h the percentage abundance decreased in all treatments but with distinctions between them: 

with thymol the abundance decreased by ~8% (p=0.03), but without thymol the abundance 
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decreased by 16% (p=0.007). However, there was no significant difference between any 

treatment group by time 48 h (p=0.23). This suggests a short-term impact of thymol that may 

be limited to the early stages of the fermentation.  

 

Figure 5. 8 Bacteria genus distributions (relative abundances (%)) throughout 48-hours for 

each treatment in vitro closed culture fermentations inoculated with cecal using QIIME v1.9.1. 

(neg=negative control, con=positive control, 50thy= 50 µg l-1 thymol and 100thy= 100 µg l-1 

thymol) and all timepoint (0,4,8,24, and 48 hours). 

 

Figure 5. 9 Genus Lactobacillus of Lactobacillaceae family relative abundances (%), all 

treatment (neg=negative control, con= positive control, 50thy= 50 µg l-1 thymol and 100thy= 

100 µg l-1 thymol) over times. 
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Another genus with a high relative abundance (14.7%) was an unknown genus but 

according to 16S rRNA sequence homology, it was similar to Ruminococcus from the 

Lachnospiraceae family Figure 5.10. For all treatments, there was an increased abundance at 

the first 8h but thereafter all decreased. However, cultures treated with thymol declined more 

rapidly by time 48 h. These results show significant differences between cultures treated with 

thymol, and both control cultures at time 24 h. By taking the time points 24 and 48 hours for 

both treated groups (n=4) and similarly for the controls (n=4) and performing a Student t-test 

the differences shown were significant for controls (p=0.02) and thymol treated (p=0.008). 

  

Figure 5. 10 Genus unknown [Ruminococcus] of Lachnospiraceae family relative abundances 

(%), all treatment (neg=negative control, con= positive control, 50thy= 50 µg l-1 thymol and 

100thy= 100 µg l-1  thymol) over times. 

 

In addition, Blautia, Dorea and Coprococcus of the Lachnospiraceae family were 

decreased in relative abundances at 48 h in cultures treated with thymol, whereas both controls 

were increased at different levels over time. In more detail, Blautia showed an initial increase 

in abundance up to 8 h and thereafter decreased compared to controls (Table 5.4). The Student 

t-test was performed as previously described. Dorea reacted similarly although declined from 

time 0 h onwards. In both genera the culture with high concentration of thymol achieved the 
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lowest percentage abundance compared to controls Figure 5.11. However, Coprococcus was 

increased in all cultures at time 4 h but cultures treated with thymol were less abundant by 8 h. 

All cultures gradually had reduced abundances so that by 48 h there were no differences 

between the cultures Figure 5.12. 

 

Figure 5. 11 Genus Blautia (A) and genus Dorea (B) of Lachnospiraceae family relative 

abundances (%), all treatments (neg=negative control, con= positive control, 50thy= 50 µg l-1  

thymol and 100thy= 100 µg l-1  thymol) over time points. 

 

 

 

 

 

 

 

 

 

Figure 5. 12 Genus Coprococcus of Lachnospiraceae family relative abundances (%), 

all treatments (neg=negative control, con= positive control, 50thy= 50 µg l-1 thymol and 

100thy= 100 µg l-1 thymol) over time points. 

 

A B 

0%

1%

1%

2%

2%

3%

3%

4%

4%

0 4 8 24 48

Time (h)

neg con 50 thy 100 thy



160 
 

Faecalbacterium and Ruminococcus, representatives of the Ruminococcaceae family, 

were stably persistent at between 2 and 3% abundance for the first 8 h Figure 5.13. Thereafter 

their abundances increased in all cultures, but it was differences between presence and absence 

of thymol: those cultures treated with thymol were higher than controls. By taking the time 

points 24 and 48 hour for both treated groups (n = 4) and similarly for the controls (n = 4) and 

performing Student t-test the differences shown were significant for controls (p= 0.05) and 

treated (p= 0.00006) in Faecalbacterium Figure 5.13 (A). Whereas, Ruminococcaceae Figure 

5.13 (B) the relative abundances in cultures treated with thymol were higher than controls (p= 

0.01, 0.003) respectively.  

 

Figure 5. 13 Genus Faecalbacterium (A) and genus Ruminococcus (B) of Ruminococcaceae 

family relative abundances (%), all treatment (neg=negative control, con= positive control, 

50thy= 50 µg l-1 thymol and 100thy= 100 µg l-1 thymol) over times. 

Thymol influenced the abundance of the genus Coprobacillus that belongs to the 

Erysipelotrichacea family Figure 5.14. At baseline (t=0 h), all cultures were (0.3%) which 

gradually increased at time points 4 h and 8 h, followed by a significant difference observed 

after 24 h in which cultures treated with thymol had increased abundance (3.5%), higher than 

the controls (2%). The abundance in controls continued to increase whilst their abundance in 

thymol treated cultures decreased at time 48 h. A summary of the findings is presented in Table 
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Figure 5. 14 Genus Coprobacillus of Erysipelotrichacea family family relative abundances 

(%), all treatments (neg=negative control, con= positive control, 50thy= 50µg l-1 thymol and 

100thy= 100µg l-1 thymol) over time points recorded. 

 

Table 5. 4 Genera that differed in relative abundance (% of total sequences) between the 

control and the treated with thymol. (Neg=negative control, con= positive control, low= 50 µg 

l-1 thymol and high= 100 µg l-1 thymol), * not significant. 

Genera 
Time 

point 

After 

treatment 
Controls Thymol treatment 

Neg- con 

% 
P-values 

Low- 

high % 
P-values 

Lactobacillus 8 h ↑ 4 - 6 0.007 20 – 24 0.03 

[Ruminococcus] 24 h ↓ 19 0.02 10.6 – 5.5 0.008 

Blautia, 24 h ↓ 3 – 2.2 0.01 1.3 – 0.9 0.22 * 

Dorea 24 h ↓ 1 – 0.7 0.023 0.4 – 0.2 0.044 

Coprococcus 24 h ↓ 1.1 – 0.8 0.44 * 0.5 0.005 

Faecalbacterium 24 h ↑ 2.5 – 3.7 0.05 5.5 – 5.2 0.00006 

Ruminococcaceae 24 h ↑ 3.4 0.01 4.3 – 5.1 0.003 

Coprobacillus 24 h ↑ 1.8 – 2.2 0.0001 2.4 – 2.9 0.0009 

5.3.2 Metabolic response to thymol by 1H NMR 

Anaerobic batch culture fermenters were inoculated with caecal samples from 6 

chickens (15 days old). Four cultures were set up: two for controls (one with added E. coli and 

the other without), and two for a thymol treatment (50 & 100 µg l-1). Metabolic profiles were 

characterised by 1H-NMR spectroscopy. The experimental design consisted of a set of 16 NMR 
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spectra recorded from 4 cultures at 4 different time points (0, 8, 24 and 48 h) comprising the 

influence of sub-lethal concentration of thymol on the metabolic profile of caecal isolates at 

different time points. Whiles, time point 4h not included because limited of NMR samples.  A 

characteristic NMR spectrum was acquired of the negative control fermented caecal isolate is 

displayed in Figure 5.15, with annotations of the identified metabolites. The assignment of 

spectral lines was performed using 1D NMR experiments, complemented with results from 

Chenomx software and  Human Metabolome Database (http://www.hmdb.ca/).  

 

Figure 5. 15 A characteristic NMR spectrum acquired of the negative control fermented caecal, 

isolate with annotations on the identified metabolites:1. Butyrate, 2. Isoleucine, 3. Leucine, 4. 

Propionate, 5. Valine, 6. lactate, 7. Alanine, 8. Lysine, 9. Acetate, 10. Succinate, 11. Glutamate, 

12. Glutamine, 13. Aspartate, 14. Choline, 15. Betaine, 16. Glycine, 17.  Glycerol, 18. 

Phenylalanine, 19. Glucose, 20. Tyrosine, 21. Uracil 

 

Orthogonal partial least squares (OPLS) class models examined the homogeneity 

among the samples associated with the first principal component of the metabolic profile 

resulted in an R2 and Q2 values of 66 % for the first two components Figure. 5.16. In these 

models, a clear separation was evident based on the different concentrations of thymol and 

controls within the time recorded; therefore, the results could suggest that different metabolic 

patterns were observed. However, one of the major differences between control and treatment 
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is the presence not only of thymol but ethanol which the thymol was dissolved. Both of these 

are small metabolites and would contribute to differences seen. Moreover, across different time 

points the results also show separation with slight overlapping between 8 h and 24 h especially 

between controls, so the samples were divided into groups depending on sampling time points. 

 

 

Figure 5. 16  OPLS - score plot for metabolic controls and treated with a two sub-lethal 

concentration of thymol (50 ug l-1 low thymol and 100 ug l-1 high thymol).  N = 3 for each 

sample. (negative control; blue diamonds, positive control; orange cross, low thymol; yellow 

squares, high thymol; purple circles). 

To identify metabolic variation based on correlation coefficient values between the 

samples, S-line plots’ assignment of spectral lines over time between the different samples for 

all four-times points collected was applied to metabolic profiles shown in Figure 5.17. A 

colour code indicating the weights of the discriminatory variables, as the peak colour gradually 

changes from blue to red, the absolute value of correlation coefficient increases from 0 to 1, 

indicating the resonances were important for discriminating metabolite profiles of pairwise 

analyses. The result clearly differentiated the controls’ samples from the thymol treated by 

ethanol peaks and the different component concentrations between them. Moreover, the 

metabolic variation at time 8 and 24 h showed very close concentrations in metabolites (Figure 

5.17).  
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Figure 5. 17 S-line plot show the metabolites differentiation between 1H NMR spectra of 

controls (top) and treated with thymol (bottom) caecal cultures over time. 
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An OPLS plot clearly discriminated the control samples from those samples treated 

with thymol samples along the first principal component at time point 8 h (Figure 5.18). Caecal 

batch cultures contained greater amounts of amino acids, such as leucine, isoleucine, valine, 

alanine, lysine, tyrosine, betaine and phenylalanine, which were increased in control samples 

than cultures treated with thymol. Butyrate, propionate and glutamate were also present in 

control cultures. However, fumarate was the only one detected in cultures treated with thymol. 

Figure 5.19 shows S-line plot for time 8h indicating the key metabolites that contributed to 

this discrimination. However, lactate, acetate and succinate were produced in both cultures 

with an insignificant increase in control cultures. Fumarate was present in thymol treated 

cultures alongside ethanol which is explained by the dissolution of thymol in ethanol. All amino 

acids and short fatty acids metabolites were decreased over time (48 h) in the cultures (Figure 

5.20), but phenylalanine and propionate were produced more in thymol treated cultures. 

 
Figure 5. 18 OPLS plot (n = 12; R2X= 0.55; R2Y= 0.84; and Q2= 0.77) discriminating the 

controls samples from the samples treated with thymol.  
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Figure 5. 19 S-line plot highlighting the most important metabolites for the differentiation 

between 1H NMR spectra of controls (top) and treated with thymol (bottom) at time point 8h.  

 

 

Figure 5. 20 S-line plot highlighting the most important metabolites for the differentiation 

between 1H NMR spectra of controls (top) and treated with thymol (bottom) at time point 48h 
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5.4 Discussion  

The present in vitro study assessed the impact of thymol on the composition and activity 

of caecal associated gut microbiota. A simple static gut model, an in vitro batch culture 

fermentation assembly was used, which was a closed system maintained under anaerobic 

conditions. Duenas and others suggested these static gut models are suitable for simulating 

short-term conditions in the gut microbiota by dietary phenolic compounds (Duenas et al., 

2015). However, it is essential that interpretation of the data takes into account a number of 

factors. Firstly, the inoculum may not represent all the gut microbiota, especially oxygen 

sensitive anaerobes due to the inevitable exposure to oxygen during manipulations and the time 

taken to prime the in vitro system. Secondly, there was no flow-through of fresh nutrients to 

represent the flow of the digesta in the gut. Thirdly, there were no host factors, such as 

antibodies and mucin, other than what was in the digesta used to prime the system. Fourthly, 

there was no selective removal of metabolites such as butyrate by host epithelial cells for 

example. Given these limitations it is advised to consider the changes with caution but as 

suggested by Duenas et al., (2015) the responses observed in the short term are possibly more 

relevant and potentially representative of what might happen in vivo.   

Molecular technologies based on the 16S rRNA sequences have developed the field of 

gut microbial ecology. Next generation DNA sequencing allows culture-independent methods 

to determine the gut microbiome (Turnbaugh and Gordon, 2009) and can be a powerful tool to 

monitor gut community shifts induced by polyphenols (Andersson et al., 2008). Here, the 

effects of thymol on the taxonomic distribution as predicted from the 16S analysis were 

observed at phylum, family and genus/species level. The first point to make is that the profile 

of the starting populations in these studies (t=0h) showed a distribution of 

Phyla/Families/Genera consistent with those reported by many other authors (Wei et al., 2013; 
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Sergeant et al., 2014; Oakley et al., 2014; Awad et al., 2016).  In this study the caecal content 

was taken from 6 chickens of 15 days of age, and the results showed that the chicken caecal 

content is dominated by the phylum Firmicutes, with lower proportions of Proteobacteria, 

Bacteroidetes and Tenericutes, in both controls and those treated with thymol at t=0 h.  

As a generalisation, in all treatments, Firmicutes were the predominant phylum and 

increased with time, while other phyla (Proteobacteria, Tenericutes and Bacterioidetes) tended 

to decrease. On the other hand, the composition of the gut microbiota can be affected by several 

factors, such as diet, environment, treatment, feed additive, type of chicken and age which is 

perhaps the most significant (Qu et al., 2008; Danzeisen et al., 2011). The reduction of 

Bacteroidetes in these static cultures may not reflect the maturation process in the chicken as 

it is recognised the abundance of Bacteroidetes does in fact increase to become, often, the 

second most prevalent family with age (Awad et al., 2016; Ranjitkar et al., 2016). In the current 

study, the phylum Proteobacteria which includes the family Enterobacteriaceae and the genus 

E. coli, declined over time in all cultures. E. coli, a facultative anaerobic bacterium, is a 

dominant species in the gut in the early stages of chicken development. Therefore, a reduction 

of E. coli during the second week of life could be attributed to the dominance of anaerobes 

(Zhu and Joerger, 2003). Our results did not show a relative abundance of E. coli that may 

reflect the age of the chicken used in this experiment: the digesta was from 15-day old chicks. 

Brown and colleagues reported that members of the phylum Firmicutes can inhibit the growth 

of opportunistic pathogens, such as E. coli, (Brown et al., 2012). Given the high abundance of 

Firmicutes it would seem logical to assume the rapid decline of E. coli and other 

Enterobacteriaceae was due to the pressure of competing with Firmicutes in this environment. 

The question arises as to whether the addition of thymol had any additive effect on the 

reduction: the data shown in figure 5.5 were equivocal suggesting this is not the case. This is 
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entirely plausible as the thymol MIC of the E. coli tested (and the strain added to one of the 

controls) were all well above the level of thymol added to the system.  

One of the ‘control’ systems was primed not only with 15 day old chicken caecal digesta 

but also a well characterised E. coli isolate (strain 18). Even with this additional source of E. 

coli their number reduced rapidly. This finding re-enforces the concept that the system and 

micro-organisms within it were very effective at competing against this additional E. coli, a 

well-defined pathogenic type. It is argued that this hostile environment would militate against 

the survival and/or persistence of E. coli without host tissue on which to adhere. As for all other 

findings, it would be useful to study the impact of thymol in vivo. 

The genera Dorea, Blautia and Coprococcus all decreased with in the presence of 

thymol by t=48 h although at different rates than other bacteria. A key point here is that little 

is known of the role of these bacteria in the chicken. Dorea found in high abundance is 

associated with colorectal cancer in humans along with other bacteria, and some of which may 

be candidate drivers of the colorectal cancer pathway in the proximal colon (Peters et al., 2016). 

Shen and co-authors showed that colorectal cancer was associated with increased Dorea spp. 

(p < 0.005) and Coprococcus spp. (p < 0.05) in colorectal cancer cases (Shen et al., 2010). 

Their role in the chicken in unknown but the observation made in this study showed the 

presence of thymol was associated with a decrease of both. Is this potentially beneficial? Dorea 

and Blautia, express spore proteins and Blautia preferentially expresses enzymes for 

propionate production pathways rather than butyrate biosynthesis (Polansky et al., 2015). 

Butyrate is a known colorectal cancer chemo-preventive and possibly therapeutic short-chain 

fatty acid in humans (Encarnacao et al., 2015). Moreover, in a study done by (Org et al., 2017) 

it was shown that fasting serum levels of glycerol, monounsaturated fatty acids, and saturated 

fatty acids are strongly associated with increased abundance of Blautia and Dorea and 
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decreased abundance of Coprococcus. Also, an increase in abundance of Blautia was shown in 

individuals with high BMI levels (Org et al., 2017), which supports the previous data from 

(Kasai et al., 2015) who showed the Blautia genus is associated with obesity. Furthermore, a 

recent study found an association between Blautia and human genetic variants in a genomic 

region that has been associated with obesity and BMI (Bonder et al., 2016). On the other hand, 

increased abundance of commensal bacteria belonging to the Blautia genus is associated with 

reduced lethal graft-versus-host disease (GVHD) and improved overall survival (Jenq et al., 

2015). The questions raised for the chicken relate to the role of these bacteria in the health and 

nutrition of the chick. Is it possible that manipulation of these bacteria may influence fat 

metabolism? Whilst highly speculative the drive toward healthy meat products with low fat 

and low cholesterol is a current focus. Indeed, the studies of Le Roy et al., (2017) showed that 

chickens treated with an antibiotic (Tiamulin) produced high levels of fat and very low density 

lipo-proteins (Le Roy et al., 2017). Thus, replacing this antibiotic with EOs may be beneficial 

not only for reducing antibiotic use but also having a positive nutritional impact if such changes 

are associated with reduction of the bacterial genera discussed above. Again, in vivo studies 

are required to assess and confirm efficacy. 

The Lachnospiraceae and Ruminococcaceae are two of the most abundant families 

from the order Clostridiales found in the gut environment. One important characteristic of 

Lachnospiraceae and Ruminococcaceae families is the ability to produce butyrate by utilising 

complex plant derived carbohydrates as energy sources (Biddle et al., 2013). Butyrate is a short 

chain fatty acid (SCFA) that has been associated with the maintenance of gut health (Berni 

Canani et al., 2012) and is anti-inflammatory (Van Immerseel et al., 2010; Celasco et al., 

2014).  Butyrate provides energy to colonic mucosa  (Roediger, 1980) and thus has important 

implications on intestinal health (Hamer et al., 2008). Faecalibacterium was assigned to the 

known butyrate-producing genera (Duncan et al., 2002; Louis and Flint, 2009).  Also, increased 
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caecal richness in Ruminococcus  which produces cellulose degrading enzymes as well 

(Morrison and Miron, 2000) indicates possible synergy between butyrate producing species 

and Ruminococcus  (Pryde et al., 2002). Thymol treatment was associated with the increased 

relative abundance of butyrate-producing species such as Faecalibacterium and 

Ruminococcus. If the link between thymol and those genera can be confirmed in vivo, this 

would be highly useful novel information. In previous studies, the effect on the intestinal 

microbiota after introducing grape pomace extracts in the diet of broiler chicken, found that 

the cecum had higher populations of E. coli, Lactobacillus, and Enterococcus species than the 

birds in any other treatment group (Viveros et al., 2011). They concluded that grape 

polyphenol-rich products modified the gut morphology and intestinal microbiota and increased 

the biodiversity degree of intestinal bacteria in broiler chicken. This finding is contrary to the 

data produced in this study suggesting further work regarding E. coli is required in vivo. Also, 

the grape seed polyphenols diet in pig has been shown to shift the microbiome, dramatically 

increasing Lachnospiraceae, Clostridales, Lactobacillus and Ruminococcacceae. Moreover, 

the relationship between dietary and colon health may be attributable to the altered bacterial 

populations or phenolic compounds in the colon (Choy et al., 2014). Another study used a 

blend of EOs including thymol (15g/tonne) and assessed its effect on the performance and 

intestinal microbiota of broilers by quantitive PCR measurements of caecal microbes, and their 

results showed higher percentage of Lactobacillus and E. coli in the EOs  group compared to 

the control group at 41 days (Tiihonen et al., 2010). In addition, other studies have shown 

Lactobacillus counts were increased by dietary EO (Du et al., 2015; Jamroz et al., 2005). The 

findings in this study are thymol was associated with an increase in Lactobacillus species by 4 

h followed by a modest decrease by 48 h. Further work, and preferably in vivo studies, is needed 

to tease out the impact of EOs on Lactobacillus species especially so as they are known 
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probiotics used to reduce the colonisation of pathogenic bacteria in food animals, and therefore 

reduce the risk of food borne illness to consumers (Neal-McKinney et al., 2012).  

Thymol treatment was associated with the gradual increase in the abundance of 

Coprobacillus (of the Erysipelotrichacea family) beyond 24 h. Little is known about 

Coprobacillus but in a previous study in mice, increased amounts of bacteria of the 

Erysipelotrichi family were found in a mucus layer impenetrable to other bacteria (Jakobsson 

et al., 2015). In another study, this type of bacterium decreased with sessile serrated adenoma 

(SSA) cases in humans (Peters et al., 2016). From these few reports, these bacteria have been 

suggested to have beneficial effects possibly enhancing mucus production (Everard et al., 

2014).  The findings in the study reported here suggest Coprobacillus increases in the presence 

of thymol and if the properties attributed to these bacteria from human and mouse studies are 

accurate, these bacteria may be beneficial in enhancing gut health through mucus secretion: 

very speculative and of course needs to be tested in vivo. 

The antimicrobial effect of thymol treatment appears to be selective for certain 

microbes, as indicated previously low concentrations of thymol are associated with decreased 

growth of some bacteria however appear beneficial to bacteria such as Faecalbacterium and 

Ruminococcus and Lactobacillus. This finding is similar to (Ouwehand et al., 2010) as they 

reported in vitro work using thymol at the level of 50 mg/l decreased the growth of E. coli, 

however the beneficial Bifidobacterium and Lactobacillus were not affected to the same 

degree. Salmonella typhimurium was also reported to be more sensitive to thymol as well (Mith 

et al., 2014). Consuming thymol in chicken diets may be an appropriate treatment to improve 

the chicken gut microbiota and the microbial fermentation profiles of broiler chicken (Helander 

et al., 1998). The reviews by Rehman and others suggested that the Guanine-Cytosine ratio  of 

the total genomic DNA content of the caecal microbiota was unaffected by EO treatment 
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(Rehman et al., 2007). This is a relatively crude measure of the population that may disguise 

some shifts. However, the findings of this work suggest Proteobacteria decline dramatically 

but this may be due to pressure from the other microbiota and/or the type of environment of 

the static culture but not necessarily thymol. Many of the effects seen were statistically 

significant from 24 h onwards but we must return to the valid point made by Duenas et al., 

(2015) who indicated static cultures may only be relevant for the first few hours or so. It could 

be argued that the shifts seen at 24 and 48 h are more related to adaptation to the static mixed 

culture than relevant to the chicken gut where transit times are measured in a few hours. The 

major exception is the caecum where fermentation is often for 24h or more. The findings in 

this study generate testable hypotheses to test what population shifts are observed in the caecum 

of the live animal and whether they correlate with those observed in static mixed culture.  

The different components of the metabolic profiles were clearly distinct between the 

different concentrations of thymol treatments and controls at all time points. At 8 h the result 

indicates that a significant increase of mostly SCFA and amino acids were in the controls 

cultures. So, this distinction may be caused by thymol affecting the amount and rate of 

production of these metabolites. The amount and rate of SCFA production depends on the site 

of fermentation also the composition and density of the gut microbiota in combination with the 

type of nutrients available for microbial fermentation (Macfarlane et al., 2006). As mentioned 

in a previous chapter, the response of E. coli exposed to thymol is a slowed growth rate 

associated with a shift from respiration to fermentation as indicated by detecting increasing 

lactate concentrations (Fitzgerald et al., 2004). Therefore, thymol may affect the rate of growth 

of many other members of the gut microbiota. All variations in SCFA and amino acids such as 

butyrate and alanine concentrations could be indicative of changes in energy production due to 

thymol present in culture that could also be related to the observed variations in TCA/Krebs 

cycle intermediates (Liu et al., 2012). Moreover, the presence of ethanol in high levels in 
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thymol treated cultures can be discounted. Ethanol was used to dissolve the thymol and is 

therefore an artefact of the system. Sadly, this mask any changes in ethanol production by the 

microbiota.  

Lactate was already present in similar amounts in all cultures, as well succinate and 

acetate at time 8 h. Both lactate and succinate are intermediates in the global fermentation 

process and are to varying extents metabolised to SCFA by cross-feeding species (Belenguer 

et al., 2007; Macfarlane and Macfarlane, 2012). Lactate is the major fermentation product of 

lactic acid bacteria, such as Lactobacillus, Bifidobacterium, and Streptococcus (Barcenilla et 

al., 2000), which was consistent with NGS results showing increased Lactobacillus in thymol 

treatment most notably in the first 4 h of incubation. In addition, lactate tends to reduce residual 

pH more than SCFA (Rinttila and Apajalathi, 2013). Succinate is an end-product of some 

Bacteroidetes under some environmental conditions (Rautio et al., 2003; Macfarlane et al., 

2006). The presence of thymol may induce those environmental conditions necessary for 

succinate production by Bacteroidetes. In addition, acetate was found in similar proportions in 

both controls and thymol treated cultures despite thymol slowing bacterial growth. Acetate is 

the most abundant SCFA, the high acetate content could be attributed to exogenous 

mechanisms such as bacterial fermentation in the digestive tract (Louis et al., 2014). It is 

assessed that more than 200 bacterial species are contained in the avian gut (Wallace et al., 

2010). Acetogens are a group of obligate anaerobic bacteria related to the genera Ruminococcus 

(Drake et al., 2008), which were increased in cultures treated with thymol based on NGS 

findings. Fumarate was the only SCFA found in thymol treatment cultures, which is an early 

product of the anaerobic electron transport chain. Anaerobic electron transport chain starts with 

the carboxylation of phosphoenolpyruvate and the resulting oxaloacetate is reduced to 

fumarate. When the partial pressure of CO2 is low, succinate, the product of fumarate reductase, 
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is converted into methylmalonate, which is cleaved into propionate and CO2 (Macy et al., 1978; 

Macy and Probst, 1979). Propionate was increased over the time in our study. 

Propionate was found more in control cultures at time 8 h than thymol treated systems 

although by time 48 h the amount of propionate was increased in the thymol treatment culture. 

Similar findings were noted for phenylalanine as well. To produce propionate there are 

different pathways, it is mostly formed through the succinate pathway by Bacteroidetes and 

some Firmicutes (Louis et al., 2014; Salonen et al., 2014). Bacteroides spp. can also convert 

lactate to propionate (Flint et al., 2012). Therefore, the relative abundance of propionate was 

probably associated with Bacteroidetes, which can produce propionate from succinate and/or 

lactate pathways. Propionate has potential health-promoting effects that include anti-lipogenic, 

anti-inflammatory and anti-carcinogenic actions albeit to lesser extents than Butyrate (Jan et 

al., 2002; Hosseini et al., 2011). Moreover, propionate inhibits stimuli-induced expression of 

adhesion molecules (Vinolo et al., 2011). Phenylalanine is produced from bacterial degradation 

of aromatic amino acids with bacterial metabolism of phenylalanine producing derivatives such 

as phenylpyruvate and phenylacetate  (Windey et al., 2012). Intestinal bacteria that are 

involved in these processes include Bacteroides, Enterobacteria, and Lactobacillius (Fuchs et 

al., 2014; Botsford and Demoss, 1972; Hughes et al., 2000).  

The current study shows that supplementation with thymol exerts a positive effect on 

intestinal microbiota with a concomitant enhancement in growth performance, which might be 

related to changes in intestinal microbiota. More specific studies are required to improve 

luminal availability of thymol, and clarify how it affects intestinal microbiota in vivo. However, 

it is essential that caution be advised that static gut models are suitable for simulating short-

term conditions in the gut microbiota by dietary phenolic compounds (Duenas et al., 2015). 

The question is how short term? Many effects were observed in the first 8h of incubation and 

that may more readily reflect the impact in the gut. Changes later between 24h and 48h may be 
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purely artefacts of extending incubation in an inappropriate system for too long. That said, 

what has been learnt here is that there are bacteria that thrive in the model in the presence of 

thymol and many of these may be probiotic in nature.  
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CHAPTER 6: GENERAL DISCUSSION  

6.1 Discussion 

There is much debate regarding the definition of commensal, opportunistic and 

pathogenic E. coli. Whilst some types can be defined as pathogens such as E. coli O157:H7 

carrying the Locus of Enterocyte Effacement (LEE) and the Verocytoxins (stx1, stx2), the clear 

distinction between commensals and pathogens in avian hosts remains unclear (Johnson et al., 

2012; Nakazato et al., 2009). This study used a range of tests that were selected for being 

applicable to routine and diagnostic laboratories, as it was reasoned that is where the 

differentiation is most needed for clinical purposes. Considerable diversity both, phenotypic 

and genotypic, was observed even though analysis was of a relatively small number of isolates. 

In terms of genotypic diversity, most E. coli were potentially pathogenic as most carried 

multiple virulence determinants: the Nolan laboratory often quotes the presence of five or more 

as evidence of being a pathogen (Johnson et al., 2008a). Known APEC tended to encode more 

virulence determinants than presumptive commensals. The problem for this study was the use 

of healthy poultry (either chicken or turkey) that may carry both true commensals, if such a 

type exists, and pathogenic types that were not associated with disease. Thus, the pool of 

presumptive commensals is likely to be a mixture of both types. However, the genetic analysis 

based on ERIC-PCR clearly separated APEC from healthy turkey and chicken isolates, which 

also generally possessed less virulence determinants, whereas the presumptive commensals 

from chicken seemed to share similarities with turkey isolates and APEC. In a recent study, E. 

coli isolates from chickens showed 100% genetic identity between isolates made from 

pathological lesions and healthy chicken in the same flocks (Paudel et al., 2016). This may be 

explained by the transition of a pathogen resident in the gut, perhaps behaving as non-harmful 

or a commensal, until stress or primary infection permits expression of pathogenic capability. 

Other reports do not support this finding but rather point to a high heterogeneity of E. coli 
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isolates in chicken (Pasquali et al., 2015; Kemmett et al., 2013). The findings here indicate that 

isolates associated with healthy chickens represented genuine commensals at the time of 

isolation without inducing fulminant disease. Some may go on to produce disease if appropriate 

stresses are applied to the chickens. On the other hand, the similarity between some of the 

chicken and turkey isolates that generally encoded the fewest virulence factors may suggest 

that similar conditions and diet in the host may favour these types as commensals. It may be 

speculated that E. coli isolates from turkey lacking many virulence determinants are either 

commensals or potential pathogens that harbour different virulence traits associated with 

disease in turkeys and are unrelated to chicken adapted APEC isolates. What can be argued is 

that the virulence determinants and limited range of tests used were not sufficient to understand 

the differences between isolates and other methods are required, one method being whole 

genome sequencing (WGS). It can be concluded the limited tests used in this study may not 

yield the specific differentiation required by the routine laboratory. 

Perhaps it could be argued that the selection of these in the studies were of limited 

diagnostic value. That said the Nolan laboratory uses them as targets in their analyses (Johnson 

et al., 2008a). For APEC, understanding genotype-to-phenotype and host-pathogen 

relationships need to be established, evaluated and deployed in parallel with present methods, 

which will require a major effort leading to gradual replacement of current day methodologies. 

An important point to raise here is not just presence of putative virulence determinants but also 

whether these genes are expressed in vivo.  

This study focused upon cost effective and easily performed tests that could be 

undertaken in a non-reference laboratory setting with very limited funding that was not 

unlimited in this PhD study. A discussion needs to be had here about the number and range of 

tests. PCR for the forty or so currently defined APEC virulence determinants could have been 
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exploited. Many of these virulence factors are not yet well characterised and many are in a very 

small minority of APEC isolates. For example, fyuA was present in all colibacillosis-affected 

isolates, with a significantly lower prevalence in the control isolates (Vandekerchove et al., 

2005). Another author found seven virulence genes iutA, iss, cvaC, tsh, papC, papG and felA 

were detected significantly more often amongst colibacillosis isolates than healthy birds, which 

were several of those genes were not detected in many colibacillosis isolates, that suggests 

variants of those genes and yet undetected virulence factors (Delicato et al., 2003). Those 

selected were regarded as the most prevalent in APEC (Lisa Nolan personal communication) 

and potentially the most relevant to detect. Similarly, a limited range of antibiotic resistance 

was tested when in reference laboratories 18 are tested. A discussion needs to be had about 

whether or not antibiotic resistance can be considered as virulence determinants. Given poultry 

are heavily treated with ampicillin and nalidixic acid, resistance gives a selective advantage 

and a correlation between virulence determinants and antibiotic resistance was shown, as 

APEC generally harboured more resistance genes than the other isolates. Thus, it could be 

argued that co-selection of traits adds to the virulence potential even though in many instances 

resistance is likely to be highly transient being on mobile genetic elements such as plasmids. 

As for metabolite use, the question arises why test eleven substrates when 2000 metabolites 

can be tested in some platforms such as Biolog’s phenotype microarray. Based on current list 

prices the cost per organism for full genome sequencing and whole metabolism profiling by 

Biolog, is in the region of £400-£600, a grand total of £80,000-£120,000 for 200 isolates. In 

addition, literature search to identify variable characteristics that could be used collectively to 

gain insight was conducted. This study has certainly indicated some interesting avenues for 

new work by assessing those differences in a wider population of isolates. It is recognised that 

a weakness of the current study is the limited representation of isolates. But the aim was to 

investigate the diversity of E. coli populations in poultry using a set of relatively simple and 



180 
 

readily transferable tests that a front-line diagnostic laboratory rather than a specialist reference 

laboratory can undertake. As already discussed whole genome analysis is readily available 

albeit expensive, although reductions in cost are anticipated, the time required for a detailed 

analysis remains the significant bottleneck compounded by the fact that there is no clear 

definition of APEC and commensal although the Nolan laboratory has suggested approaches 

to accurately differentiate faecal isolates from pathogens (Johnson et al., 2008a) although not 

repeated in this study! Thus, until a pipeline for the bioinformatics is developed that calls APEC 

confidently, there remains some debate surrounding the definition of APEC. Furthermore, the 

time taken to obtain results from WGS for an ‘in-the-field’ situation where suspect disease is 

being investigated, there is a real need for simple, rapid and well-established methods of 

analysis of which WGS is most certainly not. The data of this study, and those of many others, 

indicates that we still lack of a satisfactory understanding of the differences between 

commensals and APEC to be able to effectively define them without recourse to testing Koch’ 

postulates in animal models. That is untenable for routine diagnosis obviously but is a direction 

that needs pursuing. 

