Personalised, multi-modal, affective state detection for hybrid brain-computer music interfacing

[thumbnail of 08283734.pdf]
Preview
Text - Accepted Version
· Please see our End User Agreement before downloading.
| Preview

Please see our End User Agreement.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Daly, I., Williams, D., Malik, A., Weaver, J., Kirke, A., Hwang, F. orcid id iconORCID: https://orcid.org/0000-0002-3243-3869, Miranda, E. and Nasuto, S. J. orcid id iconORCID: https://orcid.org/0000-0001-9414-9049 (2020) Personalised, multi-modal, affective state detection for hybrid brain-computer music interfacing. IEEE Transactions on Affective Computing, 11 (1). pp. 111-124. ISSN 1949-3045 doi: 10.1109/TAFFC.2018.2801811

Abstract/Summary

Brain-computer music interfaces (BCMIs) may be used to modulate affective states, with applications in music therapy, composition, and entertainment. However, for such systems to work they need to be able to reliably detect their user's current affective state. We present a method for personalised affective state detection for use in BCMI. We compare it to a population-based detection method trained on 17 users and demonstrate that personalised affective state detection is significantly ( $p<0.01$p<0.01 ) more accurate, with average improvements in accuracy of 10.2 percent for valence and 9.3 percent for arousal. We also compare a hybrid BCMI (a BCMI that combines physiological signals with neurological signals) to a conventional BCMI design (one based upon the use of only EEG features) and demonstrate that the hybrid design results in a significant ( $p<0.01$p<0.01 ) 6.2 percent improvement in performance for arousal classification and a significant ( $p<0.01$p<0.01 ) 5.9 percent improvement for valence classification.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/76558
Identification Number/DOI 10.1109/TAFFC.2018.2801811
Refereed Yes
Divisions Life Sciences > School of Biological Sciences > Department of Bio-Engineering
Publisher IEEE
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar