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“Everything is simpler than you think,

and at the same time more complex than you imagine”

Goethe
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In this thesis, mountain wave breaking triggered by directional wind shear is investi-

gated using numerical simulations of idealized and semi-idealized orographic flows.

Idealized simulations are used to produce a regime diagram to diagnose conditions

for wave breaking in Richardson number-dimensionless mountain height parameter

space. It is found that, in the presence of directional shear, wave breaking can

occur over lower mountains than in a constant-wind case. Furthermore, the extent of

regions within the simulation domain where Clear-Air Turbulence (CAT) is expected

increases with terrain elevation and background wind shear intensity.

Analysis of the model output, supported by theoretical arguments, suggest the exis-

tence of a link between wave breaking and the relative orientations of the incoming

wind vector and the horizontal velocity perturbation vector. This condition provides

a possible diagnostic for CAT forecast in directional shear flows.

The stability of the flow to wave breaking in the transition from hydrostatic to non-

hydrostatic mountain waves is also investigated. Wave breaking seems to be inhibited

by non-hydrostatic effects for weak wind shear, but enhanced for stronger wind shear.

http://www.reading.ac.uk/
http://www.met.reading.ac.uk/


In the second part of the thesis, a turbulence encounter observed over the Rocky

Mountains (in Colorado, USA) is studied. The role of directional shear in causing

wave breaking is isolated from other possible wave breaking mechanisms through

various sensitivity tests. The existence of an asymptotic wake, as predicted by Shutts

for directional shear flows, is hypothesized to be responsible for a significant downwind

transport of unstable air detected in cross-sections of the flow.

Finally, critical levels induced by directional shear are studied by spectral analysis of

the horizontal velocity wave perturbations. This is done for a fully idealized flow and

for the more realistic flow corresponding to the investigated turbulence encounter.

In these 2D power spectra, a rotation of the most energetic wave modes with the

background wind and their selective absorption can be found. Such behaviour is

consistent with the mechanism leading to wave breaking in directional shear flows.
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Chapter 1

Introduction

1.1 Atmospheric waves and turbulence

Atmospheric gravity waves originate from an imbalance in the buoyancy of the flow.

While propagating in the fluid medium, gravity waves transport energy and drive

changes in winds, temperature and chemical composition of the atmosphere (through

redistribution of atmospheric constituents in wave breaking regions and forcing of

mean circulations).

As gravity or, more precisely, buoyancy is the restoring force responsible for sustaining

the wave motion, gravity waves only exist in atmospheres with a stable density/tem-

perature stratification. In fact, gravity waves are a constant (most of the time invis-

ible) presence in our skies, but their existence is only occasionally revealed through

cloud patterns. Indeed, except for the lowest 1-3 km (corresponding to the Planetary

Boundary Layer, PBL) and geographical regions affected by deep convection like the

tropics, the atmosphere is generally stably stratified and a variety of wave sources

exist. Some of them are: orographic lift, convective clouds and jet/front systems.

Gravity waves launched by orographic barriers generally belong to the category of in-

ternal waves, as they propagate in the interior of the fluid and not at the discontinuity

surface between two media with different density (e.g., the air-sea interface). Internal

gravity waves are transverse waves for which the parcel oscillations are perpendicular

to the direction of propagation. When the response of the flow to the orographic

forcing occurs on short time scales, waves are not affected by the Earth’s rotation

and the Coriolis force can be neglected. In this case, orographic waves are said to be

“pure internal gravity waves” (Holton and Hakim, 2012).

1
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(a)

(b)

Figure 1.1: (a) number of publications between 1945 and 2014 by decade in-
cluding the words “orographic gravity waves” anywhere in the article, according to
Google Scholar. (b) word cloud generated using the titles of the 1000 most cited
papers published between 1945 and 2014 including the words “orographic gravity

waves”. Note that no significance is attached to the greyscale used.

Mountain waves are able to propagate horizontally and vertically, playing a part in the

atmospheric dynamics at different scales. They received great attention in the past

20-30 years as a consequence of a growing awareness of their ubiquity, their role in

the atmospheric dynamics and technological advances as a result of which orographic

waves began to be more often observed in measurement campaigns (Nappo, 2012).

Figure 1.1 (a) shows the number of publications per decade from 1945 to 2014 contain-

ing (all) the words “orographic gravity waves”, in the title or in the main body of the

article. The graph was generated using the Google Scholar database and, although

data may suffer from some inaccuracy such as multiple versions for a same publi-

cation or missing publications, it gives an idea of the exponential growth of papers

discussing mountain waves since 1945. Around that time, Queney (1947) published

one of the earliest studies dealing explicitly with orographic waves. Between 1945
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and 1954 about 70 papers with the words “orographic gravity waves” were published,

between 2005 and 2014 almost 11000.

Figure 1.1 (b) provides an overview of the most popular research areas where moun-

tain waves have been/are studied. The word “cloud” was produced using the titles of

the 1000 most cited papers between 1945 and 2014 containing the words “orographic

gravity waves”1. The size of the words represents the frequency and, thus, the pop-

ularity of the topic (i.e., the bigger the word, the higher the number of papers).

Numerous studies focus on orographic drag and its parameterization (e.g., McFarlane,

1987, Shutts, 1995, Miranda and James, 1992, Teixeira et al., 2004), the deceleration

of the global atmospheric circulation due to divergence of the momentum flux as-

sociated with wave breaking events (Lilly and Kennedy, 1973) and its influence on

climate (e.g., Boer and Lazare, 1988, Sigmond et al., 2008). At the mesoscale, moun-

tain waves are often investigated in connection with orographic precipitations (see

e.g., Barstad et al., 2007) and, within the boundary layer, in connection with vari-

ations of the PBL structure, downslope windstorms and boundary layer separation

(e.g. Grisogono and Enger, 2004, Durran, 1990, Grubǐsić et al., 2015, Sun et al., 2015).

At higher altitudes, breaking mountain waves are studied because of their ability to

generate aviation-scale turbulence in the mid- and upper- troposphere (Staquet and

Sommeria, 2002, Lilly, 1978, Wolff and Sharman, 2008). Orographic gravity waves

can also break in the stratosphere (see e.g., Shutts et al., 1988, Smith et al., 2008)

and play a role in the formation of Arctic and Antarctic polar stratospheric clouds

with consequences for ozone depletion (see e.g., Carslaw et al., 1999, Alexander et al.,

2011, Alexander et al., 2013). Also, there exists evidence of mountain wave activity

in the mesosphere and even lower thermosphere, where it drives fluctuations of the

horizontal wind and changes in the atmospheric dynamics (by wave momentum de-

position) and chemical composition (by mixing and redistribution of chemical species

like oxigen and ozone) (see e.g., Garcia and Solomon, 1985, Miyoshi and Fujiwara,

2008, Smith et al., 2009).

Mountain waves not only exist in the atmosphere, but also in the oceans where they

are excited by tidal flows over bottom topography. Just like in the atmosphere,

internal waves in the ocean can break and produce turbulent mixing of heat and

solutes (Staquet and Sommeria, 2002, Ferrari and Wunsch, 2009).

Finally, orographic gravity waves have been recently detected in the atmosphere of

Venus (Bertaux et al., 2016, Fukuhara et al., 2017). Their formation can provide hints

1Note that expressions like “orographic gravity waves, model, simulations” etc. were excluded in
the generation of the word cloud.
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on the atmospheric structure of the planet at lower altitudes and, similarly to what

happens on Earth, how their breaking can influence Venus’s atmospheric circulation.

The most evident and direct way in which mountain waves impact us all is proba-

bly through generation of aviation-scale turbulence. For example, on 30 December

2015 an Air Canada flight encountered severe mountain wave turbulence over Alaska.

Passengers reported that turbulence lasted about 40 min and the flight made an emer-

gency landing. In the aftermath of the incident 21 passengers were hospitalized (The

Globe and Mail, 2015). More recently, on 27 February 2017 an American Airlines

flight to Chicago made an emergency landing in Denver, after having encountered

severe turbulence over the Rocky Mountains. 5 passengers were injured and 2 were

transported to a local hospital (The Weather Channel, 2017).

Turbulence encounters represent about 65% of all weather-related commercial air-

craft incidents, and an estimation has been made of tens of millions dollars a year

paid out by airlines for injury-related claims by passengers (Sharman et al., 2006).

Mountain wave breaking is, of course, not the sole responsible for aviation turbu-

lence. However, it is a major contributor to the upper-level turbulence over the

western half of the United States (Wolff and Sharman, 2008), and air-spaces over

large topographic features (such as Rocky Mountains, Andes or Alps) are known to

be ‘hot spots’ of mountain wave turbulence (MWT). Greenland, for instance, is rec-

ognized to be a prolific source of MWT in the lower stratosphere (Sharman and Lane,

2016). A few examples of studies on turbulence generation by mountain wave break-

ing are: Jiang and Doyle (2004) where the authors study gravity wave breaking over

the central Alps, Doyle et al. (2005), which investigates a large-amplitude mountain

wave breaking event over Greenland, Ágústsson and Ólafsson (2014), which presents

an investigation of a commercial aircraft encounter with severe turbulence over the

south-eastern coast of Iceland, and Strauss et al. (2015) where turbulence generated

over the Medicine Bow Mountains (in southeast Wyoming, USA) is studied.

1.2 Motivation

Currently, airlines use turbulence forecasts, pilot reports (PIREPs) and real-time

weather observations (radar, satellite etc.) to plan safe routes. If mountain wave

activity is forecasted or reported, Delta Air Lines, for example, adopts a mountain

wave avoidance system for which pilots can either avoid selected altitudes, or avoid

the steep terrain area (Sharman and Lane, 2016). Obviously, the success of avoidance

procedures rely on the robustness of turbulence detection and forecasting techniques.
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At present, mountain wave turbulence is one of the most challenging forms of Clear-

Air Turbulence (CAT) to forecast. Indeed, several mechanisms and environmen-

tal conditions can operate independently, or jointly, to cause vertically propagating

mountain waves to break at aircraft cruise altitudes. Established mechanisms are: an

increase in the wave amplitude as waves propagate upwards in response to a decreas-

ing air density (Eliassen and Palm, 1960), a negative vertical wind shear (i.e. wind

speed decreasing with height) that may lead to a layer of zero wind speed (Booker

and Bretherton, 1967), environmental critical levels created by a wind direction that

changes with height (Broad, 1995), or an abrupt increase in the atmospheric stabil-

ity (such as the transition from troposphere to stratosphere) (VanZandt and Fritts,

1989).

Of the two World Area Forecast Centers (WAFC), WAFC London and WAFC Wash-

ington, only the first one has an algorithm to forecast mountain wave turbulence.

This algorithm uses a method developed by Turner (1999), based on the gravity wave

drag parameterization adopted in a global weather prediction model. However, when

the forecasting skills for the methods used to predict wind shear and convective tur-

bulence events are compared with that of the MWT algorithm, this turns out to be

the one that performs worst(Gill and Stirling, 2013).

Recently, Sharman and Pearson (2016) presented a revised Graphical Turbulence

Guidance (GTG) system, used by the U.S. Aviation Weather Center, that includes

explicit MWT algorithms. Using a combination of MWT and CAT diagnostics, they

showed that an ensemble-weighted mean of several diagnostics performs better than

any other diagnostic used alone. Overall, these authors achieved a better forecasting

skill with their method than using MWT predictors based on a gravity wave drag

formulation. Yet, none of their diagnostics takes into account mountain wave breaking

induced by directional wind shear.

To a certain extent, we can always expect the wind direction to vary with height.

Directional shear flows are ubiquitous in nature, and at least three processes creating

(both speed and directional) vertical wind shear can be identified: thermal advection,

as is consistent with the thermal wind relation, the balance between friction and

rotation within the PBL (a process also known as the “Ekman spiral”), and rapidly

moving weather systems (in particular cyclones) (Markowski and Richardson, 2006).

Approximations with constant background flows or speed-only (unidirectional) wind

shear are often used in theoretical and idealized numerical studies to simplify the

problem when attention needs to be focused on other aspects of the flow dynamics.

However, a turning wind not only represents a further complication mathematically,
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since introduction of an additional variable (the y-component of the wind vector) is

necessary, but it also corresponds to the addition of an independent physical mech-

anism able to cause wave breaking. In this respect, directional wind shear, by orig-

inating directional critical levels where gravity waves increase their amplitude and

potentially breakdown into turbulence, represents a mechanism often overlooked in

the literature. Its absence in the current MWT algorithms and drag parameteriza-

tions may explain part of the biases and inaccuracies shown by our current weather

and CAT forecasting tools.

Additionally, with specific regard to orographic drag, the existence of a directional

shear alters the way in which the wave energy and the wave momentum flux are ab-

sorbed into the mean-flow. In directional shear flows, and according to linear theory,

the wave momentum is selectively deposited at critical levels that are distributed

through a continuous range of heights (Teixeira and Miranda, 2009), and not all at

once at a same height, chosen in accordance with a saturation criterion (Lindzen,

1981), as it happens in unidirectional or unsheared flows. An accurate representation

of orographic wave drag is essential to correctly assess the deceleration of the global

atmospheric circulation due to gravity wave breaking.

In this thesis, mountain wave breaking in atmospheric flows with directional wind

shear will be investigated. The ultimate goal is to understand the mechanisms by

which three-dimensional orographic gravity waves break and generate Clear-Air Tur-

bulence. The aim is to contribute to enhance the accuracy of wave breaking prediction

in directional shear flows, with potential impacts not only on CAT forecasts but also

on orographic drag model parametrizations. For this purpose, throughout the rest

of the thesis, theoretical aspects of the fundamental gravity wave dynamics will be

combined with numerical modelling of atmospheric flows over orography.

The research questions of this thesis are:

(a) Under a controlled scenario, how does wave breaking depend on background

flow parameters?

(b) Where is turbulence generation expected with respect to the orography that

generates the mountain waves?

(c) Is there a way to diagnose this type of turbulence?

(d) How does the stability of the flow to wave breaking change in the transition

from hydrostatic to non-hydrostatic mountain waves?
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(e) In a real turbulence event, what is the role of directional shear in triggering

wave breaking? Can we isolate its contribution?

(f) In Fourier space (i.e., by spatial scale), how is the spectral wave energy dis-

tributed at directional critical levels?

In the following chapters, each of these questions will be discussed and possible an-

swers/explanations will be provided. The remainder the thesis is organized accord-

ingly, as detailed in the next section.

1.3 Outline of the thesis

The present thesis comprises 6 chapters. In chapter 2 the physics of mountain waves

is briefly reviewed and a concise description of the Weather Research and Forecasting

model is provided. This chapter introduces the theoretical and numerical framework

of the thesis.

Chapters 3, 4 and 5 correspond to scientific papers that have been published, or are

currently under review, as stated at the beginning of each chapter. Each chapter

consists of a stand-alone publication in which the research questions of this the-

sis are addressed as follows: Chapter 3 investigates the generation of atmospheric

turbulence due to orographic gravity wave breaking in directional shear flows using

idealized 3D numerical simulations of hydrostatic, vertically-propagating mountain

waves. The aim is to diagnose wave breaking based on large-scale flow variables and

identify regions, within the simulation domain, where wave breaking and the develop-

ment of Clear-Air Turbulence are expected. Besides inviscid simulations, numerical

simulations where turbulence is parameterized are presented. The dynamics of the

horizontal velocity perturbations associated with the waves in Fourier space is also

examined, with a focus on possible links between wave breaking and the relative ori-

entations of the incoming wind vector and the horizontal velocity perturbation vector.

This chapter constitutes the starting point of the research presented in chapters 4 and

5. Chapter 4 investigates the effects of the dispersion associated with non-hydrostatic

mountain waves on wave breaking. In this chapter, causes for the observed changes

in flow static and dynamic stability (as evaluated by the Richardson number) in

the transition from hydrostatic to non-hydrostatic mountain waves are discussed. In

chapter 5 the role of directional critical levels in causing a real turbulence event over

the Rocky Mountains, in the state of Colorado, USA, is investigated. In particular,
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critical levels induced by directional shear are studied by spectral analysis of the hor-

izontal velocity perturbations. This type of analysis allows us to evaluate changes in

the wave energy distribution by wave-number at critical levels.

Chapter 6 concludes the thesis by summarizing the main results obtained, pointing

out their wider implications and limitations, and discussing possible directions for

future research.



Chapter 2

Methodology: theoretical and

numerical aspects

2.1 The physics of mountain waves

The problem of the stability of flows in which density varies with height was first

addressed by Taylor (1931) and Goldstein (1931). They independently derived an

equation, known as Taylor-Goldstein (TG) equation, that describes the stability of

stratified flows and governs the propagation of mountain waves in the atmosphere.

In this section, the Taylor-Goldstein equation is derived from the Euler equations of

fluid flows. Possible solutions of the TG equation, relevant to the purposes of this

thesis, are also presented. Additionally, the linear scaling of key flow parameters is

introduced.

2.1.1 The Taylor-Goldstein equation

The Taylor-Goldstein equation is derived by linearizing the governing equations of

fluid dynamics. The linerization method requires any generic variable q(x, y, z, t)

to be expressed as the sum of a background state q0(z), assumed to be steady and

horizontally uniform, and a perturbation q1(x, y, z, t). Under the assumption that

perturbations are small compared to the background flow, the products of the per-

turbations are negligible and the governing equations can be simplified accordingly.

If we consider the background flow to be in hydrostatic balance, the linearized gov-

erning equations for a three-dimensional, Boussinesq, frictionless and adiabatic flow

9
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without rotation are (Nappo, 2012):

∂u1

∂t
+ u0

∂u1

∂x
+ v0

∂u1

∂y
+ w1

∂u0

∂z
= − 1

ρ0

∂p1

∂x
, (2.1)

∂v1

∂t
+ u0

∂v1

∂x
+ v0

∂v1

∂y
+ w1

∂v0

∂z
= − 1

ρ0

∂p1

∂y
, (2.2)

∂w1

∂t
+ u0

∂w1

∂x
+ v0

∂w1

∂y
= − 1

ρ0

∂p1

∂z
+
θ1

θ0

g, (2.3)

∂u1

∂x
+
∂v1

∂y
+
∂w1

∂z
= 0, (2.4)

∂θ1

∂t
+ u0

∂θ1

∂x
+ v0

∂θ1

∂y
+ w1

∂θ0

∂z
= 0. (2.5)

where u = u0+u1 and v = v0+v1 are the wind components in the x- and y- directions,

p = p0 + p1 is the pressure and θ = θ0 + θ1 is the potential temperature of the flow

decomposed in their mean and perturbation parts. w = w1 is the vertical perturbation

velocity, g is the gravity acceleration, and ρ0 is the background atmospheric density.

Equations (2.1) - (2.3) are the three components of the momentum equation, equation

(2.4) is the mass continuity equation and equation (2.5) is the heat budget equation.

By taking a double Fourier transform and assuming that the flow is stationary, (2.1)

- (2.5) become:

u0ikû1 + v0ilû1 + ŵ1
∂u0

∂z
= − 1

ρ0

ikp̂1, (2.6)

u0ikv̂1 + v0ilv̂1 + ŵ1
∂v0

∂z
= − 1

ρ0

ilp̂1, (2.7)

u0ikŵ1 + v0ilŵ1 = − 1

ρ0

∂p̂1

∂z
+
θ̂1

θ0

g, (2.8)

ikû1 + ilv̂1 +
∂ŵ1

∂z
= 0, (2.9)

u0ikθ̂1 + v0ilθ̂1 + ŵ1
∂θ0

∂z
= 0. (2.10)

where the hat ( ̂ ) symbol is used to denote the Fourier transforms.

Equations (2.6) - (2.10) can be combined into a single equation by: differentiating

with respect to z (2.6) and (2.7), using (2.8) in ∂(2.6)/∂z and ∂(2.7)/∂z to eliminate

p̂1, using (2.10) in (2.8) to eliminate θ̂1 and finally using (2.9) to eliminate û1 and v̂1.
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This yields the following equation for ŵ1:

d2ŵ1

dz2
+

[
N2

0 (k2 + l2)

(ku0 + lv0)2
− ku′′0 + lv′′0
ku0 + lv0

− (k2 + l2)

]
ŵ1 = 0 (2.11)

where the primes denote differentiation with respect to z and N2
0 = g

θ0

∂θ0
∂z

is the

squared Brunt-Väisälä frequency of the background flow.

The first term in the brackets in (2.11) is called buoyancy term and regulates the

wave amplitude as a function of the atmospheric stability, the second term is the

shear term and takes into account the variation of u0 and v0 with height, the last

term is called non-hydrostatic term and it is only present in the equation when the

vertical velocity perturbations are not in hydrostatic balance (i.e., when the vertical

acceleration is sufficiently large).

Equation (2.11) is the Taylor-Goldstein equation and governs the vertical structure

of the wave perturbation. Analogously, equations for the horizontal velocity pertur-

bations can be derived by using (2.6), (2.7) and (2.9). In particular, û1 and v̂1 can

be found by multiplying (2.6) by l and (2.7) by k, and subtracting the first equation

from the second one (i.e. k(2.7) - l(2.6)) to eliminate the pressure p̂1. Note that this is

equivalent to differentiating (2.1) with respect to y and (2.2) with respect to x before

taking the Fourier transform and, thus, effectively computes the vertical component

of the vorticity equation. The mass continuity equation is then used to solve a system

of two equations for three variables (û1, v̂1, ŵ1) to find:

û1(k, l, z) =
ik

k2 + l2

[
lŵ(lu′0 − kv′0)
k(ku0 + lv0)

+
dŵ

dz

]
, (2.12)

v̂1(k, l, z) =
−il

k2 + l2

[
kŵ(lu′0 − kv′0)
l(ku0 + lv0)

− dŵ

dz

]
. (2.13)

The equations presented in this section describe the oscillatory motion of stationary

gravity waves according to linear theory, and away from singularities for which their

solution would diverge.

Singularities in the wave equation (2.11) correspond to physical heights in the at-

mosphere known as “critical levels”. At these heights the wave motion is no longer

supported and waves are expected to stop propagating by breaking (once their am-

plitude increases enough that linear theory breaks down) or being absorbed into the

mean flow (for very small amplitude waves, in a process that can be described by

linear theory). Critical levels are thus of primary importance in the study of wave

breaking. In the following chapters, the behaviour of (2.11), (2.12) and (2.13) at
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critical levels will be discussed and used to interpret the results of the numerical

simulations.

2.1.2 A zeroth- and first- order WKB solution of the TG

equation

In the simplest scenario of hydrostatic mountain waves and constant background

parameters, the second and the third term in the brackets in (2.11) are equal to zero.

Thus, the Taylor-Goldstein equation has the general solution:

ŵ1 = ŵ1(z = 0)eimz, (2.14)

where the vertical wave-number m is given by:

m =
N0(k

2 + l2)1/2

(ku0 + lv0)
, (2.15)

and ŵ1(z = 0) is prescribed by the no-normal flow lower boundary condition, for

which the flow must be parallel to the surface:

ŵ1(z = 0) = i(ku0 + lv0)ĥ, (2.16)

where ĥ is the Fourier transform of the terrain elevation h(x, y).

A constant background flow is rare and solution (2.14) is often dismissed in appli-

cations to real flows. For flows where wind and stratification vary with height, the

solution to (2.11) can be expressed as:

ŵ1 = ŵ1(z = 0)e
i

zR
0

m(z)dz
. (2.17)

Substituting (2.17) in (2.11) yields:

im′ −m2 +
N2

0 (k2 + l2)

(ku0 + lv0)2
− ku′′0 + lv′′0
ku0 + lv0

− (k2 + l2) = 0 (2.18)

An expression for m can be obtained by adopting a WKB approximation (see, e.g.,

Bender and Orszag (2013)). The WKB method (named after physicists Wentzel,

Kramers, and Brillouin) allows one to find an approximate solution to the Taylor-

Goldstein equation for a slowly varying medium (i.e. the solution is only valid for

gradual variations of u0, v0, and N0 with height). This method has been widely
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used in meteorology applications (e.g. Grisogono (1994), Broad (1995), Teixeira

and Miranda (2009)), and entails representing the vertical wave-number as a sum

of powers of a small parameter ε. The WKB method also requires, for a consistent

scaling of the various terms in the equation, vertical derivatives to be multiplied by

the same parameter ε (which effectively corresponds to an appropriate rescaling of

the vertical coordinate). Following Teixeira et al. (2004), and using a series expansion

of m truncated at first-order (i.e. m = m0 + εm1), (2.18) becomes:

iε(m0 + εm1)
′ − (m0 + εm1)

2 +
N2

0 (k2 + l2)

(ku0 + lv0)2
− ε2ku

′′
0 + lv′′0

ku0 + lv0

− (k2 + l2) = 0 (2.19)

Neglecting higher-than-first-order terms in ε and combining terms of the same order,

we obtain:

m0 =

[
N2

0k
2
H

(ku0 + lv0)2
− k2

H

]1/2

, (2.20)

m1 =
1

2
i
m′0
m0

. (2.21)

When a solution of the TG equation is approximated using a zeroth-order WKB

approximation, in (2.17) m = m0. When using a first-order approximate solution,

(2.17) becomes:

ŵ1 = ŵ1(z = 0)ei
R
m0(z)dzei

R
m1(z)dz. (2.22)

But using (2.21), this can be expressed as:

ŵ1 = ŵ1(z = 0)

∣∣∣∣m0(z = 0)

m0(z)

∣∣∣∣1/2 e
i

zR
0

m0(z)dz
(2.23)

Both using a zeroth- or first-order WKB approximation, m is expressed in the same

form as for a constant wind case but N0, u0 and v0 are allowed to vary (slowly) with

height.

The zeroth- and the first order solutions will be used in the following chapters of the

thesis in the discussion of results.

2.1.3 The scaling of key flow parameters

In this section the scalings of the horizontal and vertical velocity perturbations for

hydrostatic and non-hydrostatic mountain waves are discussed. These scaling prop-

erties will be used in Chapter 4 to investigate non-hydrostatic effects on mountain
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wave breaking.

Because the horizontal velocities u0, v0 scale in the same way, the scale analysis will

be performed in 2D, for simplicity. In this case, the vertical wave-number is:

m =

[
N2

0

u2
0

− k2

]1/2

. (2.24)

The scaling of the vertical velocity w1 excited at the surface is the same for hydro-

static and non-hydrostatic mountain waves, and is dictated by the bottom boundary

condition:

ŵ1(z = 0) = iku0ĥ ⇒ w1 ∼ U
H

a
(2.25)

where a is the mountain half-width, which determines the dominant horizontal wave-

length (λx ≈ a) and H is the mountain height.

The scaling of the horizontal velocity perturbations u1 is, instead, intrinsically related

to the vertical wave structure. As will be discussed in more detail in Chapter 4, in the

hydrostatic limit (N0

u0
� k in (2.24)) the vertical wave-number is simply m = N0/u0,

and thus the vertical wavelength is λz ≈ U/N . Using the continuity equation we find:

ikû1 +
∂ŵ1

∂z
= 0 ⇒ u1 ∼ U

H

a

N

U
a = NH (2.26)

In the strongly non-hydrostatic limit (N0

u0
� k in (2.24)) m = ik, therefore λz ≈ a.

This causes u1 to scale instead as:

ikû1 +
∂ŵ1

∂z
= 0 ⇒ u1 ∼

w1

a
a ∼ U

H

a
(2.27)

in the same way as the vertical velocity.

From (2.27) we can see that, for strongly non-hydrostatic mountain waves, the non-

linearity of the flow is controlled by the H/a parameter. Indeed, if H/a > 1 the wave

perturbation is larger than the background flow (|u1/U | > 1). Similarly, from (2.26)

we can see that the non-linearity parameter for approximately hydrostatic mountain

waves is NH/U , because if NH/U > 1 then |u1/U | > 1.

Note that, for readability, in the next chapters a change of notation will be adopted

for the horizontal velocity perturbations u1 and v1, that will be replaced by u′ and

v′, and the vertical velocity perturbation w1, to which we will simply refer as w.
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2.2 The Weather, Research and Forecasting (WRF)

Model

The numerical simulations presented in this thesis were conducted using the Advanced

Research - Weather Research and Forecasting (WRF-ARW) model version 3.6. WRF-

ARW is a mesoscale model developed by the National Center of Atmospheric Research

(CO) that uses an “Eulerian mass core” to solve the non-hydrostatic, fully compress-

ible Euler equations. A comprehensive description of the model can be found in the

“NCAR Technical Note” by Skamarock et al. (2005), where the reader is directed for

details about the integration of the governing equations and the model’s discretiza-

tion. Here we briefly recall that the Euler equations are formulated and solved by

the model on a terrain-following hydrostatic-pressure vertical coordinate (proposed

by Laprise (1992)). Compared to their traditional form, the governing equations are

modified by including moisture and additional terms called “mapping factors” that

account for the projection of the computational domain on the Earth’s surface. Hor-

izontally, the equations are solved on an Arakawa-C staggered grid (Mesinger et al.,

1976).

In this thesis the model was used in its idealized mode. In this model configuration

the user is given the choice to run controlled scenarios by including/excluding certain

physical processes (i.e. model parametrizations), the Earth’s rotation effect, moisture

effects, etc. Idealized runs are particularly suitable for dynamical studies aimed at

investigating the contribution of single physical processes.

In the following section, details about the initialization of the model are provided.

2.2.1 Idealized model set-up

The model was initialized with a 1D atmospheric sounding including vertical profiles

of potential temperature, horizontal wind components and vapour mixing ratio (set

to zero to simulate a dry flow). The Coriolis force was switched off and, horizon-

tally, a Cartesian grid was used. Topography specifications, such as changes in the

terrain elevation, or in the width, height and shape of the orography were possible

via modifications of the model source code. The code was also edited to modify the

distribution of the model’s vertical levels.

Appropriate boundary conditions were selected to avoid wave reflections in the vicin-

ity of the model’s boundaries that could contaminate the interior solution in an
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unrealistic way. Laterally, open boundary conditions were used. These boundary

conditions are often called “radiative” as they are designed to radiate out of the

domain waves and disturbances approaching the boundaries. In WRF, open lateral

boundary conditions are implemented following the approach proposed by Klemp

and Lilly (1978) and Klemp and Wilhelmson (1978). According to this approach,

outward propagating waves are allowed to leave the computational domain through

a lateral boundary by locally replacing the momentum equation (for instance along

the west-east boundary) with:

∂u

∂t
+ (u− ci)

∂u

∂x
= 0 at x = 0 (inflow boundary),

∂u

∂t
+ (u+ co)

∂u

∂x
= 0 at x = L (outflow boundary).

Therefore, the horizontal velocity is advected out of the simulation domain with an

estimated phase speed (u + co) for gravity waves propagating downstream towards

the outflow boundary, and (u − ci) for gravity waves propagating upstream towards

the inflow boundary. The phase speed c is chosen to be representative of the domi-

nant wave-mode in the system, which is usually equivalent to the fastest-propagating

internal gravity wave.

Near the upper boundary, an absorbing layer (Rayleigh damping layer) was used to

relax u, v, w and θ back to their reference-state values. For example, for the zonal

horizontal velocity component, the formulation of the damping layer is (Klemp and

Lilly, 1978):
∂u

∂t
= −τ(z)(u− u0)

where u0 is the reference state value and τ(z):

τ(z) = γr sin2

[
π

2

(
1− ztop − z

zd

)]

γr is a user-specified damping coefficient, ztop is the height of the model top and zd

is the depth of the damping layer (measured downward from the model top). The

expression above is valid only for ztop ≤ z ≤ zd; everywhere else τ(z) = 0. The

damping coefficient works in the same way for all the other flow variables.

All the simulations used the dynamical core only, thus no surface processes, planetary

boundary layer, micro-physics or radiation parametrizations were employed. The sole
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parametrization used in the simulations of Appendix 3.A is described in the next

subsection.

2.2.2 The WRF 1.5 order turbulence closure

In this section, a concise description of the 1.5 order turbulence closure used by WRF

to parametrize turbulence will be provided. Attention will be focused on the calcu-

lation of turbulent kinetic energy produced by shear and buoyancy forces. However,

for a detailed description, the reader is referred to Skamarock et al. (2005).

In this scheme, the turbulent kinetic energy e is a prognostic variable and the equation

governing its evolution is:

∂(µde)

∂t
+ (∇ ·Ve)η = µd(shear production+ buoyancy + dissipation) (2.28)

where µd is the mass of dry air in the column, V is the velocity vector, (∇ ·Ve)η is

the “transport term” representing fluxes of turbulent kinetic energy (TKE) on the

hydrostatic-pressure terrain-following vertical grid (η).

The time evolution and transport of TKE are therefore computed taking into account

source (shear and buoyancy production) and sink (dissipation) terms.

The production of TKE by shear forces is parametrized as follows:

shear production = KhD
2
11+KhD

2
22+KvD

2
33+KhD2

12

xy
+KvD2

13

xη
+KvD2

23

yη
. (2.29)

D11, D22, D33, D12, D13, D23 are the 6 independent components of the deformation

tensor as defined in Skamarock et al. (2005). Note that only 6 (out of 9) components

of the tensor are considered, as the deformation tensor is symmetric (i.e. D12 = D21,

D13 = D31, D23 = D32). The off-diagonal components of the tensor D12, D13, D23 are

averaged over the grid cell faces in the xy, xη and yη planes, respectively (denoted

by the overbars).

Kh and Kv are the horizontal and vertical eddy viscosities. These are exchange coef-

ficients representing the turbulent transfer of momentum by eddies and are computed

using:

Kh,v = Cklh,v
√
e (2.30)

where Ck is a constant that controls the physical diffusion (usually in the interval [0.15,

0.25]), and lh,v are the mixing length-scales computed dynamically by the model. An
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isotropic length-scale can be used when the horizontal and vertical grid spacings are

similar (∆x,∆y ' ∆z). If ∆x,∆y � ∆z an anisotropic option is available. e, whose

time evolution is given by (2.28), is first generated by the model using the surface

thermal fluxes and the friction velocity computed by the surface layer scheme if this is

turned on. For frictionless simulations in which heat fluxes are turned off, the model

uses a “TKE seed” to generate turbulent kinetic energy.

The production/destruction of TKE by buoyancy forces is given by:

Buoyancy = −Kvheat
N2 (2.31)

where Kvheat
is the vertical eddy diffusivity (an exchange coefficient for heat).

The buoyancy term can thus be either negative or positive. When negative, the

statically stable atmospheric conditions (N2 > 0) work against the production of

TKE, because vertical motions are constrained by the restoring buoyancy force. On

the contrary, when the buoyancy term is positive, the presence of a negative vertical

gradient of potential temperature (N2 < 0) favours the growth of turbulent motions

by static instability.

The relative contributions of shear and buoyancy production to the total TKE in

the numerical simulations will be discussed in Appendix A of Chapter 3. As the

dissipation term does not take part in this analysis, the reader is referred to Skamarock

et al. (2005) for details about its formulation.



Chapter 3

Turbulence generation by

mountain wave breaking in flows

with directional wind shear

In this chapter, mountain wave breaking, and the resulting potential for the gener-

ation of turbulence in the atmosphere, are investigated using numerical simulations

of idealized, nearly hydrostatic atmospheric flows with directional wind shear over

an axisymmetric isolated mountain. These simulations, which use the WRF-ARW

model, differ in degree of flow non-linearity and shear intensity, quantified through

the dimensionless mountain height and the Richardson number of the incoming flow,

respectively. The aim is to diagnose wave breaking based on large-scale flow variables.

The work presented in this chapter was published in the Quarterly Journal of the

Royal Meteorological Society, with the reference:

Guarino MV, Teixeira MAC, Ambaum MHP, 2016. Turbulence generation by moun-

tain wave breaking in flows with directional wind shear. Q. J. R. Meteorol. Soc. 142:

2715 - 2726.

In Appendix 3.A, further experiments where turbulence is parametrized using a 1.5-

order turbulence closure are presented. They constitute an extension of the work

included in Guarino et al. (2016).

In Appendix 3.B, preliminary tests of a possible wave breaking diagnostic based on

ideas sketched in the chapter are discussed.

19
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3.1 Introduction

The role of orographic gravity waves, or mountain waves, in weather and climate

studies is widely recognized. These waves are generated when stably stratified air

masses are lifted by flow over orography. Under favourable atmospheric conditions

(in terms of atmospheric stability and wind speed profiles) and lower boundary condi-

tions (imposed by the terrain elevation), mountain waves can break. Breaking waves

affect the atmospheric circulation by deposition of wave momentum into the mean

flow (Lilly and Kennedy, 1973), which manifests itself as a drag force acting on the

atmosphere. Wave breaking also poses a serious safety hazard to aviation through

Clear-Air Turbulence (CAT) generation (Lilly, 1978). This form of CAT can be quite

severe and usually occurs at altitudes relevant for general and commercial aviation

(i.e., within the troposphere and lower stratosphere) (Sharman et al., 2012a). How-

ever, presently, techniques to forecast CAT generated by mountain wave breaking are

still not sufficiently accurate (Sharman et al., 2012b).

While the conditions for mountain wave breaking for a constant or unidirectionally

sheared background wind have been studied in substantial detail, the more common

case of wave breaking occurring in winds that turn with height (i.e., with directional

shear) remains incompletely understood.

Directional shear flows are ubiquitous in the atmosphere. Throughout most of the

mid-latitudes, the low-level shear vector turns anticyclonically with height (Lin, 2007).

Directional shear is often linked to thermal advection through the thermal wind

relation. Indeed, in presence of a temperature gradient, a geostrophically-balanced

flow will align itself with the isotherms by turning clockwise with height in the case

of warm advection, and counter-clockwise with height in the case of cold advection

(Holton and Hakim, 2012). Directional wind shear can also be associated with long-

period inertia-gravity waves (Mahalov et al., 2009). An example of observed mountain

wave breaking in the presence of directional wind shear over the French Alps was

reported by Doyle and Jiang (2006).

In the simpler case of an unsheared flow over 2D orography, wave breaking conditions

are essentially controlled by the value of the dimensionless mountain height N0H/U .

Linear theory breaks down when N0H/U is large, but it can be used to obtain a rough

estimate of the critical dimensionless mountain height for which the streamlines be-

come vertical (i.e., flow overturning occurs), and hence wave breaking is expected.

This critical value is N0H/U = 1 for hydrostatic flow with the Boussinesq approxima-

tion over a bell-shaped ridge, defining an absolute limit of applicability of the linear
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solutions, since the velocity perturbation u′ is then no longer small, but has the same

magnitude as the background flow velocity U . As shown in previous studies (Baines

(1998), Ambaum and Marshall (2005)), it is possible to identify different flow types

based on the value of the dimensionless mountain height N0H/U and the mountain

aspect ratio H/a (where a is the mountain half-width), for which the magnitudes of

u′ and U become comparable, leading to flow separation. In particular, for a moun-

tain aspect ratio H/a � 1 (i.e., hydrostatic flow) and a N0H/U larger than 1, flow

separation occurs just downstream the mountain (post-wave separation).

Long (1953) developed a non-linear theory for similar 2D flows (featuring a linear

equation but a non-linear lower boundary condition), which predicts the critical

mountain height for hydrostatic flow overturning over a bell-shaped ridge to be in-

stead N0H/U = 0.85 (Miles and Huppert, 1969). This value limits Long’s model

validity, not because of the magnitude of the flow perturbation (which could be ar-

bitrary large), but because wave breaking is expected beyond this threshold, which

violates the steady-state assumption.

Smith (1989) used linear theory to study stratified flow past a 3D isolated mountain.

For an unsheared and hydrostatic flow with the Boussinesq approximation over a

mountain of sufficiently high amplitude, linear theory predicts two stagnation points

(one on the windward slope of the mountain and the other one above the mountain

top). Flow stagnation aloft is a precursor to overturning of isentropic surfaces (which

replace streamlines in 3D flow) and therefore wave breaking. Smith formulated a

condition for flow stagnation in terms of a critical dimensionless mountain height,

above which the flow splits at the surface or overturns aloft. For the unsheared cases

he considered, this only depends on the horizontal aspect ratio of the mountain (which

controls directional dispersion effects).

As we consider more realistic flow setups (no Boussinesq approximation, and wind

profiles with vertical shear, but still approximately hydrostatic conditions), there

are basically two additional physical mechanisms that contribute to mountain wave

breaking apart from the orography amplitude: the decay of density with height and

vertical shear in the wind profile.

The effect of the decay of density with height is fairly straightforward, relying on

conservation of the momentum flux as the wave propagates upward (in accordance

with the theorem formulated by Eliassen and Palm (1960)), whereby a decrease in

density corresponds to an increase in the amplitude of the wave velocity perturbations.

This mechanism is currently included in drag parametrizations, based on the theory

developed by McFarlane (1987).
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The effect of vertical wind shear in unidirectionally sheared flows is also fairly straight-

forward. When the background wind decreases to zero, in what is usually termed a

critical level, this always causes, no matter how small the waves are at their source,

an indefinite increase in the wave amplitude as they approach the critical level, which

necessarily results in flow overturning (Nappo, 2012). This mechanism, which is asso-

ciated with a divergence of the wave momentum flux, is also incorporated in current

drag parametrizations (e.g. Lott and Miller (1997)).

The much more complicated case of a wind with directional shear over a 3D mountain

was first addressed theoretically by Broad (1995) and Shutts (1995). Whereas in

unsheared flows the surface amplitude of the wave excited by the mountain is the sole

responsible for fulfilment of the wave breaking condition, and in unidirectional sheared

flows critical levels affect the whole wave spectrum at once at discrete heights, always

leading to wave breaking, in directional shear flows the situation is more complicated.

Turning of the background wind vector with height creates a continuous distribution

of critical levels in the vertical where the wave energy is absorbed into the background

flow, which only affect one wave-number in the wave spectrum at a time (i.e., at each

level). This effect is currently not represented in drag parametrizations, although its

role in determining mountain wave drag has been pointed out in several studies (e.g.

Teixeira and Miranda (2009), Xu et al. (2012), Xu et al. (2013)).

While wave breaking is thought to occur also in winds that turn with height (Broad,

1995), it is weaker and distributed vertically. Since the background flow no longer

needs to stagnate at critical levels, but rather is perpendicular to the affected wave-

numbers, there are also indications that flow overturning may occur at considerable

horizontal distances from the mountain that generates the waves (Shutts and Gadian,

1999). Therefore, the distribution of critical levels and of wave breaking with height

is very sensitive to the background wind profile.

In flow over a 3D mountain, with or without shear, the vertically propagating moun-

tain waves weaken aloft because of directional dispersion associated with the spread-

ing of the wave pattern around the mountain (if the flow is substantially non-hydrostatic

additional dispersion effects arise). This decay with height, which does not exist in

flow over a 2D mountain, is counteracted by the decrease of air density with height

and other processes, including critical levels, which cause the wave amplitude to in-

crease. It is the balance between all these processes that will determine the occurrence

of wave breaking or not. Furthermore, in flow over 3D mountains, wave breaking is

made less likely by flow splitting around the mountain near the surface. If much of

the flow is diverted along the mountain flanks, the wave field aloft will weaken and
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wave breaking may be limited or totally suppressed (Miranda and James, 1992). This

is a process that occurs at high N0H/U and is obviously absent in flow over 2D ridges.

Following previous studies (Shutts and Gadian (1999), Teixeira et al. (2004)), the

wind profile employed here assumes that both the magnitude and the rate of rotation

of the wind vector with height are constant. Even though it is not particularly realis-

tic, this idealized wind profile can be considered a prototype of flows with directional

wind shear, enabling us to isolate the effect of background shear on wave breaking and

encapsulate it in a single dimensionless parameter, the Richardson number, which fur-

thermore is constant. Teixeira et al. (2004) showed that the curvature of the velocity

profile associated with this type of wind profile increases the surface drag. This may

have implications for wave breaking, since a larger amount of momentum flux is then

available to be transferred to the other flow components (mean flow or turbulence)

(Teixeira and Miranda, 2009). The present study is motivated by the fact that even

if the wave breaking phenomenology and mechanisms have been fairly well studied,

it is still hard to predict when mountain waves will break in directional shear flows.

Results from linear theory on this phenomenon are obviously questionable, since wave

breaking is an intrinsically non-linear process. So, 3D numerical simulations provide

almost the only viable method to understand and predict mountain wave breaking in

a systematic way.

In this chapter, turbulence generation due to orographic gravity wave breaking is in-

directly studied using such an approach, focusing particularly on the mechanisms by

which CAT may be triggered by directional wind shear. High-resolution numerical

simulations of idealized flows over a three-dimensional axisymmetric isolated moun-

tain are carried out using the Weather Research and Forecasting model (WRF-ARW

version 3.6). The aim is to diagnose the conditions for mountain wave breaking in

terms of the orography elevation and wind shear, quantified by the dimensionless

mountain height and the Richardson number of the background flow, respectively.

In section 3.2 details about the simulations, model set-up and diagnosis of wave

breaking within the computational domain are presented. In section 3.3, results

for wave breaking in directional shear flows are presented and discussed, and the

section closes with an interpretation of the behaviour of the wave velocity perturbation

observed in the simulations. In section 3.4 the main conclusions of this study are

summarized.
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3.2 Methodology

3.2.1 Setup of numerical simulations

WRF (Skamarock et al., 2005) is a mesoscale, non-hydrostatic, fully-compressible

model whose validity in simulating mountain waves has been tested in previous stud-

ies such as Doyle (2004) and Hahn (2007). The model was used in an idealized

configuration and the dynamical core only (with no parametrizations) was employed

to run the simulations. The simulated flow is adiabatic (with no heat or moisture

fluxes from the surface), inviscid (with no explicit diffusion allowed anywhere, and

thus no Planetary Boundary Layer), and rotational effects due to the Coriolis force

are neglected. The initial conditions were determined using a constant Brunt-Väisälä

frequency N0 = 0.01 s−1, a surface potential temperature θ0 = 293 K, a mean sea

level pressure p0 =1000 hPa and a westerly background wind U = 10 m s−1 (the

magnitude of the wind velocity vector is the same also for the directional wind shear

simulations, where only the u and v velocity components change with height). The

computational domain comprises 100 grid-points in both the x and y−directions, with

an isotropic grid spacing ∆x = ∆y = 2 km. The lateral boundary conditions are open

(see section 2.2.1 for details). The lower boundary condition is imposed by assuming

a three-dimensional bell-shaped mountain with a circular horizontal cross-section,

centred in the middle of the computational domain, defined by:

h(x, y) =
H(

x2

a2 + y2

a2 + 1
)3/2

, (3.1)

where a is the mountain half-width and H is the maximum mountain height. In order

to simulate a nearly hydrostatic flow, the mountain half-width was kept fixed at 10

km in all the simulations, which corresponds to N0a/U = 10.

The model grid comprises 200 eta levels (using a terrain-following hydrostatic-pressure

coordinate), with spacing near the ground of 45 m and spacing at the top of the

domain, 20 km above ground level (a.g.l.), of 450 m. With such a high vertical

resolution the gravity waves generated by the mountain, having a vertical wavelength

of about 6 km, are everywhere well resolved (both at lower levels and at the top

of the domain where the grid is coarser). An absorbing sponge layer at the top of

the domain (above 15 km a.g.l.) was used to control wave reflection from the upper

boundary.
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The model spin-up time was estimated as 6 hours by evaluating the time evolution

of the surface pressure drag. The drag attains a steady state (with an approximately

constant value) roughly after that time. A total of 35 simulations were run. Each

simulation is 24-hours long and the model was set up to produce outputs with an

hourly frequency. The simulations differ in degree of flow non-linearity and direc-

tional wind shear intensity. For each model run the initial conditions were modified

by varying the non-dimensional mountain height N0H/U , which determines the am-

plitude of the orographic gravity waves at the source, and the Richardson number

of the background flow Riin, which determines the strength of the directional wind

shear.

The N0H/U parameter was gradually increased by varying the mountain height H

(keeping N0 and U constant) and the Richardson number of the incoming flow Riin

was decreased successively by a factor of two. More specifically, the values considered

for these dimensionless parameters are: N0H/U = 0.1, 0.2, 0.5, 0.75, 1 and Riin =∞,

16, 8, 4, 2, 1, 0.5 .

In general, the gradient Richardson number is defined by:

Ri =
N2(

∂u

∂z

)2

+

(
∂v

∂z

)2 , (3.2)

where N , u and v are the total Brunt-Väisälä frequency and wind velocity components

(including wave perturbations). Denoting the background wind by U ≡ (u0, v0, 0) ,

in the case of flows with no shear, v0 = 0 and u0 = U , which is constant with height,

thus Riin = ∞. In the case of flows with directional shear, the u0 and v0 components

are calculated at each model level based on Riin, as follows:

u0 = U cos(βz), v0 = U sin(βz), (3.3)

where β = N0/(U
√

Riin). βz is the angle that the wind vector makes with the

eastward direction (i.e., u0 and v0 are expressed in polar coordinates), and β is the

rate of wind turning with height. By decreasing Riin the rate of turning increases,

resulting in a stronger directional wind shear.

Note that since the model is run in an idealized configuration and the Coriolis force is

neglected, the atmosphere is not geostrophically balanced and the wind shear is simply

prescribed by (3.3), without making use of the thermal wind balance relationship.
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3.2.2 Calculation of Rimin near the mountain

The Richardson number provides information about the flow stability, quantifying

the ratio between buoyancy forces and shearing forces. This study relies on the idea

that for the simple atmospheric flows presented in the previous section, wave prop-

agation and (when the required conditions are satisfied) the resulting wave breaking

are the only reason for the modulation of Ri. The critical condition for wave breaking

implies vertical streamlines: in this situation, flow overturning occurs and the local

Richardson number becomes zero and then negative (when the potential temperature

gradient becomes negative). In order to identify where and when wave breaking oc-

curs in the simulation domain, the Richardson number of the output flow Riout(x, y, z)

is calculated for each simulation at all grid points using centered finite differences

first-order accurate. This Ri corresponds to the quasi-steady mountain wave config-

uration achieved after the drag stabilizes. This 3D Ri field is then analysed looking

for minimum values Rimin. When these values are negative (or lower than than 0.25),

turbulence generation by wave breaking (or by shear instability) is assumed to occur

in the simulation domain – although turbulence itself is not explicitly modelled at

the 2 km horizontal resolution employed here.

The Rimin values calculated in the Results section below are those falling within a

‘region of interest’ delimited by upper, lower and lateral bounds selected taking into

account physical relevance and computational resource availability considerations.

The upper limit of this region is simply dictated by the height of the bottom of the

sponge layer employed in the simulations, which is 15 km. A few levels just below

the sponge have been neglected to avoid numerical effects due to its proximity. The

upper limit is, therefore, z ≈ 14 km. The lower limit is chosen to avoid atmosphere-

ground interactions that may develop in frictionless simulations and that are not

relevant to the purposes of the present study. Indeed, even in a frictionless setup,

the nature of 3D flow near the ground (as described by Smith (1980) and, more

recently, by Knight et al. (2015)) will lead to low Ri values near the surface, due

to sinking of warm air from aloft in response to the lateral deflection of the flow

streamlines (i.e. incipient flow splitting). Such low Ri values, not associated with

wave propagation, are neglected by excluding in the analysis of the Riout field the

first levels above the ground that, in reality, would be located within the Planetary

Boundary Layer (PBL). In order to assess which maximum height the PBL can reach

in the atmospheric conditions considered in the frictionless simulations, simulations

with the same setup but including a PBL parametrization (the YSU-PBL scheme)

were run. The maximum PBL height reached, evaluated at the last hour of simulation

(when the PBL is fully developed), was approximately 1 km. The effect of the PBL
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on the Richardson number was clearly recognizable by the presence of a continuous

layer of low Ri which extended up to the first km of the atmosphere (not shown). A

PBL height of 1 km is reasonable considering that the simulated atmosphere is stable

and no surface heat fluxes exist so no thermally-driven turbulence can contribute to

the PBL growth. For all the simulations run, with and without wind shear, 1 km

is the lowest height used for determining Rimin. Any process that occurs below this

level would be changed by the presence of the PBL.

Several studies on both 2D and 3D flows (see for example Ólafsson and Bougeault

(1997) and Peng and Thompson (2003)) have pointed out that the primary effect of

surface friction on mountain waves is to decrease the wave amplitude by smoothing

the lower boundary condition and hence making wave breaking less likely. Indeed, as

Ólafsson and Bougeault (1997) first noted considering different mountain heights, and

subsequently Peng and Thompson (2003) confirmed for different mountain widths,

the presence of a boundary layer extends the validity of linear solutions in the free at-

mosphere (with which we are concerned here), by making flow over higher mountains

behave as invicid flow over lower (or broader) mountains (see Peng and Thompson

(2003)). Furthermore, the effect of the boundary layer depends on its depth, structure

and stratification (stably stratified or convective boundary layers can interact with

mountain waves in significantly different ways (Jiang and Doyle, 2008)). Inviscid sim-

ulations avoid these additional complications by addressing a generic situation, which

may be easily made more realistic via a suitable adjustment of the lower boundary

condition.

Finally, a square region surrounding the mountain, corresponding to 50 km to the

east, west, north and south from the centre of the mountain, has been chosen as

lateral limit. These lateral boundaries are applied only for the wind shear simula-

tions. Using linear theory, Shutts (1998) demonstrated the existence of a so-called

‘asymptotic wake’ trailing away from the mountain in directional shear flows. This

flow structure is due to the presence of a component of the wind parallel to the wave

phase lines, which causes the wave energy to be advected indefinitely away from the

mountain. In numerical simulations, this translates into a wave field that extends out

of the computational domain. As a consequence, wave breaking events can often be

detected at the edge of the domain. Trying to contain the entire wave field into the

simulation domain would require increasing considerably its size and the associated

computational costs. Even so, the robustness of the results would not be guaran-

teed because this asymptotic wake seems to be able to extend indefinitely. Thus,

the analysis of results will focus on the region surrounding the mountain where the

phenomena taking place (including wave breaking) could be, in realistic conditions



Chapter 3. Turbulence generation by mountain wave breaking 28

with complex orography, clearly attributed to the presence of the mountain under

consideration (and not, for example, to other nearby mountains).

3.3 Results and discussion

Within the ‘region of interest’ defined in the previous section, Rimin values were

determined for the 35 numerical simulations carried out. Table 3.1 and Table 3.2

contain the results obtained for two representative cases: Riin = ∞ and Riin =

8, respectively. For each simulation the N0H/U values used in input are specified,

and the Rimin position on the horizontal and vertical grid in the output flow are

shown. These results are presented using tables given the importance attached to the

exact numerical value of Rimin, on which some relevant considerations can be made.

However, a complete overview of the results obtained in all the simulations will be

provided below using a more comprehensive regime diagram.

Table 3.1: The Rimin values found for the simulation with Riin = ∞. X and Y

give the horizontal position where the minimum Richardson number values occur

(the mountain is located at the centre of the domain X = 0, Y = 0). The altitude

in meters is also indicated.

H (m) N0H/U Altitude (m) Y (km) X (km) Ri min

100 0.1 2041 - 2 4 344.80

200 0.2 1577 0 6 83.04

500 0.5 1357 0 8 10.30

750 0.75 1444 0 8 3.50

1000 1 1650 0 8 1.40

Table 3.2: As Table 3.1 but for the simulation with Riin = 8.

H (m) N0H/U Altitude (m) Y (km) X (km) Ri min

100 0.1 5358 50 - 24 4.65

200 0.2 5429 50 - 24 3.00

500 0.5 5642 50 - 28 0.94

750 0.75 6014 50 - 36 0.20

1000 1 6391 40 - 36 -1523.17
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3.3.1 Simulations without wind shear

Analysis of the 3D Riout field for the no-shear case showed, as expected, that the ver-

tical wave propagation modulates the total Richardson number of the flow, decreasing

its value by increasing the wind shear and modifying the stability in some regions. All

the minimum values are located directly above the mountain or slightly downstream,

as shown by the sketch in Figure 3.1(a). This result is expected: mountain waves

transport energy vertically. When the wave perturbations are in hydrostatic balance,

this energy transport is upward directly above the mountain.

(a)

(b)

Figure 3.1: Sketch of the computational domain showing the location of the Rimin

values (crosses) for the simulations with Riin =∞ (a) and Rimin = 8 (b), according

to Tables 3.1 and 3.2. The circle represents the mountain. In (b) the arrow denotes

the background wind direction at the level where wave breaking is detected, and

the region within the square represents the ‘region of interest’ defined in section

3.2.2. Both sketches refer to the N0H/U = 1 simulations only.

For small-amplitude mountains (H = 100 m, H = 200 m ), while being perturbed by

the wave, the Richardson number values are very high. For larger mountain heights

(H = 500 m, H = 750 m, H = 1 km) the flow becomes more nonlinear and the

Ri values decrease down to a minimum of 1.4 (see Table 3.1) for a 1 km mountain.
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(a)

(b)

Figure 3.2: Flow structure for two successive model outputs in the no-shear
simulation using a mountain height H = 1.5 km: 20th (a) and 21st (b) hours of
simulation. The solid lines are isentropic surfaces (with a spacing of 1 K), the

background contour field denotes the u velocity component (in m s−1).

However, for all the simulations performed, negative values of Ri were not observed,

emphasizing that in the simple case of a constant background wind and stratifica-

tion over an axisymmetric mountain wave breaking does not occur for N0H/U ≤ 1.

This is in agreement with linear theory (Smith, 1989), and is corroborated by the

numerical simulations of Miranda and James (1992), which also indicate that beyond

the narrow range of N0H/U > 1 for which wave breaking does occur, the vertically

propagating waves weaken due to flow splitting. Therefore, the present results are

consistent with both previous numerical simulations and linear theory, although the

latter was formulated by Smith using the Boussinesq approximation, and using linear

solutions to study an intrinsically non-linear phenomenon such as wave breaking is

questionable.

Previous studies (Smolarkiewicz and Rotunno, 1989; Miranda and James, 1992; Bauer
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et al., 2000) suggest that a 3D flow over an axisymmetric mountain enters a wave-

breaking regime for 1 < N0H/U < 2. Thus, in order to induce wave breaking, addi-

tional simulations using mountain heights H of 1.25 km and 1.5 km (i.e. N0H/U =

1.25 and 1.5, respectively) were run. Figure 3.2 shows vertical cross sections (pass-

ing through the centre of the computational domain) of the potential temperature

(black solid lines) and u velocity (filled contours) for the 20th (Figure 3.2(a)) and

21st (Figure 3.2(b)) hours of the simulation for H =1.5 km. In Figure 3.2(a) the

steepness of isentropic surfaces (which coincide with streamlines) is critical, i.e. the

streamlines are vertical at a height of about 2 km, just downstream of the mountain,

and in Figure 3.2(b) the presence of overturned streamlines implies local static insta-

bility. In this situation, waves break, and subsequently the flow becomes statically

stable again (not shown). Any turbulence generation thus tends to be intermittent.

A similar flow configuration is found for the simulation performed using H =1.25 km,

confirming that for N0H/U > 1 wave breaking may be observed in unsheared flow, as

originally found by Miranda and James (1992). The good agreement between our re-

sults and previous theoretical and numerical studies demonstrate that the numerical

setup chosen for this study is appropriate.

3.3.2 Wind shear simulations

Adding a directional wind shear to the background flow reduces the stability of the

flow by decreasing the value of Ri by an amount that, if large enough, can lead

alone to generation of instabilities, and hence potentially to turbulence. In real flows,

a background Riin ≤ 0.25 would allow spontaneous generation of turbulence that

would mask the turbulence due to wave breaking. Because of that, and also because

such low values of Ri are very rare in the real atmosphere, the smallest value of Riin

considered here is 0.5, which is still above the critical threshold value of 0.25 for which

dynamic instability is expected. The largest value of Riin, on the other hand, was

chosen so that the corresponding wind shear, even if weak, is still able to affect the

waves appreciably.

When mountain waves are generated, the shear due to the waves is added to the shear

of the background flow and the resulting Richardson number is lower (although N is

also modified). Thus, in shear flows, mountain wave propagation triggers turbulence

earlier than in no-shear flows (as will be seen in more detail next). However, due to

the nonlinear response of the waves to the background flow and the effect of critical

levels, these processes are far from being simply additive.
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A complete overview of the numerical simulation results is provided by the regime

diagram shown in Figure 3.3. The model outputs of the last 7 hours of the simulations

were analysed, looking for Rimin. In those simulations where wave breaking does not

occur (Riout always positive) the hourly values of Rimin are nearly constant and may

vary, between an hour and the next, by only a few percent. When wave breaking

is observed, in contrast, the Rimin values oscillate in time due to the intermittency

of this process, but remain negative. In Figure 3.3, all the Rimin values refer to

the last hour of simulation. The four categories used to build the regime diagram

have been chosen in accordance with the background literature, from which it is

known that the wave-turbulence interaction may begin with a dynamical instability,

which leads to convective instability and then to turbulence (Nappo, 2012). The four

categories are: Rimin < 0 indicating convective instability due to wave breaking events,

0 < Rimin ≤ 0.25 indicating dynamic instability (potentially an index of turbulence),

0.25 < Rimin ≤ 1 indicating a flow having kinetic energy available for turbulent

mixing, and Rimin > 1 indicating non-turbulent flow where no wave breaking events

occur.

Whilst it is straightforward to assign a meaning to those Rimin values that are negative

or large and positive, it is less obvious how to interpret the values of Ri that are

small but still positive. As is well known, a Richardson number lower than 0.25

is a necessary but not sufficient condition for dynamical instability (Miles, 1961).

However, Hanazaki and Hunt (2004) argued that the critical value for the stability

of the flow above which turbulence cannot be sustained is Rimin ∼ 0.3. Hence, the

choice of a critical Richardson number for turbulence generation is controversial,

and the effective threshold value of Ri can be somewhat larger than 0.25. In fact, in

atmospheric flows where the background velocity vector varies with height the energy

condition for the instability threshold is less stringent than Ri < 0.25 (Hines, 1971;

Turner, 1973). Further, in case of finite perturbations (as the ones generated by finite

amplitude gravity waves) Businger (1969) demonstrated that when Ri < 1 there will

be a net release of kinetic energy in the flow. This energy may be used by the flow to

initiate turbulent mixing. As mentioned before, in the simulations presented here, no

turbulent mixing is allowed. Therefore, categories 2 (triangles, 0 < Rimin ≤ 0.25) and

3 (diamonds, 0.25 < Rimin ≤ 1) in the regime diagram have been chosen to highlight

the flows that, potentially, can evolve into turbulence.

It is also worth mentioning that flows in the regime diagram having Ri < 0.25 can be

relevant for the problem of mountain wave reflection and resonant drag enhancement.

Indeed, when waves propagate from layers with larger Ri to layers with Ri ≤ 0.25, in

the presence of critical levels, linear theory shows that the wave solution changes its
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Figure 3.3: Regime diagram describing the nature of the flow using four categories
based on the Rimin values. In the lower horizontal axis a logarithmic scale is used
for Riin, however for increased readability the actual Riin values considered are

shown on the upper horizontal axis.

nature and perfect wave reflection or over-reflection may occur (Lindzen and Tung,

1976). If the reflected downward-travelling waves interfere constructively with the

incoming upward-travelling waves, the wave amplitude, and hence the drag, may be

amplified by a large factor (Lin, 2007).

Analysing the regime diagram in Figure 3.3, we can see that whereas in the no-shear

case (Riin = ∞) wave breaking does not occur (Rimin > 1 always), in the shear

flows considered here wave breaking is always found for a non-dimensional mountain

height N0H/U = 1, no matter what Riin is used. For N0H/U = 0.75 wave breaking is

detected when Riin ≤ 4, but a very small value of Ri lower than 0.25 occurs already for

Riin =8. For N0H/U = 0.50 wave breaking is present when Riin ≤ 2, although Rimin is

never larger than 1 for any wind shear intensity considered. It is only when assuming

very small mountain heights (N0H/U = 0.1 and N0H/U = 0.2) that wave breaking

is absent. However, when using a strong background wind shear (low Riin), the Rimin

values obtained are small (lower than 1 or 0.25). This is, of course, consistent with

the fact that we always have Rimin < Riin.

The regime diagram therefore shows that either considering a fixed wind shear in-

tensity of the background flow and increasing the mountain height or using a fixed

N0H/U and increasing the wind shear intensity makes the flow more likely to over-

turn, ultimately leading to wave breaking. By selecting flow overturning (Rimin < 0)

as a discriminating factor, it is possible to split the regime diagram in two sub-regions
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representing a non-wave-breaking flow regime and a wave-breaking regime. Regimes

where the flow behaviour is less clear-cut are accounted for by the relatively narrow

regions with 0 < Rimin ≤ 0.25 or 0.25 < Rimin ≤ 1.

It should be noticed that if the vertical axis in Figure 3.3 was extended up to higher

values of N0H/U the wave breaking regime would continue, including now also the

no-shear case (results not shown), as discussed in the previous section. This was

confirmed in a few examples, but simulations using mountain heights of 1.25 km

and 1.5 km and finite Riin were not carried out systematically because it is clear be-

forehand that they would also produce wave breaking. Even larger mountain heights

(N0H/U > 1.5) were not considered because the flow would then enter a flow-splitting

regime (Lin, 2007) where wave generation aloft would be strongly attenuated or to-

tally suppressed (Miranda and James, 1992).

3.3.2.1 Non-wave breaking regime

In the absence of wave breaking, mountain waves are almost perfectly steady and

the perturbation pattern associated with their propagation is stationary in time.

Therefore, for those flows falling into the non-wave breaking regime in Figure 3.3,

Rimin occurs at the points where the flow gets closest to instability. The stationary

character of the solution enables one to analyse how it varies as function of the

input conditions. Figure 3.4 shows how the Rimin values vary as a function of Riin

for a same N0H/U value in the flows with shear. The one-to-one line represents

the response that the flow would have in a perfectly linear regime, where waves are

generated by an infinitesimal mountain and their perturbation of the background

flow is itself infinitesimal (Riout = Riin). As we start to consider finite mountain

heights, the simulation results show that an increase in N0H/U corresponds to a

decrease of Rimin in flows with the same background wind shear (i.e. same Riin). A

base-2 logarithmic scale is used on both the horizontal and vertical axes to highlight

the values of Riin used, and also the fact that, when N0H/U = 0.1, the variation

of Rimin with Riin suggests the existence of a power law behaviour (more exactly a

linear relationship). However, the N0H/U = 0.1 curve is the only one that behaves

in this way. For higher values of N0H/U , the relationship between Rimin and Riin is

more complicated and the small number of data points in the cases NH/U = 0.5 and

NH/U = 0.75 does not allow many conclusions to be drawn about this relationship.

This small number of points is due to the fact that, in these cases, the majority of the

points corresponds to wave breaking situations. A final comment on the non-wave

breaking regime concerns the flow category 2 (represented by triangles) that seems to
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Figure 3.4: Rimin for flows in the non-wave breaking regime (according to Figure
3.3) versus Riin for different N0H/U values. On both the horizontal and vertical

axes a base-2 logarithmic scale is used.

be under-represented in the regime diagram of Figure 3.3. Only two of the considered

background flow conditions (N0H/U = 0.75 with Riin = 8, and N0H/U = 0.2 with

Riin = 0.5) lead the flow to have a quasi-stationary configuration with 0 < Ri <

0.25. This is partly explained by the fact that the values of N0H/U and Riin have

a relatively sparse sampling in the regime diagram. Taking into account more Riin

values in the interval [0.5, 16] would probably increase the number of points falling

into this category. Nonetheless, this region in the flow regime is necessarily narrow.

This is consistent with a previous study by Laprise and Peltier (1989), where it was

shown (for a case without shear) that when the flow transitions from a situation

without wave breaking to a situation with flow overturning, the Richardson number

changes from being positive and larger than 0.5 to (suddenly) becoming large and

negative, without taking (steady) values in the interval [0, 0.5] (see their Figure 10).

Therefore, a steady state mountain wave field having 0 < Ri < 0.25 may be difficult

to attain, perhaps because of the onset of dynamical instability.

3.3.2.2 Wave breaking regime

The mechanism leading to wave breaking in shear flows is fundamentally different

from the one acting in the no-shear case where the amplitude of the mountain is the

sole responsible for the fulfilment of the flow overturning condition. For a no-shear

flow no environmental critical levels exist, but a self-induced critical level is created

where the background flow velocity U plus the wave velocity perturbation (u′, v′) add



Chapter 3. Turbulence generation by mountain wave breaking 36

up to zero, leading to vertical streamlines (Clark and Peltier, 1984). For directional

shear flows, environmental critical levels are defined as the heights where the hori-

zontal wave number vector κH ≡ (k, l, 0) is perpendicular to the background wind

vector U ≡ (u0, v0, 0). When this happens (U ·κH = 0), the vertical wave number m

defined in linear theory (adopting a zeroth-order Wentzel-Kramers-Brillouin (WKB)

approximation) as m = N0(k2+l2)1/2

u0k+v0l
approaches infinity and the vertical wavelength

λz = 2π/m zero. As a wave packet approaches a critical level it experiences a fast

oscillation (m → ∞) for which the vertical velocity becomes small compared to the

horizontal velocity perturbation (that actually diverges to infinity) (Shutts, 1998). In

these conditions the amplitude of the disturbance increases and the waves break.

Figure 3.5: Variation of the wind direction with height for the simulation with

N0H/U=1 and Riin=8. The profile includes the point where the minimum Richard-

son number occurs (according to Table 3.2).

Figure 3.5 helps to visualize what happens when a wave packet approaches a critical

level. It explains the reason why the Rimin found for N0H/U = 1 and Riin = 8

(see Table 3.2) is so markedly negative. Although a wave packet comprises a range

of wave-numbers, that have a range of critical levels, the most active (and therefore

most easily discernible) critical levels affect the wave-numbers that dominate the wave

energy spectrum. The plot shows the variation of the wind direction (in degrees) with

height. When the wave packet is approaching the dominant critical level, the wave

amplitude increases and the background flow (solid line) is strongly modified by the

wave perturbation (see dashed line). At∼ 6391 m, the Richardson number approaches

a highly negative value (Rimin = -1523.17) (see Table 3.2) because the wind shear is

made locally zero by the wave perturbation. The negative sign, on the other hand,
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is due to flow overturning (i.e. N2 < 0). Clearly, this value is as indicative of static

instability as any other negative value, since only Rimin < 0 matters for that purpose.

The aim of this work is not only to diagnose wave breaking occurrence for given

background flow conditions, but also to identify regions within the simulation domain

where wave breaking and the potential development of turbulence are expected. The

sketch in Figure 3.1(b) shows the area where the Rimin values occur for the simulations

with Riin = 8 (based on Table 3.2); the arrow is the wind direction at the level where

wave breaking occurs for the 1 km mountain case. Wave breaking is observed at a

height of about 6.4 km where the wind is from the south-east which implies, from

the definition of critical levels in directional shear flows, that the direction of the

dominant wave-number vectors at that level is north-east (or south-west). The Rimin

values are found near the edge of the square ‘region of interest’, due to the presence

of the asymptotic wake described in Section 3.2.2.

The location and values of Rimin (such as given in Tables 3.1 and 3.2) allow us

to delimit regions in the vicinity of the mountain where more detailed attention

should be focused. Rimin by itself is a poor indicator of what is going on within

the simulation domain: wave breaking may be occurring simultaneously in different

regions. Additionally, the temporal and spatial evolution of the flow after a wave

breaking event is of particular interest. Figure 3.6 shows 3D plots where all the grid

points for which Riout < 0.25 are shown. The plots pertain to wind shear simulations

run using a mountain height of 1 km where, according to the regime diagram in

Figure 3.3, wave breaking always occurs. These plots can be seen as instantaneous

snapshots of the flow at the 18th hour of simulation. The different background wind

profiles for each Riin considered are also shown.

In order to interpret the Riout < 0.25 fields displayed in Figure 3.6 in more detail, the

temporal variability of Ri in a wave breaking event was analysed. For this purpose,

an additional simulation using Riin = 0.5 and a higher model output rate (i.e., 6

model outputs per hour instead of 1) was carried out. Figure 3.7 shows a time-series

of Ri in the 6 grid-points adjacent to the one where Rimin is located at the 18th hour

of the simulation, which has horizontal coordinates X = 22 km, Y = −10 km and an

altitude z ≈ 3.1 km. The time-series begins at the 7th hour of simulation (the first 6

hours have been excluded because they correspond to the model spin-up time), and

data are plotted every 10 minutes.
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Figure 3.7: Time-series of the Richardson number evaluated at six grid-points

adjacent to the one where, according to the Riout field, wave breaking occurs in the

simulation with N0H/U = 1 and Riin = 0.5 . The coordinates X, Y or each point

are shown. For all the considered points z ≈ 3100 m.

The purpose of Figure 3.7 is to point out that for each grid-point, after the first wave

breaking event has taken place (the first time Ri drops below 0), Ri keeps oscillating

between negative and positive values. Additionally, Ri remains roughly between 0

and 0.25 both before and after wave breaking periods. The shaded regions in the

3D plots of Figure 3.6 therefore presumably represent locations where waves are at

different stages of their intermittent breaking process, including waves which are

breaking (Ri < 0), about to break, or have already broken (0 < Ri < 0.25). When

mountain waves break the associated convective instability can lead to turbulence

generation (known as Clear Air Turbulence or CAT), thus the plots in Figure 3.6 can

been thought of as continuous regions of (potential) occurrence of mountain wave-

induced CAT. The extent of these regions is variable, increasing with the background

shear intensity. While for simulations using Riin = 16 localized shading is visible

occupying a very small fraction of the ‘region of interest’, the flow topology for Riin =

0.5 is much more complex. This happens because when the shear due to waves is

added to an already strong background wind shear, Ri values lower than 0.25 occur

simultaneously in many vertical levels and almost everywhere across the horizontal

plane. An important aspect is that, for stronger background shear, Ri < 0.25 regions,

and the Rimin values embedded in them, occur at lower levels. This means that, the

stronger the directional shear is, the faster (or, more exactly, the lower down) the wave

energy is dissipated, preventing wave breaking at higher levels. This is due to the
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greater density of critical levels, which leads to more concentrated wave amplification,

breaking, and subsequent dissipation, as will be detailed below.

The definition of critical level (U · κH = 0) implies that, in directional shear flows

where the wind turns with height continuously, all levels are critical levels. Unlike

mountain waves generated by a sinusoidal terrain corrugation, orographic gravity

waves excited by an isolated mountain do not have a single forcing wave-number, but

rather a full spectrum of waves, with a range of wave-numbers pointing in all directions

(Nappo, 2012). When the wind turns with height there will always be a wave-number

vector perpendicular to the wind direction at that level. However, in a wave breaking

event we can assume that only the most energetic wave-numbers (associated with the

largest wave amplitudes) are able to dominate the behaviour of the entire wave packet

and cause wave breaking. The other less energetic wave-numbers can still change the

background flow but they will not contribute as importantly to wave breaking (as

shown by Figure 3.5). Therefore, perhaps every point where wave breaking is detected

within the computational domain can be seen as a point where the background wind

velocity vector is perpendicular to a dominant horizontal wave-number vector.

Because of the helical wind profile employed in the simulations, in weaker shear flows

(such as that with Riin = 16) the wind vector and the (most energetic) horizontal

wave-number vectors attain perpendicularity at higher levels, making wave breaking

take place at high altitudes. In stronger shear flows (such as those with Riin = 1 or

0.5), the same wind angle occurs at lower levels. Thus, fulfilment of the condition

U · κH = 0 is more probable for a major part of the wave spectrum in the lower

atmosphere. For example, using Riin = 16 the wind changes from westerly at the

ground to easterly at the bottom of the sponge layer (14 km). Considering a stronger

wind shear, for example Riin = 1, the same change in wind direction occurs over

the lowest 3 km of the atmosphere. Since the wave energy is likely to be dissipated

by wave breaking at the lowest critical levels the waves encounter (for low Ri, there

may be multiple critical levels, as pointed out by Teixeira and Yu (2014)), at greater

altitudes nearly all the wave energy has already been dissipated.

To conclude, we emphasize that the flow topology displayed in Figure 3.6 was found

to be relatively insensitive to changes in both vertical and horizontal resolutions.

Sensitivity tests using a horizontal resolution of 1 km instead of 2 km, and 400 model

vertical levels instead of 200, were carried out for Riin = 16 and 1 (weak and strong

shear, respectively). In these simulations, the Riout < 0.25 field, which characterizes

regions of potential flow instability (not shown), had mostly the same distribution

as in Figure 3.6, being only marginally affected by changes in resolution. These

sensitivity tests corroborated that the resolution adopted in the present study seems
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appropriate to represent the major physical processes taking place in the simulation

domain.

3.3.3 A possible wave breaking diagnostic

Although there is no immediate way to evaluate the dominant wave-number vectors in

the mountain wave field (a spectrum would have to be computed), a joint qualitative

analysis of the flow structure and of the background wind profile for the cases shown

in Figure 3.6 suggests that these wave-number vectors (k,l) are roughly aligned with

the corresponding horizontal velocity perturbation vectors (u′,v′). Since the domi-

nant wave-number vector and the background wind vector (u0, v0) are approximately

perpendicular at each height (due to critical levels), this is equivalent to (u0, v0) and

(u′, v′) also being perpendicular. This behaviour was detected both in weak and in

strong shear flows.

In Figure 3.8(a) and 3.8(c) two horizontal cross-sections of the wind field for the

simulations with Riin = 16 and Riin = 1 at the 18th hour of simulation are shown. The

cross-sections are taken at the model levels where, according to the analysis carried

out in Figure 3.6, wave breaking (Riout < 0) occurs. The regions where Riout 6 0.25

are shown by Riout contour lines. The magnitude of the velocity perturbation vector

(u′,v′) is shown by the background contours. The black vectors are the background

wind and the red thick vectors are the wave velocity perturbation (calculated by

subtracting the background wind from the total flow).

In Figure 3.8(a) the branch of maximum horizontal velocity perturbation elongated

to the north-west, where the background wind vector and the velocity perturbation

vectors become nearly perpendicular, coincides partially with the shape of the lowest

shaded region displayed in Figure 3.6(a) (corresponding to the Riout contours in the

cross-section). In fact, both shaded regions in Figure 3.6(a) extend vertically, there-

fore corresponding to several model levels. The map in Figure 3.8(a) (at z ≈ 7 km)

contains only some of the points belonging to the lowest region. Except for the afore-

mentioned elongated region, it is clear that elsewhere in the computational domain

the wave velocity perturbation is very small and does not modify the background

flow appreciably (whose vectors then coincide with those of the total flow). The same

behaviour is observed for the strong wind shear case (Figure 3.8(c)), where depart-

ing from the middle of the computational domain towards the north-west, a region

where the wave velocity perturbation becomes large and almost perpendicular to the

background wind is visible. This region coincides with part of the lower boundary of
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the main shaded region displayed in Figure 3.6(e), at a height of about 2 km.

(a) (b)

(c) (d)

Figure 3.8: Horizontal cross-sections of the wind field, (a) and (c), and Riout, (b)

and (d), for the simulations with Riin = 16 ((a) and (b)), Riin = 1 ((c) and (d)) at

the 18th hour of simulation. The cross-sections are taken at an altitude of about

7 km ((a) and (b)) and 2 km ((c) and (d)). In (a) and (c), on the background, the

magnitude of the velocity perturbation vector (u′,v′) (in m s−1) is shown. The thick

contour lines (white in (a), black in (c)) denote Riout = 0.25. The black vectors are

the background wind and the red thick vectors are the velocity perturbation. In

(b) and (d), on the background, the Riout field is shown. All the Riout values higher

than 2 and lower than 0 are represented by the same color. The dashed contour

lines represent the angle between the background wind vector and the velocity

perturbation vector. The thick contour lines again correspond to Riout = 0.25.

