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Abstract 

 

In multi-arm adaptive trials, several treatments are assessed simultaneously and accumulating 

data are used to inform decisions about the trial, such as whether treatments are dropped or 

continued.  Different methodological approaches have been developed for such trials and 

research has compared the performance of different subsets of these.  The approach described 

by Royston et al (2003), for which we use the acronym MAMS(R), has generally not been 

included in these comparisons because control of the family-wise error rate (FWER) could 

not be guaranteed.  Recently, the MAMS(R) approach has been extended to facilitate the 

generation of efficient designs which strongly control the FWER.  We consider multi-arm 

two-stage trials with binary outcomes and propose parameterising treatment effects using the 

log odds ratio.  We conduct a simulation study comparing the extended MAMS(R) 

framework with the well-established combination method both for trials where a different 

outcome is used for mid-trial analysis and for trials where the same outcome is used 

throughout.  We show how the MAMS(R) framework compares favourably only in scenarios 

where the same outcome is used.  We propose a hybrid selection rule within MAMS(R) 

methodology and demonstrate that this makes it possible to use the MAMS(R) framework in 

trials incorporating comparative treatment selection.  

 

Keywords 

 

Multi-arm adaptive trials, MAMS, combination method, log odds ratio, selection rule, family-

wise error rate 
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1  INTRODUCTION 

 

When several treatments are proposed as candidates for a particular medical condition at the 

same time, the length of time and total sample size required to evaluate each one in a separate 

conventional clinical trial may be unacceptable.  Multi-arm adaptive trials have been 

developed to offer a more timely and efficient evaluation.  In a multi-arm adaptive trial 

several new therapies may be assessed alongside a single control group; this can speed up the 

process of evaluation and substantially reduce sample size requirements compared with 

conducting separate trials.  Furthermore, a multi-arm adaptive trial is conducted in stages 

allowing interim analysis of accumulating data to inform how the trial should progress, for 

example poorly performing arms may be dropped.  A useful application of these methods has 

been the facility to merge a Phase II with a Phase III trial.  These so called ‘seamless trials’ 

may substantially reduce sample size requirements and also reduce the potentially lengthy 

‘white space’ between Phase II and Phase III.1,2   

 

A key challenge in multi-arm adaptive trial methodology is strong control of the familywise 

error rate (FWER) so that the probability of recommending an ineffective treatment is not 

inflated by multiplicity or selection.  Several methodological approaches which address this 

issue have been developed and compared.3,4  A key feature separating these approaches into 

two main types concerns the manner in which stage-wise test statistics are obtained.  These 

may either be calculated based on data from each stage separately and then combined at the 

end of the trial or alternatively may be calculated cumulatively as the trial progresses.  The 

combination method5,6 is a well-established method of the first type which uses a closed 

testing procedure7 to control the FWER strongly.  The group sequential method8,9,10 is of the 

second type and uses cumulative test statistics, calculated at each stage, which are compared 
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against boundaries defined by critical values.  Different types of boundaries can be specified 

depending on the requirements of a particular trial, for example to allow early stopping for 

efficacy or futility.  The boundaries are obtained using numerical integration such that the 

Type 1 error is controlled.  A related approach based on cumulative test statistics and stage 

wise critical values is that proposed by Royston et al,11 we will refer to this as the MAMS(R) 

framework.  This method allows different outcomes to be used for the intermediate and final 

analyses, a useful feature in trials where the primary outcome is observable only after a long 

time period.  Critical values are specified which determine the early dropping of poorly 

performing treatments and the Type 1 error can be calculated for any set of critical values if 

the correlation between the intermediate and final outcomes is known.  

 

A number of studies have compared the performance of the combination method with the 

group sequential approach.  In the single experimental arm setting, Jennison and Turnbull12 

describe how using the combination method allows greater flexibility regarding stage-wise 

sample sizes but that unplanned changes reduce efficiency because the final test for the 

treatment difference is not based on a sufficient statistic.  Tsiatis and Mehta13 show that for 

trials where such unplanned changes are made, it is always possible to find a group sequential 

design which has the same sample size and is more powerful.  Kelly et al14 investigated two-

stage and five-stage designs in a practical setting and found the group sequential approach 

yielded similar or slightly greater power compared with the combination method.  However, 

they confirm the greater flexibility of the combination method by showing that changes to 

sample sizes made on the basis of interim data analysis result in a breach of the Type I error 

in the group sequential approach, but not in the combination method.  Comparisons have also 

been drawn between different approaches in the multi-arm setting where interim data analysis 

is used to inform treatment selection.15  Friede and Stallard16 compared a number of adaptive 
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trial designs including the group sequential approach and the combination method.  They did 

not find any method to be consistently more powerful than another.  Instead, factors such as 

the size of the treatment effect and the process chosen for selecting treatments determined 

which approach performed best.  Kunz et al17 considered multi-arm trials where data 

regarding an early outcome measure are incorporated in the process of treatment selection.  

They conducted a comparison study and again found there was no overall advantage for the 

group sequential approach or the combination method, but that the preferred method 

depended on treatment effects and correlations between early and final outcomes. 

 

Studies comparing different approaches in multi-arm adaptive design methodology have 

generally not incorporated the MAMS(R) framework, largely because control of the FWER 

could not be guaranteed and also because the MAMS(R) framework was developed 

specifically for trials with survival outcomes.  However, MAMS(R) methodology has 

recently been extended such that binary outcomes may now be accommodated.18   Strong 

control of the FWER can also be guaranteed and a systematic search procedure has been 

developed which can produce efficient designs for trials with any number of stages and 

treatment arms.19  

 

In view of these developments, we consider there is good reason to explore and evaluate the 

performance of MAMS(R) designs.  We propose utilising and further developing the 

MAMS(R) framework to obtain boundary based trial designs and then use these designs as 

the basis for a study of the performance of MAMS(R) compared to the combination method 

in the setting of two-stage trials.  Both approaches are relatively easy for clinicians to 

understand and implement in the multi-arm context and neither method requires the number 

of treatments selected at an interim analysis to be specified in advance.  Furthermore, each of 
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the approaches can be used in trials where treatment selection is based on the definitive 

outcome or on an early outcome measure only, without there being any restriction to carry 

forward only one treatment. 

 

Our motivation is the evaluation of treatments for chronic diseases such as tuberculosis (TB), 

multiple sclerosis (MS) and osteoporosis.  For these conditions, binary outcomes, 

representing a success or failure recorded for an individual patient, are commonly 

encountered.  A binary outcome in TB could be whether or not a patient converted to a 

negative sputum culture, in MS whether or not a patient’s disability rating has increased by a 

given number of units and in Osteoporosis whether or not a patient has suffered a fracture 

during a certain time period. 

 

We consider two types of multi-arm trials, firstly where the intermediate outcome (𝐼) is 

different from the definitive outcome (𝐷), perhaps because data regarding the definitive 

outcome would not be available at an early stage in the trial,  we refer to these as 𝐼 ≠ 𝐷 trials, 

and secondly trials where the same outcome is used throughout, we refer to these as 𝐼 = 𝐷 

trials.  For 𝐼 ≠ 𝐷 trials, we use as a basis the Phase 2/3 seamless trial described by Bratton18 

in which several treatment regimens for TB were evaluated.  The intermediate outcome is 

whether conversion to negative culture status has occurred after eight weeks treatments and 

the definitive outcome is whether a patient has relapsed or not during an 18 month period.   

For  𝐼 = 𝐷 trials, we use a two-stage version of the Phase 2 trial, where the outcome related 

to relapse is used throughout the trial.  

 

In Section 2 we describe how treatment effects for binary outcomes may be parameterised in 

terms of a probability difference or a log-odds ratio (LOR).  We then briefly describe 
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methodology for the combination method and the MAMS(R) framework.  In Section 3 we 

show how MAMS(R) methodology based on the parameterisation of probability difference 

can be adapted so that efficient two-stage designs based on the log-odds ratio may be readily 

obtained.  We discuss the selection rules which are currently implemented in the combination 

method and the MAMS(R) framework and propose a new hybrid selection rule.  We then 

conduct a simulation study comparing the performance of the MAMS(R) and combination 

methods for both 𝐼 ≠ 𝐷 and 𝐼 = 𝐷  trials with binary outcomes, investigating a number of 

scenarios and a range of treatment effects. 

