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Abstract
Anthropogenic heat flux (QF) may be significant in cities, especially under low solar irradiance and at night. It is of interest to
many practitioners including meteorologists, city planners and climatologists. QF estimates at fine temporal and spatial resolution
can be derived from models that use varying amounts of empirical data. This study compares simple and detailed models in a
European megacity (London) at 500 m spatial resolution. The simple model (LQF) uses spatially resolved population data and
national energy statistics. The detailed model (GQF) additionally uses local energy, road network and workday population data.
The Fractions Skill Score (FSS) and bias are used to rate the skill with which the simple model reproduces the spatial patterns and
magnitudes of QF, and its sub-components, from the detailed model. LQF skill was consistently good across 90% of the city,
away from the centre andmajor roads. The remaining 10% contained elevated emissions and Bhot spots^ representing 30–40% of
the total city-wide energy. This structure was lost because it requires workday population, spatially resolved building energy
consumption and/or road network data. Daily total building and traffic energy consumption estimates from national data were
within ± 40% of local values. Progressively coarser spatial resolutions to 5 km improved skill for total QF, but important features
(hot spots, transport network) were lost at all resolutions when residential population controlled spatial variations. The results
demonstrate that simple QFmodels should be applied with conservative spatial resolution in cities that, like London, exhibit time-
varying energy use patterns.

1 Introduction

Anthropogenic heat flux (QF) can be a substantial input into
the urban energy balance, especially in mid- and high-latitude
cities during the autumn, winter and early spring when it
matches or even exceeds the incoming radiant flux in some
areas of a city (e.g. Kikegawa et al. 2003; Hamilton et al.
2009). Despite its magnitude, QF is difficult to measure direct-
ly because it is incorporated into measured sensible, latent,
storage and long-wave radiative fluxes. QF is therefore com-
monly estimated using empirical models (e.g. Sailor and Lu
2004; Smith et al. 2009; Allen et al. 2011; Iamarino et al.

2012) that simulate the metabolic (QF,M), transportation
(QF,T) and building (QF,B) components of QF.

Modelling methodologies for QF are either top-down,
bottom-up or a combination of the two. Top-down models
(e.g. Sailor and Lu 2004; Allen et al. 2011) combine energy
consumption or statistical parameters summarising large areas
with supplementary data to produce estimates at finer spatial
and temporal scales. Bottom-up approaches model emissions
from individual buildings (e.g. Bueno et al. 2012) or road
links (Smith et al. 2009) and apply these across large areas.
A combination of the two (e.g. Iamarino et al. 2012) may be
used to balance the desirable accuracy of bottom-up methods
with the practicality of the top-down approach, given compre-
hensive input data are not always available.

Top-down methods are appealing as they (i) allow studies
in regions where data are scarce and (ii) are applicable to large
geographical areas that can be incorporated into numerical
weather prediction or global/regional climate models (e.g.
Flanner 2009), and (iii) their relative simplicity makes them
computationally tractable. These methods generally use a spa-
tial dataset of local population density (e.g. Sailor and Lu
2004, Allen et al. 2011) to distribute national/regional per-
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capita energy consumption and vehicle ownership statistics
within the domain of interest. The availability of world-wide
gridded population datasets (e.g. GPWv4—Center for
International Earth Science Information Network 2016;
GHS—Pesaresi 2015) means theoretically QF can be
modelled at sub-kilometre resolution. This makes its use in
urban energy balance models appealing, but the potential for
inaccuracy rises with finer resolution since the input data may
be insufficient to reflect energy consumption across a city at
such scales.

A QF model is considered skilful in this analysis if the
resulting spatial distributions accurately reproduce a reference
model or dataset in different QF regimes: areas with (i) zero
emission, (ii) Bhot spots^ (regions with the most intense emis-
sion) and (iii) intermediate intensities. Different QF regimes
and/or components are of interest for different applications, so
a skill score must be able to objectively compare them by
incorporating the abundance and spatial and temporal accura-
cy of emissions in each regime.

Previous studies comparing QF model results use subjec-
tive assessments of spatial assumptions. For example, Allen
et al. (2011) note that using residential population datasets to
attribute urban emissions may not accurately represent the true
energy use pattern. Quantitative comparisons focus on ex-
treme values or large-area averages rather than spatial accura-
cy or bias: Sailor et al. (2015) compare maximum values and
city-wide averages; Dong et al. (2017) discuss global mean
values (and note the limitation of this approach); Lindberg
et al. (2013) demonstrate how the origin and resolution of
residential population data affect cumulative QF. While broad-
ly informative, these strategies leave an incomplete under-
standing of the merits and limitations of different modelling
approaches.

In this study, the Fractions Skill Score (FSS) and supple-
mentary analyses are used to evaluate skill objectively and to
establish the spatial resolution and time(s) of day at which a
simple model produces skilful estimates. A detailed QF model
(GreaterQF; Iamarino et al. 2012) is used as a reference stan-
dard against which the skill of a top-down model (LUCY;
Allen et al. 2011; Lindberg et al. 2013) is rated.

The LUCY and GreaterQF models have been re-
implemented (under the Urban Multiscale Environmental
Predictor (UMEP) suite—Lindberg et al. 2018) to interface
with the Quantum GIS Geographical Information System
(2016) to use standard GIS datasets as inputs. The models
are termed BLQF^ (LUCY) and BGQF^ (GreaterQF) hereafter
to emphasise the new implementations presented here, which
make it easier to update input data to represent different his-
torical or hypothetical conditions.

Information about the FSS and models is provided in Sect.
2, and the skill with which LQF predicts QF, QF,T, QF,M and
QF,B is discussed in Sect. 3, along with further analyses that
apply different spatial considerations.

2 Methods

2.1 Overview of models

Themodifications and improvements in LQF and GQF include
pre-processing of input data to attach weightings to each grid
cell in the model domain, with grid cell size defined by the
spatial resolution of population count data used as input. The
weightings are used to apportion vehicle activity, building en-
ergy consumption and metabolic activity, from which QF emis-
sions are estimated (Appendix 2).Weightings in LQF are based
only on residential population density, while in GQF the
weightings combine population density, energy consumption
(broken down by fuel and consumer type), total road length
(by road class) and traffic flow (by road link and vehicle type).

LQF contains a user-editable georeferenced database of
historic national energy consumption, vehicle ownership
(car, motorcycle and freight/bus) and total population statis-
tics. Each grid cell receives a share of the energy consumption
and vehicles based on the proportion of national population it
contains. Building energy use depends on mean daily air tem-
perature recorded for the study area via an empirical scaling
function (Lindberg et al. 2013), which does not conserve the
annual per-capita energy consumption derived from the data-
base. Metabolism is simulated using the residential population
at all times of day. Hourly profiles of building energy use,
metabolic activity and road traffic variations are applied to
capture the diurnal variations of these energy sources.

All of the energy input into LQF and GQF is assumed to be
released as latent, sensible and/or wastewater QF. GQF uses
city-scale data to estimate emissions: Building emissions are
calculated using spatially resolved annual energy consumption
(electricity and gas), which distinguish non-domestic and do-
mestic consumption within the city. These are disaggregated to
a common spatial resolution usingworkday and residential pop-
ulation data, respectively. Daily building energy consumption
variations are generated based on electricity and gas demand
data, and separate non-domestic and domestic half-hourly pro-
files are applied to capture diurnal variations. Unlike in LQF,
annual per-capita building energy consumption is conserved in
GQF. Road traffic fuel use for eight vehicle types is built up
from a detailed map of road links, and vehicle-specific profiles
are applied to elicit diurnal variations. Metabolic emissions are
represented using the residential population at night and the
workday population on working days, with a transitional period
between them. Each grid cell therefore contains different pro-
portions of transport, building and metabolic QF.

2.1.1 Model configuration

LQF and GQFmodels were run for Greater London, UK. The
study area (residential population 8.2 M, workday population
8.67 M—Office for National Statistics 2016) extends 60 ×
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45 km at its widest points and contains diverse land uses and
substantial population variations. Data requirements are met
for both of the models. A substantial change in population
distribution occurs between night (Fig. 1c) and working days
(Fig. 1e). This leads to large workday enhancements in the
city centre and far west and modest but widespread population
decreases in the majority of the city (Fig. 1h). The road net-
work contains arterial routes, an inner ring-road in the north-
ern half of the city and an outer highway partly intersecting the
edge of the study area. These features are visible in the daily

mean vehicle fuel consumption estimate produced by the
GQF pre-processing steps (Fig. 1f).

The spatial accuracy of LQF is evaluated on a working day:
Tuesday, 5 May 2015. This falls during British Summer Time
(UTC + 1, which is explicitly captured in both models). On
this date, the mean air temperature recorded in central London
was 9.03 °C, cool enough to trigger building heating calcula-
tions in LQF. Year-long model runs were also performed to
assess LQF predictions of daily building energy consumption
relative to GQF.

a  GQF-Standard emissions (17:00 UTC) b  LQF-Standard emissions (17:00 UTC)

c  Gridded residential population density d  OA residential population density

e  Gridded workday population density f  Gridded road fuel consumption

g  Paved land cover fraction h  Workday to residential population ratio

Total QF [W m-2]

Fig. 1 a, b Total QF from GQF
and LQF at 500 m spatial
resolution at 17:00 UTC on
May 5, 2015 (same colour scale).
c, d The residential population
density respectively by output
area (OA) and after gridding to
500 m resolution. e Gridded
workday population. f Gridded
total road vehicle fuel consump-
tion estimated in GQF (Appendix
2). g Paved land cover fraction
and (h) the ratio of workday (W)
to residential (R) population at
500 m resolution, coloured based
on which dominates. Panels (c) to
(g) are shaded by their respective
quintiles. Grey cells contain zero
population, emissions or fuel
consumption

Anthropogenic heat flux: advisable spatial resolutions when input data are scarce



GQF and LQF model parameters are summarised in
Appendix 1, along with details of the input data sources
used. LQF was assigned one transport and one building
energy consumption diurnal profile, which are averages of
those used in GQF, weighted respectively by the abun-
dance of each vehicle type (outer London; DEFRA
2014) and energy consumer (city-wide values; DBEIS
2016). The profiles and GQF outputs were temporally
averaged to match the 60-min time resolution of LQF.
Both models were configured to generate QF at 500 m
spatial resolution to approximately match that of the
world-wide population datasets such as Gridded
Population of the World v4 (GPWv4; Center for
International Earth Science Information Network 2016).

Modifications are applied to LQF and GQF to quantify the
change in skill from varying spatial input datasets (Table 1
contains a breakdown of input data used for each variant):

& GQF and LQF: standard model configurations
& BLQF-Paved^: as LQF, but using remote-sensed paved area

fraction data to estimate the spatial distribution of QF,T

& BGQF-Simplified^: spatially resolved energy consump-
tion input to GQF is replaced with city-wide values to
document the effect on skill.

Hourly spatial distributions of total QF were produced
by GQF and LQF for the whole of 5 May 2015. Results
from the 16:00 to 17:00 UTC time step are shown in
Fig. 1a, b as examples. Emissions range from zero to
more than 100 W m−2 over the city, with different spatial
distributions resulting from each model treatment.

2.1.2 Input data

Per-capita building energy use Per-capita building energy
consumption is estimated by LQF using UK total population
(62.036 M) and energy consumption statistics (Allen et al.
2011; Lindberg et al. 2013), both from 2010. In comparison,
London-specific energy consumption (2014) and population
(2011) data are used to calculate per-capita building energy
use in GQF. Appendix 1 contains full listings of LQF and
GQF input data sources and parameters.

The UK total national primary consumption (PC) in the
existing LUCY database was 3.03 times greater per-capita than
the city-specific value input into GQF (Fig. 2a) and 2.92 times
greater than an alternative estimate of London energy con-
sumption with transport excluded from 2014 (DECC 2014).
This disparity is dominated by the use of the total primary
energy supply (IEA 2016) in LUCY, which includes energy
production minus exports and losses rather than consumption.

The 2010 UK Total Final Energy Consumption minus
transport fuel, or NTFC (IEA 2016), differed from the GQF

value by only 1.2% and is therefore used in LQF here instead.
Changes in consumption between 2010 (LQF input) and 2014
(GQF input) are also likely to contribute to the difference
between model inputs, but a full evaluation of top-down en-
ergy consumption estimates is beyond the scope of this work.

Transport fuel consumption Published aggregated total fuel
consumptions for the UK and London were unsuitable for
modelling road transport emissions because they included avi-
ation and rail transport. Instead, GQF-estimated per-capita
road transport fuel consumption is based on a map of traffic
volume per road link from 2013 (London Datastore 2014) and
is 1.4 times greater than the equivalent LQF estimate (Fig. 2b)
from UK per-capita vehicle ownership stat is t ics
(Worldmapper 2006).

Day-to-day variations Daily mean temperature data for LQF
was measured in Central London during the year 2015 by a
Davis Vantage Pro 2 Plus weather station atop Barbican
Cromwell Tower, a 42-storey residential block (51.521°N, −
0.0930°E, 145 m a.s.l). Daily gas and electricity demand var-
iations for GQF (National Grid 2016a, b) were also sourced
for 2015. Section 3.2.1 compares the day-to-day variation in
building energy available in each model.

LQF road traffic volume is reduced by 20% during week-
ends and public holidays. Diurnal and day-of-week traffic
variations in GQF are governed by a single week-long profile
at 30 min resolution.

Population data Spatially resolved Greater London population
maps from the 2011 UK census (ONS 2013) are used to allo-
cate population and thus energy consumption across the spatial
domains of both models. To represent the effect of grid resolu-
tion on skill, gridded population data are produced from the
census output area (OA) spatial units that vary in area
(Fig. 1d). The populations were redistributed to a regular grid
based on the plan area index of buildings according to satellite-
derived land cover classification data (Marconcini et al. 2017),
using the process described in Appendix 2. This yields residen-
tial and workday populations downscaled to 500 m resolution
(Fig. 1c, e) for use in the two models.

2.2 Fractions skill score

The total QF output by each model1 at 17:00 UTC (Fig. 1a, b)
demonstrates several features that the evaluationmust capture:

1. The different frequency and spatial arrangement of hot
spots (emissions typically ranging from ~ 50 to over

1 See http://urban-climate.net/umep/UMEP_Manual/_Tutorials/LQF for a
tutorial that demonstrates how to use the models to replicate these outputs
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100 W m−2 at 500 m resolution) towards the centre of
London

2. Different spatial features between models, such as en-
hancements around major roads

3. The overall pattern of QF, which is more intense in the city
centre

The Fractions Skill Score (FSS; Roberts and Lean 2008) is
a metric that allows forecast skill at different spatial scales to
be quantified in light of spatial errors and bias. Originally
applied to compare forecast and observed precipitation fields
(e.g. Roberts and Lean 2008; Mittermaier and Roberts 2010),
it has also been used to evaluate modelled cloud brightness
temperatures (e.g. Griffin et al. 2017) and volcanic ash plumes
(Harvey and Dacre 2016). The FSS is calculated for different
regimes of interest (e.g. QF intensity—see Table 2—rainfall
rate or ash concentration) to highlight different aspects of
model behaviour. In this study, regimes are selected based
on QF magnitude and typically occupy certain regions of the
city. For example, QF,B emissions are consistently higher in
the city centre; therefore, the upper regimes are found here
(Fig. 3a). For a given regime, FSS is estimated as follows:

1. Grid cells belonging to the regime are tagged.
2. A neighbourhood of fixed size surrounding every grid cell

in the model domain is chosen.
3. Spatial accuracy is assessed in each neighbourhood

(Roberts, 2008). For the jth neighbourhood:

(a) The fraction of tagged cells in the neighbourhood is
calculated in the candidate model grid (Mj).

(b) The corresponding value is calculated in a reference
grid (Oj), which may be another model or
observations.

4. The fractions are calculated in all N neighbourhoods and
combined into the FSS:

FSS ¼ 1−
∑N

j¼1 Oj−M j
� �2

∑N
j¼1O

2
j þ ∑

N

j¼1
M 2

j

ð1Þ

The FSS is calculated for multiple regimes to evaluate dif-
fe rent aspec ts of the model output . Ordinar i ly,
neighbourhoods of varying size are evaluated to determine
spatial accuracy across different scales. Spatial resolution

Table 1 Summary of input data attributes required by the different GQF and LQF configurations, with decreasingly detailed configurations further to
the right. More entries in a given column imply a more detailed configuration. See Appendix 1 for details regarding the datasets used

More detailed Less detailed

Input data Components GQF-standard GQF-simplified LQF Paved LQF

Annual building
energy
consumption

Residential
electricity

Spatially resolved City-wide value Total energy consumption
(from national data)

Total energy consumption
(from national data)

Residential gas Spatially resolved City-wide value

Industrial gas Spatially resolved City-wide value

Industrial electricity Spatially resolved City-wide value

Energy consumption
diurnal profiles

Residential
electricity

Dedicated profile Dedicated profile One profile for all
components

One profile for all
components

Industrial electricity Dedicated profile Dedicated profile

Residential gas Dedicated profile Dedicated profile

Industrial gas Dedicated profile Dedicated profile

Relative daily energy
demand

Gas Measured demand Measured demand Total demand estimated
using temperature

Total demand estimated
using temperature

Electricity Measured demand Measured demand

Spatial population
density (times
used)

Night,
weekend

Residential Residential Residential Residential

Working day Workday Workday Residential Residential

Road network layout – Road link map,
multiple road
classes

Paved land cover fraction Population density

Traffic heat estimate – Traffic flow per road link,
vehicle class and road type

Fuel efficiency data

National vehicle ownership rates
Population density
Pre-calculated heat emissions for three vehicle classes

Traffic diurnal
variations

– Separate profiles for
six vehicle classes

One profile (all classes) One profile (all classes)

Anthropogenic heat flux: advisable spatial resolutions when input data are scarce



rather than scale is of interest in this work, so a single-pixel
neighbourhood is used with model outputs with progressively
coarser resolutions.

The FSS ranges from 0 to 1, where FSS < 1 indicates
poorer skill but not the underlying reasons for it. The frequen-
cy bias (the between-models ratio of grid cell counts in a
regime) is therefore calculated separately to aid in interpreta-
tion. A lower limit, FSSuseful, was defined with the FSS to
signify whether the candidate model gives an informative
(Buseful^) prediction of the reference:

FSSuseful ¼ 0:5þ f �
2 ð2Þ

where f is the overall fraction of tagged cells in the reference
grid, and 0.5 is the likeliest outcome if the forecast is random.

FSSuseful is half-way between the two.
The FSS provides an intuitive measure of overlap between

models. The impact of spatial consistency is visualised using
three examples (Fig. 4b–d) wherein the two models produce
similar numbers of cells within a regime (low frequency bias)
but with varying degrees of spatial consistency.