Both in Figure 3.8(a) and 3.8(c), other locations where (u0, v0) and (u′,v′) are almost

perpendicular and the wave perturbation is large can be detected. These locations

lie outside the Riout = 0.25 contour, but still within the elongated region in Figure

3.8(a) corresponding to the maximum velocity perturbation, and at the south-east

edge of the computational domain in Figure 3.8(c). Since at these locations Riout is

higher than 0.25 but still small, as shown in Figure 3.8(b) and 3.8(d), this may mean
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that while being able to perturb the background flow, the wave amplitude is not large

enough to induce dynamic instability.

The effective angle that the velocity perturbation vectors form with the background

wind vector is shown in Figure 3.8(b) and 3.8(d). The dashed contour lines are a

selected range of contour levels with values around 90 degrees, and in the background

the Riout field is shown. As observed in Figure 3.8(a) and 3.8(c), where the velocity

perturbation is large and Ri 6 0.25 the angle between the two vectors tends to be

a right angle, but it can vary between 80 and 130 degrees. Other areas within the

computational domain where the two vectors make an angle roughly between 80 and

130 degrees can be detected, but in these areas the wave perturbation is small, hence

it would be questionable to attach any significance to them.

These preliminary findings, based on a simple visual inspection of the Ri and wind

velocity vector fields, contribute to improve our understanding of the flow structure

displayed in Figure 3.6. They suggest a link between the orientation of the velocity

perturbation vector and the background wind vector in high-amplitude wave regions,

which is confirmed by a mathematical argument based on linear theory, presented

next.

For hydrostatic, adiabatic, 3D, frictionless flow without rotation, the Taylor-Goldstein

equation, which governs the behaviour of mountain waves, takes the form (Nappo,

2012):
d2ŵ

dz2
+

[
(k2 + l2)N2

(ku0 + lv0)2
− ku′′0 + lv′′0
ku0 + lv0

]
ŵ = 0, (3.4)

where ŵ is the Fourier transform of the vertical velocity, and the primes denote

differentiation with respect to z.

The Fourier transforms of the horizontal velocity perturbations are given by (Nappo,

2012):

û′(k, l, z) =
ik

k2 + l2

[
lŵ(lu′0 − kv′0)
k(ku0 + lv0)

+
dŵ

dz

]
, (3.5)

v̂′(k, l, z) =
−il

k2 + l2

[
kŵ(lu′0 − kv′0)
l(ku0 + lv0)

− dŵ

dz

]
. (3.6)

Note that the second terms within the square brackets in (3.5)-(3.6) correspond to

a vector that is parallel to the horizontal wave-number vector (k, l), whereas the

first terms correspond to a vector that is perpendicular to (k, l). In shear flows, the

solution to (3.4) may be expressed as:

ŵ = ŵ(z = 0)e
i

zR
0

m(z)dz
. (3.7)
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Substituting (3.7) into (3.5)-(3.6) and adopting a zeroth-order WKB approximation,

(3.5) and (3.6) become:

û′(k, l, z) =
ikŵ

k2 + l2

[
l(lu′0 − kv′0)
k(ku0 + lv0)

− i N0(k
2 + l2)1/2

ku0 + lv0

]
, (3.8)

v̂′(k, l, z) =
−ilŵ
k2 + l2

[
k(lu′0 − kv′0)
l(ku0 + lv0)

+ i
N0(k

2 + l2)1/2

ku0 + lv0

]
, (3.9)

where m = N0(k
2 + l2)1/2/(ku0 + lv0) is the same expression for m as in the constant

wind case, but where u0 and v0 vary with height because of directional shear. The

WKB approximation assumes that the background flow changes slowly with z com-

pared to the vertical wavelength of the waves. A slowly varying medium implies a

slowly varying vertical wave-number, which allows us to approximate m as described

above. Contrary to what one may expect, the WKB approximation is still valid in

flows with a fairly low Richardson number, as shown by Teixeira et al. (2004) and

Teixeira and Miranda (2009).

At a critical level ku0 + lv0 = 0, which suggests that both the terms within the

brackets in (3.8)-(3.9) would diverge to infinity. However, the helical wind profile

described by (3.3) implies that

u′0 = −U sin(βz)β = −βv0 , v′0 = U cos(βz)β = βu0, (3.10)

and substituting lu′0 − kv′0 = −β(ku0 + lv0) into the numerators of the first terms on

the right-hand side of (3.8) and (3.9), the equations for û and v̂ become:

û′(k, l, z) =
−ilβŵ
k2 + l2

+
kŵ

k2 + l2
N0(k

2 + l2)1/2

ku0 + lv0

, (3.11)

v̂′(k, l, z) =
ikβŵ

k2 + l2
+

lŵ

k2 + l2
N0(k

2 + l2)1/2

ku0 + lv0

. (3.12)

This shows that at critical levels (ku0 + lv0 = 0) the second terms on the right-

hand side are the only ones that diverge to infinity, and therefore are overwhelmingly

dominant. Under these conditions, the (û′, v̂′) vector is parallel to the wave-number

vector (k, l). Although û′ and v̂′ are the Fourier transforms of the physical u′ and

v′ perturbation velocities, and thus contribute to u′ and v′ from a range of wave-

numbers, their contribution is dominant at critical levels, where (k, l) · (u0, v0) = 0,

because of this divergent behaviour. Hence the condition that (û′ , v̂′) and (k, l) are

parallel at critical levels can be translated in physical space into a condition stating

that (u′, v′) and (u0, v0) are approximately perpendicular, which explains what can

be seen in Figure 3.8.
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Note that considering a series expansion of the vertical wave-number up to second- or

third-order in the WKB approximation in (3.7), as done by Teixeira et al. (2004) and

Teixeira and Miranda (2009), would not add much to the present analysis or affect

the conclusions inferred therefrom. This power series can be expressed as the leading

zeroth-order term multiplyed by 1 plus higher-order corrections that have no singular-

ities. Hence the singular behaviour of the whole series at critical levels can be inferred

correctly using only the zeroth-order term. Furthermore, inclusion of non-hydrostatic

effects in the WKB solution is not physically justified, since mountain waves are per-

fectly hydrostatic at critical levels, as noted by Grubǐsić and Smolarkiewicz (1997).

3.4 Summary and conclusions

In this chapter orographic gravity wave breaking in flows with directional wind shear

has been investigated. A set of numerical simulations were performed to study wave

breaking using orography and wind profiles with a common idealized form, but vary-

ing terrain elevations and shear intensities, respectively. The numerical simulation

results were summarized in a regime diagram classifying the flow behaviour. In no-

shear flows, wave breaking was observed only for dimensionless mountain heights

N0H/U > 1, as found by previous authors.

In directional shear flows, for the values of Riin considered here, wave breaking al-

ways occurs when N0H/U = 1. However, for gradually stronger directional shears

(lower Riin) the critical N0H/U for wave breaking decreases down to 0.5. Therefore,

in presence of directional shear, wave breaking can occur over lower mountains than

in the constant-wind case, a result that is not wholly unexpected.

When mountain waves break, the associated convective instability can lead to turbu-

lence generation (which is one of the existing forms of CAT). In this study, the flow

topology during wave breaking events was studied in order to identify regions within

the computational domain where potential CAT generation is expectable. These

regions correspond to all the points in the ‘region of interest’ embedded in the com-

putational domain where the Richardson number of the output flow Riout is lower

than 0.25. As the analysis of the temporal variability of Ri revealed, these dynamical

instability regions can represent waves at different stages of their intermittent break-

ing process, namely: waves which are breaking, about to break, or that have already

broken. The flow topology inferred from the present study can be summarized as

follows:
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• in contrast with no-shear flows where wave breaking occurs essentially over the

mountain, for the helical wind profiles with directional shear adopted in this

study, the flow overturning regions are more three-dimensional and spread along

the 3 spatial directions;

• increasing the strength of the directional shear (i.e., reducing the value of Riin)

leads to more numerous wave breaking events and to wider regions of (potential)

turbulence generation;

• for stronger shear flows, wave breaking occurs at lower levels, and all the wave

energy is dissipated within the first few kms above the ground because of the

fast rate of turning of the background wind with height. However, this does not

imply that a stronger directional shear produces less dangerous CAT. Indeed,

in real atmospheric conditions the wind can begin to turn with height at any

altitude. By changing the altitude at which the wind starts to turn, we can

reasonably expect that the region of instability found near the ground in the

simulations presented here will be translated upwards accordingly. However,

the situation is complicated by the fact that an additional physical parameter

is added to the problem: the height where the wind begins to turn. This is a

possible topic for future study.

The velocity field in a wave breaking event has also been analysed. By examining

the dynamics of the horizontal velocity perturbations associated with the waves in

Fourier space, it was found that the Fourier transform of the horizontal velocity

perturbation vector and the wave-number vector are aligned at critical levels. When

transposed to physical space, this explains the approximate perpendicularity between

the wave velocity perturbation vector and the background wind vector detected in

the flow cross-sections. However, it was observed that the angle between the two

vectors ranges from 80 to 130 degrees. A reason for this behaviour may be that

at a critical level wave-numbers other than the dominant one can still play a role

in determining the orientation of the velocity perturbation vector, especially if the

energy of the waves at the wave-number meeting a critical level is especially low.

This approximate perpendicularity could in principle be used as a diagnostic for CAT

forecast in directional shear flows. Indeed, looking at the orientation of the (u′, v′)

vector is much easier than detecting where the most energetic wave components have

critical levels, which entails the calculation of spectra.

Although the validity of this diagnostic is supported by a theoretical argument, its

generality and applicability to real flows must be tested. Concerning the general-

ity of the result, although the physical interpretation presented in Section 3.3.3 relies
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crucially on the form of the helical wind profile (3.3), we can expect it to hold approxi-

mately for any wind profile characterized by a relatively large background Richardson

number. This is because the ratio between the second and the first term in (3.8) and

(3.9) scales with Ri
1/2
in . Therefore, even without considering a specific wind profile

we expect the second term to dominate for large Riin. Note, however, that this is a

weaker criterion than the one used in Section 3.3.3, since it does not rely on singular

behaviour (for which a term is infinitely larger than the other). Further clarification

of this issue would require additional numerical simulations, which are beyond the

scope of this study.

Concerning the applicability of the suggested diagnostic to real flows, difficulties may

arise from the need to isolate the background flow from the total flow containing

the wave perturbation. For this purpose, the wind field measured upstream of the

mountain or averaged over the surrounding area may be used. It may also be chal-

lenging to distinguish between flow regions where the perpendicularity of the vectors

is a signature of wave breaking and regions where this does not happen. Probably,

an additional condition, involving the magnitude of the flow perturbation, will be

necessary.

It is worth mentioning that developing methods to diagnose wave breaking without

relying on the use of the Richardson number is a major goal for mountain wave CAT

forecasting (Sharman et al., 2012a). While in the idealized simulations presented

in this study wave propagation is the only reason for the modulation of Ri, in real

conditions Ri is a noisy variable, influenced by small-scale flow structures, displaying

a large vertical-scale dependence. Even a flow with Ri > 1 can be turbulent if this

parameter is estimated at sufficiently coarse resolution. In this respect, the regime

diagram presented in this study provides a way of predicting wave breaking based

only on large-scale variables using the mountain height and background wind profile,

thus avoiding dependence on the wave field itself.

The results presented in this study constitute a starting point for testing the ap-

plicability of these (idealized) simulation results to real flows. Future steps would

entail carrying out numerical simulations with more realistic conditions, including:

realistic orography, a PBL, non-hydrostatic effects, more complicated atmospheric

profiles, etc. This should allow a better understanding of CAT generated by fully 3D

mountain waves and the development of more specific tools to forecast it.
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3.5 Appendix 3.A: Turbulent flow behaviour

As discussed in subsection 3.3.2, the regime diagram in Figure 3.3 depicts stability

conditions under which a flow can become turbulent, although turbulence itself is not

modelled in the experiments. In this appendix, simulations of the same atmospheric

flows as in Figure 3.3 but where turbulent mixing is parametrized (via a turbulence

closure) are presented. These experiments provide additional information about the

generation of turbulence by mountain wave breaking.

3.5.1 Turbulence generated by shear and buoyancy produc-

tion

The simulations including TKE use the same model set-up described in section

3.2.1, but a prognostic equation for the turbulent kinetic energy is employed. The

parametrization scheme adopted (a 1.5 order turbulence closure) assumes fully three-

dimensional sub-grid scale turbulence and is designed for high-resolution simulations

(∆x,∆y ≤ 2 km) (Skamarock et al., 2005). While we refer to section 2.2.2 for

further details about the parametrization scheme, it is worth mentioning that the

“anisotropic mixing option” was chosen so that, in the computation of the horizontal

and vertical eddy viscosities and mixing lengths according to (2.30), the anisotropy

of the horizontal and vertical grids (i.e. ∆x,∆y � ∆z) is taken into account.

In order to have a full understanding of what type of instability mountain waves

generate, the contributions of the two production terms (shear and buoyancy pro-

duction) in (2.28) to the total model TKE were studied. More specifically, the eddy

viscosities Kh and Kv, the 6 components of the deformation tensor (D11, D22, D33,

D12, D13, D23) and the model-computed squared Brunt-Väisälä frequency (N2) were

extracted from the model output and used to compute the shear and buoyancy terms

according to (2.29) and (2.31). In the computation of the two terms, the model code

module diffusion em.f90 (Skamarock et al., 2005) was imitated.

While the variable “TKE” in output from the model corresponds to the total produc-

tion of turbulent kinetic energy per unit of mass (sum of the TKE produced at pre-

vious time steps, shear and buoyancy production/destruction, dissipation and TKE

fluxes, according to (2.28)), the shear and buoyancy terms computed as described

above are instantaneous values per unit of mass per second. Thus, the present anal-

ysis is not meant to establish a TKE budget, as these three quantities (TKE and its
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two source terms) are not comparable unless the model TKE tendency is also taken

into account. Additionally, the dissipation term has not been computed.

The total model TKE (m2 s−2) for the simulation with Riin = 1 at z ≈ 2 km is

shown in Figure 3.9(a), the shear production (m2 s−3) in 3.9(b) and the buoyancy

production (m2 s−3) in 3.9(c).

(a)

(b)

(c)

Figure 3.9: Horizontal flow cross-sections taken at z ≈ 2 km for the experiment

with Riin = 1 at the 18th hour of simulation. (a) is the total model TKE (m2 s−2),

(b) is the shear production term (m2 s−3), (c) is the buoyancy production term

(m2 s−3).
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The solid contour line was added to facilitate the comparison with the corresponding

Riin = 1 inviscid simulation and corresponds to the Riout = 0.25 contour line shown

in Figure 3.8(c). The dashed line in Figure 3.9(c), instead, highlights regions where

Riout becomes negative.

In Figure 3.9(a), the TKE produced by the model matches well the instability region

predicted by the corresponding inviscid simulation (solid contour line). In Figure

3.9(b), the production of TKE by shear forces indicates that instabilities are generated

by the vertical and horizontal shear of the flow (corresponding to the stress tensor in

the model). The mechanism by which orographic waves affect the directional shear

of the background flow has been discussed in section 3.3.2.2. Regions with a positive

shear term, thus, correspond to regions where the wave perturbation is strong and

the wind shear of the total flow is large. In Figure 3.9(c), the positive sign of the

buoyancy term indicates that buoyancy forces favour the production of TKE. Indeed,

according to (2.31), this situation corresponds to the presence of a layer with inverted

potential temperature gradient where N2 < 0. The region where the buoyancy term is

positive corresponds to the flow overturning region predicted in the inviscid simulation

(dashed contour line).

Comparing Figure 3.9(b) and (c), it can be seen that where the buoyancy production

is a maximum, the shear production is minimum. Indeed, when flow overturning

occurs, waves cease to propagate and break. Also, while overall the TKE region

in Figure 3.9(a) resembles the pattern formed by the positive shear term in Figure

3.9(b), the maximum in TKE follows the elongated region where shear and buoyancy

production are both active.
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3.5.2 A TKE-based regime diagram

Figure 3.10: Regime diagram classifying the stability of the flow based on the

production of turbulent kinetic energy. The color shading denotes the maximum

TKE found for each flow configuration. Axes as in Figure 3.3.

In Figure 3.10 a regime diagram for the TKE simulations, analogous to the regime

diagram for the inviscid experiments presented in Figure 3.3, is shown. Note that

flows with Riin = ∞ were not considered in this analysis, as no wave breaking was

found for unsheared flows. In the TKE-based regime diagram, three categories are

used to classify the stability of the flow: no turbulence (TKE = 0), turbulence by shear

production (TKE > 01, shear term > 0, buoyancy term < 0 everywhere), turbulence

by shear and buoyancy production (TKE > 0, shear term > 0, buoyancy term > 0 in

at least one grid-point). The maximum TKE value found for each simulation is also

shown (color shading).

As expected, flows in which wave breaking occurs are classified as turbulent due

to shear and buoyancy production (squares). More interesting is the analysis of

those flows characterized by a small but positive Rimin, classified as “potentially

turbulent” in the inviscid regime diagram. While some of these flows are confirmed

to be turbulent and classified as turbulent due to shear production (diamonds), most

of them (i.e. Riin = 16, 8 and N0H/U = 0.5, Riin = 2 and N0H/U = 0.2, Riin = 1 and

1Because of numerical noise the actual threshold value used was somewhat larger than zero. In
particular, TKE values of order 10−4 m2 s−2 were excluded from the analysis.
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N0H/U = 0.1, 0.2, Riin = 0.5 and N0H/U = 0.1) are classified here as not turbulent

(circles). Presumably, for these flows, the shear added by the wave propagation is not

strong enough to initiate turbulence. However, it should be noticed that the results

presented in this section depend on the type of turbulence closure adopted, hence

they may be sensitive to the parameterization scheme.

(a)

(b)

Figure 3.11: TKE regions for simulations with N0H/U = 1 and Riin = 16 (a)

and Riin = 1 (b). The plots refer to the 18th hour of the simulations. The profile

of vectors on the left hand-side is as in Figure 3.6.

To conclude, in Figure 3.11 3D plots analogous to the ones presented in Figure 3.6(a)

and 3.6(e) are shown. Here, the shaded surfaces represent regions where TKE is

positive. For Riin = 16 (Figure 3.11(a)), at high altitudes (z ≈ 7 - 11 km) TKE

regions correspond to Riout < 0.25 regions in Figure 3.6(a). At these altitudes the

buoyancy production term is positive. On the contrary, in the lower atmospheric

layers, turbulence regions between 2 and 7 km result from shear instability only. In

Figure 3.11(b), the TKE region resembles the region where Riout < 0.25 in Figure

3.6(e), confirming its turbulent character.
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3.6 Appendix 3.B: Testing a possible wave break-

ing diagnostic

In this section, the perpendicularity criterion between the horizontal velocity per-

turbation and background wind vectors, proposed as a wave breaking diagnostic in

section 3.3.3, will be shortly tested. The tests that will be presented constitute a first

attempt to use this diagnostic and, thus, should be interpreted as preliminary, and

as a motivation for future work.

Continuing with the discussion in section 3.3.3, and focusing on the two cases of weak

shear flow (Riin = 16) and strong shear flow (Riin = 1), the perpendicularity criterion

was used to detect flow regions where the angle between (u0, v0) and (u′, v′) ranges

from 80◦ to 130◦ (as observed in the flow cross-sections in Figure 3.8). The shape

and extent of these regions was afterwards compared with the instability regions of

Figure 3.6 (a) and Figure 3.6 (e), where Riout < 0.25. The goal was to assess whether

diagnostics based on the perpendicularity criterion can predict regions of low Riout

and, thus, where wave breaking is expected.

The proposed diagnostic relied on the assumption that, at a critical level, (u0, v0)

and (u′, v′) are approximately perpendicular. This perpendicularity, however, does

not necessarily always correspond to wave breaking. Therefore it is necessary to dis-

tinguish between flow regions where the perpendicularity of the vectors is a signature

of wave breaking and regions where this does not happen. Because the existence of

wave breaking regions at critical levels is marked by large horizontal velocity pertur-

bations (see Figure 3.8(a) and (c)) we used the magnitude of (u′, v′) as an additional

constraint for our wave breaking detection algorithm.

The choice of a threshold value for |(u′, v′)|, however, was found to be particularly

difficult, requiring some degree of arbitrariness. After some experimentation, the

following algorithm was found to give overall the best performance:

• Within layers spanning each kilometre of the atmosphere the maximum hori-

zontal velocity perturbation |(u′, v′)|max in the layer and the angle ϕ between

(u0, v0) and (u′, v′) are computed;

• at each grid-point along the x-, y- and z- directions the following three condi-

tions are evaluated: 80◦ ≤ ϕ ≤ 130◦, |(u′, v′)| ≥ 0.75|(u′, v′)|max, and |(u′, v′)| >
1 m s−1. If all of them coexist, the grid-point is selected.
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The velocity perturbations, counted as corresponding to wave breaking, range be-

tween 75% of |(u′, v′)|max and |(u′, v′)|max in each layer to take into account the vari-

ability of the velocity perturbation. The lower limit |(u′, v′)| = 1 m s−1 was chosen

to eliminate from the analysis low velocities that are unlikely to be associated with

wave breaking. Note that values used here were chosen empirically rather than from

theoretically-based justifications, but suited the purpose of these preliminary tests.

The algorithm was run first without using the perpendicularity condition to test

whether its contribution is significant compared to the sole use of the velocity pertur-

bations. Figure 3.12(a) shows all the grid-points where |(u′, v′)| ≥ 0.75|(u′, v′)|max,
and |(u′, v′)| > 1. The regions of large horizontal velocity perturbations seem to

resemble the perturbation pattern of vertically propagating mountain waves. When

the approximate perpendicularity condition is added (Figure 3.12(b)), the shaded re-

gions at lower atmospheric levels disappear and the remaining grid-points are located

at approximately the same altitudes where instability regions are predicted using

Riout < 0.25 (Figure 3.6(a)). Although this suggests that, by adding the perpendicu-

larity condition, the algorithm can roughly catch altitudes where Riout < 0.25 regions

are expected, when Figure 3.6(a) and Figure 3.12(b) were compared quantitatively

the agreement between the two methods was found to be modest. The number of

grid-points that regions in Figure 3.6(a) and Figure 3.12(b) have in common is 139,

which corresponds to ≈ 36% of the total number of grid-points where Riout < 0.25

in Figure 3.6(a) and to ≈ 10% of the grid-points included in the surfaces in Figure

3.12(b). Indeed, flow regions selected by using the algorithm presented in Figure

3.12(b) are much wider than the ones in Figure 3.6(a) so it is not surprising that

many grid-points where Riout > 0.25 are included in them.

To test the resolution dependence of the algorithm, the algorithm was run again

using a higher vertical resolution, so that |(u′, v′)|max was computed every 100 m of

the atmosphere rather than every kilometre (not shown). The agreement with Figure

3.6(a) improved in terms of number of grid-points in common that are now 282, with

an overlap between the wave breaking regions identified with the two methods of ≈
73%, calculated with respect to the number of grid-points in Figure 3.6(a). However,

the ‘rate of success’ of the algorithm did not change as 282 grid-points correspond,

again, to only 10% of the total number of grid-points selected by the algorithm (figure

not shown).
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(a)

(b)

Figure 3.12: (a) Flow regions where |(u′, v′)| varies between 0.75 |(u′, v′)|max and

|(u′, v′)|max (computed in layers spanning 1km in the vertical). (b) flow regions as

in (a) where additionally the angle ϕ between (u0, v0) and (u′, v′) is 80◦ ≤ ϕ ≤ 130◦.

The plots refer to the 18th hour of the simulation with N0H/U0 = 1 and Riin = 16.

The profile of vectors on the left hand-side is as in Figure 3.6.

The algorithm was also run for the strong shear flow case (Riin = 1) (Figure 3.13). As

discussed in section 3.3.2.2, in stronger shear flows most of the wave breaking occurs

in the lower atmosphere, in a relatively thin layer, where many wave-numbers have

critical levels and the magnitude of the horizontal velocity perturbation vector varies

by a large amount (from 1 m s−1 to 9 m s−1 in the first 4 km of the atmosphere in

Figure 3.6(e)). In these conditions using the algorithm was particularly challenging,

and the best agreement, between Figure 3.6 (e) and Figure 3.13, corresponds to

an intersection of ≈ 33% (number of grid-points in common: 2626) of the number

of grid-points in Figure 3.6 (e). This was found using layers of 100 m instead of

1km and requiring that the horizontal velocity perturbation satisfies: |(u′, v′)| ≥
0.25|(u′, v′)|max. The surfaces bounding the diagnosed wave breaking regions in Figure
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3.13 are again much wider than the ones in Figure 3.6 (e), and only ≈ 22% of the

grid-points in Figure 3.13 are grid-points where Riout < 0.25.

Figure 3.13: Flow regions where the angle ϕ between (u0, v0) and (u′, v′) is

80◦ ≤ ϕ ≤ 130◦, and where |(u′, v′)| varies between 0.25 |(u′, v′)|max and |(u′, v′)|max
(computed in layers spanning 100 m in the vertical). The plot refers to the 18th

hour of the simulation with N0H/U0 = 1 and Riin = 1. The profile of vectors on

the left hand-side is as in Figure 3.6.

In summary, the wave breaking detection algorithm proposed in this section per-

formed rather poorly in the preliminary tests carried out. Possible ways to improve it

could involve reviewing its formulation by trying to guide empirical choices using the

physics of mountain waves at critical levels. For example, the range of variation of

ϕ was chosen in accordance with what was detected in flow cross-sections. However,

understanding what causes the variation of ϕ could lead to a more accurate predic-

tion of the expected angle between the background wind vector and the horizontal

velocity perturbation vector. Investigating whether that angle is influenced by the

sense of rotation of the background wind with and/or by the relative orientation of

the horizontal velocity perturbation vectors could be useful.

The choice of threshold values for |(u′, v′)| was also arbitrary and varied between the

two values of Riin, which is not very satisfactory. An alternative approach would be

to focus on regions where the perturbation velocities exceed a significant fraction of

the background flow, and thus to use velocity perturbations scaled by the background

flow rather than by |(u′, v′)|max. However, this would require quantifying empirically

threshold values for the ratio between the velocity perturbations and the background

flow.

The magnitude of (u′, v′) is only one of the possible additional constraints that can be

used to define a CAT diagnostic. The perpendicularity condition could be combined,

for example, with other quantities already used to diagnose CAT. Examples are: the
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rate of deformation of the flow (the deformation tensor is also used to compute the

shear TKE production term in the WRF’s turbulence closure scheme, as described

section 2.2.2), the TKE production itself, or the vertical velocity. These options could

be considered in the future.





Chapter 4

Non-hydrostatic effects on

mountain wave breaking in

directional shear flows

In this chapter, mountain waves excited by a narrow 3D orography are investigated us-

ing idealized numerical simulations of atmospheric flows with directional wind shear.

The stability of these waves is compared with the stability of hydrostatic mountain

waves. The focus is on understanding how wave breaking is modified via gravity

wave-critical level interaction, when non-hydrostatic (dispersive) effects arise. The

influence of non-hydrostatic effects on wave breaking appears to be a function of the

intensity of the background shear, increasing the stability of the flow (inhibiting wave

breaking) for weak wind shear, but decreasing it instead (enhancing wave breaking)

for stronger wind shear.

The work presented in this chapter has been submitted to the Quarterly Journal of

the Royal Meteorological Society, Notes and Correspondence, with the reference:

Guarino MV and Teixeira MAC, 2017. Non-hydrostatic effects on mountain wave

breaking in directional shear flows. Q. J. R. Meteorol. Soc. - Status of the paper:

accept subject to minor revisions.

4.1 Introduction

Non-hydrostatic mountain waves are primarily gravity waves excited by narrow oro-

graphic obstacles (so that the horizontal wave-number of the excited waves is large).

59
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Because of their dispersive nature, in a stratified atmosphere with constant back-

ground parameters, these waves are thought to be less likely to break than hydro-

static mountain waves (Laprise and Peltier, 1989). The generation of approximately

hydrostatic mountain waves is favoured either by a strongly stable atmospheric strat-

ification (i.e. a large Brunt-Väisälä frequency N0), a weak background wind (U) or

a broad orography (i.e. a large mountain half-width a), so that N0a/U � 1. On

the contrary, non-hydrostatic mountain waves are expected for a weak stratification,

a strong background wind or a narrow orography, so that N0a/U . O(1). When U

and N0 are constant with height, the character of the gravity waves launched by a

mountain depends on the horizontal scale of the orography only (Holton and Hakim,

2012). In the wide mountain limit, small horizontal wave-numbers dominate the wave

spectrum: in this case the wave propagation and the energy transport are mostly ver-

tical. In the narrow mountain limit, large horizontal wave-numbers dominate the wave

spectrum and the wave propagation is partly horizontal, while the wave amplitude

decays with height. Under these conditions the vertical velocity perturbations are

not in hydrostatic balance.

Several studies investigated the dynamics of gravity waves in the two limits of ver-

tically propagating and trapped lee waves, the latter being highly non-hydrostatic

waves generated as a consequence of an increase in wind speed and/or a decrease in

atmospheric stability with height (Scorer, 1949, Durran, 1986). Studies of hydrostatic

mountain waves focused particularly on wave momentum deposition, wave breaking,

and down-slope wind storms (e.g. McFarlane, 1987, Clark and Peltier, 1977, Bacmeis-

ter and Schoeberl, 1989, Teixeira et al., 2004, Doyle and Reynolds, 2008); studies of

trapped lee waves, on the other hand, mainly focused on lee wave rotors, surface drag,

and orographic rain-bands (e.g. Vosper, 2004, Kirshbaum et al., 2007, Stiperski and

Grubǐsić, 2011, Teixeira et al., 2013).

Fewer studies investigated the dynamics of non-trapped mountain waves whenN0a/U =

O(1) (e.g. Zängl, 2003, Sachsperger et al., 2016). These are dispersive waves with

short horizontal wavelengths partly able to propagate vertically and downstream of

the orography that originated them. Because of destructive interferences taking place

as waves propagate in the presence of dispersion, the wave amplitude decreases with

distance away from their source (Nappo, 2012). For a wind profile with directional

shear, the dispersive nature of these waves may influence wave breaking occurrence

via modification of the wave-critical level interaction, where critical levels correspond

to those heights at which gravity waves amplify and may become unstable. Indeed,

depending upon the strength of dispersion effects, less or more wave energy (as we

shall see) may be available to be dissipated at critical levels.



Chapter 4. Non-hydrostatic effects on mountain wave breaking 61

The conditions under which hydrostatic mountain waves can break and initiate turbu-

lence in the presence of directional wind shear have been studied in chapter 3. Here,

the influence of non-hydrostatic effects on mid-tropospheric mountain wave breaking

is analysed by taking into account the aforementioned dispersion effects, and also

how the scaling of the velocity perturbations changes in non-hydrostatic flow.

In section 4.2, the set-up of numerical simulations and the method used to identify

wave breaking within the simulation domain are briefly recalled. In section 4.3, the

stability of the flow in the transition from hydrostatic to non-hydrostatic mountain

waves is discussed. In section 4.4, the conclusions of this chapter are summarized.

4.2 Methodology

4.2.1 Numerical simulations

The idealized numerical simulations presented in this chapter use the same set-up of

chapter 3 (section 3.2.1), with the only differences being the mountain half-width,

grid spacing and number of grid-points. The flow under consideration is adiabatic

(i.e. no heat or moisture fluxes from the surface), inviscid (i.e. explicit diffusion not

allowed anywhere, and no planetary boundary layer scheme used), and the Coriolis

force is neglected.

The simulations were performed using the WRF-ARW atmospheric model. The com-

putational domain comprised 200 grid-points in both the x and y−directions, with

an isotropic grid spacing ∆x = ∆y = 500 m. Such a high horizontal resolution was

chosen to resolve properly the narrow mountains used in the simulations. The model

vertical grid contained 200 eta levels (using a terrain-following hydrostatic-pressure

coordinate), with spacing near the ground of 45 m and spacing at the top of the

domain, 20 km above ground level (a.g.l.), of 450 m. A 5 km-deep absorbing sponge

layer at the top of the domain was used to control wave reflection from the upper

boundary. For those experiments performed with the strongest directional shear con-

sidered in this study, some adjustments were made to the model set-up to ensure

numerical stability, namely: the top of the domain was raised to 30 km, the depth of

the absorbing layer was increased to 15 km, and 400 eta vertical levels were used.
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The model was initialized using an orography profile described by a 3D bell-shaped

mountain:

h(x, y) =
H(

x2

a2 + y2

a2 + 1
)3/2

, (4.1)

where H is the maximum mountain height.

Non-hydrostatic mountain waves were generated by imposing a = 2.5 km, U = 10

m s−1 and N0 = 0.01 s−1, so that N0a/U = 2.5. Note that this value of N0a/U

leads to mountain waves that are moderately non-hydrostatic. The flow could be

made even more non-hydrostatic by using a lower N0a/U , however as N0 and U

were chosen to be consistent with the simulations presented in chapter 3, and a

smaller a would correspond to unrealistically steep orography, N0a/U = 2.5 is near the

smallest realistic value consistent with the chosen maximum value of H (see below).

Furthermore, strongly non-hydrostatic waves are limited in their vertical propagation

(as will be discussed later) and hence are not so relevant to mid-tropospheric wave-

breaking.

In the experiments, different degrees of flow non-linearity (associated with different

wave amplitudes) were considered by using 5 values of the mountain height: H =

100 m, 200 m, 500 m, 750 m, 1 km. The vertical aspect ratio of the mountain H/a

varies in the range [0.04 - 0.4], and the non-dimensional mountain height defined

in terms of N0 and U takes the values N0H/U = 0.1, 0.2, 0.5, 0.75, 1. For each

orography configuration, 6 simulations using wind profiles with different intensities

of the directional shear of the background flow were performed. This was determined

by changing the rate of wind turning with height β, which depends on the Richardson

number of the background flow Riin (for N0 and U constant with height) according

to:

u0 = U cos(βz), v0 = U sin(βz), (4.2)

where u0 and v0 are the background wind components and β = N0/(U
√

Riin). More

specifically, the values considered are: Riin = 16, 8, 4, 2, 1, 0.5, which correspond to

β ≈ 14 degrees/km, 20 degrees/km, 31 degrees/km, 40 degrees/km, 57 degrees/km, 80

degrees/km. Therefore, as Riin decreases the rate of wind turning increases, resulting

in flows with stronger directional wind shear.

4.2.2 Wave breaking diagnosis

The Richardson number of the flow including the wave perturbation, Riout, was used

to detect instability regions within the simulation domain. The three-dimensional
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Riout(x, y, z) field was computed at each grid-point using centred finite differences.

Although Ri is notoriously sensitive to the depth of the layer in which the potential

temperature and the wind gradients are calculated, the fairly high vertical resolu-

tion employed in the simulations guarantees that waves (and their overturning) are

sufficiently well resolved everywhere in the simulation domain. Therefore, Riout is

expected to provide reliable indications on the stability of the flow.

The Riout(x, y, z) field was used in the analysis of the results with the twofold aim of:

• Identifying the minimum Ri value in the field (Rimin) for each experiment.

When Rimin is negative, flow overturning by wave breaking is assumed to occur

in the simulation domain. Rimin values are used to produce a regime diagram

describing the wave breaking behaviour in the transition from linear to non-

linear flows and from weak to strong directional shears.

• Delimiting regions where the wave propagation and breaking lead to the gen-

eration of dynamical (Riout < 0.25) and/or convective (Riout < 0) instabilities.

Under these conditions the flow can potentially evolve into turbulence, hence

these may be regarded as potentially turbulent regions.

As in chapter 3, the Riout field was computed within a ‘region of interest’ delimited

by upper, lower and lateral bounds. While for a more in-depth discussion and justi-

fication for the choice of these bounds we refer to section 3.2.2, we recall here that:

the upper limit is z ≈ 14 km, as it corresponds approximately to the height of the

bottom of the sponge layer; the lower limit is z ≈ 1 km, as in more realistic conditions

this would correspond to the height of a fully developed Planetary Boundary Layer;

the lateral limits represent a square region of 50×50 km surrounding the mountain

(25 km to the east, west, north and south from the centre of the mountain). Note

that while for the simulations presented in chapter 3 (where a = 10 km) the region

of interest had dimensions 100×100 km, spanning from -5 X/a to +5 X/a along x

and from -5 Y/a to +5 Y/a along y (where X/a and Y/a are distances relative to

the mountain located at (X=0 ,Y=0)), for the simulations presented here (where a =

2.5 km) the region of interest spans from -10 X/a to +10 X/a and from -10 Y/a to

+10 Y/a instead. Considering larger relative distances is consistent with the dynam-

ics of the more non-hydrostatic waves investigated in the present study, as these are

expected to propagate more laterally than hydrostatic waves, resulting in more ex-

tended downwind disturbances (Nappo, 2012). In the following section, the dynamics

of non-hydrostatic mountain waves will be discussed in more detail.
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4.2.3 Non-hydrostatic mountain waves

In its most general form, the Taylor-Goldstein equation for adiabatic, 3D, frictionless

flows without rotation takes the form (Nappo, 2012):

d2ŵ

dz2
+

[
N2

0k
2
H

(ku0 + lv0)2
− ku′′0 + lv′′0
ku0 + lv0

− k2
H

]
ŵ = 0, (4.3)

where ŵ is the Fourier transform of the vertical velocity, k and l are the horizontal

wave-numbers along the x and y−directions, kH =
√
k2 + l2 is the magnitude of the

horizontal wave-number vector and the primes denote differentiation with respect to

z.

In vertically sheared flows, the solution to (4.3) can be expressed as:

ŵ(k, l, z) = ŵ(k, l, 0)e
i

zR
0

m(z)dz
, (4.4)

where m is the vertical wave-number. Equation (4.4) is subject to the lower boundary

condition:

ŵ(k, l, 0) = i(ku0 + lv0)ĥ(k, l), (4.5)

where ĥ(k, l) is the Fourier transform of the terrain elevation h(x, y). The last term

in (4.3), involving k2
H , accounts for the vertical acceleration of air parcels flowing

across the mountain and is only present in the wave equation when this acceleration

is important, thus accounting for non-hydrostatic effects.

By substituting (4.4) into (4.3) and adopting a zeroth-order WKB approximation,

the vertical wave-number m is defined as:

m =

[
N2

0k
2
H

(ku0 + lv0)2
− k2

H

]1/2

. (4.6)

In the hydrostatic limit (N0a/U � 1), kH is negligible so that m = N0kH/(ku0 + lv0).

In the strongly non-hydrostatic limit (N0a/U � 1), buoyancy forces are unimportant

compared to kH and the vertical wave-number is imaginary: m = ikH . In the first

case, the wave propagation is vertical and governed by buoyancy forces. In the

second case, the generation of vertically-propagating gravity waves is inhibited and

disturbances propagate in the horizontal direction as evanescent waves trapped at

the lower boundary. The present study stands somewhere in between these two

limit cases, as non-hydrostatic (but still vertically-propagating) gravity waves, with

a dispersion relationship given by (4.6), are investigated.
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According to (4.6), the dependence of the vertical wave-number on the horizontal

wave-number introduces dispersion effects to the gravity wave dynamics in addition

to those associated with the three-dimensionality of the flow. Indeed, because of the

presence of the term (ku0 + lv0) in (4.6), 3D hydrostatic mountain waves are already

dispersive. This type of dispersion (often termed ‘directional dispersion’) causes the

wave energy to spread along a parabola that widens with height, causing the waves

to weaken as they propagate upwards (Smith, 1980). The dispersion added by the

non-hydrostatic term in (4.6) decreases the total wave energy density by allowing

horizontal wave propagation and downstream spatial spreading of the wave packet,

as can be deduced from group velocity arguments.

4.3 Results and discussion

4.3.1 Non-hydrostatic effects on wave breaking

Figure 4.1 shows vertical cross-sections of w and the horizontal velocity perturbation

|(u′, v′)| for two simulations with Riin = 16 and H = 1 km in the case of hydrostatic

(Figure 4.1(a) and 4.1(c)) and non-hydrostatic (Figure 4.1(b) and 4.1(d)) mountain

waves. The cross-sections were taken at Y/a = +3.6 where, in the hydrostatic case,

wave breaking occurs. The black contours correspond to Riout < 0.

In Figure 4.1(a) and 4.1(c), hydrostatic waves propagate vertically up to z ≈ 12 km.

For non-hydrostatic mountain waves, a roughly similar flow behaviour is observed,

but in Figure 4.1(b) the wave propagation shows a significant downstream component,

highlighting the dispersive nature of the disturbance. While hydrostatic waves break

at z ≈ 10 km (where Riout < 0), the breaking region is absent in Figure 4.1(b)

and 4.1(d). Since in directional shear flows the existence/location of critical levels

depend on the relative orientation of the background wind vector and the horizontal

wave number vector, and the two simulations were initialized with the same wind

profile and orography, we can assume that the same directional critical levels exist

in both flow configurations. However, for non-hydrostatic mountain waves the wave

dispersion presumably makes the wave energy decay faster, producing destructive

interferences as the waves propagate. As a consequence, for wave packets approaching

the critical level at z ≈ 10 km, the wave energy is not concentrated enough to cause

flow overturning and wave breaking.



Chapter 4. Non-hydrostatic effects on mountain wave breaking 66

(a) (b)

(c) (d)

Figure 4.1: Vertical cross-sections of w ((a) and (b)) and the magnitude of the

wave horizontal velocity perturbation vector (u′, v′) ((c) and (d)) at Y/a = + 3.6

for simulations with Riin = 16 and N0H/U = 1. (a) and (c) show hydrostatic

mountain waves (a = 10 km), (b) and (d) show non-hydrostatic mountain waves

(a = 2.5 km). The black contours indicate regions where Riout < 0.

As a further confirmation, while Rimin in the hydrostatic waves occurs at z ≈ 10

km (RiminH
= - 23), for non-hydrostatic waves Rimin occurs at much lower altitudes

z ≈ 3 km (RiminNH
= 0.75) where, plausibly, dispersive effects are less effective.

Indeed, the cumulative effect of dispersion becomes stronger in the far-field, after

waves have propagated over long distances. Besides dispersive effects, hydrostatic

and non-hydrostatic mountain waves differ in the scaling of key flow parameters

(namely the horizontal velocity perturbations), as is discussed below.

In Figure 4.1(b) non-hydrostatic mountain waves exhibit near the surface a vertical

velocity which is 4 times larger than the vertical velocity for hydrostatic waves (the

maximum on the w scale is 0.2 in Figure 4.1(a) and 0.8 in Figure 4.1(b)). This

can be explained via the bottom boundary condition (4.5), from which w scales as
UH
a

(both for hydrostatic and non-hydrostatic waves). Because the a used in the

non-hydrostatic simulations is 4 times smaller than the one used in the hydrostatic

simulations, the corresponding w field in Figure 4.1 has a magnitude that is 4 times

larger than the one for hydrostatic waves (wNH ≈ 4 wH).
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The scaling predicted by linear theory for the horizontal velocity perturbations must

be distinguished between the hydrostatic and non-hydrostatic cases. From mass con-

servation, and for the flow parameters considered here, it can be shown that while

in the hydrostatic case this scaling is v′H ∼ u′H ∼ Na
U
wH ≈ 10 wH , in the strongly

non-hydrostatic case v′NH ∼ u′NH ∼ wNH ≈ 4 wH .

The flow cross-sections in Figure 4.1(c) and 4.1(d) show that the horizontal velocity

perturbation is larger than the hydrostatic estimate of 2 m s−1 for the hydrostatic

case (Figure 4.1(c)), and much larger than the strongly non-hydrostatic estimate of

0.8 m s−1 for the non-hydrostatic case (Figure 4.1(d)). What this means is that the

hydrostatic scaling still applies more closely to the non-hydrostatic case than the

strongly non-hydrostatic scaling (which is only valid when the effects of stratification

are vanishingly weak). Note, however, that the horizontal velocity perturbation is

slightly smaller in the non-hydrostatic case because of influence (albeit weak) from

the non-hydrostatic scaling. It should also be kept in mind that the scalings of the

horizontal velocity perturbations described above are strictly valid for linear flows,

but the flows in Figure 4.1 are highly non-linear (as testified by the presence of wave

breaking).

The interplay between the scaling of the velocity perturbations and the wave disper-

sion effects is not trivial, as both these mechanisms contribute to determine the wave

amplitude and, thus, the likeliness of wave breaking. It should be noted, additionally,

that the scalings presented above are applicable locally near the surface (they use

the orography width as a horizontal length scale, for example), whereas the effect of

dispersion is intrinsically related to the propagation of the waves. The role of each of

these two mechanisms in wave breaking is discussed in the following section.

4.3.2 A regime diagram for non-hydrostatic mountain waves

In Figure 4.2, a regime diagram describing the stability of the flow as a function of

its non-linearity (quantified through N0H/U) and directional shear intensity (quanti-

fied through Riin) is presented. This regime diagram is directly comparable with the

regime diagram for hydrostatic waves presented in Figure 3.3 of Chapter 3. The like-

liness of wave breaking is diagnosed by using RiminNH
, calculated for each numerical

simulation, after the surface drag stabilizes to a constant value. The four RiminNH

categories, chosen in accordance with the background literature, are: RiminNH
< 0

(squares) indicating convective instability due to wave breaking events (category 1),

0 < RiminNH
≤ 0.25 (triangles) indicating dynamic instability, which is potentially

an index of turbulence (category 2), 0.25 < RiminNH
≤ 1 (diamonds) indicating a
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flow having enough kinetic energy available for turbulent mixing (category 3), and

RiminNH
> 1 (circles), indicating non-turbulent flow where no wave breaking events

occur (category 4).

Figure 4.2: Regime diagram describing flow stability and likeliness of wave break-

ing as a function of N0H/U and Riin. The Riin values use a logarithmic scale,

however the actual Riin values considered are shown on the upper horizontal axis.

The colours in Figure 4.2 denote the difference between the RiminNH
values obtained

from the non-hydrostatic simulations and the corresponding RiminH
values for hydro-

static waves in Figure 3.3. This allows us to visualize in which areas of the regime

diagram the non-hydrostatic effects: stabilize the flow (positive differences), increase

its instability (negative differences), or leave it unaltered (differences near zero). Be-

cause the information about the changes in flow stability is given by the sign of the

quantity (RiminNH
− RiminH

) and because positive differences were found to be larger

than negative ones, the scale is bounded between -0.2 and 1. Also note that when

Rimin is negative in both non-hydrostatic and hydrostatic conditions, the value of

(RiminNH
− RiminH

) is ignored (white squares in Figure 4.2). This is because, for the

purposes of our analysis, once the Richardson number drops below zero, any negative

value has roughly the same meaning in terms of flow instability, and large differences

that might occur would convey a misleading idea about their physical significance.

Just as in the hydrostatic waves case, wave breaking is more likely to happen for

flows with low Riin and high N0H/U , which is expected physically. However, while
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on the left-hand side of the regime diagram (Riin = 16, 8) the non-hydrostatic effects

tend to stabilize the flow (RiminNH
> RiminH

), on the right-hand side (Riin = 0.5) the

instability of the flow becomes stronger (RiminNH
< RiminH

).

Details about the changes in flow stability observed in the transition from hydrostatic

to non-hydrostatic waves are summarized in Table 4.1. Of particular interest are the

changes in flow stability for the cases where:

• Riin = 16 and N0H/U = 1. In this case, non-hydrostatic mountain waves

are not able to perturb the background flow as strongly as hydrostatic waves

(RiminNH
> RiminH

) and the wave breaking that was observed in the hydrostatic

waves case no longer occurs;

• Riin = 0.5 and N0H/U = 0.2. Here RiminNH
< RiminH

, and RiminNH
is negative.

Hence, non-hydrostatic mountain waves break, originating overturning regions

not present in the hydrostatic simulations.

On the left-hand side of the regime diagram, for the largest values of Rin, the increased

stability of the flow can be explained by the dispersion effects discussed in the previous

section and illustrated in Figure 4.1(b). On the right-hand side, for the lowest values

of Riin, the larger instability of the flow is probably a result of the larger value of

w in the non-hydrostatic simulations, the weakening of dispersion effects in strong

directional shear, and non-linear effects, as will be discussed further below.

As discussed in section 3.3.2, for wind profiles with a fast rate of wind turning with

height, a high density of critical levels exists at low levels in the atmosphere. Direc-

tional critical levels for a particular wave-number in the wave spectrum are defined

as the heights where the background wind vector is perpendicular to the horizontal

wave number vector, so that in (4.6) ku0 + lv0 = 0 and consequently m→∞. Figure

4.3 shows all the grid-points where Riout < 0.25 for the numerical simulations with

N0H/U = 1. The Riout < 0.25 field corresponds to dynamical instability regions,

which may contain smaller regions where the flow overturns (Riout < 0). In the

strongest shear flow considered in this study, where Riin = 0.5, the wind rotates by

180 degrees in the first 2.5 km of the atmosphere, hence the condition ku0 + lv0 = 0

occurs at least once for each wave-number in the wave spectrum over this depth.

Waves are likely to break at the lowest critical level they encounter, therefore the

majority of the wave energy is expected to dissipate by wave breaking within the first

2.5 km of the atmosphere. A similar kind of behaviour is observed for the other wind

profiles employed, with the instability regions extending across deeper atmospheric

layers in weaker shear flows.
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Because wave-dispersion is a function of the distance over which waves propagate (i.e.

it becomes cumulatively stronger at large – vertical or horizontal – distances from the

mountain), dispersive effects are stronger for waves travelling up to 12 km (Riin =

16, 8, 4), and much weaker for waves travelling for less than 2.5 km before they reach

their critical levels (where, incidentally, they become nearly perfectly hydrostatic) and

break (Riin = 0.5). Also note that in Figure 4.3(a), for Riin = 8, instabilities occur

at low levels, and the higher-altitude overturning regions observed in the hydrostatic

case (see Chapter 3 Figure 3.6(b)) are absent, confirming that dispersion limits the

wave amplitude at higher altitudes and, thus, selectively influences the wave-critical

level interaction.

As discussed in subsection 4.3.1, while wNH ≈ 4 wH in the simulations, u′NH is only

slightly smaller than u′H (see also Figure 4.1(c) and 4.1(d)). This leads to a higher

total wave kinetic energy, enhancing wave amplitude and likeliness of breaking at

critical levels (where w → 0 and (u′, v′) → ∞ according to linear theory (Shutts,

1998)). As a consequence, at the same critical level, the wave amplitude is expected

to increase more markedly for non-hydrostatic than for hydrostatic flow. Thus, in

the absence of significant dispersion, non-hydrostatic mountain waves may become

unstable and break where hydrostatic mountain waves do not. This probably explains

why in Figure 4.2, when Riin = 0.5 and N0H/U = 0.1, RiminNH
< RiminH

and

the decrease in RiminNH
(albeit small) causes the flow to shift from category 3 (for

hydrostatic waves) to category 2. When the mountain height increases even further,

so that N0H/U = 0.2, the wave amplitude is large enough to cause flow overturning

and wave breaking. For larger N0H/U no differences are observed, as wave breaking

is expected also in the hydrostatic regime. An alternative, but probably equivalent,

interpretation of this behaviour is that wave non-linearity is not only controlled by

N0H/U , but also increasingly by H/a as the flow becomes more non-hydrostatic.

Since H/a is larger by a factor of 4 here than in the hydrostatic simulations of

chapter 3, this may explain why wave breaking can become more likely despite the

contrary effect of wave dispersion.

To conclude, the stability of flows where Riin = 4 and 2, in the centre portion of the

regime diagram in Figure 4.2, is not significantly affected by non-hydrostatic effects.

The differences (RiminNH
− RiminH

) there are close to zero and no changes in flow

stability (i.e. Rimin category) are observed in the transition from hydrostatic to non-

hydrostatic mountain waves. This can be interpreted as resulting from a balance

between the two mechanisms acting to decrease (dispersion) or enhance (orography

slope) the wave amplitude, as described above.
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4.4 Summary and conclusions

In this chapter, flow stability in the transition from hydrostatic to non-hydrostatic

gravity waves generated over a narrow axisymmetric mountain in the presence of

directional wind shear has been investigated. In particular, the analysis focused on

understanding how non-hydrostatic effects can prevent or favour wave breaking rel-

ative to hydrostatic flow. A set of numerical simulations were performed extending

the work presented in chapter 3, where the conditions for mountain wave breaking

were diagnosed as a function of the orography elevation and wind shear, quantified by

the dimensionless mountain height N0H/U and the Richardson number of the back-

ground flow Riin, respectively. The orographic gravity waves considered in this study

are sufficiently affected by non-hydrostatic effects (N0a/U = O(1)) for dispersion

and horizontal propagation to become important, but still too far from the strongly

non-hydrostatic limit (N0a/U � 1) for vertical propagation to be strongly inhibited.

The main conclusions from this chapter can be summarized as follows:

• For weaker shear flows, non-hydrostatic effects increase the stability of the flow.