 

2  BACKGROUND  

 

2.1 Choice of treatment difference for trials with binary outcomes 

 

For a clinical trial with a binary outcome, let the proportion of patients who have a positive 

response regarding a chosen outcome be denoted  𝑝𝐸 under the experimental treatment and 

𝑝𝐶 under the control treatment.  To compare the new therapy with the control, the difference 

in proportions,  𝑝𝐸 − 𝑝𝐶 ,  may be used as a measure of the treatment effect.  This option has 

the merit of simplicity.  However, an alternative measure of treatment difference for binary 

outcomes is the log odds ratio (LOR) defined as  𝜃 = log{𝑝𝐸(1 − 𝑝𝐶) 𝑝𝐶(1 − 𝑝𝐸)⁄ }.  Unlike 

the measure ‘difference in proportions’ the LOR is asymptotically normally distributed and 

this may be an advantage when significance tests are based on assumptions of normality.  

Also, the LOR is closely linked to the logit, the natural parameter used in logistic modelling. 

There may be times when it is desirable to express a clinical outcome using a modelling 

approach, perhaps to allow inclusion of relevant covariates.  Using the LOR makes this 

transition more straightforward.  In this paper we have chosen to consider the LOR 
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parameterisation and describe its implementation in the MAMS(R) framework and the 

combination  method. 

 

2.2  MAMS(R) framework 

 

MAMS(R) trials were initially proposed by Royston et al11 to address the need for increased 

efficiency in evaluating treatments for diseases where the main outcome of interest is a 

survival time response.  Their approach was developed for the 𝐼 ≠ 𝐷 case, but can easily be 

applied in the 𝐼 = 𝐷 case.  Recently, MAMS(R) methodology has been extended to 

accommodate binary outcomes18 with the difference in success rate between the control and 

the experimental treatments being used to parameterise treatment effects.  Briefly, the 

fundamental elements of the MAMS(R) framework, irrespective of outcome type, are as 

follows.  To obtain a design for a trial with 𝐾 experimental treatments and a single control, 

we assume the same null and alternative hypotheses for all treatment arms.  We denote the 

treatment effect, comparing experimental treatment 𝑇𝑖 with the control treatment, by 𝜃𝑖𝑗 , 

where 𝑖 denotes the treatment arm and 𝑗 denotes the intermediate or definitive outcome.  The 

hypotheses of interest are then 

𝐻0(𝑖): 𝜃𝑖𝑗 ≤ 𝜃𝑗
0   𝑖 = 1, … 𝐾, 𝑗 = 𝐼, 𝐷 

𝐻𝐴(𝑖): 𝜃𝑖𝑗 > 𝜃𝑗
0   𝑖 = 1, … 𝐾, 𝑗 = 𝐼, 𝐷 

For the 𝐼 ≠ 𝐷 case, 𝜃𝐼
0 and  𝜃𝐷

0  represent the null hypotheses for the early and definitive 

outcome respectively whereas for the 𝐼 = 𝐷 case, 𝜃𝐼
0 = 𝜃𝐷

0 .  For a superiority trial, 𝜃𝑗
0 is 

usually equal to 0 whereas for a non-inferiority trial 𝜃𝑗
0 generally takes a small but negative 

value. 
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In a two stage MAMS(R) trial, a test of 𝐻0(𝑖) against 𝐻𝐴(𝑖) is conducted for each treatment 

arm at the end of each stage.  Cumulative test statistics calculated for each treatment are 

compared against predetermined critical values.  At the end of stage one, a treatment is 

dropped if the test statistic falls below the stage one critical value (𝐶1).  At the end of the 

second stage, any remaining treatment is declared beneficial if the stage two critical value 

(𝐶2) is exceeded.  A key issue in MAMS(R) methodology is how to determine 𝐶1  and  𝐶2 so 

that the Type I error is controlled at some specified value.  Originally, although designs 

included several experimental treatment arms, the pair-wise error rate (PWER) was 

controlled rather than the FWER.  Assuming the null hypothesis is true, let standardised test 

statistics obtained for a given treatment arm at stage one and stage two be denoted 𝑆𝑖𝑗
1  and 𝑆𝑖𝑗

2  

respectively.  Then,  

(
𝑆𝑖𝑗

1

𝑆𝑖𝑗
2 ) ~𝐵𝑉𝑁 ((

0
0

) , (
1 𝜌
𝜌 1

)),                                     

where BVN denotes the bivariate normal distribution and 𝜌 is the correlation between the test 

statistics obtained at the interim and final analyses.  For 𝐼 = 𝐷, 𝜌 is a function of the stage-

wise sample sizes whereas for 𝐼 ≠ 𝐷, 𝜌 is a function of the stage-wise sample sizes and also 

the correlation between the intermediate and definitive outcomes.  The probability of a given 

treatment passing both stages and thereby being declared effective is given by 𝑝𝑟((𝑆𝑖𝑗
1 ≥

𝐶1, 𝑆𝑖𝑗
2 ≥ 𝐶2)|𝐻0(𝑖)) = 𝑃𝑊𝐸𝑅.  The PWER is calculated by integration of the tail areas of the 

joint distribution.  Similar expressions for pair-wise power can be obtained by considering the 

probability of a treatment passing both stages when the alternative hypothesis is true.  The 

critical values  𝐶1  and 𝐶2 can be chosen on a trial and error basis such that the PWER is no 

greater than some 𝛼 and the pairwise power no less than some ω.  This approach has been 

used for designing both 𝐼 = 𝐷 and  𝐼 ≠ 𝐷 trials.  However, Bratton19 suggests that although 
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this method is appropriate when 𝐼 = 𝐷, it may not be suitable when  𝐼 ≠ 𝐷 since in this 

case  the maximum PWER in fact occurs when a treatment is ineffective on the definitive 

outcome, but is fully effective on the intermediate outcome so that 𝐶2 should be determined 

solely by the target 𝛼 as in a single stage trial.  

 

Bratton19 proposes a method for obtaining a set of critical values for a MAMS(R) trial which 

ensures that the FWER is controlled at a specified level.  Following the approach to trial 

design first suggested by Simon20 and then developed by Jung et al21 and Mander et al22, 

Bratton developed software in which a systematic search procedure is used to generate a set 

of designs which achieve a specified FWER and pair-wise power; such designs are termed 

‘feasible’.  The overall expected sample size of each feasible trial, denoted 𝑁, is then 

calculated under two scenarios, firstly under the global null hypothesis and secondly under 

the situation where all arms have treatment effects on 𝐼  and 𝐷 equal to some reference 

values, denoted  𝜃𝐼
𝑅 and  𝜃𝐷

𝑅, which are specified by the user.  We denote these two scenarios 

using  𝐻0(𝐺)  and 𝐻𝑅(𝐺) respectively.  Designs which minimise a weighted sum of these two 

measures  are identified as ‘admissible’.  For a trial with 𝐾 experimental treatment arms with 

a target FWER of α, the PWER for each treatment arm is first set to 𝛼∗, where 𝛼∗ satisfies the 

Dunnett probability  𝛼 = 𝜙𝐾(𝑧𝛼∗ , … , 𝑧𝛼∗; 𝐶), where 𝜙𝐾 is the K-dimensional multivariate 

normal distribution function and  𝐶 is the between-arm correlation matrix.  A search is then 

carried out over many possible combinations of values for 𝐶1 and 𝐶2 and designs which are 

feasible retained.  Identifying admissible designs requires calculation of 𝐸(𝑁|𝐻0(𝐺)) and 