3 Results

LQF and GQF were run for Greater London at 500 m spatial
resolution, consistent with finer-scaled global population
datasets (e.g. GPWv4). Results are compared on a typical
working day: Tuesday, 5 May 2015 for each component of
QF for each hour of output. Model outputs are compared pri-
marily at the 500-m base spatial resolution, with coarser res-
olutions considered by spatially averaging the outputs in post-
processing. A maximum cell size of 5 km maintains a sample
size over 50 grid cells in the 60 × 45 km domain.

Skill at different model resolutions from 500 m to 5 km is
compared during night-time (00:00–01:00 UTC) and daytime
(06:00–07:00 UTC for transport, 11:00–12:00 UTC other-
wise) to capture low/domestically dominated and high/non-
domestically dominated emissions, respectively.

3.1 Selection of regimes

QF intensity regimes (defined in Table 2) are selected based on
thresholds [W m−2] applied to both model grids. Thresholds
are estimated using quantiles of the emission intensity found
in the GQF output grid. The resulting FSS therefore indicates
if emissions are of the correct magnitude, and whether emis-
sions of a given magnitude occur in the correct locations.
Separate thresholds are calculated for each time step, QF com-
ponent and spatial resolution.

The regimes are chosen such that the No-QF and G99+
cases, respectively, evaluate spatial intermittency and ex-
tremes, while the G50−, G50+ and G90+ regimes evaluate
whether the bulk of QF values are predicted and assigned
correctly, indicating if emissions are skewed higher or lower

a Buildings b Transport

Fig. 2 Per-capita annual energy emissions for a buildings and b transport
estimated by GQF, LQF, and LUCY. LUCY and LQF respectively use
national primary consumption (PC) and non-transport final consumption
(NTFC) (IEA, 2016) for building energy consumption and both estimate
transport emissions based on vehicle ownership. London-specific energy
consumption values (DECC, 2014) are shown for comparison

Table 2 Definitions of
anthropogenic heat flux (QF)
intensity regimes used in model
comparison, with corresponding
QF values to illustrate the
magnitude of each threshold in
terms of GQF total QF, and the
proportion of the total GQF
hourly energy emitted from each
regime. Ranges are used because
thresholds are re-evaluated at
each time step

Regime Description Threshold for GQF total QF [W
m-2] (median)

% of GQF total hourly
energy emitted

No-QF GQF emissions < 0.005 W m−2 – –

G99+ Upper 1% of non-zero GQF values 26.7–90.6 (47.2) 6.3–11.5

G90+ Upper 10% of non-zero GQF values
(excludes G99+)

8.4–25.0 (18.2) 23.4–26.1

G50+ Upper 50% of non-zero GQF values
(excludes G90+)

3.3–9.4 (7.2) 46.6–52.2

G50− Lower 50% of non-zeroGQF values – 15.8–18.2

A. M. Gabey et al.



than in GQF. The No-QF regime is evaluated only for QF,T

because the two models use different datasets to estimate spa-
tial intermittency for transport, whereas population data (with
zero values in identical locations) is used for other compo-
nents. Skill in a given QF regime is considered to be informa-
tive if FSS > FSSuseful.

3.2 City-wide results

3.2.1 Day-to-day variations

GQF uses historical demand data to estimate daily building
energy consumption, while LQF makes predictions based on
ambient temperature (Sect. 2.1.2), and it is informative to
establish the magnitude of the differences between these
values (although beyond the scope of the work to resolve
them). Based on model runs for all of 2015, the LQF/GQF
city-wide daily building emissions ratio (Fig. 4e) varies from
0.6 to 1.5. The empirical relationship is bimodal about 1.1 and
0.8, and a seasonal breakdown (Fig. 5a–d) which arises from
systematic under-estimates by LQF in the autumn and strong
bimodality in winter compared to a central tendency about 1 in
spring and summer. The mode at approximately 0.8 occurs
because measured energy use generally exceeds that predicted
by LQF when the temperature exceeds the LQF balance point

(Lindberg et al., 2013), which de-activates artificial heating in
the model calculations.

These over/under-estimates are applied with equal
weighting across all buildings in LQF, and therefore introduce
frequency biases that reduce the FSS. The ratio is 0.97 on the
study date (a typical mid-range value), so differences in build-
ing energy estimation methods are unlikely to confound the
results of the spatial analysis.

3.2.2 Diurnal variations

The variation in city-wide mean QF is consistent between
models, with GQF and LQF (Fig. 3a, b) reaching maxima of
12 and 10Wm−2 at 09:00 UTC (respectively) on 5May 2015.
Building energy dominates QF at all times, with transport
emissions proportionally greatest between 06:00 and 07:00
UTC when building energy is still rising. Building emissions
are greatest during the working day (non-domestic emissions)
and evening (domestic emissions). The proportions shown in
Fig. 5a vary spatially because GQF captures separate spatial
patterns of transport, domestic and non-domestic emissions.

3.3 Total anthropogenic heat flux (QF)

The time-of-day variation of FSS for total QF (Fig. 6a) shows
consistency between modelled emission peaks at night when

a Building emissions regimes (19:00 UTC) b FSS=0.9 (informative); QF,M 20:00 UTC

c FSS=0.55 (Marginally informative); QF 12:00 UTC d FSS=0.1 (non-informative); QF,M 05:00 UTC 

Fig. 3 Examples of a where each
emissions regime (Table 2) falls
during a GQF time step (building
emissions 5 May 2015 at 19:00
UTC), and maps that yield b high
(informative), c medium (mar-
ginally above FSSuseful) and d low
(non-informative) FSS values for
the G90+ regime. Purple cells in-
dicate where LQF and GQF
emissions coincide, and pink and
blue cells show mismatches be-
tween LQF and GQF
(respectively) emissions. Note
that different times and QF com-
ponents are used to demonstrate
each mismatch

Anthropogenic heat flux: advisable spatial resolutions when input data are scarce



residential building emissions dominate QF. Skill falls during
the day when transport and non-domestic emissions are
greatest (Fig. 5). The G50− and G50+ regimes (50 and 40%
of the area, respectively) are predicted with informative skill
all day, but skill is lower during daytime; G90+ (9% of the
area) is predicted informatively for much of the day but falls
below the threshold of what is considered informative at
06:00, 07:00 and 15:00 UTC. TheG99+ regime, which covers
1% of areas with non-zero QF, is predicted with negligible
skill at all times.

Corresponding frequency biases at 01:00 and 07:00
(Table 3, rows 1 and 2) show that LQF predicts no emissions
in the G99+ regime, hence the absence of skill. Biases in the
G90+ regime are consistent at both times; hence, the reduction
in FSS at 07:00 is likely caused by a change in the spatial QF

distribution coinciding with increased traffic activity.
Progressively coarsening the spatial resolution, r, to 5 km

(Fig. 6b) at 07:00 raises the skill of the G90+ regime to an
informative level at 1 km. There is no such effect on the G99+
skill because the fixed boundaries of the model grid leads

Fig. 4 Kernel density estimate of
total daily building energy
emissions in LQF (ELQF) relative
to GQF (EGQF) over a spring, b
summer, c autumn and d winter
months of 2015, and e the whole
year (same x-axis scale on each).
Values of ELQF/EGQF > 1 indicate
over-estimates by LQF with re-
spect to GQF. Vertical dashed line
represents the ratio found on 5
May 2015, the focus of this study
(n = 365). LQF building emis-
sions vary with air temperature
while GQF emissions use empiri-
cal demand data

Fig. 5 Time series showing the
time evolution of (upper) mean
total QF for all of London on 5
May 2015 and (lower) the pro-
portion contributed by each QF

component in a GQF and b LQF
runs. GQF further separates
building emissions into domestic
(Dm) and non-domestic
(NonDm) building emissions
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higher emissions to consolidate to different regions of the
domain as r reaches 5 km.

3.4 Transport emissions (QF,T)

The same approach is used to evaluate QF,T emissions, with
No-QF regime included here to indicate whether the spatially
intermittent structure of the road network (Fig. 1f) is predicted
adequately by LQF.

None of the QF,T regimes are predicted informatively at any
time of day (Fig. 7a). LQF greatly underestimates the frequen-
cy of grid cells in the No-QF, G90+ and G99+ regimes

(Table 3, rows 3 and 4). The frequency of emissions in the
G50-regime is overestimated by 45%, though the G50+ re-
gime frequency is within 15% of the correct value. This pro-
duces excessive QF,T away from roads and underestimates
emissions near major roads by spreading the available energy
too thinly, reflecting how the road network structure differs
from the residential population density (Fig. 1c). Coarsening
the resolution to 5 km does not improve skill to an informative
level except in the No-QF regime, which improves because
emissions occur in all 5 km grid cells.

An improved spatial distribution was sought by nor-
malising the available daily transportation energy to that

Table 3 Frequency biases
(Candidate/Reference) in each
emissions regime, by QF

component (Sect. 1) and model
variant (Sect. 2.1.1). Values
greater than 1 indicate over-
prediction by the candidate, and
values under 1 indicate under-
prediction. Non-informative en-
tries are omitted. Table 2 defines
the emissions regimes. Note that
daylight savings time was in force
on the date of the study

Candidate Reference Flux Time (UTC) Frequency bias by emissions regime

No-QF G50- G50+ G90+ G99+

LQF GQF QF 01:00 – 0.969 0.961 1.34 0

LQF GQF QF 07:00 – 0.985 0.956 1.29 0

LQF GQF QF,T 01:00 0.393 1.45 1.08 0.0486 0

LQF GQF QF,T 07:00 0.274 1.45 1.14 0.122 0

LQF-Paved GQF QF,T 01:00 0.151 1.01 1.76 0.237 0

LQF GQF QF,B 01:00 – 0.97 1.01 1.31 0

LQF GQF QF,B 07:00 – 0.971 1.01 1.31 0

GQF-Simplified GQF QF,B 01:00 – 0.975 0.994 1.24 0.429

GQF-Simplified GQF QF,B 07:00 – 0.975 0.994 1.23 0.422

LQF GQF-Simplified QF,B 01:00 – 0.996 1.03 1.08 0.0476

LQF GQF-Simplified QF,B 07:00 – 0.994 1.03 1.09 0.0469

LQF GQF QF,M 01:00 – 0.894 1.03 1.24 3.36

LQF GQF QF,M 07:00 – 0.683 0.802 2.25 14.6

LQF GQF QF,M 12:00 – 0.879 1.08 1.37 0

Fig. 6 Fraction skills scores (Eq. 1) for total QF in Greater London
(500 m resolution) based on LQF and GQF-Standard by a time of day
on 5 May 2015, and b spatial resolution at 07:00 UTC. One line shown

per QF intensity regime (Sect. 3.1). Darker lines indicate higher QF; filled
points denote informative FSS levels according to Eq. 2, and hollow
points non-informative
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in GQF and using remote-sensed paved area fraction data
in place of population density. This gives rise to the LQF-
Paved configuration, which increased the FSS only mar-
ginally at 500 m resolution (Fig. 7b) because paved areas
(Fig. 1g) resemble an amalgam of population and road
network (Fig. 1c, e, f) rather than just the road network.
As with the standard LQF configuration, the LQF-Paved
frequency biases at 01:00 UTC (Table 3, row 5) show
strong under-representation in the No-QF, G90+ and
G99+ regimes, and over-prediction of the G50+ regime
is strengthened. There is negligible bias in the G50− re-
gime, so poor FSS here is caused by a lack of spatial
consistency.

3.5 Building emissions (QF,B)

QF,B is predicted informatively by LQF at all times of day in
the G50−, G50+ and G90+ regimes (Fig. 8a). Frequency
biases at 01:00 and 07:00 UTC are under 3% in the G50−
and G50+ regimes, and the G90+ regime is overestimated
by 31% (Table 3, rows 6 and 7). As with total QF, the QF,B

skill reduces during daytime when non-domestic emissions
dominate in GQF, but not to the extent that skill falls below
an informative level. Coarsening the spatial resolution to 5 km
(not shown) does not increase the FSS in the G99+ regime.

The structure of the G99+ regime may arise from three
aspects of the GQF input data that are not captured by LQF:

Fig. 7 As Fig. 6a, but for transport emissions using a LQF and b LQF-Paved, where daily emissions match GQF and emissions are assigned using paved
area fraction rather than residential population

Fig. 8 As Fig. 6a, but showing time series of FSS for building emissions skill (500 m spatial resolution) for a LQF and bGQF-Simplified against GQF-
Standard and c LQF against GQF-Simplified
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1. Hour-to-hour energy consumption differs strongly be-
tween models because GQF uses sector-specific values
and diurnal profiles.

