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Sloshing, Steklov and corners:
Asymptotics of sloshing eigenvalues

Michael Levitin Leonid Parnovski Iosif Polterovich David A. Sher

Abstract

In the present paper we develop an approach to obtain sharp spectral asymptotics for Steklov type
problems on planar domains with corners. Our main focus is on the two-dimensional sloshing problem,
which is a mixed Steklov-Neumann boundary value problem describing small vertical oscillations of an
ideal �uid in a container or in a canal with a uniform cross-section. We prove a two-term asymptotic for-
mula for sloshing eigenvalues. In particular, this con�rms a conjecture posed by Fox and Kuttler in 1983.
We also obtain similar eigenvalue asymptotics for other related mixed Steklov type problems, and discuss
applications to the study of Steklov spectral asymptotics on polygons.
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1 Introduction and main results

1.1 The sloshing problem

Let Ω be a simply connected bounded planar domain with Lipschitz boundary such that ∂Ω = StW , where
S := (A,B) is a line segment. Let 0 < α, β ≤ π be the angles at the verticesA andB, respectively (see Figure
1). Without loss of generality we can assume that in Cartesian coordinatesA = (0, 0) andB = (0, L), where
L > 0 is the length of S.

Figure 1: Geometry of the sloshing problem
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Consider the following mixed Steklov-Neumann boundary value problem,
∆u = 0 in Ω,

∂u

∂n
= 0 onW,

∂u

∂n
= λu on S,

(1.1)

where
∂

∂n
denotes the external normal derivative on ∂Ω.

The eigenvalue problem (1.1) is called the sloshing problem. It describes small vertical oscillations of an ideal
�uid in a container or in a canal with a uniform cross-section which has the shape of the domain Ω. The part
S = (A,B) of the boundary is called the sloshing surface; it represents the free surface of the �uid. The part
W is called the walls and corresponds to the walls and the bottom of a container or a canal. The pointsA and
B at the interface of the sloshing surface and the walls are called the corner points. We also say that the wallsW
are straight near the corners if there exist points A1, B1 ∈ W such that the line segments AA1 and BB1 are
subsets ofW.

Figure 2: Geometry of the sloshing problem with walls straight near the corners

It follows from general results on the Steklov type problems that the spectrum of the sloshing problem is
discrete (see [Agr06, GiPo17]). We denote the sloshing eigenvalues by

0 = λ1 < λ2 ≤ λ3 ≤ · · · ↗ ∞,

where the eigenvalues are a priori counted with multiplicities. The correspoding sloshing eigenfunctions are
denoted by uk, where uk ∈ C∞(Ω), and the restrictions uk|S form an orthogonal basis inL2(S). Let us note
that in two dimensions all sloshing eigenvalues are conjectured to be simple, see [KKM04, GiPo16]. While in
full generality this conjecture remains open, in Corollary 1.6 we prove that it holds for all but possibly a �nite
number of eigenvalues.

Denote by D : L2(S) → L2(S) the sloshing operator, which is essentially the Dirichlet-to-Neumann
operator on S corresponding to Neumann boundary conditions onW : given a function f ∈ L2(S), we have

DΩf = Df :=
∂

∂n
(Hf)

∣∣∣∣
S

, (1.2)

where Hf is the harmonic extension of f to Ω with the homogeneous Neumann conditions onW . Then
the sloshing eigenvalues are exactly the eigenvalues of D, and the sloshing eigenfunctions uk are harmonic
extensions of the eigenfunctions ofD to Ω.

The physical meaning of the sloshing eigenvalues and eigenfunctions is as follows: an eigenfunction uk
is the �uid velocity potential and

√
λk is proportional to the frequency of the corresponding �uid oscilla-

tions. The research on the sloshing problem has a long history in hydrodynamics (see [Lam79, Chapter 9] and
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[Gre87]); we refer to [FoKu83] for a historical discussion. A more recent exposition and further references
could be found, for example, in [KoKr01, KMV02, Ibr05, KK+14].

In this paper we investigate the asymptotic distribution of the sloshing eigenvalues. In fact, we develop an
approach that could be applied to study sharp spectral asymptotics of general Steklov type problems on planar
domains with corners. The main di�culty is that in the presence of singularities, the corresponding Dirichlet-
to-Neumann operator is not pseudodi�erential, and therefore new techniques have to be invented, see [GiPo17,
Section 3] and Subsection 1.6 for a discussion. Since the �rst version of the present paper appeared on the arXiv,
this problem has received signi�cant attention, both in planar and higher-dimensional cases [HaLa19, GLPS19,
Ivr19]. Our method is based on quasimode analysis, see Subsection 1.4. A particularly challenging aspect of the
argument is to show that the constructed system of quasimodes is, in an appropriate sense, complete. This is
done via a rather surprising link to the theory of higher-order Sturm-Liouville problems, see Subsection 1.5. In
particular, we notice that the quasimode approximation for the sloshing problem is sensitive to the arithmetic
properties of the angles at the corners. As shown in Subsection 3.2, the quasimodes are exponentially accurate
for angles of the form π/2q, q ∈ N, which together with domain monotonicity arguments allows us to prove
completeness for arbitrary angles. Further applications of our method, notably to the Steklov problem on
polygons, are presented in [LPPS19].

1.2 Asymptotics of the sloshing eigenvalues

As was shown in [San55], if the boundary of Ω is C2-regular in a neighbourhood of the corner points A and
B, then as k → +∞,

λkL = πk + o(k).

It follows from the results of [Agr06] on Weyl’s law for mixed Steklov type problems that theC2 assumption
can be relaxed to C1. In 1983, Fox and Kuttler used numerical evidence to conjecture that the sloshing eigen-
values of domains having both interior angles at the corner points A and B equal to α, satisfy the two-term
asymptotics [FoKu83, Conjecture 3]:

λkL = π

(
k − 1

2

)
− π2

4α
+ o(1), (1.3)

(note that the numeration of eigenvalues in [FoKu83] is shifted by one compared to ours). The �rst main result
of the present paper con�rms this prediction.

Theorem 1.1. Let Ω be a simply connected bounded Lipschitz planar domain with the sloshing surface S =
(A,B) of length L and wallsW which are C1-regular near the corner points A and B. Let α and β be the
interior angles betweenW and S at the points A and B, resp., and assume 0 < β ≤ α < π/2. Then the
following asymptotic expansion holds as k →∞:

λkL = π

(
k − 1

2

)
− π2

8

(
1

α
+

1

β

)
+ r(k), where r(k) = o(1). (1.4)

If, moreover, the wallsW are straight near the corners, then

r(k) = O
(
k1− π

2α

)
. (1.5)

In particular, for α = β we obtain (1.3) which proves the Fox-Kuttler conjecture for all angles 0 < α <
π/2. Let us note that for α = β = π/2 the asymptotics (1.3) have been earlier established in [Dav65, Urs74,
Dav74]. Moreover, for α = β = π/2 it was shown that there exist further terms in the asymptotics (1.3)
involving the curvature ofW near the corner points.

Before stating our next result we require the following de�nition.

De�nition 1.2. A corner point V ∈ {A,B} is said to satisfy a local John’s condition if there exist a neigh-
bourhoodOV of the point V such that the orthogonal projection ofW ∩ OV onto the x-axis is a subset of
[A,B]. /
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For α = π/2 ≥ β we obtain the following

Proposition 1.3. In the notation of Theorem 1.1, let α = π/2 > β, and assume that A satisfies a local John’s
condition. Then

λkL = π

(
k − 3

4

)
− π2

8β
+ r(k), r(k) = o(1). (1.6)

The same result holds if α = β = π/2, and additionallyB satisfies a local John’s condition.
If, moreover, the wallsW are straight near both corners, then

r(k) = O
(
k

1− π
2β

)
,

provided β < π/2 and
r(k) = o

(
e−k/C

)
,

if α = β = π/2.

Proposition 1.3 provides a solution to [FoKu83, Conjecture 4] under the assumption that the corner point
corresponding to the angle π/2 satis�es local John’s condition.
Remark 1.4. In Theorem 1.1, and everywhere further on,C will denote various positive constants which depend
only upon the domain Ω. J

Remark 1.5. De�nition 1.2 is a local version of John’s condition which often appears in sloshing problems, see
[KKM04, BKPS10]. J

Theorem 1.1 and Proposition 1.3 yield the following

Corollary 1.6. Given a sloshing problem on a domain Ω satisfying the assumptions of Theorem 1.1 or Proposition
1.3, there existsN > 0, such that the eigenvalues λk are simple for all k ≥ N .

This result partially con�rms the conjecture about the simplicity of sloshing eigenvalues mentioned in sub-
section 1.1.

1.3 Eigenvalue asymptotics for a mixed Steklov-Dirichlet problem

Boundary value problems of Steklov type with mixed boundary conditions admit several physical and prob-
abilistic interpretations (see [BaKu04, BKPS10]). In particular, the sloshing problem (1.1) could be also used
to model the stationary heat distribution in Ω such that the wallsW are perfectly insulated and the heat �ux
through S is proportional to the temperature. If instead the wallsW are kept under zero temperature, one
obtains the following mixed Steklov-Dirichlet problem:

∆u = 0 in Ω,

u = 0 onW,

∂u

∂n
= λDu on S,

(1.7)

Let 0 < λD1 ≤ λD2 ≤ · · · ↗ ∞ be the eigenvalues of the problem (1.7). Similarly to Theorem 1.1 we obtain

Theorem 1.7. Assume that the domain Ω and its boundary∂Ω = StW satisfy the assumptions of Theorem 1.1.
Letα andβ be the interior angles betweenW andS at the pointsA andB, resp., and assume 0 < β ≤ α < π/2.
Then the following asymptotic expansion holds as k →∞:

λDk L = π

(
k − 1

2

)
+
π2

8

(
1

α
+

1

β

)
+ rD(k), where rD(k) = o(1). (1.8)

If, moreover, the wallsW are straight near the corner pointsA andB, then

rD(k) = O
(
k1− π

α

)
. (1.9)
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We also have the following analogue of Proposition 1.3.

Proposition 1.8. In the notation of Theorem 1.7, let α = π/2 > β, and assume that A satisfies a local John’s
condition. Then

λDk L = π

(
k − 1

4

)
+
π2

8β
+ r(k), r(k) = o(1). (1.10)

The same result holds if α = β = π/2 and additionallyB satisfies a local John’s condition.
If, moreover, the wallsW are straight near both corners, then

r(k) = O
(
k

1−π
β

)
.

provided β < π/2, and
r(k) = o

(
e−k/C

)
for someC > 0 if α = β = π/2.

This result will be used for our subsequent analysis of polygonal domains, see Subsection 1.6.
The analogue of Corollary 1.6 clearly holds in the Steklov-Dirichlet case as well.

Remark 1.9. We believe that asymptotic formulae (1.4) and (1.8) in fact hold for any angles α, β ≤ π. Note
also that if the walls are straight near the corners, our method yields a slightly better remainder estimate for the
Steklov-Dirichlet problem compared to the Steklov-Neumann one. We refer to the proof of Theorem 2.1 for
details. J

1.4 Outline of the approach

Let us sketch the main ideas of the proof of Theorem 1.1; modi�cations needed to obtain Theorem 1.7 are
quite minor. First, we observe that using domain monotonicity for sloshing eigenvalues (see [BKPS10]), one
can deduce the general asymptotic expansion (1.4) from the two-term asymptotics with the remainder (1.5) for
domains with straight walls near the corners. Assuming that the walls are straight near the corner points, we
construct the quasimodes, i.e. the approximate eigenfunctions of the problem (1.1). This is done by transplant-
ing certain model solutions of the mixed Steklov-Neumann problem in an in�nite angle (cf. [DaWe00] where
a similar idea has been implemented at a physical level of rigour). These solutions are in fact of independent
interest: they were used to describe “waves on a sloping beach" (see [Han26, Lew46, Sto47, Pet50, Ehr87]).
The approximate eigenvalues given by the �rst two terms on the right hand side of (1.4) are then found from a
matching condition between the two model solutions transplanted to the cornersA andB, respectively. Given
that the model solutions decay rapidly away from the sloshing surface, it follows that the shape of the walls away
from the corners does not matter for our approximations, so in fact the domain Ω can be viewed as a triangle
with anglesα andβ at the sloshing surfaceS. From the standard quasimode analysis it follows that there exist a
sequence of eigenvalues of the sloshing satisfying the asymptotics (1.4). A major remaining challenge is to show
that this sequence is asymptotically complete (i.e. that there are no other sloshing eigenvalues that have not been
accounted for, see subsection 4.6 for a formal de�nition), and that the enumeration of eigenvalues given by
(1.4) is correct. This can not be achieved by simple arguments. While the set of quasimodes is a perturbation
of a set of exponentials, even if one can prove the completeness of this latter set, the perturbation is too large to
apply the standard Bary-Krein result (Lemma 4.8) to deduce the claimed asymptotic completeness.

Our quasimode construction for arbitrary angles α, β < π/2 is based on the model solutions obtained
by Peters [Pet50]. These solutions are given in terms of some complex integrals, and while their asymptotic
representations allow us to construct the quasimodes, they are not accurate enough to prove completeness.
However, it turns out that for angles α = β = π/2q, q ∈ N, model solutions can be written down explicitly
as linear combinations of certain complex exponentials. Moreover, it turns out that for such angles the model
solutions can be used to approximate the eigenfunctions of a Sturm-Liouville type problem of order 2q with
Neumann boundary conditions (see Theorem 1.10), for which the completeness follows from the general theory
of linear ODEs. The enumeration of the sloshing eigenvalues in (1.4) may then be veri�ed by developing the
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approach outlined in [Nai67, Chapter 2]. Another important property used here is a peculiar duality between
the Dirichlet and Neumann eigenvalues of the Sturm-Liouville problem, see Proposition 4.2.

Once we have proven completeness and established the enumeration of the sloshing eigenvalues in the case
α = β = π/2q, we use once again domain monotonicity together with continuous perturbation arguments
to complete the proof of Theorem 1.1 for arbitrary angles.

1.5 An application to higher order Sturm-Liouville problems

Let us elaborate on the link between the sloshing problem with angles α = β = π/2q and the higher order
Sturm-Liouville type ODEs mentioned in the previous section. For a given q ∈ N, consider an eigenvalue
problem on an interval (A,B) ⊂ R of lengthL:

(−1)qU (2q)(x) = Λ2qU(x), (1.11)

with either Dirichlet
U (m)(A) = U (m)(B) = 0, m = 0, 1, . . . , q − 1, (1.12)

or Neumann
U (m)(A) = U (m)(B) = 0, m = q, q + 1, . . . , 2q − 1, (1.13)

boundary conditions. For q = 1 we obtain the classical Sturm-Liouville equation describing vibrations of
either a �xed or a free string. The case q = 2 yields the vibrating beam equation, also with either �xed or
free ends. It follows from general elliptic theory that the spectrum of the boundary value problems (1.12) or
(1.13) for the equation (1.11) is discrete. It is easy to check that all Dirichlet eigenvalues are positive, while the
Neumann spectrum contains an eigenvalue zero of multiplicity q; the corrresponding eigenspace is generated
by the functions 1, x, . . . , xq−1. Let

0 = . . . ... = 0︸ ︷︷ ︸
q times

< (Λq+1)2q ≤ (Λq+2)2q ≤ · · · ↗ ∞

be the spectrum of the Neumann problem (1.13). Then, as shown in Proposition 4.2, ΛDk = Λk+q , k =
1, 2, . . . , where (ΛDk )2q are the eigenvalues of the Dirichlet problem (1.12). We have the following result:

Theorem 1.10. For any q ∈ N, the following asymptotic formula holds for the eigenvalues Λk :

ΛkL = π

(
k − 1

2

)
− πq

2
+O

(
e−k/C

)
(1.14)

where C > 0 is some positive constant. Moreover, let λk , k = 1, 2, . . . , be the eigenvalues of a sloshing problem
(1.1) with straight walls near the corners making equal angles π/2q at both corner points with the sloshing surface
S of lengthL. Then

λk = Λk +O
(

e−k/C
)
, (1.15)

and the eigenfunctions uk of the sloshing problem decrease exponentially away from the sloshing boundary S.

Spectral asymptotics of Sturm-Liouville type problems of arbitrary order for general self-adjoint boundary
conditions have been studied earlier, see [Nai67, Chapter II, section 9] and references therein. However, for
the special case of problem (1.11) with Dirichlet or Neumann boundary conditions, formula (1.14) gives a more
precise result. First, (1.14) gives the asymptotics for each Λk, while earlier results yield only an asymptotic form
of the eigenvalues without specifying the correct numbering. Second, we get an exponential error estimate,
which is an improvement upon a O(1/k) that was known previously. Finally, and maybe most importantly,
(1.15) provides a physical meaning to the Sturm-Liouville problem (1.11) for arbitrary order q ≥ 1.We also note
that for q = 2, the Sturm-Liouville eigenfunctions Uk(x), k = 1, 2, . . . , are precisely the traces of the slosh-
ing eigenfunctions uk|S on an isosceles right triangle Ω = T such that the sloshing surface S = (A,B) is its
hypotenuse. This fact was already known to H. Lamb back in the nineteenth century (see [Lam79]), and The-
orem 1.10 extends the connection between higher order Sturm-Liouville problems and the sloshing problem to
q ≥ 2. Let us also note that in a di�erent context related to the study of photonic crystals, a connection between
higher order ODEs and Steklov-type problems on domains with corners has been explored in [KuKu02].

Page 7



Michael Levitin, Leonid Parnovski, Iosif Polterovich andDavid A Sher

1.6 Towards sharp asymptotics for Steklov eigenvalues on polygons

As was discussed in [GiPo17, Section 3], precise asymptotics of Steklov eigenvalues on polygons and on smooth
planar domains are quite di�erent. Moreover, the powerful pseudodi�erential methods used in the smooth case
can not be applied for polygons, since the Dirichlet-to-Neumann operator on the boundary of a non-smooth
domain is not pseudodi�erential. It turns out that the methods of the present paper may be developed in order
to investigate the Steklov spectral asymptotics on polygonal domains. This is the subject of the subsequent
paper [LPPS19]. While establishing sharp eigenvalue asymptotics for polygons requires a lot of further work, a
sharp remainder estimate in Weyl’s law follows immediately from Theorems 1.1 and 1.7.

Corollary 1.11. Let NP(λ) = #{λk < λ} be the counting function of Steklov eigenvalues λk on a convex
polygonP of perimeterL. Then

NP(λ) =
L

π
λ+O(1). (1.16)

Remark 1.12. The asymptotic formula (1.16) improves upon the previously known error boundo(λ) (see [San55,
Agr06]). Note that theO(1) estimate for the error term in Weyl’s law is optimal, since the counting function
is a step-function. J

Proof. Given a convex n-gonP , take an arbitrary pointO ∈ P . It can be connected with the vertices ofP by
n smooth curves having only pointO in common in such a way that at each vertex, the angles between the sides
of the polygon and the corresponding curve are smaller than π/2. This is clearly possible since all the angles of
a convex polygon are less thanπ. LetL be the union of those curves. Consider two auxiliary spectral problems:

Figure 3: A polygon with auxiliary curvesL

in the �rst one, we impose Dirichlet conditions on L and keep the Steklov condition on the boundary of the
polygon, and in the second one we impose Neumann conditions on L and keep the Steklov condition on the
boundary. LetN1(λ) andN2(λ) be, respectively, the counting functions of the �rst and the second problem.
By Dirichlet–Neumann bracketing (which works for the sloshing problems via the variational principle in the
same way it does for the Laplacian) we get

N1(λ) ≤ NP(λ) ≤ N2(λ), λ > 0.

The spectrum of the second auxiliary problem can be represented as the union of spectra of n sloshing prob-
lems, while simultaneously the spectrum of the �rst auxiliary problem can be represented as the union of spectra
of n corresponding Steklov-Dirichlet problems. Applying Theorems 1.1 and 1.7 to those problems, and trans-
forming the eigenvalue asymptotics into the asymptotics of counting functions, we obtainN2(λ)−N1(λ) =
O(1), which implies (1.16). This completes the proof of the corollary.
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Let us conclude this subsection by a result in the spirit of Theorems 1.1 and 1.7 that will be used in [LPPS19]
in the proof of the sharp asymptotics of Steklov eigenvalues on polygons.

Proposition 1.13. Let Ω = 4ABZ be a triangle with angles α, β ≤ π/2 at the verticesA andB, respectively.
Consider a mixed Steklov-Dirichlet-Neumann problem on this triangle with the Steklov condition imposed on
AB, Dirichlet condition imposed on AZ and Neumann condition imposed on BZ . Assume that the side AB
has length L. Then the eigenvalues λk of the mixed Steklov-Dirichlet-Neumann problem on4ABZ satisfy the
asymptotics:

λkL = π

(
k − 1

2

)
+
π2

8

(
1

α
− 1

β

)
+O

(
k

1− π
max(α,2β)

)
. (1.17)

Remark 1.14. Note that the Dirichlet condition near the vertex A yields a contribution
π2

8α
(with a positive

sign) to the eigenvalue asymptotics, while the Neumann condition near B contributes−π
2

8β
(with a negative

sign). This is in good agreement with the intuition provided by Theorems 1.1 and 1.7. J

Remark 1.15. In fact, we believe that a stronger statement than the one proposed in Remark 1.9 is true: formula
(1.17) holds for any mixed Steklov-Dirichlet-Neumann problem on a domain with a curved Steklov partAB of
lengthL, curved wallsW , and angles α, β < π atA andB, such that the Dirichlet condition is imposed near
A and Neumann condition is imposed nearB. J

1.7 Plan of the paper

In Section 2 we use the Peters solutions of the sloping beach problem [Pet50] to construct quasimodes for the
sloshing and Steklov-Dirichlet problems on triangular domains. In Section 3 we consider the case of angles
of the form π/2q for some positive integer q. In Section 4 we �rst prove the completeness of this system of
exponentially accurate quasimodes using a connection to higher order Sturm-Liouville eigenvalue problems.
In particular, we prove Theorem 1.10. After that, we apply domain monotonicity arguments in order to prove
Theorems 1.1 and 1.7, as well as Propositions 1.3, 1.8 and 1.13 for triangular domains. In section 5 we extend these
results to domains with curvilinear walls: �rst, for domains with the walls that are straight near the corners,
and then to domains with general curvilinear walls. In Appendix A we prove Theorem 2.1, which is essentially
based on the ideas of [Pet50]. In Appendix B we prove an auxiliary Proposition B.1 which is needed to prove
Theorem 1.10. This section draws heavily on the results of [Nai67, Chapter 2]. Some numerical examples are
presented in Appendix C.

Acknowledgments

The authors are grateful to Lev Buhovski for suggesting the approach used in section 5.3, to Rinat Kashaev
for proposing an alternative route to prove Theorem 3.9, as well as to Alexandre Girouard and Yakar Kan-
nai for numerous useful discussions on this project. The research of L.P. was supported by by EPSRC grant
EP/J016829/1. The research of I.P. was supported by NSERC, FRQNT, Canada Research Chairs program,
as well as the Weston Visiting Professorship program at the Weizmann Institute of Science, where part of this
work has been accomplished. The research of D.S. was supported in part by NSF EMSW21-RTG 1045119 and
in part by a Faculty Summer Research Grant from DePaul University.

Page 9



Michael Levitin, Leonid Parnovski, Iosif Polterovich andDavid A Sher

2 Construction of quasimodes for triangular domains

2.1 The sloping beach problem

Let (x, y) be Cartesian coordinates in R2, let z = x + iy ∈ C, and let (ρ, θ) denote the polar coordinates
z = ρeiθ. LetSα be the planar sector−α ≤ θ ≤ 0. Consider the following mixed Robin-Neumann problem

∆φ = 0 in Sα,

∂φ

∂y
= φ on Sα ∩ {θ = 0},

∂φ

∂n
= 0 on Sα ∩ {θ = −α},

(2.1)

and the mixed Robin-Dirichlet problem
∆φ = 0 in Sα,

∂φ

∂y
= φ on Sα ∩ {θ = 0},

φ = 0 on Sα ∩ {θ = −α}.

(2.2)

Note that there is no spectral parameter in these problems (hence the boundary conditions are called Robin
rather than Steklov). Our aim is to exhibit solutions of (2.1) and (2.2) decaying away from the horizontal part
of the boundary with the property that φ(x, 0)→ cos(x− χ) for some �xed χ as x→∞.

This problem is known as the sloping beach problem, and has a long and storied history in hydronamics,
see [Lew46] references therein. It turns out that the form of the solutions depends in a delicate way on the
arithmetic properties of the angle α; we will discuss this in more detail later on. Let

µα =
π

2α
, χα,N =

π

4
(1− µα), χα,D =

π

4
(1 + µα). (2.3)

The following key result was essentially established by Peters [Pet50]:

Theorem 2.1. For any 0 < α < π/2, there exist solutions φα,N (x, y) and φα,D(x, y) of (2.1) and (2.2),
respectively, and a constantC > 0 such that:

• |φα,N (x, y)| and |φα,D(x, y)| are bounded on the closed sector Sα;

•
φα,N (x, y) = ey cos(x− χα,N ) +Rα,N (x, y), (2.4)

where
|Rα,N (x, y)| ≤ Cρ−µ,

∣∣∇(x,y)Rα,N (x, y)
∣∣ ≤ Cρ−µ−1;

•
φα,D(x, y) = ey cos(x− χα,D) +Rα,D(x, y), (2.5)

where
|Rα,D(x, y)| ≤ Cρ−2µ,

∣∣∇(x,y)Rα,D(x, y)
∣∣ ≤ Cρ−2µ−1;

• ifP is any di�erential operator of order k with constant coefficient 1, then as ρ→ 0,

|Pφα,N (x, y)| = o(ρ−k), |Pφα,D(x, y)| = O(ρµ−k),

and for all ρ, most importantly ρ ≥ 1,

|PRα,N (x, y)| ≤ Ckρ−µ−k, |PRα,D(x, y)| ≤ Ckρ−2µ−k.
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Asymptotics of sloshing eigenvalues

For α = π/2 we have
φπ

2
,N = ey cosx, φπ

2
,D = ey sinx. (2.6)

Remark 2.2. Note thatRα,N (x, y) andRα,D(x, y) are harmonic. Note also that our further analysis (specif-
ically, the asympotic completeness of quasimodes) will imply that the solutions φα,N (x, y) and φα,D(x, y)
are unique in the sense that we cannot replace the particular constants χα,N and χα,D from (2.3) by any other
value. J

The construction of the solutions for both the Robin-Neumann problem and the Robin-Dirichlet prob-
lem is due to Peters [Pet50]. The approach is based on complex analysis, speci�cally the Wiener-Hopf method.
The solution is written down explicitly as a complex integral, which allows us to analyse the asymptotics. We
have reproduced this construction, taking special care with the remainder estimates that were not worked out
in [Pet50]. The proof of Theorem 2.1 is quite technical and is deferred until Appendix A.

2.2 Quasimode analysis

In what follows, we focus on the proof of Theorem 1.1; minor modi�cations required for Theorem 1.7 will be
discussed later. As such we suppress allN subscripts.

As was indicated in subsection 1.7, we split the proof of Theorem 1.1 into several steps. Our �rst objective
is to prove the asymptotic expansion (1.4) with the remainder estimate (1.5) for triangular domains.
Convention: From now on and until subsection 4.5 we assume that Ω is a triangle T = 4ABZ .

The key starting idea is to glue together two scaled Peters solutions±φα(σx, σy), one at each cornerA and
B, to construct quasimodes. These Peters solutions must match, meaning that the phases of the trigonometric
functions in the asymptotics of both solutions must agree. Denoting those phases by χα = χα,N and χβ =
χβ,N , see (2.3), we require

cos(σx− χα) = ± cos((L− x)σ − χβ).

Solving this equation immediately gives σ = σk for some integer k, where

σkL = π

(
k − 1

2

)
− π2

8

(
1

α
+

1

β

)
. (2.7)

This could be viewed as the quantization condition resulting in the asymptotics (1.4).
Let us now make this precise. Let the plane wave pσ(x, y) = eσy cos(σx − χα), where σ is determined

by the quantization condition (2.7). Letting z = (x, y), we set

RA,σ(z) := φα(σz)− pσ(z);

that is, RA,σ(z) is the di�erence between the scaled Peters solution in the sector of angle α with the vertex at
A, and the scaled trigonometric function. Similarly, let

RB,σ(z) := φβ(σ(L− z))− pσ(L− z)

be the di�erence between the scaled Peters solution in the sector of angle β with the vertex at B and a scaled
trigonometric function. Note thatRA,σ(z) = Rα(zσ) and similarly forRB,σ(z). By the respective remain-
der estimates in Theorem 2.1,

|RA,σ(z)| ≤ Cσ−µα |z −A|−µα ; |RB,σ(z)| ≤ Cσ−µβ |L− z −B|−µβ ;

|∇RA,σ(z)| ≤ Cσ−µα |z −A|−µα−1; |∇RB,σ(z)| ≤ Cσ−µβ |L− z −B|−µβ−1.

For σ = σk satisfying the quantization condition (2.7), let us de�ne a function v′σ (note that v′σ is not a
derivative of vσ but a new function, and we will follow this convention in the sequel):

v′σ(z) := pσ(z) +RA,σ(z) +RB,σ(z) (2.8)
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(indeed, this de�nition is meaningful only when σ satis�es (2.7)). This is our �rst attempt at a quasimode. The
problem with this function is that, while it is harmonic, it does not satisfy the Neumann condition onW .
However, the error is small and we can correct it.

Indeed, in a neighbourhood of A, the function pσ + RA,σ is the Peters solution and hence satis�es the
Neumann condition on AZ , and∇RB,σ is of order O (σ−µβ ), so the normal derivative of v′σ is O (σ−µβ ).
A similar analysis holds in a neighbourhood ofB. Away from bothA andB, all three terms have gradients of
magnitudeO (σ−µα) (as α ≥ β). Therefore∣∣∣∣∂v′σ∂n

∣∣∣∣ ≤ Cσ−µα onW. (2.9)

In order to correct this “Neumann defect", consider a function ησ de�ned as a solution of the following
system: 

∆ησ = 0 in Ω;

∂

∂n
ησ =

∂

∂n
v′σ onW;

∂

∂n
ησ = −κσψ on S,

(2.10)

where ψ ∈ C∞(S) is a �xed function, supported away from the vertices, with
∫
S ψ = 1, and where

κσ =

∫
W

∂v′σ
∂n

.

Note that the integral of the Neumann data over ∂Ω in (2.10) is zero; thus a solution ησ to (2.10) exists and is
uniquely de�ned up to an additive constant. It is well-known (see, for instance, [Ron15]) that the Neumann-
to-Dirichlet map is a bounded operator on L2

∗(∂Ω), the space of mean-zero L2 functions on the boundary.
Therefore, ‖ησ‖L2(∂Ω) ≤ Cσ−µα , and hence

‖ησ‖L2(S) ≤ Cσ−µα . (2.11)

With this auxiliary function, we de�ne a corrected quasimode:

vσ(z) := v′σ(z)− ησ(z) = pσ(z) +RA,σ(z) +RB,σ(z)− ησ(z).

Observe that vσ is harmonic and satis�es the homogeneous Neumann boundary condition onW .
The key property of our new quasimodes is the following

Lemma 2.3. With the notation as above, there exists a constantC such that

‖Dvσ − σvσ‖L2(S) ≤ Cσ
1−µα , (2.12)

whereD is the sloshing operator (1.2).

Remark 2.4. Note that µα = π
2α > 1 for α < π/2, and therefore we get quasimodes of order O

(
σ−δ

)
for

δ := 1− µα > 0. For α ≥ π/2 one would need to modify our approach. J

Proof of Lemma 2.3. Since vσ is harmonic and satis�es the Neumann condition onW , we have

D (vσ|S) =
∂vσ
∂n

∣∣∣∣
S

.

Consider �rst a region away from the vertexA. In this region,

∂(pσ +RB,σ)

∂n

∣∣∣∣
S

− σ(pσ + RB,σ)|S = 0
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by Theorem 2.1. Moreover, due to the bounds onRA,σ in Theorem 2.1,∣∣∣∣∂RA,σ∂n
− σRA,σ

∣∣∣∣ ≤ Cσ1−µα on S

pointwise, and hence the same estimate holds inL2(S). Finally, by construction of ησ , we know

∂ησ
∂n

∣∣∣∣
S

= −cσψ, |cσ| ≤ Cσ−µα ;

combining this with (2.11) yields ∥∥∥∥∂ησ∂n − σησ
∥∥∥∥
L2(S)

≤ Cσ1−µα .

Putting everything together using the de�nition of vσ gives us the required estimate away from A. A similar
analysis shows that the same estimate holds away fromB, completing the proof.

Remark 2.5. For the Dirichlet or mixed problems on triangles, it is also possible to construct ησ(z) harmonic
and satisfying (2.11) such that vσ(z) satis�es the appropriate homogeneous boundary conditions onW :=
W1 ∪W2. In this case, ησ is a solution of the following problem:

∆ησ = 0 in Ω;

∂

∂n
ησ =

∂

∂n
v′σ on any Neumann sideW1;

ησ = v′σ on any Dirichlet sideW2;

∂

∂n
ησ = 0 on S.

(2.13)

Indeed, solutions to such mixed problems are known to exist even on a larger class of Lipschitz domains [Bro94].
The paper applies to our setting since all angles are strictly less than π, see the discussion in [Bro94, Introduc-
tion]. Speci�cally, since we have at least one Dirichlet side, we may use [Bro94, Theorem 2.1] to deduce that a
solution ησ to (2.13) exists, is unique, and

‖∇ησ‖2L2(∂Ω) ≤ C

(∥∥∥∥ ∂∂nv′σ
∥∥∥∥2

L2(W1)

+ ‖∇tanv
′
σ‖2L2(W2) + ‖v′σ‖2L2(W2)

)
,

where∇tan denotes a tangential derivative alongW . Since the Neumann-to-Dirichlet operator onL2(∂Ω) is
bounded, again by [Ron15], we have

‖ησ‖2L2(∂Ω) ≤ C
∥∥∥∥ ∂∂nησ

∥∥∥∥2

L2(∂Ω)

≤ C‖∇ησ‖2L2(∂Ω)

and therefore

‖∇ησ‖2L2(∂Ω) + ‖ησ‖2L2(∂Ω) ≤ C

(∥∥∥∥ ∂∂nv′σ
∥∥∥∥2

L2(W1)

+ ‖∇tanv
′
σ‖2L2(W2) + ‖v′σ‖2L2(W2)

)
.

By Theorem (2.1), the �rst two terms on the right hand side are actually bounded by (Cσ−µα−1)2, and the
third term is bounded by (Cσ−µα)2. Overall, we obtain

‖∇ησ‖2L2(∂Ω) + ‖ησ‖2L2(∂Ω) ≤ (Cσ−µα)2,

so in particular
‖ησ‖L2(∂Ω) ≤ Cσ−µα . (2.14)

The analysis then proceeds as above, and in particular the analogue of Lemma 2.3 holds by an identical proof.
J
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Going back to the Neumann setting again, we let

σj =
1

L

(
π

(
j − 1

2

)
− π2

8

(
1

α
+

1

β

))
, j = 1, 2, . . . , (2.15)

as in (2.7). Abusing notation slightly, let vj := vσj |S be the traces of the corresponding quasimodes. Assume
further that ‖vj‖L2(S) = 1. By (2.15). σj ≥ cj for some c > 0, and thus we have

‖Dvj − σjvj‖L2(S) ≤ Cjδ, δ = 1− µα > 0. (2.16)

Now let {ϕk}∞k=1 be an orthonormal basis of the eigenfunctions of the sloshing operatorD, with eigen-
values λj . By completeness and orthonormality of the {ϕk}, we have, for each j,

vj =
∞∑
k=1

ajkϕk, ajk = (vj , ϕk),
∞∑
k=1

a2
jk = 1. (2.17)

Plugging in (2.16), we get ∥∥∥∥∥
∞∑
k=1

ajk(λk − σj)ϕk

∥∥∥∥∥
L2(S)

≤ Cj−δ

and hence
∞∑
k=1

a2
jk(λk − σj)2 ≤ Cj−2δ.

Since
∞∑
k=1

a2
jk = 1, it cannot be true that |λk − σj | > Cj−δ for all k. Therefore the following Lemma holds.

Lemma 2.6. For each j ∈ N0, there exists k ∈ N0 such that

|σj − λk| ≤ Cj−δ.

In other words, there exists a subsequence of the spectrum that behaves asymptotically asσj , up to an error
which is O(j−δ). The key question that we now face is how to prove that j = k, i.e., that the sequence gives
the full spectrum. In order to achieve this, we have to deal with several issues. First, we do not know whether
the quasimodes {vj} form a basis for L2(S). Second, we do not have good control of the errors RA,σ and
RB,σ near their respective corners. Therefore, some new ideas are needed; in particular, we need more accurate
quasimodes. Luckily for us, as will be shown later, we can get away with constructing such quasimodes for
some angles only.

3 Exponentially accurate quasimodes for angles of the form π
2q

3.1 Hanson-Lewy solutions for angles π/2q

We will now construct quasimodes in the special case where both angles α and β are equal to π/2q for some
integer q ≥ 2.

To do this, let us �rst go back to the study of waves on sloping beaches. Recall that Sα is the planar sector
with −α ≤ θ ≤ 0, and let I1 be the half-line θ = 0 with I2 the half-line θ = −α. Consider the complex
variable z. Let q be a positive integer and let α = π/2q,

ξ = ξq := e−iπ/q. (3.1)

Proposition 3.1. Suppose g(z) is an arbitrary function. Set (Ag)(z) := g(ξz̄). Then

(g −Ag)|I2 = 0,
∂

∂n
(g +Ag)|I2 = 0.
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Proof. This can be checked by direct computation.

The following de�nition is useful throughout.

De�nition 3.2. The Steklov defect of an arbitrary function g(z) on Sα is

SD(g) :=

(
∂g

∂y
− g
)∣∣∣∣

I1

.

/

Note that g(z) satis�es the Steklov condition with parameter 1 if and only if SD(g) is identically zero.
For setup purposes, consider functions of the form

g(z) = epz̄, h(z) = epz.

Di�erentiation immediately tells us that

SD(g) = (−ip− 1)g|I1 ; SD(h) = (ip− 1)h|I1 .

Given g = epz̄ , set

Bg(z) =
ip+ 1

ip− 1
epz.

It is immediate that

Proposition 3.3. For any g = epz̄ , with p ∈ C,

SD(g + Bg) = 0.

Now let f(z) = e−iz , and consider

f0(z) = f(z); f1(z) = Af0(z), f2 = Bf1(z), f3 = Af2(z), . . . .

We then have
f1(z) = f(ξz̄), f2(z) = η(ξ)f(ξz),

where

η(ξ) =
i(−iξ) + 1

i(−iξ)− 1
=
ξ + 1

ξ − 1
.

Further on,

f3(z) = η(ξ)f(ξ2z̄), f4(z) = η(ξ)η(ξ2)f(ξ2z), . . . ,

f2q−1(z) = η(ξ)η(ξ2) . . . η(ξq−1)f(ξq z̄) =

q−1∏
j=1

η(ξj)f(−z̄).

Finally, set

υα(z) =

2q−1∑
m=0

fm(z). (3.2)

Theorem 3.4. The function υα(z) defined by (3.2) is harmonic, satisfies Neumann boundary conditions on I2,
and SD(υα) = 0.
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Proof. Since υα(z) is a sum of rotated plane waves, it is harmonic. It satis�es Neumann boundary conditions
because we can write

υα = (f0 + f1) + (f2 + f3) + · · ·+ (f2q−2 + f2q−1)

= (f0 +Af0) + (f2 +Af2) + · · ·+ (f2q−2 +Af2q−2)

and use Proposition 3.1 on each term. To see that it satis�es SD(υα) = 0, write

υα = f0 + (f1 + f2) + · · ·+ (f2q−3 + f2q−2) + f2q−1

= f0 + (f1 + Bf1) + · · ·+ (f2q−3 + Bf2q−3) + f2q−1.

Using Proposition 3.3 and the linearity of SD, we have

SD(υα) = SD(f0) + SD(f2q−1),

and all that remains is to show these two terms sum to zero. In fact both are separately zero, because f0(z) =
e−iz = e−ixey , and SD(f0) is zero by direct computation. Moreover,

f2q−1(z) =

q−1∏
j=1

η(ξj)eiz̄ =

q−1∏
j=1

η(ξj)eixey,

and the same direct computation shows SD(f2q−1) = 0. This completes the proof.

We call υα(z) the Hanson-Lewy solution for the sloping beach problem with angle α = π/2q.
It is helpful to introduce the notation

γ(ξ) :=

q−1∏
j=1

η(ξj). (3.3)

Lemma 3.5. We have γ(ξ) = eiπ(q−1)/2. If q is even, γ(ξ) = ±i, and if q is odd, γ(ξ) = ±1.

Proof. We have

γ(ξ) =

q−1∏
j=1

e−iπj/q + 1

e−iπj/q − 1
=

q−1∏
j=1

1 + eiπj/q

1− eiπj/q
,

where we have multiplied numerator and denominator by eiπj/q . Re-labeling terms in the numerator by
switching j for q − j gives

γ(ξ) =

q−1∏
j=1

1 + eiπ(q−j)/q

1− eiπj/q
=

q−1∏
j=1

1− e−iπj/q

1− eiπj/q
=

q−1∏
j=1

e−iπj/q eiπj/q − 1

1− eiπj/q
=

q−1∏
j=1

(−e−iπj/q).

This may be rewritten as

γ(ξ) =

q−1∏
j=1

(eiπ−iπj/q) = exp

iπ

q − 1−
q−1∑
j=1

j

q

 = exp

(
iπ

(
q − 1− q − 1

2

))
,

which yields the result.

Lemma 3.6. On I1, the Hanson-Lewy solutions υα(z) are of the form

υα(x) = e−ix + γ(ξ)eix + decaying exponentials.
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Proof. Indeed, the �rst and last terms are e−iz +γ(ξ)eiz̄ , and all other exponentials in the sum de�ning υα are
of the form e−iξjz or e−iξj z̄ for j = 1, . . . , q − 1. On I1, z = z̄ = x, so we have e−i Re(ξj)xeIm(ξj)x. But
Im(ξj) = sin(−πj/q) < 0 for j = 1, . . . , q − 1, and the exponential is thus decaying.

This may be strengthened:

Lemma 3.7. The rescaled solution υα(σz) is eiσz + γ(ξ)eiσz̄ plus a remainder which is exponentially decaying
in σ as σ →∞ for each z ∈ Sα. The exponential decay constant is uniform over all z ∈ Sα with |z| = 1.

Proof. Each term in the sum de�ning υα(z) other than the �rst and last terms is e−iξjz or e−iξj z̄ for j =

1, . . . , q−1. Observe that |e−iξjσz| decays exponentially inσwhen ξjz is in the negative half-plane, uniformly
for z away from the real axis. Since arg ξj is−πj/q for 1 ≤ j ≤ q − 1 and arg z is between 0 and−π/2q,
we see that for each z ∈ Sα,

−π
q
≤ arg(ξjz) ≤ −π +

π

2q
.

Thus we have the required decay and it is uniform over the set of z ∈ Sα with |z| = 1. A similar calculation
shows that

− π

2q
≤ arg(ξj z̄) ≤ −π +

π

q
,

and the same argument applies, completing the proof.

Remark 3.8. A similar construction holds for the solutions of the mixed Steklov-Dirichlet problem. Set

f̃0 = f ; f̃1 = −Af̃0; f̃2 = Bf̃1; f̃3 = −Af̃2, . . . .

Then set

υ̃α(z) =

2q−1∑
e=0

f̃e(z).

By Propositions 3.1 and 3.3, these satisfy υ̃α|L2 = 0 and SD(u) = 0. They also have the same exponential decay
properties. J

Here is a key, novel, observation about the Hanson-Lewy solutions:

Theorem 3.9. For each α = π
2q , the solutions υα(z) and υ̃α(z) satisfy the following properties when restricted

to I1:
υ(m)
α (0) = 0, m = q, . . . , 2q − 1; υ̃(m)

α (0) = 0, m = 0, . . . , q − 1.

Proof. Consider �rst the Neumann case. Set y = 0. We have

υα(x) = e−ix + e−iξx + η(ξ)e−iξx + η(ξ)e−iξ2x + . . . .

Therefore

υ(m)
α (0) = (−i)m(1 + ξm)

1 +

q−1∑
k=1

ξkm
k∏
j=1

η(ξj)

 . (3.4)

We now apply the Lemma in [Lew46, p.745]. In the notation of Lewy, ε = ξ = e−iπ/q , and the product in
the de�nition of f(ξ) in [Lew46] is precisely the one appearing in (3.4) times (−1)k. Hence, the right hand
side of (3.4) vanishes precisely form = q, . . . , 2q− 1. Indeed, form = q this is obvious since 1 + ξq = 0; for
m = q + r, r = 1, . . . , q − 1, we have ξk(q+r) = ξr(ξq)k = (−1)kξkr, and the result follows from Lewy’s
lemma.

In the Dirichlet case we have

υ̃α(x) = e−ix − e−iξx − η(ξ)e−iξx + η(ξ)e−iξ2x + . . . .
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Therefore

υ̃(m)
α (0) = (−im)(1− ξm)

1 +

q−1∑
k=1

(−1)kξkm
k∏
j=1

η(ξj)

 .

A similar use of Lewy’s lemma shows this is zero form = 0, 1, . . . , q − 1, and the theorem is proved.

Remark 3.10. An alternative proof of this Theorem was provided to us by Rinat Kashaev [Kas16], based on
combinatorial techniques used in [KMS93]. J

Remark 3.11. The Hanson-Lewy solutions are closely connected to a higher order Sturm-Liouville type ODE
on the real line, speci�cally

(−1)qU (2q) = Λ2qU. (3.5)

It is immediate that the Hanson-Lewy solutions υα and υ̃α satisfy this equation with Λ = 1. This observation
together with Theorem 3.9 will be key for the next step of the argument. J

3.2 Exponentially accurate quasimodes for angles of the form π/2q

Consider the sloshing problem on a triangle with top side of length L = 1 (for simplicity) and with angles
α = β = π/2q, q ∈ N, q even. Suppose that σ satis�es the quantization condition (2.7). For such σ, let

gσ(z) = υα(σz) + υd
β(σ(1− z)),

where υd
β is the sum of just the decaying exponents in υβ (see Lemma 3.6). Note that the choice of σ yields that

the oscillating exponents in (υα|I1) (σx) and (υβ|I1) (σ(1−x)) coincide, so there is a similar decomposition
nearB.

First we view the functions gσ as quasimodes for the sloshing operator. We are in the same situation we
were with the Peters solutions, but now the errors decay exponentially rather than polynomially. By an identical
argument to that in subsection 2.2, there exist functions ησ(z) satisfying (2.14) such that if we set vσ(z) =
gσ(z)− ησ(z), then we have the key quasimode estimate

‖D(vσ|S)− σvσ‖L2(S) = O
(

e−σ/C
)
. (3.6)

Now we view gσ as quasimodes for an ODE problem. By Theorem 3.9, we see that gσ(x) is a solution of
the ODE (3.5), and moreover one which satis�es up to an error O(e−σ/C), for some C > 0, the self-adjoint
boundary conditions

g(m)
σ (0) = g(m)

σ (1) = 0, m = q, . . . , 2q − 1.

at the ends of the interval. Speci�cally, we claim that these functions gσ(x) are exponentially accurate quasi-
modes on [0, 1] for the elliptic self-adjoint ODE eigenvalue problem{

(−1)qU (2q) = Λ2qU

U (m)(0) = U (m)(1) = 0 form = q, . . . , 2q − 1.
(3.7)

In order to show this, we need to run a similar argument to the one we have run in subsection 2.2 to correct our
quasimodes. First, we correct the boundary values of gσ in order for the quasimode to lie in the domain of the
operator. We do it as follows.

Let Φm(x) be a function equal to xm near x = 0 and smoothly decaying so that it is identically zero
whenever x > 1/2. Then for each σ = σk, there exists a function

η̄σ(x) =

2q−1∑
m=q

(amΦm(x) + bmΦm(1− x)) ,
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where and am, bm are bothO
(
e−σ/C

)
, and where gσ(x) + η̄σ(x) satisfy the boundary conditions in (3.7). In

other words,
v̄σ(x) = gσ(x) + η̄σ(x)

could be used as a quasimode for the eigenvalue problem (3.7). Indeed, it is easy to see that

‖(−1)qv̄(2q)
σ (x)− σ2qv̄σ(x)‖L2([0,1]) = O

(
e−σ/C

)
. (3.8)

The consequences of these quasimode estimates will be discussed in the next section. Note that by our estimates
on η, the functions η̃, vσ , gσ , and ṽσ are all withinO

(
e−σ/C

)
inL2(S) norm, and in particular

||v̄σ − vσ||L2(S) ≤ Ce−σ/C . (3.9)

4 Completeness of quasimodes via higher order Sturm-Liouville equations
4.1 An abstract linear algebra result

In order to complete the proof of Theorem 1.1 for triangular domains, we need to show that the family of
quasimodes constructed in subsection 2.2 is complete, and make sure that the numeration of the corresponding
eigenvalues is precisely as in (1.4). Unlike the general case when we were using Peters solutions, we are well
equipped to do that for angles π/2q using exponentially accurate quasimodes. We will need the following
strengthening of Lemma 2.6, formulated as an abstract linear algebra result below.

Theorem 4.1. Let D be a self-adjoint operator on an infinite-dimensional Hilbert space H with a discrete spec-
trum {λj}∞j=1 and a complete orthonormal basis of corresponding eigenvectors {ϕj}. Suppose {vj} is a sequence
of quasimodes (with ‖vj‖H = 1) such that

‖Dvj − σjvj‖H ≤ F (j), (4.1)

where limj→∞ F (j) = 0. Then

1) For all j, there exists k such that |σj − λk| ≤ F (j);

2) For each j, there exists a vector wj with the following properties:

• wj is a linear combination of eigenvectors ofD with eigenvalues in the interval [σj−
√
F (j), σj +√

F (j)];
• ‖wj‖H = 1;

• ‖wj − vj‖H ≤
√
F (j) +

√
F (j)

1−F (j) = 2
√
F (j)(1 + o(1)) as j →∞.

Proof. Indeed, the �rst part of the statement is proved using precisely the same arguments as Lemma 2.6. Let
us prove part 2) of the theorem. Set, similarly to (2.17),

vj =

∞∑
k=1

ajkϕk, ajk = (vj ,ϕk)H ,

∞∑
k=0

a2
jk = 1.

From the estimate (4.1),

F (j)2 ≥
∑

k: |λk−σj |>
√
F (j)

a2
jk(λk − σj)2 ≥ F (j)

∑
k:|λk−σj |>

√
F (j)

a2
jk, (4.2)

hence ∑
k: |λk−σj |>

√
F (j)

a2
jk ≤ F (j)⇒ 1− F (j) ≤

∑
k: |λk−σj |≤

√
F (j)

a2
jk ≤ 1. (4.3)
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Letting

wj :=

∑
k: |λk−σj |≤

√
F (j)

ajkϕk∑
k: |λk−σj |≤

√
F (j)

a2
jk

completes the proof.

As a consequence of (3.6) and (3.8), this Lemma may be applied to both the sloshing and ODE problems
in the case where both α and β equal π/2q. In that case, for each j su�ciently large, there exist functions wj
and Wj which are both within O

(
e−j/C

)
of vj in L2 norm (by (3.9)), and which are linear combinations of

eigenfunctions for the sloshing and ODE problems, respectively, with eigenvalues within O
(
e−j/C

)
of σj .

Therefore there is an in�nite subsequence, also denotedwj , of linear combinations of sloshing eigenfunctions
which are close to linear combinations of eigenfunctionsWj of the ODE. The problem now is to prove asymp-
totic completeness and to make sure that the enumeration lines up.

4.2 Eigenvalue asymptotics for higher order Sturm-Liouville problems

Our next goal is to understand the asymptotics of the eigenvalues of the higher order Sturm-Liouville problem
(3.7) with Neumann boundary conditions. For Dirichlet boundary conditions, the corresponding eigenvalue
problem is {

(−1)qU (2q) = Λ2qU

U (m)(0) = U (m)(1) = 0,m = 0, . . . , q − 1.
(4.4)

As was mentioned in subsection 1.5, the Dirichlet and Neumann spectra for the ODE above are related by the
following proposition:

Proposition 4.2. The nonzero eigenvalues of the Neumann ODE problem (3.7) are the same as those of the
Dirichlet ODE problem (4.4), including multiplicity. However, the kernel of (4.4) is trivial, whereas the kernel
of (3.7) consists of polynomials of degree less than q and therefore has dimension q.

Proof. The kernel claims follow from direct computation. For the rest, the solutions with nonzero eigenvalue
of the ODE problems (3.7) and (4.4) must be of the form

U(x) =

2q−1∑
k=0

cke
ωkΛx, (4.5)

where {ω1, . . . , ωn} are the nth roots of−1. We claim that a particularU(x) satis�es the Dirichlet boundary
conditions if and only if the function

Ũ(x) :=

2q−1∑
k=0

ckω
q
ke
ωkΛx

satis�es the Neumann boundary conditions. Indeed, this is obvious; since ω2q
k = 1, for any m and any x,

U (m)(x) = 0 if and only if Ũ (m+q)(x) = 0. This gives a one-to-one correspondence between Dirichlet and
Neumann eigenfunctions which completes the proof.

Remark 4.3. Proposition 4.2 also follows from the observation that the operators corresponding to the prob-
lems (3.7) and (4.4) can be represented as AA∗ and A∗A, where A is an operator given by AU = iqU (q)

subject to boundary conditionsU (m)(0) = U (m)(1) = 0,m = 0, . . . , q − 1. J

The following asymptotic result may be extracted, with some extra work (see Appendix B), from a book
of M. Naimark [Nai67, Theorem 2, equations (45 a) and (45 b)]. Note that our di�erential operator has order
n = 2q, so µ in the notation of [Nai67] is equal to q.
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Proposition 4.4. For each q ∈ N, all sufficiently large eigenvalues of the boundary value problem (3.7) are given
by the formulae {(

k − 1

2

)
π +O

(
1

k

)}∞
k=K

for q even,

{
kπ +O

(
1

k

)}∞
k=K

for q odd,

(4.6)

for someK ∈ N.

Corollary 4.5. In particular, there exists a J = Jq ∈ Z so that for large enough j,

Λj = σj+J +O

(
1

j

)
.

This corollary is immediate from the explicit formula for σj , with the appropriate values of α = β =
π/2q.
Remark 4.6. Proposition 4.4 implies thatλj are simple and separated by nearlyπ for large enough j. However,
it does not tell us right away that J = 0, and further work is needed to establish this. J

The proof of Proposition 4.4 for even q is given in Appendix B.
Remark 4.7. The argument presented in [Nai67] is slightly di�erent for q even and q odd. In Appendix B we
shall assume that q is even, which is in fact su�cient for our purposes. The proof for odd q is analogous and is
left to the interested reader. J

4.3 Connection to sloshing eigenvalues

Recall now that {wj} are linear combinations of sloshing eigenfunctions and {Wj} are linear combinations
of ODE eigenfunctions, each with eigenvalues in shrinking intervals around σj , and each exponentially close
to a quasimode. As a consequence of the remark following Corollary 4.5, there are gaps between consecutive
eigenvalues of the ODE and so for large enough j there is only one eigenvalue of the ODE in each of those
intervals. This means that Wj , for su�ciently large j, must actually be an eigenfunction of the ODE, rather
than a linear combination of eigenfunctions. By 4.5, we must haveWj = Uj−J , with eigenvalue Λj−J .

Now consider {wj}j≥N and {Wj}j≥N , and let their spans be XN and X∗N respectively. Pick N large
enough so thatWj are eigenfunctions and so that the intervals in Theorem 4.1 are disjoint, and also large enough
so that ∑

j≥N
‖wj −Wj‖2L2(S) ≤

∑
j≥N

(
Ce−j/C

)2
< 1. (4.7)

We know by ODE theory that {Wj} form a complete orthonormal basis ofL2(S) and that therefore

dim(X∗N )⊥ = N − 1.

Lemma 4.8. For sufficiently largeN , the dimension dimX⊥N = N − 1 as well.

Proof. This is essentially a version of the Bary-Krein lemma (see [Kaz71]) and our argument closely follows
[Fis16]. De�ne A : X⊥N → (X∗N )⊥ and B : (X∗N )⊥ →X⊥N by

Af = f − PX∗N
f ; Bf = f − PXN

f,

where PX∗N
and PXN

are orthogonal projections. By (4.7) we have for any f ∈X⊥N :

‖PX∗N
f‖2 =

∑
j≥N
|(f, w∗j )|2 =

∑
j≥N
|(f, w∗j − wj)|2 ≤ ε‖f‖2, ε < 1.
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Similarly, for any f ∈ (X∗N )⊥, ‖PXN
f‖ < ε2‖f‖2. Therefore, for any f ∈X⊥N ,

BAf = (f − PX∗N
f)− PXN

(f − PX∗N
f) = f − (I − PXN

)PX∗N
f = f − PX⊥N

PX∗N
f,

and hence
‖(IX⊥N −BA)f‖ = ‖PX⊥N

P ∗XN
f‖ ≤ ‖PX∗N

f‖ < ε‖f‖ for ε < 1.

Therefore,Amust be injective, as otherwiseBAf = 0 for some nonzero f and we get a contradiction. Hence
dimX⊥N ≤ dim(X∗N )⊥ = N − 1. Repeating the same argument with XN and X∗N interchanged shows
that dim(X∗N )⊥ ≤ dimX⊥N , and therefore that

dimX⊥N = dim(X∗N )⊥ = N − 1,

as desired.

One immediate consequence of this Lemma is that the sequence {wj}j≥N after a certain point contains
only pure eigenfunctions. Indeed, if wj is a linear combination of k ≥ 2 eigenfunctions, there are k − 1
linearly independent functions generated by the same eigenfunctions, orthogonal to wj (and all other {wj},
since eigenfunctions are orthonormal). But since dimX⊥N <∞, k = 1 starting from some j = N . Without
loss of generality we can pickN su�ciently large so that allwj are simple for j ≥ N .

Even more importantly, Lemma 4.8 tells us that the sequences {wj}j≥N and {Wj}j≥N are missing the
same number of eigenfunctions, namely N − 1. Since we know that Wj corresponds to eigenvalue Λj−J =

σj +O
(

1
j

)
, we have proved the following

Proposition 4.9. In the case α = β = π/2q, there exists a constant C > 0 and an integer Jq such that both
the sloshing eigenvalues λj and the ODE eigenvalues Λj satisfy

λjL = π

(
j + Jq −

1

2
− q

2

)
+O

(
e−Cj

)
= ΛjL+O(e−Cj), (4.8)

Remark 4.10. Under the same assumptions, asymptotics (4.8) holds for the Steklov-Dirichlet eigenvalues λDj
and the eigenvalues ΛDj of the ODE with Dirichlet boundary conditons (4.4) with− q

2 being replaced by + q
2 .

Note that the shift Jq in the Dirichlet case (which a priori could be di�erent) is the same as in the Neumann
case, as immediately follows from Proposition 4.2. J

4.4 Proof of Theorem 1.10 for triangular domains

We are now in a position to complete the proof of Theorem 1.10. Given Proposition 4.9, it remains to show
that the shift Jq = 0 for all q ∈ N. We prove this by induction. For q = 1, by computing the eigenvalues of
the standard (second-order) Sturm-Liouville problem, we observe thatJ1 = 0. In order to make the induction
step we use the domain monotonicity properties of Steklov-Neumann and Steklov-Dirichlet eigenfunctions,
namely:

Proposition 4.11. [BKPS10, section 3] Suppose Ω1 and Ω2 are two domains with the same sloshing surface S,
with Ω1 ⊆ Ω2. Then for all k = 1, 2, . . . , we have λk(Ω1) ≤ λk(Ω2) and λDk (Ω1) ≥ λDk (Ω2).

Let Ωq be an isosceles triangle with angles π/2q at the base. We have Ωq+1 ⊂ Ωq for all k ≥ 1. Assume
now Jq+1 > Jq = 0 for some q > 0. Then it immediately follows from (4.8) that λj(Ωq+1) > λj(Ωq)
for large j, which contradicts Proposition 4.11 for Neumann eigenvalues. Assuming instead that Jq+1 < Jq ,
we also get a contradiction, this time with Proposition 4.11 for Dirichlet eigenvalues. Therefore, Jq = 0 for all
k = 1, 2, . . . , and this completes the proof of Theorem 1.10 for triangular domains..

Remark 4.12. A surprising feature of this proof is that domain monotonicity for mixed Steklov eigenvalues
implies new results for the eigenvalues of higher order Sturm-Liouville problems, which a priori are easier to
investigate. J
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4.5 Completeness of quasimodes for arbitrary triangular domains

We now complete the proofs of Theorems 1.1 and 1.7, as well as Propositions 1.3 and 1.8, for triangular domains,
by taking full advantage of the domain monotonicity properties in Proposition 4.11.

Let Ωs, s ∈ [0, 1], be a continuous family of sloshing domains (not necessarily triangles) sharing a common
sloshing surfaceS withL = 1. Assume that each Ωs is straight in a neighbourhood of the vertices, with angles
α(s) and β(s). Moreover, assume that Ωs is a monotone family, i.e. that s < t⇒ Ωs ⊆ Ωt, and assume that
α(s) and β(s) are both less than π/2 for all 0 ≤ s < 1 (possibly equaling π/2 for s = 1).

For the moment we specialise to the Neumann setting; denote the associated quasi-frequencies by σj(s),
and observe by the formula (2.7) that they are uniformly equicontinuous in s. By Lemma 2.6, for any s and
any j, we know that there exist integers k(j, s) such that for j su�ciently large,

|σj(s)− λk(j,s)(s)| = o(1). (4.9)

By the work of Davis [Dav65], we have a similar bound if α(s) = β(s) = π/2.
The completeness property we need to show translates to the statement that k(j, s) = j for all su�ciently

large j, for then the indices match and we have decaying bounds on |σj − λj |, rather than just |σj − λk| for
some unknown k.

The key lemma is the following.

Lemma 4.13. Suppose that Ωs, s ∈ [0, 1], is a family of sloshing domains as above. Consider the Neumann case.
Then

1. If s < s′ and k(j, s′) ≥ j for all sufficiently large j, then there exists N > 0 so that for all j ≥ N ,
k(j, s) ≥ j.

2. If s < s′ and k(j, s) ≤ j for all sufficiently large j, then there exists N > 0 so that for all j ≥ N ,
k(j, s′) ≤ j.

3. If both k(j, 0) = j and k(j, 1) = j for all sufficiently large j, then for each s ∈ [0, 1], there existsN > 0
so that for all j ≥ N , k(j, s) = j.

In the Dirichlet case, the same result holds if we flip the inequalities in the conclusion of the first two statements.

Remark 4.14. Of course, k(j, s) may not be well-de�ned for small j, as there may in some cases be more than
one value that works, but if the hypotheses are satis�ed for some choices of k, then the conclusions must be
satis�ed for all choices of k. J

Proof of Lemma 4.13. The third statement is an immediate consequence of the �rst two (applied with s′ = 1
and s = 0 respectively), so we need only to prove the �rst two. Since the second one is practically identical to
the �rst one, we only prove the �rst one here.

First consider the case when s and s′ are such that |σj(s) − σj(s
′)| (which is independent of j) is less

than π, speci�cally less than π − ε for some ε > 0. Then for su�ciently large j, applying Lemma 2.6 as in the
discussion above, we can arrange both

|λk(j,s)(s)− λk(j,s′)(s
′)| < π − ε/2 and λk(j−1,s′)(s

′) < λk(j,s′)(s
′)− (π − ε/2).

As a consequence,
λk(j−1,s′)(s

′) < λk(j,s)(s).

But by domain monotonicity applied to λk(j−1,s′), this implies that

λk(j−1,s′)(s) < λk(j,s)(s),

and therefore that k(j, s) > k(j − 1, s′). Since k(j − 1, s′) ≥ j − 1 for su�ciently large j by assumption,
we must have k(j, s) > j − 1 and hence k(j, s) ≥ j, since it is an integer. This is what we wanted.

In the case where s and s′ are not such that |σj(s)−σj(s′)| < π, simply do the proof in steps: �rst extend
to some s1 < swith |σj(s1)−σj(s′)| < π, then to some s2 < s1, et cetera. Since in all cases |σj(s)−σj(s′)|
is �nite, this process can be set up to terminate in �nitely many steps, completing the proof.
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Now we can complete the proofs of Theorems 1.1 and 1.7 for triangular domains. It is possible to embed
the triangle Ω as Ω1/2 in a continuous, nested family of sloshing domains {Ωs}s∈[0,1], where Ω0 is an isosceles
triangle with angles π/2q for some large even q, and where Ω1 is a rectangle. For Ω1, explicit calculations (see
[BKPS10]) show that

λkL = π

(
k − 1

2

)
− π2

8

(
2

π
+

2

π

)
+ o(1) = π(k − 1) + o(1),

and therefore thatk(j, 1) = j for all su�ciently large j, which is our completeness property. However, we have
already proved completeness for Ω0, in Theorem 1.10, so k(j, 0) = j for all su�ciently large j. And we know
we can construct quasimodes on Ω1/2, since it is a triangle, and therefore by Lemma 2.6 there exist integers
k(j, 1/2) such that ∣∣σj − λk(j,1/2)

∣∣ = O

(
k

1− π/2
max{α,β}

)
.

By statement (3) of Lemma 4.13, we have k(j, 1/2) = j for all su�ciently large j. Thus for all su�ciently large
k,

λkL = σkL+O

(
k

1− π/2
max{α,β}

)
= π

(
k − 1

2

)
− π2

8

(
1

α
+

1

β

)
+O

(
k

1− π/2
max{α,β}

)
,

which proves Theorem 1.1. The proof of Theorem 1.7 is essentially identical, with domain monotonicity going
in the opposite direction, and the estimate on the error term being modi�ed according to Theorem 2.1.

The proofs of Propositions 1.3 and 1.8 for triangular domains also follow in the same way, by using the
model solutions (2.6) in the Sπ/2 in order to construct the quasimodes.

4.6 Completeness of quasi-frequencies: abstract setting

Here, we would like to formulate the results of the previous subsection on the abstract level. We will not need
these results in the present paper, but we will need them in the subsequent paper [LPPS19]. The proofs of these
results are very similar to the proofs above, and we will omit them.

Let Σ := {σj} and Λ := {λj}, j = 1, 2, ... be two non-decreasing sequences of real numbers tending
to in�nity, which are called quasi-frequencies and eigenvalues, respectively. Suppose that the following “quasi-
frequency gap” condition is satis�ed: there exists a constantC > 0 such that

σj+1 − σj > C (4.10)

for su�ciently large j.

De�nition 4.15. We say that Σ is asystem of quasi-frequencies approximating eigenvalues Λ if there exists a
mapping k : N→ N such that:

(i) |σj − λk(j)| → 0;
(ii) k(j1) 6= k(j2) for su�ciently large and distinct j1, j2.

/

Under assumptions (i-ii) and (4.10) we obviously have that for j large enough, {k(j)} is a strictly increasing
sequence of natural numbers. Therefore, if we denotem(j) := k(j)− j, then the sequence {m(j)} is non-
decreasing for j large enough, and, therefore, it is converging (possibly, to +∞). Put

M = M(Σ,Λ) := lim
j→∞

m(j).

De�nition 4.16. We say that the system of quasi-frequencies Σ is asymptotically complete in Λ ifM 6= +∞.
/

Now we assume that we have one-parameter families Σ(s) = {σj(s)} and Λ(s) = {λj(s)}, s ∈ [0, 1]
of quasi-frequencies and eigenvalues.
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Lemma 4.17. Suppose the family Σ(s) is equicontinuous and the family Λ(s) is monotone increasing (i.e. each
λj(s) is increasing). Then for sufficiently large j (uniformly in s) the functionm(j) = m(j, s) is non-increasing
in s.

Proof. The proof is the same as the proof of statement (i) of Lemma 4.13.

Under the conditions of the previous Lemma, the function M = M(s) is non-increasing. Therefore,
the following alternative formulation of statement (iii) of Lemma 4.13 can be obtained as an immediate conse-
quence:

Corollary 4.18. If Σ(0) is asymptotically complete in Λ(0), then Σ(1) is asymptotically complete in Λ(1).

Remark 4.19. With some extra work the “quasi-frequency” gap” assumption (4.10) could be weakened, and it
is su�cient to require that the number of quasi-frequencies σj inside any interval of length one is bounded.
More details on that will be provided in [LPPS19].

J

4.7 Proof of Proposition 1.13

Using a similar strategy, let us now prove the asymptotics (1.17) for the mixed Steklov-Dirichlet-Neumann prob-
lem on triangles.

First, assume thatα = π/2. Consider a sloshing problem on the doubled isosceles triangle4B′BZ , where
B′ is symmetric toB with respect toA. Using the odd-even decomposition of eigenfunctions with respect to
symmetry across AZ , we see that the spectrum of the sloshing problem on4B′BZ is the union (counting
multiplicity) of the eigenvalues of the sloshing problem and of the mixed Steklov-Dirichlet-Neumann problem
on4ABZ . Given that we have already computed the asymptotics of the two former problems, it is easy to
check that the spectral asymptotics of the latter problem satis�es (1.17). A similar re�ection argument works in
the case when β = π/2 and α is arbitrary. This proves the proposition when either of the angles is equal to
π/2.

Let now 0 < α, β ≤ π/2 be arbitrary. Choose two additional points X and Y such that X lies on the
continuation of the segmentBZ , Y lies on the continuation of the segmentAZ , and ∠XAB = ∠Y BA =
π/2. Consider a family of triangles Ωs = ABPs, 0 ≤ s ≤ 1, such that P0 = X , P1 = Y , and as s changes,
the point Ps continuously moves along the union of segments [X,Z] ∪ [Z, Y ]. In particular, X = P0,
Y = P1, and Z = Ps0 for some 0 < s0 < 1. We impose the Dirichlet condition on [A,Ps] and the
Neumann condition on [B,Ps]. The Steklov condition on (A,B) does not change.

Figure 4: Construction of auxiliary triangles in the case α = π/2 (left) and α < π/2 (right)

For each of the triangles Ωs one can construct a system of quasimodes similarly to the sloshing or Steklov-
Dirichlet case; the only di�erence is that in this case we use the Dirichlet Peters solutions in one angle and the
Neumann Peters solutions in the other.
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It remains to show that this system is complete. In order to do that we use the same approach as in Lemma
4.13. A simple modi�cation of the argument for the domain monotonicity of the sloshing and Steklov-Dirichlet
eigenvalues (see [BKPS10]) yields that for all k ≥ 1, λk(Ωs) ≤ λk(Ωs′) if s ≤ s′. Indeed, if Ps ∈ [X,Z]
we can continue any trial function on a smaller triangle by zero across APs to get a trial function on a larger
triangle, which means that the eigenvalues increase with s. Similarly, if Ps ∈ [Z, Y ], we can always restrict a
trial function on a larger triangle to a smaller triangle, and this procedure decreases the Dirichlet energy without
changing the denominator in the Rayleigh quotient. Hence, the eigenvalues increase with s in this case as well.

Since we have already proved (1.17) for right triangles, in the notation of Lemma 4.13 it means thatk(j, 0) =
k(j, 1) = j for all su�ciently large j. Following the same logic as in this lemma we get that k(j, s) = s for
any s, in particular, for s = s0. This completes the proof of the proposition.

5 Domains with curvilinear boundary
5.1 Domains which are straight near the surface

Suppose Ω is a sloshing domain whose sides are straight in a neighbourhood ofA andB. Let T be the sloshing
triangle with the same angles α and β as Ω; from the results in the previous Sections we understand sloshing
eigenvalues and eigenfunctions onT very well. As before, denote the sloshing eigenfunctions onT by{uj(z)},
with eigenvalues λj . Further, denote the original uncorrected quasimodes on T , as in (2.8), by {v′σj (z)}, with
quasi-eigenvalues σj . Our strategy will be to use the quasimodes v′σj on T , cut o� appropriately and modi�ed
slightly, as quasimodes for sloshing on Ω.

Indeed, let χ(z) be a cut-o� function on Ω with the following properties, which are easy to arrange:

• χ(z) is equal to 1 in a neighbourhood of S;

• χ(z) is supported on Ω ∩ T and in particular is zero wherever the boundaries of Ω are not straight;

• At every point z ∈ ∂Ω,∇χ(z) is orthogonal to the normal n(z) to ∂Ω.

Now de�ne a set of functions on Ω, by

ṽ′σj (z) := χ(z)v′σj (z). (5.1)

The functions ṽ′σj (z) do not quite satisfy Neumann conditions on the boundary, for the same reason the
vσj (z) do not; we will have to correct them. Note, however, that since∇χ(z) · n(z) = 0,

∂

∂n
ṽ′σj (z) = χ(z)

∂

∂n
ṽ′σj (z), z ∈ W,

and hence, analogously to (2.9),

‖ ∂
∂n
ṽ′σj‖C0(W ) ≤ Cσ

−µ
j onW.

We correct these in precisely the same way as before, by adding a function η̃σj which is harmonic and which
has Neumann data bounded everywhere in C0 norm by Cσ−µj . As before, since the Neumann-to-Dirichlet
map is bounded onL2

∗(S), we have

‖ ∂
∂y
η̃σj‖L2(S) + ‖η̃σj‖L2(S) ≤ Cσ

−µ
j .

Then we de�ne corrected quasimodes

ṽσj (z) := ṽ′σj (z)− η̃σj (z),

which now satisfy Neumann boundary conditions.
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We may also compute their Laplacian. Since v′σj (z) are harmonic functions and η̃σj (z) are also harmonic,
we have

∆ṽσj (z) = ∆ṽ′σj (z) = (∆χ(z))v′σj (z) + 2∇χ(z) · ∇v′σj (z). (5.2)

Therefore ∆ṽσj (z) is supported only where∇χ(z) is nonzero. For later use, we need to estimate theL2 norm
of ∆ṽσj (z). It is immediate from the formula (5.2) that for some universal constantC depending on the cuto�
function,

‖∆ṽσj (z)‖L2(Ω) ≤ C‖v′σj (z)‖H1(T ∩ supp(∇χ)).

The discussion before (2.9) shows that theC1 norm of v′σj (z) is bounded byCσ−µj , and therefore obviously

‖v′σj (z)‖H1(T ∩ supp(∇χ)) ≤ Cσ
−µ
j . (5.3)

Thus
‖∆ṽσj (z)‖L2(Ω) ≤ Cσ

−µ
j . (5.4)

We would like to use {ṽσj |S} as our quasimodes. However, since ṽσj are not harmonic functions in the
interior, we do not have D(ṽσj |S) = ( ∂∂y ṽσj )|S . We need to correct ṽ to be harmonic. To do this, we must
solve the mixed boundary value problem

∆ϕ̃σj = −∆ṽσj on Ω;

∂ϕ̃σj
∂n

= 0 onW;

ϕ̃σj = 0 on S,

(5.5)

as then we can use
v̄σj := ṽσj + ϕ̃σj

as our quasimodes. The key estimate we want is given by

Lemma 5.1. If ϕ̃σj solves (5.5), then for some constantC independent of σj ,∥∥∥∥ ∂∂nϕ̃σj
∥∥∥∥
L2(S)

+ ‖ϕ̃σj‖L2(S) ≤ Cσ−µ.

Proof. The theory of mixed boundary value problems on domains with corners is required here; originally due
to Kondratiev [Kon67], it has been developed nicely by Grisvard [Gri85] in the setting of exact polygons. We
will therefore transfer our problem to an exact polygon, namely T , via a conformal map. Let Φ : Ω → T
be the conformal map which preserves the vertices and takes an arbitrary point Z ′ onW to the vertex Z of
the triangle4ABZ . Conformal maps preserve Dirichlet and Neumann boundary conditions, so the problem
(5.5) becomes, with ϕ = Φ∗(ϕ̃),

∆ϕσj = −|Φ′(z)|2∆ṽσj (z) on T ;

∂ϕσj
∂n

= 0 onWT ;

ϕσj = 0 on ST .

(5.6)

By [Gri85, Lemma 4.4.3.1], there is indeed a unique solution ϕσj (z) ∈ H1(T ) to (5.6). Moreover, in this
setting, the solution is actually inH2(T ). Indeed, since all of the angles ofT are less than π/2 and in particular
we do not have any corners of angle exactly π/2, [Gri85, Theorem 4.4.3.13] applies. It tells us that ϕσj (z)
equals an element of H2(T ) plus a linear combination of explicit separated-variables solutions at the corners,
which Grisvard denotesSj,m. However, consulting the de�nition ofSj,m in of [Gri85, equation (4.4.3.7)], it is
immediate that eachSj,m is itself inH2(T ) (see also [Gri85, Lemma 4.4.3.5]) and thereforeϕσj (z) ∈ H2(T ).
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Now that (5.6) has a solutionϕσj (z) ∈ H2(T ), we may apply the a priori estimate [Gri85, (4.1.2)]. It tells
us that

‖ϕσj‖H2(T ) ≤ C
(
‖∆ϕσj‖L2(T ) + ‖ϕσj‖L2(T )

)
≤ C‖∆ϕσj‖L2(T ),

where the second inequality follows from the fact that the �rst eigenvalue of of the Laplacian onT with Dirich-
let conditions on ST and Neumann conditions onWT is positive. But since ϕσj (z) solves (5.6),

‖ϕσj‖H2(T ) ≤ C‖ |Φ′(z)|∆ṽσj (z)‖L2(T ).

Now observe that |Φ′(z)| is certainly smooth and bounded on the support of ∆ṽσj (z), since that support is
away from the vertices. Therefore, by (5.4),

‖ϕσj (z)‖H2(T ) ≤ Cσ−µ. (5.7)

This can now be used to complete the proof. By (5.7), using the de�nition of Sobolev norms and the trace
restriction Theorem,∥∥∥∥ ∂∂yϕσj

∥∥∥∥
L2(S)

≤
∥∥∥∥ ∂∂yϕσj

∥∥∥∥
H1/2(S)

≤ C
∥∥∥∥ ∂∂yϕσj

∥∥∥∥
H1(T )

≤ C‖ϕσj‖H2(T ) ≤ Cσ−µ.

All that remains to prove Lemma 5.1 is to undo the conformal map. By [PePu14, Lemma 4.3] (technically
the local version, but the proof is local), since Φ preserves the angles atA andB, Φ isC1,α for anyα, and hence
C∞, in a neighbourhood of S, and Φ′ is nonzero. Note that Φ may not be C∞ near Z ′ in particular, but we
do not care about that region. Since Φ is smooth in a neighbourhood ofS and Φ′ is nonzero, both the measure
on S and the magnitude of the normal derivative ∂

∂y change only up to a constant bounded above and below,
and hence, as desired, ∥∥∥∥ ∂∂nϕ̃σj

∥∥∥∥
L2(S)

≤ Cσ−µj .

An identical argument without taking ∂
∂y shows that

‖ϕ̃σj‖L2(S) ≤ Cσ
−µ
j ;

in fact, the bound is actually on theH3/2(S) norm. Hence the sum is bounded byCσ−µj as well, which proves
Lemma 5.1.

Now we claim our putative quasimodes v̄σj on Ω satisfy a quasimode estimate:

Lemma 5.2. There is a constantC such that∥∥DΩ

(
v̄σj
∣∣
S

)
− σj v̄σj

∥∥
L2(S)

≤ Cσ1−µ
j . (5.8)

Indeed, v̄σj are harmonic and satisfy Neumann conditions onW , so we know that

DΩ

(
v̄σj
∣∣
S

)
=

∂

∂y
v̄σj

∣∣∣∣
S

.

As a result,

DΩ

(
v̄σj
∣∣
S

)
− σj v̄σj =

∂

∂y
ṽσj

∣∣∣∣
S

− σj ṽσj |S +
∂

∂y
ϕ̃σj

∣∣∣∣
S

− σjϕ̃σj |S ,

which by de�nition of ṽjσj is

∂

∂y
ṽ′σj

∣∣∣∣
S

− σj ṽ′σj |S −
∂

∂y
η̃σj

∣∣∣∣
S

+ σj η̃σj |S +
∂

∂y
ϕ̃σj

∣∣∣∣
S

− σjϕ̃σj |S .
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The last two terms have L2 norms which are bounded by Cσ1−µ, by Lemma 5.1. The third and fourth terms
satisfy the same bound as a consequence of (5.3). For the �rst two terms, recall that ṽ′σj = χv′σj and χ = 1

near S, so we need to estimate theL2 norm of

∂

∂y
v′σj

∣∣∣∣
S

− σjv′σj |S .

However, v′σj are the explicit uncorrected quasimodes from (2.8). By the proof of Lemma (2.3), these two terms
both haveL2 norms bounded byCσ1−µ

j , completing the proof of (5.8).
Now Theorem 4.1 applies immediately to tell us that near each su�ciently large quasi-frequency σj , there

exists at least one sloshing eigenvalue λk(Ω). The problem, again, is to prove completeness.

5.2 Completeness

We use the same strategy that we did for our original quasimode problem. Since the strategy is the same, we
omit some details.

First we prove completeness when α = β = π/2q. To do this, we instead use Hanson-Lewy quasimodes.
All the analysis we have done in the previous subsection goes through with Ce−σ/C replacing Cσ−µ every-
where, and we get (5.8) with a right-hand side of Ce−j/C . So Theorem 4.1 applies. It shows in particular that
there are (linear combinations of) sloshing eigenfunctions on Ω, which we call wj,Ω, with eigenvalues expo-
nentially close to σj and with the property that

‖wj,Ω − v̄σj‖L2 ≤ Ce−j/C as j →∞.

However ‖v̄σj − ṽσj‖L2(S), ‖ṽσj − v′σj‖L2(S), ‖v′σj − vσj‖L2(S), and ‖vσj − uj‖L2(S) are all bounded by
Ce−j/C themselves in this case, so we have in all that

‖wj,Ω − uj‖L2 ≤ Ce−j/C as j →∞.

We know that {uj} are complete. By the same argument as in Lemma 4.8, the sequence {wj,Ω}must at
some point contain only pure eigenfunctions, and for suitably largeN the sequences{wj,Ω}j≥N and{uj}j≥N
are missing the same number of eigenfunctions, which shows that

λj,Ω = λj,T +O(e−j/C).

This proves completeness, along with full exponentially accurate eigenvalue asymptotics, in theα = β = π/2q
case.

Finally, we use domain monotonicity to deal with generalα and β; the argument runs exactly as in subsec-
tion 4.5. The result of Davis [Dav65] shows completeness in the π/2 case, and we can sandwich our domain
Ω as Ω1/2 in a continuous, nested family of sloshing domains {Ωs} that satisfy the hypotheses of Lemma 4.13.
Note that Lemma 4.13 is stated in such a way as to apply here as well.

5.3 General curvilinear domains

We now generalise further, to domains with curvilinear boundary. The authors are grateful to Lev Buhovski
for suggesting the approach in this subsection [Buh17].

Suppose that Ω is a sloshing domain which satis�es the following conditions:

(C1) Ω is simply connected;

(C2) The wallsW are Lipschitz;

(C3) For any ε > 0, there exist sloshing domains Ω− and Ω+ with piecewise smooth boundary, with Ω− ⊂
Ω ⊂ Ω+, and with the additional property that Ω− and Ω+ are straight lines in a δ−neighbourhood of
A andB with vertex angles in [α− ε,min{α+ ε, π/2}].
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The point of this third condition is that we have already proved sloshing eigenvalue asymptotics for Ω− and
Ω+, which we will need in the subsequent domain monotonicity argument. This third condition is satis�ed, for
example, if the boundaryS isC1 in any small neighbourhood of the verticesA andB and the angles are strictly
less than π/2. It is also satis�ed under the “local John’s condition" (see Propositions 1.3 and 1.8) if one or both
angles equals π/2, and makes clear why that condition is necessary: we have not proved sloshing asymptotics
in the case where one or both angles are greater than π/2.

Under these conditions, we claim the asymptotics (1.4), (1.8), as well as (1.6) and (1.10) for domains satisfying
the additional “local John’s condition’, and thereby complete the proofs of Theorems 1.1 and 1.7 as well as
Propositions 1.3 and 1.8.

Proof. AssumeL = 1 for simplicity. Pick any γ > 0. By continuity, there exists a su�ciently small ε such that
for any ε′ ∈ [−ε, ε], ∣∣∣∣ 1

α+ ε′
− 1

α

∣∣∣∣+

∣∣∣∣ 1

β + ε′
− 1

β

∣∣∣∣ < 8γ

2π2
.

By condition (C3) above, there exist Ω− ⊂ Ω and Ω+ ⊃ Ω as described. By the de�nition of ε, and the
explicit form of σj ,

|σj(Ω+)− σj(Ω)| < γ/2 and |σj(Ω−)− σj(Ω)| < γ/2 for all j.

But by our previous work, we have eigenvalue asymptotics for Ω+ and Ω−. In particular, there existsN so that
for all j ≥ N ,

|λj(Ω+)− σj(Ω+)| < γ/2 and |λj(Ω−)− σj(Ω−)| < γ/2.

And by domain monotonicity (for Neumann — inequalities reverse for the Dirichlet case),

λj(Ω−) ≤ λj(Ω) ≤ λj(Ω+) for all j.

Putting these ingredients together, for j ≥ N ,

λj(Ω) ≤ λj(Ω+) < σj(Ω+) +
γ

2
≤ σj(Ω) + γ.

Similarly,
λj(Ω) ≥ λj(Ω−) > σj(Ω−)− γ

2
≥ σj(Ω)− γ.

We conclude that for j ≥ N , |λj(Ω)− σj(Ω)| < γ. Since γ > 0 was arbitrary, we have the asymptotics with
o(1) error that we want.

A Proof of Theorem 2.1
In this section, we prove Theorem 2.1. The proof follows [Pet50] for the most part, doing the extra work needed
to prove the careful remainder estimates. There is a key di�erence of notation: throughout, we use µα = µ =
π/(2α), where Peters uses µ = π/α.

A.1 Robin-Neumann problem

Following Peters, we complexify our problem by setting z = ρeiθ and look for an analytic function f(z) in
Sα with φ = Re(f). The boundary conditions must be rewritten in terms of f . Using the Cauchy-Riemann
equations we have φy = Re(if ′(z)) and φx = Re(f ′(z)). After some algebraic transformations, which we
skip for brevity, the problem (2.1) becomes

f(z) is analytic in Sα,

Re(if ′(z)) = Re(f(z)) for z ∈ Sα ∩ {θ = 0},
Re(ie−iαf ′(z)) = 0 for z ∈ Sα ∩ {θ = −α}.

(A.1)
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A.2 Peters solution

We now write down Peters solution, in a form due to Alker [Alk77]. Note that Alker’s y-axis points in the
opposite direction from Peters and so we have modi�ed the expression in [Alk77] accordingly. First de�ne the
auxiliary function

Iα(ζ) :=
1

π

∫ ζ∞

0
log
(
1 + v−π/α

) ζ

v2 + ζ2
dv. (A.2)

Note that Iα(ζ) is de�ned for arg(ζ) ∈ (−α, α), which includes the real axis. As in the appendix of [Pet50],
Iα(ζ) has a meromorphic continuation, with �nitely many branch points, to the entire complex plane, which
we also call Iα(ζ). Each branch point is logarithmic; there is one at the origin, and others on the unit circle in
the negative real half-plane. We then let

gα(ζ) = exp

(
−Iα(ζe−iα) + log

(
ζ + i

ζ

))
. (A.3)

The function gα(ζ) is originally de�ned for arg(ζ) ∈ (0, 2α), but has a meromorphic continuation to the
entire complex plane minus a single branch cut from the origin, with singularities along the portion of the unit
circle outside the sector−π/2−α ≤ arg(ζ) ≤ π/2+α. For Re(ζ) > 0 we have the representation formula
[Pet50, (4.8)]

gα(ζ) = exp

(
− 1

π

∫ ∞
0

log

(
1− t−2µ

1− t−2

)
ζ

t2 + ζ2
dt

)
. (A.4)

Finally, let P be a keyhole path, consisting of the union of a nearly full circle of radius 2, traversed counter-
clockwise, and two linear paths, one on each side of the angle θ = π + α/2. Then the Peters solution is given
by

f(z) =
µ1/2

iπ

∫
P

gα(ζ)

ζ + i
ezζ dζ. (A.5)

A.3 Veri�cation of Peters solution

Let us verify that Peters solution, which is obviously analytic, is actually a solution by checking the boundary
conditions in (A.1), beginning with the one along the real axis. This follows [Pet50, section 6].

By [Pet50, p. 335], gα(ζ) → 1 as ζ → ∞ (see Proposition A.6 for a rigorous proof), and since ezζ is very
small as ζ →∞ along P , di�erentiation under the integral sign in (A.5) is justi�ed. We get

if ′(z)− f(z) =
µ1/2

iπ

∫
P

gα(ζ)(iζ − 1)

ζ + i
ezζ dζ =

µ1/2

π

∫
P
gα(ζ)ezζ dζ. (A.6)

We claim this integral is pure imaginary whenever z is on the positive real axis. Indeed, we may shift the branch
cut of gα(ζ) so that it lies along the negative real axis, and shiftP so that it is symmetric with respect to the real
axis. Observe that gα(ζ) is real whenever ζ is real and positive. By re�ection, this implies that gα(ζ) = gα(ζ)
for all ζ . The analogous statement is true for ezζ and hence for gα(ζ)ezζ , and it follows immediately from
symmetry of P that (A.6) is purely imaginary. Thus Re(if ′(z)− f(z)) = 0, as desired.

For the other boundary condition, we compute

ie−iαf ′(z) =
µ1/2

π

∫
P

gα(ζ)e−iαζ

ζ + i
ezζ dζ, (A.7)

and claim that this is pure imaginary when arg(z) = −α - i.e. when z = ρe−iα for some ρ > 0. Shifting the
branch cut and contour of integration, and lettingw = ζe−iα, the integral (A.7) becomes

µ1/2

π

∫
P1

gα(weiα)weiα

weiα + i
eρw dw =

µ1/2

π

∫
P1

exp(−Iα(w))eρw dw, (A.8)

where we have chosen P1 so that it is symmetric with respect to the real axis and the branch cut is along the
negative real axis. The boundary condition follows immediately as above, since from (A.2) Iα(w) is positive
forw real and positive.
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A.4 Asymptotics of Peters solution as z →∞
Now we study the asymptotics as z → ∞ of (A.5), following [Pet50, section 7] but with more rigour. Let, as
before,

χ = χα,N =
π

4
(1− µ) =

π

4

(
1− π

2α

)
.

Theorem A.1. There exist a functionE : (0, π/2) → R and a complex-valued functionRα(z) depending on
α such that

f(z) = eE(α)e−i(z−χ) +Rα(z), (A.9)

where for any fixed α ∈ (0, π/2) there exists a constantC such that for all z ∈ Sα,

|Rα(z)| ≤ Cz−µ, |∇zRα(z)| ≤ Cz−µ−1. (A.10)

Remark A.2. A slightly stronger version of this theorem (identifying E(α)) is claimed in [Alk77]. However,
the proof is not given and the extraction does not seem obvious, although it is numerically clear. So we prove
this version, which is all we need since we may scale by an overall constant anyway. J

Remark A.3. For the solution φ = Re(f(z)) to our original problem, we see that

φ(x, 0) = eE(α) cos(z − χ) +Rα(x+ 0i), (A.11)

which is the radiation condition we wanted in the �rst place. J

Proof. The portion of the integral (A.5) along the in�nite line segments decays exponentially in |z| (note that
arg(zζ) is betweenπ−α/2 andπ+α/2). So we may deform the contourP to a contourP ′ consisting of the
union of a circle of radius 1/2 and line segments along each side of the branch cut. This deformation passes
through singularities of gα(ζ)/(ζ + i), one at ζ = −i and others at ζ = λ1, . . . , λm along the unit circle in
the negative real half-plane, with arg(λj) /∈ (−π/2− α, π/2 + α). We see that

f(z) = 2µ1/2gα(−i)e−iz +
µ1/2

iπ

∫
P ′

gα(ζ)

ζ + i
ezζ dζ

+
m∑
j=1

ezλm2µ1/2 Res
ζ=λm

(gα(ζ)/(ζ + i)).

(A.12)

Let

R̃α(z) :=
µ1/2

iπ

∫
P ′

gα(ζ)

ζ + i
ezζ dζ;

Rα(z) := R̃α(z) +
m∑
j=1

ezλm2µ1/2 Res
ζ=λm

(gα(ζ)/(ζ + i)).

(A.13)

To prove Theorem A.1 we must �rst prove the error estimates forRα(z) and then compute gα(−i).

A.4.1 Error estimates for Rα(z)

ConsiderRα(z). Since arg(z) ∈ (−α, 0), the �nite sum of exponentials and its gradient decay exponentially
as |z| → ∞. The decay is actually uniform inα forα in any interval (ε, π− ε) with ε > 0 �xed, as the number
of residues is bounded in such an interval as well. Only R̃α(z) remains. Using (A.2), we may write

R̃α(z) =
µ1/2

iπ

∫
P ′

ezζ exp(−Iα(ζe−iα))
dζ

ζ
. (A.14)

The only singularity inside P ′ is along the branch cut, including the branch point 0. We see that we must
understand the asymptotics of Iα(ζ) as ζ → 0. Peters identi�es the leading order term of Iα(ζ) at ζ = 0 as
−µ log ζ , but we need to understand the remainder and prove bounds on it and its gradient. Throughout, we
choose to suppress the α subscripts. The key is the following lemma:
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Lemma A.4. For ζ in a small neighbourhood of zero, with argument up to the branch cut on either side, we have

I(ζ) = −µ log ζ + p(ζ) +R(ζ),

where p(ζ) is a polynomial in ζ with p(0) = 0, and where there is a constantC such that

|R(ζ)| ≤ C|ζ|−2µ.

Proof. The proof proceeds in two steps. First we prove this for all ζ with argument in a compact subset of
(−π/2, π/2). Then we use a functional relation satis�ed by I(ζ) to extend to ζ with arguments up to and
into the negative half-plane.

For the �rst step, we use the representation for I(ζ) on p. 353 of [Pet50]. From the last paragraph of this
page, we have

I(ζ) = −µ log ζ +

∫ 1/2

0
ln(1 + v2µ)

ζ

v2 + ζ2
dv +

∫ ∞
1/2

ln(1 + v2µ)
ζ

v2 + ζ2
dv.

The last term is convergent, as ln(1 + v2µ) ∼ 2µ ln v as v → ∞, and di�erentiation in ζ under the integral
sign is easily justi�ed. So the last term is holomorphic, and by direct substitution it is zero at ζ = 0. For the
second term, we use a Taylor expansion for ln(1 + v2µ), which is convergent when v < 1, and obtain∫ 1/2

0

∞∑
n=1

(−1)n+1 v
2µn

n

ζ

v2 + ζ2
dv.

Change variables in the integral tow = ζv; we end up with∫ 1/2ζ

0

∞∑
n=1

(−1)n+1 1

n
ζ2µnw2µn 1

w2 + 1
dw. (A.15)

Now further break up the integral (A.15), atw = 2. The integral from 0 to 2 is bounded in absolute value
by ∫ 2

0

∞∑
n=1

|ζ|2µn 22µn

n
dw = 2

∞∑
n=1

|ζ|2µn 22µn

n
≤ 2

∞∑
n=1

|2ζ|2µn =
|4ζ|2µ

1− |2ζ|2µ
,

which is bounded by C|ζ|2µ for some universal constant C and su�ciently small |ζ|. For the remainder of
the integral, we use the Taylor expansion of (w2 + 1)−1 about in�nity, which is valid forw > 1: it isw−2 −
w−4 + w−6 + . . . , and we end up with∫ 1/2ζ

2

∞∑
n=1

(−1)n+1 1

n
ζ2µnw2µn

( ∞∑
m=1

(−1)m+1w−2m

)
dw.

Now observe that |ζw| ≤ 1
2 on this interval andw > 2, so both the sums inn andm are absolutely convergent

and in fact the double sum is absolutely convergent. This justi�es all rearrangements as well as term-by-term
integration. Our last remaining piece thus becomes

∞∑
n=1

∞∑
m=1

(−1)n+m

n
ζ2µn

∫ 1/2ζ

2
w2µn−2m dw,

which equals
∞∑
n=1

∞∑
m=1

(−1)n+1+m

n
ζ2µn

(
w2µn−2m+1

2µn− 2m+ 1

)∣∣∣∣1/2ζ
2

=
∞∑
n=1

∞∑
m=1

(−1)n+1+m

n(2µn− 2m+ 1)
ζ2µn

(
ζ−2µn+2m−12−2µn+2m−1 − 22µn−2m+1

)
=

∞∑
n=1

∞∑
m=1

(−1)n+1+m

n(2µn− 2m+ 1)

(
ζ2m−12−2µn+2m−1 − ζ2µn22µn−2m+1

)
.
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The sum now has two terms. The second term, with a ζ2µn, can be summed �rst in m (obviously) and then
in n, and the whole thing is bounded by a multiple of the n = 1 term, namely C|ζ|2µ. The �rst term can be
summed �rst inn, at which point it becomes an expression of the form

∑∞
m=1 amζ

2m−1. Since the am do not
grow too fast asm→∞— in fact they grow as 22m — this expression represents a holomorphic function in
a disk of su�ciently small radius about the origin. Moreover this holomorphic function is zero at zero.

We have now shown that I(ζ) is the sum of −µ log ζ , a holomorphic function zero at the origin, and a
term bounded in absolute value by C|ζ|2µ. Taking the Taylor series of the holomorphic function, separating
out the �nitely many terms which are notO(|ζ|2µ), and calling them p(ζ) completes the proof.

It remains to extend the argument outside the positive real half-plane. Let h(ζ) = I(ζ) + µ log ζ . Then
we know that h(ζ) is holomorphic in a disk with the exception of a branch cut, and it continues across the
branch cut because I(ζ) does. We also know, from the �rst line on p. 353 of [Pet50], that for all ζ away from
the branch cut,

I(ζe2iα) = I(ζ)
ζeiα + i

ζeiα − i
.

Applying this gives an equivalent relation for h(ζ), noting that e2iαµ = eiπ = −1:

h(ζe2iα) = −h(ζ)
ζeiα + i

ζeiα − i
.

The functionH(ζ) := −(ζeiα + i)/(ζeiα − i) is holomorphic in the disk, and we have for all nonzero ζ:

h(ζe2iα) = h(ζ)H(ζ).

Recall that in the positive real half-plane (in a sector bounded away from the real axis),

h(ζ) = p(ζ) +R(ζ).

Plugging in the relation for h(ζ), we see that for−π/2 + ε < arg ζ < π/2− ε,

h(ζe2iα) = p(ζ)H(ζ) +R(ζ)H(ζ).

However, we are assuming that α < π/2. Therefore, there is a range of ζ , namely −π/2 + ε < arg ζ <
π/2− ε− 2α, where ζe2iα is in the positive half-plane and thus we have a second representation:

h(ζe2iα) = p(ζe2iα) +R(ζe2iα).

Setting the previous two equations equal, we see that for this small range of ζ:

p(ζe2iα)− p(ζ)H(ζ) = R(ζ)H(ζ)−R(ζe2iα).

The left-hand side is holomorphic in a disk. The right-hand side is O(|ζ|2µ). We conclude that the left-hand
side must have a zero of order at least 2µ at ζ = 0. Therefore, there is aC such that for all ζ in the disk,

|p(ζe2iα)− p(ζ)H(ζ)| ≤ C|ζ|2µ.

Therefore, for−π/2 + ε < arg ζ < π/2− ε,

|p(ζe2iα)− h(ζe2iα) +R(ζ)H(ζ)| ≤ C|ζ|2µ,

and therefore
h(ζe2iα) = p(ζe2iα) +O(|ζ|2µ).

This proves the lemma for ζ with arguments now up to π/2 − ε + 2α. Continuing this procedure, one step
of size 2α at a time, gives the result for all ζ with arguments in a neighbourhood of [−π, π], completing the
proof.
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Now we return to estimating the remainder. Using the Lemma and recalling h(ζ) = I(ζ) + µ log ζ , we
have

R̃α(z) = −µ
1/2

π

∫
P ′

ezζζµe−h(ζ)dζ

ζ
. (A.16)

Change variables to let w = zζ ; for |z| > 1, the contour deforms smoothly back to arg(z)P ′ (which is P ′
rotated by arg(z)), as there are no singularities remaining inside P ′. We get

R̃α(z) = −µ
1/2z−µ

π

∫
arg(z)P ′

ewwµ−1e−h(w/z) dw. (A.17)

The contour can be deformed to two straight lines, one on either side of the branch cut. Since h(·) grows at
most logarithmically along these lines (note that arg(w/z) = ±π+α/2 on arg(z)P ′), the integral is bounded
as z → ∞. In fact, since h(0) = 0, it converges to the corresponding integral with e−h(w/z) replaced by 1.
Thus |R̃α(z)| ≤ Cz−µ as desired.

We must also estimate |∇zR̃α(z)|. However, R̃α(z) is holomorphic, so we just need to consider∂zR̃α(z).
The di�erentiation brings down a factor of ζ , which becomesw/z. The extra power ofw is absorbed, and the
extra power of zmoves outside the integral, yielding decay of the form z−µ−1 instead of z−µ. The same analysis
works for higher order derivatives, and this proves the remainder estimation part of Theorem A.1. It remains
only to evaluate gα(−i).

A.4.2 Evaluation of gα(−i)

We cannot simply use the formula (A.4) to evaluate gα(−i), because that formula is only valid for ζ in the
positive real half-plane. We must instead use the fact that

log gα(ζ) = log

(
ζ + i

ζ

)
− I(ζe−iα), (A.18)

so we are interested in understanding the behaviour of I(ζ) near ζ = −ie−iα.
First we need a good representation for I(ζ) in this region. Considering the last equation on p. 350 of

[Pet50], we see that for ζ with−π/2− 2α < arg(ζ) < π/2 + 2α,

I(ζe−iα) =
1

2πi

(∫
I1

log(1 + (−iu)−2µ)
du

u− ζe−iα
+

∫
M2

log(1 + (iu)−2µ)
du

u− ζe−iα

)
+ log

ζ + i

ζ
.

Here I1 may be chosen to be the incoming path along arg(ζ) = π/2 and M2 the outgoing path along
arg(ζ) = −π/2 − 2α (each can be moved by up to α in either direction before running into a singular-
ity of the integrand, but these are the most convenient choices). We would prefer that I1 and M2 be equal
and opposite paths, but they are not. So we shift the path I1 to the path L0 which is incoming along the ray
arg(ζ) = π/2 − 2α. This is done for other reasons on p. 351 of [Pet50], and we pick up a contribution from
the branch cut of the integrand. Overall we get

I(ζe−iα) =
1

2πi

(∫
L0

log(1 + (−iu)−2µ)
du

u− ζe−iα
+

∫
M2

log(1 + (iu)−2µ)
du

u− ζe−iα

)
+ log

ζ + i

ζ
− log

ζ − i

ζ
.

(A.19)

Using (A.18), then plugging in ζ = −i, shows that

− log(gα(−i)) =
1

2πi

(∫
L0

log(1 + (−iu)−2µ)
du

u+ ie−iα
+

∫
M2

log(1 + (iu)−2µ)
du

u+ ie−iα

)
− log 2.

(A.20)
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Now we parametrise these integrals. For the �rst, let u = tie−2iα, and for the second, let u = −tie−2iα. With
the appropriate signs, we �nd that

− log(gα(−i)) = − log 2 +
1

2πi

∫ ∞
0

log(1 + t−2µ)

(
1

t− eiα
− 1

t+ eiα

)
dt

= − log 2 +
1

πi

∫ ∞
0

log(1 + t−2µ)
eiπ/2µ

t2 − eiπ/µ
dt.

(A.21)

We have now written gα(−i) in terms of a convergent integral, that on the right of (A.21). The usual Taylor
series expansions show that this integral is smooth in α for α ∈ (ε, π − ε). This integral seems nontrivial to
evaluate and is not obviously in any common table of integrals. Nevertheless, we can �nd the imaginary part
of log(gα(−i)) by using the following lemma.

Lemma A.5. For µ ∈ R, let

J(µ) :=

∫ ∞
0

log(1 + t−2µ)
eiπ/2µ

t2 − eiπ/µ
dt. (A.22)

Then for each µ > 1/2, which corresponds exactly to α < π/2,

Re(J(µ)) =
π2

4
(1− µ). (A.23)

Proof. Change variables in J(µ) by letting t = r−1. Then dt = −r−2dr, and we have

J(µ) =

∫ ∞
0

log(1 + r2µ)
eiπ/2µ

1− r2eiπ/µ
dr = −

∫ ∞
0

log(1 + r2µ)
e−iπ/2µ

r2 − e−iπ/µ
dr. (A.24)

Breaking up the logarithm by bringing out 2µ log r gives

J(µ) = −
∫ ∞

0
log(1 + r−2µ)

e−iπ/2µ

r2 − e−iπ/µ
dr − 2µ

∫ ∞
0

log(r)
e−iπ/2µ

r2 − e−iπ/µ
dr. (A.25)

But we now recognise the �rst integral as the complex conjugate of J(µ). Therefore

Re(J(µ)) =
1

2
(J(µ) + J(µ)) = −µ

∫ ∞
0

log(r)
e−iπ/2µ

r2 − e−iπ/µ
dr. (A.26)

The integral (A.26) may now be evaluated explicitly. It is the integral along the positive real axis of the function

log(z)
e−iπ/2µ

z2 − e−iπ/µ
, which has two poles (at ±e−iπ/2µ) and a branch cut at z = 0 which we take along the

negative real axis. The decay at in�nity and logarithmic growth at the origin enables us to use Cauchy’s theorem
to move the integral to an integral along the ray θ = (π/2− π/2µ); since µ > 1/2, there are no singularities
in the intervening region. Along this ray z = iρe−iπ/2µ, so we have

Re(J(µ)) = µ

∫ ∞
0

(log ρ+ i
π

2
(1− 1/µ))

i

ρ2 + 1
dρ. (A.27)

The imaginary part of this integral is, fortunately, zero, and the real part is −π2(µ − 1)/4, completing the
proof.

As an immediate consequence of the Lemma, we have that for some functionE(α),

gα(−i) = eE(α)ei(1−µ)π/4. (A.28)

This completes the proof of Theorem A.1.
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A.5 Asymptotics of Peters solution as z → 0

This analysis is substantially easier. First we have a small proposition:

Proposition A.6. gα(ζ)→ 1 as |ζ| → ∞, and the convergence is uniform in any sector away from the negative
real axis.

Proof. This is claimed on p. 329 of [Pet50] and is immediate from (A.4) when Re(ζ) > 0, but is not so clear
for other values of arg(ζ), so we rewrite the proof here.

From the de�nition of gα(ζ) it su�ces to show that Iα(ζ) → 0 as |ζ| → ∞. This is immediately clear
when arg(ζ) ∈ (−α, α), from the de�nition of Iα(ζ) and a change of variables. For other values of arg(ζ)
we can use other representations of Iα(ζ). For example, the representation (A.19) is good beyond ζ = ±π/2,
and each term approaches zero as |ζ| → ∞ as long as ζe−iα is not on M2 or L0. The rate of convergence
depends only on the distance of ζ/|ζ| fromM2 andL0. Continuing to move the contours as in the appendix
of [Pet50], we can show that Iα(ζ) goes to zero as |ζ| → ∞ as long as ζ is not on the branch cut. This completes
the proof.

Now recall that
f(z) = i

∫
P

gα(ζ)

ζ + i
ezζ dζ.

Assume |z| < 1. Change variables tow = zζ , then deform the contour back to arg(z)P (this works since all
singularities of the integrand are inside P ). We get

f(z) = i

∫
arg(z)P

gα(w/z)

w + iz
ew dw.

As |z| → 0, gα(w/z) converges uniformly to 1, and (w + iz)−1 converges uniformly tow−1. So as |z| → 0,

f(z)→ i

∫
arg(z)P

w−1ew dw = −2π.

Thus we have established that limz→0 f(z) exists and equals−2π.
When a constant coe�cient di�erential operatorP of order k is applied to f(z), the analysis may be done

similarly. The action of P brings down a factor of ζk inside the integral, which becomes (w/z)k. Pulling the
z−k out of the integral creates ρ−k, and the remaining integral approaches the integral of wk−1ew, which is
zero. This completes the proof of Theorem 2.1 in the Robin-Neumann case.

A.6 Robin-Dirichlet problem

This is also in [Pet50], again with some details but not others. We again look for a function f(z) analytic in
Sα. The condition at z ∈ Sα ∩{θ = −α} is now Re(f(z)) = 0. Following Peters, using the same notation
for gα(ζ) as before, a solution is

f(z) = i

∫
P

gα(ζ)

ζ + i
ζ−µezζdζ, k ∈ Z. (A.29)

The only di�erence between the solutions is the multiplication by ζ−µ inside the integral.
We verify that (A.29) satis�es the properties we need. Indeed it is obviously analytic in Sα (at least away

from the corner point). The boundary condition on the real axis is veri�ed in precisely the same way as for the
Robin-Neumann problem, since ζ−µ is real when ζ is real. For the Dirichlet boundary condition, we again
change variables tow = ζe−iα, when (A.29) becomes

f(z) =

∫
P1

w−µeiαgα(weiα)

weiα + i
epw dw =

∫
P1

w−µ−1 exp(−Iα(w))eρw dw, (A.30)
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where P1 is symmetric with respect to the real axis and the branch cut is along the negative real axis. As for
(A.8), this has zero real part, showing that (A.30) is a solution.

Now we analise the asymptotics. Let

χD,α = χ+
π2

4α
=
π

4

(
1 +

π

2α

)
.