𝐸(𝑁|𝐻𝑅(𝐺)).   Obtaining these measures requires calculation of the per-treatment stage-wise 

sample sizes and also the numerical evaluation of the probability that 𝑘 out of 𝐾 treatments 

will reach stage two of the trial under each hypothesis.  This probability may be obtained 

using a simulation approach somewhat similar to the method described by Wason and Jaki23.  
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Test statistics (𝑆𝑖
𝑠) with the appropriate correlation structure are generated for each treatment 

at each stage (𝑠)of a MAMS(R) trial in accordance with Equation 5.1 described by Bratton,19 

which in the notation of this paper and for equal allocation to experimental and control 

treatment arms can be expressed as 

𝑆𝑖
𝑠  = √0.5 𝑥0

𝑠 +  √0.5𝑥𝑖
𝑠  +

𝜃𝑖
𝑠 − 𝜃0(𝑠)

𝜎𝑖
𝑠 , 

where 𝑥𝑖
𝑠  are standard normally distributed random variables generated for 𝑖 = 0,1. . 𝐾 with 

the appropriate between stage correlation of test statistics, 𝜃𝑖
𝑠 is the true treatment effect for 

treatment 𝑖 on the outcome of interest at stage 𝑠, 𝜃0(𝑠) is the treatment effect at stage 𝑠 under 

the null hypothesis and 𝜎𝑖
𝑠 is the standard deviation of the observed treatment effects under 

𝜃𝑖
𝑠. By simulating test statistics for a large number of trials and observing the proportion of 

trials where 𝑘 out of 𝐾 treatments pass stage one, the required probabilities can be estimated 

and then used to determine 𝐸(𝑁|𝐻0(𝐺)) and 𝐸(𝑁|𝐻𝑅(𝐺)) .  A loss function denoted 𝐿, similar 

to that proposed by Mander et al23 is then specified.  𝐿 is a  weighted sum of  𝐸(𝑁|𝐻0(𝐺)) 

and  𝐸(𝑁|𝐻𝑅(𝐺)) and admissible designs are defined as those which minimise the loss 

function for a chosen weight (𝑞), such that 𝐿(𝑞) = 𝑞𝐸(𝑁|𝐻0(𝐺)) + (1 −

𝑞)𝐸(𝑁⃓𝐻𝑅(𝐺)),  where 0 < 𝑞 < 1.  Using this extended methodology, designs which 

strongly control the FWER can be readily produced for both 𝐼 ≠ 𝐷 and 𝐼 = 𝐷 trials with any 

number of treatment arms and any number of stages. In principle, the methods could be 

extended to accommodate any outcome measure which has an asymptotically normally 

distributed test statistic provided the between stage correlation structure is known. 
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2.3  Combination method 

 

Combination test methodology can accommodate a variety of outcome types and the test 

statistics used for treatment selection at stage one can relate either to the definitive outcome 

(𝐼 = 𝐷) or to a suitable early outcome (𝐼 ≠ 𝐷).  The fundamental elements of the 

combination test are as follows.  Consider again a two-stage trial where there are 𝐾 

experimental treatment arms  and a single control arm.  Taking first the case when 𝐼 = 𝐷, the 

treatment effect calculated  at the end of each stage is denoted 𝜃𝑖 and the hypotheses of 

interest are then 

𝐻0(𝑖): 𝜃𝑖 ≤ 𝜃0   𝑖 = 1, … 𝐾 

𝐻𝐴(𝑖): 𝜃𝑖 > 𝜃0   𝑖 = 1, … 𝐾 

At the end of the first stage, test statistics are calculated to test 𝐻0(𝑖) against 𝐻𝐴(𝑖) for each 

treatment arm.  These test statistics are used initially to make a decision concerning which 

treatments should be continued into the second stage of the trial, for example the treatment 

arm associated with the largest test statistic may be selected.  At the end of the second stage, 

test statistics relating to each treatment arm still in the trial are calculated as before, using 

data from the second stage only.  

 

At the end of the trial, the test statistics arising from each stage are used in a closed testing 

procedure7 (CTP) to produce a set of stage one and stage two p-values.  In a CTP, p-values 

must be obtained for all possible composite or intersection null hypotheses as well as each 

individual null hypothesis.  For example, in a trial with three experimental treatment arms 

(𝑇1, 𝑇2 𝑎𝑛𝑑  𝑇3), stage one and stage two p-values are obtained for individual null hypotheses 

𝐻0(1)  𝐻0(2) and 𝐻0(3) and for the intersection null hypotheses  𝐻0(1,2)  𝐻0(1,3)  𝐻0(2,3)  and 

 𝐻0(1,2,3).  For the intersection hypotheses, the methods of Dunnett24 can be applied such that 
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for  𝐻0(1,2,3) , the p-value will equate to the Dunnett-adjusted p-value relating to the largest of 

the three observed test statistics.  For the final analysis of treatment effectiveness, the stage-

wise p-values for each individual and intersection null hypothesis are combined, producing 

an overall p-value for each one, the only requirement being that the distribution of 

𝑝2 conditional on 𝑝1 should be stochastically no larger than the uniform distribution.25 One 

approach is to use the weighted inverse normal method proposed by Lehmacher and 

Wassmer26 which calculates the final p-value using 𝐶(𝑝1, 𝑝2) = 1 − 𝛷[𝑤1𝛷−1(1 − 𝑝1) +

𝑤2𝛷−1(1 − 𝑝2)], where 𝛷 denotes the normal distribution function and 𝑤1 and 𝑤2 are 

predetermined weights specified for each stage, 𝑠, of the trial such that  𝑤𝑠 > 0   and 

 𝑤1
2+𝑤2

2 = 1,  the weights being determined by the stage-wise sample sizes.  An intersection 

hypothesis is rejected at level α if 𝐶(𝑝1, 𝑝2) ≤ 𝛼.  An experimental treatment is declared 

superior to the control at level 𝛼 only if the individual null hypothesis and all relevant 

intersection hypotheses are rejected.  For example, at the end of the trial 𝑇2 is declared 

beneficial only if  𝐻0(2) , 𝐻0(1,2),  𝐻0(2,3)  and  𝐻0(1,2,3) are all rejected at level α.  Using a 

CTP in this way ensures strong control of the FWER when multiple hypotheses are being 

tested.  

 

In the second stage, a subset defining an intersection hypothesis may contain a dropped 

treatment.  In this instance, following the methods adopted by Posch et al27 and Friede et al,28 

the second stage p-value for this intersection hypothesis is set as the p-value for the group of 

treatments contained in the original subset and selected for the second stage.  If the set is 

empty then the second stage p value is set to 1.  For the case where 𝐼 ≠ 𝐷, the same 

procedure is used except that the test statistics initially obtained at the end of stage one relate 

to an early outcome.  These test statistics are used to inform treatment selection but are not 

used in the final analysis of treatment efficacy.  Once data regarding the definitive outcome 



14 

 

becomes available, these are used to obtain the test statistics for the stage one group of 

patients, which are then used exactly as for the 𝐼 = 𝐷 case. 

 

3  METHODS 

 

For the investigations detailed in this paper we modified routines available in Stata as 

described in Section 3.1.  We used these modified routines to obtain designs for trials when 

𝐼 ≠ 𝐷 and when 𝐼 = 𝐷.  An integral part of any multi-arm adaptive trial is the selection rule 

and in Section 3.2 we consider this in detail and also suggest a hybrid rule for MAMS(R) 

trials when 𝐼 = 𝐷.  Based on the trial designs obtained, we conducted a simulation study 

comparing the MAMS(R) framework with the combination method, as described in Section 

3.3.  