This work did generate some interesting differences between isolates such that some 

turkey isolates were considered commensal and some APEC defined as likely to be highly 

virulent. Indeed, isolates were selected that were considered statistically diametrical opposite 

in terms of the variables that were tested for in vivo studies. The Galleria model was selected 

according to the following criteria; the 3Rs principles (Replacement, Reduction and 

Refinement), cost limitation, and it has been used for E. coli by others in published reports. 

Despite initial excitement that all the in vitro work had identified suitable differential tests, the 

Galleria data were extremely disappointing.  As with other authors (Alghoribi et al., 2014), the 

model was found wanting and perhaps use of a relevant model, namely poultry, is needed to 

verify or refute those interesting differences between isolates. 
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Using EOs for chicken nutritional performance has deserved a lot of attention during 

the last decade, with special emphasis on their antimicrobial properties. Regardless of an 

overwhelming amount of in vitro data concerning chicken, few in vivo trials with pure 

compounds have been published. In this thesis, 2 pure components (thymol and carvacrol) were 

selected based on the literature and were investigated for their anti-microbial properties. Here, 

the work was with pure compounds rather than extracts from plants containing EOs to ensure 

that the biological activities observed are related to the compound itself. The composition of a 

plant EO can differ according to many factors such as environmental conditions, geographic 

origin, and plant age (Sela et al., 2015; Fischer et al., 2011), therefore to eliminate these 

experimental confounders a pure compound was used. 

Based on using EO as an antimicrobial, could bacteria become resistance to EOs or 

could EOs induce multiple mutations in bacteria? There was limited evidence provided from 

studies suggesting the spontaneous occurrence of essential oils resistance. It is probable that 

the multi-component nature of essential oils may reduce their potential to select resistance to 

occur because numerous targets need to be adapted by the bacteria to hamper the effects of the 

essential oils. Moreover, if membrane permeabilisation is one of the modes of action of the 

essential oil, it is unlikely that resistance will develop spontaneously (Langeveld et al., 2014; 

Hurdle et al., 2011).  

Regarding the use of the Galleria model to differentiate between commensals and 

APEC isolates a question arises as to how the model may correlate with poultry? It is worthy 

to use this model again to test the mutant strain with the wild strain. We assume that the mutant 

strain becomes thymol resistant, so if the wild strain was pathogenic, will the mutant remain 

pathogenic or become less pathogenic in vivo? As the advantages of G. mellonella as an 

infection model are well suited to investigate the mutant strain (Champion et al., 2010), and 
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that it was determined by this study that the mutant strain is a slow grower compared to the 

wild strain, we expect the Galleria model result to be a significant confirmatory addition of the 

mutant’s alterations in lieu of resistance to thymol. 

The work in chapter 5 up to our knowledge is the first study that indicates the impact 

of thymol and its phenolic metabolites on caecal isolates, and the association of the effect of 

thymol treatment on the gut bacterial population. The purified ingredients of EOs are suitable 

alternatives to antibiotics, and it is recognized as safe to use in feeding (Cosentino et al., 1999). 

The original testable hypothesis based on our studies with APEC was that sub-MIC 

concentrations would impair the growth of E. coli. It would seem the static gut model with its 

complex bacterial population reduced all Proteobacteria. So, the hypothesis was therefore 

untested. The logic would be to take the batch culture to the next stage as continuous culture 

(Gibson and Wang, 1994; Macfarlane et al., 2005) and then to in vivo studies. 

Although in vivo intervention trials are physiologically the most relevant to study both 

metabolism and microbial modulation, in vitro tools have been considered to simulate intestinal 

conditions. In combination with in vivo trials, in vitro experiments may help to elucidate the 

extent bioconversion processes mediated by the host itself (Jacobs et al., 2009; Bolca et al., 

2007b). The complexity of in vitro gut models is diverse, ranging from simple static models 

(batch culture fermentation) to advanced continuous models (gastrointestinal simulators). The 

system we used could be valid and relevant up to 24 h, as the caeca are filled up after 24 h 

before they vacate.  

The transmission of plasmids bearing antibiotic resistance genes by conjugation 

between enterobacteria has been demonstrated in the digestive tracts of humans and various 

animals, such as chicken (Lafont et al., 1981). Also, exchange of chromosomal genes occurs 

at high frequencies in the gut of the chicken (Lafont et al., 1984). To inhibit this transmission 

and genetic exchange by conjugation, a model was developed in vitro testing the effects thymol 
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on E. coli conjugation. According to MIC results, thymol was inhibited plasmid transfer 

between E. coli isolates, and the data in chapter four suggest that phenolic compounds disrupt 

respiration in E. coli. The inhibited respiration in E. coli stimulates the leakage of intracellular 

K+ and disrupts pH homeostasis (Cox et al., 1998; Fitzgerald et al., 2004). The study of 

conjugation was very preliminary and limited to one mating experiment repeated three times; 

therefore, it is needed to test a wider range of plasmids and resistance types. Of importance, 

respiration is essential for plasmid gene transfer (Watmough and Frerman, 2010) and integrity 

of membrane interaction is also essential (Di Pasqua et al., 2007). So, it does seem very logical 

that thymol is likely to be highly disruptive of plasmid transfer by disrupting these two essential 

aspects of plasmid transfer. 

Based on all findings of this study, it was of great interest to study the effect of thymol 

on gut bacteria (commensals and other bacteria type) and functionality in the chicken. In 

addition, determining the impact of thymol on the host, and whether it improves nutritional 

performance and intestinal health is critical. These investigations remain part of the future work 

following this preliminary study. As mentioned previously that EOs (thymol and carvacrol) 

were suitable alternatives to antibiotics, and are recognized as safe to use in feeding, many of 

its benefits to public health beside antimicrobial agents, as it also has different applications 

such as an antioxidant, anti-inflammatory, immuno-modulating effects and enhancement of 

endogenous secretions. Thus, it could be used in food producing animals. However, it is 

necessary to study the MIC range concentration on the host cells. Using tissue culture and 

ligated gut models is very relevant here to assess the safety and the efficacy of potential in-feed 

compounds. There is a need to understand their effect on the host cells. For example, epithelial 

cell culture models have been widely employed to assess the absorption of drug molecules 

across intestinal mucosa and three-dimensional culture models improve the opportunity to 

evaluate drug permeability in vitro (Li et al., 2013). 
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6.2 Conclusion 

The differences between commensal and pathogenic E. coli cannot be simply defined, 

and the evaluation of genotypic and phenotypic diversity in a mixture of isolates is complex. 

The diverse genetic distance of E. coli strains isolated from presumptive commensals in turkey 

and chicken grew in the same environment compared to APEC stains isolated from infected 

birds. However, the significance of specific phenotypes and the perceived distance between 

diverse types were less clear. 

Essential oils of plant products have been studied as substitutes for antibiotics in 

combating E. coli infections to find new antimicrobial agents. In this work, we show 

convincing evidence of the antimicrobial effect of thymol and carvacrol. The antimicrobial 

activity of these phytochemicals and their ability to control biofilm formation is mediated in 

part by reducing bacterial motility and altering bacterial morphology and probably membrane 

integrity. In addition, reduction of conjugation between E. coli was observed in the presence 

of thymol, and it is known that conjugation occurs in biofilms. Is it possible that thymol may 

have added impacts in biofilms reducing gene transfer? However, we also provided evidence 

of the evolution of thymol resistance by training bacteria to tolerate high concentrations of 

thymol. Thymol resistant mutants acquired growth-limiting mutations and identification of the 

genes involved might provide novel targets that may be amenable to pharmaceutical 

bactericidal if such thymol resistant mutants arise in nature.  

The analysis of mutants showed that at least two mutations in the adapted mutant, of 

which one was a nonsense mutation in the acrR gene encoding a repressor of the AcrAB efflux 

pump, and the second was a missense mutation in the rng gene encoding ribonuclease G 

(RNase G). Therefore, inhibitors of efflux such as Hoescht33323 bisbenzimide may be 

deployed to enhance the toxicity of thymol (Nikaido et al., 2011). Moreover, this study 

identified bacterial metabolic profile associated with thymol treatment that indicated disruption 
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of respiration in E. coli, which is not a direct evidence for thymol mechanism of action albeit 

a plausible hypothesis that integration of thymol in bacterial cell membrane disrupts electron 

transfer proteins and pathway that is essential for respiration. 

 The use of thymol in batch culture closed system indicated that supplementation with 

thymol exerts a positive effect on intestinal microbiota such as increased LAB and the question 

is whether this will occur in vivo and enable a concomitant enhancement in growth 

performance. More specific studies are required to improve luminal availability of thymol, and 

clarify how it affects intestinal microbiota in vivo. Collectively, the results of this study support 

the applicability of plant essential oils as an effective alternative to antibiotic use in agriculture 

and poultry industries to minimize the burden of antibiotic resistant bacteria worldwide. In 

addition, this study provided insight into possible essential oils’ bactericidal mode of action, 

and the possible evolution of EO resistant bacteria. Further investigations into the effects of 

essential oils on avian, mammalian and plant bacterial hosts are warranted and should be 

pursued.  

 

6.3 Future work 

- Whole genome sequencing of strains that were isolated from turkey and seem similar 

phenotypically and genotypically but were classified as highly pathogenic and less 

pathogenic based on the Galleria model. Comparison of the genetic make-up of these 

two strains may identify the differences between them. 

- Using the Galleria model to understand the differences between commensals and APEC 

of two strains were isolated from the same host and seem similar in phenotypic and 

genotypic characteristics. One of the strains is of high pathogenicity and the other is 

less pathogenic and comparison of the genetic make-up of these two strains may 

identify the differences between them that impact their host-pathogen interaction 
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mechanisms in the in vivo experiment. This could be an interesting work for the future, 

but we must be cautious as this approach may identify factors specific for pathogenicity 

in Galleria and not poultry.  

- Using epithelial cell culture models to test the range of MICs to assess the safety and 

the efficacy of potential in-feed compounds. 

- Determining the impact of thymol on the host, and whether it improves nutritional 

performance and intestinal health in vivo is critical. 
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Appendix 

Appendix 1: The manufacturer/supplier details for all medium used 

Tryptophan Broth 

 

 Ingredients  Grams/Litre  

Casein enzymic hydrolysate  10.0  

Sodium chloride  5.0  

DL-Tryptophan  1.0  

Store prepared media below 8°C, protected from direct light. Store dehydrated powder, 

in a dry place, in tightly-sealed containers at 2-25°C. Use before expiry date on the label. 

Directions: Dissolve the ingredients in water by heating. Dispense 3 ml per test tube. Close 

the tubes with cotton plugs, plastic or metal caps. Autoclave for 15 minutes at 121 ± 3°C. 

 

Nutrient Broth (NB) 

Ingredients  Grams/Litre 

Peptone  15.0 

Yeast extract  3.0 

Sodium chloride  6.0 

D(+)-Glucose  1.0 

Store prepared media below 8°C, protected from direct light. Store dehydrated powder, in 

a dry place, in tightly-sealed containers at 2-25°C. 