2. The sector-specific building energy consumption datasets
loaded into GQF are provided in spatially resolved form
and generally show greater non-domestic consumption
towards the city centre. In contrast, a city-wide consump-
tion value is used in LQF.

3. Non-domestic energy consumption is disaggregated to the
required spatial resolution using workday population,
which has a different spatial structure to residential popu-
lation (Fig. 1c, e). LQF disaggregates all energy consump-
tion using residential population.

Hourly total building emissions in the two models were
found to differ by less than 7%, suggesting (1) is not the
primary cause of the lack of skill.

The GQF-Simplified configuration uses city-wide ener-
gy consumption totals instead of spatially resolved input

files to assess the effect of (2) on the G99+ regime. The
resulting FSS (Fig. 8b) represents the skill of GQF-
Simplified at predicting GQF. The FSS across regimes
ranges from 0.5 (G99+) to 0.95 (G50−) and remains at
informative levels all day, although it should be noted that
the G99+ regime is only marginally above the FSSuseful
threshold in the evening. The effect of GQF-Simplified is
to reduce energy use in the city centre and the abundance
of grid cells in the G99+ regime by 57–58% (Table 3,
rows 8 and 9) at 01:00 and 07:00. This energy redistrib-
utes to grid cells in the G90+ regime, with a 23% increase
in abundance. This corresponds to the energy from each
lost G99+ cell being spread over 3.6 G90+ cells.

LQFwas compared to GQF-Simplified to evaluate (3). The
G99+ regime of GQF-Simplified is still predicted with negli-
gible skill by LQF (Fig. 8c), albeit with minor improvements
from 17:00 to 00:00 UTC, again caused by an absence of cells
in the G99+ regime (Table 3, rows 10 and 11). This indicates
the lack of skill in upper regimes is a combination of factors
(2) and (3).

3.6 Metabolic emissions (QF,M)

GQF estimates night-time QF,M using residential population
and daytime emissions using workday population, with tran-
sitional periods during morning and evening and increased
daytime metabolic activity per person. LQF uses residential
population data at all times of day, and transitions to (from)
increased metabolic activity during the morning (evening).

Workday and resident population differences lead to lower
skill during the day than at night (Fig. 9), and the FSS rapidly
worsens to non-informative levels at 05:00–07:00 and 22:00
UTC in the G50+, G90+ and G99+ regimes because day/night
transitions take place differently in the two models. All re-
gimes except the G99+ case are predicted with informative
skill outside of transitional periods, and G99+ is predicted
skilfully at 19:00–21:00 and 23:00.

Fig. 10 Grid cell skill rating, indicating whether the regime(s) within which each pixel resided during 5 May 2015 were predicted with useful skill at all
hours, some hours or never. Results shown for a Total QF, b QF,B and cQF,M. Transport emissions are omitted because no useful skill was found (Fig. 7)

Fig. 9 As Fig. 6a, but showing FSS for metabolic emissions skill
from LQF compared with GQF-Standard
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Non-informative skill in the QF,M G99+ regime
(Table 3, rows 12 to 14) is caused by frequency biases
arising from different assumptions regarding resting met-
abolic rates and work schedules between models. The
G99+ regime is over-predicted by 3.3 times at night be-
cause LQF assumes each person emits 75 W while GQF
assumes 64.3 W. LQF predicts 14.6 times more cells at
07:00 UTC because its transition to active metabolic rates
begins earlier than in GQF, which is conditioned on work/
home rather than sleep/wake. At 12:00 UTC, transitions
are complete and workday population dominates in GQF
and LQF predicts zero G99+ cells, reflecting the high
localised density of the workday population. Coarsening
the spatial scale to 5 km (not shown) did not improve skill
in the G99+ regime.

Night-time disagreement between models is trivial to re-
solve by adopting a consistent resting metabolic rate, but the
differences during transitions between rest, wakefulness and
work reflect the different levels of model detail.

3.7 Spatial variation of skill

Spatial variation in LQF skill is visualised by calculating the
proportion of the day for which each grid cell resides in a regime
with informative skill. This reliability (Fig. 10) is labelled as
Bconsistently informative^ (FSS > FSSuseful during all hours),
Bintermittently informative^ (some hours) or Bpoor^ (never).

Total QF is intermittently informative in approximately 90%
of the city area (Fig. 10a). Areas aroundmajor roads in the north,
east and west of the city are reduced to being intermittently
informative where the unskilled transport emissions are the
strongest. The city centre contains the poorly predicted G99+
regime, which is dominated by building and transport emissions.

For QF,B (Fig. 10b), over 98% of the city falls into
regimes predicted consistently, and the G99+ regime at
the centre is predicted without skill. The difference be-
tween Fig. 10a, b highlights the effect of roads on overall
skill. Areas near the centre are intermittently informative
because some grid cells fall into different regimes over
the day. Metabolism (Fig. 10c from LQF is intermittently
informative in the central half of the city where the work-
day population dominates and consistently informative in
the residential outer 50%). QF,T is not included because
skill is consistently poor in all cases.

4 Discussion

4.1 Skill, emissions and energy

The total energy available for building emissions deviated
between LQF and GQF on days with a mean temperature over
12 °C because LQF assumes no heating occurs in this regime.

The study date represented good agreement between models,
and the bias introduced by this error reduces the FSS on other
dates. It is stressed, however, that other prediction methods or
empirical demand data could be used with the LQF approach
instead.

FSS and area coverage are not related to the total energy
contained within a regime (Table 2 contains a full breakdown
of QF intensities and energy partitioning). The G50+ regime
contains ~ 50% of energy, G90+ around 25% and G99+ ap-
proximately 10%. The areal extent of a regime therefore does
not reflect its energetic significance, and obtaining good skill
in the upper regimes may be more important for urban energy
balance considerations if the focus is on high spatial resolution
or hot spots.

4.2 Spatial accuracy

Total city-wide emissions in each component are consistent
between models. LQF reproduced much of the GQF QF,B

spatial variability with an informative level of skill in most
areas but was unable to accurately reproduce the city centre
hot spots present in GQF output, with energy instead spread
elsewhere. Accurate hot spot prediction requires workday
population data, spatially constrained energy consumption da-
ta and the ability to discriminate between domestic and non-
domestic emissions:

1. Spatially resolved domestic and non-domestic building
energy consumption constrain emissions within different
regions of the city.

2. Workday and residential populations indicate likely fine-
grained building energy demand patterns during day and
night.

3. Separate diurnal profiles for the energy consumption
datasets correlate emissions in different areas to particular
times of day.

LQF predicted spatial variations of QF,T poorly in all regimes
and times of day, smoothing out emissions over unsuitably large
areas at resolutions as coarse as 5 km even when disaggregated
using paved area fraction instead of population density. A road
network map is required to address this, and the use of crowd-
sourced vector data such as OpenStreetMap (2017) represents a
potential avenue (subject to coverage) if assumptions are made
about the division of traffic between major and minor roads.

QF,M is predicted with informative levels of skill at night if
accurate assumptions are made about per-person emissions.
Differences in assumed resting and working times cause large
transient losses in skill in the morning and evening. Daytime
QF,M predictions in LQF were predicted with poorer skill be-
cause LQF did not have access to workday population data,
although only the hot spot regime fell below an informative
level of skill during daytime.
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Total QF skill reflects that of the individual components.
LQF is non-informative at all times of day in the city centre
because of building-related hot spots and non-informative dur-
ing some hours of the day near major roads and dense parts of
the road network. Since transport contributes less energy than
buildings, consistently informative total QF skill can be obtain-
ed by coarsening the spatial resolution from 500 m to 1 km.

GQF is likely to more accurately represent true QF emis-
sions than LQF; however, in this study, we cannot state how
closely it matches reality.

5 Conclusions

A simple model (LQF) based principally on residential popu-
lation and national statistics has limited accuracy at spatial
resolutions from 0.5 to 5 km when compared with the output
of a more detailed model (GQF), which uses city-specific
parameters and distinguishes different energy uses:

& At the whole-city scale, building and road emissions were
within ± 40% of city-specific values, for individual days,
with building emissions underestimated on warmer days.

& Elevated inner-city emissions, dominated by buildings,
were displaced by LQF and hot spots were missed entire-
ly. This is attributed to workday population and non-
domestic energy use patterns.

& Outer-city emissions were replicated reliably by LQF as
they are dominated by domestic buildings.

& Transport emissions were predicted poorly throughout the
city because population and paved area fraction data at-
tributed emissions across too great an area.

& Metabolic emissions were captured skilfully by LQF ex-
cept during transitions between rest and activity.

We recommend that if detailed modelling is impractical
because of limited input data, simple models based on resi-
dential population density patterns must be used
conservatively:

& Resolutions no finer than ~ 1 km should be used to miti-
gate the effects of a lack of population movement (e.g.
from home to work) being modelled.

& Transport emissions should be based on road network
maps rather than a proxy, especially where major orbital
and trunk roads displace traffic volume from dense
populations.

& The relation between temperature and energy use should
be evaluated for each study city. Amongst other improve-
ments to LUCY (now LQF), through this work, optional
extra parameters have been added to the LQF software to
permit this.

& Errors arising from misplaced emission hot spots should
still be expected despite these measures.

As new techniques are developed to obtain QF (e.g.
Chrysoulakis et al. 2016), and high-resolution urban model-
ling uses QF as an input (e.g. Loridan et al. 2010; Chen et al.
2011; Bohnenstengel et al. 2014; Best and Grimmond 2016),
estimation methods must be evaluated objectively so that their
appropriateness can be judged and their limitations addressed.
Given the challenge of obtaining all the data necessary to run a
detailed model like GQF, enriching a simpler LQF-type model
with complementary data may be a more fruitful way of im-
proving the quality of predictions.

Despite extensive inputs, the models discussed here are es-
sentially static and do not explicitly consider the effect of local-
ised or widespread disruptions to human activity. Developing
methods to emulate the dynamics of human behaviour therefore
is essential so that spatially heterogeneous QF predictions can be
made (Barlow et al. 2017). In turn, this will support urban ener-
gy balance and surface-atmosphere interactionmodelling at pro-
gressively higher spatial and temporal resolutions.

Acknowledgements The authors would like to extend thanks to Fredrik
Lindberg for advice and the City of London Barbican Estate for providing
the measurement site.

Funding information Financial support by the European Union H2020-
EO-1-2014 Project 637519: URBANFLUXES, and the UK-China
Research and Innovation Partnership Fund through the Met Office
Climate Science for Service Partnership (CSSP) China as part of the
Newton Fund. The UMEP toolkit is available for download at http://
www.urban-climate.net/umep.

Appendix 1. Model parameters

The following provide the parameters and units used in the
models (Tables 4 and 6) and data sources (Tables 5 and 7) used

Table 4 Parameters used in LQF model

LQF Parameter Value Unit

Vehicle speed 48,000 m h−1

Heat emissions factors by vehicle type Cars 25.92
Motorcycles 13.16

W m−1

Freight 108.42

Balance point temperature 12 °C

Building energy weighting at balance point 0.7 N/A

Proportion of vehicles in use 0.8 N/A

Individual metabolic emission Sleeping 75 W
Working 175

Based on Allen et al. (2011) and Lindberg et al. (2013). Heating/cooling
response curve parameters (not shown) for the UK are as in Lindberg
et al. (2013)
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Table 5 Data sources used to populate LQF database, any/all of which can be updated by the user of the software

LQF input data Reference(s) Year updated

National vehicle ownership by class Cars, motorcycles and freight: Worldmapper (2006) 2002

Vehicle emission factors by class Smith et al. (2009) 2001

National population Central Intelligence Agency World Fact Book (2016) 2016

Final national energy consumption IEA (2016) 2014

UN national income grouping World Bank (see Lindberg et al. 2013) 2012

Metabolic heat and activity timings Smith et al. (2009); Lindberg et al. (2013) N/A