 

3.1 Adapting trial designs in the MAMS(R) framework for the LOR 

 

Feasible and admissible designs for trials with binary outcomes, where the treatment 

difference is parameterised as ‘difference in proportions’, can be readily generated according 

to the approach described in Section 2.2 by using the nstagebin and nstagebinopt 

MAMS(R) programs for Stata.19  We adapted these programmes to produce designs for two-

stage MAMS(R) trials with a binary outcome and the treatment effects parameterised as a 

LOR.  Formulae used in the routines for calculating suggested sample sizes and the variance 

of the treatment effect were modified to reflect the LOR parameterisation. Sample sizes 

suggested by the LOR formulae are approximate and  may be over-estimated under the 

LOR,29 so we incorporated a new routine to refine stage-wise sample sizes so that the Type 1 

error is as close to the target value as possible. Further details are given in the Appendix.  
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Bratton19 derived expressions based on the parameterisation ‘difference in proportions’ for 

the between stage correlation of test statistics.  For trials when  𝐼 = 𝐷,  these expressions 

remain the same under the LOR.  However, for trials when 𝐼 ≠ 𝐷, we were unable to obtain 

an analytical expression based on the LOR.  Therefore, we adapted for the binary context a 

simulation based approach for approximating between-stage correlations of early and 

definitive test statistics which was proposed by Bratton et al30 for trials with a survival 

outcome.  Again, further details are given in the Appendix. 

  

3.2  Selection Rules 

 

There are a number of different types of selection rule which may be used in a multi-arm 

adaptive trial, for example a rule may specify that the 𝑘 best performing treatments are 

continued in the trial or alternatively that all treatments meeting a certain standard are 

continued.  A particularly flexible selection rule which encompasses many different selection 

options is the ‘epsilon’ rule31 whereby the treatment associated with the largest test statistic is 

selected to continue along with all others whose test statistic is within a specified range (𝜀) of 

the largest.  Note that when  𝜀 = 0, only the best treatment is selected and when 𝜀 = ∞ all 

treatments are selected to continue.  

 

The MAMS(R) framework uses thresholds for treatment selection as well as in the final 

analysis of treatment efficacy.  When 𝐼 ≠ 𝐷, the threshold for the early outcome is not 

binding (see Section 2.2) and therefore an epsilon rule may be used in place of the threshold 

without inflating the Type 1 error rate.  However, when 𝐼 = 𝐷, all thresholds, including those 

which determine the treatments selected to continue, are binding and therefore control of the 

FWER is not guaranteed if an epsilon rule is used.  For 𝐼 = 𝐷 trials where a more 
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comparative selection rule is required, we propose implementing a ‘hybrid’ rule in the 

MAMS(R) framework, where the selection process occurs in two steps.  Firstly, the interim 

test statistics associated with each treatment group are compared to the threshold and only 

those meeting this standard retained.  Then an epsilon selection rule is implemented, so that 

the best performing of the retained treatments is selected along with any other treatment 

where the test statistic is within epsilon of the largest. 

 

The combination method can accommodate a variety of selection rules and the user may 

choose a rule which facilitates the aims of the particular trial.  For example, if the objective is 

for the early dropping of poorly performing arms then a threshold rule may be chosen.  

Alternatively, if the aim is for a more comparative approach such that only the best 

performing treatments are selected, then an epsilon rule may be implemented.   

 

3.3  Simulation Study  

 

We conducted a simulation study to compare the performance of the MAMS(R) framework 

and the combination method for conducting two-stage trials with a binary outcome, using the 

LOR parameterisation and a variety of selection rules.  We considered first the case when 𝐼 ≠

𝐷 and then the case when 𝐼 = 𝐷.  As highlighted above, modified STATA routines were used 

to obtain MAMS(R) trial designs.  When implementing the combination method we used a 

number of routines from the R package ‘asd’ by Parsons et al.32  
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3.3.1 Trials when 𝑰 ≠ 𝑫  

 

The trial which motivates the simulation study is a Phase 2/3 trial described by Bratton18 in 

which a Phase 2 superiority trial and a Phase 3 non-inferiority trial were combined to create a 

seamless trial.  We specify a one sided FWER of 0.025 (to match a conventional two-sided 

error rate of 0.05), a pair-wise power of 0.9 and a 1:1 allocation ratio.  Control arm event 

rates for the 𝐼 and  𝐷 outcomes are 0.75 and 0.90 respectively.  Treatment effects for the 𝐼 

outcome are set at  𝜃𝐼
0 = 0 and 𝜃𝐼

𝑅 = 0.894 and for the 𝐷 outcome at  𝜃𝐷
0 =   −0.539  and 

𝜃𝐷
𝑅 = 0. We used our revised routines based on the LOR to produce feasible and admissible 

MAMS(R) designs for two-stage three-arm (𝐾 = 2) and six-arm (𝐾 = 5) trials where 𝐼 ≠ 𝐷, 

choosing the design which is admissible across the widest range of 𝑞 (see Section 2.2). 

Details of the chosen MAMS(R) designs are given in Table 1.  

 

Table 1. Summary of two stage 𝐼 ≠ 𝐷 designs used in simulation study 

Two experimental treatment arms (𝐾 = 2) 

 α  

(critical value) 

ω Cumulative per-arm 

sample size 

Stage 1 0.0700 

(1.476) 

0.97 207 

Stage 2 0.0135 

(2.212) 

0.82 743 

Five experimental treatment arms (𝐾 = 5) 

 α  

(critical value) 

ω Cumulative per-arm 

sample size 

Stage 1 0.0400 

(1.751) 

0.97 244 

Stage 2 0.0060 

(2.511) 

0.82 895 

 

Using the designs, we evaluated performance across a range of values for the underlying 

treatment effect of 𝑇1 on the definitive outcome, denoted  𝜃1𝐷 . The effect of 𝑇1 on the early 

outcome was held constant at 𝜃𝐼
𝑅 .  For each value of 𝜃1𝐷  , we calculated the percentage of 
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trials where any non-null treatment was declared beneficial at the end of the trial.  Based on 

the sample sizes specified for the chosen three-arm (𝐾 = 2) and six-arm (𝐾 = 5) designs, we 

simulated individual patient data for 100 000 trials for each value of 𝜃1𝐷 under two different 

scenarios.  In the first scenario, all other experimental treatments other than 𝑇1 were 

ineffective on both early and definitive outcomes.  In the second scenario, other experimental 

treatments were partially effective, with treatment effects equal to 𝜃1𝐷/4 for the definitive 

outcome and held constant at 𝜃𝐼
𝑅/4 for the early outcome.  Using a threshold rule initially, we 

compared the performance of the MAMS(R) framework and the combination method.  We 

then implemented an epsilon rule.  We set 𝜀 = 1  to emulate a moderately stringent rule, 

partway between selecting one treatment and selecting all treatments.  Again we compared 

the performance of the MAMS(R) framework and the combination method.   

 

3.3.2 Trials when 𝑰 = 𝑫  

 

The trial motivating the simulation study is a two-stage Phase 2 superiority trial as described 

by Bratton.18  A one sided FWER of 0.025, a pair-wise power of 0.8 and a 1:1 allocation ratio 

are specified.  Control arm event rates and treatment effects are the same for both stages of 

the trial and are as described for the 𝐷 outcome in Section 3.3.1.  Using the approach 

described for 𝐼 ≠ 𝐷 we obtained MAMS(R) designs for two-stage three-arm (𝐾 = 2) and 

six-arm (𝐾 = 5) trials where 𝐼 = 𝐷. The chosen MAMS(R) designs are described in Table 2.  
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Table 2.  Summary of two stage 𝐼 = 𝐷 designs used in simulation study 

Two experimental treatment arms (𝐾 = 2) 

 α  

(critical value) 

ω Cumulative per-arm 

sample size 

Stage 1 0.2300 

(0.739) 

0.94 92 

Stage 2 0.0160 

(2.144) 

0.94 250 

Five experimental treatment arms (𝐾 = 5) 

 α  

(critical value) 

ω Cumulative per-arm 

sample size 

Stage 1 0.1900 

(0.878) 

0.95 113 

Stage 2 0.0070 

(2.457) 

0.93 286 

 

We compared the performance of the MAMS(R) framework and the combination method in 

the same manner as for 𝐼 ≠ 𝐷.  Since for 𝐼 = 𝐷 the intermediate and definitive outcome are 

the same, we do not use the subscript 𝐷 for 𝜃, the underlying treatment effect for 𝑇1 being 

simply denoted 𝜃1.  As before, we simulated individual patient data for 100 000 trials for 

each value of 𝜃1 under two different scenarios such that in the first, all other experimental 

treatments other than 𝑇1 were ineffective and in the second, other experimental treatments 

were partially effective, with treatment effects equal to 𝜃1/4. As for 𝐼 ≠ 𝐷, the performance 

of MAMS(R) framework and the combination method were compared when a threshold rule 

is used.  We then implemented an epsilon rule  (𝜀 = 1)  for the combination method and used 

the new hybrid rule for the MAMS(R) framework. 

 

 

 

 

 

 

 

 

 



20 

 

4  RESULTS 

 

4.1 Trials when I ≠ D 

 

In this section, two sets of results are presented relating to the case where 𝐼 ≠ 𝐷.  The first 

gives a direct comparison of performance between the MAMS(R) framework and the 

combination method when both implement a threshold selection rule, this reflects the usual 

mode of operation for the MAMS(R) framework.  The second set gives a further comparison 

of performance to show the effect of implementing a different selection rule.   

 

4.1.1 Comparison of the MAMS framework and the combination method using a 

threshold selection rule 

 

Table 3 [insert Table 3] presents estimated probabilities to declare effectiveness on the final 

outcome across a range of values for 𝜃1𝐷, firstly for any non-null treatments and secondly for 

null or partially effective treatments only.  Results for the three-arm design (𝐾 = 2) are 

presented in the upper section of the table and for the six-arm design (𝐾 = 5) in the lower 

section.  On the left-hand side of the table results are presented for scenarios where treatments 

other than 𝑇1 are ineffective on both the early and the final outcome (𝜃𝑖𝐼 = 𝜃𝐼
0 , 𝜃𝑖𝐷 =

𝜃𝐷
0  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ≠ 1) while results for scenarios where treatments other than 𝑇1 are partially 

effective on both the early and final outcome  (𝜃𝑖𝐼 = 𝜃𝐼
𝑅/4 , 𝜃𝑖𝐷 = 𝜃1𝐷/4  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ≠ 1)   

are given on the right-hand side.  The rows of the table refer to the different values of 𝜃1𝐷 

investigated.  Results in bold show the percentage of trials in which any non-null treatment is 

declared beneficial, for different values of 𝜃1𝐷 (the effect of  𝑇1 on the early outcome being 
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held constant at 𝜃𝐼
𝑅).  The results in parentheses give the percentage of trials in which at least 

one of the null or partially effective treatments is declared beneficial. 

 

In Table 3, the results in bold show that under a threshold selection rule the combination 

method results in marginally greater power than the MAMS(R) framework.  This general 

finding is observed for the three-arm (𝐾 = 2) and the six-arm design (𝐾 = 5) and across all 

scenarios and treatment effects investigated.  The slight power advantage of the combination 

method over the MAMS(R) framework is larger for the six-arm design (𝐾 = 5) than for the 

three-arm design (𝐾 = 2).  However, the advantage is somewhat less for scenarios where 

partially effective treatments are present compared with scenarios where treatments other 

than 𝑇1 are ineffective.  The results in parentheses on the left-hand side of Table 3 show that 

when treatments other than 𝑇1 are ineffective, the percentage of trials in which null treatments 

are declared effective is very low for both methods, as expected.  As 𝜃1𝐷 increases, this 

percentage increases slightly for the combination method because for any given trial, the 

presence of the more effective treatment makes rejection of any intersection hypothesis which 

encompasses the null hypothesis for this treatment more likely.  This increase does not occur 

for the MAMS(R) framework where the progress of individual treatment arms is not affected 

by the performance of other treatments.  The reason why the percentages increase 

substantially for 𝜃1𝐷 = 𝜃𝐷
0   is because when 𝑇1 is ineffective on the final outcome, it will be  

more likely than other treatments to progress to the second stage and be declared effective on 

the final outcome due to the early outcome effect being held constant at 𝜃𝐼
𝑅 for 𝑇1 across all 

values of  𝜃1𝐷.  The percentage is much lower than 2.5% because the trials are designed such 

that the target FWER is 2.5% when all treatments are fully effective on the early outcome but 

ineffective on the final outcome (see Section 2.2).  As 𝜃1𝐷 increases, there is a sharp increase 

in the percentage of trials in which partially effective treatments are declared effective, shown 
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by the results in parentheses on the right-hand side of the Table 1.  This is an expected 

finding when selection is determined by a threshold.  The rate tends to be slightly lower for 

MAMS(R) than for the combination method.  

 

4.1.2  Performance of the MAMS(R) framework and the combination method under the 

epsilon selection rule 

 

In Figure 1 [insert Figure 1], power curves are presented showing the performance of the 

MAMS(R) framework and the combination method under both the threshold and the epsilon 

selection rule.  The upper sets of four lines are obtained by plotting the percentage of trials 

where any non-null treatment is declared effective on the final outcome, for different values 

of 𝜃1𝐷.  The lower sets of four lines show the percentage of trials where at least one null or 

partially-effective treatment is declared beneficial on the final outcome.  Panels i) and ii) 

show results for the three-arm (𝐾 = 2) design and panels iii) and iv) for the six-arm (𝐾 = 5) 

design.  In panels i) and iii), results are presented for scenarios where treatments other than 𝑇1 

are ineffective on both the early and the final outcome (𝜃𝑖𝐼 = 𝜃𝐼
0 , 𝜃𝑖𝐷 = 𝜃𝐷

0   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ≠ 1).  

Results for scenarios where treatments other than 𝑇1 are partially effective on both the early 

and final outcome  (𝜃𝑖𝐼 = 𝜃𝐼
𝑅/4 , 𝜃𝑖𝐷 = 𝜃1𝐷/4  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ≠ 1) are shown in panels ii) and 

iv). 

 

Considering the upper sets of lines in Figure 1, the percentage of trials where a non-null 

treatment is declared effective is consistently greater when an epsilon rule is used in place of 

the threshold rule.  This is true for both the MAMS(R) framework and the combination 

method and reflects the operation of the epsilon selection rule at the interim analysis, 

allowing the most effective treatment through to the second stage even when the threshold 



23 

 

required by the other methods has not been met.  The separation resulting from the change in 

selection rules is larger in the context of the combination method than in the MAMS(R) 

framework, this is most obvious at the higher values of 𝜃1𝐷 investigated and for the scenarios 

where partially effective treatments are present (panels ii) and iv)).  As discussed in Section 

4.1.1, under a threshold rule the combination method is marginally more powerful than the 

MAMS(R) framework across all the scenarios investigated, although there is less difference 

between the two methods when partially effective treatments are present.  Under an epsilon 

rule the combination method is again more powerful than the MAMS(R) framework, but the 

advantage tends to be larger and is not reduced when partially effective treatments are 

present.  For the six-arm design where partially effective treatments are present (panel iv)) 

the combination method with the epsilon rule clearly provides the greatest power across all 

treatment effects. 

 

Considering the lower sets of lines in Figure 1, it is clear that, compared with the threshold 

rule, implementing an epsilon selection rule substantially reduces the rate at which partially 

effective treatments are declared effective at the final analysis.  In some settings this may be 

viewed as desirable.  In the MAMS(R) framework the usual use of a threshold rule facilitates 

the objective of declaring any non-null treatment(s) effective whereas moving away from the 

threshold towards an epsilon selection rule results in a more directed result, with greater 

power to select the best treatment and a reduced probability of declaring inferior treatments 

beneficial 

 

 

.  
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4.2  Trials when I = D 

 

In this section, results for the case where 𝐼 = 𝐷 are considered.  As before, two sets of results 

are presented, the first set relating to a direct comparison under a threshold selection rule and 

the second set showing the effect of implementing different selection rules; results are given 

for the combination method under the threshold and the epsilon rule and for the MAMS(R) 

framework under the threshold and the hybrid rule (see Section 3.2).  