Directions: Dissolve 25 g in 1 litre distilled water and fill into tubes. Sterilize by autoclaving 

at 121°C for 15 minutes. 

 

Luria-Bertani broth (LB) 

Ingredients  Grams/Litre 

Tryptone   10.0 

Yeast extract 5.0 

Sodium chloride 5.0 

Store prepared media below 8°C, protected from direct light. Store dehydrated powder, in 

a dry place, in tightly-sealed containers at 2-25°C. 

Directions: Suspend 20 g in 1 litre of distilled water. Bring to the boil to dissolve completely. 

Sterilize by autoclaving at 121°C for 15 minutes. 

 

Luria-Bertani low salt broth (LB low salt)  

 

Ingredients  Grams/Litre 

Tryptone   10.0 

Yeast extract 5.0 

Sodium chloride 0.5 

Store prepared media below 8°C, protected from direct light. Store dehydrated powder, in 

a dry place, in tightly-sealed containers at 2-25°C. 

Directions: Suspend 15.5 g in 1 litre of distilled water. Bring to the boil to dissolve 

completely. Sterilize by autoclaving at 121°C for 15 minutes. 

 

 



213 
 

Nutrient Agar NA 

Ingredients  Grams/Litre 

Meat extract  1.0 

Yeast extract  2.0 

Peptone  5.0 

Sodium chloride  5.0 

Agar  15.0 

Store prepared media below 8°C, protected from direct light. Store dehydrated powder, in 

a dry place, in tightly-sealed containers at 2-25°C. 

Directions: Suspend 28 g in 1 litre of distilled water. Bring to the boil to dissolve completely. 

Sterilize by autoclaving at 121°C for 15 minutes. 

 

Luria-Bertani Agar (LB) 

Ingredients  Grams/Litre 

Tryptone 10.0 

Yeast extract 5.0 

Sodium chloride 5.0 

Agar 15.0 

Store prepared media below 8°C, protected from direct light. Store dehydrated powder, in 

a dry place, in tightly-sealed containers at 2-25°C. 

Directions: Suspend 20 g in 1 litre of distilled water. Bring to the boil to dissolve completely. 

Sterilize by autoclaving at 121°C for 15 minutes. Pour into sterile petri plates. Dry the surface 

of the gel before inoculation. 

 

Eosin Methylene Blue (EMB) 

Ingredients  Grams/Litre 

Peptone  10.0 

Lactose  10.0 

Dipotassiummonohydrogenphosphate  2.0 

Methylene Blue  0.065 

Eosine Y  0.4 

Agar  15.0 

Store prepared media below 8°C and protected from direct light. Store dehydrated powder 

in a dry place, in tightly sealed containers at 2-25°C. 

Directions: Suspend 37.5 g in 1 litre of distilled water. Heat to dissolve completely, sterilize 

by autoclaving at 121°C for 15 minutes. Cool to 60°C and shake the medium in order to 

oxidize the methylene blue and to suspend the precipitate. 
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Salmonella Shigella Agar (SS Agar) 

Ingredients  Grams/Litre 

Meat extract  5.0 

Peptone  5.0 

Lactose  10.0 

Ox bile, dehydrated  8.5 

Sodium citrate  10.0 

Sodium thiosulfate  8.5 

Ferric citrate  1.0 

Brillant green  0.0003 

Neutral red  0.025 

Agar  15.0 

Store prepared media below 8°C, protected from direct light. Store dehydrated powder, in 

a dry place, in tightly-sealed containers at 2-25°C. 

Directions: Suspend 63 g in 1 litre of distilled water. Bring to boiling with frequent agitation 

and allow to simmer gently to dissolve the agar. Do not autoclave. Cool to about 50°C, mix 

and pour into petri dishes. 

 

MacConkey agar (McC) 

Ingredients  Grams/Litre 

Peptone  20.0 

Lactose  10.0 

Bile salts  5.0 

Sodium chloride  5.0 

Neutral red  0.075 

Agar  12.0 

Store prepared media below 8°C, protected from direct light. Store dehydrated powder, in 

a dry place, in tightly-sealed containers at 2-25°C. 

Directions: Suspend 52 g in 1 litre of distilled water. Bring to the boil to dissolve completely. 

Sterilize by autoclaving at 121°C for 15 minutes. Pour into sterile petri plates. Dry the surface 

of the gel before inoculation. 
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Appendix 2: isolated and storage of E. coli strains 

A. Chicken isolates 

The samples from chickens were made from an experiment that used different levels of 

dietary fibre.  Corn Distiller Dried Grains with soluble (CDDGs) were added to a balanced diet 

containing normal levels of protein and phosphorus as in poultry diets. Commercial diet starter 

was fed till day 9 (Corn/soy based diet), after that used CDDGs as dietary fibre source by three 

treatments 14%, 21%, 28% and control (corn/soy based diet). Samples were collected from day 

24 and 35 of chicken age. 

NO. Age (d) Dietary 
Bird ID 

1  

24 

0% 

G239 

2  Y169 

3  Y195 

4  Y173 

5  

14% 

B174 

6  G291 

7  B152 

8  R3336 

9  Y209 

10  

21% 

B140 

11  B154 

12  

28% 

G260 

13  G263 

14  R3317 

15  

35 

0% 

B27 

16  R3306 

17  B178 

18  R3304 

19  R3315 

20  Y208 

21  G268 

22  

14% 

R3347 

23  Y183 

24  Y175 
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25  G258 

26  R3301 

27  R3350 

28  

21% 

B138 

29  G267 

30  Y186 

31  G228 

32  B136 

33  

28% 

G286 

34  R3309 

35  R3323 

 

B. Turkey isolates 

The samples from turkeys were made from an experiment that established to evaluate 

supplementing turkey diets with whole grain wheat on the maintenance of gut health. The birds 

were fed two different diets during the experiment; two treatment groups are a standard diet 

(concentrated supplement, CON) and whole grain wheat (WGW). Samples were collected after 

one week of arrived birds and for a total of eight subsequent weeks. 

No. Date Pen# Dietary Bird ID 

1  

21/10/2014 week 1 

2 WGW 3362 

2  3 CON 3222 

3  4 WGW 34 

4  5 CON 3386 

5  6 WGW 3287 

6  7 CON 3279 

7  9 CON 3372 

8  9 CON 3372R 

9  10 WGW 3272 

10  

28/10/2014 week 2 

1 CON 3369 

11  4 WGW 3254 

12  8 WGW 110R 

13  10 WGW 3413 

14  12 WGW 3251 
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15  

4/11/2014 week 3 

1 CON 3383 

16  2 WGW 3233 

17  3 CON 3298 

18  3 CON 3298R 

19  4 WGW 108 

20  5 CON 3204 

21  6 WGW 46 

22  7 CON 3280 

23  9 CON 3235 

24  11 CON 3253 

25  12 WGW 3219 

26  

11/11/2014 week 4 

1 CON 3281 

27  1 CON 3281R 

28  2 WGW 3283 

29  3 CON 84 

30  3 CON 84R 

31  4 WGW 3275 

32  4 WGW 3275R 

33  5 CON 3212 

34  6 WGW 3227 

35  6 WGW 3227R 

36  7 CON 98 

37  7 CON 98 R 

38  8 WGW 107 

39  8 WGW 107R 

40  9 CON 85R 

41  10 WGW 3206 

42  10 WGW 3206R 

43  11 CON 3389 

44  12 WGW 3208 

45  

18/11/2014 week 5 

1 CON 113 

46  2 WGW 3250 

47  3 CON 3276 

48  3 CON 3276R 
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49  

25/11/2014 week 6 

2 WGW 88-92 

50  2 WGW 88-92R 

51  3 CON 99-3217R 

52  5 CON 111-106 

53  5 CON 111-106R 

54  6 WGW 3373-3242 

55  6 WGW 3373-3242R 

56  

2/12/2014 week 7 

1 CON 3380 

57  1 CON 3380R 

58  2 WGW 3271 

59  2 WGW 3271R 

60  3 CON 105 

61  3 CON 105R 

62  5 CON 3397 

63  5 CON 3397R 

64  6 WGW 104R 

65  7 CON 35R 

66  8 WGW 3270 

67  8 WGW 3270R 

68  11 CON 32 

69  12 WGW 3287 

70  3 CON 3396 

71  4 WGW 3215 

72  4 WGW 3215R 

73  5 CON 3265 

74  6 WGW 3398 

75  9 CON 93 

76  9 CON 93R 

77  10 WGW 3268 

78  11 CON 30 

79  12 WGW 3240 

80  

9/12/2014 week 8 

1 CON 3262 

81  1 CON 3262R 

82  3 CON 3234 
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83  3 CON 3234R 

84  4 WGW 3376 

85  4 WGW 3376R 

86  5 CON 3216 

87  5 CON 3216R 

88  6 WGW 3220 

89  7 CON 3211 

90  8 WGW 44 

91  9 CON 3257 

92  9 CON 3257R 

93  10 WGW 3366R 

94  11 CON 3364 

95  11 CON 3364R 

96  12 WGW 42 

97  4 WGW 40 

98  7 CON 91R 

99  9 CON 3210R 

100  10 WGW 3288R 

 

 

C. APEC isolates 

Other E. coli 65 samples were provided by University of Surrey (UoS) collected from 

infected chicken and confirmed as avian pathogenic E. coli (APEC).  
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Appendix 3: Basic statistical correlation between virulence genes, utilise carbon sources and 

antimicrobial resistant 

                            fim1             papC              csg              crl 

 

 

papC                       0.036 

                           0.614 

 

csg                        0.103            0.044 

                           0.146            0.533 

 

crl                        0.403            0.014           -0.015 

                           0.000            0.839            0.829 

 

tsh                        0.171           -0.045           -0.031            0.069 

                           0.016            0.528            0.667            0.333 

 

iucD                       0.042            0.004            0.076            0.090 

                           0.559            0.953            0.284            0.207 

 

irp2                       0.028           -0.086           -0.078           -0.026 

                           0.689            0.224            0.271            0.719 

 

iss                        0.029            0.063            0.036            0.120 

                           0.679            0.377            0.610            0.092 

 

astA                       0.027            0.037           -0.015            0.059 

                           0.700            0.600            0.831            0.406 

 

cva                        0.060            0.049           -0.070            0.072 

                           0.396            0.491            0.323            0.314 

 

K1                         0.075            0.124           -0.174            0.030 

                           0.289            0.080            0.014            0.670 

 

Sucrose                    0.047            0.002           -0.061            0.058 

                           0.511            0.981            0.389            0.417 

 

Raffinose                 -0.008            0.033           -0.077            0.063 

                           0.913            0.645            0.278            0.376 

 

Inositol                  -0.073           -0.042           -0.045            0.015 

                           0.303            0.556            0.523            0.838 

 

Adonitol                  -0.046           -0.110            0.001           -0.132 

                           0.521            0.121            0.984            0.063 

 

Arabitol                  -0.040           -0.110            0.062           -0.124 

                           0.577            0.121            0.385            0.079 

 

Dulcitol                   0.090            0.116           -0.119            0.069 

                           0.203            0.103            0.093            0.333 

 

Allantoin                  0.020           -0.024           -0.115            0.008 

                           0.774            0.739            0.105            0.908 

 

Proline                   -0.014            0.016           -0.162            0.041 

                           0.844            0.819            0.022            0.560 

 

Sorbose                    0.014            0.000           -0.170            0.052 

                           0.841            1.000            0.016            0.467 

 

Metzitose                 -0.153           -0.035           -0.189            0.012 

                           0.030            0.621            0.007            0.864 

 