This is a consequence of the additional wave dispersion occurring in this case,

which acts to decrease the wave amplitude when waves travel over long distances

in the vertical before they reach a critical level and break.

• For stronger shear flows, non-hydrostatic effects decrease the stability of the

flow. Here, dispersion effects are weaker because waves only propagate over

short vertical distances before breaking, and additional instability seems to be

caused primarily by the higher slope of the orography.

• The transition from stabilizing to de-stabilizing non-hydrostatic effects occurs

gradually, and appears to be a function of the intensity of the directional shear

of the background flow, perhaps because this controls the distance over which

dispersion effects can act before the waves break.

In summary, although because of their dispersive nature non-hydrostatic mountain

waves are generally believed to be less likely to break (Laprise and Peltier, 1989),

in the presence of directional wind shear this seems to be only partially true. In

the numerical simulations presented in this study, flow overturning was detected over

lower mountains (N0H/U = 0.2, or H = 200 m) than in the hydrostatic wave case,

where the lowest N0H/U value associated with wave breaking was 0.5, or H = 500

m (see section 3.3.2 and Figure 3.3). Admittedly, a more comprehensive exploration

of parameter space would be necessary to ascertain the robustness of this finding.
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The present results could be relevant to improve mountain wave breaking and turbu-

lence diagnostics, for example, used in Clear-Air Turbulence forecasts for aviation.



Chapter 5

Mountain wave turbulence in the

presence of directional wind shear

over the Rocky Mountains

In this chapter, the role of directional wind shear in causing a real turbulence en-

counter over the Rocky Mountains, in the state of Colorado, is investigated. Pilot

Reports (PIREPs) are used to select cases in which moderate or severe turbulence

encounters were reported in combination with significant directional wind shear in

the upstream sounding from Grand Junction, CO (GJT). For a selected case, semi-

idealized numerical simulations are carried out using the WRF-ARW atmospheric

model, initialized with the GJT atmospheric sounding and the real orography profile.

Critical levels induced by directional shear are studied by taking 2D power spectra

of the magnitude of the horizontal velocity perturbation field. In these spectra, a

rotation of the most energetic wave modes with the background wind can be found.

Such behaviour is consistent with the mechanism expected to lead to wave breaking

in directional shear flows.

The work presented in this chapter has been submitted to the Journal of Atmospheric

Sciences, with the reference:

Guarino MV, Teixeira MAC, Keller TL, Sharman RD, 2017. Mountain wave turbu-

lence in the presence of directional wind shear over the Rocky Mountains. J. Atmos.

Sci. - Status of the paper: under review.

In Appendix 5.A, additional discussion about the power spectra of the waves is pro-

vided.

75
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5.1 Introduction

Mountain waves, also known as orographic gravity waves, result from stably stratified

airflow over orography. These waves can break at different altitudes and influence

the atmosphere both locally, by generating, for example, aviation-scale turbulence

(Lilly, 1978), and globally, by decelerating the general atmospheric circulation (Lilly

and Kennedy, 1973). Several studies have investigated the role of mountain wave

activity in a wide range of atmospheric processes taking place in the boundary layer

(e.g. Durran (1990), Grubǐsić et al. (2015)), in the mid-troposphere (e.g. Jiang and

Doyle (2004), Strauss et al. (2015)), in the upper-troposphere (e.g. Worthington

(1998), Whiteway et al. (2003), McHugh and Sharman (2013)), in the stratosphere

(e.g. Carslaw et al. (1998), Eckermann et al. (2006)), and in the mesosphere (e.g.

Broutman et al. (2017)).

Orographic gravity wave breaking in the mid- and upper-troposphere can generate

turbulence at aircraft-cruising altitudes. This is one of the known forms of Clear-

Air Turbulence (CAT), and it occurs, among other occasions, when large amplitude

waves approach critical levels, as this leads to a further increase of the wave ampli-

tude. Critical levels correspond to singularities in the wave equation, for which the

wave motion is no longer sustained. Above the critical level height, waves cease to

propagate, and break or are absorbed into the mean flow (Dörnbrack et al. (1995),

Grubǐsić and Smolarkiewicz (1997)), provided the Richardson number of the back-

ground flow is larger than about 1 (Booker and Bretherton, 1967). For atmospheric

flows where the wind direction changes with height, the existence of critical levels is

controlled by the relative orientations of the background wind vector and the horizon-

tal wave-number vector at each height. Broad (1995) and Shutts (1995) used linear

theory to investigate the effects of directional wind shear on the gravity wave mo-

mentum fluxes, introducing the theoretical and mathematical framework for gravity

wave drag in winds that turn with height.

Generally, mountain wave critical levels exist when U · κH = u0k + v0l = 0 (where

U ≡ (u0, v0) is the background wind velocity and κH ≡ (k, l) is the horizontal wave-

number vector) (Teixeira, 2014). For unidirectional shear flows (u0 = f(z), v0 = 0,

where f is an arbitrary function) or flows over two-dimensional ridges (l = 0), the

definition of critical level reduces to u0 = 0. For directional shear flows (u0 = f(z),

v0 = g(z), where f and g are arbitrary functions) over idealized three-dimensional or

complex (i.e. realistic) orographies (where k 6= 0, l 6= 0), critical levels occur when

the wind vector is perpendicular to the horizontal wave-number vector, as expressed

by the general condition presented above. This condition is difficult to assess from
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standard physical data, as the orientations of the wave-number vectors can only be

evaluated in Fourier space.

Previous theoretical and numerical studies investigating mountain waves in direc-

tional shear flows include Shutts (1998) and Shutts and Gadian (1999), who studied

the structure of the mountain wave field in the presence of directional wind shear;

Teixeira et al. (2008), Teixeira and Miranda (2009) and Xu et al. (2012), who focused

on the impact of directional shear on the mountain wave momentum flux and, thus,

on the gravity wave drag exerted on the atmosphere. All these studies considered

idealized situations with a wind direction that turns continuously with height. This

flow configuration is the simplest possible with directional shear, and represents a

prototype of more realistic flows.

We are aware of only two observational studies of this problem in the literature

focused on real cases: Doyle and Jiang (2006) studied a wave breaking event in the

presence of directional shear observed over the French Alps during the Mesoscale

Alpine Programme (MAP). Lane et al. (2009), on the other hand, studied aircraft

turbulence encounters over Greenland, and attributed the observed generation of flow

instabilities to the interaction between mountain waves and directional critical levels.

In this chapter, mountain wave turbulence occurring in the presence of directional

wind shear over the Rocky Mountains in Colorado is investigated. Numerical sim-

ulations for a selected turbulence encounter are performed using a semi-idealized

approach, for which the WRF-ARW atmospheric model is used in an idealized con-

figuration, but initialized with the real (albeit truncated) orography and a realistic

atmospheric profile. This method allows us to retain the elements necessary to repro-

duce the mechanisms responsible for mountain wave generation and breaking, while

working in simplified conditions that facilitate physical interpretation. The simu-

lation results are compared with theory and with idealized simulations, for a more

comprehensive description and better physical understanding of the flow. The aim

is to isolate the role of directional shear and determine its relevance in causing the

observed turbulence event.

Because of its complexity, the wave breaking mechanism in directional shear flows is

not currently taken into account for CAT forecasting purposes. Investigating its role

in real turbulence encounters, as this study aims to do, is part of the fundamental re-

search needed to improve the forecasting methods of mountain wave turbulence, which

is currently one of the most poorly predicted forms of CAT (Gill and Stirling, 2013).

In fact, although mountain wave turbulence is included in the forecasts provided by

the London World Area Forecast Centre (WAFC), its prediction is still based on a
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method developed by Turner (1999), relying on diagnostics of the gravity wave drag

from its parametrization in a global model (which itself does not accurately represent

mountain wave absorption by directional shear). The turbulence forecasting system

GTG, described in Sharman and Pearson (2016) also contains several explicit MWT

algorithms, but none consider the effect of directional wind shear. Furthermore, a

predictor for mountain wave CAT is absent in the forecast issued by the Washington

WAFC (Gill, 2014).

The remainder of the chapter is organized as follows. In section 5.2, the mechanism

leading to wave breaking in directional shear flows is discussed. In section 5.3, the

methodology used to select the turbulence encounter investigated here and the set-up

of the numerical simulations is presented. In section 5.4, the simulation results are

described, and further discussed in the light of the sensitivity tests presented in the

same section. In section 5.5, the main conclusions of the chapter are summarized.

5.2 Wave breaking mechanism in directional shear

flows

For a hydrostatic, adiabatic, three-dimensional and frictionless flow without rotation,

under the Boussinesq approximation the wave equation from linear theory (also known

as Taylor-Goldstein equation) takes the form (Nappo, 2012):

ŵ′′ +

[
(k2 + l2)N2

0

(ku0 + lv0)2
− ku′′0 + lv′′0
ku0 + lv0

]
ŵ = 0, (5.1)

where ŵ is the Fourier transform of the vertical velocity, N0 is the Brunt-Väisälä

frequency of the background flow, and the primes denote differentiation with respect

to z.

In vertically sheared background flows, the solution to (5.1) can be approximated as

(Teixeira et al., 2004):

ŵ(k, l, z) = ŵ(k, l, 0)

∣∣∣∣m(z = 0)

m(z)

∣∣∣∣1/2 e
i

zR
0

m(z)dz
, (5.2)

where the bottom boundary condition is ŵ(k, l, 0) = i(ku0 + lv0)ĥ(k, l), and ĥ(k, l) is

the Fourier transform of the terrain elevation h(x, y). This corresponds to a first-order
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WKB approximation, where the vertical wave-number m is defined as:

m =
N0(k

2 + l2)1/2

(ku0 + lv0)
(5.3)

as if N0, u0 and v0 were constant, but where these quantities depend on z. Equations

(5.2)-(5.3) are valid for any wave-number vector (k, l) in the wave spectrum, as long

as the background state variables N0 and (u0, v0) vary sufficiently slowly with height.

In addition, by mass conservation, it can be shown that the Fourier transforms of the

horizontal velocity perturbations û′ and v̂′ are

û′(k, l, z) = û′(k, l, 0)sign

(
m(z)

m(0)

) ∣∣∣∣m(z)

m(0)

∣∣∣∣1/2 e
i

zR
0

m(z)dz
, (5.4)

v̂′(k, l, z) = v̂′(k, l, 0)sign

(
m(z)

m(0)

) ∣∣∣∣m(z)

m(0)

∣∣∣∣1/2 e
i

zR
0

m(z)dz
. (5.5)

Orographic gravity waves excited by an isolated or complex orography can always be

represented by a spectrum of wave-numbers, whose direction and amplitude depend

on the bottom boundary condition (as shown by (5.2)). Hence, the wave equation has

to be solved for each wave-number and, in physical space, the resulting wave pattern

will be given by the Fourier integral (or sum) of their contributions (Nappo, 2012).

From the equations shown above it can be seen that, in directional shear flows, the

mountain wave equation (5.1) becomes singular at critical levels, where κH · U =

ku0 + lv0 = 0. For a wave-number approaching its critical level, m approaches infin-

ity according to (5.3), and the Fourier transform of the vertical velocity ŵ becomes

small (ŵ → 0) according to (5.2). On the other hand, according to (5.4)-(5.5),

the Fourier transform of the horizontal velocity perturbation diverges ((û′, v̂′)→∞)

(Shutts, 1998). The net result is an increase of the wave amplitude in the vicinity of a

critical level. However, only wave-numbers with large spectral amplitudes approach-

ing critical levels will in practice contribute to wave breaking (since this process is

intrinsically defined in physical space) and the subsequent generation of turbulence;

small amplitude wave-numbers will be absorbed at the critical levels, as described by

linear theory (Booker and Bretherton, 1967). Note also that the products of û′ and

ŵ, and of v̂′ and ŵ, remain finite near critical levels (as shown by (5.2),(5.4)-(5.5),

despite the divergence of û′ and v̂′, since their amplification cancels out with the

attenuation of ŵ. These products would in fact be exactly constant with height if

there were no singularities in the integrals in the exponents of (5.2) and (5.4)-(5.5),

which account for the absorbing effect of critical levels (cf. Broad (1995)).

The diagnosis of critical levels induced by directional shear can only be made in
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Fourier space (where the orientation and the amplitude of each wave-number may

be determined), as explained above, but it is the wave energy distribution by wave-

number in the wave spectrum that ultimately determines whether wave breaking

occurs or not.

5.3 Methodology

5.3.1 PIREPs and case study selection

Pilot Reports (PIREPs) of turbulence were used to select cases where atmospheric

turbulence was reported, in the presence of directional wind shear, over the Rocky

Mountains. An accurate description of the PIREPs database used here is provided by

Wolff and Sharman (2008). In the same paper, those authors discuss generic issues

and limitations of using pilot reports as a research tool (see also Schwartz (1996)).

Here, we recall that while PIREPs represent a reliable method to determine turbu-

lence occurrence, the information they provide about time, location and turbulence

intensity may not be accurate. More specifically, Sharman et al. (2006) showed that,

on average, the uncertainty associated with pilot reports is 50 km along the hori-

zontal direction, 200 s in time, and 70 m along the vertical direction. Despite this

uncertainty, pilot reports have been conveniently employed in studies aimed at eval-

uating/validating turbulence occurrence under certain atmospheric conditions (Kim

and Chun (2010), Trier et al. (2012), Ágústsson and Ólafsson (2014), Keller et al.

(2015)), for lack of a better alternative.

In this study, PIREPs are used to identify days where generic atmospheric turbu-

lence, or mountain wave turbulence (MWT), was reported by pilots over the Rocky

Mountains in the state of Colorado. In particular, moderate or severe turbulence re-

ports within the upper troposphere (4 km to the tropopause height) were considered.

The first 4 km of the atmosphere were excluded to eliminate low-level turbulence

and directional wind shear associated with boundary layer processes. Note that the

highest mountain peak considered here has about 4 km elevation, and the boundary

layer height over mountainous terrain is expected to adjust to the terrain elevation

(DeWekker and Kossmann, 2015).

The analysis focused on the winter seasons of two years of data: 2015 and 2016.

Climatologies of mountain wave activity (Julian and Julian (1969),Wolff and Sharman

(2008)) show that this activity is larger over the Rocky Mountains during the winter

months, when low-level winds are strong and westerly (i.e. perpendicular to the
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dominant mountain ridges). Furthermore, the stronger jet stream in winter favours

the existence of both speed and directional shear via the thermal wind relation. The

atmospheric conditions were evaluated using soundings measured upstream of the

Rocky Mountains. The meteorological station selected was Grand Junction (Figure

5.1), and the data were downloaded from the website of the University of Wyoming.

Figure 5.1: (a) Map of the study area showing the Rocky Mountains in the

State of Colorado (USA) and the location of the Grand Junction meteorological

station (GJT). The highlighted rectangular area corresponds to the portion of the

Rocky Mountains used as lower boundary condition for the semi-idealized runs. (b)

location of the turbulence reports possibly related to the atmospheric conditions

present on 7th February 2015 00 UTC, as described in Table 5.1, and surrounding

landmarks. The numbered aircraft symbols correspond to the turbulence reports

ID in Table 5.1, the different colors are: black for ModT, red for SevT, blue for

ModMWT, pink for SevMWT. The map only shows the portion of the Rocky

Mountains used in the semi-idealized runs.

In Figure 5.2 the wind speed and direction, as well as the atmospheric stability (quan-

tified through the squared Brunt-Väisälä frequency N2) are shown for 7th February

2015 at 00 UTC. This day was chosen as a case study because of the fairly continuous

change of wind direction with height and a tropopause height of about 11 km. The
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existence of a high tropopause facilitates excluding the stability change with height

taking place in its vicinity from the possible mechanisms causing wave breaking and,

thus, responsible for the turbulence encounters reported in the first 10 km of the

atmosphere (further indications that this is plausible are given below). As can be

seen in Figure 5.2, the rate of wind turning with height is not constant but varies

from a maximum of 50 degrees/km at lower levels (up to 4 km) and 10 degrees/km

at higher altitudes (6 - 8 km), to a slower rotation rate (between 3 degrees/km and 5

degrees/km) in the atmospheric layers between 4 and 6 km and above 10 km respec-

tively.

Figure 5.2: Variation of the wind direction (a), wind speed (b) and the squared

Brunt-Väisälä frequency N2 (d) with height for 7th February 2015 00 UTC. The

meteorological data come from the Grand Junction station, located upstream of

the Rocky Mountains (station elevation: 1475 m) (see Figure 5.1). (c) shows again

the variation of the wind direction with height, but uses vectors with a constant

length to represent the turning wind profile. Note that the vectors point towards

the vertical axis in the middle.

Figure 5.1(b) shows the location of the turbulence reports associated with the atmo-

spheric conditions presented in Figure 5.2, these reports were issued between 2 hours
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before and 1 hour after 00 UTC of 7th February 2015. Table 5.1 provides details

about the turbulence encounters such as type, altitude, time of occurrence, intensity

of the turbulence, and the cubic root of the eddy dissipation rate (ε1/3 – a standard

measure of CAT) estimated from on-board data. ε provides a direct measure of tur-

bulence intensity in the atmosphere, as informs us on the rate at which turbulence

is dissipated by molecular viscosity. It is universally used for turbulence forecast-

ing/nowcasting purposes because is relatively simple to calculate. Further, ε is an

aircraft-independent metric of turbulence, unlike other possible metrics (for example,

the root mean square of the vertical acceleration of an aircraft) that provide subjec-

tive information on the aircraft response to turbulence (see Sharman et al. (2014) for

a more detailed discussion).

Table 5.1: Details about the turbulence reports, namely: type (moderate or

severe turbulence (ModT, SevT), moderate or severe mountain wave turbulence

(ModMWT, SevMWT)), time, altitude, and intensity of the turbulence, and the

cubic root of the eddy dissipation rate (ε1/3).

ID Type of turbulence Date and UTC time
Altitude

(feet)
Altitude
(meters) ε1/3 (m2/3 s−1)

1 ModT 06 Feb 2015, 22.41 24000 7315 0.50

2 ModMWT 06 Feb 2015, 22.57 22000 6705 0.50

3 SevMWT 06 Feb 2015, 22.59 24000 7315 0.62

4 SevT 06 Feb 2015, 23.47 24000 7315 0.75

5 SevT 07 Feb 2015, 01.15 16000 4876 0.75

6 ModT 07 Feb 2015, 01.15 13000 3962 0.50

7 ModT 07 Feb 2015, 01.15 20000 6096 0.50

5.3.2 Numerical simulations

The selected day was investigated by performing semi-idealized numerical simula-

tions using the WRF-ARW atmospheric model (Skamarock and Klemp, 2008). In

this study, by “semi-idealized simulations” we mean simulations performed by run-

ning the WRF model in an idealized set-up, but using as input data real orography

(truncated as explained next) and a real atmospheric profile. The simulations used

the model’s dynamical core only (i.e. no parametrizations), and the flow was assumed

to be inviscid (no explicit diffusion and no planetary boundary layer) and adiabatic

(no heat or moisture fluxes from the surface). Furthermore, the Coriolis force was
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neglected (this choice is justified below). An isotropic horizontal grid spacing of

∆x = ∆y = 1 km was used, and the model’s vertical grid comprised 100 stretched

eta levels corresponding to (approximately) equally-spaced z−levels (∆z = 250 m).

The top of the model domain was at 25 km, and a 7 km-deep Rayleigh damping layer

was used to control wave reflection from the upper boundary.

The model was initialized using the wind profile and the atmospheric stability profile

shown in Figure 5.2. A portion of the Rocky Mountains range (the rectangular area

in Figure 5.1), downstream of the Grand Junction meteorological station (for the

predominant flow direction), with a (zonal) length of 223 km and a (meridional)

width of 144 km was chosen as the lower boundary condition. The terrain elevation

data come from the U.S. Geological Survey 1 arc-second resolution national elevation

dataset (NED), resampled to 1 km.

This real orography was placed approximately in the middle of the computational

domain in order to avoid steep terrain at the lateral boundaries. The total size of the

simulation domain is 400×400 km. Although by choosing such a large mountainous

region as a forcing the effects of the Coriolis force on the dynamics of mountain waves

may become important (af/U &1, where a is a characteristic mountain half-width, f

is the Coriolis parameter and U is a velocity scale for the background wind), in this

study rotation effects are neglected (by imposing f = 0). The ambiguous definition

of mountain width in this case with complex terrain makes the af/U parameter

difficult to estimate. af/U is much less than 1 if calculated taking into account a

typical value for the width of single peaks in the mountain range (i.e. a =10 km,

following Doyle et al. (2000)), but on the contrary, is large and greater than 1 if

calculated by considering the mountainous region as a whole (i.e. a ≈100 km).

In order to assess to what extent the presence of the Earth’s rotation can influence

the generation and propagation of mountain waves, a simulation in which the Coriolis

force was allowed to act on the flow perturbations (but not on the background flow)

was run. This simulation set-up allowed us to focus on the differences due to rotation

effects on the mountain waves only. Although some discrepancies were found between

the two experiments with and without rotation, the overall flow pattern and, most

importantly, the location of flow instability regions was only marginally affected.

This in principle means that for our purposes the effect of the small-scale individual

mountains is dominant, and that for the semi-idealized simulations presented here

rotation effects are nearly negligible.
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The model set-up described above was used for all performed simulations, including

the sensitivity tests presented in the next section. Variations made to this initial con-

figuration for each sensitivity test (i.e. changes in the orography, wind and stability

profiles) will be described in the results section that follows.

5.4 Results and discussion

5.4.1 Semi-idealized simulations: real atmospheric sounding

and orography

Instabilities generated within the computational domain were detected by looking at

fields such as the potential temperature, the magnitude of the wave horizontal velocity

perturbation vector (u′, v′), and the Richardson number of the total flow including

the wave perturbation, Riout. Note that since the simulations are inviscid, and thus

no turbulence parametrizations are used, Riout values of less than 0.25 and/or zero

are used to detect dynamical (Riout < 0.25) and convective (Riout < 0) instability

regions that can potentially evolve into turbulence.

Figure 5.3(a) shows the grid points in the computational domain where Riout is lower

than 0.25. The Riout ≤ 0.25 field was computed between 4 and 18 km, which cor-

responds (approximately) to the region between the height of the highest mountain

peak and the height of the sponge layer employed in the simulations. The first 4 km

of the atmosphere were excluded from the analysis because of unrealistic atmosphere-

ground interactions that develop in frictionless simulations, leading to low Ri values

just above the ground (see section 3.2.2). As shown in Figure 5.3(a), low Ri values

occur just above the mountain peaks (in relation, perhaps, to the aforementioned

atmosphere-ground interactions), between 6.5 and 10 km, and between 15 and 18 km

height. While the highest-level instabilities occur in the stratosphere and therefore no

pilot reports are available for validation purposes (aircraft cruise altitudes are usually

up to about 12 km), the region of low Ri values located between 6.5 km and 10 km

shows good agreement with the PIREPs database. Indeed, most of the turbulence

reports indicate turbulence occurrence between 6 km and 7.5 km (see Table 5.1).

In Figure 5.4(a) contours of negative values of Riout (indicating flow overturning) at

z ≈ 7.5 km are shown. The background field is the terrain elevation. It can be

seen that the location of the wave breaking event between 6 km and 7.5 km heights,

mentioned above, agrees well with the turbulence report number 1 marked in Figure

5.1(b) (ModT1 in Table 5.1), both in the vertical and horizontal directions.
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Figure 5.3: 3D plots showing every point in the computational domain where

Riout 6 0.25 for the two simulations performed with a real input sounding and a

real (a), an idealized mountain ridge (b), and a bell-shaped mountain (c) (Test 1).

In (a) the Riout field contains flow overturning regions where Riout < 0, and the

simulation time shown is t = 105 min. In (b) and (c) the simulation time shown

is t = 360 min, however in (c) the Riout field is never negative (at any simulation

time).
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Figure 5.4: Horizontal cross-sections of the Riout < 0 field at z ≈ 7.5 km, at the

simulation time t = 105 min. (a) uses the real input sounding containing both speed

and directional shear; (b) uses the modified input sounding where only directional

shear is present (Test 3). The background field is the terrain elevation.

In the following sub-sections, attention will be focused on analysing to what extent

directional shear is primarily responsible for the wave breaking event displayed in

Figure 5.4(a) (note that at different simulation times and at different locations we

can observe more wave breaking events; however, there are no turbulence reports

directly linkable to those events).

5.4.2 Sensitivity tests

Despite the simplicity of the semi-idealized simulations performed, wave breaking

events detected in the simulation domain cannot be automatically associated to the

presence of directional wind shear. Indeed, at least three other possible environmental
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conditions able to modulate the gravity wave amplitude can be identified: 1. a

sufficiently high or steep orography; 2. the variation of N with height, in particular

at the tropopause; 3. the speed shear in the wind profile. Sensitivity tests were

performed to investigate the role of each of these physical mechanisms separately.

Note that the unsteady nature of the flow in a wave breaking event makes comparisons

between the simulations more difficult, since the evolution of two flows can be similar

but asynchronous. The results presented next were analysed through the use of

animations of the studied quantities over time, and the snap-shots presented in this

study are representative of the overall flow features detected.

5.4.2.1 Test 1: the bottom boundary condition / surface forcing

The mechanism responsible for wave breaking in directional shear flows is sensitive

to the bottom boundary condition (as shown by (5.2)), which may play a crucial role

in the wave breaking process. We can hypothesize that orographies with different

shapes, heights and orientations will excite waves with high energy at wave-numbers

that have critical levels at different heights, or will interact with a given critical

level (i.e. at a similar height) in a different way, depending on the spectral energy

distribution (see section 2, or Chapter 3 for a more extended discussion).

In order to test the role of the lower boundary condition, two simulations with the

same realistic input sounding presented in section 3 but idealized orographies were

run. More specifically, the first sensitivity test was performed using an axisymmetric

bell-shaped mountain given by:

h(x, y) =
H(

x2

a2 + y2

a2 + 1
)3/2

(5.6)

where, following Doyle et al. (2000), the mountain height is H = 2 km and its half-

width is a = 10 km, which are typical values for the Colorado Front Range (Doyle

et al., 2000). Note that unlike Doyle et al. (2000), who modelled the Rocky Mountains

using an idealized 2D ridge, in this experiment a 3D mountain is adopted. While it

could be argued that a two-dimensional representation of the Rocky Mountains could

provide a more realistic approximation to their large-scale structure, here we are

interested in how the smaller-scale structure, which is intrinsically 3D, affects wave

breaking, via fulfilment of the U · κH = 0 condition. In the case of a (perfect)

2D orography with l = 0 the definition of critical level reduces to the one valid in

unidirectional flows. However, the realistic orography considered here will certainly



Chapter 5. Mountain wave turbulence over the Rocky Mountains 89

excite waves with wave-number vectors spanning various directions (i.e. l 6= 0), so

use of a 3D idealized mountain is justified.

For the second sensitivity test, an idealized 3D mountain ridge containing a few peaks

was used:

h(x, y) = He−[(x/ardg)2+(y/ardg)2][1 + cos(ksx+ lsy)] (5.7)

where the height of the highest peak in the mountain ridge is H = 2 km, the char-

acteristic horizontal length-scale of the mountain ridge is ardg = 50 km and ks and

ls, the horizontal wave-numbers of the smaller scale orography, have been chosen so

that the half-width of each peak is about 10 km. The orography profile defined used

the above parameters extends over an area of approximately 180X130 km, is oriented

northwest-southeast and contains 5 peaks (see Figure 5.3(b)).

Although still drastically idealized, this orography approximates better the surface

forcing imposed by the Rocky Mountains in terms of spatial extent (the fraction of

the Rocky Mountains considered in this study extends over an area of about 220 ×
150 km), the ridges’ orientation (in particular of those peaks near which turbulence

was observed, according to turbulence report number 1) and introduces a range of

scales that attempts to (partially) reproduce the many smaller-scale features of the

real orography. Using this approach, the interaction between different wave-numbers

excited by the orography is probably taken into account.

In Figure 5.3(b) and (c) the Riout ≤ 0.25 field obtained for the two idealized orography

simulations is shown and compared to that obtained for the real orography simula-

tion (Figure 5.3(a)). When an isolated mountain is used (Figure 5.3(c)), despite the

idealized simulation set-up, the model is able to reproduce the occurrence of dynam-

ical instabilities at higher levels in the atmosphere, but it fails to predict the true

location of the observed instability region. Indeed, most of the turbulence reports

indicate turbulence between 6 km and 7.5 km (Table 1) while, in this simulation,

instabilities take place in a thin layer between ≈ 9.3 km and 10 km. Furthermore,

taking a closer look at the Riout field reveals that no negative Riout values exist, so no

flow overturning due to wave breaking is taking place in the domain of simulation.

However, when a mountain ridge with a few peaks is used (Figure 5.3(b)) the insta-

bility region is wider and more pronounced, contains negative Riout values and, most

importantly, resembles better the flow simulated using the real orography (Figure

5.3(a)). Flow instabilities occur at lower levels (≈ 4 km), between 7.5 km and 11.5

km (providing a better agreement with the observations), and also at higher altitudes

(≈ 14.5 – 16.5 km).
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We can conclude that there is overall a poor agreement between these idealized sim-

ulations and the PIREPs, but significant improvements were observed when an orog-

raphy profile with a few peaks was considered. This is a consequence of the fact that,

although we still retain some elements needed to generate mountain waves that may

break in directional shear (namely: a stably stratified atmosphere, representative val-

ues of mountain height and width, and a wind direction that changes with height),

the wave solution obviously depends on the Fourier transform of the terrain eleva-

tion ĥ(k, l) (see equation (5.2)). Hence, the energy associated to each wave-number

excited at the surface is closely linked to the shape and orientation of the mountain

profile. Consequently, the wave spectrum excited by an axisymmetric mountain, or

an idealized mountain range, and by the realistic orography are quite different and the

interaction between wave-numbers and directional critical levels differs accordingly.

5.4.2.2 Test 2: the tropopause and the variation of N with height

Previous studies (Worthington, 1998; Whiteway et al., 2003; McHugh and Sharman,

2013) pointed out how the interaction between vertically propagating orographic

waves and the tropopause may trigger wave breaking and thus high-level turbulence

generation. Furthermore, inhomogeneities in the atmospheric stability can cause wave

reflection (Queney, 1947) that, by constructive or destructive interferences between

upward and downward propagating waves, can modulate the surface drag and the

wave amplitude itself (Leutbecher, 2001).

Although the investigated turbulence encounter was reported at a height of about

7.3 km, and therefore it is quite distant from the tropopause (in Figure 5.2(c) a

substantial increase in N2 that may be identified as the tropopause occurs at about

11 km), a simulation without the tropopause, more specifically assuming a constant

N = 0.01s−1, was run. The aim of this simulation was to exclude as a possible cause

for wave breaking the existence of significant wave reflections that could potentially

take place not only due to the high value of N at the tropopause itself, but also due

to the variation of N within the troposphere. This latter effect might also lead to

substantial modulation of the wave amplitude by refraction (according to (5.2),(5.4)-

(5.5)).

In Figure 5.5 vertical (west-east) cross-sections of the magnitude of the wave horizon-

tal velocity perturbation vector (u′, v′) are shown. The cross-sections pass through

the grid-point where turbulence was reported (Y = 180 km in Figure 5.4(a)), and

the black contours delimit the regions where Riout is negative. Figure 5(a) refers to

the real sounding simulation and Figure 5.5(b) to the simulation with a constant N .
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The studied wave breaking event, responsible for the negative Riout values between

6.5 and 10 km, is present in both simulations. Although in Figure 5.5(b) the insta-

bility regions are smaller, they present the same wake structure (discussed later in

this section) visible in Figure 5.5(a) where patches of negative Riout propagate down-

stream. Also, at the same height, the (u′, v′) magnitude has a very similar pattern

(and magnitude) in both flows.

This result indicates that wave reflection is probably not significant enough to cause

wave breaking. However, the large stability jump at the tropopause cannot be ignored,

and wave reflection is still expected to happen to some degree. An estimation of

how much reflection should be expected for the stability profile in Fig. 2(b) can be

obtained by calculating the reflection coefficient R = (N2 − N1/N2 + N1), proposed

by Leutbecher (2001) (developed for 2D flow), where we omit the minus sign to make

R positive. This expression for R is valid for waves travelling in layers with constant

N1 and N2. Since in the sounding of Figure 5.2(b), N2 varies substantially, the

values of N1 and N2 adopted here must be understood as averages below and above

the large N maximum that corresponds to the tropopause, respectively. Taking N1

= 0.01 s−1 at z = 10 km and N2 = 0.02 s−1 at z = 11.2 km, we note that these

are quite typical values for the troposphere and stratosphere and correspond to R

= 1/3. Therefore, we can expect that about one-third of the upward propagating

mountain waves be reflected back at the tropopause. However, in order for this

reflection to cause wave enhancement, the phase of the reflected wave must also be

properly tuned. The N maximum at the tropopause should also lead to horizontally

propagating waves trapped at that height (Teixeira et al., 2017), but since those waves

decay exponentially in the vertical, their effect at z ≈ 6 − 7 km should be relatively

modest. Hence, consistent with Figure 5.5(b), these do not seem to be the dominant

mechanisms causing wave breaking.

The analysis presented above suggests that the effects of the tropopause and of the N

variation in general do not play an important role in causing the observed turbulence

and, thus, are not of key relevance to the event under investigation.

5.4.2.3 Test 3: the speed shear

Alongside with the variation of N with height, the change of wind speed with height

represents an additional factor able to modulate the amplitude of gravity waves (see

(5.2), (5.4)-(5.5)). In particular, it is known (and consistent with (5.4)-(5.5)) that a

decreasing wind speed with height represents the best condition for wave steepening

(Smith (1977),McFarlane (1987), Sharman et al. (2012a)), which can facilitate the
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breaking of already large-amplitude waves. As can be seen in Figure 5.2(b), overall,

the speed shear is positive over most of the troposphere, where the wind speed tends

to increase with height, however regions where the wind speed decreases with height

are also present.

Figure 5.5: Vertical (west-east) cross-sections at Y = 180 km in Figure 5.4 com-

paring the real sounding simulation (a) with simulations run using a constant N

(Test 2) (b), a constant wind direction and a varying wind speed (Test 3) (c), a

constant direction and wind speed (Test 4) using U = 10 m s−1 in (d) and U =

20 m s−1 in (e), at the simulation time t = 180 min. The background field is the

magnitude of the wave horizontal velocity perturbation vector (u′, v′), the black

contours delimit Riout < 0 regions.
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The speed shear contribution was eliminated by modifying the input wind profile so

that the u and v components varied with height accounting only for the observed

change in the wind direction, neglecting the variation due to the changes in wind

speed, which was kept fixed at 10 m s−1. The large wind speed variation for the

specific day under consideration did not make it easy to identify a dominant wind

speed. Indeed, while the wind speed of the flow crossing the mountain between 2.2

km and 3.6 km altitude varies in the range 7 m s−1 – 16 m s−1, the wind speed over

the mountain peaks is about 20 m s−1. The value 10 m s−1 was chosen because it

approximates better the wind speed at low levels, which is presumably responsible for

generating the waves (see also Test 4, in the following section, where this assumption

is furtherly tested).

In Figure 5.4(b) the Riout < 0 field at z ≈ 7.5 km for the new simulation including only

directional shear is shown. Both in Figure 5.4(a) (the real sounding simulation) and

5.4(b) overturning regions with approximately the same location and having the same

elongated shape are visible. Figure 5.6(a) and 5.6(b) show again contours of negative

values of Riout in west-east vertical cross-sections passing through the point where

turbulence was reported (Y = 180 km in Figure 5.4(a)). Figure 5.6(a) corresponds to

the simulation with the real input sounding, Figure 5.6(c) to the simulation without

speed shear. Figure 5.6(b) and 5.6(d) show the same comparison but for the potential

temperature fields. From Figure 5.6 we can see that the wave breaking region occurs

in the two simulations at similar altitudes (between 6 and 10 km).

Despite some differences between the two simulations (note that by modifying the

input sounding we are modifying the background state in which waves are generated),

the occurrence of wave breaking does not seem to be related to the presence of speed

shear.

A second test was performed to furtherly assess the speed shear contribution to

wave breaking. The input wind profile was again modified but this time the u and v

components varied with height accounting only for the observed wind speed variation,

and the directional shear was eliminated by using a constant wind direction (chosen

as a “dominant wind direction” by looking at the atmospheric sounding in Figure

5.2(a)) equal to 260 degrees.

In Figure 5.5(a) and 5.5(c) vertical cross-sections for the real sounding simulation

(a) and the speed shear only simulation (c) are shown. The background field is the

magnitude of the horizontal velocity perturbation vector (u′, v′), and the black con-

tours delimit the region with Riout < 0. In Figure 5.5(a) waves break at an altitude
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of about 7 km, as discussed in section 5.4.1.

Figure 5.6: Vertical (west-east) cross-sections of regions where Riout < 0 (a and

c) and potential temperature (b and d) fields passing through the point where

turbulence was reported (Y = 180 km in Figure 5.4) at the simulation time t =

135 min. (a) and (b) correspond to the simulation with the real input sounding.

(c) and (d) correspond to the simulation where speed shear was neglected (Test 3).

When directional shear is removed (Figure 5.5(c)) no overturning regions where

Riout < 0 are observed within the troposphere (and lower stratosphere). However, in

the speed shear only simulation, the breaking of the waves at z ≈ 15 km – 17 km is

intensified and here the magnitude of the (u′, v′) vector increases up to 40 m s−1.

The atmospheric sounding in Figure 5.2(b) shows a net decrease of the wind speed

with height in the layer 14 km – 18 km. This significant negative wind shear is

probably responsible for the high-altitude wave breaking. In the absence of directional

shear, the filtering of the waves at lower levels is removed and all the wave-numbers

in the wave-spectrum break at the same height. Thus, the wave energy is dissipated

in a thin layer, rather than over the entire troposphere, resulting in the larger velocity

perturbations observed in Figure 5.5(c).
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5.4.2.4 Test 4: the mountain amplitude

An last test was necessary to corroborate our hypothesis that waves are breaking

because of critical levels imposed by the variation of the wind direction with height,

and not only because of a highly non-linear boundary condition such as is imposed by

the Rocky Mountains. Indeed, for NH/U values larger than 1, linear theory breaks

down and wave breaking is expected to occur even in unsheared flows (Huppert and

Miles (1969), Smith (1980), Miranda and James (1992)).

For this purpose, simulations in which both wind speed and direction are kept con-

stant were performed. In these simulations the wind direction was again set to 260

degrees and we used two different values of wind speed: U = 10 m s−1 and U = 20

m s−1. As discussed in section 5.4.2.3, the choice of a representative wind speed of

the flow passing over the orography is difficult because of the large variation of U in

the lowest 3.5 km of the atmosphere. In the sensitivity tests presented here, 10 m

s−1 was used because it was assumed to be representative of the flow at lower levels,

while 20 m s−1 was used to test the robustness of this assumption and because this

is the wind speed just above the highest mountain peaks.

Figure 5.5(d) compares the U = 10 m s−1 simulation with the real sounding simulation

of Figure 5.5(a). While in Figure 5.5(a) the breaking region is again easily detected

between 7 and 10 km, where patches of negative values of the Richardson number

appear, for the simulation with a constant wind speed and direction (Figure 5.5(d)),

the waves continue to propagate upwards without breaking at the same heights and

horizontal locations.

This ability of the gravity waves to propagate to higher levels in the atmosphere sup-

ports the argument that, by removing the directional shear, we removed the mech-

anism responsible for wave breaking in the event under consideration (this test also

directly compares with Test 3, Figure 5.4(b), where U = 10 m s−1 and directional

shear is present). More specifically, without directional shear, the filtering of the wave

energy by critical levels vanishes. Therefore, wave-numbers that would otherwise be

absorbed into the mean flow, or increase their amplitude and cause wave breaking,

remain essentially unaffected and keep on propagating upward.

In addition to vertically propagating gravity waves, in Figure 5.5(d), a few instability

regions are also visible, but not at the correct levels. The mechanism behind these

instabilities, and the associated wave breaking, can only be related to the high am-

plitude of the surface forcing provided by the Rocky Mountains, conjugated with the
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decrease of density with height (which are the only possible wave breaking mecha-

nisms active in this case).

When a U = 20 m s−1 is used (Figure 5.5(e)), large amplitude gravity waves are

excited by the Rocky Mountains that break vigorously (the maximum on the |(u′v′)|
scale is 34 m s−1) at lower and higher atmospheric levels.

The opposite flow behaviour observed in the two tests is a consequence of the transi-

tion between two, well known, different flow regimes. Assuming N = 0.01 s−1 and H

= 2 km, which is a good estimate of the mountain height as seen by the incoming flow

(the GJ station used to initialize the model is located at about 1.5 km a.s.l.), NH/U

= 2 when U = 10 m s−1 and NH/U = 1 when U = 20 m s−1. For a 3D orography,

when NH/U = 2 the flow enters a “flow around” regime for which a significant part of

the flow is deflected around the flanks of the obstacle and the generation of vertically

propagating mountain waves is weakened. When NH/U = 1 most of the incoming

flow passes over the orography and wave breaking is favoured (Miranda and James,

1992).

In reality, the amplitude of the waves excited by the Rocky Mountains will be the

result of a varying wind speed, and not of a fixed U. Therefore, although the flow

simulated using U = 10 m s−1 is closer to the one in Figure 5.5(a) in terms of

magnitude of the velocity perturbation vector, the wave breaking found when U = 20

m s−1 suggests that effective wind speed of the flow approaching the mountain can

be decisive in causing wave breaking. We conclude that it is not possible to exclude

self-induced overturning from the possible wave breaking mechanisms. Instead, this

mechanism is probably acting alongside the directional shear one (as discussed in

more details in the following section).

5.4.3 The directional shear contribution

While Tests 2, 3 and 4 investigated the role of static stability, speed shear and moun-

tain height in causing the studied turbulence encounter, in this section more direct

evidence that waves may break because of environmental critical levels associated

with the presence of the directional shear will be presented and discussed.

Both in the horizontal cross-section of Figure 5.4 and in the vertical cross-section of

Figure 5.5(a), the region delimited by the Riout < 0 contour exhibits an elongated

shape that, departing from the first wave breaking point, extends downstream forming

a certain (small) angle with the wind direction (which is very close to 270 degrees)

at that height.
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This downwind transport of statically unstable air seems to be a signature of break-

ing waves in directional shear flows. Based on linear theory arguments, Shutts (1998)

demonstrated the existence of a flow feature known as “asymptotic wake” (see also

Shutts and Gadian (1999)). The asymptotic wake is a consequence of wave-numbers

approaching critical levels in directional shear flows and, more precisely, of a com-

ponent of the background wind parallel to the wave phase lines that will advect the

wave energy away from the mountain (in stationary conditions).

The asymptotic wake predicted by Shutts translates into lobes of maximum wave

velocity perturbation extending along the wind direction at each height, but not

perfectly aligned with it (Figure 5.7(a)). We hypothesize that the tail of negative

Ri values in Figure 5.4 and Figure 5.5(a), which is absent in all the breaking regions

in Test 4 (see for example Figure 5.5(d)), is a manifestation of the asymptotic wake

predicted by Shutts (1998). In Figure 5.7 the magnitude of the horizontal velocity

perturbation vector (u′, v′) is shown for 5 different cases:

• Figure 5.7(a) and 5.7(b) show the flow behaviour for orographic waves excited

by an axisymmetric mountain (as described by (5.6)) in the case of a background

wind direction that changes (backs) continuously with height (rate of rotation

≈ 14 degrees/km), a constant N = 0.01 s−1 and wind speed U = 10 m s−1.

In Figure 5.7(a) the analytical solution obtained by running a linear model

for such a flow is shown, in Figure 5.7(b) the corresponding idealized numerical

simulation (with H = 1 km) is presented. The numerical set-up for this idealized

simulation is slightly different from the one presented in section 5.3 (see Chapter

3 for further details).

• Figure 5.7(c) and 5.7(d) correspond to Test 1, therefore they depict simulations

that use an idealized 3D orography (as described by (5.6)) and an idealized

mountain ridge (as described by (5.7)) but a real atmospheric sounding.

• Figure 5.7(e) corresponds to the semi-idealized simulation that uses real orogra-

phy and a real atmospheric sounding (more specifically, it focuses on a portion

of the entire simulation domain shown in Figure 5.4(a), starting at X = 240

km, Y = 110 km).
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Figure 5.7: Horizontal cross-sections showing the flow transition as the degree

of realism increases. The background field is the magnitude of the (u′, v′) vector,

the dashed contours mark the bottom orography. In (b)-(e) the arrows are the

background wind at the displayed level, the solid contour lines are Riout < 0 (exept

for (c) where 0 < Riout ≤ 0.25). (a) analytical solution from linear theory and (b)

equivalent cross-section taken at z ≈7 km for a simulation with idealized orography

and an idealized atmospheric sounding; (c) cross-section taken at z ≈9.5 km for

a simulation with idealized orography but a real atmospheric sounding (Test 1)

at t = 360 min; (d) as (c) but for a simulation with an idealized mountain ridge

containing a few peaks; (e) cross-section taken at z ≈7.5 km for the semi-idealized

simulation with real orography and a real atmospheric sounding at t = 105 min.

Note that (e) corresponds to a portion of the simulation domain shown in Figure

5.4(a), starting at X = 240 km, Y = 110 km.
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The black contours are the lowest Riout values for each simulation. Note that although

in Figure 5.7(a) and 5.7(b) the wind rotates counter-clockwise and in Figure 5.7(c),

5.7(d) and 5.7(e) it rotates clockwise, this only modifies the quadrants in which the

wave energy is advected at different heights (and so where the maximum of the

wave perturbation field is), but the two sets of results may be seen as essentially

equivalent via a mirror transformation. The purpose of Figure 5.7 is to show the

progressive transition of the asymptotic wake structure as the degree of realism of the

flow increases. The asymmetry of the wave perturbation field is visible in both Figure

5.7(a) and 5.7(b), where the left-hand branch extends to the north-west, tending

asymptotically to the wind direction at that height (this is the asymptotic wake).

As we shift towards less idealized flows (Figure 5.7(c), 5.7(d) and 5.7(e)), this flow

feature becomes less clear but it is still detectable (albeit mirrored).

Proving the existence of the asymptotic wake in real case studies is of a particular

interest, since approximately hydrostatic mountain waves (such as the ones excited

by the Rocky Mountains) are usually expected to break and cause turbulence just

above the mountain peaks and not far downstream, but this is what seems to happen

when an asymptotic wake is present (see in particular Figure 5.5(a)).

5.4.3.1 Spectral analysis of the wave field

A final piece of evidence supporting the importance of critical levels due to directional

wind shear is provided by spectral analysis carried out on the magnitude of the (u′, v′)

vector field. The quantity |(u′, v′)| was chosen because of the strong amplification of

the horizontal velocity perturbations at critical levels. This spectral analysis will be

first presented for the the fully idealized simulation (with an idealized axisymmetric

orography and idealized atmospheric sounding) introduced in the previous section,

and then for the more realistic case being investigated.

In Figure 5.81 the 2D spatial power spectra of the horizontal velocity perturbation

field, computed at different heights from the fully idealized simulation are shown.

The five spectra correspond to |(u′, v′)| horizontal cross-sections taken at 3 km, 6.1

km, 7 km, 10 km and 13 km heights, at a same simulation time. Note that Figure

5.8(c) is the 2D power spectrum of Figure 5.7(b).

Since the Fourier transform of a purely real signal is symmetric, in a 2D power

spectrum all the information is contained in the first two quadrants of the (k, l) plane

1Note that in both Figure 5.8 and Figure 5.9, the non-zero spectral energies extending along the
x and y axes correspond to numerical noise generated in the computation of the 2D power spectra.
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and the third (k < 0, l < 0) and fourth (k > 0, l < 0) quadrants are just mirrored

images of the first (k > 0, l > 0) and second (k < 0, l > 0) quadrants, respectively.

The x- and y-axes show the wave-number components, and the black arrows show

the background wind direction at the height where each spectrum was calculated.

For the idealized wind profile employed in this simulation, the continuous (and

smooth) turning of the background wind vector with height creates a continuous

distribution of critical levels in the vertical. At each critical level, the wave energy

is absorbed into the background flow and this absorption affects one wave-number in

the spectrum at a time (i.e., at each level). Looking at the power spectra in Figure

5.8, it can be seen that the dominant wave-number at each height (i.e. that with most

energy) is the one perpendicular to the incoming wind (i.e. the one having a critical

level at that height). As a consequence, the wave-number vector of the most energetic

wave-mode rotates counter-clockwise following the background wind, but 90 degrees

out of phase. It can also be seen that as the incoming wind rotates by a certain angle,

the portion of the wave spectrum corresponding to wave-numbers perpendicular to

the wind at lower levels has been absorbed. For example: in Figure 5.8(b) the wind is

from the South, departing from a westerly surface direction, so all the wave-numbers

in the second quadrant (k < 0, l > 0) have been absorbed. When the background

wind has rotated by 180 degrees (Figure 5.8(e)) practically all the wave energy has

been dissipated, because all possible critical levels have been encountered at lower

altitudes (Teixeira and Miranda, 2009) (this is confirmed by flow cross-sections – not

shown – where no waves exist above the height where the power spectrum in Figure

5.8(e) was computed).

It should be noted that the angle actually detected between the background wind

direction and the most energetic wave-mode at each height is slightly less than 90

deg. A plausible interpretation is that, although a wave reaches its maximum am-

plitude at a critical level in linear theory, this is also the height where it will break.

For finite-amplitude waves, amplification and breaking tends to occur some distance

below critical levels. Therefore, typically, the energy carried by a wave-number vec-

tor perpendicular to the wind has already been absorbed, and so the angle between

wavenumbers that still carry maximum energy (prior to breaking) and the local wind

direction will be less than 90 degrees.

When similar 2D power spectra are computed for the more realistic case under con-

sideration, significant similarities can be seen. In Figure 5.9 the 2D spatial power

spectra computed from the semi-idealized numerical simulation are shown at heights

comprising every kilometre of the atmosphere between 5.5km and 15.5 km. Figure

5.9(c) is the 2D power spectrum of Figure 5.7(e).
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The slower and non-constant rate of wind turning with height characterizing this case

makes it more difficult to detect the rotation of the dominant wave-number following

the wind. However, a rotation is still revealed by the changing orientation with

height of the dominant wave energy lobes in the plots. In particular, approximate

perpendicularity between the wind direction and the dominant wave-numbers can be

seen between 7.5 and 10.5 km. These are the heights where, in physical space, most of

the wave breaking occurs. Between 9.5 km and 10.5 km, the wind direction remains

constant. At higher altitudes, 11.5 – 13.5 km, the wind rotation rate slows down and,

as a consequence, the differences between spectra become harder to distinguish. By

13.5 km, because of the wave breaking taking place below and the ensuing critical

level absorption, most of the wave energy has been dissipated. Note that, just as in

the idealized case of Figure 5.8, when estimated more precisely the angle between the

incoming wind vector and the dominant wave-number vector is seen to be slightly

lower than 90 degrees (e.g. Figure 5.9(g)).

The wave behaviour inferred from the spectra in Figure 5.9, being essentially similar

to that displayed in Figure 5.8, is equally explained via the mechanism leading to wave

breaking in directional shear flows. In contrast, similar 2D power spectra computed

for Test 4 (not shown), where the wind direction is constant with height, display no

selective wave-energy absorption as a function of height.

5.5 Summary and conclusions

In this chapter, mountain wave turbulence in the presence of directional vertical

wind shear over the Rocky Mountains in the state of Colorado has been investigated.

For the winter seasons of 2015 and 2016, days with a significant directional wind

shear within the upper troposphere (4 km – tropopause height) were identified by

analysing atmospheric soundings measured upstream of the Rocky Mountains at the

Grand Junction meteorological station (GJT). Among these days, pilot reports of

turbulence encounters (PIREPs) were used to select cases where moderate or severe

turbulence events were reported.

A selected case was investigated by performing semi-idealized numerical simulations,

and sensitivity tests, aimed at discerning the contribution of mountain wave breaking

due to directional shear in the observed turbulence event. In these simulations, the

WRF-ARW model was initialized with a 1D atmospheric sounding from Grand Junc-

tion (CO) and a real (but truncated) orography profile. The orography was modified
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in the sensitivity test “Test 1”, and the atmospheric sounding was modified in the

sensitivity tests “Test 2”, “Test 3”, “Test 4”.

For the simulation with a real atmospheric sounding and orography, low positive

and negative Richardson number values (used to identify regions of flow instability)

occurred between 6.5 km and 10 km, providing overall good agreement with the

PIREPs.

In Test 1, the role of the surface forcing in causing wave breaking was investigated.

In particular, the lower boundary condition was modified and replaced with a 3D

bell-shaped mountain and an idealized mountain ridge containing a few peaks. For

these experiments, overall the agreement between model-predicted instabilities and

PIREPs degraded. However, a better representation of flow dynamical and convective

instabilities was achieved when an orography with a few peaks was considered. The

results of Test 1 support the hypothesis that, in directional shear flows, by exciting

substantially different wave spectra, orographies with different shapes, heights and

orientations can change the nature of the wave-critical level interaction.

In Test 2, the effect of the tropopause and of the vertical variation of N on wave break-

ing were tested. The real atmospheric stability profile was replaced with an idealized

profile prescribed by imposing a constant N = 0.01 m s−1. Despite the constant sta-

bility, the investigated wave breaking event still occurred, and the flow cross-sections

showed essentially the same features observed in the real-sounding simulation.

In Test 3, the influence of the variation of wind speed with height on wave steepening

was explored. In a first test, the speed shear contribution was eliminated by modifying

the atmospheric sounding so that changes in u′ and v′ were due to directional shear

only, while the wind speed was kept constant at 10 m s−1. In a second test, the

directional shear contribution was eliminated by keeping the wind direction constant

with height while the observed wind speed variation was retained. In the directional-

shear-only simulation, the investigated turbulence encounter was still present. In

the speed-shear-only simulation, no overturning regions were found in the simulation

domain at z ≈ 7 km, where the studied turbulence encounter occurred. These tests

suggest that wave breaking was not likely attributable to the presence of speed shear.

In Test 4, the highly non-linear boundary condition imposed by the Rocky Mountains

(for which NH/U = O(1)) was studied. Both wind speed and direction were kept

constant with height, but two different wind speeds were used, namely: U = 10 m

s−1 and U = 20 m s−1. For the 10 m s−1 simulation, NH/U = 2, so mountain waves

are relatively weak and propagate upwards without breaking where turbulence was

observed. For the 20 m s−1 simulation, NH/U = 1 and mountain waves break at
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multiple altitudes. These tests show that for the orography and flow configuration

under investigation, wave breaking is quite sensitive to the wind speed of the incoming

flow. The large variation of U in the lowest kilometres of the atmosphere does not

allow us to exclude self-induced overturning as a possible wave breaking mechanism.

Instead, this mechanism probably coexists with the directional shear, which acts to

localize vertically the wave breaking event.

In connection with the studied wave breaking event, a significant downwind trans-

port of unstable air was detected in horizontal cross-sections of the flow. This allows

mountain-wave-induced turbulence to be found at large horizontal distances from the

orography that generates the waves. A possible explanation for the observed flow

pattern is the existence of an “asymptotic wake”, as predicted by Shutts (1998) us-

ing linear theory for waves approaching critical levels in directional shear flows. The

asymptotic wake translates into lobes of maximum wave energy extending roughly

along the wind direction at a particular height, but not perfectly aligned with the

wind. This peculiar flow structure was displayed by the horizontal velocity perturba-

tion field (u′, v′) in horizontal cross-sections of the simulated flow.

Critical levels associated with directional shear were further investigated using spec-

tral analysis of the magnitude of the (u′, v′) vector. This was done for a fully idealized

flow and for the more realistic flow that is the main focus of the present study. Power

spectra of the horizontal velocity perturbation at different heights and changes in

the corresponding wave energy distribution by wavenumber (i.e. wave energy absorp-

tion/enhancement) were analysed.

For the fully idealized simulation, the continuous distribution of critical levels in the

vertical makes the dominant wave-number vector at each height be (almost) perpen-

dicular to the background wind vector at that height. As a result, the wave-number

vector of the most energetic wave-mode rotates counter-clockwise, following the back-

ground wind 90 degrees out of phase. The implications of this for the approximate

perpendicularity between the background wind vector and the wave velocity pertur-

bation vector at critical levels is discussed in section 3.3.3 of this thesis.

For the semi-idealized simulation, it was still possible to detect a rotation of the dom-

inant wave-number with the wind, even if less clearly than in the idealized case. In

particular, the wind direction and the dominant wave-number were seen to be ap-

proximately perpendicular between 7.5 and 10.5 km where most of the wave breaking

occurs in physical space.
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The experiments discussed in this chapter suggest that critical levels induced by

directional shear played a crucial role in originating the investigated turbulence en-

counter (ModTurb1 in Table 5.1). The directional shear contribution to wave breaking

dynamics is particularly relevant to the problem of how the wave energy is selec-

tively absorbed or dissipated at critical levels, which also has implications for drag

parametrization (Teixeira and Yu, 2014). Furthermore, directional shear produces

regions of flow instability far downwind from the obstacle generating the waves. This

is a non-trivial result, especially for hydrostatic mountain waves, which are expected

to propagate essentially vertically, and are therefore treated in drag parametrizations

using a single-column approach. This downstream propagation of instabilities, which

is a manifestation of the “asymptotic wake” predicted by Shutts (1998), hence rep-

resents an overlooked turbulence generation mechanism that, if adequately taken in

account, might improve the location accuracy of mountain wave turbulence forecasts.

The semi-idealized approach used here was particularly well-suited to the aims of the

present study, as it allowed us to isolate and investigate separately different wave

breaking mechanisms. However, the simplifications adopted in the numerical simula-

tions constitute a source of uncertainty regarding the applicability of the results to

real situations. Making the numerical simulations more realistic by including miss-

ing physical processes (e.g., boundary layer effects, moisture and phase transitions),

would therefore be a natural next step to further understand the observed turbulence

event.
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5.6 Appendix 5.A: Wave energy distribution at

critical levels

In this appendix, the mechanism by which the wave amplitude is enhanced in the

vicinity of critical levels will be further discussed. In particular, the energy differ-

ence between power spectra at different heights will be investigated. This analysis

strengthens the conclusions drawn above regarding the role of directional critical lev-

els in the Rocky Mountains turbulence case, and provides a more detailed description

of the energy distribution observed in the wave spectra for the idealized case also

discussed.

Figure 5.10(a) shows the difference in spectral energy computed by subtracting the

power spectrum at z = 3 km (Figure 5.8(c)) from the power spectrum at z = 7 km

(Figure 5.8(a)), for the idealized simulation with a constant rate of wind turning with

height with Riin = 16 and N0H/U = 1, presented in Chapter 3.

The portion of the spectrum where the energy difference is negative shows where

in spectral space the energy of mountain waves has decreased with height. This is

consistent with the absorption of wave energy at critical levels, as discussed in section

5.4.3.1. As expected, wave-numbers in the second quadrant (k < 0, l > 0) (and in the

fourth quadrant, by symmetry) are absorbed between 3 km and 7 km, following the

counter-clockwise rotation of the background wind vector. In Figure 5.11(a) the same

field as presented in Figure 5.10(a) is shown but the directions of the background

wind vector at 3 km (dashed arrow) and 7 km (solid arrow) are displayed. The

straight-lines also shown in these figures, departing from the origin of the k, l plane,

are perpendicular to each of these wind vectors, and correspond to the directions

of the wave-number vectors that have their critical levels at those altitudes. The

angular interval between the two straight-lines (roughly) corresponds to the portion

of the wave spectrum where energy absorption has occurred (negative values in blue

shading). This graphical representation highlights (even if only qualitatively) the

dependence of the energy absorption on the directional shear of the background flow.

While the energy absorption can also be discerned by a simple visual comparison of

Figure 5.8(a) and 5.8(c), the key aspect to note in Figure 5.10(a) is the enhancement

of wave energy for those wave-numbers that are approaching their critical levels (but

have not reached them yet). Indeed, this feature is not easily quantified by looking

at the power spectra in Figure 5.8.
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(a) (b)

Figure 5.10: Differences in spectral energy calculated between: (a) the power

spectra at 7 km and 3 km (in Figure 5.8) for the idealized simulation with a

constant rate of wind turning with height, (b) the power spectra at 9.5 km and 5.5

km (in Figure 5.9) for the semi-idealized simulation of a turbulence encounter over

the Rocky Mountains.

(a) (b)

Figure 5.11: Differences in spectral energy as in Figure 5.10(a) but where the

direction of the background wind vector is shown at: (a) 3 km (dashed arrow)

and 7 km (solid arrow), (b) 7 km (solid arrow) and 10 km (dash-dot arrow). The

straight-lines departing from the origin of the k, l plane are perpendicular to each

of these wind vectors, and correspond to the directions of the wave-number vectors

that have their critical levels at those altitudes.

In the spectrum of Figure 5.10(a) the wave energy difference is positive for the ma-

jority of the wave-numbers in the first quadrant (k > 0, l > 0), implying that the

wave amplitude is larger at 7 km than 3 km. Figure 5.11(b) is similar to Figure

5.11(a) but the direction of the wind vector at 10 km (dash-dot arrow) is shown.
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The wave-number vector perpendicular to the wind at 7 km (represented by the solid

straight-line) is the one primarily responsible for wave breaking in the region where

Riout <0 in Figure 5.7(b). However, other fairly energetic wave-numbers are also

present (i.e. like the negative values, the positive values form a wide angular band).

A possible interpretation for this energy distribution is that, although from linear the-

ory waves are expected to achieve their maximum amplitude at critical levels (where

they will suddenly break and dissipate), the wave amplitude actually starts to in-

crease some distance below a critical level. Therefore, at a given height, the high

energy region in the spectrum may be the result of an increased amplitude not only

for the wave-number having its critical level, but also for other wave-numbers that

are approaching their critical levels located at higher altitudes. Thus, the angular

interval between the wave-numbers perpendicular to the wind at 7 km (solid line)

and at 10 km (dash-dot line) can be thought of as the portion of the spectrum for

which the wave amplitude enhancing mechanism acting in the vicinity of the critical

level has already started to operate, but where the corresponding wave-numbers have

not yet been absorbed.

Note that the energy contained in these wave-numbers seems also to be the reason

why, in Figure 3.7 of Chapter 3, the effective angle between the (u′, v′) vector and

the background wind vector in physical space is not exactly 90 degrees but larger

(around 120 degrees). Indeed, if one uses inverse Fourier transformation to synthesize

a (u′, v′) vector in physical space using the energy contained in the third2 quadrant

of the spectrum shown in Figure 5.10(a), this vector will point to the left of the

background wind by an angle larger than 90 degrees.

Finally, energy differences in spectral space have been computed for the semi-idealized

simulation of the Rocky Mountains turbulence case. In Figure 5.10(b) the energy

change between the power spectra at z = 9.5 km (Figure 5.9(c)) and z = 5.5 km

(Figure 5.9(a)) km is shown. The height interval between these two power spectra

corresponds to the depth over which directional shear is significant and where, in

physical space, most of the wave breaking occurs. A narrow region of wave energy

absorption is visible in the first quadrant of the spectrum, close to the k axis. The

existence of this region is consistent, by the same mechanism as explained above

and graphically shown in Figure 5.11, with the wind rotation from (approximately)

westerly to north-westerly, as shown in Figure 5.9(a) and (c).

2The third quadrant should be used because in Figure 3.7(a) the (u′, v′) vectors in the breaking
region point towards the south-west.
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Positive energy differences, and the consequent increase in wave amplitude, can again

be explained by the presence of directional critical levels. However, in this case, the

rotation of the wind above 9.5 km slows down significantly, so it seems unlikely that

directional critical levels are the only reason for the (wide) high energy region in

the first quadrant of Figure 5.10(b). This is probably a consequence of changes in

the background flow parameters, such as the stability and wind speed, between the

two heights where the power spectra were taken or even above. Indeed, as shown in

Figure 5.2(b), the wind speed between 5.5 km and 9.5 km decreases from 20.6 m s−1

to 18 m s−1. As mentioned previously (see section 5.4.2.3), this type of variation can

cause the wave amplitude to increase. Additionally, the significant increase in N2

starting at about 11 km can cause wave reflections (see section 5.4.2.2), which might

also result in an enhancement of the wave amplitude at lower atmospheric levels by

resonance. Although sensitivity tests 2 and 3 indicate that these mechanisms are

not strong enough to cause wave breaking, they may still be strong enough for their

contribution to the wave dynamics to be revealed in the power spectrum of Figure

5.10(b).





Chapter 6

Conclusions

6.1 Summary

Several mechanisms cooperate to make orographic gravity waves break down into

turbulence. In this thesis, instability of those waves initiated by a variation of the wind

direction with height (directional shear) was investigated. The aim was to achieve a

better physical understanding of mountain wave breaking in directional shear flows,

with potential applications to aviation Clear-Air Turbulence (CAT) forecast.

Idealized and semi-idealized numerical simulations using the WRF atmospheric model

were performed. In the idealized numerical experiments, mountain shapes with a

simple mathematical definition and prototypes of flows with directional wind shear

were used to study the occurrence of wave breaking over a 3D orography. In the

semi-idealized simulations, a real CAT encounter over the Rocky Mountains was

investigated by simulating more realistic atmospheric conditions and using a real

(albeit truncated) orography as lower boundary condition.

The interpretation of model outputs was developed by comparison with linear theory

predictions, through spectral analysis of the wind velocity perturbation field and by

carrying out various sensitivity tests.

The modelling approach employed in this thesis used a set of numerical simulations

of increasing realism (although always partly idealized) that allowed us to look at

the problem of breaking mountain waves in gradually more complex scenarios. An

advantage of such a methodology is that, thanks to the knowledge gained in simpler

case scenarios, attributions of cause and effect are possible even when the degree of

113
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realism of the flow, and with it the number of variables and physical processes at

play, has increased.

6.2 Main results and conclusions

The work presented in this thesis was motivated by research questions presented in

Chapter 1. The main findings for each research question are described next:

(a) Under a controlled scenario, how does wave breaking depend on background

flow parameters?

• In chapter 3, idealized simulation results for hydrostatic mountain waves were

used to produce a regime diagram (Figure 3.3) diagnosing wave breaking oc-

currence as a function of the terrain elevation (quantified through N0H/U) and

the strength of directional shear (quantified through Riin). When directional

shear is not considered, wave breaking is observed only for N0H/U > 1 (H > 1

km), as found by previous authors. In the presence of a background directional

shear, due to the non-linear response of waves to the background flow and the

effect of critical levels, wave breaking can occur over lower mountains than in

a constant-wind case. Wave breaking always occurs when N0H/U = 1 (H = 1

km), no matter what intensity of the directional shear is used (note that for the

weakest directional shear flow considered here Riin = 16, which roughly corre-

sponds to a rate of wind turning with height of β ≈ 14 degrees/km). When

N0H/U = 0.75 (H = 750 m) wave breaking is detected for moderately strong

and strong directional shear flows with Riin 6 4 (β ≈ 31 degrees/km or faster).

For N0H/U = 0.5 (H = 500 m) wave breaking is found for flows with Riin 6

2 (β ≈ 40 degrees/km or faster). It is only when assuming very small moun-

tain heights (N0H/U = 0.1 and 0.2) that wave breaking is completely absent

for any directional shear intensity considered. Therefore, for gradually stronger

directional shears, the critical N0H/U for wave breaking decreases down to at

least 0.5.

(b) Where is turbulence generation expected with respect to the orography that

generates the mountain waves?

• Time-series of the Richardson number of the total flow (Riout) showed that Riout

remains roughly between 0 and 0.25 both before and after wave-breaking pe-

riods. Thus, by considering grid-points where Riout < 0.25, regions within the
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simulation domain where wave breaking and the development of Clear-Air Tur-

bulence are more likely were identified (Figure 3.6). The extent and location of

these regions vary with the background wind shear intensity. In particular, in-

creasing the strength of the directional shear leads to wider regions of (potential)

turbulence generation and a more complex flow topology, for which Riout values

lower than 0.25 occur simultaneously in many vertical levels. Additionally, for

stronger shear flows, the greater density of critical levels cause the wave energy

to be dissipated in the lower levels in the atmosphere (i.e. all the wave breaking

occurs in the first few kilometres above the ground). The turbulent nature of

the instability regions identified in the inviscid simulations from the value of

the Richardson number (Ri) was confirmed by performing additional numeri-

cal simulations where turbulence was parametrized and represented through its

associated TKE (Figure 3.11).

(c) Is there a way to diagnose this type of turbulence?

• Mountain wave breaking strongly depends on environmental conditions set at

large-scale (such as wind speed and direction, atmospheric stability and orogra-

phy profile). The aforementioned regime diagram (see answer to question (a))

provides a way of predicting wave breaking based on large-scale variables, with-

out the need to explicitly resolve mountain waves. With such a method it is

possible to identify for which combination of mountain height and background

wind shear wave breaking is expected in simplified flow conditions.

Additionally, by examining the dynamics of the horizontal velocity perturba-

tions associated with the waves in Fourier space, it was found that the Fourier

transform of the horizontal velocity perturbation vector and the wave-number

vector are approximately aligned at critical levels (Figure 3.8 and Equations

(3.11)-(3.12) ). When transposed to physical space, this condition provides a

possible diagnostic for CAT forecast in directional shear flows, based on the

approximate perpendicularity between the horizontal velocity perturbation as-

sociated with the wave and the mean incoming wind.

(d) How does the stability of the flow to wave breaking change in the transition

from hydrostatic non non-hydrostatic mountain waves?

• In chapter 4, mountain waves excited by narrow 3D orography were investi-

gated. For this type of waves, the dependence of the vertical wave-number on

the horizontal wave-number introduces dispersion effects in the gravity wave

dynamics that are expected to influence the occurrence of wave breaking. A

regime diagram for non-hydrostatic mountain waves (Figure 4.2) was produced
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and compared with the analogous regime diagram for hydrostatic mountain

waves. It was found that while for weaker shear flows non-hydrostatic effects

increase the stability of the flow due to wave dispersion, for stronger shear flows

non-hydrostatic effects decrease the stability of the flow, owing to the increased

magnitude of the vertical velocity perturbation over narrow orography. The

balance between these two mechanisms determines the likeliness of wave break-

ing. Therefore, although non-hydrostatic mountain waves are generally believed

to be less likely to break because of their dispersive nature, in the presence of

directional wind shear this seems to be only partially true. Ultimately this

is because directional wind shear controls the distance over which dispersion

effects can act before the waves break.

(e) In a real turbulence event, what is the role of directional shear in triggering

wave breaking? Can we isolate its contribution?

• In chapter 5, for a selected case study over the Rocky Mountains, the connec-

tions between directional shear and an observed aviation turbulence event were

studied through semi-idealized numerical simulations.

The capability of the model to reproduce the observed turbulence encounter

was assessed by comparing model outputs (i.e. generation of flow instability

in fields such as potential temperature, horizontal wave velocity perturbations

and Richardson number) and observations (PIREPs). An overall good agree-

ment between the PIREPs database and model-predicted instabilities was found

when the model was initialized with a real orography profile (albeit truncated).

However, the agreement between observations and model worsened significantly

when an idealized lower boundary condition was used (Test 1). This is because

the mechanism leading to wave breaking in directional shear flows is sensitive to

the bottom boundary condition. In particular, because of their different spec-

tral energy distribution, the wave spectra excited by the idealized mountain

and by the realistic orography result in a different wave-directional critical level

interaction.

The role of directional shear in causing wave breaking was isolated by per-

forming sensitivity tests to exclude the variation of the atmospheric stability

with height (Test 2), the speed shear (Test 3), and the mountain amplitude

(Test 4) as dominant wave breaking mechanisms. The signature of directional

shear-induced wave breaking was found in a significant downwind transport

of instabilities observed in flow cross-sections (Figure 5.4(a)). In particular,

mountain wave turbulence was detected at large horizontal distances from the

orography that generated the waves. The existence of an asymptotic wake, as
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predicted by Shutts (1998) using linear theory for waves approaching critical

levels in directional shear flows, was hypothesized to be responsible for this

downwind transport (Figure 5.7).

Other flow features suggesting the role of directional shear in causing wave

breaking are: the filtering of wave energy by directional critical levels that

vanished in Test 4 where directional wind shear was removed (Figure 5.5(c));

the spectral wave energy distribution at critical levels, in connection with the

findings mentioned in the answer to question (c) above (see also below).

(f) In Fourier space (i.e., by spatial scale), how is the spectral wave energy dis-

tributed at directional critical levels?

• Critical levels induced by directional shear were studied by taking 2D power

spectra of the magnitude of the horizontal velocity perturbation field. This

was done for a fully idealized flow (Figure 5.8), presented in chapter 3, and for

the more realistic flow (Figure 5.9) discussed in chapter 5. In the spectra of

both flows (although more clearly for the idealized case) a rotation of the most

energetic wave modes with the background wind, as well as an approximate

perpendicularity between the background wind vector and the wave-number

vector of those modes at critical levels, could be found. Such behaviour is con-

sistent with the mechanism expected to lead to wave breaking in directional

shear flows, associated with interaction between waves and their critical lev-

els. Additionally, when energy differences in spectral space were computed for

the horizontal velocity perturbation between two different heights, regions in

the spectra where wave energy is absorbed (negative differences) and enhanced

(positive differences) (Figure 5.11) were found. Negative and positive energy

difference regions correspond to wave-numbers that were already absorbed by

their critical levels or that are approaching their critical levels but have not

reached them yet, respectively.

6.3 Directions for future work

The idealized nature of the flows considered in this thesis, and the simplifications

adopted in the numerical simulations, limit the applicability of the results to real

situations. In particular, the prototypes of directional shear flows used in the idealized

simulations assume unrealistic constant rates of wind turning with height and static

stability. Additionally, missing physical processes like the development of a boundary

layer above the ground, the Earth’s rotation, moisture and phase transitions etc.,
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could modify the flow behaviour. Thus, the work presented here could be extended

by adding complexity to the simplified scenarios considered so far. Some of the

aspects of the physics of mountain waves that still need to be clarified have been

already touched upon throughout the thesis. Other aspects, to be mentioned next,

need to be considered ab initio.

As mentioned in chapter 3, one may wonder how the introduction of a Planetary

Boundary Layer would modify the regime diagram presented in Figure 3.3. As sug-

gested by previous studies (Ólafsson and Bougeault, 1997, Peng and Thompson,

2003), waves generated in the presence of a PBL are expected to be weaker than

the ones developing in a frictionless flow, because the PBL attenuates the amplitude

of the flow perturbations forced by the lower boundary condition. Thus, in direc-

tional shear flows, for a same mountain height, we may need a stronger directional

shear in order to achieve wave breaking by comparison with inviscid simulations.

However, the weakening of waves in the presence of a PBL is not large enough to to-

tally counter-balance the increase of the wave amplitude in the vicinity of directional

critical levels. Additionally, definitive conclusions cannot be drawn without taking

into account the stratification of the boundary layer. Jiang and Doyle (2008) showed

that the diurnal variation of the PBL (driven by surface heating or cooling) results

in a diurnal variation of the interaction between the PBL flow and mountain waves.

While a well-developed convective PBL seems to reduce the gravity waves amplitude,

a nocturnal stable PBL acts to increase the wave amplitude when N0H/U0 ≈ 1. It

remains to be known how these phenomena would interact with a directional wind

shear.

The idealized numerical simulations of chapter 3 and 4 could also benefit from a

more realistic upper boundary condition. As mentioned in chapter 5, the interaction

between vertically-propagating mountain waves and the tropopause may trigger wave

breaking. This is mainly a consequence of two distinct mechanisms: on the one hand,

the increase in static stability at the tropopause makes the waves behave, to a certain

extent, as in the presence of a critical level. The increased N results in a larger vertical

wave-number m in the stratosphere that will facilitate wave breaking (VanZandt and

Fritts, 1989). On the other hand, the discontinuity represented by the jump in static

stability may generate wave reflections into the troposphere. As shown by Leutbecher

(2001), upward and downward propagating waves can interfere, constructively or

destructively, with consequences to the wave amplitude itself. These two mechanisms

coexist and probably modify the wave amplitude in the lower stratosphere and upper

troposphere (Smith et al., 2008). One of the ways in which directional shear could

interact with these mechanisms, is by selective filtering of the wave energy with
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height. If waves generated at the surface are dissipated because of directional critical

levels, they may never reach the tropopause, or reach it with a substantially smaller

amplitude, resulting in a different wave response from the one expected if no critical

levels existed.

Regarding the possible wave breaking diagnostic proposed in chapter 3, initial at-

tempts to use the perpendicularity condition between the horizontal velocity pertur-

bation and the background wind vectors were made in Appendix 3.B. These prelim-

inary tests showed some difficulties in using the diagnostic, and the need to combine

the perpendicularity criterion with at least another constraint. For this purpose, the

magnitude of the velocity perturbation vector was used, as we can expect it to be

large at critical levels and wave breaking regions. Although the validity of this di-

agnostic was discussed in the thesis from a theoretical prospective, its applicability

needs to be tested. This type of work would probably require a considerable amount

of time and a large number of test cases to guide empirical choices (such as the se-

lection of threshold values etc.) using also knowledge of the physics of mountain

waves at critical levels. Ultimately, if the diagnostic proved to be successful, it could

become part of the group of diagnostics currently employed for CAT forecasting (as

mentioned before, presently, none of the diagnostics in use considers the contribution

of directional shear to wave breaking).

Regarding the semi-idealized simulations presented in chapter 5, results could be

made more robust by repeating the study running the WRF model in its “real con-

figuration”. This would entail initializing the model with 3D weather fields of wind,

pressure, temperature etc., and turning on the parameterizations of physical processes

(radiation, PBL, surface heat and moisture fluxes etc.), and including the Coriolis

force. In this type of simulation, uncertainties due to the simplifications adopted in

the semi-idealized approach would be reduced, but a physical understanding of pro-

cesses would become more difficult. For example, we could assess how the effects of a

transient background flow would impact our results (in the semi-idealized simulations

included in the thesis the background flow was prescribed as a fixed field that does

not change in time). The effects of moisture and phase transitions on the atmospheric

stability could also be taken into account. Furthermore, using an orography that is

not laterally truncated might alter the wave-directional critical level interaction via

modification of the surface forcing (see answer to question (e) above). It would be

interesting to compute power spectra of the horizontal velocity perturbations in these

more realistic conditions and check whether they can still represent a useful tool or,

instead, the information would be too distorted by other physical processes now mod-

elled. Finally, more case studies like the one investigated here could be considered to
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confirm (or contradict) the conclusions and hypotheses formulated in chapter 5.

The research presented in this thesis had a clear focus on flow instability due to

mountain wave breaking, with implications for aviation turbulence. However, it is

worth mentioning that Clear-Air Turbulence is only one of the many manifestations

of mountain waves. Recalling Figure 1.1 (b), where the diversity of topics related

to mountain waves is reviewed, it must be noted that the interaction of mountain

waves with directional critical levels also affects the global atmospheric circulation.

An improved understanding of where wave breaking is expected, and under what

flow conditions, could assist in the development of new orographic drag parameter-

izations, where directional shear probably needs to be taken into account. In an

even more general context, the study of dynamical aspects of gravity waves such as

non-hydrostatic effects, their spectral energy distribution and their interaction with

critical levels contributes towards the fundamental research needed to improve our

understanding of the interaction between the mean flow and 3D orographic gravity

waves.
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