 

4.2.1 Comparison of the MAMS(R) framework and the combination method using a 

threshold selection rule 

 

Table 4 [insert Table 4] presents estimated probabilities to declare effectiveness, firstly for 

any non-null treatment and secondly for any null or partially effective treatment(s).  The 

structure of the table is as for Table 3.  Note that on the left-hand side of the table results are 

presented for scenarios where treatments other than 𝑇1 are ineffective  (𝜃𝑖 = 𝜃0 =

0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ≠ 1) while results for scenarios where treatments other than 𝑇1 are partially 

effective  ( 𝜃𝑖 = 𝜃1/4  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ≠ 1)   are given on the right-hand side.   

 

In contrast to the 𝐼 = 𝐷 case, the results in Table 4 show that under a threshold rule the 

MAMS(R) framework results in slightly greater power, compared with the combination 

method.  This opposite finding may be due to the fact that when 𝐼 = 𝐷, there is a binding 

threshold at stage one and this allows for a more liberal critical value at stage two compared 

with the 𝐼 ≠ 𝐷 case.  This general finding is observed for both the three-arm (𝐾 = 2) and the 

six-arm design (𝐾 = 5) and across all scenarios and treatment effects investigated.  It was 

also verified for an alternative trial scenario which had different treatment effects and stage-
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wise sample sizes (results not shown).  The power advantage of the MAMS(R) framework 

over the combination method is marginal, but is greater for the scenarios where a large 

number of partially effective treatments are present.  The results in parentheses on the left-

hand side of Table 4 show the percentage of trials in which null treatments are declared 

effective.  Under the global null hypothesis ( 𝜃𝑖 = 𝜃0 =  0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖) the estimated FWER is 

larger for the MAMS(R) framework than for the combination method.  However, at most of 

the other treatment effects investigated, null treatments are declared beneficial at a similar or 

lower rate for the MAMS(R) framework compared with the combination method.  For the 

reasons described in the context of Table 3, as 𝜃1 increases this rate rises slightly for the 

combination method, but not for the MAMS(R) framework.  As 𝜃1 increases, there is a 

substantial increase in the percentage of trials in which partially effective treatments are 

declared effective, shown by the results in parentheses on the right-hand side of Table 4.  For 

the three-arm design (𝐾 = 2) the rate tends to be lower for MAMS(R) than for the 

combination method whereas for the six-arm design (𝐾 = 5) it is slightly greater for 

MAMS(R) across all values of  𝜃1. 

 

4.2.2 Performance of the MAMS(R) framework and the combination method under 

different selection rules 

 

In Figure 2 [insert Figure 2], power curves are presented for four different schemes: the 

MAMS(R) framework and the combination method under the threshold rule, the combination 

method under the epsilon rule and the MAMS(R) framework under the hybrid rule.  The 

layout of the figure is as described for Figure 1.  Note that in panels i) and iii) results are 

presented for scenarios where treatments other than 𝑇1 are ineffective (𝜃𝑖 = 𝜃0 = 0 𝑓𝑜𝑟 𝑖 ≠
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1)   while results for scenarios where treatments other than 𝑇1 are partially effective (𝜃𝑖 =

𝜃1/4 𝑓𝑜𝑟 𝑖 ≠ 1)  are shown in panels ii) and iv). 

 

Looking at the upper sets of lines, for the combination method power is consistently greater 

when an epsilon rule rather than a threshold rule is implemented.  The differences become 

larger as 𝜃1 increases, reflecting the operation of the epsilon selection rule as discussed in 

Section 4.1.2.  The separation resulting from the change in selection rule is most obvious for 

higher values of 𝜃1, because at lower values of 𝜃1 even if 𝑇1 is selected at an interim it would 

be unlikely to be declared effective on the final outcome at the end of stage two.  However, in 

the MAMS(R) framework, when the hybrid selection rule replaces the threshold rule the 

percentage of trials where 𝑇1 is declared effective is slightly reduced because the hybrid rule 

is a more stringent selection rule than the threshold.  As discussed in Section 4.2.1, under the 

threshold rule the MAMS(R) framework is more powerful than the combination method 

across all the scenarios investigated, particularly when a large number of partially effective 

treatments are present.  Moving away from using a threshold rule to implementing the epsilon 

rule for the combination method or the hybrid rule for MAMS(R), this advantage reverses, at 

least for the majority of scenarios.  For the three-arm trial (𝐾 = 2)  the combination method 

under the epsilon rule gives greater power than the other schemes, particularly at larger 

treatment effects.  However, for the six-arm trial when partially effective treatments are 

present, there is no clear advantage.  The MAMS(R) framework under the threshold or hybrid 

rule results in similar power at higher treatment effects and better power at lower treatment 

effects compared with the combination method under the epsilon rule (see panel iv). 

 

Looking at the lower sets of lines, implementing the epsilon or hybrid rule substantially 

reduces the rate at which null and partially effective treatments are declared beneficial at the 
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final analysis.  It can be clearly seen in Figure 2 that as 𝜃1 increases, there is no steep rise in 

the proportion of partially effective treatments which are declared beneficial, such as is 

observed under the threshold rule, (see panels ii) and iv)).  This is because as  𝜃1 increases 

the numerical distance between  𝜃1 and the treatment effect of the partially effective 

treatments increases and this will tend to reduce the number of trials where these arms 

progress even though the absolute value of the effect in these arms is increasing.  Across all 

the scenarios we investigated, the MAMS(R) framework under the hybrid selection rule 

achieved consistently lower rates for recommending null or partially effective treatments 

compared to any other scheme.  This result can be seen clearly by noting the relative position 

of the lines in the lower section of each panel in Figure 2.  The black dashed line showing the 

results for the MAMS(R) framework under the hybrid rule consistently occupies a lower 

position than the other lines. 

 

 

5. DISCUSSION 

 

By adapting and implementing recent developments in methodology, we have used the 

MAMS(R) framework to obtain efficient boundary based trial designs for multi-stage 

adaptive trials where the outcomes are binary and where treatment effects are parameterised 

as the LOR.  Since methodology now allows the FWER to be controlled in MAMS(R) trials, 

we were able to carry out a simulation study to make an  in-depth comparison of MAMS(R) 

trials with the well-established combination method in multi-arm multi-stage trials 

incorporating treatment selection, both for trials when 𝐼 ≠ 𝐷 and for trials when 𝐼 = 𝐷. 

 

For trials when 𝐼 ≠ 𝐷, we found that the combination method achieves greater power than 

the MAMS(R) framework across all scenarios investigated.  This was the case both under a 
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threshold selection rule and an epsilon rule.  The advantage of the combination method over 

MAMS(R) is most clearly seen for the six-arm (𝐾 = 5) design and when an epsilon rule is 

implemented.  The reason why the combination method is more powerful may be that 

MAMS(R) designs for trials where 𝐼 ≠ 𝐷 tend to be inherently conservative.  The 

conservatism occurs because, to ensure the FWER is strongly controlled, the critical value for 

the final stage is determined assuming that treatments are fully effective on the 𝐼 outcome, as 

explained in Section 2.2.  For both the MAMS(R) framework and the combination method, 

power is greater if an epsilon rule rather than a threshold rule is used. 

 

In contrast, however, we found that for 𝐼 = 𝐷 trials, where this conservative approach is not 

required, the MAMS(R) framework achieves slightly greater power than the combination 

method when a threshold selection rule is used.  This finding is observed across all scenarios, 

irrespective of the size of the treatment effect or whether partially effective treatments are 

present.  Generally, the differences are slightly greater for the six-arm (𝐾 = 5) design and 

when partially effective treatments are present.  One possible reason for the combination 

method having less power is that the combining of evidence from the two stages of the trial 

means that final comparisons of treatments may not be based on a sufficient statistic for the 

treatment difference; this has been suggested for the single arm setting by authors such as 

Jennison and Turnbull12 and Kelly et al.14  We also showed that a hybrid selection rule can be 

implemented in the MAMS(R) framework to facilitate a more comparative selection 

procedure.  However, when comparing the combination method under the epsilon rule with 

the MAMS(R) framework under the hybrid rule, we found that MAMS(R) no longer has a 

consistent advantage, the combination method achieving similar or greater power in some 

scenarios.  We found that the rate at which partially effective treatments are recommended is 
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lower for MAMS(R) under the hybrid rule than for any other scheme we investigated 

including the combination method under the epsilon rule.  

 

In this paper we have explored the use of the MAMS(R) framework to obtain boundary based 

trial designs.  This approach has the advantage of being relatively simple to understand and 

implement and of accommodating treatment selection based either on the definitive outcome 

or purely on an early outcome measure.  We acknowledge that the MAMS(R) framework is 

mainly appropriate for trials where no early stopping for efficacy is envisaged.  In contrast, 

the multi-arm group sequential designs developed by Magirr et al10 specify both efficacy and 

futility boundaries so that trial designs which incorporate early stopping for efficacy may be 

obtained.  

 

Based on our findings, we suggest that for multi-arm two-stage trials with binary outcomes 

where 𝐼 ≠ 𝐷, the combination method may be a more suitable choice than MAMS(R), 

particularly for trials with many treatment arms.  For either method, the selection rule which 

best meets the objectives of the trial can be chosen.  Since the stage one critical value is not 

binding, an epsilon rule may be implemented in the MAMS(R) context without inflating the 

FWER.  This rule was shown to increase power compared with the threshold rule.  By 

contrast, for trials where 𝐼 = 𝐷, if the objectives of the trial are best met by using a threshold 

selection rule, the MAMS(R) framework may be a more suitable option than the combination 

method, particularly for trials with a substantial number of experimental arms and where 

partially effective treatments are likely to be present.  Our results suggest that by 

implementing the hybrid rule, the MAMS(R) framework may also be successfully used for 

trials where the aim is to recommend the best treatments and that this may provide an 

effective way to minimise the probability of inferior but partially effective treatments being 
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declared effective at the end of the trial.  However, the more stringent hybrid rule does mean 

that some of the power advantage of MAMS(R) over the combination method seen under the 

threshold rule is lost.  Where the main treatment effect is likely to be large and other 

treatments likely to be ineffective, the combination method under the epsilon rule may be a 

better choice since we found it achieves greater power in these scenarios.  However, for a 

proposed trial with many treatment arms where some are likely to be partially effective and it 

is desirable to minimise the rate at which these are recommended, we suggest that MAMS(R) 

under the hybrid rule should be considered since it provides comparable power to the 

combination method whilst keeping the rate for inferior treatments substantially lower.  Since 

no method consistently out-performs the others, the choice of which method to adopt for a 

given trial is best considered on an individual trial basis.  We recommend that simulations 

based on the specific context and objectives of a particular trial should be conducted at the 

outset and the results used to determine which approach is the most suitable.   

 

Finally, in this study only two-stage trials were considered.  Both the MAMS(R) and 

combination methodologies described in this paper can readily extend to include more than 

two stages19,33, this is a possible area for future work.  Similarly, now that methodology exists 

for calculating FWER in the context30 of trials with survival outcomes, it would be useful to 

develop methodology for feasible and admissible designs for this context such that further 

comparisons between MAMS(R) and the combination method may be conducted. 
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Table 3.  Comparison of power for MAMS(R) framework and the combination method under a threshold selection rule for trials where 𝐼 ≠ 𝐷 

 % trials Treatment 1 declared beneficial 
(% trials where one or more null treatment(s) declared 

beneficial) 

% trials any non-null treatment declared beneficial 
(% trials where one or more partially effective 

treatment(s) declared beneficial) 

𝜽𝟏𝑫 𝑲 = 𝟐 (𝜽𝟐𝑫 = 𝜽𝑫
𝟎 ) 𝑲 = 𝟐 (𝜽𝟐𝑫 = 𝜽𝟏𝑫/𝟒) 

 Combination MAMS(R) Combination MAMS(R) 

0.077 88.84 (0.40) 87.97 (0.25) 88.15 (6.42) 87.93 (4.5) 
0 80.95 (0.40) 79.59 (0.25) 80.12 (5.45) 79.74 (3.73) 

-0.077 69.61 (0.37) 67.50 (0.21) 68.52 (4.59) 67.71 (3.18) 
-0.154 54.66 (0.36) 52.11 (0.22) 53.34 (3.67) 52.25 (2.58) 
-0.231 38.21 (0.39) 35.57 (0.24) 37.54 (2.88) 35.95 (1.99) 
-0.308 23.24 (0.34) 21.01 (0.23) 22.82 (2.18) 21.61 (1.57) 
-0.385 12.07 (0.28) 10.37 (0.23) 11.93 (1.49) 11.1 (1.20) 
-0.462 5.08 (0.22) 4.19 (0.23) 5.37 (1.04) 5.01 (0.97) 
-0.539 1.82 (1.97) 1.43 (1.63) 2.08 --- 1.97 --- 

 𝑲 = 𝟓  (𝜽𝟐𝑫 = 𝜽𝟑𝑫 = 𝜽𝟒𝑫 = 𝜽𝟓𝑫 = 𝜽𝑫
𝟎 ) 𝑲 = 𝟓  (𝜽𝟐𝑫 = 𝜽𝟑𝑫 = 𝜽𝟒𝑫 = 𝜽𝟓𝑫 = 𝜽𝟏𝑫/𝟒) 

 Combination MAMS(R) Combination MAMS(R) 

0.077 90.71 (0.36) 88.87 (0.25) 89.24 (9.06) 88.88 (7.52) 
0 83.13 (0.33) 79.99 (0.22) 80.89 (7.48) 80.19 (6.21) 

-0.077 70.85 (0.35) 66.46 (0.24) 68.04 (5.94) 66.71 (4.94) 
-0.154 54.57 (0.36) 49.22 (0.24) 51.55 (4.79) 49.8 (3.95) 
-0.231 36.91 (0.34) 31.56 (0.23) 33.98 (3.52) 31.93 (3.00) 
-0.308 20.97 (0.33) 16.73 (0.25) 19.33 (2.57) 17.47 (2.31) 
-0.385 9.92 (0.31) 7.26 (0.24) 9.47 (1.77) 8.21 (1.69) 
-0.462 3.88 (0.26) 2.51 (0.24) 3.82 (1.19) 3.36 (1.29) 
-0.539 1.11 (1.25) 0.65 (0.81) 1.44 --- 1.38 --- 

(--- denotes scenarios where no treatments which are partially effective on the final outcome are present)  
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Figure 1.  Comparison of  the MAMS(R) framework and combination method under threshold and epsilon selection rules for trials where 𝐼 ≠ 𝐷.. 