Salicin                    0.032           -0.037           -0.199            0.013 
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                           0.654            0.603            0.005            0.857 

 

Nalidixic acid             0.031           -0.020            0.125           -0.073 

                           0.665            0.775            0.077            0.303 

 

Amikacin                   0.050            0.081            0.062            0.020 

                           0.478            0.255            0.381            0.775 

 

Ampicillin                -0.104           -0.131            0.019           -0.062 

                           0.144            0.063            0.788            0.381 

 

Chloramphenicol            0.049            0.057           -0.209            0.020 

                           0.489            0.422            0.003            0.780 

 

Colistin                   0.044           -0.051           -0.145            0.018 

                           0.540            0.477            0.040            0.805 

 

Streptomycin              -0.110           -0.049           -0.136           -0.196 

                           0.120            0.490            0.054            0.005 

 

Trimethoprim              -0.098           -0.006           -0.189            0.027 

                           0.168            0.936            0.007            0.706 

 

 

 

                             tsh             iucD             irp2              iss 

 

 

iucD                       0.459 

                           0.000 

 

irp2                       0.099            0.037 

                           0.163            0.604 

 

iss                        0.142            0.304            0.072 

                           0.045            0.000            0.310 

 

astA                      -0.016           -0.113            0.141           -0.224 

                           0.826            0.110            0.046            0.001 

 

cva                        0.240            0.347           -0.012            0.280 

                           0.001            0.000            0.865            0.000 

 

K1                         0.054            0.169           -0.149            0.128 

                           0.445            0.017            0.036            0.071 

 

Sucrose                    0.049            0.154           -0.145            0.257 

                           0.490            0.029            0.041            0.000 

 

Raffinose                  0.159            0.300           -0.031            0.319 

                           0.024            0.000            0.667            0.000 

 

Inositol                  -0.012            0.162           -0.101            0.079 

                           0.861            0.022            0.153            0.266 

 

Adonitol                  -0.068           -0.263            0.082           -0.363 

                           0.341            0.000            0.250            0.000 

 

Arabitol                  -0.064           -0.234            0.051           -0.308 

                           0.367            0.001            0.477            0.000 

 

Dulcitol                   0.138            0.332           -0.014            0.232 

                           0.051            0.000            0.840            0.001 

 

Allantoin                 -0.055            0.092           -0.049            0.003 

                           0.442            0.195            0.489            0.970 

 

Proline                    0.164            0.258           -0.206            0.195 
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                           0.020            0.000            0.003            0.006 

 

Sorbose                    0.168            0.257            0.080            0.255 

                           0.018            0.000            0.260            0.000 

 

Metzitose                  0.052            0.072           -0.134            0.066 

                           0.463            0.312            0.058            0.350 

 

Salicin                    0.055            0.143           -0.038            0.070 

                           0.440            0.043            0.593            0.325 

 

Nalidixic acid             0.078            0.132           -0.003           -0.054 

                           0.274            0.062            0.965            0.444 

 

Amikacin                   0.214            0.227           -0.196            0.108 

                           0.002            0.001            0.005            0.129 

 

Ampicillin                 0.069            0.038           -0.017            0.015 

                           0.329            0.595            0.814            0.836 

 

Chloramphenicol            0.132            0.037           -0.004            0.013 

                           0.063            0.599            0.951            0.858 

 

Colistin                  -0.020            0.026           -0.213            0.053 

                           0.777            0.711            0.002            0.458 

 

Streptomycin              -0.027            0.184           -0.092            0.170 

                           0.706            0.009            0.194            0.016 

 

Trimethoprim               0.054            0.069           -0.127            0.129 

                           0.452            0.331            0.072            0.069 

 

 

 

                            astA              cva               K1          Sucrose 

 

 

cva                       -0.313 

                           0.000 

 

K1                        -0.160            0.231 

                           0.023            0.001 

 

Sucrose                   -0.060            0.049            0.174 

                           0.399            0.487            0.014 

 

Raffinose                 -0.172            0.180            0.257            0.484 

                           0.015            0.011            0.000            0.000 

 

Inositol                   0.132            0.091            0.067           -0.044 

                           0.062            0.199            0.348            0.534 

 

Adonitol                   0.013           -0.209           -0.231           -0.399 

                           0.851            0.003            0.001            0.000 

 

Arabitol                   0.017           -0.201           -0.231           -0.420 

                           0.811            0.004            0.001            0.000 

 

Dulcitol                  -0.170            0.305            0.264            0.334 

                           0.016            0.000            0.000            0.000 

 

Allantoin                  0.080            0.057           -0.050            0.049 

                           0.258            0.423            0.484            0.493 

 

Proline                   -0.082            0.260            0.392            0.343 

                           0.248            0.000            0.000            0.000 

 

Sorbose                   -0.173            0.236            0.171            0.238 
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                           0.014            0.001            0.015            0.001 

 

Metzitose                  0.079            0.077           -0.074           -0.011 

                           0.265            0.281            0.299            0.872 

 

Salicin                    0.016            0.114            0.105            0.015 

                           0.817            0.109            0.141            0.833 

 

Nalidixic acid            -0.005            0.065           -0.108           -0.142 

                           0.946            0.363            0.127            0.044 

 

Amikacin                  -0.184            0.257            0.217            0.014 

                           0.009            0.000            0.002            0.849 

 

Ampicillin                 0.007            0.000           -0.056           -0.229 

                           0.919            0.999            0.428            0.001 

 

Chloramphenicol           -0.097            0.098            0.128           -0.025 

                           0.173            0.167            0.072            0.722 

 

Colistin                  -0.123            0.135            0.274            0.138 

                           0.084            0.056            0.000            0.052 

 

Streptomycin              -0.156            0.148            0.121            0.102 

                           0.028            0.037            0.087            0.149 

 

Trimethoprim              -0.088            0.151            0.148            0.107 

                           0.217            0.033            0.036            0.132 

 

 

                      Raffinose         Inositol         Adonitol         Arabitol 

Inositol                   0.105 

                           0.140 

 

Adonitol                  -0.445           -0.066 

                           0.000            0.354 

 

Arabitol                  -0.367           -0.025            0.919 

                           0.000            0.725            0.000 

 

Dulcitol                   0.418            0.056           -0.490           -0.492 

                           0.000            0.433            0.000            0.000 

 

Allantoin                  0.019            0.301            0.007            0.004 

                           0.793            0.000            0.922            0.955 

 

Proline                    0.335            0.029           -0.299           -0.239 

                           0.000            0.686            0.000            0.001 

 

Sorbose                    0.440           -0.005           -0.370           -0.371 

                           0.000            0.949            0.000            0.000 

 

Metzitose                  0.263            0.373           -0.055            0.123 

                           0.000            0.000            0.437            0.083 

 

Salicin                    0.139            0.270           -0.058            0.054 

                           0.050            0.000            0.413            0.451 

 

Nalidixic acid            -0.084           -0.126            0.296            0.307 

                           0.239            0.076            0.000            0.000 

 

Amikacin                   0.223           -0.059           -0.155           -0.155 

                           0.002            0.408            0.029            0.029 

 

Ampicillin                -0.157           -0.014            0.182            0.195 

                           0.027            0.839            0.010            0.006 

 

Chloramphenicol            0.190           -0.057           -0.151           -0.151 
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                           0.007            0.420            0.033            0.033 

 

Colistin                   0.126           -0.051           -0.068           -0.070 

                           0.074            0.475            0.342            0.321 

 

Streptomycin               0.169           -0.031           -0.180           -0.183 

                           0.017            0.667            0.011            0.010 

 

Trimethoprim               0.252           -0.025           -0.204           -0.205 

                           0.000            0.721            0.004            0.004 

 

 

 

                        Dulcitol        Allantoin          Proline          Sorbose 

Allantoin                 -0.033 

                           0.639 

 

Proline                    0.295            0.009 

                           0.000            0.896 

 

Sorbose                    0.342           -0.085            0.284 

                           0.000            0.233            0.000 

 

Metzitose                 -0.060            0.253            0.170           -0.004 

                           0.398            0.000            0.016            0.957 

 

Salicin                    0.027            0.266            0.179           -0.004 

                           0.706            0.000            0.011            0.955 

 

Nalidixic acid            -0.063           -0.090           -0.191           -0.040 

                           0.379            0.203            0.007            0.578 

 

Amikacin                   0.076           -0.033            0.268            0.189 

                           0.283            0.639            0.000            0.007 

 

Ampicillin                -0.229            0.001            0.028            0.099 

                           0.001            0.989            0.692            0.161 

 

Chloramphenicol            0.157           -0.033            0.179            0.188 

                           0.027            0.647            0.011            0.008 

 

Colistin                   0.042           -0.029            0.367            0.167 

                           0.557            0.686            0.000            0.018 

 

Streptomycin               0.207           -0.051            0.232            0.255 

                           0.003            0.471            0.001            0.000 

 

Trimethoprim               0.073           -0.044            0.263            0.188 

                           0.301            0.535            0.000            0.008 

 

 

                       Metzitose          Salicin   Nalidixic acid         Amikacin 

Salicin                    0.433 

                           0.000 

 

Nalidixic acid             0.036            0.038 

                           0.613            0.594 

 

Amikacin                  -0.049           -0.052            0.098 

                           0.487            0.464            0.167 

 

Ampicillin                 0.070           -0.013            0.290            0.133 

                           0.327            0.858            0.000            0.060 

 

Chloramphenicol            0.092            0.097            0.005            0.164 

                           0.195            0.172            0.943            0.020 

 

Colistin                   0.044           -0.045            0.006            0.192 
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                           0.540            0.527            0.927            0.006 

 

Streptomycin              -0.026            0.079            0.049            0.290 

                           0.718            0.269            0.494            0.000 

 

Trimethoprim               0.199            0.163            0.035            0.237 

                           0.005            0.021            0.619            0.001 

 

 

 

                      Ampicillin  Chloramphenicol         Colistin     Streptomycin 

Chloramphenicol            0.129 

                           0.068 

 

Colistin                   0.098            0.023 

                           0.167            0.745 

 

Streptomycin               0.262            0.164            0.133 

                           0.000            0.021            0.060 

 

Trimethoprim               0.187            0.240            0.293            0.351 

                           0.008            0.001            0.000            0.000 

 

 

Cell Contents: Pearson correlation 

               P-Value 
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Appendix 4: E. coli strains isolated from a poultry,15 chicken, 15 turkey, 20 APEC and K12 

(JM109 and DH5α) for control to determine the susceptibility of thymol and carvacrol. 

no 
Isolated 

strains 

Thymol (μg/mL) Carvacrol (μg/mL) 

Antimicrobial 

resistance 

Virulence 

genes 

Carbon 

sources 

utilised MIC MBC MIC MBC 

1 

turkey 

125 150 175 225 0 6 5 

2 125 150 175 200 0 7 1 

3 175 200 175 200 1 8 0 

4 175 200 200 225 0 7 3 

5 175 200 200 225 0 5 2 

6 175 200 200 225 2 4 0 

7 125 200 175 200 1 3 2 

8 175 200 175 200 0 6 3 

9 125 150 175 200 2 2 2 

10 175 200 175 200 0 8 1 

11 125 150 175 200 1 5 4 

12 175 200 175 200 0 5 3 

13 175 200 175 200 0 5 2 

14 125 150 175 200 0 6 1 

15 125 150 175 200 1 6 3 

16 

chicken 

150 175 175 200 2 7 0 

17 150 175 175 200 2 8 0 

18 150 175 200 225 2 7 1 

19 150 175 175 200 1 8 1 

20 125 175 200 225 1 8 2 

21 150 175 200 225 1 8 1 

22 125 150 150 175 0 8 4 

23 125 150 150 175 0 8 4 

24 175 200 175 200 1 9 1 

25 150 175 200 225 3 6 1 

26 125 150 175 200 0 8 1 

27 125 150 175 200 0 9 1 

28 125 150 150 175 0 7 0 

29 125 150 175 200 0 6 1 

30 125 150 150 175 3 10 1 

31 

APEC 

125 200 200 225 1 11 3 

32 125 150 200 225 1 9 2 

33 125 150 175 200 2 5 1 

34 125 150 200 225 1 7 3 

35 125 200 200 225 0 8 0 

36 175 150 175 200 0 7 2 

37 125 150 200 225 0 7 3 
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38 125 150 200 225 4 8 3 

39 125 200 225 250 3 10 2 

40 125 150 200 225 1 6 2 

41 125 150 100 150 2 5 1 

42 125 125 150 175 0 9 0 

43 125 125 150 150 0 8 2 

44 150 175 175 200 0 7 3 

45 125 200 100 150 1 7 4 

46 125 150 125 150 2 5 4 

47 125 150 150 200 3 6 1 

48 150 175 175 200 1 7 2 

49 125 125 150 175 4 7 3 

50 150 175 200 225 1 6 2 

51 JM109 175 200 175 200  3  

52 DH5α 150 200 175 200  2  
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Appendix 5: Biofilm formation and Motility 

 

no Bird ID SBF result SBF 

1 3222 0.145562815 negative 0 

2 84 2.046429964 strong 1 

3 98 0.048742862 negative 0 

4 3389 1.509690033 strong 1 

5 3208 2.447249879 Strong 1 

6 88-92 0.707424305 moderate -1 

7 105 0.151195401 negative 0 

8 3397 0.455205204 weak 0 

9 35R 0.082697643 negative 0 

10 3270 0.07369005 negative 0 

11 3287 0.127284439 negative 0 

12 3376 0.051647945 negative 0 

13 3216 0.379334833 weak 0 

14 3257 0.105873134 negative 0 

15 3364 0.108486223 negative 0 

16 Y195 1.25741782 strong 1 

17 Y173 0.883354236 moderat -1 

18 B152 0.151456086 negative 0 

19 R3315 1.341174901 strong 1 

20 G260 0.032129068 negative 0 

21 B27 0.009001619 negative 0 

22 R3304 0.041931467 negative 0 

23 Y208 0.049217367 negative 0 

24 Y175 1.492918264 strong 1 

25 B138 0.13565811 negative 0 

26 G286 1.983463784 strong 1 

27 R3309 0.15930652 negative 0 

28 G228 0.726703286 moderat -1 

29 R3323 0.125051247 negative 0 

30 R3314 0.046853511 negative 0 

31 12 0.880372453 moderate -1 

32 14 0.020498213 negative 0 

33 18 0.206787619 negative 0 

34 19 1.946100323 strong 1 

35 22 0.09780344 negative 0 

36 33 0.069196712 negative 0 

37 43 0.069789633 negative 0 

38 48 0.005391577 negative 0 

39 54 0.010888073 negative 0 

40 55 0.602282149 moderate -1 
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41 56 1.620107968 strong 1 

42 57 0.171846166 negative 0 

43 58 0.55214451 moderate -1 

44 59 0.68491638 moderate -1 

45 60 0.805213267 moderate -1 

46 61 0.285297567 negative 0 

47 62 0.883644121 moderate -1 

48 63 0.547376088 moderate -1 

49 64 0.250122393 negative 0 

50 65 0.727697354 moderate -1 

51 JM109 0.042243094 negative 0 

52 DH5α 0.111516538 negative 0 
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Appendix 6: A visualisation of the mutation on the nucleotide level in an alignment of the 

MG1655, JM109 wildtype and mutant genes with the effect it had on protein translation 

acrR (gene location 485761-486408, locus tag="b0464") 

 

MG1655_b0464_acrR      ATGGCACGAAAAACCAAACAAGAAGCGCAAGAAACGCGCCAACACATCCTCGATGTGGCT 

JM109_WT_acrR          ATGGCACGAAAAACCAAACAAGAAGCGCAAGAAACGCGCCAACACATCCTCGATGTGGCT 

JM109_RThy_acrR        ATGGCACGAAAAACCAAACAAGAAGCGCAAGAAACGCGCCAACACATCCTCGATGTGGCT 

                       ************************************************************ 

 

MG1655_b0464_acrR      CTACGTCTTTTCTCACAGCAGGGGGTATCATCCACCTCGCTGGGCGAGATTGCAAAAGCA 

JM109_WT_acrR          CTACGTCTTTTCTCACAGCAGGGGGTATCATCCACCTCGCTGGGCGAGATTGCAAAAGCA 

JM109_RThy_acrR        CTACGTCTTTTCTCACAGCAGGGGGTATCATCCACCTCGCTGGGCGAGATTGCAAAAGCA 

                       ************************************************************ 

 

MG1655_b0464_acrR      GCTGGCGTTACGCGCGGTGCAATCTACTGGCATTTTAAAGACAAGTCGGATTTGTTCAGT 

JM109_WT_acrR          GCTGGCGTTACGCGCGGTGCAATCTACTGGCATTTTAAAGACAAGTCGGATTTGTTCAGT 

JM109_RThy_acrR        GCTGGCGTTACGCGCGGTGCAATCTACTGGCATTTTAAAGACAAGTCGGATTTGTTCAGT 

                       ************************************************************ 

 

MG1655_b0464_acrR      GAGATCTGGGAACTGTCAGAATCCAATATTGGTGAACTAGAGCTTGAGTATCAGGCAAAA 

JM109_WT_acrR          GAGATCTGGGAACTGTCAGAATCCAATATTGGTGAACTAGAGCTTGAGTATCAGGCAAAA 

JM109_RThy_acrR        GAGATCTGGGAACTGTCAGAATCCAATATTGGTGAACTAGAGCTTGAGTATCAGGCAAAA 

                       ************************************************************ 

 

MG1655_b0464_acrR      TTCCCTGGCGATCCACTCTCAGTATTAAGAGAGATATTAATTCATGTTCTTGAATCCACG 

JM109_WT_acrR          TTCCCTGGCGATCCACTCTCAGTATTAAGAGAGATATTAATTCATGTTCTTGAATCCACG 

JM109_RThy_acrR        TTCCCTGGCGATCCACTCTCAGTATTAAGAGAGATATTAATTCATGTTCTTGAATCCACG 

                       ************************************************************ 

 

MG1655                              486079 

                                         | 

MG1655_b0464_acrR      GTGACAGAAGAACGGCGTCGATTATTGATGGAGATTATATTCCACAAATGCGAATTTGTC 

JM109_WT_acrR          GTGACAGAAGAACGGCGTCGATTATTGATGGAGATTATATTCCACAAATGCGAATTTGTC 

JM109_RThy_acrR        GTGACAGAAGAACGGCGTTGATTATTGATGGAGATTATATTCCACAAATGCGAATTTGTC 

                       ****************** ***************************************** 

 

MG1655_b0464_acrR      GGAGAAATGGCTGTTGTGCAACAGGCACAACGTAATCTCTGTCTGGAAAGTTATGACCGT 

JM109_WT_acrR          GGAGAAATGGCTGTTGTGCAACAGGCACAACGTAATCTCTGTCTGGAAAGTTATGACCGT 

JM109_RThy_acrR        GGAGAAATGGCTGTTGTGCAACAGGCACAACGTAATCTCTGTCTGGAAAGTTATGACCGT 
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                       ************************************************************ 

 

MG1655_b0464_acrR      ATAGAACAAACGTTAAAACATTGTATTGAAGCGAAAATGTTGCCTGCGGATTTAATGACG 

JM109_WT_acrR          ATAGAACAAACGTTAAAACATTGTATTGAAGCGAAAATGTTGCCTGCGGATTTAATGACG 

JM109_RThy_acrR        ATAGAACAAACGTTAAAACATTGTATTGAAGCGAAAATGTTGCCTGCGGATTTAATGACG 

                       ************************************************************ 

 

MG1655_b0464_acrR      CGTCGCGCAGCAATTATTATGCGCGGCTATATTTCCGGCCTGATGGAAAACTGGCTCTTT 

JM109_WT_acrR          CGTCGCGCAGCAATTATTATGCGCGGCTATATTTCCGGCCTGATGGAAAACTGGCTCTTT 

JM109_RThy_acrR        CGTCGCGCAGCAATTATTATGCGCGGCTATATTTCCGGCCTGATGGAAAACTGGCTCTTT 

                       ************************************************************ 

 

MG1655_b0464_acrR      GCCCCGCAATCTTTTGATCTTAAAAAAGAAGCCCGCGATTACGTTGCCATCTTACTGGAG 

JM109_WT_acrR          GCCCCGCAATCTTTTGATCTTAAAAAAGAAGCCCGCGATTACGTTGCCATCTTACTGGAG 

JM109_RThy_acrR        GCCCCGCAATCTTTTGATCTTAAAAAAGAAGCCCGCGATTACGTTGCCATCTTACTGGAG 

                       ************************************************************ 

 

MG1655_b0464_acrR      ATGTATCTCCTGTGCCCCACGCTTCGTAATCCTGCCACTAACGAATAA 

JM109_WT_acrR          ATGTATCTCCTGTGCCCCACGCTTCGTAATCCTGCCACTAACGAATAA 

JM109_RThy_acrR        ATGTATCTCCTGTGCCCCACGCTTCGTAATCCTGCCACTAACGAATAA 

                       ************************************************ 

 

                       Val Tyr Glu Glu Arg Arg Arg Leu Leu Met Glu 

JM109_WT_acrR          GTG ACA GAA GAA CGG CGT CGA TTA TTG ATG GAG 

JM109_RThy_acrR        GTG ACA GAA GAA CGG CGT TGA TTA TTG ATG GAG 

                       Val Tyr Glu Glu Arg Arg StopLeu Leu Met Glu  
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rng (gene location 3396326-3397795 [reverse orientation], locus tag="b3247") 

 

MG1655_b3247_rng      ATGACGGCTGAATTGTTAGTAAACGTAACGCCTTCGGAAACGCGAGTGGCGTATATTGAT 

JM109_WT_rng          ATGACGGCTGAATTGTTAGTAAACGTAACGCCTTCGGAAACGCGAGTGGCGTATATTGAT 

JM109_RThy_rng        ATGACGGCTGAATTGTTAGTAAACGTAACGCCTTCGGAAACGCGAGTGGCGTATATTGAT 

                      ************************************************************ 

 

MG1655_b3247_rng      GGCGGTATTCTGCAGGAAATTCATATTGAACGTGAGGCGCGACGCGGAATAGTAGGCAAT 

JM109_WT_rng          GGCGGTATTCTGCAGGAAATTCATATTGAACGTGAGGCGCGACGCGGAATAGTAGGCAAT 

JM109_RThy_rng        GGCGGTATTCTGCAGGAAATTCATATTGAACGTGAGGCGCGACGCGGAATAGTAGGCAAT 

                      ************************************************************ 

 

MG1655_b3247_rng      ATCTACAAGGGTCGTGTAAGTCGTGTACTTCCGGGTATGCAGGCGGCTTTTGTAGATATT 

JM109_WT_rng          ATCTACAAGGGTCGTGTAAGTCGTGTACTTCCGGGTATGCAGGCGGCTTTTGTAGATATT 

JM109_RThy_rng        ATCTACAAGGGTCGTGTAAGTCGTGTACTTCCGGGTATGCAGGCGGCTTTTGTAGATATT 

                      ************************************************************ 

 

MG1655_b3247_rng      GGGCTGGATAAAGCCGCGTTTCTTCATGCATCCGACATCATGCCGCACACCGAATGTGTG 

JM109_WT_rng          GGGCTGGATAAAGCCGCGTTTCTTCATGCATCCGACATCATGCCGCACACCGAATGTGTG 

JM109_RThy_rng        GGGCTGGATAAAGCCGCGTTTCTTCATGCATCCGACATCATGCCGCACACCGAATGTGTG 

                      ************************************************************ 

 

MG1655_b3247_rng      GCGGGTGAAGAACAAAAGCAATTCACGGTGCGCGACATCTCGGAACTGGTTCGTCAGGGG 

JM109_WT_rng          GCGGGTGAAGAACAAAAGCAATTCACGGTGCGCGACATCTCGGAACTGGTTCGTCAGGGG 

JM109_RThy_rng        GCGGGTGAAGAACAAAAGCAATTCACGGTGCGCGACATCTCGGAACTGGTTCGTCAGGGG 

                      ************************************************************ 

 

MG1655                                                             3397444 

                                                                         | 

MG1655_b3247_rng      CAAGATCTGATGGTGCAGGTGGTGAAAGATCCGCTTGGCACTAAAGGTGCGCGCCTGACC 

JM109_WT_rng          CAAGATCTGATGGTGCAGGTGGTGAAAGATCCGCTTGGCACTAAAGGTGCGCGCCTGACC 

JM109_RThy_rng        CAAGATCTGATGGTGCAGGTGGTGAAAGATCCGCTTGGCACTAAAGGTGCGTGCCTGACC 

                      *************************************************** ******** 

 

MG1655_b3247_rng      ACCGATATCACGCTCCCTTCTCGCTATCTGGTGTTTATGCCAGGGGCTTCTCACGTTGGG 

JM109_WT_rng          ACCGATATCACGCTCCCTTCTCGCTATCTGGTGTTTATGCCAGGGGCTTCTCACGTTGGG 

JM109_RThy_rng        ACCGATATCACGCTCCCTTCTCGCTATCTGGTGTTTATGCCAGGGGCTTCTCACGTTGGG 

                      ************************************************************ 
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MG1655_b3247_rng      GTTTCCCAACGTATTGAAAGCGAATCAGAACGTGAACGCCTGAAAAAAGTGGTCGCAGAG 

JM109_WT_rng          GTTTCCCAACGTATTGAAAGCGAATCAGAACGTGAACGCCTGAAAAAAGTGGTCGCAGAG 

JM109_RThy_rng        GTTTCCCAACGTATTGAAAGCGAATCAGAACGTGAACGCCTGAAAAAAGTGGTCGCAGAG 

                      ************************************************************ 

 

MG1655_b3247_rng      TATTGCGACGAGCAGGGCGGGTTTATCATCCGTACCGCAGCGGAAGGGGTTGGCGAGGCT 

JM109_WT_rng          TATTGCGACGAGCAGGGCGGGTTTATCATCCGTACCGCAGCGGAAGGGGTTGGCGAGGCT 

JM109_RThy_rng        TATTGCGACGAGCAGGGCGGGTTTATCATCCGTACCGCAGCGGAAGGGGTTGGCGAGGCT 

                      ************************************************************ 

 

MG1655_b3247_rng      GAACTGGCCTCCGATGCCGCTTATCTGAAACGCGTCTGGACCAAAGTTATGGAGCGTAAA 

JM109_WT_rng          GAACTGGCCTCCGATGCCGCTTATCTGAAACGCGTCTGGACCAAAGTTATGGAGCGTAAA 

JM109_RThy_rng        GAACTGGCCTCCGATGCCGCTTATCTGAAACGCGTCTGGACCAAAGTTATGGAGCGTAAA 

                      ************************************************************ 

 

MG1655_b3247_rng      AAACGCCCGCAGACCCGTTATCAGCTGTACGGCGAACTGGCGCTGGCGCAGCGTGTTCTG 

JM109_WT_rng          AAACGCCCGCAGACCCGTTATCAGCTGTACGGCGAACTGGCGCTGGCGCAGCGTGTTCTG 

JM109_RThy_rng        AAACGCCCGCAGACCCGTTATCAGCTGTACGGCGAACTGGCGCTGGCGCAGCGTGTTCTG 

                      ************************************************************ 

 

MG1655_b3247_rng      CGTGATTTCGCCGATGCCGAACTGGACCGCATTCGCGTTGACTCACGCCTGACTTACGAA 

JM109_WT_rng          CGTGATTTCGCCGATGCCGAACTGGACCGCATTCGCGTTGACTCACGCCTGACTTACGAA 

JM109_RThy_rng        CGTGATTTCGCCGATGCCGAACTGGACCGCATTCGCGTTGACTCACGCCTGACTTACGAA 

                      ************************************************************ 

 

MG1655_b3247_rng      GCGTTACTTGAGTTCACCTCGGAGTACATTCCCGAGATGACAAGCAAGCTGGAGCATTAC 

JM109_WT_rng          GCGTTACTTGAGTTCACCTCGGAGTACATTCCCGAGATGACAAGCAAGCTGGAGCATTAC 

JM109_RThy_rng        GCGTTACTTGAGTTCACCTCGGAGTACATTCCCGAGATGACAAGCAAGCTGGAGCATTAC 

                      ************************************************************ 

 

MG1655_b3247_rng      ACAGGACGCCAGCCGATTTTCGATCTCTTTGATGTCGAAAACGAAATCCAGCGAGCGCTG 

JM109_WT_rng          ACAGGACGCCAGCCGATTTTCGATCTCTTTGATGTCGAAAACGAAATCCAGCGAGCGCTG 

JM109_RThy_rng        ACAGGACGCCAGCCGATTTTCGATCTCTTTGATGTCGAAAACGAAATCCAGCGAGCGCTG 

                      ************************************************************ 

 

MG1655_b3247_rng      GAACGCAAAGTAGAACTGAAATCCGGTGGTTATCTCATTATCGACCAGACCGAAGCGATG 

JM109_WT_rng          GAACGCAAAGTAGAACTGAAATCCGGTGGTTATCTCATTATCGACCAGACCGAAGCGATG 

JM109_RThy_rng        GAACGCAAAGTAGAACTGAAATCCGGTGGTTATCTCATTATCGACCAGACCGAAGCGATG 

                      ************************************************************ 
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MG1655_b3247_rng      ACCACCGTGGACATCAATACCGGAGCGTTTGTCGGTCATCGCAATCTGGACGACACCATT 

JM109_WT_rng          ACCACCGTGGACATCAATACCGGAGCGTTTGTCGGTCATCGCAATCTGGACGACACCATT 

JM109_RThy_rng        ACCACCGTGGACATCAATACCGGAGCGTTTGTCGGTCATCGCAATCTGGACGACACCATT 

                      ************************************************************ 

 

MG1655_b3247_rng      TTCAATACCAATATTGAAGCGACGCAGGCTATCGCTCGCCAGTTACGGTTGCGTAATCTG 

JM109_WT_rng          TTCAATACCAATATTGAAGCGACGCAGGCTATCGCTCGCCAGTTACGGTTGCGTAATCTG 

JM109_RThy_rng        TTCAATACCAATATTGAAGCGACGCAGGCTATCGCTCGCCAGTTACGGTTGCGTAATCTG 

                      ************************************************************ 

 

MG1655_b3247_rng      GGCGGGATTATCATTATTGATTTCATCGATATGAATAATGAAGATCACCGCCGCCGAGTG 

JM109_WT_rng          GGCGGGATTATCATTATTGATTTCATCGATATGAATAATGAAGATCACCGCCGCCGAGTG 

JM109_RThy_rng        GGCGGGATTATCATTATTGATTTCATCGATATGAATAATGAAGATCACCGCCGCCGAGTG 

                      ************************************************************ 

 

MG1655_b3247_rng      CTGCACTCGCTGGAGCAGGCGTTGAGCAAAGACCGGGTGAAAACCAGCGTTAATGGTTTT 

JM109_WT_rng          CTGCACTCGCTGGAGCAGGCGTTGAGCAAAGACCGGGTGAAAACCAGCGTTAATGGTTTT 

JM109_RThy_rng        CTGCACTCGCTGGAGCAGGCGTTGAGCAAAGACCGGGTGAAAACCAGCGTTAATGGTTTT 

                      ************************************************************ 

 

MG1655_b3247_rng      TCGGCGCTGGGGCTGGTGGAGATGACGCGTAAACGCACCCGCGAAAGCATTGAGCACGTA 

JM109_WT_rng          TCGGCGCTGGGGCTGGTGGAGATGACGCGTAAACGCACCCGCGAAAGCATTGAGCACGTA 

JM109_RThy_rng        TCGGCGCTGGGGCTGGTGGAGATGACGCGTAAACGCACCCGCGAAAGCATTGAGCACGTA 

                      ************************************************************ 

 

MG1655_b3247_rng      CTGTGTAACGAATGCCCAACCTGCCACGGTCGCGGAACGGTGAAAACCGTGGAAACGGTA 

JM109_WT_rng          CTGTGTAACGAATGCCCAACCTGCCACGGTCGCGGAACGGTGAAAACCGTGGAAACGGTA 

JM109_RThy_rng        CTGTGTAACGAATGCCCAACCTGCCACGGTCGCGGAACGGTGAAAACCGTGGAAACGGTA 

                      ************************************************************ 

 

MG1655_b3247_rng      TGCTATGAAATCATGCGCGAGATTGTTCGTGTCCACCATGCTTACGACTCCGACCGTTTC 

JM109_WT_rng          TGCTATGAAATCATGCGCGAGATTGTTCGTGTCCACCATGCTTACGACTCCGACCGTTTC 

JM109_RThy_rng        TGCTATGAAATCATGCGCGAGATTGTTCGTGTCCACCATGCTTACGACTCCGACCGTTTC 

                      ************************************************************ 

 

MG1655_b3247_rng      CTGGTCTATGCTTCTCCGGCAGTAGCTGAAGCCTTGAAAGGCGAAGAGTCACACTCGCTG 

JM109_WT_rng          CTGGTCTATGCTTCTCCGGCAGTAGCTGAAGCCTTGAAAGGCGAAGAGTCACACTCGCTG 

JM109_RThy_rng        CTGGTCTATGCTTCTCCGGCAGTAGCTGAAGCCTTGAAAGGCGAAGAGTCACACTCGCTG 



235 
 

                      ************************************************************ 

 

MG1655_b3247_rng      GCGGAAGTGGAAATTTTCGTTGGCAAACAGGTTAAAGTACAAATTGAACCGCTCTATAAC 

JM109_WT_rng          GCGGAAGTGGAAATTTTCGTTGGCAAACAGGTTAAAGTACAAATTGAACCGCTCTATAAC 

JM109_RThy_rng        GCGGAAGTGGAAATTTTCGTTGGCAAACAGGTTAAAGTACAAATTGAACCGCTCTATAAC 

                      ************************************************************ 

 

MG1655_b3247_rng      CAGGAGCAGTTTGACGTCGTAATGATGTAA 

JM109_WT_rng          CAGGAGCAGTTTGACGTCGTAATGATGTAA 

JM109_RThy_rng        CAGGAGCAGTTTGACGTCGTAATGATGTAA 

                      ****************************** 

 

 

 

                       Thr Lys Gly Ala Arg Leu Thr 

JM109_WT_rng           ACT AAA GGT GCG CGC CTG ACC 

JM109_RThy_rng         ACT AAA GGT GCG TGC CTG ACC 

                       Thr Lys Gly Ala Cys Leu Thr 

 

 

 

 

 