Analogously to the Robin-Neumann case, we have:

Theorem A.7. WithE(α) : (0, π/2)→ R as in Theorem A.1, there existsR′α(z) : W × (0, π/2)→ C such
that

f(z) = eE(α)e−i(z−χD,α) +R′α(z), (A.31)

where for any fixed α ∈ (0, π/2), there exists a constantC > 0 such that for all z ∈ Sα,

|Re(R′α(z))| ≤ C|z|−2µ, |∇z(Re(R′α(z))| ≤ C|z|−2µ−1. (A.32)

Proof. We mimic the proof of Theorem A.1. By the same contour-deformation process, we have

f(z) = 2µ1/2gα(−i)e−izeiπµ/2 +
µ1/2

iπ

∫
P ′

gα(ζ)ζ−µ

ζ + i
ezζ dζ

+
m∑
j=1

ezλm2µ1/2 Res
ζ=λm

(gα(ζ)ζ−µ/(ζ + i)).

(A.33)

From the evaluation ofgα(−i) in the proof of Theorem A.1, we immediately see that the �rst term is eE(α)e−i(z−χD,α).
The sum of residues in (A.33) has the needed decay estimates. And if we call the second term R̃′α(z), the meth-
ods of the proof of Theorem A.1 give

R̃′α(z) = −µ
1/2

π

∫
P ′

ezζe−h(ζ) dζ

ζ
, (A.34)

which has an extra factor of ζ−µ compared with (A.16). Changing variables as before gives

R̃′α(z) = −µ
1/2

π

∫
arg(z)P ′

ewe−h(w/z) dw

w
. (A.35)

Plugging in h(·) = p(·) +R(·) gives

R̃′α(z) = −µ
1/2

π

∫
arg(z)P ′

ewe−p(w/z)e−R(w/z) dw

w
. (A.36)

Using the estimates onR(w/z), we have

R̃′α(z) = −µ
1/2

π

∫
arg(z)P ′

ewe−p(w/z)(1 +O(|w/z|2µ))
dw

w
. (A.37)

For the part of the integral corresponding to the �rst term 1, p(w/z) is holomorphic in the full disk with no
branch cut, so the contour may be deformed to a small disk aroundw = 0 (plus a portion around any branch
cut along the negative real axis starting fromw = −1), then evaluated using residues. We see that the �rst term
is equal to

− 2iµ1/2 +O(e−|z|/C), (A.38)

and therefore its real part is O(e−|z|/C), even better than needed. On the other hand, the exact same analysis
as in the Robin-Neumann case shows that the second term isO(|z|−2µ), which is what we wanted.

The gradient estimate follows as before, since di�erentiating (A.34) just brings down an extra power of ζ ,
which becomesw/z. The estimates on higher order derivatives follow as well.
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And the analysis of f(z) as z → 0 follows as before. We can show that

f(z) ∼ zµ
∫

arg(z)P
w−µ−1ewdw.

Since µ > 0, we have limz→0 f(z) = 0, and moreover f(z) = O(|z|µ). As before, the action of any
di�erential operator P brings down an extra factor of ζk = wk/zk and the analysis proceeds similarly. This
completes the proof of Theorem 2.1 in the Robin-Dirichlet case.

B Proof of Proposition 4.4.
B.1 Plan of the argument

Here we prove Proposition 4.4 by using the analysis of [Nai67]. As we will see, it is a special case of Theorem
2 in [Nai67]. In what follows we assume that q is even, see Remark 4.7. Throughout we let n = 2q and note
that n = 0 mod 4.

We �rst claim the following technical lemma:

Lemma B.1. Suppose q ∈ N is even. Then the boundary conditions in (3.7) and (4.4) are regular in the sense of
[Nai67, section 4.8]. Moreover, using the notation of [Nai67, equations (41)–(42)], θ0 = 0, and θ1 = θ−1 6= 0
in both cases.

Assuming this lemma, we obtain asymptotics for the eigenvalues. Indeed, let ξ′ and ξ′′ be the roots of the
equation θ1ξ

2 + θ0ξ + θ−1 = 0; by our calcuation, these are the roots of ξ2 + 1 = 0:

ξ′ = −i, ξ′′ = i.

From [Nai67, Theorem 2, equations (45a) and (45b)], using the fact that n = 0 mod 4, all su�ciently large
eigenvalues form two sequences:

(λ′k)
2q = (2kπ)2q

(
1− q ln0 ξ

′

kπi
+O

(
1

k2

))
;

(λ′′k)
2q = (2kπ)2q

(
1− q ln0 ξ

′′

kπi
+O

(
1

k2

))
.

Taking 2q-th roots and using Taylor series, and plugging in ξ′ and ξ′′:

λ′k = 2kπ

(
1− ln0 ξ

′

2kπi
+O

(
1

k2

))
= 2kπ +

π

2
+O

(
1

k

)
;

λ′′k = 2kπ

(
1− ln0 ξ

′′

2kπi
+O

(
1

k2

))
= 2kπ − π

2
+O

(
1

k

)
.

Combining the two sequences yields Proposition 4.4.
Remark B.2. Theorem 2 in [Nai67], in some editions and English translations, only states that there are se-
quences of eigenvalues of the desired form, rather than stating that all su�ciently large eigenvalues form those
sequences. However, the original Russian edition claims the stronger version, and it follows immediately from
the proof in [Nai67] anyway. J

B.2 Proof of Lemma B.1

To �nd θ1, θ0, and θ−1, we need to analise the notation of [Nai67]. The boundary conditions will be seen to be
regular conditions of Sturm type, hence falling under the analysis of [Nai67, section 4.8], in particular giving
θ = 0 = 0 and θ1 and θ−1 de�ned by (41)–(42) in [Nai67]. To analise these determinants we need to identify
the numbers ωj , kj , and k′j . We do this �rst.
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To analise the ωj , see the discussion before [Nai67, (38)]. Note that the sector S0 referred to in the state-
ment of theorem 2 is the sector of the complex plane with argument between 0 and π

n (see [Nai67, (3)]). We
then let ω1, . . . , ωn be the nth roots of−1, arranged so that for ρ ∈ S0,

Re(ρω1) ≤ Re(ρω2) ≤ · · · ≤ Re(ρωn).

To �gure out this ordering, let
ω := eiπ/n.

Then, in order, the set {ω1, . . . , ωn} is

{ω2q−1, ω−(2q−1), . . . , ω3, ω−3, ω1, ω−1}.

Note further that ωµ = ωq ; since q is even,

ωµ = ω−(q+1); ωµ+1 = ωq−1.

In particular we actually have ωµ+1 = −ωµ. This will be useful.
Now we need to understand the kj and k′j , which is done via a direct comparison with [Nai67, (40)]. The

sums all vanish, and only the �rst terms remain. We see that we always have k′j = kj in both the Neumann and
Dirichlet settings, and for Neumann we have

k1 = 2q − 1, k2 = 2q − 2, . . . , kq = q.

For Dirichlet we have
k1 = q − 1, k2 = q − 2, . . . , kq = 0.

So these conditions are of Sturm type.
Since the conditions are Sturm type we immediately have θ0 = 0 as well as the formulas [Nai67, (41)–(42)]

for θ−1 and θ1. Assume for the moment we are working in the Neumann setting. De�ne the matrices

Aq :=

ω
k1
1 · · · ωk1µ
... . . . ...

ω
kµ
1 · · · ω

kµ
µ

 =

ω
(2q−1)(2q−1) ω−(2q−1)(2q−1) · · · ω−(q+1)(2q−1)

...
... · · ·

...
ω(2q−1)(q) ω−(2q−1)(q) · · · ω−(q+1)(q)

 ,

Bq :=

ω
k1
µ+1 · · · ωk1n
... . . . ...

ω
kµ
µ+1 · · · ω

kµ
n

 =

ω
(q−1)(2q−1) ω−(q−1)(2q−1) · · · ω−1(2q−1)

...
... · · ·

...
ω(q−1)(q) ω−(q−1)(q) · · · ω−1(q)

 .
LetA′q beAq with the last column replaced by the �rst column ofBq , and letB′q beBq with the �rst column
replaced by the last column of Aq . Note also that since ωµ+1 = −ωµ, those switched columns are the same
except that the entry in each odd row is multiplied by−1. In particular their last entries are the same, since q is
even. Then [Nai67, (41)–(42)] give

θ−1 = ±detAq detBq; θ1 = ±detA′q detB′q, (B.1)

where the signs are the same (they both come from the same equation before (41) and (42) in [Nai67]). Thus
it su�ces to show that

detA′q
detAq

=
detB′q
detBq

. (B.2)

The trick will be to reduce these to Vandermonde determinants by taking a factor out of each column; the
factor we take out will always be the last entry in each column, which is simpli�ed by the fact thatwq = i. For
example,

detBq = i(q−1)i−(q−1)i(q−3)i−(q−3) . . . i1i−1 detDq = detDq,
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where

Dq =


ω(q−1)(q−1) ω−(q−1)(q−1) · · · ω−1(q−1)

...
... · · ·

...
ω(q−1)(1) ω−(q−1)(1) · · · ω−1(1)

1 1 · · · 1

 .
Similarly, detAq = detCq , whereCq is obtained as withDq . As forB′q andA′q , note that the last entry of the
last column ofAq is the same as the last entry of the �rst column ofBq , so all the pre-factors still cancel and we
have detA′q = detC ′q , detB′q = detD′q , withD′q andC ′q obtained by switching the �rst column ofDq for
the last column ofCq .

Switching the order of all of the rows introduces a factor of (−1)q/2 in each determinant and brings us to
a Vandermonde matrix in each case:

detBq = (−1)q/2 detV (ωq−1, ω−(q−1), . . . , ω1, ω−1);

detB′q = (−1)q/2 detV (ω−(q+1), ω−(q−1), . . . , ω1, ω−1);

detAq = (−1)q/2 detV (ω2q−1, ω−(2q−1), . . . , ωq+1, ω−(q+1));

detA′q = (−1)q/2 detV (ω2q−1, ω−(2q−1), . . . , ωq+1, ωq−1).

Each of these Vandermonde determinants can be computed explicitly via the well-known pairwise di�erence
formula. Considering detB′q/ detBq , all the pairwise di�erences cancel except for those involving the �rst
element. The �rst element just changes by an overall sign fromBq toB′q , and we get

detB′q
detBq

=
(ω−1 + ωq−1)(ω1 + ωq−1) . . . (ω−(q−1) + ωq−1)

(ω−1 − ωq−1)(ω1 − ωq−1) . . . (ω−(q−1) − ωq−1)
.

Similarly,
detA′q
detAq

=
(−ωq−1 − ωq+1) . . . (−ωq−1 − ω−(2q−1))(−ωq−1 − ω2q−1)

(ωq−1 − ωq+1) . . . (ωq−1 − ω−(2q−1))(ωq−1 − ω2q−1)
.

Pulling a minus sign out of each term on the top and the bottom and reversing the order of the multiplication
gives

detA′q
detAq

=
(ωq−1 + ω2q−1)(ωq−1 + ω−(2q−1)) . . . (ωq−1 + ωq+1)

(−ωq−1 + ω2q−1)(−ωq−1 + ω−(2q−1)) . . . (−ωq−1 + ωq+1)
.

Flipping the order of addition within each term:

detA′q
detAq

=
(ω2q−1 + ωq−1)(ω−(2q−1) + ωq−1) . . . (ωq+1 + ωq−1)

(ω2q−1 − ωq−1)(ω−(2q−1) − ωq−1) . . . (ωq+1 − ωq−1)
.

Using the fact that ω2q = 1 to simplify one element in each term, we see that this fraction is precisely detB′q
detBq

,
completing the proof of Lemma B.1 for the Neumann case.

The Dirichlet case is very similar, in fact easier; we havek1 throughkq each decreasing by q. In particular the
last entries of each column are 1, so the matrices corresponding to Aq, Bq, A′q, B′q are already Vandermonde.
In fact, they are exactly equal toCq, Dq, C

′
q , andD′q respectively, so our previous computation completes the

proof in this case as well.

C Numerical examples

In this Appendix we present some numerical results. All computations have been performed using the package
FreeFem++ [Hec12].
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Figure 5: Triangle from Example C.1

C.1 Example illustrating Theorems 1.1 and 1.7

Let Ω = 4ABZ be a triangle with L = 1, α = 2π
5 and β = π

6 . We consider sloshing with Neumann or
Dirichlet conditions onW = [A,Z] ∪ [Z,B]. The eigenvalues and quasi-frequencies are given in the table
below, and we see that the error is indeed quite small in both Neumann and Dirichlet cases:

k λk σk

∣∣∣∣σkλk − 1

∣∣∣∣ λDk σDk

∣∣∣∣σDkλDk − 1

∣∣∣∣
1 0. −0.88357 2.43592 2.45437 7.58× 10−3

2 0.85626 0.68722 1.97× 10−1 4.02389 4.02517 3.17× 10−4

3 2.28840 2.2580 1.33× 10−2 5.59623 5.59596 4.83× 10−5

4 3.82292 3.8288 1.54× 10−3 7.16681 7.16676 7.11× 10−6

5 5.39779 5.3996 3.37× 10−4 8.73757 8.73755 1.81× 10−6

6 6.96977 6.9704 9.22× 10−5 10.3084 10.3084 1.44× 10−6

7 8.54086 8.5412 4.00× 10−5 11.8792 11.8791 1.74× 10−6

8 10.1118 10.112 2.03× 10−5 13.4500 13.4499 2.36× 10−6

9 11.6827 11.683 1.11× 10−5 15.0208 15.0207 3.26× 10−6

10 13.2535 13.254 5.90× 10−6 16.5916 16.5915 4.47× 10−6

C.2 Example illustrating Remark 1.15

We de�ne two domains Ω± by setting a curved sloshing surface

S± =

{(
x,± 1

2π
sin(2πx)

)
| 0 < x < 1

}
,

so that the length of the sloshing surface is

L =

∫ 1

0

√
1 + cos2(2πx) dx =

2
√

2

π
E

(
1

2

)
≈ 1.21601,

whereE denotes a complete elliptic integral of the second kind. Let

W1 =W1,± = {z : |z − 1/2| = 1/2,−π ≤ arg(z) ≤ −π/2} ,
W2 =W2,± = {z : |z − 1/2| = 1/2,−π/2 ≤ arg(z) ≤ 0} ,
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so that
α+ = β− =

3π

4
, α− = β+ =

π

4
.

In both cases the Dirichlet boundary condition is imposed onW1 and the Neumann one onW2.

Figure 6: Domains Ω+ (left) and Ω− (right)

The quasifrequencies are then given by (1.17), which after omittingO−terms simpli�es to

σ+,k =
π

L

(
k − 1

6

)
, σ−,k =

π

L

(
k − 5

6

)
.

The comparisons between the numerically calculated eigenvalues and the quasifrequencies are below. Note
that there is very good agreement even for low k.

k λ+,k σ+,k

∣∣∣∣σ+,k

λ+,k
− 1

∣∣∣∣ λ−,k σ−,k

∣∣∣∣σ−,kλ−,k
− 1

∣∣∣∣
1 1.02371 2.15294 1.10 1.24543 0.430589 6.54× 10−1

2 5.65749 4.73648 1.63× 10−1 2.63524 3.01412 1.44× 10−1

3 8.13194 7.32001 9.98× 10−2 5.55627 5.59765 7.45× 10−3

4 10.3085 9.90354 3.93× 10−2 8.22122 8.18119 4.87× 10−3

5 12.8138 12.4871 2.55× 10−2 10.6845 10.7647 7.51× 10−3

6 15.3856 15.0706 2.05× 10−2 13.1122 13.3483 1.80× 10−2

7 17.9151 17.6541 1.46× 10−2 15.7600 15.9318 1.09× 10−2

8 20.4310 20.2377 9.46× 10−3 18.4111 18.5153 5.66× 10−3

9 22.9800 22.8212 6.91× 10−3 21.0011 21.0988 4.66× 10−3

10 25.5511 25.4047 5.73× 10−3 23.5873 23.6824 4.03× 10−3
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