Upper lines are estimated power to declare any non-null treatment beneficial and lower lines show the percentage of trials where at least one null 

or partially-effective treatment is declared beneficial.  
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Table 4.  Comparison of power for MAMS(R) framework and the combination method under a threshold selection rule for trials where 𝐼 = 𝐷 

 % trials Treatment 1 declared beneficial 
(% trials where one or more null treatment(s) declared 

beneficial) 

% trials any non-null treatment declared beneficial 
(% trials where one or more partially effective 

treatment(s) declared beneficial) 

𝜽𝟏 𝑲 = 𝟐 (𝜽𝟐 = 𝟎) 𝑲 = 𝟐 (𝜽𝟐 = 𝜽𝟏/𝟒) 
 Combination MAMS(R) Combination MAMS(R) 

0.894 90.83 (1.94) 91.10 (1.29) 90.58 (14.58) 91.20 (11.43) 
0.782 83.18 (1.93) 83.77 (1.29) 82.98 (11.87) 84.10 (9.16) 
0.67 71.46 (1.94) 72.48 (1.31) 71.27 (9.48) 72.92 (7.31) 

0.558 55.82 (1.86) 57.23 (1.29) 55.7 (7.31) 57.75 (5.70) 
0.447 38.26 (1.80) 39.85 (1.31) 38.63 (5.47) 40.74 (4.39) 
0.335 22.18 (1.65) 23.57 (1.31) 23.08 (3.93) 24.83 (3.36) 
0.224 10.64 (1.48) 11.51 (1.30) 11.68 (2.67) 12.84 (2.47) 
0.112 4.06 (1.32) 4.43 (1.30) 5.11 (1.78) 5.73 (1.81) 

0 1.20 (2.13) 1.304 (2.42) 2.13 --- 2.43 --- 

 𝑲 = 𝟓  (𝜽𝟐 = 𝜽𝟑 = 𝜽𝟒 = 𝜽𝟓 = 𝟎) 𝑲 = 𝟓  (𝜽𝟐 = 𝜽𝟑 = 𝜽𝟒 = 𝜽𝟓 = 𝜽𝟏/𝟒) 

 Combination MAMS(R) Combination MAMS(R) 

0.894 91.36 (2.08) 91.43 (2.09) 90.55 (20.93) 91.66 (21.43) 
0.782 82.99 (2.06) 83.35 (2.06) 81.75 (16.71) 83.38 (17.21) 
0.67 69.44 (2.05) 70.40 (2.06) 68.23 (13.17) 71.21 (13.65) 

0.558 51.54 (2.06) 53.25 (2.07) 50.8 (10.00) 54.48 (10.51) 
0.447 32.56 (1.99) 34.63 (2.10) 32.89 (7.31) 36.52 (7.94) 
0.335 16.73 (1.89) 18.54 (2.08) 18.16 (5.19) 20.97 (5.87) 
0.224 6.81 (1.73) 7.90 (2.06) 8.7 (3.58) 10.50 (4.26) 
0.112 2.08 (1.66) 2.53 (2.07) 3.92 (2.41) 4.95 (3.01) 

0 0.49 (1.94) 0.59 (2.52) 1.93 --- 2.47 --- 
(--- denotes scenarios where no treatments which are partially effective on the final outcome are present)  
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Figure 2.  Comparison of  the MAMS(R) framework and combination method under threshold and epsilon selection rules for trials where 𝐼 = 𝐷. 

Upper lines are estimated power to declare any non-null treatment beneficial and lower lines show the percentage of trials where at least one null 

or partially-effective treatment is declared beneficial.  
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Appendix 

 

 

Adapting trial designs in the MAMS(R) framework for the LOR 

 

In order to compute the designs in this paper we modified MAMS(R) programs for Stata as 

follows. The expression for calculating the control arm sample size, denoted 𝑛𝐶 , was changed 

to the formula based on the LOR, 𝑛𝐶 = {𝑝𝐶(1 − 𝑝𝐶) + 𝑝𝐸(1 − 𝑝𝐸) (𝑝𝐸 − 𝑝𝐶)2⁄ }(𝑧1−𝛼 +

𝑧𝜔)2 . Sample sizes are calculated at each stage with 𝑝𝐶 and 𝑝𝐸 being determined by 𝜃𝑗
0 and 

𝜃𝑗
𝑅, and 𝛼 and 𝜔 relating to the stage-wise alpha and power of the given design. For a 1:1 

allocation ration, the suggested sample size for each experimental arm, denoted 𝑛𝐸 , is equal 

to 𝑛𝐶 .   

 

The formula provides an approximate sample size but due to the discrete nature of binary 

data, target Type I error and power may not be achieved exactly.  Siqueira et al27 investigated 

the accuracy of the Wald-Type formula and reported that sample sizes obtained under the 

LOR may deviate from the true requirement, with sample sizes tending to be overestimated. 

We found that under the LOR, there was some deviation from the target stage-wise Type I 

error and that this occurred rather more than under the original parameterisation.  We 

incorporated a simulation based routine to check over sample sizes in the near neighbourhood 

of the value suggested by the formula, selecting the size which achieved a Type I error rate 

closest to the target for that stage.  We explored searching over sample sizes within three, five 

and ten units of the value suggested by the formula. We chose to use +/- 5 as we found that a 

search of this size provided improvement in Type 1 error accuracy and could be conducted in 

a reasonable timeframe.   

 



41 

 

The numerical calculation of FWER based on simulation of normally distributed test statistics 

under 𝐻0(𝐺) remains the same under the LOR although the correlation matrix will reflect 

different stage-wise sample sizes under the LOR.  However, some changes to the routine 

where admissible designs are identified are required, where estimates for both 𝐸(𝑁|𝐻0(𝐺)) 

and 𝐸(𝑁|𝐻𝑅(𝐺)) are obtained, since these estimates require that the probabilities that 𝑘 out of 

𝐾 treatments pass to the next stage under each stated hypothesis are known (see Section 2.2). 

The simulated test statistics used to obtain these probabilities are generated using Equation 

5.1 in Bratton.19 The final term of this expression disappears under 𝐻0(𝐺) but not under 𝐻𝑅(𝐺) 

and hence, in our routines the variance of the treatment difference which is included in this 

final term is changed to reflect the LOR, using  𝑉𝑎𝑟(𝜃) = 1 𝑛𝐶𝑝𝐶⁄ + 1 𝑛𝐶(1 − 𝑝𝐶)⁄ +

1 𝑛𝐸𝑝𝐸⁄ + 1 𝑛𝐸(1 − 𝑝𝐸)⁄ , with  𝑝𝐶 ,𝑝𝐸 , 𝑛𝐶  and  𝑛𝐸  being defined for each stage. 

 

We verified that when 𝐼 = 𝐷,  under the LOR the between stage correlation of test statistics 

remains unchanged at √𝑛𝐶
1 𝑛𝐶

2⁄   where 𝑛𝐶
1  and 𝑛𝐶

2  are the control-arm sample sizes at stage 

one and stage two respectively.  For the case when 𝐼 ≠ 𝐷, Bratton19 derived an expression 

based on the parameterisation ‘difference in proportions’ for the between stage correlation 

between early and definitive test statistics.  This expression requires an estimate of the 

positive predictive value (PPV), which is the probability that an individual will have a 

positive outcome on the definitive outcome given that the outcome for the early outcome was 

positive, usually obtained by reference to previous trials.  We were unable to obtain a similar 

analytical expression based on the LOR.  In the context of survival outcomes, if  𝐼 = 𝐷 

between-stage correlations for log hazard ratios (LHR) can be expressed analytically as 

√(𝑒𝐶
1/𝑒𝐶

2), where 𝑒𝐶
1  and  𝑒𝐶

2 are the number of control arm events observed on the outcome 

of interest at stage one and stage two respectively.34  However, the correlations appear to be 

intractable when 𝐼 ≠ 𝐷.34 Bratton et al30 suggest that the correlation may be approximated 
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using  𝑐√(𝑒𝐶
1/𝑒𝐶

2), where 𝑐 is an attenuating constant which is an estimate of the correlation 

between LHRs for 𝐼 and 𝐷, obtained when full data on both outcomes are known; this 

constant may be obtained from expert opinion based on previous similar trials. Alternatively 

he proposes a simulation approach where the between-stage correlations are obtained using 

information about survival outcome correlations from individual patients.  We adapted these 

ideas for the binary context. We approximated the between stage correlations of the early and 

definitive test statistics using 𝑐√𝑛𝐶
1 𝑛𝐶

2⁄  where 𝑐 is the estimated correlation between LORs 

for 𝐼 and 𝐷.  We obtained an estimate for 𝑐 by generating individual patient data using 

estimates of the PPV, simulating 100 000 trials and obtaining the correlation between the 

LORs for 𝐼 and  𝐷.  We tested the validity of this approach  using the ‘difference in success 

probabilities’ parameterisation where we could compare the correlations obtained by 

simulation with those obtained using the analytical expression and found very good 

agreement with stage-wise correlations agreeing to at least two decimal places.  

 

 

 