The newest available values (as of July 2017) were used for each data source

Table 6 Parameters used in GQF
calculations GQF Parameter Value Unit

Electric water heater efficiency 0.98 N/A

Gas water heater efficiency 0.85 N/A

Latent fraction of metabolic heat 0.3 N/A

Sensible fraction of metabolic heat 0.7 N/A

Vehicle age (relative) 5 Year

Fraction of domestic electricity used for water heating 0.139 N/A

Fraction of domestic gas used for water heating 0.27 N/A

Fraction of non-domestic electricity used for water heating 0.036 N/A

Fraction of non-domestic gas used for water heating 0.146 N/A

Natural gas heat of combustion Net of latent heat 35.5 MJ kg−1

Gross 39.4

Petrol heat of combustion Net 44.7 MJ kg−1

Gross 47.1

Diesel heat of combustion Net 43.3 MJ kg−1

Gross 45.5

All taken from Iamarino et al. (2012) except for vehicle age, which was added in the current work and is assumed
to be 5 years. Economy 7 electricity and crude oil parameters are omitted from this study

Table 7 Summary of data sources used in GQF, along with spatial and temporal resolution

GQF data source description Spatial resolution Temporal resolution Reference

Domestic electricity use maps Domestic: Lower-level
super output area
(LSOA)

Annual DBEIS (2015b)

(Non-)domestic gas use maps LSOA, mid-level SOA Annual DBEIS (2015a)
Non-domestic electricity use map Borough level Annual London Datastore (2016)
Daily UK gas demand N/A Daily National Grid (2016a)
Half-hourly UK electricity demand N/A 30 min National Grid (2016b)
Building energy load profiles: One diurnal

cycle representing all weekdays, one each for Saturday,
Sunday

N/A 10 year rolling-average Exelon UK (2012)

Residential population (2011) Census output area (OA) Annual ONS (2013)
Workday population (2011) OA 10 year updates, estimates in

between
ONS (2014)

Road link map w/ traffic count by vehicle type Greater London Infrequent updates London Datastore (2014)
Traffic diurnal profiles by vehicle type Greater London Infrequent updates Iamarino et al. (2012) model input

data
Fuel consumption by different euro class, vehicle and road

type
N/A Unknown DEFRA (1999)

Estimated calorific values of fuels N/A Unknown DBEIS (2014)
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as inputs to GQF and LQF. The data used to populate the LQF
database of national statistics is listed in Table 5.

Appendix 2. Algorithm used to produce
gridded population and transport energy
data

(Dis)aggregation of population/energy consumption
data

The disaggregation algorithm redistributes VS, a set of scalar
quantities attributed to a set S of Bsource^ spatial units to a set
Tof target units that intersect them. These units are of arbitrary
shape, and S and T may have different spatial extents to one
another. Each target unit receives a share of the quantities VS

according to the area of source unit(s) intersected and the
value of a numerical weighting specified for each target unit.

The process and rules to perform the disaggregation are
outlined below. Each source unit is processed in turn, and its
contributions to each target area are summed afterwards.

1. The n target units spatially intersecting the jth source unit
are identified. The ith target unit has an overall area AT, i
and intersects an area aT, i. The n target units collectively
overlap a fraction F of the overall source area AS, j

2. The ith target unit receives VT, i: This is a fraction of VS, j
determined by a weighting wT assigned to each of the n
target areas. Weightings may be provided externally, or the
overall target unit area is used otherwise (i.e. wT, i = AT, i):

VT ;i ¼ wT ;i

WS; j
VS; j ð3Þ

The term WS, j represents the total weighting over the
source unit. This is either:

(a) Specified externally before processing, which allows
WS; j≠∑n

i wT ;i, whereby VS, j is scaled up or down before
being disaggregated.

(b) Calculated from the sum of the individual weights, tak-
ing into account the fraction F to scale down VS, j if the
target units do not completely cover the source unit:

WS; j ¼ 1

F
∑n

i wT ;i ð4Þ

(c) If WS, j = 0, it is overridden with WS; j ¼ 1
n.

3. A target unit may intersect m source units. In this event,
the ith target area weighting wi used in Eq. 3 is first scaled
by the proportion of the target unit area intersected by the
source unit:

w
0
T ;i ¼

aT ;i
At;i

wT ;i ð5Þ

The process therefore performs aggregation if a target unit
bounds multiple source units and disaggregation if the source
areas are larger than the target unit. The resulting value of VS,

j is conserved across the n target units (i.e. ∑n
i VT ;i ¼ VS; j )

Aggregation of road network data (GQF)

The London Atmospheric Emissions Inventory (LAEI;
London London Datastore, 2014) supplies a detailed road
segment map, with annual average daily traffic (AADT) spec-
ified on a per-segment and per-vehicle class (Table 8) basis.
These segments are vector lines and are infinitesimally thin, so
the data are transformed to fuel consumption in each output
polygon:

Total fuel consumption F in an output polygon of area
A is obtained by summing contributions from each of the
m road segments passing through it. The total fuel con-
sumption fV for vehicle of class v is calculated as in Eq. 6,
where li is road segment length in kilometres, Di, v is the
annual average daily traffic (AADT) of the vehicle class
on the road segment and εv is the fuel consumption of the

Table 8 List of vehicle classes
modelled in GQF, along with how
the model gets information about
the relative balance of petrol and
diesel vehicles in each class

Vehicle type Source of information on fuel mix Assumed fuel mix

Motorcycle Assumption All petrol

Car Input data (if available) 84% petrol and 16% diesel

Light goods vehicle Input data (if available) 10% petrol and 90% diesel

Bus Assumption All diesel

Taxi Assumption All diesel

Rigid heavy goods vehicles Assumption All diesel

Articulated heavy goods vehicles Assumption All diesel

Assumed fuel mix values are taken from Iamarino et al. (2012). Assumed fuel mix is subject to change with
regulatory and technological advances
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vehicle class (kg km−1; based on EURO-II derived esti-
mates on urban roads (DEFRA, 1999).

f v ¼ ∑m
i εvliDi;v ð6Þ

QF;T ¼ 106

48∙A
∑n

j f vqv ð7Þ

Mean half-hourly QF,T is estimated (Eq. 7) by summing
across all n vehicle types and applying the heat of combustion.
The available data splits vehicles into petrol and diesel vari-
ants so the appropriate heat of combustion qv from Iamarino
(2012) is applied (44.7 and 47.1 MJ kg−1 for petrol, net and
gross of water vapour and 43.3 and 45.5 MJ kg−1 for diesel,
net and gross of water vapour). Where data regarding the fuel
split is not available, assumptions are made (Table 8). Half-
hourly variations are incorporated by applying a diurnal scal-
ing factor, which also varies from day to day to reflect reduced
weekend traffic flow.
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